Newer
Older
'''This class will log 1d array in Nd matrix from device and qualisys object'''
import numpy as np
from datetime import datetime as datetime
from time import time
from utils_mpc import quaternionToRPY
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
class LoggerControl():
def __init__(self, dt, joystick=None, estimator=None, loop=None, planner=None, logSize=60e3, ringBuffer=False):
self.ringBuffer = ringBuffer
logSize = np.int(logSize)
self.logSize = logSize
self.i = 0
self.dt = dt
# Allocate the data:
# Joystick
self.joy_v_ref = np.zeros([logSize, 6]) # reference velocity of the joystick
# Estimator
self.esti_feet_status = np.zeros([logSize, 4]) # input feet status (contact or not)
self.esti_feet_goals = np.zeros([logSize, 3, 4]) # input feet goals (desired on the ground)
self.esti_q_filt = np.zeros([logSize, 19]) # output position
self.esti_v_filt = np.zeros([logSize, 18]) # output velocity
self.esti_v_secu = np.zeros([logSize, 12]) # filtered output velocity for security check
self.esti_FK_lin_vel = np.zeros([logSize, 3]) # estimated velocity of the base with FK
self.esti_FK_xyz = np.zeros([logSize, 3]) # estimated position of the base with FK
self.esti_xyz_mean_feet = np.zeros([logSize, 3]) # average of feet goals
self.esti_HP_x = np.zeros([logSize, 3]) # x input of the velocity complementary filter
self.esti_HP_dx = np.zeros([logSize, 3]) # dx input of the velocity complementary filter
self.esti_HP_alpha = np.zeros([logSize, 3]) # alpha parameter of the velocity complementary filter
self.esti_HP_filt_x = np.zeros([logSize, 3]) # filtered output of the velocity complementary filter
self.esti_LP_x = np.zeros([logSize, 3]) # x input of the position complementary filter
self.esti_LP_dx = np.zeros([logSize, 3]) # dx input of the position complementary filter
self.esti_LP_alpha = np.zeros([logSize, 3]) # alpha parameter of the position complementary filter
self.esti_LP_filt_x = np.zeros([logSize, 3]) # filtered output of the position complementary filter
# Loop
self.loop_o_q_int = np.zeros([logSize, 19]) # position in world frame (esti_q_filt + dt * loop_o_v)
self.loop_o_v = np.zeros([logSize, 18]) # estimated velocity in world frame
# Planner
self.planner_q_static = np.zeros([logSize, 19]) # position in static mode (4 stance phase)
self.planner_RPY_static = np.zeros([logSize, 3]) # RPY orientation in static mode (4 stance phase)
self.planner_xref = np.zeros([logSize, 12, 1+planner.n_steps]) # Reference trajectory
self.planner_fsteps = np.zeros([logSize, planner.gait.shape[0], 13]) # Reference footsteps position
self.planner_gait = np.zeros([logSize, 20, 5]) # Gait sequence
self.planner_goals = np.zeros([logSize, 3, 4]) # 3D target feet positions
self.planner_vgoals = np.zeros([logSize, 3, 4]) # 3D target feet velocities
self.planner_agoals = np.zeros([logSize, 3, 4]) # 3D target feet accelerations
self.planner_is_static = np.zeros([logSize]) # if the planner is in static mode or not
self.planner_h_ref = np.zeros([logSize]) # reference height of the planner
# Model Predictive Control
# output vector of the MPC (next state + reference contact force)
self.mpc_x_f = np.zeros([logSize, 24, planner.n_steps])
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Whole body control
self.wbc_x_f = np.zeros([logSize, 24]) # input vector of the WBC (next state + reference contact force)
self.wbc_P = np.zeros([logSize, 12]) # proportionnal gains of the PD+
self.wbc_D = np.zeros([logSize, 12]) # derivative gains of the PD+
self.wbc_q_des = np.zeros([logSize, 12]) # desired position of actuators
self.wbc_v_des = np.zeros([logSize, 12]) # desired velocity of actuators
self.wbc_tau_ff = np.zeros([logSize, 12]) # feedforward torques computed by the WBC
self.wbc_f_ctc = np.zeros([logSize, 12]) # contact forces computed by the WBC
self.wbc_feet_pos = np.zeros([logSize, 3, 4]) # current feet positions according to WBC
self.wbc_feet_err = np.zeros([logSize, 3, 4]) # error between feet positions and their reference
self.wbc_feet_vel = np.zeros([logSize, 3, 4]) # current feet velocities according to WBC
self.wbc_feet_pos_invkin = np.zeros([logSize, 3, 4]) # current feet positions according to InvKin
self.wbc_feet_vel_invkin = np.zeros([logSize, 3, 4]) # current feet velocities according to InvKin
# Timestamps
self.tstamps = np.zeros(logSize)
def sample(self, joystick, estimator, loop, planner, wbc):
if (self.i >= self.logSize):
if self.ringBuffer:
self.i = 0
else:
return
# Logging from joystick
self.joy_v_ref[self.i] = joystick.v_ref[:, 0]
# Logging from estimator
self.esti_feet_status[self.i] = estimator.feet_status[:]
self.esti_feet_goals[self.i] = estimator.feet_goals
self.esti_q_filt[self.i] = estimator.q_filt[:, 0]
self.esti_v_filt[self.i] = estimator.v_filt[:, 0]
self.esti_v_secu[self.i] = estimator.v_secu[:]
self.esti_FK_lin_vel[self.i] = estimator.FK_lin_vel[:]
self.esti_FK_xyz[self.i] = estimator.FK_xyz[:]
self.esti_xyz_mean_feet[self.i] = estimator.xyz_mean_feet[:]
self.esti_HP_x[self.i] = estimator.filter_xyz_vel.x
self.esti_HP_dx[self.i] = estimator.filter_xyz_vel.dx
self.esti_HP_alpha[self.i] = estimator.filter_xyz_vel.alpha
self.esti_HP_filt_x[self.i] = estimator.filter_xyz_vel.filt_x
self.esti_LP_x[self.i] = estimator.filter_xyz_pos.x
self.esti_LP_dx[self.i] = estimator.filter_xyz_pos.dx
self.esti_LP_alpha[self.i] = estimator.filter_xyz_pos.alpha
self.esti_LP_filt_x[self.i] = estimator.filter_xyz_pos.filt_x
# Logging from the main loop
self.loop_o_q_int[self.i] = loop.q_estim[:, 0]
self.loop_o_v[self.i] = loop.v_estim[:, 0]
# Logging from the planner
self.planner_q_static[self.i] = planner.q_static[:, 0]
self.planner_RPY_static[self.i] = planner.RPY_static[:, 0]
self.planner_xref[self.i] = planner.xref
self.planner_fsteps[self.i] = planner.fsteps
self.planner_gait[self.i] = planner.gait
self.planner_goals[self.i] = planner.goals
self.planner_vgoals[self.i] = planner.vgoals
self.planner_agoals[self.i] = planner.agoals
self.planner_is_static[self.i] = planner.is_static
self.planner_h_ref[self.i] = planner.h_ref
# Logging from model predictive control
self.mpc_x_f[self.i] = loop.x_f_mpc
# Logging from whole body control
self.wbc_x_f[self.i] = loop.x_f_wbc
self.wbc_P[self.i] = loop.result.P
self.wbc_D[self.i] = loop.result.D
self.wbc_q_des[self.i] = loop.result.q_des
self.wbc_v_des[self.i] = loop.result.v_des
self.wbc_tau_ff[self.i] = loop.result.tau_ff
self.wbc_f_ctc[self.i] = wbc.f_with_delta[:, 0]
self.wbc_feet_pos[self.i] = wbc.feet_pos
self.wbc_feet_err[self.i] = wbc.feet_err
self.wbc_feet_vel[self.i] = wbc.feet_vel
self.wbc_feet_pos_invkin[self.i] = wbc.invKin.cpp_posf.transpose()
self.wbc_feet_vel_invkin[self.i] = wbc.invKin.cpp_vf.transpose()
# Logging timestamp
self.tstamps[self.i] = time()
self.i += 1
def processMocap(self, N, loggerSensors):
self.mocap_b_v = np.zeros([N, 3])
self.mocap_b_w = np.zeros([N, 3])
self.mocap_RPY = np.zeros([N, 3])
for i in range(N):
oRb = loggerSensors.mocapOrientationMat9[i]
"""from IPython import embed
embed()"""
self.mocap_b_v[i] = (oRb.transpose() @ loggerSensors.mocapVelocity[i].reshape((3, 1))).ravel()
self.mocap_b_w[i] = (oRb.transpose() @ loggerSensors.mocapAngularVelocity[i].reshape((3, 1))).ravel()
self.mocap_RPY[i] = quaternionToRPY(loggerSensors.mocapOrientationQuat[i])[:, 0]
def plotAll(self, loggerSensors):
from matplotlib import pyplot as plt
N = self.tstamps.shape[0]
t_range = np.array([k*self.dt for k in range(N)])
self.processMocap(N, loggerSensors)
index6 = [1, 3, 5, 2, 4, 6]
index12 = [1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]
"""plt.figure()
for i in range(4):
if i == 0:
ax0 = plt.subplot(2, 2, i+1)
else:
plt.subplot(2, 2, i+1, sharex=ax0)
switch = np.diff(self.esti_feet_status[:, i])
tmp = self.wbc_feet_pos[:-1, 2, i]
tmp_y = tmp[switch > 0]
tmp_x = t_range[:-1]
tmp_x = tmp_x[switch > 0]
plt.plot(tmp_x, tmp_y, linewidth=3)"""
lgd_X = ["FL", "FR", "HL", "HR"]
lgd_Y = ["Pos X", "Pos Y", "Pos Z"]
plt.figure()
for i in range(12):
if i == 0:
ax0 = plt.subplot(3, 4, index12[i])
else:
plt.subplot(3, 4, index12[i], sharex=ax0)
plt.plot(t_range, self.wbc_feet_pos[:, i % 3, np.int(i/3)], color='b', linewidth=3, marker='')
plt.plot(t_range, self.wbc_feet_err[:, i % 3, np.int(i/3)], color='g', linewidth=3, marker='')
plt.plot(t_range, self.planner_goals[:, i % 3, np.int(i/3)], color='r', linewidth=3, marker='')
plt.plot(t_range, self.wbc_feet_pos_invkin[:, i % 3, np.int(i/3)],
color='darkviolet', linewidth=3, linestyle="--", marker='')
if (i % 3) == 2:
plt.plot(t_range, self.planner_gait[:, 0, 1+np.int(
i/3)] * np.max(self.wbc_feet_pos[:, i % 3, np.int(i/3)]), color='k', linewidth=3, marker='')
plt.legend([lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)]+"", "error",
lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)]+" Ref", "Contact state"], prop={'size': 8})
plt.suptitle("Measured & Reference feet positions (world frame)")
lgd_X = ["FL", "FR", "HL", "HR"]
lgd_Y = ["Vel X", "Vel Y", "Vel Z"]
plt.figure()
for i in range(12):
if i == 0:
ax0 = plt.subplot(3, 4, index12[i])
else:
plt.subplot(3, 4, index12[i], sharex=ax0)
plt.plot(t_range, self.wbc_feet_vel[:, i % 3, np.int(i/3)], color='b', linewidth=3, marker='')
plt.plot(t_range, self.planner_vgoals[:, i % 3, np.int(i/3)], color='r', linewidth=3, marker='')
plt.plot(t_range, self.wbc_feet_vel_invkin[:, i % 3, np.int(i/3)],
color='darkviolet', linewidth=3, linestyle="--", marker='')
plt.legend([lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)], lgd_Y[i %
3] + " " + lgd_X[np.int(i/3)]+" Ref"], prop={'size': 8})
plt.suptitle("Measured and Reference feet velocities (world frame)")
lgd_X = ["FL", "FR", "HL", "HR"]
lgd_Y = ["Acc X", "Acc Y", "Acc Z"]
plt.figure()
for i in range(12):
if i == 0:
ax0 = plt.subplot(3, 4, index12[i])
else:
plt.subplot(3, 4, index12[i], sharex=ax0)
plt.plot(t_range, self.planner_agoals[:, i % 3, np.int(i/3)], color='r', linewidth=3, marker='')
plt.legend([lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)]+" Ref"], prop={'size': 8})
plt.suptitle("Reference feet accelerations (world frame)")
# LOG_Q
lgd = ["Position X", "Position Y", "Position Z", "Position Roll", "Position Pitch", "Position Yaw"]
plt.figure()
for i in range(6):
if i == 0:
ax0 = plt.subplot(3, 2, index6[i])
else:
plt.subplot(3, 2, index6[i], sharex=ax0)
plt.plot(t_range, self.planner_xref[:, i, 0], "b", linewidth=2)
plt.plot(t_range, self.planner_xref[:, i, 1], "r", linewidth=3)
if i < 3:
plt.plot(t_range, loggerSensors.mocapPosition[:, i], "k", linewidth=3)
else:
plt.plot(t_range, self.mocap_RPY[:, i-3], "k", linewidth=3)
# plt.plot(t_range, self.log_q[i, :], "grey", linewidth=4)
# plt.plot(t_range[:-2], self.log_x_invkin[i, :-2], "g", linewidth=2)
# plt.plot(t_range[:-2], self.log_x_ref_invkin[i, :-2], "violet", linewidth=2, linestyle="--")
plt.legend(["Robot state", "Robot reference state"], prop={'size': 8})
plt.ylabel(lgd[i])
plt.suptitle("Measured & Reference position and orientation")
# LOG_V
lgd = ["Linear vel X", "Linear vel Y", "Linear vel Z",
"Angular vel Roll", "Angular vel Pitch", "Angular vel Yaw"]
plt.figure()
for i in range(6):
if i == 0:
ax0 = plt.subplot(3, 2, index6[i])
else:
plt.subplot(3, 2, index6[i], sharex=ax0)
plt.plot(t_range, self.esti_v_filt[:, i], "b", linewidth=2)
plt.plot(t_range, self.joy_v_ref[:, i], "r", linewidth=3)
if i < 3:
plt.plot(t_range, self.mocap_b_v[:, i], "k", linewidth=3)
plt.plot(t_range, self.esti_FK_lin_vel[:, i], "violet", linewidth=3, linestyle="--")
else:
plt.plot(t_range, self.mocap_b_w[:, i-3], "k", linewidth=3)
# plt.plot(t_range, self.log_dq[i, :], "g", linewidth=2)
# plt.plot(t_range[:-2], self.log_dx_invkin[i, :-2], "g", linewidth=2)
# plt.plot(t_range[:-2], self.log_dx_ref_invkin[i, :-2], "violet", linewidth=2, linestyle="--")
plt.legend(["Robot state", "Robot reference state"], prop={'size': 8})
plt.ylabel(lgd[i])
plt.suptitle("Measured & Reference linear and angular velocities")
"""plt.figure()
plt.plot(t_range[:-2], self.log_x[6, :-2], "b", linewidth=2)
plt.plot(t_range[:-2], self.log_x_cmd[6, :-2], "r", linewidth=2)
plt.plot(t_range[:-2], self.log_dx_invkin[0, :-2], "g", linewidth=2)
plt.plot(t_range[:-2], self.log_dx_ref_invkin[0, :-2], "violet", linewidth=2)
plt.legend(["WBC integrated output state", "Robot reference state",
"Task current state", "Task reference state"])"""
lgd1 = ["HAA", "HFE", "Knee"]
lgd2 = ["FL", "FR", "HL", "HR"]
plt.figure()
for i in range(12):
if i == 0:
ax0 = plt.subplot(3, 4, index12[i])
else:
plt.subplot(3, 4, index12[i], sharex=ax0)
tau_fb = self.wbc_P[:, i] * (self.wbc_q_des[:, i] - self.esti_q_filt[:, 7+i]) + \
self.wbc_D[:, i] * (self.wbc_v_des[:, i] - self.esti_v_filt[:, 6+i])
h1, = plt.plot(t_range, self.wbc_tau_ff[:, i], "r", linewidth=3)
h2, = plt.plot(t_range, tau_fb, "b", linewidth=3)
h3, = plt.plot(t_range, self.wbc_tau_ff[:, i] + tau_fb, "g", linewidth=3)
h4, = plt.plot(t_range[:-1], loggerSensors.torquesFromCurrentMeasurment[1:, i],
"violet", linewidth=3, linestyle="--")
plt.xlabel("Time [s]")
plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]+" [Nm]")
tmp = lgd1[i % 3]+" "+lgd2[int(i/3)]
plt.legend([h1, h2, h3, h4], ["FF "+tmp, "FB "+tmp, "PD+ "+tmp, "Meas "+tmp], prop={'size': 8})
plt.ylim([-8.0, 8.0])
plt.suptitle("FF torques & FB torques & Sent torques & Meas torques")
lgd1 = ["Ctct force X", "Ctct force Y", "Ctct force Z"]
lgd2 = ["FL", "FR", "HL", "HR"]
plt.figure()
for i in range(12):
if i == 0:
ax0 = plt.subplot(3, 4, index12[i])
else:
plt.subplot(3, 4, index12[i], sharex=ax0)
h1, = plt.plot(t_range, self.mpc_x_f[:, 12+i, 0], "r", linewidth=3)
h2, = plt.plot(t_range, self.wbc_f_ctc[:, i], "b", linewidth=3, linestyle="--")
plt.xlabel("Time [s]")
plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]+" [N]")
plt.legend([h1, h2], ["MPC " + lgd1[i % 3]+" "+lgd2[int(i/3)],
"WBC " + lgd1[i % 3]+" "+lgd2[int(i/3)]], prop={'size': 8})
if (i % 3) == 2:
plt.ylim([-0.0, 26.0])
else:
plt.ylim([-26.0, 26.0])
plt.suptitle("Contact forces (MPC command) & WBC QP output")
lgd1 = ["HAA", "HFE", "Knee"]
lgd2 = ["FL", "FR", "HL", "HR"]
plt.figure()
for i in range(12):
if i == 0:
ax0 = plt.subplot(3, 4, index12[i])
else:
plt.subplot(3, 4, index12[i], sharex=ax0)
h1, = plt.plot(t_range, self.wbc_q_des[:, i], color='r', linewidth=3)
h2, = plt.plot(t_range, self.esti_q_filt[:, 7+i], color='b', linewidth=3)
plt.xlabel("Time [s]")
plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]+" [rad]")
plt.legend([h1, h2], ["Ref "+lgd1[i % 3]+" "+lgd2[int(i/3)],
lgd1[i % 3]+" "+lgd2[int(i/3)]], prop={'size': 8})
plt.suptitle("Desired actuator positions & Measured actuator positions")
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# Evolution of predicted trajectory along time
log_t_pred = np.array([k*self.dt*10 for k in range(self.mpc_x_f.shape[2])])
log_t_ref = np.array([k*self.dt*10 for k in range(self.planner_xref.shape[2])])
"""from IPython import embed
embed()"""
titles = ["X", "Y", "Z", "Roll", "Pitch", "Yaw"]
step = 200
plt.figure()
for j in range(6):
plt.subplot(3, 2, index6[j])
c = [[i/(self.mpc_x_f.shape[0]+5), 0.0, i/(self.mpc_x_f.shape[0]+5)]
for i in range(0, self.mpc_x_f.shape[0], step)]
for i in range(0, self.mpc_x_f.shape[0], step):
h1, = plt.plot(log_t_pred+(i+10)*self.dt,
self.mpc_x_f[i, j, :], "b", linewidth=2, color=c[int(i/step)])
h2, = plt.plot(log_t_ref+i*self.dt,
self.planner_xref[i, j, :], linestyle="--", marker='x', color="g", linewidth=2)
h3, = plt.plot(np.array([k*self.dt for k in range(self.mpc_x_f.shape[0])]),
self.planner_xref[:, j, 0], linestyle=None, marker='x', color="r", linewidth=1)
plt.xlabel("Time [s]")
plt.legend([h1, h2, h3], ["Output trajectory of MPC",
"Input trajectory of planner", "Actual robot trajectory"])
plt.title("Predicted trajectory for " + titles[j])
plt.suptitle("Analysis of trajectories in position and orientation computed by the MPC")
plt.figure()
for j in range(6):
plt.subplot(3, 2, index6[j])
c = [[i/(self.mpc_x_f.shape[0]+5), 0.0, i/(self.mpc_x_f.shape[0]+5)]
for i in range(0, self.mpc_x_f.shape[0], step)]
for i in range(0, self.mpc_x_f.shape[0], step):
h1, = plt.plot(log_t_pred+(i+10)*self.dt,
self.mpc_x_f[i, j+6, :], "b", linewidth=2, color=c[int(i/step)])
h2, = plt.plot(log_t_ref+i*self.dt,
self.planner_xref[i, j+6, :], linestyle="--", marker='x', color="g", linewidth=2)
h3, = plt.plot(np.array([k*self.dt for k in range(self.mpc_x_f.shape[0])]),
self.planner_xref[:, j+6, 0], linestyle=None, marker='x', color="r", linewidth=1)
plt.xlabel("Time [s]")
plt.legend([h1, h2, h3], ["Output trajectory of MPC",
"Input trajectory of planner", "Actual robot trajectory"])
plt.title("Predicted trajectory for velocity in " + titles[j])
plt.suptitle("Analysis of trajectories of linear and angular velocities computed by the MPC")
lgd1 = ["Ctct force X", "Ctct force Y", "Ctct force Z"]
lgd2 = ["FL", "FR", "HL", "HR"]
plt.figure()
for i in range(12):
if i == 0:
ax0 = plt.subplot(3, 4, index12[i])
else:
plt.subplot(3, 4, index12[i], sharex=ax0)
h1, = plt.plot(t_range, self.mpc_x_f[:, 12+i, 0], "r", linewidth=3)
h2, = plt.plot(t_range, self.wbc_f_ctc[:, i], "b", linewidth=3, linestyle="--")
plt.xlabel("Time [s]")
plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]+" [N]")
plt.legend([h1, h2], ["MPC " + lgd1[i % 3]+" "+lgd2[int(i/3)],
"WBC " + lgd1[i % 3]+" "+lgd2[int(i/3)]], prop={'size': 8})
if (i % 3) == 2:
plt.ylim([-0.0, 26.0])
else:
plt.ylim([-26.0, 26.0])
plt.suptitle("Contact forces (MPC command) & WBC QP output")
lgd1 = ["Ctct force X", "Ctct force Y", "Ctct force Z"]
lgd2 = ["FL", "FR", "HL", "HR"]
plt.figure()
for i in range(12):
if i == 0:
ax0 = plt.subplot(3, 4, index12[i])
else:
plt.subplot(3, 4, index12[i], sharex=ax0)
for k in range(0, self.mpc_x_f.shape[0], step):
h2, = plt.plot(log_t_pred+k*self.dt, self.mpc_x_f[k, 12+i, :], linestyle="--", marker='x', color="g", linewidth=2)
h1, = plt.plot(t_range, self.mpc_x_f[:, 12+i, 0], "r", linewidth=3)
# h3, = plt.plot(t_range, self.wbc_f_ctc[:, i], "b", linewidth=3, linestyle="--")
plt.xlabel("Time [s]")
plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]+" [N]")
plt.legend([h1, h2], ["MPC " + lgd1[i % 3]+" "+lgd2[int(i/3)],
"MPC " + lgd1[i % 3]+" "+lgd2[int(i/3)]+" trajectory"])
if (i % 3) == 2:
plt.ylim([-0.0, 26.0])
else:
plt.ylim([-26.0, 26.0])
plt.suptitle("Contact forces trajectories & Actual forces trajectories")
plt.show(block=True)
from IPython import embed
embed()
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
def saveAll(self, loggerSensors, fileName="data"):
date_str = datetime.now().strftime('_%Y_%m_%d_%H_%M')
np.savez(fileName + date_str + ".npz",
joy_v_ref=self.joy_v_ref,
esti_feet_status=self.esti_feet_status,
esti_feet_goals=self.esti_feet_goals,
esti_q_filt=self.esti_q_filt,
esti_v_filt=self.esti_v_filt,
esti_v_secu=self.esti_v_secu,
esti_FK_lin_vel=self.esti_FK_lin_vel,
esti_FK_xyz=self.esti_FK_xyz,
esti_xyz_mean_feet=self.esti_xyz_mean_feet,
esti_HP_x=self.esti_HP_x,
esti_HP_dx=self.esti_HP_dx,
esti_HP_alpha=self.esti_HP_alpha,
esti_HP_filt_x=self.esti_HP_filt_x,
esti_LP_x=self.esti_LP_x,
esti_LP_dx=self.esti_LP_dx,
esti_LP_alpha=self.esti_LP_alpha,
esti_LP_filt_x=self.esti_LP_filt_x,
loop_o_q_int=self.loop_o_q_int,
loop_o_v=self.loop_o_v,
loop_q_static=self.loop_q_static,
loop_RPY_static=self.loop_RPY_static,
planner_xref=self.planner_xref,
planner_fsteps=self.planner_fsteps,
planner_gait=self.planner_gait,
planner_goals=self.planner_goals,
planner_vgoals=self.planner_vgoals,
planner_agoals=self.planner_agoals,
planner_is_static=self.planner_is_static,
planner_h_ref=self.planner_h_ref,
mpc_x_f=self.mpc_x_f,
wbc_x_f=self.wbc_x_f,
wbc_P=self.wbc_P,
wbc_D=self.wbc_D,
wbc_q_des=self.wbc_q_des,
wbc_v_des=self.wbc_v_des,
wbc_tau_ff=self.wbc_tau_ff,
wbc_f_ctc=self.wbc_f_ctc,
wbc_feet_pos=self.wbc_feet_pos,
wbc_feet_err=self.wbc_feet_err,
wbc_feet_vel=self.wbc_feet_vel,
tstamps=self.tstamps,
q_mes=loggerSensors.q_mes,
v_mes=loggerSensors.v_mes,
baseOrientation=loggerSensors.baseOrientation,
baseAngularVelocity=loggerSensors.baseAngularVelocity,
baseLinearAcceleration=loggerSensors.baseLinearAcceleration,
baseAccelerometer=loggerSensors.baseAccelerometer,
torquesFromCurrentMeasurment=loggerSensors.torquesFromCurrentMeasurment,
mocapPosition=loggerSensors.mocapPosition,
mocapVelocity=loggerSensors.mocapVelocity,
mocapAngularVelocity=loggerSensors.mocapAngularVelocity,
mocapOrientationMat9=loggerSensors.mocapOrientationMat9,
mocapOrientationQuat=loggerSensors.mocapOrientationQuat,
)