Skip to content
Snippets Groups Projects
Commit 987f540d authored by Pierre-Alexandre Leziart's avatar Pierre-Alexandre Leziart
Browse files

Add new plots to analyze trajectories of the MPC

parent 7257e8a9
No related branches found
No related tags found
No related merge requests found
......@@ -2,6 +2,7 @@
import numpy as np
from datetime import datetime as datetime
from time import time
from utils_mpc import quaternionToRPY
class LoggerControl():
......@@ -55,7 +56,8 @@ class LoggerControl():
self.planner_h_ref = np.zeros([logSize]) # reference height of the planner
# Model Predictive Control
self.mpc_x_f = np.zeros([logSize, 24]) # output vector of the MPC (next state + reference contact force)
# output vector of the MPC (next state + reference contact force)
self.mpc_x_f = np.zeros([logSize, 24, planner.n_steps])
# Whole body control
self.wbc_x_f = np.zeros([logSize, 24]) # input vector of the WBC (next state + reference contact force)
......@@ -143,6 +145,22 @@ class LoggerControl():
self.i += 1
def processMocap(self, N, loggerSensors):
self.mocap_b_v = np.zeros([N, 3])
self.mocap_b_w = np.zeros([N, 3])
self.mocap_RPY = np.zeros([N, 3])
for i in range(N):
oRb = loggerSensors.mocapOrientationMat9[i]
"""from IPython import embed
embed()"""
self.mocap_b_v[i] = (oRb.transpose() @ loggerSensors.mocapVelocity[i].reshape((3, 1))).ravel()
self.mocap_b_w[i] = (oRb.transpose() @ loggerSensors.mocapAngularVelocity[i].reshape((3, 1))).ravel()
self.mocap_RPY[i] = quaternionToRPY(loggerSensors.mocapOrientationQuat[i])[:, 0]
def plotAll(self, loggerSensors):
from matplotlib import pyplot as plt
......@@ -150,9 +168,24 @@ class LoggerControl():
N = self.tstamps.shape[0]
t_range = np.array([k*self.dt for k in range(N)])
self.processMocap(N, loggerSensors)
index6 = [1, 3, 5, 2, 4, 6]
index12 = [1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]
"""plt.figure()
for i in range(4):
if i == 0:
ax0 = plt.subplot(2, 2, i+1)
else:
plt.subplot(2, 2, i+1, sharex=ax0)
switch = np.diff(self.esti_feet_status[:, i])
tmp = self.wbc_feet_pos[:-1, 2, i]
tmp_y = tmp[switch > 0]
tmp_x = t_range[:-1]
tmp_x = tmp_x[switch > 0]
plt.plot(tmp_x, tmp_y, linewidth=3)"""
lgd_X = ["FL", "FR", "HL", "HR"]
lgd_Y = ["Pos X", "Pos Y", "Pos Z"]
plt.figure()
......@@ -165,7 +198,8 @@ class LoggerControl():
plt.plot(t_range, self.wbc_feet_pos[:, i % 3, np.int(i/3)], color='b', linewidth=3, marker='')
plt.plot(t_range, self.wbc_feet_err[:, i % 3, np.int(i/3)], color='g', linewidth=3, marker='')
plt.plot(t_range, self.planner_goals[:, i % 3, np.int(i/3)], color='r', linewidth=3, marker='')
plt.plot(t_range, self.wbc_feet_pos_invkin[:, i % 3, np.int(i/3)], color='darkviolet', linewidth=3, linestyle="--", marker='')
plt.plot(t_range, self.wbc_feet_pos_invkin[:, i % 3, np.int(i/3)],
color='darkviolet', linewidth=3, linestyle="--", marker='')
if (i % 3) == 2:
plt.plot(t_range, self.planner_gait[:, 0, 1+np.int(
i/3)] * np.max(self.wbc_feet_pos[:, i % 3, np.int(i/3)]), color='k', linewidth=3, marker='')
......@@ -183,8 +217,10 @@ class LoggerControl():
plt.subplot(3, 4, index12[i], sharex=ax0)
plt.plot(t_range, self.wbc_feet_vel[:, i % 3, np.int(i/3)], color='b', linewidth=3, marker='')
plt.plot(t_range, self.planner_vgoals[:, i % 3, np.int(i/3)], color='r', linewidth=3, marker='')
plt.plot(t_range, self.wbc_feet_vel_invkin[:, i % 3, np.int(i/3)], color='darkviolet', linewidth=3, linestyle="--", marker='')
plt.legend([lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)], lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)]+" Ref"], prop={'size': 8})
plt.plot(t_range, self.wbc_feet_vel_invkin[:, i % 3, np.int(i/3)],
color='darkviolet', linewidth=3, linestyle="--", marker='')
plt.legend([lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)], lgd_Y[i %
3] + " " + lgd_X[np.int(i/3)]+" Ref"], prop={'size': 8})
plt.suptitle("Measured and Reference feet velocities (world frame)")
lgd_X = ["FL", "FR", "HL", "HR"]
......@@ -209,6 +245,10 @@ class LoggerControl():
plt.subplot(3, 2, index6[i], sharex=ax0)
plt.plot(t_range, self.planner_xref[:, i, 0], "b", linewidth=2)
plt.plot(t_range, self.planner_xref[:, i, 1], "r", linewidth=3)
if i < 3:
plt.plot(t_range, loggerSensors.mocapPosition[:, i], "k", linewidth=3)
else:
plt.plot(t_range, self.mocap_RPY[:, i-3], "k", linewidth=3)
# plt.plot(t_range, self.log_q[i, :], "grey", linewidth=4)
# plt.plot(t_range[:-2], self.log_x_invkin[i, :-2], "g", linewidth=2)
# plt.plot(t_range[:-2], self.log_x_ref_invkin[i, :-2], "violet", linewidth=2, linestyle="--")
......@@ -227,10 +267,16 @@ class LoggerControl():
plt.subplot(3, 2, index6[i], sharex=ax0)
plt.plot(t_range, self.esti_v_filt[:, i], "b", linewidth=2)
plt.plot(t_range, self.joy_v_ref[:, i], "r", linewidth=3)
if i < 3:
plt.plot(t_range, self.mocap_b_v[:, i], "k", linewidth=3)
plt.plot(t_range, self.esti_FK_lin_vel[:, i], "violet", linewidth=3, linestyle="--")
else:
plt.plot(t_range, self.mocap_b_w[:, i-3], "k", linewidth=3)
# plt.plot(t_range, self.log_dq[i, :], "g", linewidth=2)
# plt.plot(t_range[:-2], self.log_dx_invkin[i, :-2], "g", linewidth=2)
# plt.plot(t_range[:-2], self.log_dx_ref_invkin[i, :-2], "violet", linewidth=2, linestyle="--")
plt.legend(["WBC integrated output state", "Robot reference state"], prop={'size': 8})
plt.legend(["Robot state", "Robot reference state"], prop={'size': 8})
plt.ylabel(lgd[i])
plt.suptitle("Measured & Reference linear and angular velocities")
......@@ -255,7 +301,8 @@ class LoggerControl():
h1, = plt.plot(t_range, self.wbc_tau_ff[:, i], "r", linewidth=3)
h2, = plt.plot(t_range, tau_fb, "b", linewidth=3)
h3, = plt.plot(t_range, self.wbc_tau_ff[:, i] + tau_fb, "g", linewidth=3)
h4, = plt.plot(t_range[:-1], loggerSensors.torquesFromCurrentMeasurment[1:, i], "violet", linewidth=3, linestyle="--")
h4, = plt.plot(t_range[:-1], loggerSensors.torquesFromCurrentMeasurment[1:, i],
"violet", linewidth=3, linestyle="--")
plt.xlabel("Time [s]")
plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]+" [Nm]")
tmp = lgd1[i % 3]+" "+lgd2[int(i/3)]
......@@ -271,11 +318,12 @@ class LoggerControl():
ax0 = plt.subplot(3, 4, index12[i])
else:
plt.subplot(3, 4, index12[i], sharex=ax0)
h1, = plt.plot(t_range, self.mpc_x_f[:, 12+i], "r", linewidth=3)
h1, = plt.plot(t_range, self.mpc_x_f[:, 12+i, 0], "r", linewidth=3)
h2, = plt.plot(t_range, self.wbc_f_ctc[:, i], "b", linewidth=3, linestyle="--")
plt.xlabel("Time [s]")
plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]+" [N]")
plt.legend([h1, h2], ["MPC " + lgd1[i % 3]+" "+lgd2[int(i/3)], "WBC " + lgd1[i % 3]+" "+lgd2[int(i/3)]], prop={'size': 8})
plt.legend([h1, h2], ["MPC " + lgd1[i % 3]+" "+lgd2[int(i/3)],
"WBC " + lgd1[i % 3]+" "+lgd2[int(i/3)]], prop={'size': 8})
if (i % 3) == 2:
plt.ylim([-0.0, 26.0])
else:
......@@ -298,8 +346,99 @@ class LoggerControl():
lgd1[i % 3]+" "+lgd2[int(i/3)]], prop={'size': 8})
plt.suptitle("Desired actuator positions & Measured actuator positions")
# Evolution of predicted trajectory along time
log_t_pred = np.array([k*self.dt*10 for k in range(self.mpc_x_f.shape[2])])
log_t_ref = np.array([k*self.dt*10 for k in range(self.planner_xref.shape[2])])
"""from IPython import embed
embed()"""
titles = ["X", "Y", "Z", "Roll", "Pitch", "Yaw"]
step = 200
plt.figure()
for j in range(6):
plt.subplot(3, 2, index6[j])
c = [[i/(self.mpc_x_f.shape[0]+5), 0.0, i/(self.mpc_x_f.shape[0]+5)]
for i in range(0, self.mpc_x_f.shape[0], step)]
for i in range(0, self.mpc_x_f.shape[0], step):
h1, = plt.plot(log_t_pred+(i+10)*self.dt,
self.mpc_x_f[i, j, :], "b", linewidth=2, color=c[int(i/step)])
h2, = plt.plot(log_t_ref+i*self.dt,
self.planner_xref[i, j, :], linestyle="--", marker='x', color="g", linewidth=2)
h3, = plt.plot(np.array([k*self.dt for k in range(self.mpc_x_f.shape[0])]),
self.planner_xref[:, j, 0], linestyle=None, marker='x', color="r", linewidth=1)
plt.xlabel("Time [s]")
plt.legend([h1, h2, h3], ["Output trajectory of MPC",
"Input trajectory of planner", "Actual robot trajectory"])
plt.title("Predicted trajectory for " + titles[j])
plt.suptitle("Analysis of trajectories in position and orientation computed by the MPC")
plt.figure()
for j in range(6):
plt.subplot(3, 2, index6[j])
c = [[i/(self.mpc_x_f.shape[0]+5), 0.0, i/(self.mpc_x_f.shape[0]+5)]
for i in range(0, self.mpc_x_f.shape[0], step)]
for i in range(0, self.mpc_x_f.shape[0], step):
h1, = plt.plot(log_t_pred+(i+10)*self.dt,
self.mpc_x_f[i, j+6, :], "b", linewidth=2, color=c[int(i/step)])
h2, = plt.plot(log_t_ref+i*self.dt,
self.planner_xref[i, j+6, :], linestyle="--", marker='x', color="g", linewidth=2)
h3, = plt.plot(np.array([k*self.dt for k in range(self.mpc_x_f.shape[0])]),
self.planner_xref[:, j+6, 0], linestyle=None, marker='x', color="r", linewidth=1)
plt.xlabel("Time [s]")
plt.legend([h1, h2, h3], ["Output trajectory of MPC",
"Input trajectory of planner", "Actual robot trajectory"])
plt.title("Predicted trajectory for velocity in " + titles[j])
plt.suptitle("Analysis of trajectories of linear and angular velocities computed by the MPC")
lgd1 = ["Ctct force X", "Ctct force Y", "Ctct force Z"]
lgd2 = ["FL", "FR", "HL", "HR"]
plt.figure()
for i in range(12):
if i == 0:
ax0 = plt.subplot(3, 4, index12[i])
else:
plt.subplot(3, 4, index12[i], sharex=ax0)
h1, = plt.plot(t_range, self.mpc_x_f[:, 12+i, 0], "r", linewidth=3)
h2, = plt.plot(t_range, self.wbc_f_ctc[:, i], "b", linewidth=3, linestyle="--")
plt.xlabel("Time [s]")
plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]+" [N]")
plt.legend([h1, h2], ["MPC " + lgd1[i % 3]+" "+lgd2[int(i/3)],
"WBC " + lgd1[i % 3]+" "+lgd2[int(i/3)]], prop={'size': 8})
if (i % 3) == 2:
plt.ylim([-0.0, 26.0])
else:
plt.ylim([-26.0, 26.0])
plt.suptitle("Contact forces (MPC command) & WBC QP output")
lgd1 = ["Ctct force X", "Ctct force Y", "Ctct force Z"]
lgd2 = ["FL", "FR", "HL", "HR"]
plt.figure()
for i in range(12):
if i == 0:
ax0 = plt.subplot(3, 4, index12[i])
else:
plt.subplot(3, 4, index12[i], sharex=ax0)
for k in range(0, self.mpc_x_f.shape[0], step):
h2, = plt.plot(log_t_pred+k*self.dt, self.mpc_x_f[k, 12+i, :], linestyle="--", marker='x', color="g", linewidth=2)
h1, = plt.plot(t_range, self.mpc_x_f[:, 12+i, 0], "r", linewidth=3)
# h3, = plt.plot(t_range, self.wbc_f_ctc[:, i], "b", linewidth=3, linestyle="--")
plt.xlabel("Time [s]")
plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]+" [N]")
plt.legend([h1, h2], ["MPC " + lgd1[i % 3]+" "+lgd2[int(i/3)],
"MPC " + lgd1[i % 3]+" "+lgd2[int(i/3)]+" trajectory"])
if (i % 3) == 2:
plt.ylim([-0.0, 26.0])
else:
plt.ylim([-26.0, 26.0])
plt.suptitle("Contact forces trajectories & Actual forces trajectories")
plt.show(block=True)
from IPython import embed
embed()
def saveAll(self, loggerSensors, fileName="data"):
date_str = datetime.now().strftime('_%Y_%m_%d_%H_%M')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment