Newer
Older
/*
* Copyright 2011, Nicolas Mansard, LAAS-CNRS
*
* This file is part of sot-dyninv.
* sot-dyninv is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
* sot-dyninv is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details. You should
* have received a copy of the GNU Lesser General Public License along
* with sot-dyninv. If not, see <http://www.gnu.org/licenses/>.
*/
Francesco Morsillo
committed
//#define VP_DEBUG
//#define VP_DEBUG_MODE 50
#include <exception>
#ifdef VP_DEBUG
class solver_op_space__INIT
{
Francesco Morsillo
committed
public:solver_op_space__INIT( void ) { dynamicgraph::sot::DebugTrace::openFile("/tmp/sot-kine-deb.txt"); }
};
solver_op_space__INIT solver_op_space_initiator;
#endif //#ifdef VP_DEBUG
#include <sot-dyninv/solver-kine.h>
#include <sot-dyninv/commands-helper.h>
#include <dynamic-graph/factory.h>
#include <boost/foreach.hpp>
#include <sot-dyninv/commands-helper.h>
#include <dynamic-graph/pool.h>
#include <soth/HCOD.hpp>
#include <sot-dyninv/task-dyn-pd.h>
#include <sot/core/feature-point6d.hh>
#include <sstream>
#include <soth/Algebra.hpp>
#include <Eigen/QR>
#include <sys/time.h>
namespace soth
{
Bound& operator -= (Bound& xb, const double & )
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
{
return xb;
}
const Bound operator - (const Bound& a, const Bound & b )
{
assert( b.getType()==Bound::BOUND_TWIN || a.getType()==b.getType() );
if( b.getType() ==Bound::BOUND_TWIN )
{
switch( a.getType() )
{
case Bound::BOUND_TWIN:
case Bound::BOUND_INF:
case Bound::BOUND_SUP:
return Bound(a.getBound(a.getType())-b.getBound(Bound::BOUND_TWIN),
a.getType());
break;
case Bound::BOUND_DOUBLE:
return Bound(a.getBound(Bound::BOUND_INF)-b.getBound(Bound::BOUND_TWIN),
a.getBound(Bound::BOUND_SUP)-b.getBound(Bound::BOUND_TWIN));
break;
}
}
else
{
// TODO
throw "TODO";
}
return a;
}
}
namespace dynamicgraph
{
namespace sot
{
namespace dyninv
{
namespace dg = ::dynamicgraph;
using namespace dg;
using dg::SignalBase;
static bool isLH(boost::shared_ptr<soth::Stage> s)
{
return s->name == "tasklh";
}
static bool isRH(boost::shared_ptr<soth::Stage> s)
{
return s->name == "taskrhorient";
}
/* --- DG FACTORY ------------------------------------------------------- */
DYNAMICGRAPH_FACTORY_ENTITY_PLUGIN(SolverKine,"SolverKine");
/* --- CONSTRUCTION ----------------------------------------------------- */
/* --- CONSTRUCTION ----------------------------------------------------- */
/* --- CONSTRUCTION ----------------------------------------------------- */
SolverKine::
SolverKine( const std::string & name )
: Entity(name)
,stack_t()
,CONSTRUCT_SIGNAL_IN(damping,double)
,CONSTRUCT_SIGNAL_IN(velocity,dg::Vector)
,CONSTRUCT_SIGNAL_OUT(control,dg::Vector,
dampingSIN )
,controlFreeFloating(true)
Francesco Morsillo
committed
,secondOrderKinematics_(false)
,hsolver()
,Ctasks(),btasks()
,solution()
,activeSet(),relevantActiveSet(false)
Francesco Morsillo
committed
signalRegistration( controlSOUT
<< dampingSIN << velocitySIN );
/* Command registration. */
addCommand("debugOnce",
makeCommandVoid0(*this,&SolverKine::debugOnce,
docCommandVoid0("open trace-file for next iteration of the solver.")));
addCommand("resetAset",
makeCommandVoid0(*this,&SolverKine::resetAset,
docCommandVoid0("Reset the active set.")));
addCommand("decompo",
makeCommandVoid1(*this,&SolverKine::getDecomposition,
docCommandVoid1("Return the decomposition of the given level.","Stage level")));
addCommand("setControlFreeFloating",
makeDirectSetter(*this,&controlFreeFloating,
Francesco Morsillo
committed
docDirectSetter("ouput control includes the ff (ie, size nbDof). Oterwise, size is nbDof-6. FF is supposed to be at the head.","bool")));
std::string docstring =
"Set second order kinematic inversion\n"
"\n"
" Input: bool\n"
"\n"
" If true, check that the solver is empty, since second order\n"
" kinematics requires tasks to be of type TaskDynPD.";
Francesco Morsillo
committed
addCommand("setSecondOrderKinematics",
makeCommandVoid0(*this,&SolverKine::setSecondOrderKinematics,
docstring));
Francesco Morsillo
committed
Francesco Morsillo
committed
addCommand("getSecondOrderKinematics",
Francesco Morsillo
committed
makeDirectGetter(*this,&secondOrderKinematics_,
Francesco Morsillo
committed
docDirectGetter("second order kinematic inversion","bool")));
ADD_COMMANDS_FOR_THE_STACK;
}
/* --- STACK ----------------------------------------------------------- */
/* --- STACK ----------------------------------------------------------- */
/* --- STACK ----------------------------------------------------------- */
void SolverKine::push (TaskAbstract& task)
{
Francesco Morsillo
committed
if (secondOrderKinematics_) {
checkDynamicTask (task);
}
sot::Stack< TaskAbstract >::push (task);
}
void SolverKine::checkDynamicTask (const TaskAbstract& task) const
{
try {
dynamic_cast <const TaskDynPD &> (task);
} catch (const std::bad_cast& esc) {
std::string taskName = task.getName ();
std::string className = task.getClassName ();
std::string msg ("Type " + className + " of task \"" + taskName +
"\" does not derive from TaskDynPD");
throw std::runtime_error (msg);
}
}
Francesco Morsillo
committed
void SolverKine::setSecondOrderKinematics ()
Francesco Morsillo
committed
if (stack.size() != 0) {
throw std::runtime_error
("The solver should contain no task before switching to second order mode.");
Francesco Morsillo
committed
secondOrderKinematics_ = true;
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
SolverKine::TaskDependancyList_t SolverKine::
getTaskDependancyList( const TaskAbstract& task )
{
TaskDependancyList_t res;
res.push_back( &task.taskSOUT );
res.push_back( &task.jacobianSOUT );
return res;
}
void SolverKine::
addDependancy( const TaskDependancyList_t& depList )
{
BOOST_FOREACH( const SignalBase<int>* sig, depList )
{ controlSOUT.addDependency( *sig ); }
}
void SolverKine::
removeDependancy( const TaskDependancyList_t& depList )
{
BOOST_FOREACH( const SignalBase<int>* sig, depList )
{ controlSOUT.removeDependency( *sig ); }
}
void SolverKine::
resetReady( void )
{
controlSOUT.setReady();
}
/* --- INIT SOLVER ------------------------------------------------------ */
/* --- INIT SOLVER ------------------------------------------------------ */
/* --- INIT SOLVER ------------------------------------------------------ */
/** Force the update of all the task in-signals, in order to fix their
* size for resizing the solver.
*/
void SolverKine::
refreshTaskTime( int time )
{
BOOST_FOREACH( TaskAbstract* task, stack )
{
task->taskSOUT( time );
}
}
/** Knowing the sizes of all the stages (except the task ones),
* the function resizes the matrix and vector of all stages (except...).
*/
void SolverKine::
resizeSolver( void )
{
hsolver = hcod_ptr_t(new soth::HCOD( nbDofs,stack.size() ));
Ctasks.resize(stack.size());
btasks.resize(stack.size());
relevantActiveSet = false;
int i=0;
BOOST_FOREACH( TaskAbstract* task, stack )
{
const int nx = task->taskSOUT.accessCopy().size();
Ctasks[i].resize(nx,nbDofs);
btasks[i].resize(nx);
hsolver->pushBackStage( Ctasks[i],btasks[i] );
hsolver->stages.back()->name = task->getName();
i++;
}
solution.resize( nbDofs );
}
/* Return true iff the solver sizes fit to the task set. */
bool SolverKine::
checkSolverSize( void )
{
sotDEBUGIN(15);
assert( nbDofs>0 );
if(! hsolver ) return false;
if( stack.size() != (unsigned int)hsolver->nbStages() ) return false;
bool toBeResized=false;
for( int i=0;i<(int)stack.size();++i )
{
assert( Ctasks[i].cols() == nbDofs && Ctasks[i].rows() == btasks[i].size() );
TaskAbstract & task = *stack[i];
if( btasks[i].size() != (int)task.taskSOUT.accessCopy().size() )
{
toBeResized = true;
break;
}
}
return !toBeResized;
}
/* --- SIGNALS ---------------------------------------------------------- */
/* --- SIGNALS ---------------------------------------------------------- */
/* --- SIGNALS ---------------------------------------------------------- */
Francesco Morsillo
committed
#define COLS_Q leftCols( nbDofs )
#define COLS_TAU leftCols( nbDofs+ntau ).rightCols( ntau )
#define COLS_F rightCols( nfs )
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
namespace {
inline void COPY_MB_VECTOR_TO_EIGEN( const VectorMultiBound& ddx,
soth::VectorBound& btask1 ) {
const int nx1 = ddx.size();
for( int c=0;c<nx1;++c ) {
if( ddx[c].getMode() == MultiBound::MODE_SINGLE )
btask1[c] = ddx[c].getSingleBound();
else {
const bool binf = ddx[c].getDoubleBoundSetup( dg::sot::MultiBound::BOUND_INF );
const bool bsup = ddx[c].getDoubleBoundSetup( dg::sot::MultiBound::BOUND_SUP );
if( binf&&bsup ) {
const double xi = ddx[c].getDoubleBound(dg::sot::MultiBound::BOUND_INF);
const double xs = ddx[c].getDoubleBound(dg::sot::MultiBound::BOUND_SUP);
btask1[c] = std::make_pair( xi, xs );
}
else if( binf ) {
const double xi = ddx[c].getDoubleBound(dg::sot::MultiBound::BOUND_INF);
btask1[c] = soth::Bound( xi, soth::Bound::BOUND_INF );
}
else {
assert( bsup );
const double xs = ddx[c].getDoubleBound(dg::sot::MultiBound::BOUND_SUP);
btask1[c] = soth::Bound( xs, soth::Bound::BOUND_SUP );
}
}
}
}
}
Francesco Morsillo
committed
dg::Vector& SolverKine::
controlSOUT_function( dg::Vector &mlcontrol, int t )
{
sotDEBUG(15) << " # In time = " << t << std::endl;
refreshTaskTime( t );
if(! checkSolverSize() ) resizeSolver();
using namespace soth;
if( dampingSIN ) //damp?
{
sotDEBUG(5) << "Using damping. " << std::endl;
/* Only damp the final stage of the stack, 'cose of the solver known limitation. */
hsolver->setDamping( 0 );
hsolver->useDamp( true );
if (hsolver->stages.size()!=0)
hsolver->stages.back()->damping( dampingSIN(t) );
}
else
{
sotDEBUG(5) << "Without damping. " << std::endl;
hsolver->useDamp( false );
}
/* -Tasks 1:n- */
/* Ctaski = [ Ji 0 0 0 0 0 ] */
Francesco Morsillo
committed
Francesco Morsillo
committed
if( !secondOrderKinematics_ )
Francesco Morsillo
committed
for( int i=0;i<(int)stack.size();++i )
{
TaskAbstract & task = * stack[i];
MatrixXd & Ctask = Ctasks[i];
VectorBound & btask = btasks[i];
Francesco Morsillo
committed
const dg::sot::VectorMultiBound & dx = task.taskSOUT(t);
const int nx = dx.size();
Francesco Morsillo
committed
assert( Ctask.rows() == nx && btask.size() == nx );
assert( J.rows()==nx && J.cols()==nbDofs && (int)dx.size()==nx );
Francesco Morsillo
committed
Ctask = J; COPY_MB_VECTOR_TO_EIGEN(dx,btask);
Francesco Morsillo
committed
sotDEBUG(15) << "Ctask"<<i<<" = " << (MATLAB)Ctask << std::endl;
sotDEBUG(1) << "btask"<<i<<" = " << btask << std::endl;
} //for
} //if
else
{
for( int i=0;i<(int)stack.size();++i )
{
TaskAbstract & taskAb = * stack[i];
TaskDynPD & task = dynamic_cast<TaskDynPD &>(taskAb); //it can be static_cast cause of type control
MatrixXd & Ctask = Ctasks[i];
VectorBound & btask = btasks[i];
const Eigen::MatrixXd Jdot = task.JdotSOUT(t);
const Eigen::MatrixXd J = task.jacobianSOUT(t);
const dg::sot::VectorMultiBound & ddx = task.taskSOUT(t);
const int nx1 = ddx.size();
sotDEBUG(5) << "ddx"<<i<<" = " << ddx << std::endl;
sotDEBUG(25) << "J"<<i<<" = " << J << std::endl;
sotDEBUG(45) << "Jdot"<<i<<" = " << Jdot << std::endl;
sotDEBUG(1) << "dq = " << (MATLAB)dq << std::endl;
assert( Ctask.rows() == nx1 && btask.size() == nx1 );
assert( J.rows()==nx1 && J.cols()==nbDofs && (int)ddx.size()==nx1 );
assert( Jdot.rows()==nx1 && Jdot.cols()==nbDofs );
Ctask = J;
{
ddxdrift_= VectorXd(nx1);
ddxdriftInit_=true;
}
ddxdrift_ = - (Jdot*dq);
for( int c=0;c<nx1;++c )
{
if( ddx[c].getMode() == dg::sot::MultiBound::MODE_SINGLE )
btask[c] = ddx[c].getSingleBound() + ddxdrift_[c];
else
{
const bool binf = ddx[c].getDoubleBoundSetup( dg::sot::MultiBound::BOUND_INF );
const bool bsup = ddx[c].getDoubleBoundSetup( dg::sot::MultiBound::BOUND_SUP );
if( binf&&bsup )
{
const double xi = ddx[c].getDoubleBound(dg::sot::MultiBound::BOUND_INF);
const double xs = ddx[c].getDoubleBound(dg::sot::MultiBound::BOUND_SUP);
btask[c] = std::make_pair( xi+ddxdrift_[c], xs+ddxdrift_[c] );
}
else if( binf )
Francesco Morsillo
committed
{
const double xi = ddx[c].getDoubleBound(dg::sot::MultiBound::BOUND_INF);
btask[c] = Bound( xi+ddxdrift_[c], Bound::BOUND_INF );
Francesco Morsillo
committed
else
{
assert( bsup );
const double xs = ddx[c].getDoubleBound(dg::sot::MultiBound::BOUND_SUP);
btask[c] = Bound( xs+ddxdrift_[c], Bound::BOUND_SUP );
Francesco Morsillo
committed
} //else
} //else
} //for c
sotDEBUG(15) << "Ctask"<<i<<" = " << (MATLAB)Ctask << std::endl;
sotDEBUG(1) << "btask"<<i<<" = " << btask << std::endl;
Francesco Morsillo
committed
} //else
/* --- */
sotDEBUG(1) << "Initial config." << std::endl;
double time= 0;
if(relevantActiveSet)
hsolver->setInitialActiveSet(activeSet);
else hsolver->setInitialActiveSet();
sotDEBUG(1) << "Run for a solution." << std::endl;
hsolver->activeSearch(solution);
sotDEBUG(1) << "solution = " << (MATLAB)solution << std::endl;
activeSet = hsolver->getOptimalActiveSet(); relevantActiveSet = true;
//EIGEN_VECTOR_FROM_VECTOR( control,mlcontrol,nbDofs );
mlcontrol=solution;
//EIGEN_VECTOR_FROM_VECTOR( control,mlcontrol,nbDofs-6 );
mlcontrol=solution.tail(nbDofs-6 );
}
sotDEBUG(1) << "control = " << mlcontrol << std::endl;
return mlcontrol;
}
/* --- COMMANDS ---------------------------------------------------------- */
/* --- COMMANDS ---------------------------------------------------------- */
/* --- COMMANDS ---------------------------------------------------------- */
void SolverKine::
debugOnce( void )
{
std::cout << "Open the trace"<<std::endl;
dg::sot::DebugTrace::openFile("/tmp/sot.txt");
hsolver->debugOnce("/tmp/soth.txt",true);
}
void SolverKine::
resetAset( void )
{
relevantActiveSet = false;
}
void SolverKine::
getDecomposition(const int & i)
{
using namespace soth;
std::cout << "M"<<i<<" = " << (MATLAB) hsolver -> stage(i).getM() << std::endl;
std::cout << "L"<<i<<" = " << (MATLAB)(MatrixXd) (hsolver -> stage(i).getLtri()) << std::endl;
}
/* --- ENTITY ----------------------------------------------------------- */
/* --- ENTITY ----------------------------------------------------------- */
/* --- ENTITY ----------------------------------------------------------- */
void SolverKine::
display( std::ostream& os ) const
{
os << "SolverKine "<<getName() << ": " << nbDofs <<" joints." << std::endl;
try{
os <<"control = "<<controlSOUT.accessCopy() <<std::endl << std::endl;
} catch (dynamicgraph::ExceptionSignal e) {}
stack_t::display(os);
}
} // namespace dyninv
} // namespace sot
} // namespace dynamicgraph