Newer
Older
/*
* Copyright 2011, Nicolas Mansard, LAAS-CNRS
*
* This file is part of sot-dyninv.
* sot-dyninv is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
* sot-dyninv is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details. You should
* have received a copy of the GNU Lesser General Public License along
* with sot-dyninv. If not, see <http://www.gnu.org/licenses/>.
*/
//#define VP_DEBUG
//#define VP_DEBUG_MODE 50
#include <exception>
#ifdef VP_DEBUG
class solver_op_space__INIT
{
Francesco Morsillo
committed
public:solver_op_space__INIT( void ) { dynamicgraph::sot::DebugTrace::openFile("/tmp/sot-kine-deb.txt"); }
};
solver_op_space__INIT solver_op_space_initiator;
#endif //#ifdef VP_DEBUG
#include <sot-dyninv/solver-kine.h>
#include <sot-dyninv/commands-helper.h>
#include <dynamic-graph/factory.h>
#include <boost/foreach.hpp>
#include <sot-dyninv/commands-helper.h>
#include <dynamic-graph/pool.h>
#include <soth/HCOD.hpp>
#include <sot-dyninv/task-dyn-pd.h>
#include <sot/core/feature-point6d.hh>
#include <sstream>
#include <soth/Algebra.hpp>
#include <Eigen/QR>
#include <sot-dyninv/mal-to-eigen.h>
#include <sys/time.h>
namespace soth
{
Bound& operator -= (Bound& xb, const double & )
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
{
return xb;
}
const Bound operator - (const Bound& a, const Bound & b )
{
assert( b.getType()==Bound::BOUND_TWIN || a.getType()==b.getType() );
if( b.getType() ==Bound::BOUND_TWIN )
{
switch( a.getType() )
{
case Bound::BOUND_TWIN:
case Bound::BOUND_INF:
case Bound::BOUND_SUP:
return Bound(a.getBound(a.getType())-b.getBound(Bound::BOUND_TWIN),
a.getType());
break;
case Bound::BOUND_DOUBLE:
return Bound(a.getBound(Bound::BOUND_INF)-b.getBound(Bound::BOUND_TWIN),
a.getBound(Bound::BOUND_SUP)-b.getBound(Bound::BOUND_TWIN));
break;
}
}
else
{
// TODO
throw "TODO";
}
return a;
}
}
bool ddxdriftInit=false;
Eigen::VectorXd ddxdrift ;
namespace dynamicgraph
{
namespace sot
{
namespace dyninv
{
namespace dg = ::dynamicgraph;
using namespace dg;
using dg::SignalBase;
static bool isLH(boost::shared_ptr<soth::Stage> s)
{
return s->name == "tasklh";
}
static bool isRH(boost::shared_ptr<soth::Stage> s)
{
return s->name == "taskrhorient";
}
/* --- DG FACTORY ------------------------------------------------------- */
DYNAMICGRAPH_FACTORY_ENTITY_PLUGIN(SolverKine,"SolverKine");
/* --- CONSTRUCTION ----------------------------------------------------- */
/* --- CONSTRUCTION ----------------------------------------------------- */
/* --- CONSTRUCTION ----------------------------------------------------- */
SolverKine::
SolverKine( const std::string & name )
: Entity(name)
,stack_t()
,CONSTRUCT_SIGNAL_IN(damping,double)
Francesco Morsillo
committed
,CONSTRUCT_SIGNAL_IN(velocity,ml::Vector)
,CONSTRUCT_SIGNAL_OUT(control,ml::Vector,
dampingSIN )
,controlFreeFloating(true)
Francesco Morsillo
committed
,secondOrderKinematics(false)
,hsolver()
,Ctasks(),btasks()
,solution()
,activeSet(),relevantActiveSet(false)
Francesco Morsillo
committed
signalRegistration( controlSOUT
<< dampingSIN << velocitySIN );
/* Command registration. */
addCommand("debugOnce",
makeCommandVoid0(*this,&SolverKine::debugOnce,
docCommandVoid0("open trace-file for next iteration of the solver.")));
addCommand("resetAset",
makeCommandVoid0(*this,&SolverKine::resetAset,
docCommandVoid0("Reset the active set.")));
addCommand("decompo",
makeCommandVoid1(*this,&SolverKine::getDecomposition,
docCommandVoid1("Return the decomposition of the given level.","Stage level")));
addCommand("setControlFreeFloating",
makeDirectSetter(*this,&controlFreeFloating,
Francesco Morsillo
committed
docDirectSetter("ouput control includes the ff (ie, size nbDof). Oterwise, size is nbDof-6. FF is supposed to be at the head.","bool")));
std::string docstring =
"Set second order kinematic inversion\n"
"\n"
" Input: bool\n"
"\n"
" If true, check that the solver is empty, since second order\n"
" kinematics requires tasks to be of type TaskDynPD.";
Francesco Morsillo
committed
addCommand("setSecondOrderKine",
makeCommandVoid1(*this,&SolverKine::setSecondOrderKine,
docstring));
Francesco Morsillo
committed
addCommand("getSecondOrderKine",
makeDirectGetter(*this,&secondOrderKinematics,
docDirectGetter("second order kinematic inversion","bool")));
ADD_COMMANDS_FOR_THE_STACK;
}
/* --- STACK ----------------------------------------------------------- */
/* --- STACK ----------------------------------------------------------- */
/* --- STACK ----------------------------------------------------------- */
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
void SolverKine::push (TaskAbstract& task)
{
if (secondOrderKinematics) {
checkDynamicTask (task);
}
sot::Stack< TaskAbstract >::push (task);
}
void SolverKine::checkDynamicTask (const TaskAbstract& task) const
{
try {
dynamic_cast <const TaskDynPD &> (task);
} catch (const std::bad_cast& esc) {
std::string taskName = task.getName ();
std::string className = task.getClassName ();
std::string msg ("Type " + className + " of task \"" + taskName +
"\" does not derive from TaskDynPD");
throw std::runtime_error (msg);
}
}
void SolverKine::setSecondOrderKine (const bool& secondOrder)
{
if (secondOrder) {
if (stack.size() != 0) {
throw std::runtime_error
("The solver should contain no task before switching to second order mode.");
}
}
secondOrderKinematics = secondOrder;
}
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
SolverKine::TaskDependancyList_t SolverKine::
getTaskDependancyList( const TaskAbstract& task )
{
TaskDependancyList_t res;
res.push_back( &task.taskSOUT );
res.push_back( &task.jacobianSOUT );
return res;
}
void SolverKine::
addDependancy( const TaskDependancyList_t& depList )
{
BOOST_FOREACH( const SignalBase<int>* sig, depList )
{ controlSOUT.addDependency( *sig ); }
}
void SolverKine::
removeDependancy( const TaskDependancyList_t& depList )
{
BOOST_FOREACH( const SignalBase<int>* sig, depList )
{ controlSOUT.removeDependency( *sig ); }
}
void SolverKine::
resetReady( void )
{
controlSOUT.setReady();
}
/* --- INIT SOLVER ------------------------------------------------------ */
/* --- INIT SOLVER ------------------------------------------------------ */
/* --- INIT SOLVER ------------------------------------------------------ */
/** Force the update of all the task in-signals, in order to fix their
* size for resizing the solver.
*/
void SolverKine::
refreshTaskTime( int time )
{
BOOST_FOREACH( TaskAbstract* task, stack )
{
task->taskSOUT( time );
}
}
/** Knowing the sizes of all the stages (except the task ones),
* the function resizes the matrix and vector of all stages (except...).
*/
void SolverKine::
resizeSolver( void )
{
hsolver = hcod_ptr_t(new soth::HCOD( nbDofs,stack.size() ));
Ctasks.resize(stack.size());
btasks.resize(stack.size());
relevantActiveSet = false;
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
int i=0;
BOOST_FOREACH( TaskAbstract* task, stack )
{
const int nx = task->taskSOUT.accessCopy().size();
Ctasks[i].resize(nx,nbDofs);
btasks[i].resize(nx);
hsolver->pushBackStage( Ctasks[i],btasks[i] );
hsolver->stages.back()->name = task->getName();
i++;
}
solution.resize( nbDofs );
}
/* Return true iff the solver sizes fit to the task set. */
bool SolverKine::
checkSolverSize( void )
{
sotDEBUGIN(15);
assert( nbDofs>0 );
if(! hsolver ) return false;
if( stack.size() != hsolver->nbStages() ) return false;
bool toBeResized=false;
for( int i=0;i<(int)stack.size();++i )
{
assert( Ctasks[i].cols() == nbDofs && Ctasks[i].rows() == btasks[i].size() );
TaskAbstract & task = *stack[i];
if( btasks[i].size() != (int)task.taskSOUT.accessCopy().size() )
{
toBeResized = true;
break;
}
}
return !toBeResized;
}
/* --- SIGNALS ---------------------------------------------------------- */
/* --- SIGNALS ---------------------------------------------------------- */
/* --- SIGNALS ---------------------------------------------------------- */
Francesco Morsillo
committed
#define COLS_Q leftCols( nbDofs )
#define COLS_TAU leftCols( nbDofs+ntau ).rightCols( ntau )
#define COLS_F rightCols( nfs )
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
ml::Vector& SolverKine::
controlSOUT_function( ml::Vector &mlcontrol, int t )
{
sotDEBUG(15) << " # In time = " << t << std::endl;
refreshTaskTime( t );
if(! checkSolverSize() ) resizeSolver();
using namespace soth;
if( dampingSIN ) //damp?
{
sotDEBUG(5) << "Using damping. " << std::endl;
/* Only damp the final stage of the stack, 'cose of the solver known limitation. */
hsolver->setDamping( 0 );
hsolver->useDamp( true );
hsolver->stages.back()->damping( dampingSIN(t) );
}
else
{
sotDEBUG(5) << "Without damping. " << std::endl;
hsolver->useDamp( false );
}
/* -Tasks 1:n- */
/* Ctaski = [ Ji 0 0 0 0 0 ] */
Francesco Morsillo
committed
if( !secondOrderKinematics )
Francesco Morsillo
committed
for( int i=0;i<(int)stack.size();++i )
{
TaskAbstract & task = * stack[i];
MatrixXd & Ctask = Ctasks[i];
VectorBound & btask = btasks[i];
Francesco Morsillo
committed
EIGEN_CONST_MATRIX_FROM_SIGNAL(J,task.jacobianSOUT(t));
const dg::sot::VectorMultiBound & dx = task.taskSOUT(t);
const int nx = dx.size();
Francesco Morsillo
committed
assert( Ctask.rows() == nx && btask.size() == nx );
assert( J.rows()==nx && J.cols()==nbDofs && (int)dx.size()==nx );
Francesco Morsillo
committed
Ctask = J; COPY_MB_VECTOR_TO_EIGEN(dx,btask);
Francesco Morsillo
committed
sotDEBUG(15) << "Ctask"<<i<<" = " << (MATLAB)Ctask << std::endl;
sotDEBUG(1) << "btask"<<i<<" = " << btask << std::endl;
} //for
} //if
else
{
for( int i=0;i<(int)stack.size();++i )
{
TaskAbstract & taskAb = * stack[i];
TaskDynPD & task = dynamic_cast<TaskDynPD &>(taskAb); //it can be static_cast cause of control
MatrixXd & Ctask = Ctasks[i];
VectorBound & btask = btasks[i];
EIGEN_CONST_MATRIX_FROM_SIGNAL(Jdot,task.JdotSOUT(t));
EIGEN_CONST_MATRIX_FROM_SIGNAL(J,task.jacobianSOUT(t));
const dg::sot::VectorMultiBound & ddx = task.taskSOUT(t);
EIGEN_CONST_VECTOR_FROM_SIGNAL(dq,velocitySIN(t));
const int nx1 = ddx.size();
sotDEBUG(5) << "ddx"<<i<<" = " << ddx << std::endl;
sotDEBUG(25) << "J"<<i<<" = " << J << std::endl;
sotDEBUG(45) << "Jdot"<<i<<" = " << Jdot << std::endl;
sotDEBUG(1) << "dq = " << (MATLAB)dq << std::endl;
assert( Ctask.rows() == nx1 && btask.size() == nx1 );
assert( J.rows()==nx1 && J.cols()==nbDofs && (int)ddx.size()==nx1 );
assert( Jdot.rows()==nx1 && Jdot.cols()==nbDofs );
Ctask = J;
if (!ddxdriftInit)
{
ddxdrift= VectorXd(nx1);
ddxdriftInit=true;
}
ddxdrift = - (Jdot*dq);
for( int c=0;c<nx1;++c )
{
if( ddx[c].getMode() == dg::sot::MultiBound::MODE_SINGLE )
btask[c] = ddx[c].getSingleBound() + ddxdrift[c];
else
{
const bool binf = ddx[c].getDoubleBoundSetup( dg::sot::MultiBound::BOUND_INF );
const bool bsup = ddx[c].getDoubleBoundSetup( dg::sot::MultiBound::BOUND_SUP );
if( binf&&bsup )
{
const double xi = ddx[c].getDoubleBound(dg::sot::MultiBound::BOUND_INF);
const double xs = ddx[c].getDoubleBound(dg::sot::MultiBound::BOUND_SUP);
btask[c] = std::make_pair( xi+ddxdrift[c], xs+ddxdrift[c] );
}
else if( binf )
Francesco Morsillo
committed
{
const double xi = ddx[c].getDoubleBound(dg::sot::MultiBound::BOUND_INF);
btask[c] = Bound( xi+ddxdrift[c], Bound::BOUND_INF );
Francesco Morsillo
committed
else
{
assert( bsup );
const double xs = ddx[c].getDoubleBound(dg::sot::MultiBound::BOUND_SUP);
btask[c] = Bound( xs+ddxdrift[c], Bound::BOUND_SUP );
Francesco Morsillo
committed
} //else
} //else
} //for c
sotDEBUG(15) << "Ctask"<<i<<" = " << (MATLAB)Ctask << std::endl;
sotDEBUG(1) << "btask"<<i<<" = " << btask << std::endl;
Francesco Morsillo
committed
} //else
/* --- */
sotDEBUG(1) << "Initial config." << std::endl;
double time= 0;
if(relevantActiveSet)
hsolver->setInitialActiveSet(activeSet);
else hsolver->setInitialActiveSet();
sotDEBUG(1) << "Run for a solution." << std::endl;
hsolver->activeSearch(solution);
sotDEBUG(1) << "solution = " << (MATLAB)solution << std::endl;
activeSet = hsolver->getOptimalActiveSet(); relevantActiveSet = true;
if( controlFreeFloating )
{
EIGEN_VECTOR_FROM_VECTOR( control,mlcontrol,nbDofs );
control=solution;
}
else
{
EIGEN_VECTOR_FROM_VECTOR( control,mlcontrol,nbDofs-6 );
control=solution.tail( nbDofs-6 );
}
sotDEBUG(1) << "control = " << mlcontrol << std::endl;
return mlcontrol;
}
/* --- COMMANDS ---------------------------------------------------------- */
/* --- COMMANDS ---------------------------------------------------------- */
/* --- COMMANDS ---------------------------------------------------------- */
void SolverKine::
debugOnce( void )
{
std::cout << "Open the trace"<<std::endl;
dg::sot::DebugTrace::openFile("/tmp/sot.txt");
hsolver->debugOnce("/tmp/soth.txt",true);
}
void SolverKine::
resetAset( void )
{
relevantActiveSet = false;
}
void SolverKine::
getDecomposition(const int & i)
{
using namespace soth;
std::cout << "M"<<i<<" = " << (MATLAB) hsolver -> stage(i).getM() << std::endl;
std::cout << "L"<<i<<" = " << (MATLAB)(MatrixXd) (hsolver -> stage(i).getLtri()) << std::endl;
}
/* --- ENTITY ----------------------------------------------------------- */
/* --- ENTITY ----------------------------------------------------------- */
/* --- ENTITY ----------------------------------------------------------- */
void SolverKine::
display( std::ostream& os ) const
{
os << "SolverKine "<<getName() << ": " << nbDofs <<" joints." << std::endl;
try{
os <<"control = "<<controlSOUT.accessCopy() <<std::endl << std::endl;
} catch (dynamicgraph::ExceptionSignal e) {}
stack_t::display(os);
Francesco Morsillo
committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
}
void SolverKine::
commandLine( const std::string& cmdLine,
std::istringstream& cmdArgs,
std::ostream& os )
{
if( cmdLine == "help" )
{
os << "SolverKine:\n"
<< "\t- debugOnce: open trace-file for next iteration of the solver." << std::endl;
stackCommandLine( cmdLine,cmdArgs,os );
Entity::commandLine( cmdLine,cmdArgs,os );
}
else if( cmdLine == "debugOnce" )
{
debugOnce();
}
/* TODO: add controlFreeFloating g/setter. */
else if( stackCommandLine( cmdLine,cmdArgs,os ) );
else
{
Entity::commandLine( cmdLine,cmdArgs,os );
}
}
} // namespace dyninv
} // namespace sot
} // namespace dynamicgraph