Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
Q
quadruped-reactive-walking
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gepetto
quadruped-reactive-walking
Commits
a5dc880b
Commit
a5dc880b
authored
3 years ago
by
Pierre-Alexandre Leziart
Browse files
Options
Downloads
Patches
Plain Diff
Add graphs to debug footsteps
parent
73651a80
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
scripts/LoggerControl.py
+90
-0
90 additions, 0 deletions
scripts/LoggerControl.py
with
90 additions
and
0 deletions
scripts/LoggerControl.py
+
90
−
0
View file @
a5dc880b
...
...
@@ -304,6 +304,31 @@ class LoggerControl():
plt.legend([
"
WBC integrated output state
"
,
"
Robot reference state
"
,
"
Task current state
"
,
"
Task reference state
"
])
"""
# Analysis of the footstep locations (current and future) with a slider to move along time
self
.
slider_predicted_footholds
()
# Analysis of the footholds locations during the whole experiment
import
utils_mpc
import
pinocchio
as
pin
f_c
=
[
"
r
"
,
"
b
"
,
"
forestgreen
"
,
"
rebeccapurple
"
]
quat
=
np
.
zeros
((
4
,
1
))
steps
=
np
.
zeros
((
12
,
1
))
o_step
=
np
.
zeros
((
3
,
1
))
plt
.
figure
()
plt
.
plot
(
self
.
loop_o_q_int
[:,
0
],
self
.
loop_o_q_int
[:,
1
],
linewidth
=
2
,
color
=
"
k
"
)
for
i
in
range
(
self
.
planner_fsteps
.
shape
[
0
]):
fsteps
=
self
.
planner_fsteps
[
i
]
RPY
=
utils_mpc
.
quaternionToRPY
(
self
.
loop_o_q_int
[
i
,
3
:
7
])
quat
[:,
0
]
=
utils_mpc
.
EulerToQuaternion
([
0.0
,
0.0
,
RPY
[
2
]])
oRh
=
pin
.
Quaternion
(
quat
).
toRotationMatrix
()
for
j
in
range
(
4
):
#if np.any(fsteps[k, (j*3):((j+1)*3)]) and not np.array_equal(steps[(j*3):((j+1)*3), 0],
# fsteps[k, (j*3):((j+1)*3)]):
# steps[(j*3):((j+1)*3), 0] = fsteps[k, (j*3):((j+1)*3)]
# o_step[:, 0:1] = oRh @ steps[(j*3):((j+1)*3), 0:1] + self.loop_o_q_int[i:(i+1), 0:3].transpose()
o_step
[:,
0
:
1
]
=
oRh
@
fsteps
[
0
:
1
,
(
j
*
3
):((
j
+
1
)
*
3
)].
transpose
()
+
self
.
loop_o_q_int
[
i
:(
i
+
1
),
0
:
3
].
transpose
()
plt
.
plot
(
o_step
[
0
,
0
],
o_step
[
1
,
0
],
linestyle
=
None
,
linewidth
=
1
,
marker
=
"
o
"
,
color
=
f_c
[
j
])
lgd1
=
[
"
HAA
"
,
"
HFE
"
,
"
Knee
"
]
lgd2
=
[
"
FL
"
,
"
FR
"
,
"
HL
"
,
"
HR
"
]
plt
.
figure
()
...
...
@@ -768,6 +793,71 @@ class LoggerControl():
plt
.
show
()
def
slider_predicted_footholds
(
self
):
from
matplotlib
import
pyplot
as
plt
from
matplotlib.widgets
import
Slider
,
Button
import
utils_mpc
import
pinocchio
as
pin
self
.
planner_fsteps
# Define initial parameters
init_time
=
0.0
# Create the figure and the line that we will manipulate
fig
=
plt
.
figure
()
ax
=
plt
.
gca
()
h1s
=
[]
f_c
=
[
"
r
"
,
"
b
"
,
"
forestgreen
"
,
"
rebeccapurple
"
]
quat
=
np
.
zeros
((
4
,
1
))
fsteps
=
self
.
planner_fsteps
[
0
]
o_step
=
np
.
zeros
((
3
*
int
(
fsteps
.
shape
[
0
]),
1
))
RPY
=
utils_mpc
.
quaternionToRPY
(
self
.
loop_o_q_int
[
0
,
3
:
7
])
quat
[:,
0
]
=
utils_mpc
.
EulerToQuaternion
([
0.0
,
0.0
,
RPY
[
2
]])
oRh
=
pin
.
Quaternion
(
quat
).
toRotationMatrix
()
for
j
in
range
(
4
):
o_step
[
0
:
3
,
0
:
1
]
=
oRh
@
fsteps
[
0
:
1
,
(
j
*
3
):((
j
+
1
)
*
3
)].
transpose
()
+
self
.
loop_o_q_int
[
0
:
1
,
0
:
3
].
transpose
()
h1
,
=
plt
.
plot
(
o_step
[
0
::
3
,
0
],
o_step
[
1
::
3
,
0
],
linestyle
=
None
,
linewidth
=
0
,
marker
=
"
o
"
,
color
=
f_c
[
j
])
h1s
.
append
(
h1
)
axcolor
=
'
lightgoldenrodyellow
'
# Make a horizontal slider to control the time.
axtime
=
plt
.
axes
([
0.25
,
0.03
,
0.65
,
0.03
],
facecolor
=
axcolor
)
time_slider
=
Slider
(
ax
=
axtime
,
label
=
'
Time [s]
'
,
valmin
=
0.0
,
valmax
=
self
.
logSize
*
self
.
dt
,
valinit
=
init_time
,
)
ax
.
set_xlim
([
-
0.3
,
0.5
])
ax
.
set_ylim
([
-
0.3
,
0.5
])
# The function to be called anytime a slider's value changes
def
update
(
val
):
time_slider
.
val
=
np
.
round
(
val
/
(
self
.
dt
*
10
),
decimals
=
0
)
*
(
self
.
dt
*
10
)
rounded
=
int
(
np
.
round
(
time_slider
.
val
/
self
.
dt
,
decimals
=
0
))
fsteps
=
self
.
planner_fsteps
[
rounded
]
o_step
=
np
.
zeros
((
3
*
int
(
fsteps
.
shape
[
0
]),
1
))
RPY
=
utils_mpc
.
quaternionToRPY
(
self
.
loop_o_q_int
[
rounded
,
3
:
7
])
quat
[:,
0
]
=
utils_mpc
.
EulerToQuaternion
([
0.0
,
0.0
,
RPY
[
2
]])
oRh
=
pin
.
Quaternion
(
quat
).
toRotationMatrix
()
for
j
in
range
(
4
):
for
k
in
range
(
int
(
fsteps
.
shape
[
0
])):
o_step
[(
3
*
k
):(
3
*
(
k
+
1
)),
0
:
1
]
=
oRh
@
fsteps
[(
k
):(
k
+
1
),
(
j
*
3
):((
j
+
1
)
*
3
)].
transpose
()
+
self
.
loop_o_q_int
[
rounded
:(
rounded
+
1
),
0
:
3
].
transpose
()
h1s
[
j
].
set_xdata
(
o_step
[
0
::
3
,
0
].
copy
())
h1s
[
j
].
set_ydata
(
o_step
[
1
::
3
,
0
].
copy
())
fig
.
canvas
.
draw_idle
()
# register the update function with each slider
time_slider
.
on_changed
(
update
)
plt
.
show
()
if
__name__
==
"
__main__
"
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment