diff --git a/scripts/LoggerControl.py b/scripts/LoggerControl.py index bcb2b723d7c2b7027c8b2cde7fc8c9f1d0d60563..7d87542f34cb0f6edff8a5d35b0e96c548412d5c 100644 --- a/scripts/LoggerControl.py +++ b/scripts/LoggerControl.py @@ -304,6 +304,31 @@ class LoggerControl(): plt.legend(["WBC integrated output state", "Robot reference state", "Task current state", "Task reference state"])""" + # Analysis of the footstep locations (current and future) with a slider to move along time + self.slider_predicted_footholds() + + # Analysis of the footholds locations during the whole experiment + import utils_mpc + import pinocchio as pin + f_c = ["r", "b", "forestgreen", "rebeccapurple"] + quat = np.zeros((4, 1)) + steps = np.zeros((12, 1)) + o_step = np.zeros((3, 1)) + plt.figure() + plt.plot(self.loop_o_q_int[:, 0], self.loop_o_q_int[:, 1], linewidth=2, color="k") + for i in range(self.planner_fsteps.shape[0]): + fsteps = self.planner_fsteps[i] + RPY = utils_mpc.quaternionToRPY(self.loop_o_q_int[i, 3:7]) + quat[:, 0] = utils_mpc.EulerToQuaternion([0.0, 0.0, RPY[2]]) + oRh = pin.Quaternion(quat).toRotationMatrix() + for j in range(4): + #if np.any(fsteps[k, (j*3):((j+1)*3)]) and not np.array_equal(steps[(j*3):((j+1)*3), 0], + # fsteps[k, (j*3):((j+1)*3)]): + # steps[(j*3):((j+1)*3), 0] = fsteps[k, (j*3):((j+1)*3)] + # o_step[:, 0:1] = oRh @ steps[(j*3):((j+1)*3), 0:1] + self.loop_o_q_int[i:(i+1), 0:3].transpose() + o_step[:, 0:1] = oRh @ fsteps[0:1, (j*3):((j+1)*3)].transpose() + self.loop_o_q_int[i:(i+1), 0:3].transpose() + plt.plot(o_step[0, 0], o_step[1, 0], linestyle=None, linewidth=1, marker="o", color=f_c[j]) + lgd1 = ["HAA", "HFE", "Knee"] lgd2 = ["FL", "FR", "HL", "HR"] plt.figure() @@ -768,6 +793,71 @@ class LoggerControl(): plt.show() + def slider_predicted_footholds(self): + + from matplotlib import pyplot as plt + from matplotlib.widgets import Slider, Button + import utils_mpc + import pinocchio as pin + + self.planner_fsteps + + # Define initial parameters + init_time = 0.0 + + # Create the figure and the line that we will manipulate + fig = plt.figure() + ax = plt.gca() + h1s = [] + + f_c = ["r", "b", "forestgreen", "rebeccapurple"] + quat = np.zeros((4, 1)) + + fsteps = self.planner_fsteps[0] + o_step = np.zeros((3*int(fsteps.shape[0]), 1)) + RPY = utils_mpc.quaternionToRPY(self.loop_o_q_int[0, 3:7]) + quat[:, 0] = utils_mpc.EulerToQuaternion([0.0, 0.0, RPY[2]]) + oRh = pin.Quaternion(quat).toRotationMatrix() + for j in range(4): + o_step[0:3, 0:1] = oRh @ fsteps[0:1, (j*3):((j+1)*3)].transpose() + self.loop_o_q_int[0:1, 0:3].transpose() + h1, = plt.plot(o_step[0::3, 0], o_step[1::3, 0], linestyle=None, linewidth=0, marker="o", color=f_c[j]) + h1s.append(h1) + + axcolor = 'lightgoldenrodyellow' + + # Make a horizontal slider to control the time. + axtime = plt.axes([0.25, 0.03, 0.65, 0.03], facecolor=axcolor) + time_slider = Slider( + ax=axtime, + label='Time [s]', + valmin=0.0, + valmax=self.logSize*self.dt, + valinit=init_time, + ) + + ax.set_xlim([-0.3, 0.5]) + ax.set_ylim([-0.3, 0.5]) + + # The function to be called anytime a slider's value changes + def update(val): + time_slider.val = np.round(val / (self.dt*10), decimals=0) * (self.dt*10) + rounded = int(np.round(time_slider.val / self.dt, decimals=0)) + fsteps = self.planner_fsteps[rounded] + o_step = np.zeros((3*int(fsteps.shape[0]), 1)) + RPY = utils_mpc.quaternionToRPY(self.loop_o_q_int[rounded, 3:7]) + quat[:, 0] = utils_mpc.EulerToQuaternion([0.0, 0.0, RPY[2]]) + oRh = pin.Quaternion(quat).toRotationMatrix() + for j in range(4): + for k in range(int(fsteps.shape[0])): + o_step[(3*k):(3*(k+1)), 0:1] = oRh @ fsteps[(k):(k+1), (j*3):((j+1)*3)].transpose() + self.loop_o_q_int[rounded:(rounded+1), 0:3].transpose() + h1s[j].set_xdata(o_step[0::3, 0].copy()) + h1s[j].set_ydata(o_step[1::3, 0].copy()) + fig.canvas.draw_idle() + + # register the update function with each slider + time_slider.on_changed(update) + + plt.show() if __name__ == "__main__":