Skip to content
Snippets Groups Projects
Commit 48617a04 authored by odri's avatar odri
Browse files

Circular motion

OL
Interpolation
No multiprocessing
Push
parent 2a974232
No related branches found
No related tags found
No related merge requests found
Pipeline #21094 failed
......@@ -6,7 +6,7 @@ robot:
LOGGING: true # Enable/disable logging during the experiment
PLOTTING: true # Enable/disable automatic plotting at the end of the experiment
DEMONSTRATION: false # Enable/disable demonstration functionalities
SIMULATION: true # Enable/disable PyBullet simulation or running on real robot
SIMULATION: false # Enable/disable PyBullet simulation or running on real robot
enable_pyb_GUI: true # Enable/disable PyBullet GUI
envID: 0 # Identifier of the environment to choose in which one the simulation will happen
use_flat_plane: true # If True the ground is flat, otherwise it has bumps
......@@ -24,7 +24,7 @@ robot:
dt_wbc: 0.001 # Time step of the whole body control
dt_mpc: 0.015 # Time step of the model predictive control
type_MPC: 3 # Which MPC solver you want to use: 0 for OSQP MPC, 1, 2, 3 for Crocoddyl MPCs
save_guess: true # true to interpolate the impedance quantities between nodes of the MPC
save_guess: false # true to interpolate the impedance quantities between nodes of the MPC
movement: "circle" # name of the movement to perform
interpolate_mpc: true # true to interpolate the impedance quantities between nodes of the MPC
interpolation_type: 3 # 0,1,2,3 decide which kind of interpolation is used
......
......@@ -218,32 +218,32 @@ class Controller:
self.mpc_solved = False
try:
self.mpc.solve(
self.k,
m["x_m"],
self.target_footstep.copy(),
self.gait,
self.xs_init,
self.us_init,
)
# if self.initialized:
# self.mpc.solve(
# self.k,
# self.mpc_result.xs[1],
# self.target_footstep.copy(),
# self.gait,
# self.xs_init,
# self.us_init,
# )
# else:
# self.mpc.solve(
# self.k,
# m["x_m"],
# self.target_footstep.copy(),
# self.gait,
# self.xs_init,
# self.us_init,
# )
# self.mpc.solve(
# self.k,
# m["x_m"],
# self.target_footstep.copy(),
# self.gait,
# self.xs_init,
# self.us_init,
# )
if self.initialized:
self.mpc.solve(
self.k,
self.mpc_result.xs[1],
self.target_footstep.copy(),
self.gait,
self.xs_init,
self.us_init,
)
else:
self.mpc.solve(
self.k,
m["x_m"],
self.target_footstep.copy(),
self.gait,
self.xs_init,
self.us_init,
)
except ValueError:
self.error = True
print("MPC Problem")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment