Skip to content
Snippets Groups Projects
Commit 2a42273e authored by Pierre-Alexandre Leziart's avatar Pierre-Alexandre Leziart
Browse files

Cleaning QP solver files

parent 259eefd3
No related branches found
No related tags found
No related merge requests found
......@@ -17,11 +17,6 @@
#include "osqp_folder/include/osqp_configure.h"
#include "other/st_to_cc.hpp"
// #include "eiquadprog/eiquadprog-rt.hpp"
#include "eiquadprog/eiquadprog-fast.hpp"
using namespace eiquadprog::solvers;
class QPWBC {
private:
......@@ -39,8 +34,7 @@ class QPWBC {
const double mu = 0.9;
// Generatrix of the linearized friction cone
Eigen::Matrix<double, 20, 12> G = 0.0 * Eigen::Matrix<double, 20, 12>::Zero();
// Eigen::Matrix<double, 3, 4> Gk = Eigen::Matrix<double, 3, 4>::Zero();
Eigen::Matrix<double, 20, 12> G = Eigen::Matrix<double, 20, 12>::Zero();
// Transformation matrices
Eigen::Matrix<double, 6, 6> Y = Eigen::Matrix<double, 6, 6>::Zero();
......@@ -50,8 +44,6 @@ class QPWBC {
Eigen::Matrix<double, 6, 1> gamma = Eigen::Matrix<double, 6, 1>::Zero();
Eigen::Matrix<double, 12, 12> H = Eigen::Matrix<double, 12, 12>::Zero();
Eigen::Matrix<double, 12, 1> g = Eigen::Matrix<double, 12, 1>::Zero();
// Eigen::Matrix<double, 16, 16> Pw = Eigen::Matrix<double, 16, 16>::Zero();
// Eigen::Matrix<double, 16, 1> Qw = Eigen::Matrix<double, 16, 1>::Zero();
// Results
// Eigen::Matrix<double, 12, 1> lambdas = Eigen::Matrix<double, 12, 1>::Zero();
......@@ -59,7 +51,7 @@ class QPWBC {
Eigen::MatrixXd ddq_res = Eigen::MatrixXd::Zero(12, 1);
// Matrix ML
const static int size_nz_ML = 20*12;//4 * (4 * 2 + 1);
const static int size_nz_ML = 20*12; //4 * (4 * 2 + 1);
csc *ML; // Compressed Sparse Column matrix
// Matrix NK
......@@ -81,35 +73,6 @@ class QPWBC {
OSQPData *data;
OSQPSettings *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings));
//using namespace eiquadprog::solvers;
/*RtEiquadprog<16, 0, 16> qp;
RtMatrixX<16, 16>::d Q_qp;
RtVectorX<16>::d C_qp;
RtMatrixX<0, 16>::d Aeq;
RtVectorX<0>::d Beq;
RtMatrixX<16, 16>::d Aineq;
RtVectorX<16>::d Bineq;
RtVectorX<16>::d x_qp;*/
/*EiquadprogFast qp;
Eigen::MatrixXd Q_qp = Eigen::MatrixXd::Zero(16,16);
Eigen::VectorXd C_qp = Eigen::VectorXd::Zero(16);
Eigen::MatrixXd Aeq = Eigen::MatrixXd::Zero(0, 16);
Eigen::VectorXd Beq = Eigen::VectorXd::Zero(0);
Eigen::MatrixXd Aineq = Eigen::MatrixXd::Zero(16, 16);
Eigen::VectorXd Bineq = Eigen::VectorXd::Zero(16);
Eigen::VectorXd x_qp = Eigen::VectorXd::Zero(16);*/
/*RtEiquadprog<12, 0, 20> qp;
RtMatrixX<12, 12>::d Q_qp;
RtVectorX<12>::d C_qp;
RtMatrixX<0, 12>::d Aeq;
RtVectorX<0>::d Beq;
RtMatrixX<20, 12>::d Aineq;
RtVectorX<20>::d Bineq;
RtVectorX<12>::d x_qp;*/
public:
QPWBC(); // Constructor
......
......@@ -17,17 +17,6 @@ QPWBC::QPWBC() {
G.block(5*i, 3*i, 5, 3) = SC;
}
// qp.reset(16, 0, 16);
// Initialization of the generatrix G
/*Gk.row(0) << mu, mu, -mu, -mu;
Gk.row(1) << mu, -mu, mu, -mu;
Gk.row(2) << 1.0, 1.0, 1.0, 1.0;
for (int i = 0; i < 4; i++) {
G.block(3*i, 4*i, 3, 4) = Gk;
}*/
// Set the lower and upper limits of the box
std::fill_n(v_NK_up, size_nz_NK, 25.0);
std::fill_n(v_NK_low, size_nz_NK, 0.0);
......@@ -35,22 +24,6 @@ QPWBC::QPWBC() {
// Set OSQP settings to default
osqp_set_default_settings(settings);
/*Q_qp.setZero();
C_qp.setZero();
Beq.setZero();
Aineq.setZero();
for (int i = 0; i < 16; i++) {
Aineq(i, i) = 1.;
Bineq(i) = 0.0;
x_qp(i) = 3.0;
}*/
/*for (int i = 0; i < 4; i++) {
Aineq.block(5*i, 3*i, 5, 3) = SC;
}*/
}
/*
......@@ -112,17 +85,17 @@ int QPWBC::create_ML() {
double *acc; // coeff values
int nst = cpt_ML; // number of non zero elements
int ncc = st_to_cc_size(nst, r_ML, c_ML); // number of CC values
int m = 20; // number of rows
// int m = 20; // number of rows
int n = 12; // number of columns
// std::cout << "Number of CC values: " << ncc << std::endl;
int i_min = i4vec_min(nst, r_ML);
/*int i_min = i4vec_min(nst, r_ML);
int i_max = i4vec_max(nst, r_ML);
int j_min = i4vec_min(nst, c_ML);
int j_max = i4vec_max(nst, c_ML);
// st_header_print(i_min, i_max, j_min, j_max, m, n, nst);
st_header_print(i_min, i_max, j_min, j_max, m, n, nst);*/
// Get the CC indices.
icc = (int *)malloc(ncc * sizeof(int));
......@@ -176,7 +149,7 @@ int QPWBC::create_weight_matrices() {
double *acc; // coeff values
int nst = cpt_P; // number of non zero elements
int ncc = st_to_cc_size(nst, r_P, c_P); // number of CC values
int m = 12; // number of rows
// int m = 12; // number of rows
int n = 12; // number of columns
// std::cout << "Number of CC values: " << ncc << std::endl;
......@@ -207,21 +180,13 @@ int QPWBC::create_weight_matrices() {
// Q is already created filled with zeros
std::fill_n(Q, size_nz_Q, 0.0);
// char t_char[1] = {'P'};
// my_print_csc_matrix(P, t_char);
return 0;
}
/*
Create an initial guess and call the solver to solve the QP problem
Call the solver to solve the QP problem
*/
int QPWBC::call_solver() {
// Initial guess for forces (mass evenly supported by all legs in contact)
//warmxf.block(0, 0, 12 * (n_steps - 1), 1) = x.block(12, 0, 12 * (n_steps - 1), 1);
//warmxf.block(12 * n_steps, 0, 12 * (n_steps - 1), 1) = x.block(12 * (n_steps + 1), 0, 12 * (n_steps - 1), 1);
//warmxf.block(12 * (2 * n_steps - 1), 0, 12, 1) = x.block(12 * n_steps, 0, 12, 1);
//Eigen::Matrix<double, Eigen::Dynamic, 1>::Map(&v_warmxf[0], warmxf.size()) = warmxf;
// Setup the solver (first iteration) then just update it
if (not initialized) // Setup the solver with the matrices
......@@ -235,29 +200,7 @@ int QPWBC::call_solver() {
data->l = v_NK_low; // dense array for lower bound (size m)
data->u = v_NK_up; // dense array for upper bound (size m)
/*std::cout << "PASS" << std::endl;
for (int j = 0; j < 12; j++) {
std::cout << Q[j] << " ";
}
std::cout << std::endl;
std::cout << "--" << std::endl;
for (int j = 0; j < 20; j++) {
std::cout << v_NK_low[j] << " ";
}
std::cout << std::endl;
std::cout << "--" << std::endl;
for (int j = 0; j < 20; j++) {
std::cout << v_NK_up[j] << " ";
}
std::cout << std::endl;*/
/*save_csc_matrix(ML, "ML");
save_csc_matrix(P, "P");
save_dns_matrix(Q, 12 * n_steps * 2, "Q");
save_dns_matrix(v_NK_low, 12 * n_steps * 2 + 20 * n_steps, "l");
save_dns_matrix(v_NK_up, 12 * n_steps * 2 + 20 * n_steps, "u");*/
// Tuning parameters of the OSQP solver
// settings->rho = 0.1f;
// settings->sigma = 1e-6f;
// settings->max_iter = 4000;
......@@ -274,50 +217,22 @@ int QPWBC::call_solver() {
settings->adaptive_rho_tolerance = (float)5.0;
settings->adaptive_rho_fraction = (float)0.7;
settings->verbose = true;
int exitflag = 0;
exitflag = osqp_setup(&workspce, data, settings);
//std::cout << "Setup exitflag: " << exitflag << std::endl;
//std::cout << "PASS 2" << std::endl;
/*self.prob.setup(P=self.P, q=self.Q, A=self.ML, l=self.NK_inf, u=self.NK.ravel(), verbose=False)
self.prob.update_settings(eps_abs=1e-5)
self.prob.update_settings(eps_rel=1e-5)*/
osqp_setup(&workspce, data, settings);
initialized = true;
} else // Code to update the QP problem without creating it again
{
//std::cout << "PASS 3" << std::endl;
// Update P matrix of the OSQP solver
osqp_update_P(workspce, &P->x[0], OSQP_NULL, 0);
//std::cout << "PASS 4" << std::endl;
osqp_update_lin_cost(workspce, &Q[0]);
// osqp_update_A(workspce, &ML->x[0], OSQP_NULL, 0);
// osqp_update_bounds(workspce, &v_NK_low[0], &v_NK_up[0]);
// osqp_warm_start_x(workspce, &v_warmxf[0]);
}
//std::cout << "PASS 5" << std::endl;
/*char t_char[1] = {'P'};
my_print_csc_matrix(P, t_char);*/
// std::cout << "H:" << std::endl << H << std::endl << "--" << std::endl;
/*char tm_char[1] = {'M'};
my_print_csc_matrix(ML, tm_char);*/
/*double v_warmxf[12] = {};
std::fill_n(v_warmxf, 12, 2.0);
std::cout << "PASS 5.5" << std::endl;
osqp_warm_start_x(workspce, v_warmxf);
// Update Q matrix of the OSQP solver
osqp_update_lin_cost(workspce, &Q[0]);
std::cout << "Warm" << std::endl;*/
}
// Run the solver to solve the QP problem
osqp_solve(workspce);
// std::cout << "PASS 6" << std::endl;
/*self.sol = self.prob.solve()
self.x = self.sol.x*/
// solution in workspce->solution->x
return 0;
......@@ -327,45 +242,31 @@ int QPWBC::call_solver() {
Extract relevant information from the output of the QP solver
*/
int QPWBC::retrieve_result(const Eigen::MatrixXd &f_cmd) {
// Retrieve the "contact forces" part of the solution of the QP problem
// Retrieve the solution of the QP problem
for (int k = 0; k < 12; k++) {
f_res(k, 0) = (workspce->solution->x)[k];
}
// f_res = G * lambdas;
// Computing delta ddq with delta f
ddq_res = A * f_res + gamma;
f_res += f_cmd;
/*std::cout << "SOLUTION States" << std::endl;
for (int k = 0; k < n_steps; k++) {
for (int i = 0; i < 12; i++) {
std::cout << (workspce->solution->x)[k * 12 + i] + xref(i, 1 + k) << " ";
}
std::cout << std::endl;
}
std::cout << "END" << std::endl;
std::cout << "SOLUTION Forces" << std::endl;
for (int k = 0; k < n_steps; k++) {
for (int i = 0; i < 12; i++) {
std::cout << (workspce->solution->x)[12 * n_steps + k * 12 + i] << " ";
}
std::cout << std::endl;
}
std::cout << "END" << std::endl;*/
// Adding reference contact forces to delta f
f_res += f_cmd;
return 0;
}
/*
Return the next predicted state of the base
Getters
*/
Eigen::MatrixXd QPWBC::get_f_res() { return f_res; }
Eigen::MatrixXd QPWBC::get_ddq_res() { return ddq_res; }
Eigen::MatrixXd QPWBC::get_H() {
Eigen::MatrixXd Hxd = Eigen::MatrixXd::Zero(12, 12);
Hxd = H;
return Hxd; }
return Hxd;
}
/*
Run one iteration of the whole MPC by calling all the necessary functions (data retrieval,
......@@ -374,32 +275,22 @@ update of constraint matrices, update of the solver, running the solver, retriev
int QPWBC::run(const Eigen::MatrixXd &M, const Eigen::MatrixXd &Jc, const Eigen::MatrixXd &f_cmd, const Eigen::MatrixXd &RNEA) {
// Create the constraint and weight matrices used by the QP solver
// Minimize x^T.P.x + x^T.Q with constraints M.X == N and L.X <= K
// Minimize x^T.P.x + 2 x^T.Q with constraints M.X == N and L.X <= K
if (not initialized) {
create_matrices();
}
// std::cout << "Creation done" << std::endl;
// Compute the different matrices involved in the box QP
compute_matrices(M, Jc, f_cmd, RNEA);
// std::cout << "compute_matrices done" << std::endl;
// Update P and Q matrices of the cost function xT P x + 2 xT g
update_PQ();
// Bineq = Aineq * f_cmd;
// std::cout << "update_PQ done" << std::endl;
// Create an initial guess and call the solver to solve the QP problem
call_solver();
/*for (int i = 0; i < 4; i++) {
double testou = f_cmd(3*i+2, 0) * 0.25;
for (int j = 0; j < 4; j++) {
x_qp(4*i+j) = testou;
}
}
qp.solve_quadprog(Q_qp, C_qp, Aeq, Beq, Aineq, Bineq, x_qp);*/
// Extract relevant information from the output of the QP solver
retrieve_result(f_cmd);
/*Eigen::MatrixXd df = Eigen::MatrixXd::Zero(12, 1);
df(0, 0) = 0.01;
......@@ -412,7 +303,6 @@ int QPWBC::run(const Eigen::MatrixXd &M, const Eigen::MatrixXd &Jc, const Eigen:
std::cout << 0.5 * (f_res-df).transpose() * H * (f_res-df) + (f_res-df).transpose() * g << std::endl;
std::cout << 0.5 * (f_res+df).transpose() * H * (f_res+df) + (f_res+df).transpose() * g << std::endl;
std::cout << "A:" << std::endl << A << std::endl << "--" << std::endl;
std::cout << "Xf:" << std::endl << (X * f_cmd) << std::endl << "--" << std::endl;
std::cout << "RNEA:" << std::endl << RNEA << std::endl << "--" << std::endl;
......@@ -421,53 +311,6 @@ int QPWBC::run(const Eigen::MatrixXd &M, const Eigen::MatrixXd &Jc, const Eigen:
std::cout << "g:" << std::endl << g << std::endl << "--" << std::endl;
std::cout << "H:" << std::endl << H << std::endl << "--" << std::endl;*/
/*std::cout << "Qw:" << std::endl << Qw << std::endl << "--" << std::endl;
std::cout << Q_qp << std::endl;
std::cout << C_qp << std::endl;
std::cout << Aeq << std::endl;
std::cout << Beq << std::endl;
std::cout << Aineq << std::endl;
std::cout << Bineq << std::endl;*/
// std::cout << "call_solver done" << std::endl;
// std::cout << "F result : " << std::endl << f_cmd + x_qp << std::endl;
// Extract relevant information from the output of the QP solver
retrieve_result(f_cmd);
// std::cout << "Raw result: " << std::endl << f_res << std::endl;
/*Eigen::MatrixXd df = Eigen::MatrixXd::Zero(12, 1);
df = f_res - f_cmd;
std::cout << "Cost df H df + df g" << std::endl;
std::cout << df.transpose() * H * df + 2 * df.transpose() * g << std::endl;
std::cout << "Cost lambda Q lambda + 2 * lambda * C" << std::endl;
std::cout << 0.5 * x_qp.transpose() * Q_qp * x_qp + x_qp.transpose() * C_qp << std::endl;
std::cout << "Cost dev :" << std::endl;
std::cout << (x_qp.transpose() * G.transpose() - f_cmd.transpose()) * H * (G * x_qp - f_cmd) + 2 * (x_qp.transpose() * G.transpose() - f_cmd.transpose()) * g << std::endl;
std::cout << "Cost dev 2 :" << std::endl;
std::cout << x_qp.transpose() * G.transpose() * H * G * x_qp + 2 * (G.transpose() * g - G.transpose() * H * f_cmd).transpose() * x_qp << std::endl;
std::cout << "Removed:" << f_cmd.transpose() * H * f_cmd - 2 * f_cmd.transpose() * g << std::endl;
for (int i = 0; i < 4; i++) {
double testou = f_cmd(3*i+2, 0) * 0.25;
for (int j = 0; j < 4; j++) {
x_qp(4*i+j) = testou;
}
}
std::cout << f_cmd << std::endl;
std::cout << G * x_qp << std::endl;
std::cout << "-#-" << std::endl;
std::cout << G << std::endl;
std::cout << x_qp << std::endl;
std::cout << "Cost: " << 0.5 * x_qp.transpose() * Q_qp * x_qp + x_qp.transpose() * C_qp << std::endl;
*/
// std::cout << "retrieve done" << std::endl;
//char t_char[1] = {'P'};
//my_print_csc_matrix(P, t_char);
return 0;
}
......@@ -537,33 +380,20 @@ void QPWBC::save_dns_matrix(double *M, int size, std::string filename) {
void QPWBC::compute_matrices(const Eigen::MatrixXd &M, const Eigen::MatrixXd &Jc, const Eigen::MatrixXd &f_cmd, const Eigen::MatrixXd &RNEA) {
// Compute all matrices of the Box QP problem
Y = M.block(0, 0, 6, 6);
X = Jc.block(0, 0, 12, 6).transpose();
Yinv = pseudoInverse(Y);
A = Yinv * X;
gamma = Yinv * ((X * f_cmd) - RNEA);
H = A.transpose() * Q1 * A + Q2;
g = A.transpose() * Q1 * gamma;
/*for (int i = 0; i < 4; i++) {
if (f_cmd(3*i+2, 0) > 1e-4) {
G.block(3*i, 4*i, 3, 4) = Gk;
}
else
{
G.block(3*i, 4*i, 3, 4) = Eigen::Matrix<double, 3, 4>::Zero();
}
}*/
//Pw = G.transpose() * H * G;
//Qw = (G.transpose() * g) - (G.transpose() * H * f_cmd);
// Compute all matrices of the Box QP problem
Y = M.block(0, 0, 6, 6);
X = Jc.block(0, 0, 12, 6).transpose();
Yinv = pseudoInverse(Y);
A = Yinv * X;
gamma = Yinv * ((X * f_cmd) - RNEA);
H = A.transpose() * Q1 * A + Q2;
g = A.transpose() * Q1 * gamma;
}
void QPWBC::update_PQ() {
// Update P and Q weight matrices
// Update P matrix of min xT P x + 2 xT Q
int cpt = 0;
for (int i = 0; i < 12; i++) {
for (int j = 0; j <= i; j++) {
......@@ -572,19 +402,14 @@ void QPWBC::update_PQ() {
}
}
// std::cout << "Eigenvalues" << H.eigenvalues() << std::endl;
//char t_char[1] = {'P'};
//my_print_csc_matrix(P, t_char);
// Update Q matrix of min xT P x + 2 xT Q
for (int i = 0; i < 12; i++) {
Q[i] = g(i, 0);
}
// Update P and Q weight matrices
/*Q_qp = Pw;
for (int i = 0; i < 16; i++) {
C_qp(i) = Qw(i, 0);
}*/
// std::cout << "Eigenvalues" << H.eigenvalues() << std::endl;
/*char t_char[1] = {'P'};
my_print_csc_matrix(P, t_char);*/
}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment