Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
def slider_predicted_footholds(self):
from matplotlib import pyplot as plt
from matplotlib.widgets import Slider, Button
import utils_mpc
import pinocchio as pin
self.planner_fsteps
# Define initial parameters
init_time = 0.0
# Create the figure and the line that we will manipulate
fig = plt.figure()
ax = plt.gca()
h1s = []
f_c = ["r", "b", "forestgreen", "rebeccapurple"]
quat = np.zeros((4, 1))
fsteps = self.planner_fsteps[0]
o_step = np.zeros((3*int(fsteps.shape[0]), 1))
RPY = pin.rpy.matrixToRpy(pin.Quaternion(self.loop_o_q[0, 3:7]).toRotationMatrix())
quat[:, 0] = pin.Quaternion(pin.rpy.rpyToMatrix(np.array([0.0, 0.0, RPY[2]]))).coeffs()
oRh = pin.Quaternion(quat).toRotationMatrix()
for j in range(4):
o_step[0:3, 0:1] = oRh @ fsteps[0:1, (j*3):((j+1)*3)].transpose() + self.loop_o_q[0:1, 0:3].transpose()
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
h1, = plt.plot(o_step[0::3, 0], o_step[1::3, 0], linestyle=None, linewidth=0, marker="o", color=f_c[j])
h1s.append(h1)
axcolor = 'lightgoldenrodyellow'
# Make a horizontal slider to control the time.
axtime = plt.axes([0.25, 0.03, 0.65, 0.03], facecolor=axcolor)
time_slider = Slider(
ax=axtime,
label='Time [s]',
valmin=0.0,
valmax=self.logSize*self.dt,
valinit=init_time,
)
ax.set_xlim([-0.3, 0.5])
ax.set_ylim([-0.3, 0.5])
# The function to be called anytime a slider's value changes
def update(val):
time_slider.val = np.round(val / (self.dt*10), decimals=0) * (self.dt*10)
rounded = int(np.round(time_slider.val / self.dt, decimals=0))
fsteps = self.planner_fsteps[rounded]
o_step = np.zeros((3*int(fsteps.shape[0]), 1))
RPY = pin.rpy.matrixToRpy(pin.Quaternion(self.loop_o_q[rounded, 3:7]).toRotationMatrix())
quat[:, 0] = pin.Quaternion(pin.rpy.rpyToMatrix(np.array([0.0, 0.0, RPY[2]]))).coeffs()
oRh = pin.Quaternion(quat).toRotationMatrix()
for j in range(4):
for k in range(int(fsteps.shape[0])):
o_step[(3*k):(3*(k+1)), 0:1] = oRh @ fsteps[(k):(k+1), (j*3):((j+1)*3)].transpose() + self.loop_o_q[rounded:(rounded+1), 0:3].transpose()
h1s[j].set_xdata(o_step[0::3, 0].copy())
h1s[j].set_ydata(o_step[1::3, 0].copy())
fig.canvas.draw_idle()
# register the update function with each slider
time_slider.on_changed(update)
plt.show()

Pierre-Alexandre Leziart
committed
if __name__ == "__main__":
import LoggerSensors
# Create loggers
loggerSensors = LoggerSensors.LoggerSensors(logSize=20000-3)
logger = LoggerControl(0.001, 30, logSize=20000-3)

Pierre-Alexandre Leziart
committed
# Load data from .npz file
logger.loadAll(loggerSensors)
# Call all ploting functions
odri
committed
logger.plotAll(loggerSensors)

Pierre-Alexandre Leziart
committed
odri
committed
# logger.slider_predicted_trajectory()