Newer
Older
// Copyright (c) 2019 CNRS
// Authors: Joseph Mirabel
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
#include <hpp/constraints/differentiable-function.hh>
#include <hpp/constraints/implicit.hh>
#include <hpp/core/config-projector.hh>
#include <hpp/core/config-validations.hh>
#include <hpp/core/configuration-shooter.hh>
#include <hpp/core/path-validation.hh>
#include <hpp/core/problem.hh>
#include <hpp/core/roadmap.hh>
#include <hpp/manipulation/path-planner/end-effector-trajectory.hh>
#include <hpp/manipulation/steering-method/end-effector-trajectory.hh>
#include <hpp/pinocchio/device-sync.hh>
#include <hpp/pinocchio/liegroup-element.hh>
#include <hpp/pinocchio/util.hh>
#include <hpp/util/exception-factory.hh>
#include <pinocchio/multibody/data.hpp>
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
namespace manipulation {
namespace pathPlanner {
typedef manipulation::steeringMethod::EndEffectorTrajectory SM_t;
typedef manipulation::steeringMethod::EndEffectorTrajectoryPtr_t SMPtr_t;
EndEffectorTrajectoryPtr_t EndEffectorTrajectory::create(
const core::ProblemConstPtr_t& problem) {
EndEffectorTrajectoryPtr_t ptr(new EndEffectorTrajectory(problem));
ptr->init(ptr);
return ptr;
}
EndEffectorTrajectoryPtr_t EndEffectorTrajectory::createWithRoadmap(
const core::ProblemConstPtr_t& problem, const core::RoadmapPtr_t& roadmap) {
EndEffectorTrajectoryPtr_t ptr(new EndEffectorTrajectory(problem, roadmap));
ptr->init(ptr);
return ptr;
}
void EndEffectorTrajectory::tryConnectInitAndGoals() {}
void EndEffectorTrajectory::startSolve() {
// core::PathPlanner::startSolve();
// problem().checkProblem ();
if (!problem()->robot()) {
std::string msg("No device in problem.");
hppDout(error, msg);
throw std::runtime_error(msg);
}
if (!problem()->initConfig()) {
std::string msg("No init config in problem.");
hppDout(error, msg);
throw std::runtime_error(msg);
}
// Tag init and goal configurations in the roadmap
roadmap()->resetGoalNodes();
SMPtr_t sm(HPP_DYNAMIC_PTR_CAST(SM_t, problem()->steeringMethod()));
if (!sm)
throw std::invalid_argument(
"Steering method must be of type "
"hpp::manipulation::steeringMethod::EndEffectorTrajectory");
if (!sm->constraints() || !sm->constraints()->configProjector())
throw std::invalid_argument(
"Steering method constraint has no ConfigProjector.");
core::ConfigProjectorPtr_t constraints(sm->constraints()->configProjector());
const constraints::ImplicitPtr_t& trajConstraint = sm->trajectoryConstraint();
if (!trajConstraint)
throw std::invalid_argument(
"EndEffectorTrajectory has no trajectory constraint.");
if (!sm->trajectory())
throw std::invalid_argument("EndEffectorTrajectory has no trajectory.");
const core::NumericalConstraints_t& ncs = constraints->numericalConstraints();
bool ok = false;
for (std::size_t i = 0; i < ncs.size(); ++i) {
if (ncs[i] == trajConstraint) {
ok = true;
break; // Same pointer
}
// Here, we do not check the right hand side on purpose.
// if (*ncs[i] == *trajConstraint) {
if (ncs[i]->functionPtr() == trajConstraint->functionPtr() &&
ncs[i]->comparisonType() == trajConstraint->comparisonType()) {
ok = true;
// TODO We should only modify the path constraint.
// However, only the pointers to implicit constraints are copied
// while we would like the implicit constraints to be copied as well.
ncs[i]->rightHandSideFunction(sm->trajectory());
break; // logically identical
}
}
if (!ok) {
HPP_THROW(std::logic_error,
"EndEffectorTrajectory could not find "
"constraint "
<< trajConstraint->function());
}
}
void EndEffectorTrajectory::oneStep() {
SMPtr_t sm(HPP_DYNAMIC_PTR_CAST(SM_t, problem()->steeringMethod()));
if (!sm)
throw std::invalid_argument(
"Steering method must be of type "
"hpp::manipulation::steeringMethod::EndEffectorTrajectory");
if (!sm->trajectoryConstraint())
throw std::invalid_argument(
"EndEffectorTrajectory has no trajectory constraint.");
if (!sm->trajectory())
throw std::invalid_argument("EndEffectorTrajectory has no trajectory.");
if (!sm->constraints() || !sm->constraints()->configProjector())
throw std::invalid_argument(
"Steering method constraint has no ConfigProjector.");
core::ConfigProjectorPtr_t constraints(sm->constraints()->configProjector());
core::ConfigValidationPtr_t cfgValidation(problem()->configValidations());
core::PathValidationPtr_t pathValidation(problem()->pathValidation());
core::ValidationReportPtr_t cfgReport;
core::PathValidationReportPtr_t pathReport;
core::interval_t timeRange(sm->timeRange());
// Generate a vector if configuration where the first one is the initial
// configuration and the following ones are random configurations
std::vector<core::Configuration_t> qs(
configurations(*problem()->initConfig()));
if (qs.empty()) {
hppDout(info, "Failed to generate initial configs.");
return;
}
// Generate a valid initial configuration.
bool success = false;
bool resetRightHandSide = true;
std::size_t i;
vector_t times(nDiscreteSteps_ + 1);
matrix_t steps(problem()->robot()->configSize(), nDiscreteSteps_ + 1);
// Discretize definition interval of the steering method into times
times[0] = timeRange.first;
for (int j = 1; j < nDiscreteSteps_; ++j)
times[j] = timeRange.first +
j * (timeRange.second - timeRange.first) / nDiscreteSteps_;
times[nDiscreteSteps_] = timeRange.second;
// For each random configuration,
// - compute initial configuration of path by projecting the random
// configuration (initial configuration for the first time),
// - compute following samples by projecting current sample after
// updating right hand side.
// If failure, try next random configuration.
// Failure can be due to
// - projection,
// - collision of final configuration,
// - validation of path (for collision mainly).
for (i = 0; i < qs.size(); ++i) {
if (resetRightHandSide) {
constraints->rightHandSideAt(times[0]);
resetRightHandSide = false;
}
Configuration_t& q(qs[i]);
if (!constraints->apply(q)) continue;
if (!cfgValidation->validate(q, cfgReport)) continue;
resetRightHandSide = true;
steps.col(0) = q;
success = true;
for (int j = 1; j <= nDiscreteSteps_; ++j) {
constraints->rightHandSideAt(times[j]);
hppDout(info, "RHS: " << setpyformat
<< constraints->rightHandSide().transpose());
steps.col(j) = steps.col(j - 1);
if (!constraints->apply(steps.col(j))) {
hppDout(info, "Failed to generate destination config.\n"
<< setpyformat << *constraints
<< "\nq=" << one_line(q));
success = false;
break;
// Test collision of final configuration.
if (!cfgValidation->validate(steps.col(nDiscreteSteps_), cfgReport)) {
hppDout(info, "Destination config is in collision.");
continue;
}
core::PathPtr_t path = sm->projectedPath(times, steps);
if (!path) {
hppDout(info, "Steering method failed.\n"
<< setpyformat << "times: " << one_line(times) << '\n'
<< "configs:\n"
<< condensed(steps.transpose()) << '\n');
continue;
}
core::PathPtr_t validPart;
if (!pathValidation->validate(path, false, validPart, pathReport)) {
hppDout(info, "Path is in collision.");
continue;
}
// In case of success,
// - insert q_init as initial configuration of the roadmap,
// - insert final configuration as goal node in the roadmap,
// - add a roadmap edge between them and stop.
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
roadmap()->initNode(make_shared<Configuration_t>(steps.col(0)));
core::NodePtr_t init = roadmap()->initNode();
core::NodePtr_t goal = roadmap()->addGoalNode(
make_shared<Configuration_t>(steps.col(nDiscreteSteps_)));
roadmap()->addEdge(init, goal, path);
success = true;
if (feasibilityOnly_) break;
}
}
std::vector<core::Configuration_t> EndEffectorTrajectory::configurations(
const core::Configuration_t& q_init) {
if (!ikSolverInit_) {
std::vector<core::Configuration_t> configs(nRandomConfig_ + 1);
configs[0] = q_init;
for (int i = 1; i < nRandomConfig_ + 1; ++i)
problem()->configurationShooter()->shoot(configs[i]);
return configs;
}
// TODO Compute the target and call ikSolverInit_
// See https://gepgitlab.laas.fr/airbus-xtct/hpp_airbus_xtct for an
// example using IKFast.
throw std::runtime_error(
"Using an IkSolverInitialization is not implemented yet");
}
EndEffectorTrajectory::EndEffectorTrajectory(
const core::ProblemConstPtr_t& problem)
: core::PathPlanner(problem) {}
EndEffectorTrajectory::EndEffectorTrajectory(
const core::ProblemConstPtr_t& problem, const core::RoadmapPtr_t& roadmap)
: core::PathPlanner(problem, roadmap) {}
void EndEffectorTrajectory::checkFeasibilityOnly(bool enable) {
feasibilityOnly_ = enable;
}
void EndEffectorTrajectory::init(const EndEffectorTrajectoryWkPtr_t& weak) {
core::PathPlanner::init(weak);
weak_ = weak;
nRandomConfig_ = 10;
nDiscreteSteps_ = 1;
feasibilityOnly_ = true;
}
} // namespace pathPlanner
} // namespace manipulation
} // namespace hpp