Skip to content
Snippets Groups Projects
Commit 0f1c76cf authored by Pierre-Alexandre Leziart's avatar Pierre-Alexandre Leziart
Browse files

Format unittests for FootstepPlanner

parent b58117d3
No related branches found
No related tags found
No related merge requests found
......@@ -13,7 +13,6 @@ np.set_printoptions(precision=6, linewidth=300)
class TestFootstepPlanner(unittest.TestCase):
def setUp(self):
# Object that holds all controller parameters
......@@ -26,12 +25,24 @@ class TestFootstepPlanner(unittest.TestCase):
self.params.N_SIMULATION = 1000
self.params.perfect_estimator = False
self.params.solo3D = False
q_init = [0.0, 0.764, -1.4, 0.0, 0.764, -1.4, 0.0, 0.764, -1.4, 0.0, 0.764, -1.4]
q_init = [
0.0,
0.764,
-1.4,
0.0,
0.764,
-1.4,
0.0,
0.764,
-1.4,
0.0,
0.764,
-1.4,
]
for i in range(len(q_init)):
self.params.q_init[i] = q_init[i]
self.params.N_periods = 1
gait = [12, 1, 0, 0, 1,
12, 0, 1, 1, 0]
gait = [12, 1, 0, 0, 1, 12, 0, 1, 1, 0]
for i in range(len(gait)):
self.params.gait_vec[i] = gait[i]
......@@ -84,7 +95,9 @@ class TestFootstepPlanner(unittest.TestCase):
"""
# Footsteps should be at the vertical of shoulders in a non-moving situation
ref = np.array(self.params.footsteps_under_shoulders.tolist()).reshape((3, 4), order='F')
ref = np.array(self.params.footsteps_under_shoulders.tolist()).reshape(
(3, 4), order="F"
)
N_ref = self.params.gait.shape[0]
# Configuration vector
......@@ -97,11 +110,14 @@ class TestFootstepPlanner(unittest.TestCase):
self.gait.update(k, 0)
# Compute target footstep based on current and reference velocities
o_targetFootstep = self.footstepPlanner.update_footsteps(k % self.k_mpc == 0 and k != 0,
int(self.k_mpc - k % self.k_mpc),
q, np.zeros((6, 1)),
np.zeros((6, 1)),
ref)
o_targetFootstep = self.footstepPlanner.update_footsteps(
k % self.k_mpc == 0 and k != 0,
int(self.k_mpc - k % self.k_mpc),
q,
np.zeros((6, 1)),
np.zeros((6, 1)),
ref,
)
# Same footsteps in horizontal frame
h_targetFootstep = self.footstepPlanner.get_target_footsteps()
......@@ -112,10 +128,20 @@ class TestFootstepPlanner(unittest.TestCase):
if not np.allclose(ref, o_targetFootstep):
print(ref)
print(o_targetFootstep)
self.assertTrue(np.allclose(ref, o_targetFootstep), "o_targetFootstep is OK")
self.assertTrue(np.allclose(ref, h_targetFootstep), "h_targetFootstep is OK")
self.assertTrue(np.allclose(np.tile(ref.ravel(order='F'), (N_ref, 1)) *
np.repeat(self.gait.matrix, 3, axis=1), fsteps), "fsteps is OK")
self.assertTrue(
np.allclose(ref, o_targetFootstep), "o_targetFootstep is OK"
)
self.assertTrue(
np.allclose(ref, h_targetFootstep), "h_targetFootstep is OK"
)
self.assertTrue(
np.allclose(
np.tile(ref.ravel(order="F"), (N_ref, 1))
* np.repeat(self.gait.matrix, 3, axis=1),
fsteps,
),
"fsteps is OK",
)
def test_moving_at_ref_forward(self):
"""
......@@ -126,7 +152,9 @@ class TestFootstepPlanner(unittest.TestCase):
v_x = 0.5
# Footsteps should land in front of the shoulders
under_shoulder = np.array(self.params.footsteps_under_shoulders.tolist()).reshape((3, 4), order='F')
under_shoulder = np.array(
self.params.footsteps_under_shoulders.tolist()
).reshape((3, 4), order="F")
o_targetFootstep = under_shoulder.copy()
targets = under_shoulder.copy()
targets[0, :] += v_x * self.params.T_gait / 4
......@@ -146,15 +174,17 @@ class TestFootstepPlanner(unittest.TestCase):
for k in range(500):
# Run estimator
self.estimator.run(self.gait.matrix,
np.random.random((3, 4)),
np.random.random((3, 1)),
np.random.random((3, 1)),
np.random.random((3, 1)),
np.random.random((12, 1)),
np.random.random((12, 1)),
np.random.random((6, 1)),
np.random.random((3, 1)))
self.estimator.run(
self.gait.matrix,
np.random.random((3, 4)),
np.random.random((3, 1)),
np.random.random((3, 1)),
np.random.random((3, 1)),
np.random.random((12, 1)),
np.random.random((12, 1)),
np.random.random((6, 1)),
np.random.random((3, 1)),
)
# Update state
self.estimator.update_reference_state(v_ref)
......@@ -169,10 +199,15 @@ class TestFootstepPlanner(unittest.TestCase):
self.gait.update(k, 0)
# Compute target footstep based on current and reference velocities
o_targetFootstep = self.footstepPlanner.update_footsteps(k % self.k_mpc == 0 and k != 0,
int(self.k_mpc - k % self.k_mpc),
q, v, v_ref, o_targetFootstep)
o_targetFootstep = self.footstepPlanner.update_footsteps(
k % self.k_mpc == 0 and k != 0,
int(self.k_mpc - k % self.k_mpc),
q,
v,
v_ref,
o_targetFootstep,
)
print(o_targetFootstep)
# Same footsteps in horizontal frame
......@@ -194,46 +229,84 @@ class TestFootstepPlanner(unittest.TestCase):
phase = -1
cpt_phase = 0
for i in range(cgait.shape[0]):
if (cgait[i, j] == 0):
if (phase != 0):
if (phase != -1):
if cgait[i, j] == 0:
if phase != 0:
if phase != -1:
cpt_phase += 1
phase = 0
self.assertTrue(np.allclose(np.zeros(3), fsteps[i, (3*j):(3*(j+1))]), "fsteps swing is OK")
self.assertTrue(
np.allclose(
np.zeros(3), fsteps[i, (3 * j) : (3 * (j + 1))]
),
"fsteps swing is OK",
)
else:
if (phase != 1):
if (phase != -1):
if phase != 1:
if phase != -1:
cpt_phase += 1
phase = 1
if (cpt_phase == 0): # Foot currently in stance phase
o_loc = under_shoulder[:, j] + \
np.array([v_x * np.floor(k / 240) * 240 * self.params.dt_wbc, 0.0, 0.0])
if cpt_phase == 0: # Foot currently in stance phase
o_loc = under_shoulder[:, j] + np.array(
[
v_x
* np.floor(k / 240)
* 240
* self.params.dt_wbc,
0.0,
0.0,
]
)
if k >= 240:
o_loc += np.array([v_x * self.params.T_gait * 0.25, 0.0, 0.0])
o_loc += np.array(
[v_x * self.params.T_gait * 0.25, 0.0, 0.0]
)
else:
o_loc = targets[:, j] + np.array([v_x * (np.floor(k / 240) *
240 + 1 + cpt_phase * 240) * self.params.dt_wbc, 0.0, 0.0])
h_loc = o_loc - np.array([v_x * (k + 1) * self.params.dt_wbc, 0.0, 0.0])
#print("oloc:", o_loc)
#print("minu:", np.array([v_x * (k + 1) * self.params.dt_wbc, 0.0, 0.0]))
if (not np.allclose(h_loc, fsteps[i, (3*j):(3*(j+1))])):
o_loc = targets[:, j] + np.array(
[
v_x
* (
np.floor(k / 240) * 240
+ 1
+ cpt_phase * 240
)
* self.params.dt_wbc,
0.0,
0.0,
]
)
h_loc = o_loc - np.array(
[v_x * (k + 1) * self.params.dt_wbc, 0.0, 0.0]
)
# print("oloc:", o_loc)
# print("minu:", np.array([v_x * (k + 1) * self.params.dt_wbc, 0.0, 0.0]))
if not np.allclose(h_loc, fsteps[i, (3 * j) : (3 * (j + 1))]):
print("---")
print("Status: ", cgait[0, :])
print("[", i, ", ", j, "]")
print(h_loc)
print(fsteps[i, (3*j):(3*(j+1))])
print(fsteps[i, (3 * j) : (3 * (j + 1))])
print(o_loc)
print(o_targetFootstep)
print("---")
from IPython import embed
embed()
self.assertTrue(np.allclose(h_loc, fsteps[i, (3*j):(3*(j+1))]), "fsteps stance is OK")
if (cpt_phase == 0):
self.assertTrue(np.allclose(h_loc, h_targetFootstep[:, j]), "h_target is OK")
self.assertTrue(np.allclose(o_loc, o_targetFootstep[:, j]), "o_target is OK")
self.assertTrue(
np.allclose(h_loc, fsteps[i, (3 * j) : (3 * (j + 1))]),
"fsteps stance is OK",
)
if cpt_phase == 0:
self.assertTrue(
np.allclose(h_loc, h_targetFootstep[:, j]),
"h_target is OK",
)
self.assertTrue(
np.allclose(o_loc, o_targetFootstep[:, j]),
"o_target is OK",
)
"""if(not flag_first_swing):
loc_stance[:] = under_shoulder[:, j]
......@@ -266,11 +339,15 @@ class TestFootstepPlanner(unittest.TestCase):
w_yaw = 1.3
def get_oTh(k):
if (w_yaw != 0):
x = (v_x * np.sin(w_yaw * k * self.params.dt_wbc) + v_y *
(np.cos(w_yaw * k * self.params.dt_wbc) - 1.0)) / w_yaw
y = (v_y * np.sin(w_yaw * k * self.params.dt_wbc) - v_x *
(np.cos(w_yaw * k * self.params.dt_wbc) - 1.0)) / w_yaw
if w_yaw != 0:
x = (
v_x * np.sin(w_yaw * k * self.params.dt_wbc)
+ v_y * (np.cos(w_yaw * k * self.params.dt_wbc) - 1.0)
) / w_yaw
y = (
v_y * np.sin(w_yaw * k * self.params.dt_wbc)
- v_x * (np.cos(w_yaw * k * self.params.dt_wbc) - 1.0)
) / w_yaw
else:
x = v_x * self.params.dt_wbc * k
y = v_y * self.params.dt_wbc * k
......@@ -291,11 +368,17 @@ class TestFootstepPlanner(unittest.TestCase):
return pin.rpy.rpyToMatrix(0.0, 0.0, w_yaw * k * self.params.dt_wbc)
# Footsteps should land in front of the shoulders
under_shoulder = np.array(self.params.footsteps_under_shoulders.tolist()).reshape((3, 4), order='F')
under_shoulder = np.array(
self.params.footsteps_under_shoulders.tolist()
).reshape((3, 4), order="F")
o_targetFootstep = under_shoulder.copy()
targets = under_shoulder.copy()
targets[0, :] += v_x * self.params.T_gait / 4 + 0.5 * np.sqrt(self.params.h_ref / 9.81) * (v_y * w_yaw)
targets[1, :] += v_y * self.params.T_gait / 4 + 0.5 * np.sqrt(self.params.h_ref / 9.81) * (- v_x * w_yaw)
targets[0, :] += v_x * self.params.T_gait / 4 + 0.5 * np.sqrt(
self.params.h_ref / 9.81
) * (v_y * w_yaw)
targets[1, :] += v_y * self.params.T_gait / 4 + 0.5 * np.sqrt(
self.params.h_ref / 9.81
) * (-v_x * w_yaw)
N_ref = self.params.gait.shape[0]
# Configuration vector
......@@ -318,15 +401,17 @@ class TestFootstepPlanner(unittest.TestCase):
for k in range(500):
# Run estimator
self.estimator.run(self.gait.matrix,
np.random.random((3, 4)),
np.random.random((3, 1)),
np.random.random((3, 1)),
np.random.random((3, 1)),
np.random.random((12, 1)),
np.random.random((12, 1)),
np.random.random((6, 1)),
np.random.random((3, 1)))
self.estimator.run(
self.gait.matrix,
np.random.random((3, 4)),
np.random.random((3, 1)),
np.random.random((3, 1)),
np.random.random((3, 1)),
np.random.random((12, 1)),
np.random.random((12, 1)),
np.random.random((6, 1)),
np.random.random((3, 1)),
)
# Update state
self.estimator.update_reference_state(v_ref)
......@@ -340,8 +425,13 @@ class TestFootstepPlanner(unittest.TestCase):
"""print(oTh.ravel())
print(get_oTh_bis(k + 1).ravel())
print(self.estimator.get_oTh())"""
self.assertTrue(np.allclose(oTh.ravel(), self.estimator.get_oTh(), atol=1e-3), "oTh is OK")
self.assertTrue(np.allclose(yaw, self.estimator.get_q_reference()[5]), "yaw is OK")
self.assertTrue(
np.allclose(oTh.ravel(), self.estimator.get_oTh(), atol=1e-3),
"oTh is OK",
)
self.assertTrue(
np.allclose(yaw, self.estimator.get_q_reference()[5]), "yaw is OK"
)
"""if k == 100:
from IPython import embed
......@@ -357,12 +447,17 @@ class TestFootstepPlanner(unittest.TestCase):
self.gait.update(k, 0)
# Compute target footstep based on current and reference velocities
o_targetFootstep = self.footstepPlanner.update_footsteps(k % self.k_mpc == 0 and k != 0,
int(self.k_mpc - k % self.k_mpc),
q, v, v_ref, o_targetFootstep)
o_targetFootstep = self.footstepPlanner.update_footsteps(
k % self.k_mpc == 0 and k != 0,
int(self.k_mpc - k % self.k_mpc),
q,
v,
v_ref,
o_targetFootstep,
)
log_o_targetFootstep[k, :, :] = o_targetFootstep.copy()
#print(k)
#print(o_targetFootstep)
# print(k)
# print(o_targetFootstep)
# Same footsteps in horizontal frame
h_targetFootstep = self.footstepPlanner.get_target_footsteps()
......@@ -391,60 +486,102 @@ class TestFootstepPlanner(unittest.TestCase):
phase = -1
cpt_phase = 0
for i in range(cgait.shape[0]):
if (cgait[i, j] == 0):
if (phase != 0):
if (phase != -1):
if cgait[i, j] == 0:
if phase != 0:
if phase != -1:
cpt_phase += 1
phase = 0
self.assertTrue(np.allclose(np.zeros(3), fsteps[i, (3*j):(3*(j+1))]), "fsteps swing is OK")
self.assertTrue(
np.allclose(
np.zeros(3), fsteps[i, (3 * j) : (3 * (j + 1))]
),
"fsteps swing is OK",
)
else:
if (phase != 1):
if (phase != -1):
if phase != 1:
if phase != -1:
cpt_phase += 1
phase = 1
if (cpt_phase == 0): # Foot currently in stance phase
if cpt_phase == 0: # Foot currently in stance phase
n = np.floor(k / 240) * 240 + 1
o_loc = get_oRh(n) @ under_shoulder[:, j:(j+1)] + get_oTh_bis(n)
o_loc = get_oRh(n) @ under_shoulder[
:, j : (j + 1)
] + get_oTh_bis(n)
# print("FIRST")
if k >= 240:
a = k % 240
"""if (k % 240 != 0 and a == 0):
a = 20"""
o_loc = get_oRh(n+a) @ (fsteps[0:1, (3*j):(3*(j+1))]).transpose() + get_oTh_bis(n+a)
o_loc = get_oRh(n + a) @ (
fsteps[0:1, (3 * j) : (3 * (j + 1))]
).transpose() + get_oTh_bis(n + a)
else:
n = np.floor(k / 240) * 240 + 1 + cpt_phase * 240
o_loc = get_oRh(n) @ targets[:, j:(j+1)] + get_oTh_bis(n)
h_loc = get_oRh(k+1).transpose() @ (o_loc - get_oTh_bis(k+1))
o_loc = get_oRh(n) @ targets[
:, j : (j + 1)
] + get_oTh_bis(n)
h_loc = get_oRh(k + 1).transpose() @ (
o_loc - get_oTh_bis(k + 1)
)
# or not np.allclose(o_loc, o_targetFootstep[:, j:(j+1)], atol=1e-6)):
"""if j == 1 and i == 0 and cgait[i, j] == 1.0:
print(o_loc.ravel(), " | ", o_targetFootstep[:, j:(j+1)].ravel())"""
if (not np.allclose(h_loc.ravel(), fsteps[i, (3*j):(3*(j+1))], atol=1e-3)
or (cpt_phase <= 1 and not np.allclose(o_loc, o_targetFootstep[:, j:(j+1)], atol=1e-3))):
if not np.allclose(
h_loc.ravel(), fsteps[i, (3 * j) : (3 * (j + 1))], atol=1e-3
) or (
cpt_phase <= 1
and not np.allclose(
o_loc, o_targetFootstep[:, j : (j + 1)], atol=1e-3
)
):
print("------ [", i, ", ", j, "]")
"""print(h_loc)
print(fsteps[i, (3*j):(3*(j+1))])"""
print(o_loc)
print(o_targetFootstep[:, j:(j+1)])
print(o_targetFootstep[:, j : (j + 1)])
from IPython import embed
embed()
self.assertTrue(np.allclose(
h_loc.ravel(), fsteps[i, (3*j):(3*(j+1))], atol=1e-3), "fsteps stance is OK")
if (cpt_phase <= 1):
self.assertTrue(np.allclose(
h_loc, h_targetFootstep[:, j:(j+1)], atol=1e-3), "h_target is OK")
self.assertTrue(np.allclose(
o_loc, o_targetFootstep[:, j:(j+1)], atol=1e-3), "o_target is OK")
if (k == 0 or (cgait[0, j] != cgait[-1, j])): # == 0 and cgait[-1, j] == 1)):
self.assertTrue(
np.allclose(
h_loc.ravel(),
fsteps[i, (3 * j) : (3 * (j + 1))],
atol=1e-3,
),
"fsteps stance is OK",
)
if cpt_phase <= 1:
self.assertTrue(
np.allclose(
h_loc, h_targetFootstep[:, j : (j + 1)], atol=1e-3
),
"h_target is OK",
)
self.assertTrue(
np.allclose(
o_loc, o_targetFootstep[:, j : (j + 1)], atol=1e-3
),
"o_target is OK",
)
if k == 0 or (
cgait[0, j] != cgait[-1, j]
): # == 0 and cgait[-1, j] == 1)):
memory_o_targetFootstep[:, j] = o_targetFootstep[:, j]
else: # if cgait[0, j] == 0:
# print("Foot ", j, "in status ", cgait[0, j])
#print("Memory: ", memory_o_targetFootstep[:, j])
#print("Current: ", o_targetFootstep[:, j])
self.assertTrue(np.allclose(
memory_o_targetFootstep[:, j], o_targetFootstep[:, j], atol=1e-3), "o_target is consistent")
# print("Memory: ", memory_o_targetFootstep[:, j])
# print("Current: ", o_targetFootstep[:, j])
self.assertTrue(
np.allclose(
memory_o_targetFootstep[:, j],
o_targetFootstep[:, j],
atol=1e-3,
),
"o_target is consistent",
)
"""from matplotlib import pyplot as plt
for j in range(3):
......@@ -453,7 +590,6 @@ class TestFootstepPlanner(unittest.TestCase):
plt.plot(log_o_targetFootstep[:, j, i])
plt.show(block=True)"""
"""
# Compute target footstep based on current and reference velocities
o_targetFootstep = self.footstepPlanner.update_footsteps(self.k % self.k_mpc == 0 and self.k != 0,
......@@ -467,8 +603,8 @@ class TestFootstepPlanner(unittest.TestCase):
"""
def test_upper(self):
self.assertEqual('foo'.upper(), 'FOO')
self.assertEqual("foo".upper(), "FOO")
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment