Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • jcarpent/eigenpy
  • gsaurel/eigenpy
  • stack-of-tasks/eigenpy
3 results
Show changes
Showing
with 678 additions and 894 deletions
/*
* Copyright 2020-2021 INRIA
* Copyright 2020-2024 INRIA
*/
#include "eigenpy/numpy.hpp"
namespace eigenpy
{
void import_numpy()
{
if(_import_array() < 0)
{
PyErr_Print();
PyErr_SetString(PyExc_ImportError, "numpy.core.multiarray failed to import");
}
namespace eigenpy {
void import_numpy() {
if (_import_array() < 0) {
PyErr_Print();
PyErr_SetString(PyExc_ImportError,
"numpy.core.multiarray failed to import");
}
}
int PyArray_TypeNum(PyTypeObject * type)
{
return PyArray_TypeNumFromName(const_cast<char*>(type->tp_name));
int PyArray_TypeNum(PyTypeObject* type) {
PyArray_Descr* descr =
PyArray_DescrFromTypeObject(reinterpret_cast<PyObject*>(type));
if (descr == NULL) {
return NPY_NOTYPE;
}
return descr->type_num;
}
#if defined _WIN32 || defined __CYGWIN__
bool call_PyArray_Check(PyObject * py_obj)
{
return PyArray_Check(py_obj);
}
bool call_PyArray_Check(PyObject* py_obj) { return PyArray_Check(py_obj); }
PyObject* call_PyArray_SimpleNew(int nd, npy_intp * shape, int np_type)
{
return PyArray_SimpleNew(nd,shape,np_type);
}
PyObject* call_PyArray_SimpleNew(int nd, npy_intp* shape, int np_type) {
return PyArray_SimpleNew(nd, shape, np_type);
}
PyObject* call_PyArray_New(PyTypeObject * py_type_ptr, int nd, npy_intp * shape, int np_type, void * data_ptr, int options)
{
return PyArray_New(py_type_ptr,nd,shape,np_type,NULL,data_ptr,0,options,NULL);
}
int call_PyArray_ObjectType(PyObject * obj, int val)
{
return PyArray_ObjectType(obj,val);
}
PyObject* call_PyArray_New(PyTypeObject* py_type_ptr, int nd, npy_intp* shape,
int np_type, void* data_ptr, int options) {
return PyArray_New(py_type_ptr, nd, shape, np_type, NULL, data_ptr, 0,
options, NULL);
}
PyTypeObject * getPyArrayType() { return &PyArray_Type; }
PyObject* call_PyArray_New(PyTypeObject* py_type_ptr, int nd, npy_intp* shape,
int np_type, npy_intp* strides, void* data_ptr,
int options) {
return PyArray_New(py_type_ptr, nd, shape, np_type, strides, data_ptr, 0,
options, NULL);
}
PyArray_Descr * call_PyArray_DescrFromType(int typenum)
{
return PyArray_DescrFromType(typenum);
}
int call_PyArray_ObjectType(PyObject* obj, int val) {
return PyArray_ObjectType(obj, val);
}
void call_PyArray_InitArrFuncs(PyArray_ArrFuncs * funcs)
{
PyArray_InitArrFuncs(funcs);
}
PyTypeObject* getPyArrayType() { return &PyArray_Type; }
int call_PyArray_RegisterDataType(PyArray_Descr * dtype)
{
return PyArray_RegisterDataType(dtype);
}
PyArray_Descr* call_PyArray_DescrFromType(int typenum) {
return PyArray_DescrFromType(typenum);
}
PyArray_Descr * call_PyArray_MinScalarType(PyArrayObject * arr)
{
return PyArray_MinScalarType(arr);
}
void call_PyArray_InitArrFuncs(PyArray_ArrFuncs* funcs) {
PyArray_InitArrFuncs(funcs);
}
int call_PyArray_RegisterCanCast(PyArray_Descr *descr, int totype, NPY_SCALARKIND scalar)
{
return PyArray_RegisterCanCast(descr,totype,scalar);
}
int call_PyArray_RegisterDataType(PyArray_DescrProto* dtype) {
return PyArray_RegisterDataType(dtype);
}
int call_PyArray_RegisterCastFunc(PyArray_Descr* descr, int totype, PyArray_VectorUnaryFunc* castfunc)
{
return PyArray_RegisterCastFunc(descr,totype,castfunc);
}
PyArray_Descr* call_PyArray_MinScalarType(PyArrayObject* arr) {
return PyArray_MinScalarType(arr);
}
#endif
int call_PyArray_RegisterCanCast(PyArray_Descr* descr, int totype,
NPY_SCALARKIND scalar) {
return PyArray_RegisterCanCast(descr, totype, scalar);
}
int call_PyArray_RegisterCastFunc(PyArray_Descr* descr, int totype,
PyArray_VectorUnaryFunc* castfunc) {
return PyArray_RegisterCastFunc(descr, totype, castfunc);
}
#endif
} // namespace eigenpy
///
/// Copyright 2023 CNRS, INRIA
///
#include "eigenpy/optional.hpp"
namespace eigenpy {
void exposeNoneType() {
detail::NoneToPython<boost::none_t>::registration();
#ifdef EIGENPY_WITH_CXX17_SUPPORT
detail::NoneToPython<std::nullopt_t>::registration();
#endif
}
} // namespace eigenpy
/*
* Copyright 2014-2019, CNRS
* Copyright 2018-2019, INRIA
* Copyright 2018-2023, INRIA
*/
#include "eigenpy/memory.hpp"
#include <Eigen/Geometry>
#include "eigenpy/geometry.hpp"
#include "eigenpy/quaternion.hpp"
EIGENPY_DEFINE_STRUCT_ALLOCATOR_SPECIALIZATION(Eigen::Quaterniond)
namespace eigenpy
{
void exposeQuaternion()
{
expose<Eigen::Quaterniond>();
}
} // namespace eigenpy
namespace eigenpy {
void exposeQuaternion() { expose<Eigen::Quaterniond>(); }
} // namespace eigenpy
......@@ -4,111 +4,116 @@
#include "eigenpy/register.hpp"
namespace eigenpy
{
namespace eigenpy {
PyArray_Descr * Register::getPyArrayDescr(PyTypeObject * py_type_ptr)
{
MapDescr::iterator it = instance().py_array_descr_bindings.find(py_type_ptr);
if(it != instance().py_array_descr_bindings.end())
return it->second;
else
return NULL;
}
bool Register::isRegistered(PyTypeObject * py_type_ptr)
{
if(getPyArrayDescr(py_type_ptr) != NULL)
return true;
else
return false;
}
int Register::getTypeCode(PyTypeObject * py_type_ptr)
{
MapCode::iterator it = instance().py_array_code_bindings.find(py_type_ptr);
if(it != instance().py_array_code_bindings.end())
return it->second;
else
return PyArray_TypeNum(py_type_ptr);
}
PyArray_Descr* Register::getPyArrayDescr(PyTypeObject* py_type_ptr) {
MapDescr::iterator it = instance().py_array_descr_bindings.find(py_type_ptr);
if (it != instance().py_array_descr_bindings.end())
return it->second;
else
return NULL;
}
int Register::registerNewType(PyTypeObject * py_type_ptr,
const std::type_info * type_info_ptr,
const int type_size,
const int alignement,
PyArray_GetItemFunc * getitem,
PyArray_SetItemFunc * setitem,
PyArray_NonzeroFunc * nonzero,
PyArray_CopySwapFunc * copyswap,
PyArray_CopySwapNFunc * copyswapn,
PyArray_DotFunc * dotfunc,
PyArray_FillFunc * fill,
PyArray_FillWithScalarFunc * fillwithscalar)
{
namespace bp = boost::python;
bp::tuple tp_bases_extended(bp::make_tuple(bp::handle<>(bp::borrowed(&PyGenericArrType_Type))));
tp_bases_extended += bp::tuple(bp::handle<>(bp::borrowed(py_type_ptr->tp_bases)));
Py_INCREF(tp_bases_extended.ptr());
py_type_ptr->tp_bases = tp_bases_extended.ptr();
py_type_ptr->tp_flags &= ~Py_TPFLAGS_READY; // to force the rebuild
// py_type_ptr->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE;
if(PyType_Ready(py_type_ptr) < 0) // Force rebuilding of the __bases__ and mro
{
throw std::invalid_argument("PyType_Ready fails to initialize input type.");
PyArray_Descr* Register::getPyArrayDescrFromTypeNum(const int type_num) {
if (type_num >= NPY_USERDEF) {
for (const auto& elt : instance().py_array_code_bindings) {
if (elt.second == type_num)
return instance().py_array_descr_bindings[elt.first];
}
return nullptr;
} else
return PyArray_DescrFromType(type_num);
}
PyArray_Descr * descr_ptr = new PyArray_Descr(*call_PyArray_DescrFromType(NPY_OBJECT));
PyArray_Descr & descr = *descr_ptr;
descr.typeobj = py_type_ptr;
descr.kind = 'V';
descr.byteorder = '=';
descr.type = 'r';
descr.elsize = type_size;
descr.flags = NPY_NEEDS_PYAPI | NPY_USE_GETITEM | NPY_USE_SETITEM | NPY_NEEDS_INIT;
descr.type_num = 0;
descr.names = 0;
descr.fields = 0;
descr.alignment = alignement; //call_PyArray_DescrFromType(NPY_OBJECT)->alignment;
PyArray_ArrFuncs * funcs_ptr = new PyArray_ArrFuncs;
PyArray_ArrFuncs & funcs = *funcs_ptr;
descr.f = funcs_ptr;
call_PyArray_InitArrFuncs(funcs_ptr);
funcs.getitem = getitem;
funcs.setitem = setitem;
funcs.nonzero = nonzero;
funcs.copyswap = copyswap;
funcs.copyswapn = copyswapn;
funcs.dotfunc = dotfunc;
funcs.fill = fill;
funcs.fillwithscalar = fillwithscalar;
// f->cast = cast;
const int code = call_PyArray_RegisterDataType(descr_ptr);
assert(code >= 0 && "The return code should be positive");
PyArray_Descr * new_descr = call_PyArray_DescrFromType(code);
if(PyDict_SetItemString(py_type_ptr->tp_dict,"dtype",(PyObject*)descr_ptr) < 0)
{
throw std::invalid_argument("PyDict_SetItemString fails.");
}
instance().type_to_py_type_bindings.insert(std::make_pair(type_info_ptr,py_type_ptr));
instance().py_array_descr_bindings[py_type_ptr] = new_descr;
instance().py_array_code_bindings[py_type_ptr] = code;
// PyArray_RegisterCanCast(descr,NPY_OBJECT,NPY_NOSCALAR);
return code;
}
bool Register::isRegistered(PyTypeObject* py_type_ptr) {
if (getPyArrayDescr(py_type_ptr) != NULL)
return true;
else
return false;
}
int Register::getTypeCode(PyTypeObject* py_type_ptr) {
MapCode::iterator it = instance().py_array_code_bindings.find(py_type_ptr);
if (it != instance().py_array_code_bindings.end())
return it->second;
else
return PyArray_TypeNum(py_type_ptr);
}
Register & Register::instance()
int Register::registerNewType(
PyTypeObject* py_type_ptr, const std::type_info* type_info_ptr,
const int type_size, const int alignement, PyArray_GetItemFunc* getitem,
PyArray_SetItemFunc* setitem, PyArray_NonzeroFunc* nonzero,
PyArray_CopySwapFunc* copyswap, PyArray_CopySwapNFunc* copyswapn,
PyArray_DotFunc* dotfunc, PyArray_FillFunc* fill,
PyArray_FillWithScalarFunc* fillwithscalar) {
bp::tuple tp_bases_extended(
bp::make_tuple(bp::handle<>(bp::borrowed(&PyGenericArrType_Type))));
tp_bases_extended +=
bp::tuple(bp::handle<>(bp::borrowed(py_type_ptr->tp_bases)));
Py_INCREF(tp_bases_extended.ptr());
py_type_ptr->tp_bases = tp_bases_extended.ptr();
py_type_ptr->tp_flags &= ~Py_TPFLAGS_READY; // to force the rebuild
// py_type_ptr->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE;
if (PyType_Ready(py_type_ptr) <
0) // Force rebuilding of the __bases__ and mro
{
static Register self;
return self;
throw std::invalid_argument("PyType_Ready fails to initialize input type.");
}
PyArray_DescrProto* descr_ptr = new PyArray_DescrProto();
PyArray_DescrProto& descr = *descr_ptr;
descr.typeobj = py_type_ptr;
descr.kind = 'V';
descr.byteorder = '=';
descr.type = 'r';
descr.elsize = type_size;
descr.flags =
NPY_NEEDS_PYAPI | NPY_USE_GETITEM | NPY_USE_SETITEM | NPY_NEEDS_INIT;
descr.type_num = 0;
descr.names = 0;
descr.fields = 0;
descr.alignment =
alignement; // call_PyArray_DescrFromType(NPY_OBJECT)->alignment;
PyArray_ArrFuncs* funcs_ptr = new PyArray_ArrFuncs;
PyArray_ArrFuncs& funcs = *funcs_ptr;
descr.f = funcs_ptr;
call_PyArray_InitArrFuncs(funcs_ptr);
funcs.getitem = getitem;
funcs.setitem = setitem;
funcs.nonzero = nonzero;
funcs.copyswap = copyswap;
funcs.copyswapn = copyswapn;
funcs.dotfunc = dotfunc;
funcs.fill = fill;
funcs.fillwithscalar = fillwithscalar;
// f->cast = cast;
Py_SET_TYPE(descr_ptr, &PyArrayDescr_Type);
const int code = call_PyArray_RegisterDataType(descr_ptr);
assert(code >= 0 && "The return code should be positive");
PyArray_Descr* new_descr = call_PyArray_DescrFromType(code);
if (PyDict_SetItemString(py_type_ptr->tp_dict, "dtype",
(PyObject*)new_descr) < 0) {
throw std::invalid_argument("PyDict_SetItemString fails.");
}
} // namespace eigenpy
instance().type_to_py_type_bindings.insert(
std::make_pair(type_info_ptr, py_type_ptr));
instance().py_array_descr_bindings[py_type_ptr] = new_descr;
instance().py_array_code_bindings[py_type_ptr] = code;
// PyArray_RegisterCanCast(descr,NPY_OBJECT,NPY_NOSCALAR);
return code;
}
Register& Register::instance() {
static Register self;
return self;
}
} // namespace eigenpy
/*
* Copyright 2024 INRIA
*/
#include "eigenpy/scipy-type.hpp"
#include <patchlevel.h> // For PY_MAJOR_VERSION
namespace eigenpy {
ScipyType& ScipyType::getInstance() {
static ScipyType instance;
return instance;
}
void ScipyType::sharedMemory(const bool value) {
getInstance().shared_memory = value;
}
bool ScipyType::sharedMemory() { return getInstance().shared_memory; }
const PyTypeObject* ScipyType::getScipyCSRMatrixType() {
return getInstance().csr_matrix_type;
}
const PyTypeObject* ScipyType::getScipyCSCMatrixType() {
return getInstance().csc_matrix_type;
}
ScipyType::ScipyType() {
try {
sparse_module = bp::import("scipy.sparse");
} catch (...) {
throw std::runtime_error(
"SciPy is not installed. "
"You can install it using the command \'pip install scipy\'.");
}
#if PY_MAJOR_VERSION >= 3
// TODO I don't know why this Py_INCREF is necessary.
// Without it, the destructor of ScipyType SEGV sometimes.
Py_INCREF(sparse_module.ptr());
#endif
csr_matrix_obj = sparse_module.attr("csr_matrix");
csr_matrix_type = reinterpret_cast<PyTypeObject*>(csr_matrix_obj.ptr());
csc_matrix_obj = sparse_module.attr("csc_matrix");
csc_matrix_type = reinterpret_cast<PyTypeObject*>(csc_matrix_obj.ptr());
shared_memory = true;
}
} // namespace eigenpy
/*
* Copyright 2017-2018, Justin Carpentier, LAAS-CNRS
*
* This file is part of eigenpy.
* eigenpy is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
* eigenpy is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details. You should
* have received a copy of the GNU Lesser General Public License along
* with eigenpy. If not, see <http://www.gnu.org/licenses/>.
* Copyright 2017 CNRS
*/
#include <Eigen/Core>
#if EIGEN_VERSION_AT_LEAST(3,2,0)
#include "eigenpy/solvers/preconditioners.hpp"
#if EIGEN_VERSION_AT_LEAST(3, 2, 0)
#include "eigenpy/solvers/BasicPreconditioners.hpp"
//#include "eigenpy/solvers/BFGSPreconditioners.hpp"
#include "eigenpy/solvers/preconditioners.hpp"
// #include "eigenpy/solvers/BFGSPreconditioners.hpp"
namespace eigenpy
{
namespace eigenpy {
void exposePreconditioners()
{
using namespace Eigen;
DiagonalPreconditionerVisitor<double>::expose();
#if EIGEN_VERSION_AT_LEAST(3,3,5)
LeastSquareDiagonalPreconditionerVisitor<double>::expose();
void exposePreconditioners() {
using namespace Eigen;
DiagonalPreconditionerVisitor<double>::expose();
#if EIGEN_VERSION_AT_LEAST(3, 3, 5)
LeastSquareDiagonalPreconditionerVisitor<double>::expose();
#endif
IdentityPreconditionerVisitor::expose();
// LimitedBFGSPreconditionerBaseVisitor< LimitedBFGSPreconditioner<double,Eigen::Dynamic,Eigen::Upper|Eigen::Lower> >::expose("LimitedBFGSPreconditioner");
}
IdentityPreconditionerVisitor::expose();
// LimitedBFGSPreconditionerBaseVisitor<
// LimitedBFGSPreconditioner<double,Eigen::Dynamic,Eigen::Upper|Eigen::Lower>
// >::expose("LimitedBFGSPreconditioner");
}
} // namespace eigenpy
} // namespace eigenpy
#endif
......@@ -4,30 +4,34 @@
#include <Eigen/Core>
#if EIGEN_VERSION_AT_LEAST(3,2,0)
#if EIGEN_VERSION_AT_LEAST(3, 2, 0)
#include "eigenpy/solvers/solvers.hpp"
#include "eigenpy/solvers/ConjugateGradient.hpp"
#include "eigenpy/solvers/solvers.hpp"
#if EIGEN_VERSION_AT_LEAST(3,3,5)
#include "eigenpy/solvers/LeastSquaresConjugateGradient.hpp"
#if EIGEN_VERSION_AT_LEAST(3, 3, 5)
#include "eigenpy/solvers/LeastSquaresConjugateGradient.hpp"
#endif
namespace eigenpy
{
void exposeSolvers()
{
using namespace Eigen;
ConjugateGradientVisitor< ConjugateGradient<MatrixXd,Lower|Upper> >::expose();
#if EIGEN_VERSION_AT_LEAST(3,3,5)
LeastSquaresConjugateGradientVisitor< LeastSquaresConjugateGradient<MatrixXd, LeastSquareDiagonalPreconditioner<MatrixXd::Scalar> > >::expose();
namespace eigenpy {
void exposeSolvers() {
using namespace Eigen;
ConjugateGradientVisitor<
ConjugateGradient<MatrixXd, Lower | Upper> >::expose();
#if EIGEN_VERSION_AT_LEAST(3, 3, 5)
LeastSquaresConjugateGradientVisitor<LeastSquaresConjugateGradient<
MatrixXd,
LeastSquareDiagonalPreconditioner<MatrixXd::Scalar> > >::expose();
#endif
// Conjugate gradient with limited BFGS preconditioner
ConjugateGradientVisitor< ConjugateGradient<MatrixXd,Lower|Upper,IdentityPreconditioner > >::expose("IdentityConjugateGradient");
// ConjugateGradientVisitor< ConjugateGradient<MatrixXd,Lower|Upper,LimitedBFGSPreconditioner<double,Dynamic,Lower|Upper> > >::expose("LimitedBFGSConjugateGradient");
}
} // namespace eigenpy
#endif
// Conjugate gradient with limited BFGS preconditioner
ConjugateGradientVisitor<
ConjugateGradient<MatrixXd, Lower | Upper, IdentityPreconditioner> >::
expose("IdentityConjugateGradient");
// ConjugateGradientVisitor<
// ConjugateGradient<MatrixXd,Lower|Upper,LimitedBFGSPreconditioner<double,Dynamic,Lower|Upper>
// > >::expose("LimitedBFGSConjugateGradient");
}
} // namespace eigenpy
#endif
/*
* Copyright 2022, CNRS
* Copyright 2022, INRIA
*/
#include "eigenpy/std-vector.hpp"
namespace eigenpy {
void exposeStdVector() {
exposeStdVectorEigenSpecificType<Eigen::MatrixXd>("MatrixXd");
exposeStdVectorEigenSpecificType<Eigen::VectorXd>("VectorXd");
exposeStdVectorEigenSpecificType<Eigen::MatrixXi>("MatrixXi");
exposeStdVectorEigenSpecificType<Eigen::VectorXi>("VectorXi");
}
} // namespace eigenpy
///
/// Copyright 2024 INRIA
///
#include <typeinfo>
#include <typeindex>
#include <boost/python.hpp>
#include <boost/type_index.hpp>
#include "eigenpy/registration.hpp"
namespace bp = boost::python;
namespace eigenpy {
void exposeStdTypeIndex() {
typedef std::type_index Self;
if (register_symbolic_link_to_registered_type<Self>()) return;
bp::class_<Self>(
"std_type_index",
"The class type_index holds implementation-specific information about a "
"type, including the name of the type and means to compare two types for "
"equality or collating order.",
bp::no_init)
.def(bp::self == bp::self)
.def(bp::self >= bp::self)
.def(bp::self > bp::self)
.def(bp::self < bp::self)
.def(bp::self <= bp::self)
.def("hash_code", &Self::hash_code, bp::arg("self"),
"Returns an unspecified value (here denoted by hash code) such that "
"for all std::type_info objects referring to the same type, their "
"hash code is the same.")
.def("name", &Self::name, bp::arg("self"),
"Returns an implementation defined null-terminated character string "
"containing the name of the type. No guarantees are given; in "
"particular, the returned string can be identical for several types "
"and change between invocations of the same program.")
.def(
"pretty_name",
+[](const Self &value) -> std::string {
return boost::core::demangle(value.name());
},
bp::arg("self"), "Human readible name.");
}
void exposeBoostTypeIndex() {
typedef boost::typeindex::type_index Self;
if (register_symbolic_link_to_registered_type<Self>()) return;
bp::class_<Self>(
"boost_type_index",
"The class type_index holds implementation-specific information about a "
"type, including the name of the type and means to compare two types for "
"equality or collating order.",
bp::no_init)
.def(bp::self == bp::self)
.def(bp::self >= bp::self)
.def(bp::self > bp::self)
.def(bp::self < bp::self)
.def(bp::self <= bp::self)
.def("hash_code", &Self::hash_code, bp::arg("self"),
"Returns an unspecified value (here denoted by hash code) such that "
"for all std::type_info objects referring to the same type, their "
"hash code is the same.")
.def("name", &Self::name, bp::arg("self"),
"Returns an implementation defined null-terminated character string "
"containing the name of the type. No guarantees are given; in "
"particular, the returned string can be identical for several types "
"and change between invocations of the same program.")
.def("pretty_name", &Self::pretty_name, bp::arg("self"),
"Human readible name.");
}
void exposeTypeInfo() {
exposeStdTypeIndex();
exposeBoostTypeIndex();
}
} // namespace eigenpy
//
// Copyright (c) 2019 INRIA
// Copyright (c) 2019-2023 INRIA
//
#include "eigenpy/config.hpp"
#include "eigenpy/version.hpp"
#include "eigenpy/config.hpp"
#include <sstream>
#include <Eigen/Core>
namespace eigenpy
{
namespace eigenpy {
std::string printVersion(const std::string & delimiter)
{
std::ostringstream oss;
oss
<< EIGENPY_MAJOR_VERSION << delimiter
<< EIGENPY_MINOR_VERSION << delimiter
<< EIGENPY_PATCH_VERSION;
return oss.str();
}
std::string printVersion(const std::string& delimiter) {
std::ostringstream oss;
oss << EIGENPY_MAJOR_VERSION << delimiter << EIGENPY_MINOR_VERSION
<< delimiter << EIGENPY_PATCH_VERSION;
return oss.str();
}
bool checkVersionAtLeast(unsigned int major_version,
unsigned int minor_version,
unsigned int patch_version)
{
return EIGENPY_VERSION_AT_LEAST(major_version,minor_version,patch_version);
}
std::string printEigenVersion(const std::string& delimiter) {
std::ostringstream oss;
oss << EIGEN_MAJOR_VERSION << delimiter << EIGEN_MINOR_VERSION << delimiter
<< EIGEN_MINOR_VERSION;
return oss.str();
}
bool checkVersionAtLeast(unsigned int major_version, unsigned int minor_version,
unsigned int patch_version) {
return EIGENPY_VERSION_AT_LEAST(major_version, minor_version, patch_version);
}
} // namespace eigenpy
#!/bin/bash
# Add Python dependency
echo "TRAVIS_PYTHON_VERSION=$TRAVIS_PYTHON_VERSION"
if [[ $TRAVIS_PYTHON_VERSION -gt 30 ]]; then
export APT_DEPENDENCIES=$APT_DEPENDENCIES" python3-numpy"
fi
# When this script is called the current directory is ./custom_travis
. ./.travis/run ../.travis/before_install
# Git fetch tags
git fetch --tags
#!/bin/bash
set -e
# Setup environment variables.
export CMAKE_ADDITIONAL_OPTIONS=" ${CMAKE_ADDITIONAL_OPTIONS} -DBUILD_BENCHMARK=\"ON\" -DBUILD_TESTING=\"ON\" -DCMAKE_CXX_FLAGS=-DBOOST_SYSTEM_NO_DEPRECATED"
if [[ ";${DO_INSTALL_DOC_EXCEPT_ON_BRANCH};" == *";${CI_BRANCH};"* ]]; then
export CMAKE_ADDITIONAL_OPTIONS=" ${CMAKE_ADDITIONAL_OPTIONS} -DINSTALL_DOCUMENTATION=\"OFF\""
else
export CMAKE_ADDITIONAL_OPTIONS=" ${CMAKE_ADDITIONAL_OPTIONS} -DINSTALL_DOCUMENTATION=\"ON\""
fi
if [[ $TRAVIS_PYTHON_VERSION -gt 30 ]]; then
export CMAKE_ADDITIONAL_OPTIONS=" ${CMAKE_ADDITIONAL_OPTIONS} -DPYTHON_EXECUTABLE=$(which python3)"
fi
# Setup environment variables.
. ./.travis/run ../.travis/build
#
# Copyright (c) 2014-2019 CNRS
# Copyright (c) 2018-2021 INRIA
# Copyright (c) 2014-2019 CNRS Copyright (c) 2018-2024 INRIA
#
MACRO(ADD_LIB_UNIT_TEST test)
CREATE_CTEST_BUILD_TESTS_TARGET()
function(ADD_LIB_UNIT_TEST test)
create_ctest_build_tests_target()
set(test_target ${PROJECT_NAME}-${test})
if(BUILD_TESTING)
add_library(${test_target} SHARED "${test}.cpp")
else()
add_library(${test_target} SHARED EXCLUDE_FROM_ALL "${test}.cpp")
endif()
set_standard_output_directory(${test_target})
target_link_libraries(${test_target} PUBLIC ${PROJECT_NAME})
set_target_properties(
${test_target}
PROPERTIES PREFIX ""
LIBRARY_OUTPUT_NAME ${test}
RUNTIME_OUTPUT_NAME ${test})
set_target_properties(${test_target} PROPERTIES SUFFIX ${PYTHON_EXT_SUFFIX})
add_test(
NAME ${test_target}
COMMAND ${PYTHON_EXECUTABLE} -c "import ${test}"
WORKING_DIRECTORY $<TARGET_FILE_DIR:${test_target}>)
add_dependencies(build_tests ${test_target})
if(NOT BUILD_TESTING)
set_tests_properties(${test_target} PROPERTIES DEPENDS ctest_build_tests)
endif(NOT BUILD_TESTING)
endfunction()
add_dependencies(build_tests ${PYWRAP})
add_lib_unit_test(matrix)
add_lib_unit_test(type_info)
add_lib_unit_test(multiple_registration)
if(BUILD_TESTING_SCIPY)
find_scipy()
add_lib_unit_test(sparse_matrix)
endif()
add_lib_unit_test(tensor)
add_lib_unit_test(geometry)
add_lib_unit_test(complex)
add_lib_unit_test(deprecation_policy)
add_lib_unit_test(return_by_ref)
add_lib_unit_test(include)
if(NOT ${EIGEN3_VERSION} VERSION_LESS "3.2.0")
add_lib_unit_test(eigen_ref)
endif()
if(NOT NUMPY_WITH_BROKEN_UFUNC_SUPPORT)
add_lib_unit_test(user_type)
endif()
add_lib_unit_test(std_vector)
add_lib_unit_test(std_array)
add_lib_unit_test(std_pair)
add_lib_unit_test(std_map)
add_lib_unit_test(user_struct)
if(CMAKE_CXX_STANDARD GREATER 14 AND CMAKE_CXX_STANDARD LESS 98)
add_lib_unit_test(std_unique_ptr)
endif()
function(add_python_lib_unit_test name source)
set(test_target ${PROJECT_NAME}-${name})
add_python_unit_test(${test_target} ${source} "lib" "bin")
endfunction()
function(add_python_eigenpy_lib_unit_test name source)
set(test_target ${PROJECT_NAME}-${name})
add_python_unit_test(${test_target} ${source} "lib" "bin" "python")
set_tests_properties(${test_target} PROPERTIES DEPENDS ${PYWRAP})
endfunction()
function(add_python_eigenpy_unit_test name source)
set(test_target ${PROJECT_NAME}-${name})
add_python_unit_test(${test_target} ${source} "python")
set_tests_properties(${test_target} PROPERTIES DEPENDS ${PYWRAP})
endfunction()
function(config_test test tagname opttype)
set(MODNAME ${test}_${tagname})
set(TEST_TYPE ${opttype})
configure_file(${test}.cpp.in ${CMAKE_CURRENT_BINARY_DIR}/${MODNAME}.cpp)
set(py_file test_${test}_${tagname}.py)
configure_file(python/test_${test}.py.in
${CMAKE_CURRENT_BINARY_DIR}/python/${py_file})
add_lib_unit_test(${MODNAME})
set(PYTHON_TEST_NAME "${PROJECT_NAME}-py-${test}-${tagname}")
add_test(NAME ${PYTHON_TEST_NAME}
COMMAND ${PYTHON_EXECUTABLE}
"${CMAKE_CURRENT_BINARY_DIR}/python/${py_file}")
compute_pythonpath(ENV_VARIABLES "lib" "bin")
set_tests_properties(${PYTHON_TEST_NAME} PROPERTIES ENVIRONMENT
"${ENV_VARIABLES}")
endfunction()
config_test(variant boost "boost::variant")
if(CMAKE_CXX_STANDARD GREATER 14 AND CMAKE_CXX_STANDARD LESS 98)
config_test(variant std "std::variant")
endif()
config_test(bind_optional boost "boost::optional")
if(CMAKE_CXX_STANDARD GREATER 14 AND CMAKE_CXX_STANDARD LESS 98)
config_test(bind_optional std "std::optional")
endif()
add_lib_unit_test(bind_virtual_factory)
add_python_lib_unit_test("py-matrix" "unittest/python/test_matrix.py")
add_python_lib_unit_test("py-type-info" "unittest/python/test_type_info.py")
add_python_lib_unit_test("py-multiple-registration"
"unittest/python/test_multiple_registration.py")
add_python_lib_unit_test("py-tensor" "unittest/python/test_tensor.py")
add_python_lib_unit_test("py-geometry" "unittest/python/test_geometry.py")
add_python_lib_unit_test("py-complex" "unittest/python/test_complex.py")
add_python_lib_unit_test("py-deprecation-policy"
"unittest/python/test_deprecation_policy.py")
add_python_lib_unit_test("py-return-by-ref"
"unittest/python/test_return_by_ref.py")
add_python_lib_unit_test("py-eigen-ref" "unittest/python/test_eigen_ref.py")
if(NOT NUMPY_WITH_BROKEN_UFUNC_SUPPORT)
add_python_lib_unit_test("py-user-type" "unittest/python/test_user_type.py")
endif()
add_python_eigenpy_lib_unit_test("py-dimensions"
"unittest/python/test_dimensions.py")
add_python_eigenpy_lib_unit_test("py-version" "unittest/python/test_version.py")
add_python_eigenpy_lib_unit_test("py-eigen-solver"
"unittest/python/test_eigen_solver.py")
add_python_eigenpy_lib_unit_test(
"py-self-adjoint-eigen-solver"
"unittest/python/test_self_adjoint_eigen_solver.py")
add_python_eigenpy_lib_unit_test("py-LLT" "unittest/python/test_LLT.py")
add_python_eigenpy_lib_unit_test("py-LDLT" "unittest/python/test_LDLT.py")
add_python_eigenpy_lib_unit_test("py-id" "unittest/python/test_id.py")
add_python_eigenpy_lib_unit_test("py-QR" "unittest/python/test_QR.py")
if(NOT WIN32)
add_python_eigenpy_lib_unit_test("py-MINRES" "unittest/python/test_MINRES.py")
endif(NOT WIN32)
add_python_eigenpy_lib_unit_test("py-std-vector"
"unittest/python/test_std_vector.py")
add_python_lib_unit_test("py-std-array" "unittest/python/test_std_array.py")
add_python_lib_unit_test("py-std-map" "unittest/python/test_std_map.py")
add_python_lib_unit_test("py-std-pair" "unittest/python/test_std_pair.py")
add_python_lib_unit_test("py-user-struct" "unittest/python/test_user_struct.py")
if(CMAKE_CXX_STANDARD GREATER 14 AND CMAKE_CXX_STANDARD LESS 98)
add_python_lib_unit_test("py-std-unique-ptr"
"unittest/python/test_std_unique_ptr.py")
endif()
add_python_lib_unit_test("py-bind-virtual"
"unittest/python/test_bind_virtual.py")
if(BUILD_TESTING_SCIPY)
add_python_lib_unit_test("py-sparse-matrix"
"unittest/python/test_sparse_matrix.py")
add_python_eigenpy_unit_test(
"py-SimplicialLLT"
"unittest/python/decompositions/sparse/test_SimplicialLLT.py")
add_python_eigenpy_unit_test(
"py-SimplicialLDLT"
"unittest/python/decompositions/sparse/test_SimplicialLDLT.py")
if(BUILD_WITH_CHOLMOD_SUPPORT)
add_python_eigenpy_unit_test(
"py-CholmodSimplicialLLT"
"unittest/python/decompositions/sparse/cholmod/test_CholmodSimplicialLLT.py"
)
add_python_eigenpy_unit_test(
"py-CholmodSimplicialLDLT"
"unittest/python/decompositions/sparse/cholmod/test_CholmodSimplicialLDLT.py"
)
IF(BUILD_TESTING)
ADD_LIBRARY(${test} SHARED "${test}.cpp")
ELSE(BUILD_TESTING)
ADD_LIBRARY(${test} SHARED EXCLUDE_FROM_ALL "${test}.cpp")
ENDIF(BUILD_TESTING)
add_python_eigenpy_unit_test(
"py-CholmodSupernodalLLT"
"unittest/python/decompositions/sparse/cholmod/test_CholmodSupernodalLLT.py"
)
endif(BUILD_WITH_CHOLMOD_SUPPORT)
TARGET_LINK_LIBRARIES(${test} PUBLIC ${PROJECT_NAME})
SET_TARGET_PROPERTIES(${test} PROPERTIES PREFIX "")
SET_TARGET_PROPERTIES(${test} PROPERTIES SUFFIX ${PYTHON_EXT_SUFFIX})
ADD_TEST(NAME ${test} COMMAND ${PYTHON_EXECUTABLE} -c "import ${test}")
ADD_DEPENDENCIES(build_tests ${test})
IF(NOT BUILD_TESTING)
SET_TESTS_PROPERTIES(${test} PROPERTIES DEPENDS ctest_build_tests)
ENDIF(NOT BUILD_TESTING)
ENDMACRO(ADD_LIB_UNIT_TEST)
ADD_LIB_UNIT_TEST(matrix)
ADD_LIB_UNIT_TEST(geometry)
ADD_LIB_UNIT_TEST(complex)
ADD_LIB_UNIT_TEST(return_by_ref)
ADD_LIB_UNIT_TEST(include)
IF(NOT ${EIGEN3_VERSION} VERSION_LESS "3.2.0")
ADD_LIB_UNIT_TEST(eigen_ref)
ENDIF()
ADD_LIB_UNIT_TEST(user_type)
ADD_PYTHON_UNIT_TEST("py-matrix" "unittest/python/test_matrix.py" "unittest")
ADD_PYTHON_UNIT_TEST("py-geometry" "unittest/python/test_geometry.py" "unittest")
ADD_PYTHON_UNIT_TEST("py-complex" "unittest/python/test_complex.py" "unittest")
ADD_PYTHON_UNIT_TEST("py-return-by-ref" "unittest/python/test_return_by_ref.py" "unittest")
ADD_PYTHON_UNIT_TEST("py-eigen-ref" "unittest/python/test_eigen_ref.py" "unittest")
ADD_PYTHON_UNIT_TEST("py-user-type" "unittest/python/test_user_type.py" "unittest")
ADD_PYTHON_UNIT_TEST("py-switch" "unittest/python/test_switch.py" "python/eigenpy;unittest")
SET_TESTS_PROPERTIES("py-switch" PROPERTIES DEPENDS ${PYWRAP})
ADD_PYTHON_UNIT_TEST("py-dimensions" "unittest/python/test_dimensions.py" "python/eigenpy;unittest")
SET_TESTS_PROPERTIES("py-dimensions" PROPERTIES DEPENDS ${PYWRAP})
ADD_PYTHON_UNIT_TEST("py-version" "unittest/python/test_version.py" "python/eigenpy;unittest")
SET_TESTS_PROPERTIES("py-version" PROPERTIES DEPENDS ${PYWRAP})
ADD_PYTHON_UNIT_TEST("py-eigen-solver" "unittest/python/test_eigen_solver.py" "python/eigenpy;unittest")
SET_TESTS_PROPERTIES("py-eigen-solver" PROPERTIES DEPENDS ${PYWRAP})
ADD_PYTHON_UNIT_TEST("py-self-adjoint-eigen-solver" "unittest/python/test_self_adjoint_eigen_solver.py" "python/eigenpy;unittest")
SET_TESTS_PROPERTIES("py-self-adjoint-eigen-solver" PROPERTIES DEPENDS ${PYWRAP})
ADD_PYTHON_UNIT_TEST("py-LLT" "unittest/python/test_LLT.py" "python/eigenpy;unittest")
SET_TESTS_PROPERTIES("py-LLT" PROPERTIES DEPENDS ${PYWRAP})
ADD_PYTHON_UNIT_TEST("py-LDLT" "unittest/python/test_LDLT.py" "python/eigenpy;unittest")
SET_TESTS_PROPERTIES("py-LDLT" PROPERTIES DEPENDS ${PYWRAP})
ADD_PYTHON_UNIT_TEST("py-MINRES" "unittest/python/test_MINRES.py" "python/eigenpy;unittest")
SET_TESTS_PROPERTIES("py-MINRES" PROPERTIES DEPENDS ${PYWRAP})
if(BUILD_WITH_ACCELERATE_SUPPORT)
add_python_eigenpy_unit_test(
"py-Accelerate"
"unittest/python/decompositions/sparse/test_Accelerate.py")
endif(BUILD_WITH_ACCELERATE_SUPPORT)
endif()
/* Simple test using the boost::numpy interface: return an array and a matrix. */
#include "eigenpy/fwd.hpp"
#include "boost/numpy.hpp"
namespace bp = boost::python;
namespace bn = boost::numpy;
/* Return an dim-1 array with 5 elements. */
bn::ndarray array() {
std::vector<double> v(5);
v[0] = 56;
Py_intptr_t shape[1] = { v.size() };
bn::ndarray result = bn::zeros(1, shape, bn::dtype::get_builtin<double>());
std::copy(v.begin(), v.end(), reinterpret_cast<double*>(result.get_data()));
return result;
}
/* Return a dim-1 matrix with five elements. */
boost::python::object matrix() {
std::vector<double> v(5);
v[0] = 56;
Py_intptr_t shape[1] = { v.size() };
bn::matrix t(bn::zeros(1, shape, bn::dtype::get_builtin<double>()));
std::copy(v.begin(), v.end(), reinterpret_cast<double*>(t.get_data()));
return t;
}
BOOST_PYTHON_MODULE(libbnpy) {
bn::initialize();
bp::def("array", array);
bp::def("matrix", matrix);
}
#include "eigenpy/fwd.hpp"
#include <boost/numpy.hpp>
namespace boopy
{
namespace bpn = boost::numpy;
namespace bp = boost::python;
struct Eigenvec_to_python_matrix
{
static PyObject* convert(Eigen::VectorXd const& v)
{
Py_intptr_t shape[1] = { v.size() };
bpn::matrix result(bpn::zeros(1, shape, bpn::dtype::get_builtin<double>()));
std::copy(v.data(), v.data()+v.size(), reinterpret_cast<double*>(result.get_data()));
return bp::incref(result.ptr());
}
};
struct Eigenvec_from_python_array
{
Eigenvec_from_python_array()
{
bp::converter::registry
::push_back(&convertible,
&construct,
bp::type_id<Eigen::VectorXd>());
}
// Determine if obj_ptr can be converted in a Eigenvec
static void* convertible(PyObject* obj_ptr)
{
try {
bp::object obj(bp::handle<>(bp::borrowed(obj_ptr)));
std::auto_ptr<bpn::ndarray>
array(new bpn::ndarray(bpn::from_object(obj,
bpn::dtype::get_builtin<double>(),
bpn::ndarray::V_CONTIGUOUS)));
if( (array->get_nd()==1)
|| ( (array->get_nd()==2) && (array->get_shape()[1]==1) ))
return array.release();
else
return 0;
} catch (bp::error_already_set & err) {
bp::handle_exception();
return 0;
}
}
// Convert obj_ptr into a Eigenvec
static void construct(PyObject* ,
bp::converter::rvalue_from_python_stage1_data* memory)
{
// Recover the pointer created in <convertible>
std::auto_ptr<bpn::ndarray>
array(reinterpret_cast<bpn::ndarray*>(memory->convertible));
const int nrow = array->get_shape()[0];
std::cout << "nrow = " << nrow << std::endl;
// Get the memory where to create the vector
void* storage
= ((bp::converter::rvalue_from_python_storage<Eigen::VectorXd>*)memory)
->storage.bytes;
// Create the vector
Eigen::VectorXd & res = * new (storage) Eigen::VectorXd(nrow);
// Copy the data
double * data = (double*)array->get_data();
for(int i=0;i<nrow;++i)
res[i] = data[i];
// Stash the memory chunk pointer for later use by boost.python
memory->convertible = storage;
}
};
}
Eigen::VectorXd test()
{
Eigen::VectorXd v = Eigen::VectorXd::Random(5);
std::cout << v.transpose() << std::endl;
return v;
}
void test2( Eigen::VectorXd v )
{
std::cout << "test2: dim = " << v.size() << " ||| v[0] = " << v[0] << std::endl;
}
BOOST_PYTHON_MODULE(libeigen)
{
namespace bpn = boost::numpy;
namespace bp = boost::python;
bpn::initialize();
bp::to_python_converter<Eigen::VectorXd,
boopy::Eigenvec_to_python_matrix>();
boopy::Eigenvec_from_python_array();
bp::def("test", test);
bp::def("test2", test2);
}
#include "eigenpy/fwd.hpp"
#include <numpy/arrayobject.h>
namespace boopy
{
namespace bp = boost::python;
template <typename SCALAR> struct NumpyEquivalentType {};
template <> struct NumpyEquivalentType<double> { enum { type_code = NPY_DOUBLE };};
template <> struct NumpyEquivalentType<int> { enum { type_code = NPY_INT };};
template <> struct NumpyEquivalentType<float> { enum { type_code = NPY_FLOAT };};
struct EigenMatrix_to_python_matrix
{
static PyObject* convert(Eigen::MatrixXd const& mat)
{
typedef Eigen::MatrixXd::Scalar T;
npy_intp shape[2] = { mat.rows(), mat.cols() };
PyArrayObject* pyArray = (PyArrayObject*)
PyArray_SimpleNew(2, shape,
NumpyEquivalentType<T>::type_code);
T* pyData = (T*)PyArray_DATA(pyArray);
for(int i=0;i<mat.rows();++i)
for(int j=0;j<mat.cols();++j)
pyData[i*mat.cols()+j] = mat(i,j);
return ((PyObject*)pyArray);
}
};
struct EigenMatrix_from_python_array
{
EigenMatrix_from_python_array()
{
bp::converter::registry
::push_back(&convertible,
&construct,
bp::type_id<Eigen::MatrixXd>());
}
// Determine if obj_ptr can be converted in a Eigenvec
static void* convertible(PyObject* obj_ptr)
{
typedef Eigen::MatrixXd::Scalar T;
if (!PyArray_Check(obj_ptr)) {
return 0;
}
if (PyArray_NDIM(obj_ptr) > 2) {
return 0;
}
if (PyArray_ObjectType(obj_ptr, 0) != NumpyEquivalentType<T>::type_code) {
return 0;
}
int flags = PyArray_FLAGS(obj_ptr);
if (!(flags & NPY_C_CONTIGUOUS)) {
return 0;
}
if (!(flags & NPY_ALIGNED)) {
return 0;
}
return obj_ptr;
}
// Convert obj_ptr into a Eigenvec
static void construct(PyObject* pyObj,
bp::converter::rvalue_from_python_stage1_data* memory)
{
typedef Eigen::MatrixXd::Scalar T;
using namespace Eigen;
PyArrayObject * pyArray = reinterpret_cast<PyArrayObject*>(pyObj);
int ndims = PyArray_NDIM(pyArray);
assert(ndims == 2);
int dtype_size = (PyArray_DESCR(pyArray))->elsize;
int s1 = PyArray_STRIDE(pyArray, 0);
assert(s1 % dtype_size == 0);
int R = MatrixXd::RowsAtCompileTime;
int C = MatrixXd::ColsAtCompileTime;
if (R == Eigen::Dynamic) R = PyArray_DIMS(pyArray)[0];
else assert(PyArray_DIMS(pyArray)[0]==R);
if (C == Eigen::Dynamic) C = PyArray_DIMS(pyArray)[1];
else assert(PyArray_DIMS(pyArray)[1]==C);
T* pyData = reinterpret_cast<T*>(PyArray_DATA(pyArray));
void* storage = ((bp::converter::rvalue_from_python_storage<MatrixXd>*)
(memory))->storage.bytes;
MatrixXd & mat = * new (storage) MatrixXd(R,C);
for(int i=0;i<R;++i)
for(int j=0;j<C;++j)
mat(i,j) = pyData[i*C+j];
memory->convertible = storage;
}
};
}
Eigen::MatrixXd test()
{
Eigen::MatrixXd mat = Eigen::MatrixXd::Random(5,5);
std::cout << "EigenMAt = " << mat << std::endl;
return mat;
}
void test2( Eigen::MatrixXd mat )
{
std::cout << "test2: dim = " << mat.rows() << " ||| m[0,0] = " << mat(0,0) << std::endl;
}
BOOST_PYTHON_MODULE(libeigenc)
{
import_array();
namespace bp = boost::python;
bp::to_python_converter<Eigen::MatrixXd,
boopy::EigenMatrix_to_python_matrix>();
boopy::EigenMatrix_from_python_array();
bp::def("test", test);
bp::def("test2", test2);
}
#include "eigenpy/fwd.hpp"
#include <numpy/arrayobject.h>
namespace boopy
{
namespace bp = boost::python;
template <typename SCALAR> struct NumpyEquivalentType {};
template <> struct NumpyEquivalentType<double> { enum { type_code = NPY_DOUBLE };};
template <> struct NumpyEquivalentType<int> { enum { type_code = NPY_INT };};
template <> struct NumpyEquivalentType<float> { enum { type_code = NPY_FLOAT };};
/* --- TO PYTHON -------------------------------------------------------------- */
template< typename MatType >
struct EigenMatrix_to_python_matrix
{
static PyObject* convert(MatType const& mat)
{
typedef typename MatType::Scalar T;
const int R = mat.rows(), C = mat.cols();
npy_intp shape[2] = { R,C };
PyArrayObject* pyArray = (PyArrayObject*)
PyArray_SimpleNew(2, shape,
NumpyEquivalentType<T>::type_code);
T* pyData = (T*)PyArray_DATA(pyArray);
Eigen::Map< Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic,Eigen::RowMajor> > pyMatrix(pyData,R,C);
pyMatrix = mat;
return (PyObject*)pyArray;
}
};
/* --- FROM PYTHON ------------------------------------------------------------ */
template<typename MatType>
struct EigenMatrix_from_python_array
{
EigenMatrix_from_python_array()
{
bp::converter::registry
::push_back(&convertible,
&construct,
bp::type_id<MatType>());
}
// Determine if obj_ptr can be converted in a Eigenvec
static void* convertible(PyObject* obj_ptr)
{
typedef typename MatType::Scalar T;
if (!PyArray_Check(obj_ptr)) return 0;
std::cout << "Until here ok. ndim = " << PyArray_NDIM(obj_ptr) << " isvec " << MatType::IsVectorAtCompileTime << std::endl;
if (PyArray_NDIM(obj_ptr) != 2)
if ( (PyArray_NDIM(obj_ptr) !=1) || (! MatType::IsVectorAtCompileTime) )
return 0;
std::cout << "Until here ok." << std::endl;
if (PyArray_ObjectType(obj_ptr, 0) != NumpyEquivalentType<T>::type_code)
return 0;
if (!(PyArray_FLAGS(obj_ptr) & NPY_ALIGNED))
{
std::cerr << "NPY non-aligned matrices are not implemented." << std::endl;
return 0;
}
return obj_ptr;
}
// Convert obj_ptr into a Eigenvec
static void construct(PyObject* pyObj,
bp::converter::rvalue_from_python_stage1_data* memory)
{
typedef typename MatType::Scalar T;
using namespace Eigen;
std::cout << "Until here ok. Constructing..." << std::endl;
PyArrayObject * pyArray = reinterpret_cast<PyArrayObject*>(pyObj);
if ( PyArray_NDIM(pyArray) == 2 )
{
int R = MatType::RowsAtCompileTime;
int C = MatType::ColsAtCompileTime;
if (R == Eigen::Dynamic) R = PyArray_DIMS(pyArray)[0];
else assert(PyArray_DIMS(pyArray)[0]==R);
if (C == Eigen::Dynamic) C = PyArray_DIMS(pyArray)[1];
else assert(PyArray_DIMS(pyArray)[1]==C);
T* pyData = reinterpret_cast<T*>(PyArray_DATA(pyArray));
int itemsize = PyArray_ITEMSIZE(pyArray);
int stride1 = PyArray_STRIDE(pyArray, 0) / itemsize;
int stride2 = PyArray_STRIDE(pyArray, 1) / itemsize;
std::cout << "STRIDE = " << stride1 << " x " << stride2 << std::endl;
Eigen::Map<MatType,0,Eigen::Stride<Eigen::Dynamic,Eigen::Dynamic> >
pyMap( pyData, R,C, Eigen::Stride<Eigen::Dynamic,Eigen::Dynamic>(stride2,stride1) );
std::cout << "Map = " << pyMap << std::endl;
void* storage = ((bp::converter::rvalue_from_python_storage<MatType>*)
(memory))->storage.bytes;
MatType & mat = * new (storage) MatType(R,C);
mat = pyMap;
memory->convertible = storage;
}
else
{
int R = MatType::MaxSizeAtCompileTime, C=1;
if(R==Eigen::Dynamic) R = PyArray_DIMS(pyArray)[0];
else assert(PyArray_DIMS(pyArray)[0]==R);
T* pyData = reinterpret_cast<T*>(PyArray_DATA(pyArray));
int itemsize = PyArray_ITEMSIZE(pyArray);
int stride = PyArray_STRIDE(pyArray, 0) / itemsize;
Eigen::Stride<Eigen::Dynamic,Eigen::Dynamic> s(stride,0);
Eigen::Map<MatType,0,Eigen::InnerStride<Eigen::Dynamic> >
pyMap( pyData, R, 1, Eigen::InnerStride<Eigen::Dynamic>(stride) );
std::cout << "Map = " << pyMap << std::endl;
void* storage = ((bp::converter::rvalue_from_python_storage<MatType>*)
(memory))->storage.bytes;
MatType & mat = * new (storage) MatType(R,C);
mat = pyMap;
memory->convertible = storage;
}
}
};
}
Eigen::MatrixXd test()
{
Eigen::MatrixXd mat = Eigen::MatrixXd::Random(3,6);
std::cout << "EigenMAt = " << mat << std::endl;
return mat;
}
Eigen::VectorXd testVec()
{
Eigen::VectorXd mat = Eigen::VectorXd::Random(6);
std::cout << "EigenVec = " << mat << std::endl;
return mat;
}
void test2( Eigen::MatrixXd mat )
{
std::cout << "Test2 mat = " << mat << std::endl;
}
void test2Vec( Eigen::VectorXd v )
{
std::cout << "Test2 vec = " << v << std::endl;
}
BOOST_PYTHON_MODULE(libeigentemplate)
{
import_array();
namespace bp = boost::python;
bp::to_python_converter<Eigen::MatrixXd,
boopy::EigenMatrix_to_python_matrix<Eigen::MatrixXd> >();
boopy::EigenMatrix_from_python_array<Eigen::MatrixXd>();
bp::to_python_converter<Eigen::VectorXd,
boopy::EigenMatrix_to_python_matrix<Eigen::VectorXd> >();
boopy::EigenMatrix_from_python_array<Eigen::VectorXd>();
bp::def("test", test);
bp::def("testVec", testVec);
bp::def("test2", test2);
bp::def("test2Vec", test2Vec);
}
/* Tutorial with boost::python. Using the converter to access a home-made
* string class and bind it to the python strings. */
#include <boost/python/module.hpp>
#include <boost/python/def.hpp>
#include <boost/python/to_python_converter.hpp>
namespace homemadestring
{
/* This is the home-made string class. */
class custom_string
{
public:
custom_string() {}
custom_string(std::string const& value) : value_(value) {}
std::string const& value() const { return value_; }
private:
std::string value_;
};
/* Two simple functions with this class */
custom_string hello() { return custom_string("Hello world."); }
std::size_t size(custom_string const& s) { return s.value().size(); }
/* From c to python converter */
struct custom_string_to_python_str
{
static PyObject* convert(custom_string const& s)
{
return boost::python::incref(boost::python::object(s.value()).ptr());
}
};
struct custom_string_from_python_str
{
custom_string_from_python_str()
{
boost::python::converter::registry
::push_back(&convertible,
&construct,
boost::python::type_id<custom_string>());
}
static void* convertible(PyObject* obj_ptr)
{
if (!PyString_Check(obj_ptr)) return 0;
return obj_ptr;
}
static void
construct(PyObject* obj_ptr,
boost::python::converter::rvalue_from_python_stage1_data* data)
{
const char* value = PyString_AsString(obj_ptr);
if (value == 0) boost::python::throw_error_already_set();
void* storage =
((boost::python::converter::rvalue_from_python_storage<custom_string>*)data)
->storage.bytes;
new (storage) custom_string(value);
data->convertible = storage;
}
};
void init_module()
{
using namespace boost::python;
boost::python::to_python_converter<custom_string,
custom_string_to_python_str>();
custom_string_from_python_str();
def("hello", hello);
def("size", size);
}
} // namespace homemagestring
BOOST_PYTHON_MODULE(libmystring)
{
homemadestring::init_module();
}
/* Simple test with boost::python.
* Declare and bind three function, returning char*, string, and Eigen::Vector. The last
* function raises and error at runtime due to inadequate binding.
*/
#include <string>
#include "eigenpy/fwd.hpp"
char const* testchar()
{
return "Yay char!";
}
std::string teststr()
{
return "Yay str!";
}
Eigen::VectorXd testeigenvec()
{
Eigen::VectorXd v(555);
return v;
}
BOOST_PYTHON_MODULE(libsimple)
{
using namespace boost::python;
def("char", testchar);
def("str", teststr);
def("eigenvec",testeigenvec);
}
///
/// Copyright (c) 2023 CNRS INRIA
///
#include "eigenpy/eigenpy.hpp"
#include "eigenpy/optional.hpp"
#ifdef EIGENPY_WITH_CXX17_SUPPORT
#include <optional>
#endif
#cmakedefine TEST_TYPE @TEST_TYPE@
#define OPTIONAL TEST_TYPE
typedef eigenpy::detail::nullopt_helper<OPTIONAL> none_helper;
static auto OPT_NONE = none_helper::value();
typedef OPTIONAL<double> opt_dbl;
struct mystruct {
OPTIONAL<int> a;
opt_dbl b;
OPTIONAL<std::string> msg{"i am struct"};
mystruct() : a(OPT_NONE), b(OPT_NONE) {}
mystruct(int a, const opt_dbl &b = OPT_NONE) : a(a), b(b) {}
};
OPTIONAL<int> none_if_zero(int i) {
if (i == 0)
return OPT_NONE;
else
return i;
}
OPTIONAL<mystruct> create_if_true(bool flag, opt_dbl b = OPT_NONE) {
if (flag) {
return mystruct(0, b);
} else {
return OPT_NONE;
}
}
OPTIONAL<Eigen::MatrixXd> random_mat_if_true(bool flag) {
if (flag)
return Eigen::MatrixXd(Eigen::MatrixXd::Random(4, 4));
else
return OPT_NONE;
}
BOOST_PYTHON_MODULE(@MODNAME@) {
using namespace eigenpy;
OptionalConverter<int, OPTIONAL>::registration();
OptionalConverter<double, OPTIONAL>::registration();
OptionalConverter<std::string, OPTIONAL>::registration();
OptionalConverter<mystruct, OPTIONAL>::registration();
OptionalConverter<Eigen::MatrixXd, OPTIONAL>::registration();
enableEigenPy();
bp::class_<mystruct>("mystruct", bp::no_init)
.def(bp::init<>(bp::args("self")))
.def(bp::init<int, bp::optional<const opt_dbl &> >(
bp::args("self", "a", "b")))
.add_property(
"a",
bp::make_getter(&mystruct::a,
bp::return_value_policy<bp::return_by_value>()),
bp::make_setter(&mystruct::a))
.add_property(
"b",
bp::make_getter(&mystruct::b,
bp::return_value_policy<bp::return_by_value>()),
bp::make_setter(&mystruct::b))
.add_property(
"msg",
bp::make_getter(&mystruct::msg,
bp::return_value_policy<bp::return_by_value>()),
bp::make_setter(&mystruct::msg));
bp::def("none_if_zero", none_if_zero, bp::args("i"));
bp::def("create_if_true", create_if_true,
(bp::arg("flag"), bp::arg("b") = OPT_NONE));
bp::def("random_mat_if_true", random_mat_if_true, bp::args("flag"));
}