Newer
Older
import eigenpy
import numpy as np
dim = 100
A = (A + A.T) * 0.5 + np.diag(10.0 + np.random.rand(dim))
L = ldlt.matrixL()
D = ldlt.vectorD()
P = ldlt.transpositionsP()
assert eigenpy.is_approx(
np.transpose(P).dot(L.dot(np.diag(D).dot(np.transpose(L).dot(P)))), A
)
B = A.dot(X)
X_est = ldlt.solve(B)
assert eigenpy.is_approx(X, X_est)
assert eigenpy.is_approx(A.dot(X_est), B)