Skip to content
Snippets Groups Projects
test_LLT.py 385 B
Newer Older
Justin Carpentier's avatar
Justin Carpentier committed
import eigenpy

import numpy as np
import numpy.linalg as la

dim = 100
A = np.random.rand(dim,dim)

A = (A + A.T)*0.5 + np.diag(10. + np.random.rand(dim))

llt = eigenpy.LLT(A)

L = llt.matrixL()
Justin Carpentier's avatar
Justin Carpentier committed
assert eigenpy.is_approx(L.dot(np.transpose(L)),A)

X = np.random.rand(dim,20)
B = A.dot(X)
X_est = llt.solve(B)
assert eigenpy.is_approx(X,X_est)
assert eigenpy.is_approx(A.dot(X_est),B)