Newer
Older
A = np.random.rand(dim, dim)
A = (A + A.T) * 0.5
es = eigenpy.SelfAdjointEigenSolver(A)
V = es.eigenvectors()
D = es.eigenvalues()
assert eigenpy.is_approx(A.dot(V), V.dot(np.diag(D)), 1e-6)
A = np.random.rand(dim, dim)
A = (A + A.T) * 0.5
es = eigenpy.SelfAdjointEigenSolver(A)
V = es.eigenvectors()
D = es.eigenvalues()
assert eigenpy.is_approx(A.dot(V), V.dot(np.diag(D)), 1e-6)