Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
H
hpp-rbprm-corba
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
Humanoid Path Planner
hpp-rbprm-corba
Commits
c8004429
Commit
c8004429
authored
5 years ago
by
JasonChmn
Committed by
Pierre Fernbach
5 years ago
Browse files
Options
Downloads
Patches
Plain Diff
[script] add platerform_not_flat
parent
c1a9afbc
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
script/scenarios/memmo/talos_platform.py
+185
-0
185 additions, 0 deletions
script/scenarios/memmo/talos_platform.py
script/scenarios/memmo/talos_platform_path.py
+125
-0
125 additions, 0 deletions
script/scenarios/memmo/talos_platform_path.py
with
310 additions
and
0 deletions
script/scenarios/memmo/talos_platform.py
0 → 100644
+
185
−
0
View file @
c8004429
from
hpp.corbaserver.rbprm.talos
import
Robot
from
hpp.gepetto
import
Viewer
from
tools.display_tools
import
*
import
time
print
"
Plan guide trajectory ...
"
import
talos_platform_path
as
tp
pId
=
0
"""
print
"
Done.
"
import time
statusFilename = tp.statusFilename
f = open(statusFilename,
"
a
"
)
if tp.ps.numberPaths() > 0 :
print
"
Path planning OK.
"
f.write(
"
Planning_success: True
"
+
"
\n
"
)
f.close()
else :
print
"
Error during path planning
"
f.write(
"
Planning_success: False
"
+
"
\n
"
)
f.close()
import sys
sys.exit(1)
"""
fullBody
=
Robot
()
# Set the bounds for the root
fullBody
.
setJointBounds
(
"
root_joint
"
,
tp
.
rootBounds
)
fullBody
.
setConstrainedJointsBounds
()
# add the 6 extraDof for velocity and acceleration (see *_path.py script)
fullBody
.
client
.
robot
.
setDimensionExtraConfigSpace
(
tp
.
extraDof
)
fullBody
.
client
.
robot
.
setExtraConfigSpaceBounds
([
-
tp
.
vMax
,
tp
.
vMax
,
-
tp
.
vMax
,
tp
.
vMax
,
0
,
0
,
-
tp
.
aMax
,
tp
.
aMax
,
-
tp
.
aMax
,
tp
.
aMax
,
0
,
0
])
ps
=
tp
.
ProblemSolver
(
fullBody
)
ps
.
setParameter
(
"
Kinodynamic/velocityBound
"
,
tp
.
vMax
)
ps
.
setParameter
(
"
Kinodynamic/accelerationBound
"
,
tp
.
aMax
)
#load the viewer
try
:
v
=
tp
.
Viewer
(
ps
,
viewerClient
=
tp
.
v
.
client
,
displayCoM
=
True
)
except
Exception
:
print
"
No viewer started !
"
class
FakeViewer
():
def
__init__
(
self
):
return
def
__call__
(
self
,
q
):
return
def
addLandmark
(
self
,
a
,
b
):
return
v
=
FakeViewer
()
# load a reference configuration
q_ref
=
fullBody
.
referenceConfig
[::]
+
[
0
]
*
6
#q_ref = fullBody.referenceConfig_legsApart[::]+[0]*6
q_init
=
q_ref
[::]
fullBody
.
setReferenceConfig
(
q_ref
)
"""
if abs(tp.q_goal[1]) <= abs(tp.q_goal[0]) :
fullBody.setPostureWeights(fullBody.postureWeights[::]+[0]*6)
heuristicR =
"
fixedStep08
"
heuristicL =
"
fixedStep08
"
print
"
Use weight for straight walk
"
fullBody.usePosturalTaskContactCreation(True)
else :
fullBody.setPostureWeights(fullBody.postureWeights_straff[::]+[0]*6)
print
"
Use weight for straff walk
"
if tp.q_goal[1] < 0 :
print
"
start with right leg
"
heuristicL =
"
static
"
heuristicR =
"
fixedStep06
"
else:
print
"
start with left leg
"
heuristicR =
"
static
"
heuristicL =
"
fixedStep06
"
"""
fullBody
.
setCurrentConfig
(
q_init
)
print
"
Generate limb DB ...
"
tStart
=
time
.
time
()
# generate databases :
nbSamples
=
100000
fullBody
.
addLimb
(
fullBody
.
rLegId
,
fullBody
.
rleg
,
fullBody
.
rfoot
,
fullBody
.
rLegOffset
,
fullBody
.
rLegNormal
,
fullBody
.
rLegx
,
fullBody
.
rLegy
,
nbSamples
,
"
fixedStep06
"
,
0.01
,
kinematicConstraintsPath
=
fullBody
.
rLegKinematicConstraints
,
kinematicConstraintsMin
=
0.85
)
fullBody
.
runLimbSampleAnalysis
(
fullBody
.
rLegId
,
"
ReferenceConfiguration
"
,
True
)
fullBody
.
addLimb
(
fullBody
.
lLegId
,
fullBody
.
lleg
,
fullBody
.
lfoot
,
fullBody
.
lLegOffset
,
fullBody
.
rLegNormal
,
fullBody
.
lLegx
,
fullBody
.
lLegy
,
nbSamples
,
"
fixedStep06
"
,
0.01
,
kinematicConstraintsPath
=
fullBody
.
lLegKinematicConstraints
,
kinematicConstraintsMin
=
0.85
)
fullBody
.
runLimbSampleAnalysis
(
fullBody
.
lLegId
,
"
ReferenceConfiguration
"
,
True
)
tGenerate
=
time
.
time
()
-
tStart
print
"
Done.
"
print
"
Databases generated in :
"
+
str
(
tGenerate
)
+
"
s
"
#define initial and final configurations :
configSize
=
fullBody
.
getConfigSize
()
-
fullBody
.
client
.
robot
.
getDimensionExtraConfigSpace
()
q_init
[
0
:
7
]
=
tp
.
ps
.
configAtParam
(
pId
,
0
)[
0
:
7
]
# use this to get the correct orientation
q_goal
=
q_init
[::];
q_goal
[
0
:
7
]
=
tp
.
ps
.
configAtParam
(
pId
,
tp
.
ps
.
pathLength
(
pId
))[
0
:
7
]
vel_init
=
tp
.
ps
.
configAtParam
(
pId
,
0
)[
tp
.
indexECS
:
tp
.
indexECS
+
3
]
acc_init
=
tp
.
ps
.
configAtParam
(
pId
,
0
)[
tp
.
indexECS
+
3
:
tp
.
indexECS
+
6
]
vel_goal
=
tp
.
ps
.
configAtParam
(
pId
,
tp
.
ps
.
pathLength
(
pId
))[
tp
.
indexECS
:
tp
.
indexECS
+
3
]
acc_goal
=
[
0
,
0
,
0
]
robTreshold
=
3
# copy extraconfig for start and init configurations
q_init
[
configSize
:
configSize
+
3
]
=
vel_init
[::]
q_init
[
configSize
+
3
:
configSize
+
6
]
=
acc_init
[::]
q_goal
[
configSize
:
configSize
+
3
]
=
vel_goal
[::]
q_goal
[
configSize
+
3
:
configSize
+
6
]
=
[
0
,
0
,
0
]
q_init
[
2
]
=
q_ref
[
2
]
q_goal
[
2
]
=
q_ref
[
2
]
fullBody
.
setStaticStability
(
True
)
fullBody
.
setCurrentConfig
(
q_init
)
v
(
q_init
)
fullBody
.
setCurrentConfig
(
q_goal
)
v
(
q_goal
)
v
.
addLandmark
(
'
talos/base_link
'
,
0.3
)
v
(
q_init
)
#fullBody.setReferenceConfig(fullBody.referenceConfig_legsApart[::]+[0]*6)
# specify the full body configurations as start and goal state of the problem
if
q_goal
[
1
]
<
0
:
# goal on the right side of the circle, start motion with right leg first
fullBody
.
setStartState
(
q_init
,[
fullBody
.
rLegId
,
fullBody
.
lLegId
])
fullBody
.
setEndState
(
q_goal
,[
fullBody
.
rLegId
,
fullBody
.
lLegId
])
else
:
fullBody
.
setStartState
(
q_init
,[
fullBody
.
lLegId
,
fullBody
.
rLegId
])
fullBody
.
setEndState
(
q_goal
,[
fullBody
.
lLegId
,
fullBody
.
rLegId
])
print
"
Generate contact plan ...
"
tStart
=
time
.
time
()
configs
=
fullBody
.
interpolate
(
0.005
,
pathId
=
pId
,
robustnessTreshold
=
3
,
filterStates
=
True
,
quasiStatic
=
True
)
tInterpolateConfigs
=
time
.
time
()
-
tStart
print
"
Done.
"
print
"
Contact plan generated in :
"
+
str
(
tInterpolateConfigs
)
+
"
s
"
print
"
number of configs :
"
,
len
(
configs
)
#raw_input("Press Enter to display the contact sequence ...")
#displayContactSequence(v,configs)
if
len
(
configs
)
<
2
:
cg_success
=
False
print
"
Error during contact generation.
"
else
:
cg_success
=
True
print
"
Contact generation Done.
"
if
abs
(
configs
[
-
1
][
0
]
-
tp
.
q_goal
[
0
])
<
0.01
and
abs
(
configs
[
-
1
][
1
]
-
tp
.
q_goal
[
1
])
<
0.01
and
(
len
(
fullBody
.
getContactsVariations
(
len
(
configs
)
-
2
,
len
(
configs
)
-
1
))
==
1
):
print
"
Contact generation successful.
"
cg_reach_goal
=
True
else
:
print
"
Contact generation failed to reach the goal.
"
cg_reach_goal
=
False
if
len
(
configs
)
>
5
:
cg_too_many_states
=
True
cg_success
=
False
print
"
Discarded contact sequence because it was too long.
"
else
:
cg_too_many_states
=
False
f
=
open
(
statusFilename
,
"
a
"
)
f
.
write
(
"
cg_success:
"
+
str
(
cg_success
)
+
"
\n
"
)
f
.
write
(
"
cg_reach_goal:
"
+
str
(
cg_reach_goal
)
+
"
\n
"
)
f
.
write
(
"
cg_too_many_states:
"
+
str
(
cg_too_many_states
)
+
"
\n
"
)
f
.
close
()
if
(
not
cg_success
)
or
cg_too_many_states
or
(
not
cg_reach_goal
):
import
sys
sys
.
exit
(
1
)
# put back original bounds for wholebody methods
fullBody
.
setJointBounds
(
'
leg_left_6_joint
'
,
joint6L_bounds_prev
)
fullBody
.
setJointBounds
(
'
leg_left_2_joint
'
,
joint2L_bounds_prev
)
fullBody
.
setJointBounds
(
'
leg_right_6_joint
'
,
joint6R_bounds_prev
)
fullBody
.
setJointBounds
(
'
leg_right_2_joint
'
,
joint2R_bounds_prev
)
This diff is collapsed.
Click to expand it.
script/scenarios/memmo/talos_platform_path.py
0 → 100644
+
125
−
0
View file @
c8004429
from
hpp.corbaserver.rbprm.talos_abstract
import
Robot
from
hpp.gepetto
import
Viewer
from
hpp.corbaserver
import
ProblemSolver
import
numpy
as
np
import
time
statusFilename
=
"
infos.log
"
vMax
=
0.5
# linear velocity bound for the root
aMax
=
0.5
# linear acceleration bound for the root
extraDof
=
6
mu
=
0.5
# coefficient of friction
# Creating an instance of the helper class, and loading the robot
# Creating an instance of the helper class, and loading the robot
rbprmBuilder
=
Robot
()
# Define bounds for the root : bounding box of the scenario
rootBounds
=
[
0.2
,
3.9
,
0.2
,
2.2
,
0.95
,
1.05
]
rbprmBuilder
.
setJointBounds
(
"
root_joint
"
,
rootBounds
)
# The following lines set constraint on the valid configurations:
# a configuration is valid only if all limbs can create a contact with the corresponding afforcances type
rbprmBuilder
.
setFilter
([])
#'talos_lleg_rom','talos_rleg_rom'])
rbprmBuilder
.
setAffordanceFilter
(
'
talos_lleg_rom
'
,
[
'
Support
'
,])
rbprmBuilder
.
setAffordanceFilter
(
'
talos_rleg_rom
'
,
[
'
Support
'
])
# We also bound the rotations of the torso. (z, y, x)
rbprmBuilder
.
boundSO3
([
-
1.7
,
1.7
,
-
0.1
,
0.1
,
-
0.1
,
0.1
])
# Add 6 extraDOF to the problem, used to store the linear velocity and acceleration of the root
rbprmBuilder
.
client
.
robot
.
setDimensionExtraConfigSpace
(
extraDof
)
# We set the bounds of this extraDof with velocity and acceleration bounds (expect on z axis)
rbprmBuilder
.
client
.
robot
.
setExtraConfigSpaceBounds
([
-
vMax
,
vMax
,
-
vMax
,
vMax
,
0
,
0
,
-
aMax
,
aMax
,
-
aMax
,
aMax
,
0
,
0
])
indexECS
=
rbprmBuilder
.
getConfigSize
()
-
rbprmBuilder
.
client
.
robot
.
getDimensionExtraConfigSpace
()
# Creating an instance of HPP problem solver
ps
=
ProblemSolver
(
rbprmBuilder
)
# define parameters used by various methods :
ps
.
setParameter
(
"
Kinodynamic/velocityBound
"
,
vMax
)
ps
.
setParameter
(
"
Kinodynamic/accelerationBound
"
,
aMax
)
ps
.
setParameter
(
"
DynamicPlanner/sizeFootX
"
,
0.2
)
ps
.
setParameter
(
"
DynamicPlanner/sizeFootY
"
,
0.12
)
ps
.
setParameter
(
"
DynamicPlanner/friction
"
,
0.5
)
# sample only configuration with null velocity and acceleration :
ps
.
setParameter
(
"
ConfigurationShooter/sampleExtraDOF
"
,
False
)
# initialize the viewer :
from
hpp.gepetto
import
ViewerFactory
vf
=
ViewerFactory
(
ps
)
# load the module to analyse the environnement and compute the possible contact surfaces
from
hpp.corbaserver.affordance.affordance
import
AffordanceTool
afftool
=
AffordanceTool
()
afftool
.
setAffordanceConfig
(
'
Support
'
,
[
0.5
,
0.03
,
0.00005
])
afftool
.
loadObstacleModel
(
"
hpp_environments
"
,
"
multicontact/plateforme_not_flat
"
,
"
planning
"
,
vf
,
reduceSizes
=
[
0.13
,
0
,
0
])
try
:
v
=
vf
.
createViewer
(
displayArrows
=
True
)
except
Exception
:
print
"
No viewer started !
"
class
FakeViewer
():
def
__init__
(
self
):
return
def
__call__
(
self
,
q
):
return
v
=
FakeViewer
()
#afftool.visualiseAffordances('Support', v, v.color.lightBrown)
v
.
addLandmark
(
v
.
sceneName
,
1
)
q_init
=
rbprmBuilder
.
getCurrentConfig
();
q_init
[
0
:
3
]
=
[
0.3
,
1.15
,
0.98
]
q_init
[
3
:
7
]
=
[
0
,
0
,
0
,
1
]
# sample random position on a circle of radius 2m
"""
radius = 0.3
import random
random.seed()
alpha = random.uniform(0.,2.*np.pi)
print
"
Test on a circle, alpha =
"
,alpha
q_goal = q_init[::]
q_goal [0:3] = [radius*np.sin(alpha), -radius*np.cos(alpha), 1.]
"""
q_goal
=
q_init
[::]
q_goal
[
0
:
2
]
=
[
3.3
,
2.2
]
print
"
initial root position :
"
,
q_init
[
0
:
3
]
print
"
final root position :
"
,
q_goal
[
0
:
3
]
ps
.
setInitialConfig
(
q_init
)
ps
.
addGoalConfig
(
q_goal
)
# write problem in files :
"""
f = open(statusFilename,
"
w
"
)
f.write(
"
q_init=
"
+str(q_init)+
"
\n
"
)
f.write(
"
q_goal=
"
+str(q_goal)+
"
\n
"
)
f.close()
"""
# Choosing RBPRM shooter and path validation methods.
ps
.
selectConfigurationShooter
(
"
RbprmShooter
"
)
ps
.
selectPathValidation
(
"
RbprmPathValidation
"
,
0.05
)
# Choosing kinodynamic methods :
ps
.
selectSteeringMethod
(
"
RBPRMKinodynamic
"
)
ps
.
selectDistance
(
"
Kinodynamic
"
)
ps
.
selectPathPlanner
(
"
DynamicPlanner
"
)
# Solve the planning problem :
t
=
ps
.
solve
()
print
"
Guide planning time :
"
,
t
try
:
# display solution :
from
hpp.gepetto
import
PathPlayer
pp
=
PathPlayer
(
v
)
pp
.
dt
=
0.1
pp
.
displayVelocityPath
(
0
)
#v.client.gui.setVisibility("path_0_root","ALWAYS_ON_TOP")
pp
.
dt
=
0.01
#pp(0)
except
Exception
:
pass
# move the robot out of the view before computing the contacts
q_far
=
q_init
[::]
q_far
[
2
]
=
-
2
v
(
q_far
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment