Skip to content
Snippets Groups Projects
helper.cc 36.8 KiB
Newer Older
Joseph Mirabel's avatar
Joseph Mirabel committed
// Copyright (c) 2016, Joseph Mirabel
// Authors: Joseph Mirabel (joseph.mirabel@laas.fr)
//

// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
Joseph Mirabel's avatar
Joseph Mirabel committed
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
Joseph Mirabel's avatar
Joseph Mirabel committed

#include <array>
#include <boost/regex.hpp>
Joseph Mirabel's avatar
Joseph Mirabel committed
#include <hpp/constraints/differentiable-function.hh>
#include <hpp/constraints/locked-joint.hh>
Joseph Mirabel's avatar
Joseph Mirabel committed
#include <hpp/manipulation/graph/edge.hh>
#include <hpp/manipulation/graph/guided-state-selector.hh>
Guilhem Saurel's avatar
Guilhem Saurel committed
#include <hpp/manipulation/graph/helper.hh>
#include <hpp/manipulation/graph/state-selector.hh>
#include <hpp/manipulation/graph/state.hh>
#include <hpp/manipulation/handle.hh>
#include <hpp/manipulation/problem-solver.hh>
Guilhem Saurel's avatar
Guilhem Saurel committed
#include <hpp/pinocchio/gripper.hh>
#include <hpp/util/debug.hh>
#include <iterator>
#include <pinocchio/multibody/model.hpp>
yann_dm's avatar
yann_dm committed
#include <unordered_map>
#include <unordered_set>
Joseph Mirabel's avatar
Joseph Mirabel committed

Guilhem Saurel's avatar
Guilhem Saurel committed
#define CASE_TO_STRING(var, value) \
  ((var & value) ? std::string(#value) : std::string())
Joseph Mirabel's avatar
Joseph Mirabel committed

Joseph Mirabel's avatar
Joseph Mirabel committed
namespace hpp {
Guilhem Saurel's avatar
Guilhem Saurel committed
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
namespace manipulation {
namespace graph {
namespace helper {
typedef constraints::Implicit Implicit;
typedef constraints::ImplicitPtr_t ImplicitPtr_t;

template <bool forPath>
void addToComp(const NumericalConstraints_t& nc, GraphComponentPtr_t comp) {
  if (nc.empty()) return;
  StatePtr_t n;
  if (forPath) {
    n = HPP_DYNAMIC_PTR_CAST(State, comp);
    if (!n) throw std::logic_error("Wrong type: expect a State");
  }
  for (const auto& c : nc)
    if (c) {
      if (forPath)
        n->addNumericalConstraintForPath(c);
      else
        comp->addNumericalConstraint(c);
    }
}

template <bool param>
void specifyFoliation(const NumericalConstraints_t& nc, LevelSetEdgePtr_t lse) {
  for (const auto& c : nc)
    if (c) {
      if (param)
        lse->insertParamConstraint(c);
      else
        lse->insertConditionConstraint(c);
    }
}

void FoliatedManifold::addToState(StatePtr_t comp) const {
  addToComp<false>(nc, comp);
  addToComp<false>(nc_path, comp);
}

void FoliatedManifold::addToEdge(EdgePtr_t comp) const {
  addToComp<false>(nc_fol, comp);
}

void FoliatedManifold::specifyFoliation(LevelSetEdgePtr_t lse) const {
  for (const auto& c : nc) lse->insertConditionConstraint(c);
  for (const auto& c : nc_fol) lse->insertConditionConstraint(c);
}

namespace {
template <int gCase>
struct CaseTraits {
  static const bool pregrasp = (gCase & WithPreGrasp);
  static const bool preplace = (gCase & WithPrePlace);
  static const bool intersec = !((gCase & NoGrasp) || (gCase & NoPlace));

  static const bool valid =
      ((gCase & WithPreGrasp) || (gCase & GraspOnly) || (gCase & NoGrasp)) &&
      ((gCase & WithPrePlace) || (gCase & PlaceOnly) || (gCase & NoPlace)) &&
      !((gCase & NoGrasp) && (gCase & NoPlace));

  static const std::size_t nbWaypoints =
      (pregrasp ? 1 : 0) + (intersec ? 1 : 0) + (preplace ? 1 : 0);
  static const std::size_t Nstates = 2 + nbWaypoints;
  static const std::size_t Nedges = 1 + nbWaypoints;
  // static const std::size_t iNpregrasp = pregrasp?1 + 1:nbWaypoints;
  // static const std::size_t iNpreplace = pregrasp?1 + 1:nbWaypoints;
  typedef std::array<StatePtr_t, Nstates> StateArray;
  typedef std::array<EdgePtr_t, Nedges> EdgeArray;

  static inline const StatePtr_t& Npregrasp(const StateArray& n) {
    assert(pregrasp);
    return n[1];
  }
  static inline const StatePtr_t& Nintersec(const StateArray& n) {
    assert(intersec);
    return n[1 + (pregrasp ? 1 : 0)];
  }
  static inline const StatePtr_t& Npreplace(const StateArray& n) {
    assert(preplace);
    return n[1 + (pregrasp ? 1 : 0) + (intersec ? 1 : 0)];
  }

  static inline std::string caseToString() {
    return CASE_TO_STRING(gCase, NoGrasp) + CASE_TO_STRING(gCase, GraspOnly) +
           CASE_TO_STRING(gCase, WithPreGrasp) + " - " +
           CASE_TO_STRING(gCase, NoPlace) + CASE_TO_STRING(gCase, PlaceOnly) +
           CASE_TO_STRING(gCase, WithPrePlace);
  }

  static inline EdgePtr_t makeWE(const std::string& name,
                                 const StatePtr_t& from, const StatePtr_t& to,
                                 const size_type& w) {
    if (Nedges > 1) {
      WaypointEdgePtr_t we = static_pointer_cast<WaypointEdge>(
          from->linkTo(name, to, w, WaypointEdge::create));
      we->nbWaypoints(nbWaypoints);
      return we;
    } else
      return from->linkTo(name, to, w, Edge::create);
  }

  static inline StateArray makeWaypoints(const StatePtr_t& from,
                                         const StatePtr_t& to,
                                         const std::string& name) {
    StateSelectorPtr_t ns = from->parentGraph()->stateSelector();
    StateArray states;
    std::size_t r = 0;
    states[r] = from;
    ++r;
    if (pregrasp) {
      states[r] = ns->createState(name + "_pregrasp", true);
      ++r;
    }
    if (intersec) {
      states[r] = ns->createState(name + "_intersec", true);
      ++r;
    }
    if (preplace) {
      states[r] = ns->createState(name + "_preplace", true);
      ++r;
    }
    states[r] = to;
    return states;
  }

  static inline EdgePtr_t makeLSEgrasp(const std::string& name,
                                       const StateArray& n, const EdgeArray& e,
                                       const size_type w,
                                       LevelSetEdgePtr_t& gls) {
    if (Nedges > 1) {
      const std::size_t T = (pregrasp ? 1 : 0) + (intersec ? 1 : 0);
      WaypointEdgePtr_t we = static_pointer_cast<WaypointEdge>(
          n.front()->linkTo(name + "_ls", n.back(), w, WaypointEdge::create));
      we->nbWaypoints(nbWaypoints);
      gls = linkWaypoint<LevelSetEdge>(n, T - 1, T, name, "ls");
      for (std::size_t i = 0; i < Nedges; ++i)
        we->setWaypoint(i, e[i], n[i + 1]);
      we->setWaypoint(T - 1, gls, n[T]);
      gls->state(n.front());
      gls->setShort(pregrasp);
      return we;
    } else {
      assert(gCase == (GraspOnly | NoPlace) &&
             "Cannot implement a LevelSetEdge for grasping");
      gls = static_pointer_cast<LevelSetEdge>(
          n.front()->linkTo(name + "_ls", n.back(), w, LevelSetEdge::create));
      return gls;
    }
  }

  static inline EdgePtr_t makeLSEplace(const std::string& name,
                                       const StateArray& n, const EdgeArray& e,
                                       const size_type w,
                                       LevelSetEdgePtr_t& pls) {
    if (Nedges > 1) {
      const std::size_t T = (pregrasp ? 1 : 0) + (intersec ? 1 : 0);
      WaypointEdgePtr_t we = static_pointer_cast<WaypointEdge>(
          n.back()->linkTo(name + "_ls", n.front(), w, WaypointEdge::create));
      we->nbWaypoints(nbWaypoints);
      pls = linkWaypoint<LevelSetEdge>(n, T + 1, T, name, "ls");
      // for (std::size_t i = Nedges - 1; i != 0; --i)
      for (std::size_t k = 0; k < Nedges; ++k) {
        std::size_t i = Nedges - 1 - k;
        we->setWaypoint(Nedges - 1 - i, e[i], n[i]);
      }
      we->setWaypoint(Nedges - 1 - T, pls, n[T]);
      pls->state(n.back());
      pls->setShort(preplace);
      return we;
    } else {
      assert(gCase == (NoGrasp | PlaceOnly) &&
             "Cannot implement a LevelSetEdge for placement");
      pls = static_pointer_cast<LevelSetEdge>(
          n.back()->linkTo(name + "_ls", n.front(), w, LevelSetEdge::create));
      return pls;
    }
  }

  template <typename EdgeType>
  static inline shared_ptr<EdgeType> linkWaypoint(
      const StateArray& states, const std::size_t& iF, const std::size_t& iT,
      const std::string& prefix, const std::string& suffix = "") {
    std::stringstream ss;
    ss << prefix << "_" << iF << iT;
    if (suffix.length() > 0) ss << "_" << suffix;
    return static_pointer_cast<EdgeType>(
        states[iF]->linkTo(ss.str(), states[iT], -1, EdgeType::create));
  }

  template <bool forward>
  static inline EdgeArray linkWaypoints(const StateArray& states,
                                        const EdgePtr_t& edge,
                                        const std::string& name) {
    EdgeArray e;
    WaypointEdgePtr_t we = HPP_DYNAMIC_PTR_CAST(WaypointEdge, edge);
    if (forward)
      for (std::size_t i = 0; i < Nedges; ++i) {
        e[i] = linkWaypoint<Edge>(states, i, i + 1, name);
        we->setWaypoint(i, e[i], states[i + 1]);
      }
    else
      // for (std::size_t i = Nedges - 1; i != 0; --i) {
      for (std::size_t k = 0; k < Nedges; ++k) {
        std::size_t i = Nedges - 1 - k;
        e[i] = linkWaypoint<Edge>(states, i + 1, i, name);
        we->setWaypoint(Nedges - 1 - i, e[i], states[i]);
      }
    return e;
  }

  static inline void setStateConstraints(const StateArray& n,
                                         const FoliatedManifold& g,
                                         const FoliatedManifold& pg,
                                         const FoliatedManifold& p,
                                         const FoliatedManifold& pp,
                                         const FoliatedManifold& m) {
    // From and to are not populated automatically
    // to avoid duplicates.
    if (pregrasp) {
      p.addToState(Npregrasp(n));
      pg.addToState(Npregrasp(n));
      m.addToState(Npregrasp(n));
    }
    if (intersec) {
      p.addToState(Nintersec(n));
      g.addToState(Nintersec(n));
      m.addToState(Nintersec(n));
    }
    if (preplace) {
      pp.addToState(Npreplace(n));
      g.addToState(Npreplace(n));
      m.addToState(Npreplace(n));
    }
  }

  static inline void setEdgeConstraints(const EdgeArray& e,
                                        const FoliatedManifold& g,
                                        const FoliatedManifold& p,
                                        const FoliatedManifold& m) {
    // The border B
    const std::size_t B = (pregrasp ? 1 : 0) + (intersec ? 1 : 0);
    for (std::size_t i = 0; i < B; ++i) p.addToEdge(e[i]);
    for (std::size_t i = B; i < Nedges; ++i) g.addToEdge(e[i]);
    for (std::size_t i = 0; i < Nedges; ++i) m.addToEdge(e[i]);
  }

  template <bool forward>
  static inline void setEdgeProp(const EdgeArray& e, const StateArray& n) {
    /// Last is short
    const std::size_t K = (forward ? 1 : 0);
    for (std::size_t i = K; i < Nedges - 1 + K; ++i) e[i]->setShort(true);
    // The border B
    std::size_t B;
    if ((gCase & NoGrasp))  // There is no grasp
      B = 0;
    else  // There is a grasp
      B = 1 + (pregrasp ? 1 : 0);
    for (std::size_t i = 0; i < B; ++i) e[i]->state(n[0]);
    for (std::size_t i = B; i < Nedges; ++i) e[i]->state(n[Nstates - 1]);
  }
};
}  // namespace

template <int gCase>
Edges_t createEdges(const std::string& forwName, const std::string& backName,
                    const StatePtr_t& from, const StatePtr_t& to,
                    const size_type& wForw, const size_type& wBack,
                    const FoliatedManifold& grasp,
                    const FoliatedManifold& pregrasp,
                    const FoliatedManifold& place,
                    const FoliatedManifold& preplace, const bool levelSetGrasp,
                    const bool levelSetPlace,
                    const FoliatedManifold& submanifoldDef) {
  typedef CaseTraits<gCase> T;
  hppDout(info, "Creating edges " << forwName << " and " << backName
                                  << "\ncase is " << T::caseToString());
  assert(T::valid && "Not a valid case.");
  typedef typename T::StateArray StateArray;
  typedef typename T::EdgeArray EdgeArray;

  // Create the edges
  EdgePtr_t weForw = T::makeWE(forwName, from, to, wForw),
            weBack = T::makeWE(backName, to, from, wBack), weForwLs, weBackLs;

  std::string name = forwName;
  StateArray n = T::makeWaypoints(from, to, name);

  EdgeArray eF = T::template linkWaypoints<true>(n, weForw, name);

  // Set the states constraints
  // Note that submanifold is not taken into account for states
  // because the edges constraints will enforce configuration to stay
  // in a leaf, and so in the manifold itself.
  T::setStateConstraints(n, grasp, pregrasp, place, preplace, submanifoldDef);

  // Set the edges properties
  T::template setEdgeProp<true>(eF, n);

  // Set the edges constraints
  T::setEdgeConstraints(eF, grasp, place, submanifoldDef);

  LevelSetEdgePtr_t gls;
  if (levelSetGrasp) weForwLs = T::makeLSEgrasp(name, n, eF, 10 * wForw, gls);

  // Populate bacward edge
  name = backName;
  EdgeArray eB = T::template linkWaypoints<false>(n, weBack, name);

  T::template setEdgeProp<false>(eB, n);

  T::setEdgeConstraints(eB, grasp, place, submanifoldDef);

  LevelSetEdgePtr_t pls;
  if (levelSetPlace) weBackLs = T::makeLSEplace(name, n, eB, 10 * wBack, pls);

  Edges_t ret{weForw, weBack};

  if (levelSetPlace) {
    if (!place.foliated()) {
      hppDout(warning,
              "You asked for a LevelSetEdge for placement, "
              "but did not specify the target foliation. "
              "It will have no effect");
    }
    grasp.addToEdge(pls);
    place.specifyFoliation(pls);
    submanifoldDef.addToEdge(pls);
    pls->buildHistogram();
    place.addToEdge(weBackLs);
    submanifoldDef.addToEdge(weBackLs);
    ret.push_back(weBackLs);
  }
  if (levelSetGrasp) {
    if (!grasp.foliated()) {
      hppDout(warning,
              "You asked for a LevelSetEdge for grasping, "
              "but did not specify the target foliation. "
              "It will have no effect");
    }
    place.addToEdge(gls);
    grasp.specifyFoliation(gls);
    submanifoldDef.addToEdge(gls);
    gls->buildHistogram();
    grasp.addToEdge(weForwLs);
    submanifoldDef.addToEdge(weForwLs);
    ret.push_back(weForwLs);
  }

  return ret;
}

EdgePtr_t createLoopEdge(const std::string& loopName, const StatePtr_t& state,
                         const size_type& w, const bool levelSet,
                         const FoliatedManifold& submanifoldDef) {
  // Create the edges
  EdgePtr_t loop;
  if (levelSet)
    loop = state->linkTo(loopName, state, w, LevelSetEdge::create);
  else
    loop = state->linkTo(loopName, state, w, Edge::create);

  loop->state(state);
  submanifoldDef.addToEdge(loop);

  if (levelSet) {
    if (!submanifoldDef.foliated()) {
      hppDout(warning,
              "You asked for a LevelSetEdge for looping, "
              "but did not specify the target foliation. "
              "It will have no effect");
    }
    LevelSetEdgePtr_t ls = HPP_DYNAMIC_PTR_CAST(LevelSetEdge, loop);
    submanifoldDef.specifyFoliation(ls);
    ls->buildHistogram();
  }

  return loop;
}

void graspManifold(const GripperPtr_t& gripper, const HandlePtr_t& handle,
                   FoliatedManifold& grasp, FoliatedManifold& pregrasp) {
  ImplicitPtr_t gc = handle->createGrasp(gripper, "");
  grasp.nc.push_back(gc);
  grasp.nc_path.push_back(gc);
  ImplicitPtr_t gcc = handle->createGraspComplement(gripper, "");
  if (gcc->function().outputSize() > 0) grasp.nc_fol.push_back(gcc);

  const value_type c = handle->clearance() + gripper->clearance();
  ImplicitPtr_t pgc = handle->createPreGrasp(gripper, c, "");
  pregrasp.nc.push_back(pgc);
  pregrasp.nc_path.push_back(pgc);
}

void strictPlacementManifold(const ImplicitPtr_t placement,
                             const ImplicitPtr_t preplacement,
                             const ImplicitPtr_t placementComplement,
                             FoliatedManifold& place,
                             FoliatedManifold& preplace) {
  place.nc.push_back(placement);
  place.nc_path.push_back(placement);
  if (placementComplement && placementComplement->function().outputSize() > 0)
    place.nc_fol.push_back(placementComplement);

  preplace.nc.push_back(preplacement);
  preplace.nc_path.push_back(preplacement);
}

void relaxedPlacementManifold(const ImplicitPtr_t placement,
                              const ImplicitPtr_t preplacement,
                              const LockedJoints_t objectLocks,
                              FoliatedManifold& place,
                              FoliatedManifold& preplace) {
  if (placement) {
    place.nc.push_back(placement);
    // The placement constraints are not required in the path, as long as
    // they are satisfied at both ends and the object does not move. The
    // former condition is ensured by the placement constraints on both
    // ends and the latter is ensure by the LockedJoint constraints.
    place.nc_path.push_back(placement);
  }
  std::copy(objectLocks.begin(), objectLocks.end(),
            std::back_inserter(place.lj_fol));

  if (placement && preplacement) {
    preplace.nc.push_back(preplacement);
    // preplace.nc_path.push_back (preplacement);
  }
}

namespace {
typedef std::size_t index_t;
typedef std::vector<index_t> IndexV_t;
typedef std::list<index_t> IndexL_t;
typedef std::pair<index_t, index_t> Grasp_t;
typedef std::tuple<StatePtr_t, FoliatedManifold> StateAndManifold_t;
// typedef std::vector <index_t, index_t> GraspV_t;
/// GraspV_t corresponds to a unique ID of a  permutation.
/// - its size is the number of grippers,
/// - the values correpond to the index of the handle (0..nbHandle-1), or
///   nbHandle to mean no handle.
typedef std::vector<index_t> GraspV_t;
struct Result;
struct CompiledRule {
  enum Status { Accept, Refuse, NoMatch, Undefined };
  std::vector<boost::regex> handles;
  Status status;
  CompiledRule(const Result& res, const Rule& r);
  Status check(const std::vector<std::string>& names, const GraspV_t& g) const {
    const std::size_t nG = g.size();
    assert(nG == handles.size());
    for (std::size_t i = 0; i < nG; ++i) {
      if (handles[i].empty()) continue;
      if (!boost::regex_match(names[g[i]], handles[i])) return NoMatch;
    }
    return status;
  }
};
typedef std::vector<CompiledRule> CompiledRules_t;

struct Result {
  ProblemSolverPtr_t ps;
  GraphPtr_t graph;
  typedef unsigned long stateid_type;
yann_dm's avatar
yann_dm committed
  std::unordered_map<stateid_type, StateAndManifold_t> states;
Guilhem Saurel's avatar
Guilhem Saurel committed
  typedef std::pair<stateid_type, stateid_type> edgeid_type;
  struct edgeid_hash {
yann_dm's avatar
yann_dm committed
    std::hash<edgeid_type::first_type> first;
    std::hash<edgeid_type::second_type> second;
Guilhem Saurel's avatar
Guilhem Saurel committed
    std::size_t operator()(const edgeid_type& eid) const {
      return first(eid.first) + second(eid.second);
    }
  };
yann_dm's avatar
yann_dm committed
  std::unordered_set<edgeid_type, edgeid_hash> edges;
Guilhem Saurel's avatar
Guilhem Saurel committed
  std::vector<std::array<ImplicitPtr_t, 3> > graspCs;
  index_t nG, nOH;
  GraspV_t dims;
  const Grippers_t& gs;
  const Objects_t& ohs;
  std::vector<std::string> handleNames;
  CompiledRules_t rules;
  CompiledRule::Status defaultAcceptationPolicy;

  Result(const ProblemSolverPtr_t problem, const Grippers_t& grippers,
         const Objects_t& objects, GraphPtr_t g)
      : ps(problem),
        graph(g),
        nG(grippers.size()),
        nOH(0),
        gs(grippers),
        ohs(objects),
        defaultAcceptationPolicy(CompiledRule::Refuse) {
    for (const Object_t& o : objects) {
      nOH += std::get<1>(o).size();
      for (const HandlePtr_t& h : std::get<1>(o))
        handleNames.push_back(h->name());
    }
    handleNames.push_back("");
    dims.resize(nG);
    dims[0] = nOH + 1;
    for (index_t i = 1; i < nG; ++i) dims[i] = dims[i - 1] * (nOH + 1);
    graspCs.resize(nG * nOH);
  }

  void setRules(const Rules_t& r) {
    for (Rules_t::const_iterator _r = r.begin(); _r != r.end(); ++_r)
      rules.push_back(CompiledRule(*this, *_r));
  }

  bool graspIsAllowed(const GraspV_t& idxOH) const {
    assert(idxOH.size() == nG);
    for (std::size_t r = 0; r < rules.size(); ++r) {
      switch (rules[r].check(handleNames, idxOH)) {
        case CompiledRule::Accept:
          return true;
        case CompiledRule::Refuse:
          return false;
        case CompiledRule::NoMatch:
          continue;  // Check next rule
        default:
          throw std::invalid_argument("Rules are ill-defined.");
      }
    }
    return (defaultAcceptationPolicy == CompiledRule::Accept);
  }

  inline stateid_type stateid(const GraspV_t& iG) {
    stateid_type iGOH = iG[0];
    stateid_type res;
    for (index_t i = 1; i < nG; ++i) {
      res = iGOH + dims[i] * (iG[i]);
      if (res < iGOH) {
        hppDout(info, "State ID overflowed. There are too many states...");
      }
      iGOH = res;
      // iGOH += dims[i] * (iG[i]);
    }
    return iGOH;
  }

  bool hasState(const GraspV_t& iG) { return states.count(stateid(iG)) > 0; }

  StateAndManifold_t& operator()(const GraspV_t& iG) {
    return states[stateid(iG)];
  }

  bool hasEdge(const GraspV_t& g1, const GraspV_t& g2) {
    return edges.count(edgeid_type(stateid(g1), stateid(g2))) > 0;
  }

  void addEdge(const GraspV_t& g1, const GraspV_t& g2) {
    edges.insert(edgeid_type(stateid(g1), stateid(g2)));
  }

  inline std::array<ImplicitPtr_t, 3>& graspConstraint(const index_t& iG,
                                                       const index_t& iOH) {
    std::array<ImplicitPtr_t, 3>& gcs = graspCs[iG * nOH + iOH];
    if (!gcs[0]) {
      hppDout(info,
              "Create grasps constraints for (" << iG << ", " << iOH << ")");
      const GripperPtr_t& g(gs[iG]);
      const HandlePtr_t& h(handle(iOH));
      const std::string& grasp = g->name() + " grasps " + h->name();
      if (!ps->numericalConstraints.has(grasp)) {
        ps->createGraspConstraint(grasp, g->name(), h->name());
      }
      gcs[0] = ps->numericalConstraints.get(grasp);
      gcs[1] = ps->numericalConstraints.get(grasp + "/complement");
      const std::string& pregrasp = g->name() + " pregrasps " + h->name();
      if (!ps->numericalConstraints.has(pregrasp)) {
        ps->createPreGraspConstraint(pregrasp, g->name(), h->name());
      }
      gcs[2] = ps->numericalConstraints.get(pregrasp);
    }
    return gcs;
  }

  const Object_t& object(const index_t& iOH) const {
    index_t iH = iOH;
    for (const Object_t& o : ohs) {
      if (iH < std::get<1>(o).size()) return o;
      iH -= std::get<1>(o).size();
    }
    throw std::out_of_range("Handle index");
  }

  const HandlePtr_t& handle(const index_t& iOH) const {
    index_t iH = iOH;
    for (const Object_t& o : ohs) {
      if (iH < std::get<1>(o).size()) return std::get<1>(o)[iH];
      iH -= std::get<1>(o).size();
    }
    throw std::out_of_range("Handle index");
  }

  /// Check if an object can be placed
  bool objectCanBePlaced(const Object_t& o) const {
    // If the object has no joint, then it cannot be placed.
    return (std::get<2>(std::get<0>(o)).size() > 0);
  }

  /// Check is an object is grasped by the GraspV_t
  bool isObjectGrasped(const GraspV_t& idxOH, const Object_t& o) const {
    assert(idxOH.size() == nG);
    for (std::size_t i = 0; i < idxOH.size(); ++i)
      if (idxOH[i] < nOH)  // This grippers grasps an object
        if (std::get<2>(o) == std::get<2>(object(idxOH[i]))) return true;
    return false;
  }

  /// Get a state name from a set of grasps
  std::string name(const GraspV_t& idxOH, bool abbrev = false) const {
    assert(idxOH.size() == nG);
    std::stringstream ss;
    bool first = true;
    std::string sepGOH = (abbrev ? "-" : " grasps "),
                sep = (abbrev ? ":" : " : ");
    for (std::size_t i = 0; i < idxOH.size(); ++i) {
      if (idxOH[i] < nOH) {  // This grippers grasps an object
        if (first)
          first = false;
        else
          ss << sep;
        if (abbrev)
          ss << i << sepGOH << idxOH[i];
        else
          ss << gs[i]->name() << sepGOH << handle(idxOH[i])->name();
      }
    }
    if (first) return (abbrev ? "f" : "free");
    return ss.str();
  }

  /// Get an edge name from a set of grasps
  std::pair<std::string, std::string> name(const GraspV_t& gFrom,
                                           const GraspV_t& gTo,
                                           const index_t iG) {
    const std::string nf(name(gFrom, true)), nt(name(gTo, true));
    std::stringstream ssForw, ssBack;
    const char sep[] = " | ";
    ssForw << gs[iG]->name() << " > " << handle(gTo[iG])->name() << sep << nf;
    ssBack << gs[iG]->name() << " < " << handle(gTo[iG])->name() << sep << nt;
    return std::make_pair(ssForw.str(), ssBack.str());
  }

  std::string nameLoopEdge(const GraspV_t& gFrom) {
    const std::string nf(name(gFrom, true));
    std::stringstream ss;
    const char sep[] = " | ";
    ss << "Loop" << sep << nf;
    return ss.str();
  }

  void graspManifold(const index_t& iG, const index_t& iOH,
                     FoliatedManifold& grasp, FoliatedManifold& pregrasp) {
    std::array<ImplicitPtr_t, 3>& gcs = graspConstraint(iG, iOH);
    grasp.nc.push_back(gcs[0]);
    grasp.nc_path.push_back(gcs[0]);
    if (gcs[1]->function().outputSize() > 0) grasp.nc_fol.push_back(gcs[1]);

    pregrasp.nc.push_back(gcs[2]);
    pregrasp.nc_path.push_back(gcs[2]);
  }
};

CompiledRule::CompiledRule(const Result& res, const Rule& r)
    : handles(res.nG), status(r.link_ ? Accept : Refuse) {
  assert(r.grippers_.size() == r.handles_.size());
  for (std::size_t j = 0; j < r.grippers_.size(); ++j) {
    boost::regex gripper(r.grippers_[j]);
    for (std::size_t i = 0; i < res.nG; ++i) {
      if (boost::regex_match(res.gs[i]->name(), gripper)) {
        assert(handles[i].empty() &&
               "Two gripper regex match the different gripper names.");
        handles[i] = r.handles_[j];
      }
    }
  }
}

const StateAndManifold_t& makeState(Result& r, const GraspV_t& g,
                                    const int priority) {
  StateAndManifold_t& nam = r(g);
  if (!std::get<0>(nam)) {
    hppDout(info, "Creating state " << r.name(g));
    std::get<0>(nam) =
        r.graph->stateSelector()->createState(r.name(g), false, priority);
    // Loop over the grippers and create grasping constraints if required
    FoliatedManifold unused;
    std::set<index_t> idxsOH;
    for (index_t i = 0; i < r.nG; ++i) {
      if (g[i] < r.nOH) {
        idxsOH.insert(g[i]);
        r.graspManifold(i, g[i], std::get<1>(nam), unused);
      }
    }
    index_t iOH = 0;
    for (const Object_t& o : r.ohs) {
      if (!r.objectCanBePlaced(o)) continue;
      bool oIsGrasped = false;
      // TODO: use the fact that the set is sorted.
      // for (const HandlePtr_t& h : std::get<0>(o))
      for (index_t i = 0; i < std::get<1>(o).size(); ++i) {
        if (idxsOH.erase(iOH) == 1) oIsGrasped = true;
        ++iOH;
      }
      if (!oIsGrasped) {
        const auto& pc(std::get<0>(o));
        relaxedPlacementManifold(std::get<0>(pc), std::get<1>(pc),
                                 std::get<2>(pc), std::get<1>(nam), unused);
      }
    }
    std::get<1>(nam).addToState(std::get<0>(nam));

    createLoopEdge(r.nameLoopEdge(g), std::get<0>(nam), 0, false,
                   // TODO std::get<1>(nam).foliated(),
                   std::get<1>(nam));
  }
  return nam;
}

/// Arguments are such that
/// \li gTo[iG] != gFrom[iG]
/// \li for all i != iG, gTo[iG] == gFrom[iG]
void makeEdge(Result& r, const GraspV_t& gFrom, const GraspV_t& gTo,
              const index_t iG, const int priority) {
  if (r.hasEdge(gFrom, gTo)) {
    hppDout(warning, "Prevented creation of duplicated edge\nfrom "
                         << r.name(gFrom) << "\nto " << r.name(gTo));
    return;
  }
  const StateAndManifold_t &from = makeState(r, gFrom, priority),
                           to = makeState(r, gTo, priority + 1);
  const Object_t& o = r.object(gTo[iG]);

  // Detect when grasping an object already grasped.
  // or when there is no placement information for it.
  bool noPlace = !r.objectCanBePlaced(o) || r.isObjectGrasped(gFrom, o);

  FoliatedManifold grasp, pregrasp, place, preplace, submanifold;
  r.graspManifold(iG, gTo[iG], grasp, pregrasp);
  if (!noPlace) {
    const auto& pc(std::get<0>(o));
    relaxedPlacementManifold(std::get<0>(pc), std::get<1>(pc), std::get<2>(pc),
                             place, preplace);
  }
  std::pair<std::string, std::string> names = r.name(gFrom, gTo, iG);
  {
    FoliatedManifold unused;
    std::set<index_t> idxsOH;
    for (index_t i = 0; i < r.nG; ++i) {
      if (gFrom[i] < r.nOH) {
        idxsOH.insert(gFrom[i]);
        r.graspManifold(i, gFrom[i], submanifold, unused);
      }
    }
    index_t iOH = 0;
    for (const Object_t& o : r.ohs) {
      if (!r.objectCanBePlaced(o)) continue;
      bool oIsGrasped = false;
      const index_t iOHstart = iOH;
      for (; iOH < iOHstart + std::get<1>(o).size(); ++iOH) {
        if (iOH == gTo[iG]) {
          oIsGrasped = true;
          iOH = iOHstart + std::get<1>(o).size();
          break;
Guilhem Saurel's avatar
Guilhem Saurel committed
        if (idxsOH.erase(iOH) == 1) oIsGrasped = true;
      }
      if (!oIsGrasped) {
        const auto& pc(std::get<0>(o));
        relaxedPlacementManifold(std::get<0>(pc), std::get<1>(pc),
                                 std::get<2>(pc), submanifold, unused);
      }
    }
  }
  if (pregrasp.empty()) {
    if (noPlace)
      createEdges<GraspOnly | NoPlace>(
          names.first, names.second, std::get<0>(from), std::get<0>(to), 1, 1,
          grasp, pregrasp, place, preplace, grasp.foliated(), place.foliated(),
          submanifold);
    else if (preplace.empty())
      createEdges<GraspOnly | PlaceOnly>(
          names.first, names.second, std::get<0>(from), std::get<0>(to), 1, 1,
          grasp, pregrasp, place, preplace, grasp.foliated(), place.foliated(),
          submanifold);
    else {
      hppDout(error, "GraspOnly | WithPrePlace not implemeted yet");
      /*
         createEdges <GraspOnly | WithPrePlace> (
         names.first           , names.second,
         std::get<0>(from)     , std::get<0>(to),
         1                     , 1,
         grasp                 , pregrasp,
         place                 , preplace,
         grasp.foliated ()     , place.foliated(),
         submanifold); // */
    }
  } else {
    if (noPlace)
      createEdges<WithPreGrasp | NoPlace>(
          names.first, names.second, std::get<0>(from), std::get<0>(to), 1, 1,
          grasp, pregrasp, place, preplace, grasp.foliated(), place.foliated(),
          submanifold);
    else if (preplace.empty())
      createEdges<WithPreGrasp | PlaceOnly>(
          names.first, names.second, std::get<0>(from), std::get<0>(to), 1, 1,
          grasp, pregrasp, place, preplace, grasp.foliated(), place.foliated(),
          submanifold);
    else
      createEdges<WithPreGrasp | WithPrePlace>(
          names.first, names.second, std::get<0>(from), std::get<0>(to), 1, 1,
          grasp, pregrasp, place, preplace, grasp.foliated(), place.foliated(),
          submanifold);
  }
  r.addEdge(gFrom, gTo);
}

/// idx are the available grippers
void recurseGrippers(Result& r, const IndexV_t& idx_g, const IndexV_t& idx_oh,
                     const GraspV_t& grasps, const int depth) {
  bool curGraspIsAllowed = r.graspIsAllowed(grasps);
  if (curGraspIsAllowed) makeState(r, grasps, depth);

  if (idx_g.empty() || idx_oh.empty()) return;
  IndexV_t nIdx_g(idx_g.size() - 1);
  IndexV_t nIdx_oh(idx_oh.size() - 1);
  for (IndexV_t::const_iterator itx_g = idx_g.begin(); itx_g != idx_g.end();
       ++itx_g) {
    // Copy all element except itx_g
    std::copy(std::next(itx_g), idx_g.end(),
              std::copy(idx_g.begin(), itx_g, nIdx_g.begin()));
    for (IndexV_t::const_iterator itx_oh = idx_oh.begin();
         itx_oh != idx_oh.end(); ++itx_oh) {
      // Create the edge for the selected grasp
      GraspV_t nGrasps = grasps;
      nGrasps[*itx_g] = *itx_oh;

      bool nextGraspIsAllowed = r.graspIsAllowed(nGrasps);
      if (nextGraspIsAllowed) makeState(r, nGrasps, depth + 1);

      if (curGraspIsAllowed && nextGraspIsAllowed)
        makeEdge(r, grasps, nGrasps, *itx_g, depth);

      // Copy all element except itx_oh
      std::copy(std::next(itx_oh), idx_oh.end(),
                std::copy(idx_oh.begin(), itx_oh, nIdx_oh.begin()));
      // Do all the possible combination below this new grasp
      recurseGrippers(r, nIdx_g, nIdx_oh, nGrasps, depth + 2);
    }
  }
}
}  // namespace

void graphBuilder(const ProblemSolverPtr_t& ps, const Objects_t& objects,
                  const Grippers_t& grippers, GraphPtr_t graph,
                  const Rules_t& rules) {
  if (!graph) throw std::logic_error("The graph must be initialized");
  StateSelectorPtr_t ns = graph->stateSelector();
  if (!ns) throw std::logic_error("The graph does not have a StateSelector");

  Result r(ps, grippers, objects, graph);
  r.setRules(rules);

  IndexV_t availG(r.nG), availOH(r.nOH);
  for (index_t i = 0; i < r.nG; ++i) availG[i] = i;
  for (index_t i = 0; i < r.nOH; ++i) availOH[i] = i;

  GraspV_t iG(r.nG, r.nOH);

  recurseGrippers(r, availG, availOH, iG, 0);

  hppDout(info, "Created a graph with " << r.states.size()
                                        << " states "
                                           "and "
                                        << r.edges.size() << " edges.");
}

GraphPtr_t graphBuilder(const ProblemSolverPtr_t& ps,
                        const std::string& graphName, const Strings_t& griNames,
                        const std::vector<ObjectDef_t>& objs,
                        const Strings_t& envNames,
                        const std::vector<Rule>& rules,
                        const value_type& prePlaceWidth) {
  if (ps->graphs.has(graphName))
    throw std::invalid_argument("A graph named " + graphName +
                                " already exists.");

  const Device& robot = *(ps->robot());
  const pinocchio::Model& model = robot.model();
  Grippers_t grippers(griNames.size());
  index_t i = 0;
  for (const std::string& gn : griNames) {
    grippers[i] = robot.grippers.get(gn);
    ++i;
  }
  Objects_t objects(objs.size());
  i = 0;
  const value_type margin = 1e-3;
  bool prePlace = (prePlaceWidth > 0);
  for (const ObjectDef_t& od : objs) {
    // Create handles
    std::get<2>(objects[i]) = i;
    std::get<1>(objects[i]).resize(od.handles.size());
    Handles_t::iterator it = std::get<1>(objects[i]).begin();
Florent Lamiraux's avatar
Florent Lamiraux committed
    for (const std::string& hn : od.handles) {
Guilhem Saurel's avatar
Guilhem Saurel committed
      *it = robot.handles.get(hn);
      ++it;
    }
    // Create placement
    const std::string placeN = "place_" + od.name;
    const std::string preplaceN = "pre" + placeN;
    // If user provides constraint "place_objectName",
    // then
    //   use this as placement and use "preplace_objectName" for
    //   pre-placement if defined.
    // else if contact surfaces are defined and selected
    //   create default placement constraint using the ProblemSolver
    //   methods createPlacementConstraint and createPrePlacementConstraint
    auto& pc(std::get<0>(objects[i]));
    if (ps->numericalConstraints.has(placeN)) {
      std::get<0>(pc) = ps->numericalConstraints.get(placeN);
      if (ps->numericalConstraints.has(preplaceN)) {
        std::get<1>(pc) = ps->numericalConstraints.get(preplaceN);
      }
    } else if (!envNames.empty() && !od.shapes.empty()) {
      ps->createPlacementConstraint(placeN, od.shapes, envNames, margin);
      std::get<0>(pc) = ps->numericalConstraints.get(placeN);
      if (prePlace) {
        ps->createPrePlacementConstraint(preplaceN, od.shapes, envNames, margin,
                                         prePlaceWidth);
        std::get<1>(pc) = ps->numericalConstraints.get(preplaceN);
      }
    }
    // Create object lock
    // Loop over all frames of object, detect joint and create locked
    // joint.
    assert(robot.robotFrames(od.name).size() != 0);
    for (const FrameIndex& f : robot.robotFrames(od.name)) {
      if (model.frames[f].type != ::pinocchio::JOINT) continue;
      const JointIndex j = model.frames[f].parent;
      JointPtr_t oj(Joint::create(ps->robot(), j));
      LiegroupSpacePtr_t space(oj->configurationSpace());
      LiegroupElement lge(robot.currentConfiguration().segment(
                              oj->rankInConfiguration(), oj->configSize()),
                          space);
      LockedJointPtr_t lj = core::LockedJoint::create(oj, lge);
      ps->numericalConstraints.add("lock_" + oj->name(), lj);
      std::get<2>(pc).push_back(lj);
    }