Newer
Older
// Copyright (c) 2016, Joseph Mirabel
// Authors: Joseph Mirabel (joseph.mirabel@laas.fr)
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
#include <boost/regex.hpp>
#include <hpp/constraints/locked-joint.hh>
#include <hpp/manipulation/graph/guided-state-selector.hh>
#include <hpp/manipulation/graph/helper.hh>
#include <hpp/manipulation/graph/state-selector.hh>
#include <hpp/manipulation/graph/state.hh>
#include <hpp/manipulation/handle.hh>
#include <hpp/manipulation/problem-solver.hh>
#include <hpp/pinocchio/gripper.hh>
#include <hpp/util/debug.hh>
#include <iterator>
#include <pinocchio/multibody/model.hpp>
#include <unordered_map>
#include <unordered_set>
#define CASE_TO_STRING(var, value) \
((var & value) ? std::string(#value) : std::string())
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
namespace manipulation {
namespace graph {
namespace helper {
typedef constraints::Implicit Implicit;
typedef constraints::ImplicitPtr_t ImplicitPtr_t;
template <bool forPath>
void addToComp(const NumericalConstraints_t& nc, GraphComponentPtr_t comp) {
if (nc.empty()) return;
StatePtr_t n;
if (forPath) {
n = HPP_DYNAMIC_PTR_CAST(State, comp);
if (!n) throw std::logic_error("Wrong type: expect a State");
}
for (const auto& c : nc)
if (c) {
if (forPath)
n->addNumericalConstraintForPath(c);
else
comp->addNumericalConstraint(c);
}
}
template <bool param>
void specifyFoliation(const NumericalConstraints_t& nc, LevelSetEdgePtr_t lse) {
for (const auto& c : nc)
if (c) {
if (param)
lse->insertParamConstraint(c);
else
lse->insertConditionConstraint(c);
}
}
void FoliatedManifold::addToState(StatePtr_t comp) const {
addToComp<false>(nc, comp);
addToComp<false>(nc_path, comp);
}
void FoliatedManifold::addToEdge(EdgePtr_t comp) const {
addToComp<false>(nc_fol, comp);
}
void FoliatedManifold::specifyFoliation(LevelSetEdgePtr_t lse) const {
for (const auto& c : nc) lse->insertConditionConstraint(c);
for (const auto& c : nc_fol) lse->insertConditionConstraint(c);
}
namespace {
template <int gCase>
struct CaseTraits {
static const bool pregrasp = (gCase & WithPreGrasp);
static const bool preplace = (gCase & WithPrePlace);
static const bool intersec = !((gCase & NoGrasp) || (gCase & NoPlace));
static const bool valid =
((gCase & WithPreGrasp) || (gCase & GraspOnly) || (gCase & NoGrasp)) &&
((gCase & WithPrePlace) || (gCase & PlaceOnly) || (gCase & NoPlace)) &&
!((gCase & NoGrasp) && (gCase & NoPlace));
static const std::size_t nbWaypoints =
(pregrasp ? 1 : 0) + (intersec ? 1 : 0) + (preplace ? 1 : 0);
static const std::size_t Nstates = 2 + nbWaypoints;
static const std::size_t Nedges = 1 + nbWaypoints;
// static const std::size_t iNpregrasp = pregrasp?1 + 1:nbWaypoints;
// static const std::size_t iNpreplace = pregrasp?1 + 1:nbWaypoints;
typedef std::array<StatePtr_t, Nstates> StateArray;
typedef std::array<EdgePtr_t, Nedges> EdgeArray;
static inline const StatePtr_t& Npregrasp(const StateArray& n) {
assert(pregrasp);
return n[1];
}
static inline const StatePtr_t& Nintersec(const StateArray& n) {
assert(intersec);
return n[1 + (pregrasp ? 1 : 0)];
}
static inline const StatePtr_t& Npreplace(const StateArray& n) {
assert(preplace);
return n[1 + (pregrasp ? 1 : 0) + (intersec ? 1 : 0)];
}
static inline std::string caseToString() {
return CASE_TO_STRING(gCase, NoGrasp) + CASE_TO_STRING(gCase, GraspOnly) +
CASE_TO_STRING(gCase, WithPreGrasp) + " - " +
CASE_TO_STRING(gCase, NoPlace) + CASE_TO_STRING(gCase, PlaceOnly) +
CASE_TO_STRING(gCase, WithPrePlace);
}
static inline EdgePtr_t makeWE(const std::string& name,
const StatePtr_t& from, const StatePtr_t& to,
const size_type& w) {
if (Nedges > 1) {
WaypointEdgePtr_t we = static_pointer_cast<WaypointEdge>(
from->linkTo(name, to, w, WaypointEdge::create));
we->nbWaypoints(nbWaypoints);
return we;
} else
return from->linkTo(name, to, w, Edge::create);
}
static inline StateArray makeWaypoints(const StatePtr_t& from,
const StatePtr_t& to,
const std::string& name) {
StateSelectorPtr_t ns = from->parentGraph()->stateSelector();
StateArray states;
std::size_t r = 0;
states[r] = from;
++r;
if (pregrasp) {
states[r] = ns->createState(name + "_pregrasp", true);
++r;
}
if (intersec) {
states[r] = ns->createState(name + "_intersec", true);
++r;
}
if (preplace) {
states[r] = ns->createState(name + "_preplace", true);
++r;
}
states[r] = to;
return states;
}
static inline EdgePtr_t makeLSEgrasp(const std::string& name,
const StateArray& n, const EdgeArray& e,
const size_type w,
LevelSetEdgePtr_t& gls) {
if (Nedges > 1) {
const std::size_t T = (pregrasp ? 1 : 0) + (intersec ? 1 : 0);
WaypointEdgePtr_t we = static_pointer_cast<WaypointEdge>(
n.front()->linkTo(name + "_ls", n.back(), w, WaypointEdge::create));
we->nbWaypoints(nbWaypoints);
gls = linkWaypoint<LevelSetEdge>(n, T - 1, T, name, "ls");
for (std::size_t i = 0; i < Nedges; ++i)
we->setWaypoint(i, e[i], n[i + 1]);
we->setWaypoint(T - 1, gls, n[T]);
gls->state(n.front());
gls->setShort(pregrasp);
return we;
} else {
assert(gCase == (GraspOnly | NoPlace) &&
"Cannot implement a LevelSetEdge for grasping");
gls = static_pointer_cast<LevelSetEdge>(
n.front()->linkTo(name + "_ls", n.back(), w, LevelSetEdge::create));
return gls;
}
}
static inline EdgePtr_t makeLSEplace(const std::string& name,
const StateArray& n, const EdgeArray& e,
const size_type w,
LevelSetEdgePtr_t& pls) {
if (Nedges > 1) {
const std::size_t T = (pregrasp ? 1 : 0) + (intersec ? 1 : 0);
WaypointEdgePtr_t we = static_pointer_cast<WaypointEdge>(
n.back()->linkTo(name + "_ls", n.front(), w, WaypointEdge::create));
we->nbWaypoints(nbWaypoints);
pls = linkWaypoint<LevelSetEdge>(n, T + 1, T, name, "ls");
// for (std::size_t i = Nedges - 1; i != 0; --i)
for (std::size_t k = 0; k < Nedges; ++k) {
std::size_t i = Nedges - 1 - k;
we->setWaypoint(Nedges - 1 - i, e[i], n[i]);
}
we->setWaypoint(Nedges - 1 - T, pls, n[T]);
pls->state(n.back());
pls->setShort(preplace);
return we;
} else {
assert(gCase == (NoGrasp | PlaceOnly) &&
"Cannot implement a LevelSetEdge for placement");
pls = static_pointer_cast<LevelSetEdge>(
n.back()->linkTo(name + "_ls", n.front(), w, LevelSetEdge::create));
return pls;
}
}
template <typename EdgeType>
static inline shared_ptr<EdgeType> linkWaypoint(
const StateArray& states, const std::size_t& iF, const std::size_t& iT,
const std::string& prefix, const std::string& suffix = "") {
std::stringstream ss;
ss << prefix << "_" << iF << iT;
if (suffix.length() > 0) ss << "_" << suffix;
return static_pointer_cast<EdgeType>(
states[iF]->linkTo(ss.str(), states[iT], -1, EdgeType::create));
}
template <bool forward>
static inline EdgeArray linkWaypoints(const StateArray& states,
const EdgePtr_t& edge,
const std::string& name) {
EdgeArray e;
WaypointEdgePtr_t we = HPP_DYNAMIC_PTR_CAST(WaypointEdge, edge);
if (forward)
for (std::size_t i = 0; i < Nedges; ++i) {
e[i] = linkWaypoint<Edge>(states, i, i + 1, name);
we->setWaypoint(i, e[i], states[i + 1]);
}
else
// for (std::size_t i = Nedges - 1; i != 0; --i) {
for (std::size_t k = 0; k < Nedges; ++k) {
std::size_t i = Nedges - 1 - k;
e[i] = linkWaypoint<Edge>(states, i + 1, i, name);
we->setWaypoint(Nedges - 1 - i, e[i], states[i]);
}
return e;
}
static inline void setStateConstraints(const StateArray& n,
const FoliatedManifold& g,
const FoliatedManifold& pg,
const FoliatedManifold& p,
const FoliatedManifold& pp,
const FoliatedManifold& m) {
// From and to are not populated automatically
// to avoid duplicates.
if (pregrasp) {
p.addToState(Npregrasp(n));
pg.addToState(Npregrasp(n));
m.addToState(Npregrasp(n));
}
if (intersec) {
p.addToState(Nintersec(n));
g.addToState(Nintersec(n));
m.addToState(Nintersec(n));
}
if (preplace) {
pp.addToState(Npreplace(n));
g.addToState(Npreplace(n));
m.addToState(Npreplace(n));
}
}
static inline void setEdgeConstraints(const EdgeArray& e,
const FoliatedManifold& g,
const FoliatedManifold& p,
const FoliatedManifold& m) {
// The border B
const std::size_t B = (pregrasp ? 1 : 0) + (intersec ? 1 : 0);
for (std::size_t i = 0; i < B; ++i) p.addToEdge(e[i]);
for (std::size_t i = B; i < Nedges; ++i) g.addToEdge(e[i]);
for (std::size_t i = 0; i < Nedges; ++i) m.addToEdge(e[i]);
}
template <bool forward>
static inline void setEdgeProp(const EdgeArray& e, const StateArray& n) {
/// Last is short
const std::size_t K = (forward ? 1 : 0);
for (std::size_t i = K; i < Nedges - 1 + K; ++i) e[i]->setShort(true);
// The border B
std::size_t B;
if ((gCase & NoGrasp)) // There is no grasp
B = 0;
else // There is a grasp
B = 1 + (pregrasp ? 1 : 0);
for (std::size_t i = 0; i < B; ++i) e[i]->state(n[0]);
for (std::size_t i = B; i < Nedges; ++i) e[i]->state(n[Nstates - 1]);
}
};
} // namespace
template <int gCase>
Edges_t createEdges(const std::string& forwName, const std::string& backName,
const StatePtr_t& from, const StatePtr_t& to,
const size_type& wForw, const size_type& wBack,
const FoliatedManifold& grasp,
const FoliatedManifold& pregrasp,
const FoliatedManifold& place,
const FoliatedManifold& preplace, const bool levelSetGrasp,
const bool levelSetPlace,
const FoliatedManifold& submanifoldDef) {
typedef CaseTraits<gCase> T;
hppDout(info, "Creating edges " << forwName << " and " << backName
<< "\ncase is " << T::caseToString());
assert(T::valid && "Not a valid case.");
typedef typename T::StateArray StateArray;
typedef typename T::EdgeArray EdgeArray;
// Create the edges
EdgePtr_t weForw = T::makeWE(forwName, from, to, wForw),
weBack = T::makeWE(backName, to, from, wBack), weForwLs, weBackLs;
std::string name = forwName;
StateArray n = T::makeWaypoints(from, to, name);
EdgeArray eF = T::template linkWaypoints<true>(n, weForw, name);
// Set the states constraints
// Note that submanifold is not taken into account for states
// because the edges constraints will enforce configuration to stay
// in a leaf, and so in the manifold itself.
T::setStateConstraints(n, grasp, pregrasp, place, preplace, submanifoldDef);
// Set the edges properties
T::template setEdgeProp<true>(eF, n);
// Set the edges constraints
T::setEdgeConstraints(eF, grasp, place, submanifoldDef);
LevelSetEdgePtr_t gls;
if (levelSetGrasp) weForwLs = T::makeLSEgrasp(name, n, eF, 10 * wForw, gls);
// Populate bacward edge
name = backName;
EdgeArray eB = T::template linkWaypoints<false>(n, weBack, name);
T::template setEdgeProp<false>(eB, n);
T::setEdgeConstraints(eB, grasp, place, submanifoldDef);
LevelSetEdgePtr_t pls;
if (levelSetPlace) weBackLs = T::makeLSEplace(name, n, eB, 10 * wBack, pls);
Edges_t ret{weForw, weBack};
if (levelSetPlace) {
if (!place.foliated()) {
hppDout(warning,
"You asked for a LevelSetEdge for placement, "
"but did not specify the target foliation. "
"It will have no effect");
}
grasp.addToEdge(pls);
place.specifyFoliation(pls);
submanifoldDef.addToEdge(pls);
pls->buildHistogram();
place.addToEdge(weBackLs);
submanifoldDef.addToEdge(weBackLs);
ret.push_back(weBackLs);
}
if (levelSetGrasp) {
if (!grasp.foliated()) {
hppDout(warning,
"You asked for a LevelSetEdge for grasping, "
"but did not specify the target foliation. "
"It will have no effect");
}
place.addToEdge(gls);
grasp.specifyFoliation(gls);
submanifoldDef.addToEdge(gls);
gls->buildHistogram();
grasp.addToEdge(weForwLs);
submanifoldDef.addToEdge(weForwLs);
ret.push_back(weForwLs);
}
return ret;
}
EdgePtr_t createLoopEdge(const std::string& loopName, const StatePtr_t& state,
const size_type& w, const bool levelSet,
const FoliatedManifold& submanifoldDef) {
// Create the edges
EdgePtr_t loop;
if (levelSet)
loop = state->linkTo(loopName, state, w, LevelSetEdge::create);
else
loop = state->linkTo(loopName, state, w, Edge::create);
loop->state(state);
submanifoldDef.addToEdge(loop);
if (levelSet) {
if (!submanifoldDef.foliated()) {
hppDout(warning,
"You asked for a LevelSetEdge for looping, "
"but did not specify the target foliation. "
"It will have no effect");
}
LevelSetEdgePtr_t ls = HPP_DYNAMIC_PTR_CAST(LevelSetEdge, loop);
submanifoldDef.specifyFoliation(ls);
ls->buildHistogram();
}
return loop;
}
void graspManifold(const GripperPtr_t& gripper, const HandlePtr_t& handle,
FoliatedManifold& grasp, FoliatedManifold& pregrasp) {
ImplicitPtr_t gc = handle->createGrasp(gripper, "");
grasp.nc.push_back(gc);
grasp.nc_path.push_back(gc);
ImplicitPtr_t gcc = handle->createGraspComplement(gripper, "");
if (gcc->function().outputSize() > 0) grasp.nc_fol.push_back(gcc);
const value_type c = handle->clearance() + gripper->clearance();
ImplicitPtr_t pgc = handle->createPreGrasp(gripper, c, "");
pregrasp.nc.push_back(pgc);
pregrasp.nc_path.push_back(pgc);
}
void strictPlacementManifold(const ImplicitPtr_t placement,
const ImplicitPtr_t preplacement,
const ImplicitPtr_t placementComplement,
FoliatedManifold& place,
FoliatedManifold& preplace) {
place.nc.push_back(placement);
place.nc_path.push_back(placement);
if (placementComplement && placementComplement->function().outputSize() > 0)
place.nc_fol.push_back(placementComplement);
preplace.nc.push_back(preplacement);
preplace.nc_path.push_back(preplacement);
}
void relaxedPlacementManifold(const ImplicitPtr_t placement,
const ImplicitPtr_t preplacement,
const LockedJoints_t objectLocks,
FoliatedManifold& place,
FoliatedManifold& preplace) {
if (placement) {
place.nc.push_back(placement);
// The placement constraints are not required in the path, as long as
// they are satisfied at both ends and the object does not move. The
// former condition is ensured by the placement constraints on both
// ends and the latter is ensure by the LockedJoint constraints.
place.nc_path.push_back(placement);
}
std::copy(objectLocks.begin(), objectLocks.end(),
std::back_inserter(place.lj_fol));
if (placement && preplacement) {
preplace.nc.push_back(preplacement);
// preplace.nc_path.push_back (preplacement);
}
}
namespace {
typedef std::size_t index_t;
typedef std::vector<index_t> IndexV_t;
typedef std::list<index_t> IndexL_t;
typedef std::pair<index_t, index_t> Grasp_t;
typedef std::tuple<StatePtr_t, FoliatedManifold> StateAndManifold_t;
// typedef std::vector <index_t, index_t> GraspV_t;
/// GraspV_t corresponds to a unique ID of a permutation.
/// - its size is the number of grippers,
/// - the values correpond to the index of the handle (0..nbHandle-1), or
/// nbHandle to mean no handle.
typedef std::vector<index_t> GraspV_t;
struct Result;
struct CompiledRule {
enum Status { Accept, Refuse, NoMatch, Undefined };
std::vector<boost::regex> handles;
Status status;
CompiledRule(const Result& res, const Rule& r);
Status check(const std::vector<std::string>& names, const GraspV_t& g) const {
const std::size_t nG = g.size();
assert(nG == handles.size());
for (std::size_t i = 0; i < nG; ++i) {
if (handles[i].empty()) continue;
if (!boost::regex_match(names[g[i]], handles[i])) return NoMatch;
}
return status;
}
};
typedef std::vector<CompiledRule> CompiledRules_t;
struct Result {
ProblemSolverPtr_t ps;
GraphPtr_t graph;
typedef unsigned long stateid_type;
std::unordered_map<stateid_type, StateAndManifold_t> states;
typedef std::pair<stateid_type, stateid_type> edgeid_type;
struct edgeid_hash {
std::hash<edgeid_type::first_type> first;
std::hash<edgeid_type::second_type> second;
std::size_t operator()(const edgeid_type& eid) const {
return first(eid.first) + second(eid.second);
}
};
std::unordered_set<edgeid_type, edgeid_hash> edges;
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
std::vector<std::array<ImplicitPtr_t, 3> > graspCs;
index_t nG, nOH;
GraspV_t dims;
const Grippers_t& gs;
const Objects_t& ohs;
std::vector<std::string> handleNames;
CompiledRules_t rules;
CompiledRule::Status defaultAcceptationPolicy;
Result(const ProblemSolverPtr_t problem, const Grippers_t& grippers,
const Objects_t& objects, GraphPtr_t g)
: ps(problem),
graph(g),
nG(grippers.size()),
nOH(0),
gs(grippers),
ohs(objects),
defaultAcceptationPolicy(CompiledRule::Refuse) {
for (const Object_t& o : objects) {
nOH += std::get<1>(o).size();
for (const HandlePtr_t& h : std::get<1>(o))
handleNames.push_back(h->name());
}
handleNames.push_back("");
dims.resize(nG);
dims[0] = nOH + 1;
for (index_t i = 1; i < nG; ++i) dims[i] = dims[i - 1] * (nOH + 1);
graspCs.resize(nG * nOH);
}
void setRules(const Rules_t& r) {
for (Rules_t::const_iterator _r = r.begin(); _r != r.end(); ++_r)
rules.push_back(CompiledRule(*this, *_r));
}
bool graspIsAllowed(const GraspV_t& idxOH) const {
assert(idxOH.size() == nG);
for (std::size_t r = 0; r < rules.size(); ++r) {
switch (rules[r].check(handleNames, idxOH)) {
case CompiledRule::Accept:
return true;
case CompiledRule::Refuse:
return false;
case CompiledRule::NoMatch:
continue; // Check next rule
default:
throw std::invalid_argument("Rules are ill-defined.");
}
}
return (defaultAcceptationPolicy == CompiledRule::Accept);
}
inline stateid_type stateid(const GraspV_t& iG) {
stateid_type iGOH = iG[0];
stateid_type res;
for (index_t i = 1; i < nG; ++i) {
res = iGOH + dims[i] * (iG[i]);
if (res < iGOH) {
hppDout(info, "State ID overflowed. There are too many states...");
}
iGOH = res;
// iGOH += dims[i] * (iG[i]);
}
return iGOH;
}
bool hasState(const GraspV_t& iG) { return states.count(stateid(iG)) > 0; }
StateAndManifold_t& operator()(const GraspV_t& iG) {
return states[stateid(iG)];
}
bool hasEdge(const GraspV_t& g1, const GraspV_t& g2) {
return edges.count(edgeid_type(stateid(g1), stateid(g2))) > 0;
}
void addEdge(const GraspV_t& g1, const GraspV_t& g2) {
edges.insert(edgeid_type(stateid(g1), stateid(g2)));
}
inline std::array<ImplicitPtr_t, 3>& graspConstraint(const index_t& iG,
const index_t& iOH) {
std::array<ImplicitPtr_t, 3>& gcs = graspCs[iG * nOH + iOH];
if (!gcs[0]) {
hppDout(info,
"Create grasps constraints for (" << iG << ", " << iOH << ")");
const GripperPtr_t& g(gs[iG]);
const HandlePtr_t& h(handle(iOH));
const std::string& grasp = g->name() + " grasps " + h->name();
if (!ps->numericalConstraints.has(grasp)) {
ps->createGraspConstraint(grasp, g->name(), h->name());
}
gcs[0] = ps->numericalConstraints.get(grasp);
gcs[1] = ps->numericalConstraints.get(grasp + "/complement");
const std::string& pregrasp = g->name() + " pregrasps " + h->name();
if (!ps->numericalConstraints.has(pregrasp)) {
ps->createPreGraspConstraint(pregrasp, g->name(), h->name());
}
gcs[2] = ps->numericalConstraints.get(pregrasp);
}
return gcs;
}
const Object_t& object(const index_t& iOH) const {
index_t iH = iOH;
for (const Object_t& o : ohs) {
if (iH < std::get<1>(o).size()) return o;
iH -= std::get<1>(o).size();
}
throw std::out_of_range("Handle index");
}
const HandlePtr_t& handle(const index_t& iOH) const {
index_t iH = iOH;
for (const Object_t& o : ohs) {
if (iH < std::get<1>(o).size()) return std::get<1>(o)[iH];
iH -= std::get<1>(o).size();
}
throw std::out_of_range("Handle index");
}
/// Check if an object can be placed
bool objectCanBePlaced(const Object_t& o) const {
// If the object has no joint, then it cannot be placed.
return (std::get<2>(std::get<0>(o)).size() > 0);
}
/// Check is an object is grasped by the GraspV_t
bool isObjectGrasped(const GraspV_t& idxOH, const Object_t& o) const {
assert(idxOH.size() == nG);
for (std::size_t i = 0; i < idxOH.size(); ++i)
if (idxOH[i] < nOH) // This grippers grasps an object
if (std::get<2>(o) == std::get<2>(object(idxOH[i]))) return true;
return false;
}
/// Get a state name from a set of grasps
std::string name(const GraspV_t& idxOH, bool abbrev = false) const {
assert(idxOH.size() == nG);
std::stringstream ss;
bool first = true;
std::string sepGOH = (abbrev ? "-" : " grasps "),
sep = (abbrev ? ":" : " : ");
for (std::size_t i = 0; i < idxOH.size(); ++i) {
if (idxOH[i] < nOH) { // This grippers grasps an object
if (first)
first = false;
else
ss << sep;
if (abbrev)
ss << i << sepGOH << idxOH[i];
else
ss << gs[i]->name() << sepGOH << handle(idxOH[i])->name();
}
}
if (first) return (abbrev ? "f" : "free");
return ss.str();
}
/// Get an edge name from a set of grasps
std::pair<std::string, std::string> name(const GraspV_t& gFrom,
const GraspV_t& gTo,
const index_t iG) {
const std::string nf(name(gFrom, true)), nt(name(gTo, true));
std::stringstream ssForw, ssBack;
const char sep[] = " | ";
ssForw << gs[iG]->name() << " > " << handle(gTo[iG])->name() << sep << nf;
ssBack << gs[iG]->name() << " < " << handle(gTo[iG])->name() << sep << nt;
return std::make_pair(ssForw.str(), ssBack.str());
}
std::string nameLoopEdge(const GraspV_t& gFrom) {
const std::string nf(name(gFrom, true));
std::stringstream ss;
const char sep[] = " | ";
ss << "Loop" << sep << nf;
return ss.str();
}
void graspManifold(const index_t& iG, const index_t& iOH,
FoliatedManifold& grasp, FoliatedManifold& pregrasp) {
std::array<ImplicitPtr_t, 3>& gcs = graspConstraint(iG, iOH);
grasp.nc.push_back(gcs[0]);
grasp.nc_path.push_back(gcs[0]);
if (gcs[1]->function().outputSize() > 0) grasp.nc_fol.push_back(gcs[1]);
pregrasp.nc.push_back(gcs[2]);
pregrasp.nc_path.push_back(gcs[2]);
}
};
CompiledRule::CompiledRule(const Result& res, const Rule& r)
: handles(res.nG), status(r.link_ ? Accept : Refuse) {
assert(r.grippers_.size() == r.handles_.size());
for (std::size_t j = 0; j < r.grippers_.size(); ++j) {
boost::regex gripper(r.grippers_[j]);
for (std::size_t i = 0; i < res.nG; ++i) {
if (boost::regex_match(res.gs[i]->name(), gripper)) {
assert(handles[i].empty() &&
"Two gripper regex match the different gripper names.");
handles[i] = r.handles_[j];
}
}
}
}
const StateAndManifold_t& makeState(Result& r, const GraspV_t& g,
const int priority) {
StateAndManifold_t& nam = r(g);
if (!std::get<0>(nam)) {
hppDout(info, "Creating state " << r.name(g));
std::get<0>(nam) =
r.graph->stateSelector()->createState(r.name(g), false, priority);
// Loop over the grippers and create grasping constraints if required
FoliatedManifold unused;
std::set<index_t> idxsOH;
for (index_t i = 0; i < r.nG; ++i) {
if (g[i] < r.nOH) {
idxsOH.insert(g[i]);
r.graspManifold(i, g[i], std::get<1>(nam), unused);
}
}
index_t iOH = 0;
for (const Object_t& o : r.ohs) {
if (!r.objectCanBePlaced(o)) continue;
bool oIsGrasped = false;
// TODO: use the fact that the set is sorted.
// for (const HandlePtr_t& h : std::get<0>(o))
for (index_t i = 0; i < std::get<1>(o).size(); ++i) {
if (idxsOH.erase(iOH) == 1) oIsGrasped = true;
++iOH;
}
if (!oIsGrasped) {
const auto& pc(std::get<0>(o));
relaxedPlacementManifold(std::get<0>(pc), std::get<1>(pc),
std::get<2>(pc), std::get<1>(nam), unused);
}
}
std::get<1>(nam).addToState(std::get<0>(nam));
createLoopEdge(r.nameLoopEdge(g), std::get<0>(nam), 0, false,
// TODO std::get<1>(nam).foliated(),
std::get<1>(nam));
}
return nam;
}
/// Arguments are such that
/// \li gTo[iG] != gFrom[iG]
/// \li for all i != iG, gTo[iG] == gFrom[iG]
void makeEdge(Result& r, const GraspV_t& gFrom, const GraspV_t& gTo,
const index_t iG, const int priority) {
if (r.hasEdge(gFrom, gTo)) {
hppDout(warning, "Prevented creation of duplicated edge\nfrom "
<< r.name(gFrom) << "\nto " << r.name(gTo));
return;
}
const StateAndManifold_t &from = makeState(r, gFrom, priority),
to = makeState(r, gTo, priority + 1);
const Object_t& o = r.object(gTo[iG]);
// Detect when grasping an object already grasped.
// or when there is no placement information for it.
bool noPlace = !r.objectCanBePlaced(o) || r.isObjectGrasped(gFrom, o);
FoliatedManifold grasp, pregrasp, place, preplace, submanifold;
r.graspManifold(iG, gTo[iG], grasp, pregrasp);
if (!noPlace) {
const auto& pc(std::get<0>(o));
relaxedPlacementManifold(std::get<0>(pc), std::get<1>(pc), std::get<2>(pc),
place, preplace);
}
std::pair<std::string, std::string> names = r.name(gFrom, gTo, iG);
{
FoliatedManifold unused;
std::set<index_t> idxsOH;
for (index_t i = 0; i < r.nG; ++i) {
if (gFrom[i] < r.nOH) {
idxsOH.insert(gFrom[i]);
r.graspManifold(i, gFrom[i], submanifold, unused);
}
}
index_t iOH = 0;
for (const Object_t& o : r.ohs) {
if (!r.objectCanBePlaced(o)) continue;
bool oIsGrasped = false;
const index_t iOHstart = iOH;
for (; iOH < iOHstart + std::get<1>(o).size(); ++iOH) {
if (iOH == gTo[iG]) {
oIsGrasped = true;
iOH = iOHstart + std::get<1>(o).size();
break;
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
if (idxsOH.erase(iOH) == 1) oIsGrasped = true;
}
if (!oIsGrasped) {
const auto& pc(std::get<0>(o));
relaxedPlacementManifold(std::get<0>(pc), std::get<1>(pc),
std::get<2>(pc), submanifold, unused);
}
}
}
if (pregrasp.empty()) {
if (noPlace)
createEdges<GraspOnly | NoPlace>(
names.first, names.second, std::get<0>(from), std::get<0>(to), 1, 1,
grasp, pregrasp, place, preplace, grasp.foliated(), place.foliated(),
submanifold);
else if (preplace.empty())
createEdges<GraspOnly | PlaceOnly>(
names.first, names.second, std::get<0>(from), std::get<0>(to), 1, 1,
grasp, pregrasp, place, preplace, grasp.foliated(), place.foliated(),
submanifold);
else {
hppDout(error, "GraspOnly | WithPrePlace not implemeted yet");
/*
createEdges <GraspOnly | WithPrePlace> (
names.first , names.second,
std::get<0>(from) , std::get<0>(to),
1 , 1,
grasp , pregrasp,
place , preplace,
grasp.foliated () , place.foliated(),
submanifold); // */
}
} else {
if (noPlace)
createEdges<WithPreGrasp | NoPlace>(
names.first, names.second, std::get<0>(from), std::get<0>(to), 1, 1,
grasp, pregrasp, place, preplace, grasp.foliated(), place.foliated(),
submanifold);
else if (preplace.empty())
createEdges<WithPreGrasp | PlaceOnly>(
names.first, names.second, std::get<0>(from), std::get<0>(to), 1, 1,
grasp, pregrasp, place, preplace, grasp.foliated(), place.foliated(),
submanifold);
else
createEdges<WithPreGrasp | WithPrePlace>(
names.first, names.second, std::get<0>(from), std::get<0>(to), 1, 1,
grasp, pregrasp, place, preplace, grasp.foliated(), place.foliated(),
submanifold);
}
r.addEdge(gFrom, gTo);
}
/// idx are the available grippers
void recurseGrippers(Result& r, const IndexV_t& idx_g, const IndexV_t& idx_oh,
const GraspV_t& grasps, const int depth) {
bool curGraspIsAllowed = r.graspIsAllowed(grasps);
if (curGraspIsAllowed) makeState(r, grasps, depth);
if (idx_g.empty() || idx_oh.empty()) return;
IndexV_t nIdx_g(idx_g.size() - 1);
IndexV_t nIdx_oh(idx_oh.size() - 1);
for (IndexV_t::const_iterator itx_g = idx_g.begin(); itx_g != idx_g.end();
++itx_g) {
// Copy all element except itx_g
std::copy(std::next(itx_g), idx_g.end(),
std::copy(idx_g.begin(), itx_g, nIdx_g.begin()));
for (IndexV_t::const_iterator itx_oh = idx_oh.begin();
itx_oh != idx_oh.end(); ++itx_oh) {
// Create the edge for the selected grasp
GraspV_t nGrasps = grasps;
nGrasps[*itx_g] = *itx_oh;
bool nextGraspIsAllowed = r.graspIsAllowed(nGrasps);
if (nextGraspIsAllowed) makeState(r, nGrasps, depth + 1);
if (curGraspIsAllowed && nextGraspIsAllowed)
makeEdge(r, grasps, nGrasps, *itx_g, depth);
// Copy all element except itx_oh
std::copy(std::next(itx_oh), idx_oh.end(),
std::copy(idx_oh.begin(), itx_oh, nIdx_oh.begin()));
// Do all the possible combination below this new grasp
recurseGrippers(r, nIdx_g, nIdx_oh, nGrasps, depth + 2);
}
}
}
} // namespace
void graphBuilder(const ProblemSolverPtr_t& ps, const Objects_t& objects,
const Grippers_t& grippers, GraphPtr_t graph,
const Rules_t& rules) {
if (!graph) throw std::logic_error("The graph must be initialized");
StateSelectorPtr_t ns = graph->stateSelector();
if (!ns) throw std::logic_error("The graph does not have a StateSelector");
Result r(ps, grippers, objects, graph);
r.setRules(rules);
IndexV_t availG(r.nG), availOH(r.nOH);
for (index_t i = 0; i < r.nG; ++i) availG[i] = i;
for (index_t i = 0; i < r.nOH; ++i) availOH[i] = i;
GraspV_t iG(r.nG, r.nOH);
recurseGrippers(r, availG, availOH, iG, 0);
hppDout(info, "Created a graph with " << r.states.size()
<< " states "
"and "
<< r.edges.size() << " edges.");
}
GraphPtr_t graphBuilder(const ProblemSolverPtr_t& ps,
const std::string& graphName, const Strings_t& griNames,
const std::vector<ObjectDef_t>& objs,
const Strings_t& envNames,
const std::vector<Rule>& rules,
const value_type& prePlaceWidth) {
if (ps->graphs.has(graphName))
throw std::invalid_argument("A graph named " + graphName +
" already exists.");
const Device& robot = *(ps->robot());
const pinocchio::Model& model = robot.model();
Grippers_t grippers(griNames.size());
index_t i = 0;
for (const std::string& gn : griNames) {
grippers[i] = robot.grippers.get(gn);
++i;
}
Objects_t objects(objs.size());
i = 0;
const value_type margin = 1e-3;
bool prePlace = (prePlaceWidth > 0);
for (const ObjectDef_t& od : objs) {
// Create handles
std::get<2>(objects[i]) = i;
std::get<1>(objects[i]).resize(od.handles.size());
Handles_t::iterator it = std::get<1>(objects[i]).begin();
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
*it = robot.handles.get(hn);
++it;
}
// Create placement
const std::string placeN = "place_" + od.name;
const std::string preplaceN = "pre" + placeN;
// If user provides constraint "place_objectName",
// then
// use this as placement and use "preplace_objectName" for
// pre-placement if defined.
// else if contact surfaces are defined and selected
// create default placement constraint using the ProblemSolver
// methods createPlacementConstraint and createPrePlacementConstraint
auto& pc(std::get<0>(objects[i]));
if (ps->numericalConstraints.has(placeN)) {
std::get<0>(pc) = ps->numericalConstraints.get(placeN);
if (ps->numericalConstraints.has(preplaceN)) {
std::get<1>(pc) = ps->numericalConstraints.get(preplaceN);
}
} else if (!envNames.empty() && !od.shapes.empty()) {
ps->createPlacementConstraint(placeN, od.shapes, envNames, margin);
std::get<0>(pc) = ps->numericalConstraints.get(placeN);
if (prePlace) {
ps->createPrePlacementConstraint(preplaceN, od.shapes, envNames, margin,
prePlaceWidth);
std::get<1>(pc) = ps->numericalConstraints.get(preplaceN);
}
}
// Create object lock
// Loop over all frames of object, detect joint and create locked
// joint.
assert(robot.robotFrames(od.name).size() != 0);
for (const FrameIndex& f : robot.robotFrames(od.name)) {
if (model.frames[f].type != ::pinocchio::JOINT) continue;
const JointIndex j = model.frames[f].parent;
JointPtr_t oj(Joint::create(ps->robot(), j));
LiegroupSpacePtr_t space(oj->configurationSpace());
LiegroupElement lge(robot.currentConfiguration().segment(
oj->rankInConfiguration(), oj->configSize()),
space);
LockedJointPtr_t lj = core::LockedJoint::create(oj, lge);
ps->numericalConstraints.add("lock_" + oj->name(), lj);
std::get<2>(pc).push_back(lj);
}