Newer
Older
from __future__ import print_function
from geometry import *
import numpy as np
from numpy import cos,sin
if issubclass(a.__class__,np.ndarray) and issubclass(b.__class__,np.ndarray):
return np.allclose(a,b,epsilon)
else:
return abs(a-b)<epsilon
# --- Quaternion ---------------------------------------------------------------
q = Quaternion(1,2,3,4)
q.normalize()
assert(isapprox(np.linalg.norm(q.coeffs()),q.norm()))
assert(isapprox(np.linalg.norm(q.coeffs()),1))
r = AngleAxis(q)
q2 = Quaternion(r)
assert(q2.isApprox(q2))
assert(q2.isApprox(q2,1e-2))
assert(isapprox(Rq*Rq.T,np.eye(3)))
assert(isapprox(Rr,Rq))
qR = Quaternion(Rr)
assert(isapprox(q.coeffs(),qR.coeffs()))
assert(isapprox(qR[3],1./np.sqrt(30)))
try:
qR[5]
print("Error, this message should not appear.")
except RuntimeError as e:
if verbose: print("As expected, catched exception: ",e)
# --- Angle Vector ------------------------------------------------
r = AngleAxis(.1,np.matrix([1,0,0],np.double).T)
if verbose: print("Rx(.1) = \n\n",r.matrix(),"\n")
assert( isapprox(r.matrix()[2,2],cos(r.angle)))
assert( isapprox(r.axis,np.matrix("1;0;0")) )
assert(r.isApprox(r))
assert(r.isApprox(r,1e-2))
assert( isapprox(r.matrix()[0,0],cos(r.angle)))
ri = r.inverse()
assert( isapprox(ri.angle,-.1) )
R = r.matrix()
r2 = AngleAxis(np.dot(R,R))
assert( isapprox(r2.angle,r.angle*2) )
# --- USER FUNCTIONS -----------------------------------------------------------
ro = testOutAngleAxis()
assert(ro.__class__ == AngleAxis)
res = testInAngleAxis(r)
assert( res==r.angle )
qo = testOutQuaternion()
assert(qo.__class__ == Quaternion)