Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
S
Sobolev Experiments
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Amit Parag
Sobolev Experiments
Commits
7164920e
Commit
7164920e
authored
4 years ago
by
Nicolas Mansard
Committed by
Nicolas Mansard
4 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Introduced minor modification in a copy of sobolev, toward debuging it.
parent
771bd3e9
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
sobolev_grad.py
+130
-0
130 additions, 0 deletions
sobolev_grad.py
sobolev_training.py
+35
-15
35 additions, 15 deletions
sobolev_training.py
with
165 additions
and
15 deletions
sobolev_grad.py
0 → 100644
+
130
−
0
View file @
7164920e
# A minimal implemetation of sobolev training
import
numpy
as
np
import
torch
from
neural_network
import
Model
from
datagen
import
dataGenerator
import
torch.autograd.functional
as
F
import
matplotlib.pyplot
as
plt
# ..............................................................................
EPOCHS
=
50000
# Number of Epochs
lr
=
1e-3
# Learning rate
number_of_batches
=
1
# Number of batches per epoch
function_name
=
'
simple_bumps
'
# See datagen.py or function_definitions.py for other functions to use
number_of_data_points
=
5
#.............................................................................
X
,
Y
,
DY
,
D2Y
=
dataGenerator
(
function_name
,
number_of_data_points
)
dataset
=
torch
.
utils
.
data
.
TensorDataset
(
X
,
Y
,
DY
,
D2Y
)
dataloader
=
torch
.
utils
.
data
.
DataLoader
(
dataset
,
batch_size
=
number_of_data_points
//
number_of_batches
,
shuffle
=
True
,
num_workers
=
4
)
network
=
Model
(
ninput
=
X
.
shape
[
1
])
optimizer
=
torch
.
optim
.
Adam
(
params
=
network
.
parameters
(),
lr
=
lr
)
epoch_loss_in_value
=
[]
epoch_loss_in_der1
=
[]
epoch_loss_in_der2
=
[]
for
epoch
in
range
(
EPOCHS
):
network
.
train
()
batch_loss_in_value
=
0
batch_loss_in_der1
=
0
batch_loss_in_der2
=
0
for
idx
,(
data
)
in
enumerate
(
dataloader
):
x
,
y
,
dy
,
d2y
=
data
y_hat
=
network
(
x
)
dy_hat
=
torch
.
vstack
(
[
F
.
jacobian
(
network
,
state
).
squeeze
()
for
state
in
x
]
)
# Gradient of net
#d2y_hat = torch.stack( [ F.hessian(network, state).squeeze() for state in x ] ) # Hessian of net
loss1
=
torch
.
nn
.
functional
.
mse_loss
(
y_hat
,
y
)
loss2
=
torch
.
nn
.
functional
.
mse_loss
(
dy_hat
,
dy
)
loss3
=
0
#torch.nn.functional.mse_loss(d2y_hat, d2y)
loss
=
loss1
+
10
*
loss2
+
loss3
# Can add a sobolev factor to give weight to each loss term.
# But it does not really change anything
optimizer
.
zero_grad
()
loss
.
backward
()
optimizer
.
step
()
batch_loss_in_value
+=
loss1
.
item
()
batch_loss_in_der1
+=
loss2
.
item
()
#batch_loss_in_der2 += loss3.item()
epoch_loss_in_value
.
append
(
batch_loss_in_value
/
number_of_batches
)
epoch_loss_in_der1
.
append
(
batch_loss_in_der1
/
number_of_batches
)
#epoch_loss_in_der2.append( batch_loss_in_der2 / number_of_batches )
if
epoch
%
10
==
0
:
print
(
f
"
EPOCH :
{
epoch
}
"
)
print
(
f
"
Loss Values:
{
loss1
.
item
()
}
, Loss Grad :
{
loss2
.
item
()
}
"
)
#, Loss Hessian : {loss3.item()}")
plt
.
ion
()
fig
,
(
ax1
,
ax2
,
ax3
)
=
plt
.
subplots
(
1
,
3
)
fig
.
suptitle
(
function_name
.
upper
())
ax1
.
semilogy
(
range
(
len
(
epoch_loss_in_value
)),
epoch_loss_in_value
,
c
=
"
red
"
)
#ax2.semilogy(range(len(epoch_loss_in_der1)), epoch_loss_in_der1, c = "green")
#ax3.semilogy(range(len(epoch_loss_in_der2)), epoch_loss_in_der2, c = "orange")
ax1
.
set
(
title
=
'
Loss in Value
'
)
ax2
.
set
(
title
=
'
Loss in Gradient
'
)
ax3
.
set
(
title
=
'
Loss in Hessian
'
)
ax1
.
set_ylabel
(
'
Loss
'
)
ax1
.
set_xlabel
(
'
Epochs
'
)
ax2
.
set_xlabel
(
'
Epochs
'
)
ax3
.
set_xlabel
(
'
Epochs
'
)
fig
.
tight_layout
()
#plt.savefig((f"./images/{function_name}.png"))
#plt.show()
#xplt,yplt,dyplt,_ = dataGenerator(function_name, 10000)
#np.save('plt2.npy',{ "x": xplt.numpy(),"y": yplt.numpy(),"dy": dyplt.numpy()})
LOAD
=
np
.
load
(
'
plt2.npy
'
,
allow_pickle
=
True
).
flat
[
0
]
xplt
=
torch
.
tensor
(
LOAD
[
'
x
'
])
yplt
=
torch
.
tensor
(
LOAD
[
'
y
'
])
dyplt
=
torch
.
tensor
(
LOAD
[
'
dy
'
])
ypred
=
network
(
xplt
)
plt
.
figure
()
plt
.
subplot
(
131
)
plt
.
scatter
(
xplt
[:,
0
],
xplt
[:,
1
],
c
=
yplt
[:,
0
])
plt
.
subplot
(
132
)
plt
.
scatter
(
xplt
[:,
0
],
xplt
[:,
1
],
c
=
ypred
[:,
0
].
detach
())
plt
.
subplot
(
133
)
plt
.
scatter
(
xplt
[:,
0
],
xplt
[:,
1
],
c
=
(
ypred
-
yplt
)[:,
0
].
detach
())
plt
.
colorbar
()
This diff is collapsed.
Click to expand it.
sobolev_training.py
+
35
−
15
View file @
7164920e
...
@@ -13,14 +13,14 @@ import matplotlib.pyplot as plt
...
@@ -13,14 +13,14 @@ import matplotlib.pyplot as plt
EPOCHS
=
500
# Number of Epochs
EPOCHS
=
500
00
# Number of Epochs
lr
=
1e-3
# Learning rate
lr
=
1e-3
# Learning rate
number_of_batches
=
1
0
# Number of batches per epoch
number_of_batches
=
1
# Number of batches per epoch
function_name
=
'
ackley
'
# See datagen.py or function_definitions.py for other functions to use
function_name
=
'
simple_bumps
'
# See datagen.py or function_definitions.py for other functions to use
number_of_data_points
=
200
number_of_data_points
=
5
...
@@ -36,7 +36,7 @@ dataloader = torch.utils.data.DataLoader(dataset, batch_size = number
...
@@ -36,7 +36,7 @@ dataloader = torch.utils.data.DataLoader(dataset, batch_size = number
shuffle
=
True
,
num_workers
=
4
)
shuffle
=
True
,
num_workers
=
4
)
network
=
Model
()
network
=
Model
(
ninput
=
X
.
shape
[
1
]
)
optimizer
=
torch
.
optim
.
Adam
(
params
=
network
.
parameters
(),
lr
=
lr
)
optimizer
=
torch
.
optim
.
Adam
(
params
=
network
.
parameters
(),
lr
=
lr
)
...
@@ -60,14 +60,14 @@ for epoch in range(EPOCHS):
...
@@ -60,14 +60,14 @@ for epoch in range(EPOCHS):
y_hat
=
network
(
x
)
y_hat
=
network
(
x
)
dy_hat
=
torch
.
vstack
(
[
F
.
jacobian
(
network
,
state
).
squeeze
()
for
state
in
x
]
)
# Gradient of net
dy_hat
=
torch
.
vstack
(
[
F
.
jacobian
(
network
,
state
).
squeeze
()
for
state
in
x
]
)
# Gradient of net
d2y_hat
=
torch
.
stack
(
[
F
.
hessian
(
network
,
state
).
squeeze
()
for
state
in
x
]
)
# Hessian of net
#
d2y_hat = torch.stack( [ F.hessian(network, state).squeeze() for state in x ] ) # Hessian of net
loss1
=
torch
.
nn
.
functional
.
mse_loss
(
y_hat
,
y
)
loss1
=
torch
.
nn
.
functional
.
mse_loss
(
y_hat
,
y
)
loss2
=
torch
.
nn
.
functional
.
mse_loss
(
dy_hat
,
dy
)
loss2
=
torch
.
nn
.
functional
.
mse_loss
(
dy_hat
,
dy
)
loss3
=
torch
.
nn
.
functional
.
mse_loss
(
d2y_hat
,
d2y
)
loss3
=
0
#
torch.nn.functional.mse_loss(d2y_hat, d2y)
loss
=
loss1
+
loss2
+
loss3
# Can add a sobolev factor to give weight to each loss term.
loss
=
loss1
+
10
*
loss2
+
loss3
# Can add a sobolev factor to give weight to each loss term.
# But it does not really change anything
# But it does not really change anything
optimizer
.
zero_grad
()
optimizer
.
zero_grad
()
loss
.
backward
()
loss
.
backward
()
...
@@ -75,24 +75,25 @@ for epoch in range(EPOCHS):
...
@@ -75,24 +75,25 @@ for epoch in range(EPOCHS):
batch_loss_in_value
+=
loss1
.
item
()
batch_loss_in_value
+=
loss1
.
item
()
batch_loss_in_der1
+=
loss2
.
item
()
batch_loss_in_der1
+=
loss2
.
item
()
batch_loss_in_der2
+=
loss3
.
item
()
#
batch_loss_in_der2 += loss3.item()
epoch_loss_in_value
.
append
(
batch_loss_in_value
/
number_of_batches
)
epoch_loss_in_value
.
append
(
batch_loss_in_value
/
number_of_batches
)
epoch_loss_in_der1
.
append
(
batch_loss_in_der1
/
number_of_batches
)
epoch_loss_in_der1
.
append
(
batch_loss_in_der1
/
number_of_batches
)
epoch_loss_in_der2
.
append
(
batch_loss_in_der2
/
number_of_batches
)
#
epoch_loss_in_der2.append( batch_loss_in_der2 / number_of_batches )
if
epoch
%
10
==
0
:
if
epoch
%
10
==
0
:
print
(
f
"
EPOCH :
{
epoch
}
"
)
print
(
f
"
EPOCH :
{
epoch
}
"
)
print
(
f
"
Loss Values:
{
loss1
.
item
()
}
, Loss Grad :
{
loss2
.
item
()
}
, Loss Hessian :
{
loss3
.
item
()
}
"
)
print
(
f
"
Loss Values:
{
loss1
.
item
()
}
, Loss Grad :
{
loss2
.
item
()
}
"
)
#
, Loss Hessian : {loss3.item()}")
plt
.
ion
()
fig
,
(
ax1
,
ax2
,
ax3
)
=
plt
.
subplots
(
1
,
3
)
fig
,
(
ax1
,
ax2
,
ax3
)
=
plt
.
subplots
(
1
,
3
)
fig
.
suptitle
(
function_name
.
upper
())
fig
.
suptitle
(
function_name
.
upper
())
ax1
.
semilogy
(
range
(
len
(
epoch_loss_in_value
)),
epoch_loss_in_value
,
c
=
"
red
"
)
ax1
.
semilogy
(
range
(
len
(
epoch_loss_in_value
)),
epoch_loss_in_value
,
c
=
"
red
"
)
ax2
.
semilogy
(
range
(
len
(
epoch_loss_in_der1
)),
epoch_loss_in_der1
,
c
=
"
green
"
)
#
ax2.semilogy(range(len(epoch_loss_in_der1)), epoch_loss_in_der1, c = "green")
ax3
.
semilogy
(
range
(
len
(
epoch_loss_in_der2
)),
epoch_loss_in_der2
,
c
=
"
orange
"
)
#
ax3.semilogy(range(len(epoch_loss_in_der2)), epoch_loss_in_der2, c = "orange")
ax1
.
set
(
title
=
'
Loss in Value
'
)
ax1
.
set
(
title
=
'
Loss in Value
'
)
ax2
.
set
(
title
=
'
Loss in Gradient
'
)
ax2
.
set
(
title
=
'
Loss in Gradient
'
)
...
@@ -106,5 +107,24 @@ ax3.set_xlabel('Epochs')
...
@@ -106,5 +107,24 @@ ax3.set_xlabel('Epochs')
fig
.
tight_layout
()
fig
.
tight_layout
()
plt
.
savefig
((
f
"
./images/
{
function_name
}
.png
"
))
#plt.savefig((f"./images/{function_name}.png"))
plt
.
show
()
#plt.show()
#xplt,yplt,dyplt,_ = dataGenerator(function_name, 10000)
#np.save('plt2.npy',{ "x": xplt.numpy(),"y": yplt.numpy(),"dy": dyplt.numpy()})
LOAD
=
np
.
load
(
'
plt2.npy
'
,
allow_pickle
=
True
).
flat
[
0
]
xplt
=
torch
.
tensor
(
LOAD
[
'
x
'
])
yplt
=
torch
.
tensor
(
LOAD
[
'
y
'
])
dyplt
=
torch
.
tensor
(
LOAD
[
'
dy
'
])
ypred
=
network
(
xplt
)
plt
.
figure
()
plt
.
subplot
(
131
)
plt
.
scatter
(
xplt
[:,
0
],
xplt
[:,
1
],
c
=
yplt
[:,
0
])
plt
.
subplot
(
132
)
plt
.
scatter
(
xplt
[:,
0
],
xplt
[:,
1
],
c
=
ypred
[:,
0
].
detach
())
plt
.
subplot
(
133
)
plt
.
scatter
(
xplt
[:,
0
],
xplt
[:,
1
],
c
=
(
ypred
-
yplt
)[:,
0
].
detach
())
plt
.
colorbar
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment