Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • jcarpent/eigenpy
  • gsaurel/eigenpy
  • stack-of-tasks/eigenpy
3 results
Show changes
Showing
with 781 additions and 202 deletions
/// Copyright 2023 LAAS-CNRS, INRIA
#include <eigenpy/eigenpy.hpp>
using std::shared_ptr;
namespace bp = boost::python;
// fwd declaration
struct MyVirtualData;
/// A virtual class with two pure virtual functions taking different signatures,
/// and a polymorphic factory function.
struct MyVirtualClass {
MyVirtualClass() {}
virtual ~MyVirtualClass() {}
// polymorphic fn taking arg by shared_ptr
virtual void doSomethingPtr(shared_ptr<MyVirtualData> const &data) const = 0;
// polymorphic fn taking arg by reference
virtual void doSomethingRef(MyVirtualData &data) const = 0;
virtual shared_ptr<MyVirtualData> createData() const {
return std::make_shared<MyVirtualData>(*this);
}
};
struct MyVirtualData {
MyVirtualData(MyVirtualClass const &) {}
virtual ~MyVirtualData() {} // virtual dtor to mark class as polymorphic
};
shared_ptr<MyVirtualData> callDoSomethingPtr(const MyVirtualClass &obj) {
auto d = obj.createData();
printf("Created MyVirtualData with address %p\n", (void *)d.get());
obj.doSomethingPtr(d);
return d;
}
shared_ptr<MyVirtualData> callDoSomethingRef(const MyVirtualClass &obj) {
auto d = obj.createData();
printf("Created MyVirtualData with address %p\n", (void *)d.get());
obj.doSomethingRef(*d);
return d;
}
void throw_virtual_not_implemented_error() {
throw std::runtime_error("Called C++ virtual function.");
}
/// Wrapper classes
struct VirtualClassWrapper : MyVirtualClass, bp::wrapper<MyVirtualClass> {
void doSomethingPtr(shared_ptr<MyVirtualData> const &data) const override {
if (bp::override fo = this->get_override("doSomethingPtr")) {
/// shared_ptr HAS to be passed by value.
/// Boost.Python's argument converter has the wrong behaviour for
/// reference_wrapper<shared_ptr<T>>, so boost::ref(data) does not work.
fo(data);
return;
}
throw_virtual_not_implemented_error();
}
/// The data object is passed by mutable reference to this function,
/// and wrapped in a @c boost::reference_wrapper when passed to the override.
/// Otherwise, Boost.Python's argument converter will convert to Python by
/// value and create a copy.
void doSomethingRef(MyVirtualData &data) const override {
if (bp::override fo = this->get_override("doSomethingRef")) {
fo(boost::ref(data));
return;
}
throw_virtual_not_implemented_error();
}
shared_ptr<MyVirtualData> createData() const override {
if (bp::override fo = this->get_override("createData")) {
bp::object result = fo().as<bp::object>();
return bp::extract<shared_ptr<MyVirtualData> >(result);
}
return default_createData();
}
shared_ptr<MyVirtualData> default_createData() const {
return MyVirtualClass::createData();
}
};
/// This "trampoline class" does nothing but is ABSOLUTELY required to ensure
/// downcasting works properly with non-smart ptr signatures. Otherwise,
/// there is no handle to the original Python object ( @c PyObject *).
/// Every single polymorphic type exposed to Python should be exposed through
/// such a trampoline. Users can also create their own wrapper classes by taking
/// inspiration from boost::python::wrapper<T>.
struct DataWrapper : MyVirtualData, bp::wrapper<MyVirtualData> {
/// we have to use-declare non-defaulted constructors
/// (see https://en.cppreference.com/w/cpp/language/default_constructor)
/// or define them manually.
using MyVirtualData::MyVirtualData;
};
/// Take and return a const reference
const MyVirtualData &iden_ref(const MyVirtualData &d) {
// try cast to holder
return d;
}
/// Take a shared_ptr (by const reference or value, doesn't matter), return by
/// const reference
const MyVirtualData &iden_shared(const shared_ptr<MyVirtualData> &d) {
// get boost.python's custom deleter
// boost.python hides the handle to the original object in there
// dter being nonzero indicates shared_ptr was wrapped by Boost.Python
auto *dter = std::get_deleter<bp::converter::shared_ptr_deleter>(d);
if (dter != 0) printf("> input shared_ptr has a deleter\n");
return *d;
}
/// Take and return a shared_ptr
shared_ptr<MyVirtualData> copy_shared(const shared_ptr<MyVirtualData> &d) {
auto *dter = std::get_deleter<bp::converter::shared_ptr_deleter>(d);
if (dter != 0) printf("> input shared_ptr has a deleter\n");
return d;
}
BOOST_PYTHON_MODULE(bind_virtual_factory) {
assert(std::is_polymorphic<MyVirtualClass>::value &&
"MyVirtualClass should be polymorphic!");
assert(std::is_polymorphic<MyVirtualData>::value &&
"MyVirtualData should be polymorphic!");
bp::class_<VirtualClassWrapper, boost::noncopyable>(
"MyVirtualClass", bp::init<>(bp::args("self")))
.def("doSomething", bp::pure_virtual(&MyVirtualClass::doSomethingPtr),
bp::args("self", "data"))
.def("doSomethingRef", bp::pure_virtual(&MyVirtualClass::doSomethingRef),
bp::args("self", "data"))
.def("createData", &MyVirtualClass::createData,
&VirtualClassWrapper::default_createData, bp::args("self"));
bp::register_ptr_to_python<shared_ptr<MyVirtualData> >();
/// Trampoline used as 1st argument
/// otherwise if passed as "HeldType", we need to define
/// the constructor and call initializer manually.
bp::class_<DataWrapper, boost::noncopyable>("MyVirtualData", bp::no_init)
.def(bp::init<MyVirtualClass const &>(bp::args("self", "model")));
bp::def("callDoSomethingPtr", callDoSomethingPtr, bp::args("obj"));
bp::def("callDoSomethingRef", callDoSomethingRef, bp::args("obj"));
bp::def("iden_ref", iden_ref, bp::return_internal_reference<>());
bp::def("iden_shared", iden_shared, bp::return_internal_reference<>());
bp::def("copy_shared", copy_shared);
}
...@@ -4,76 +4,84 @@ ...@@ -4,76 +4,84 @@
#include "eigenpy/eigenpy.hpp" #include "eigenpy/eigenpy.hpp"
namespace Eigen namespace Eigen {
{ #define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ /** \ingroup matrixtypedefs */ \
/** \ingroup matrixtypedefs */ \ typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \ /** \ingroup matrixtypedefs */ \
/** \ingroup matrixtypedefs */ \ typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \ /** \ingroup matrixtypedefs */ \
/** \ingroup matrixtypedefs */ \ typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \ #define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
/** \ingroup matrixtypedefs */ \ /** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix; \ typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix; \
/** \ingroup matrixtypedefs */ \ /** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix; typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix;
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ #define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \ EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \ EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \ EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4) EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(long double, ld) EIGEN_MAKE_TYPEDEFS_ALL_SIZES(long double, ld)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<long double>, cld) EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<long double>, cld)
#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES #undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_TYPEDEFS #undef EIGEN_MAKE_TYPEDEFS
#undef EIGEN_MAKE_FIXED_TYPEDEFS #undef EIGEN_MAKE_FIXED_TYPEDEFS
} } // namespace Eigen
template<typename ComplexMatrix> template <typename ComplexMatrix>
typename Eigen::Matrix<typename ComplexMatrix::RealScalar,ComplexMatrix::RowsAtCompileTime,ComplexMatrix::ColsAtCompileTime,ComplexMatrix::Options> typename Eigen::Matrix<typename ComplexMatrix::RealScalar,
real(const Eigen::MatrixBase<ComplexMatrix> & complex_mat) ComplexMatrix::RowsAtCompileTime,
{ ComplexMatrix::ColsAtCompileTime, ComplexMatrix::Options>
real(const Eigen::MatrixBase<ComplexMatrix> &complex_mat) {
return complex_mat.real(); return complex_mat.real();
} }
template<typename ComplexMatrix> template <typename ComplexMatrix>
typename Eigen::Matrix<typename ComplexMatrix::RealScalar,ComplexMatrix::RowsAtCompileTime,ComplexMatrix::ColsAtCompileTime,ComplexMatrix::Options> typename Eigen::Matrix<typename ComplexMatrix::RealScalar,
imag(const Eigen::MatrixBase<ComplexMatrix> & complex_mat) ComplexMatrix::RowsAtCompileTime,
{ ComplexMatrix::ColsAtCompileTime, ComplexMatrix::Options>
imag(const Eigen::MatrixBase<ComplexMatrix> &complex_mat) {
return complex_mat.imag(); return complex_mat.imag();
} }
template<typename Scalar, int Rows, int Cols, int Options> template <typename Scalar, int Rows, int Cols, int Options>
Eigen::Matrix<std::complex<Scalar>,Rows,Cols,Options> Eigen::Matrix<std::complex<Scalar>, Rows, Cols, Options> ascomplex(
ascomplex(const Eigen::Matrix<Scalar,Rows,Cols,Options> & mat) const Eigen::Matrix<Scalar, Rows, Cols, Options> &mat) {
{ typedef Eigen::Matrix<std::complex<Scalar>, Rows, Cols, Options> ReturnType;
typedef Eigen::Matrix<std::complex<Scalar>,Rows,Cols,Options> ReturnType;
return ReturnType(mat.template cast<std::complex<Scalar> >()); return ReturnType(mat.template cast<std::complex<Scalar> >());
} }
BOOST_PYTHON_MODULE(complex) BOOST_PYTHON_MODULE(complex) {
{
using namespace Eigen; using namespace Eigen;
namespace bp = boost::python; namespace bp = boost::python;
eigenpy::enableEigenPy(); eigenpy::enableEigenPy();
bp::def("ascomplex", ascomplex<float,Eigen::Dynamic,Eigen::Dynamic,0>); bp::def("ascomplex", ascomplex<float, Eigen::Dynamic, Eigen::Dynamic, 0>);
bp::def("ascomplex", ascomplex<double,Eigen::Dynamic,Eigen::Dynamic,0>); bp::def("ascomplex", ascomplex<double, Eigen::Dynamic, Eigen::Dynamic, 0>);
bp::def("ascomplex", ascomplex<long double,Eigen::Dynamic,Eigen::Dynamic,0>); bp::def("ascomplex",
ascomplex<long double, Eigen::Dynamic, Eigen::Dynamic, 0>);
bp::def("real", (MatrixXf (*)(const Eigen::MatrixBase<MatrixXcf> &))&real<MatrixXcf>);
bp::def("real", (MatrixXd (*)(const Eigen::MatrixBase<MatrixXcd> &))&real<MatrixXcd>); bp::def("real",
bp::def("real", (MatrixXld (*)(const Eigen::MatrixBase<MatrixXcld> &))&real<MatrixXcld>); (MatrixXf(*)(const Eigen::MatrixBase<MatrixXcf> &))&real<MatrixXcf>);
bp::def("real",
bp::def("imag", (MatrixXf (*)(const Eigen::MatrixBase<MatrixXcf> &))&imag<MatrixXcf>); (MatrixXd(*)(const Eigen::MatrixBase<MatrixXcd> &))&real<MatrixXcd>);
bp::def("imag", (MatrixXd (*)(const Eigen::MatrixBase<MatrixXcd> &))&imag<MatrixXcd>); bp::def(
bp::def("imag", (MatrixXld (*)(const Eigen::MatrixBase<MatrixXcld> &))&imag<MatrixXcld>); "real",
(MatrixXld(*)(const Eigen::MatrixBase<MatrixXcld> &))&real<MatrixXcld>);
bp::def("imag",
(MatrixXf(*)(const Eigen::MatrixBase<MatrixXcf> &))&imag<MatrixXcf>);
bp::def("imag",
(MatrixXd(*)(const Eigen::MatrixBase<MatrixXcd> &))&imag<MatrixXcd>);
bp::def(
"imag",
(MatrixXld(*)(const Eigen::MatrixBase<MatrixXcld> &))&imag<MatrixXcld>);
} }
#include "eigenpy/eigenpy.hpp"
#include "eigenpy/deprecation-policy.hpp"
#include <iostream>
namespace bp = boost::python;
using eigenpy::DeprecationType;
void some_deprecated_function() {
std::cout << "Calling this should produce a warning" << std::endl;
}
void some_future_deprecated_function() {
std::cout
<< "Calling this should produce a warning about a future deprecation"
<< std::endl;
}
class X {
public:
void deprecated_member_function() {}
};
BOOST_PYTHON_MODULE(deprecation_policy) {
bp::def("some_deprecated_function", some_deprecated_function,
eigenpy::deprecated_function<DeprecationType::DEPRECATION>());
bp::def("some_future_deprecated_function", some_future_deprecated_function,
eigenpy::deprecated_function<DeprecationType::FUTURE>());
bp::class_<X>("X", bp::init<>(bp::args("self")))
.def("deprecated_member_function", &X::deprecated_member_function,
eigenpy::deprecated_member<>());
}
/* /*
* Copyright 2014-2019, CNRS * Copyright 2014-2019, CNRS
* Copyright 2018-2020, INRIA * Copyright 2018-2022, INRIA
*/ */
#include "eigenpy/eigenpy.hpp"
#include <iostream> #include <iostream>
#include "eigenpy/eigenpy.hpp"
#include "eigenpy/eigen-from-python.hpp"
using namespace Eigen; using namespace Eigen;
using namespace eigenpy; using namespace eigenpy;
template<typename MatType> template <typename MatType>
void printMatrix(const Eigen::Ref<const MatType> mat) void printMatrix(const Eigen::Ref<const MatType> mat) {
{ if (MatType::IsVectorAtCompileTime) std::cout << "isVector" << std::endl;
if(MatType::IsVectorAtCompileTime) std::cout << "input size: cols " << mat.cols() << " rows " << mat.rows()
std::cout << "isVector" << std::endl; << std::endl;
std::cout << "size: cols " << mat.cols() << " rows " << mat.rows() << std::endl;
std::cout << mat << std::endl; std::cout << mat << std::endl;
} }
template<typename VecType> template <typename VecType>
void printVector(const Eigen::Ref<const VecType> & vec) void printVector(const Eigen::Ref<const VecType>& vec) {
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VecType); EIGEN_STATIC_ASSERT_VECTOR_ONLY(VecType);
printMatrix(vec); printMatrix(vec);
} }
template<typename MatType> template <typename MatType>
void setOnes(Eigen::Ref<MatType> mat) void setOnes(Eigen::Ref<MatType> mat) {
{
mat.setOnes(); mat.setOnes();
} }
template<typename MatType> template <typename VecType>
void fill(Eigen::Ref<MatType> mat, const typename MatType::Scalar & value) VecType copyVectorFromConstRef(const Eigen::Ref<const VecType> vec) {
{ std::cout << "copyVectorFromConstRef::vec: " << vec.transpose() << std::endl;
return VecType(vec);
}
template <typename MatType>
Eigen::Ref<MatType> getBlock(Eigen::Ref<MatType> mat, Eigen::DenseIndex i,
Eigen::DenseIndex j, Eigen::DenseIndex n,
Eigen::DenseIndex m) {
return mat.block(i, j, n, m);
}
template <typename MatType>
Eigen::Ref<MatType> editBlock(Eigen::Ref<MatType> mat, Eigen::DenseIndex i,
Eigen::DenseIndex j, Eigen::DenseIndex n,
Eigen::DenseIndex m) {
typename Eigen::Ref<MatType>::BlockXpr B = mat.block(i, j, n, m);
int k = 0;
for (int i = 0; i < B.rows(); ++i) {
for (int j = 0; j < B.cols(); ++j) {
B(i, j) = k++;
}
}
std::cout << "B:\n" << B << std::endl;
return mat;
}
template <typename MatType>
void fill(Eigen::Ref<MatType> mat, const typename MatType::Scalar& value) {
mat.fill(value); mat.fill(value);
} }
template<typename MatType> /// Get ref to a static matrix of size ( @p rows, @p cols )
Eigen::Ref<MatType> asRef(const int rows, const int cols) template <typename MatType>
{ Eigen::Ref<MatType> getRefToStatic(const int rows, const int cols) {
static MatType mat(rows,cols); static MatType mat(rows, cols);
std::cout << "mat:\n" << mat << std::endl; std::cout << "create ref to matrix of size (" << rows << "," << cols << ")\n";
return mat; return mat;
} }
BOOST_PYTHON_MODULE(eigen_ref) template <typename MatType>
{ Eigen::Ref<MatType> asRef(Eigen::Ref<MatType> mat) {
std::cout << "create Ref to input mutable Ref\n";
return Eigen::Ref<MatType>(mat);
}
template <typename MatType>
const Eigen::Ref<const MatType> asConstRef(Eigen::Ref<const MatType> mat) {
return Eigen::Ref<const MatType>(mat);
}
struct modify_block {
MatrixXd J;
modify_block() : J(10, 10) { J.setZero(); }
void modify(int n, int m) { call(J.topLeftCorner(n, m)); }
virtual void call(Eigen::Ref<MatrixXd> mat) = 0;
};
struct modify_block_wrap : modify_block, bp::wrapper<modify_block> {
modify_block_wrap() : modify_block() {}
void call(Eigen::Ref<MatrixXd> mat) { this->get_override("call")(mat); }
};
struct has_ref_member {
MatrixXd J;
Eigen::Ref<MatrixXd> Jref;
has_ref_member() : J(4, 4), Jref(J.topRightCorner(3, 3)) { J.setZero(); }
};
BOOST_PYTHON_MODULE(eigen_ref) {
namespace bp = boost::python; namespace bp = boost::python;
eigenpy::enableEigenPy(); eigenpy::enableEigenPy();
bp::def("printMatrix", printMatrix<Vector3d>); bp::def("printMatrix", printMatrix<Vector3d>);
bp::def("printMatrix", printMatrix<VectorXd>); bp::def("printMatrix", printMatrix<VectorXd>);
bp::def("printMatrix", printMatrix<MatrixXd>); bp::def("printMatrix", printMatrix<MatrixXd>);
bp::def("printVector", printVector<VectorXd>); bp::def("printVector", printVector<VectorXd>);
bp::def("printRowVector", printVector<RowVectorXd>); bp::def("printRowVector", printVector<RowVectorXd>);
bp::def("setOnes", setOnes<Vector3d>); bp::def("setOnes", setOnes<Vector3d>);
bp::def("setOnes", setOnes<VectorXd>); bp::def("setOnes", setOnes<VectorXd>);
bp::def("setOnes", setOnes<MatrixXd>); bp::def("setOnes", setOnes<MatrixXd>);
bp::def("fillVec3", fill<Vector3d>); bp::def("fillVec3", fill<Vector3d>);
bp::def("fillVec", fill<VectorXd>); bp::def("fillVec", fill<VectorXd>);
bp::def("fill", fill<MatrixXd>); bp::def("fill", fill<MatrixXd>);
bp::def("getRefToStatic", getRefToStatic<MatrixXd>);
bp::def("asRef", asRef<MatrixXd>); bp::def("asRef", asRef<MatrixXd>);
bp::def("asConstRef", asConstRef<MatrixXd>);
bp::def("getBlock", &getBlock<MatrixXd>);
bp::def("editBlock", &editBlock<MatrixXd>);
bp::def("copyVectorFromConstRef", &copyVectorFromConstRef<VectorXd>);
bp::def("copyRowVectorFromConstRef", &copyVectorFromConstRef<RowVectorXd>);
bp::class_<modify_block_wrap, boost::noncopyable>("modify_block",
bp::init<>())
.def_readonly("J", &modify_block::J)
.def("modify", &modify_block::modify)
.def("call", bp::pure_virtual(&modify_block_wrap::call));
bp::class_<has_ref_member, boost::noncopyable>("has_ref_member", bp::init<>())
.def_readonly("J", &has_ref_member::J)
.add_property(
"Jref",
bp::make_getter(&has_ref_member::Jref,
bp::return_value_policy<bp::return_by_value>()));
// can't return Eigen::Ref by reference but by value
// (def_readonly creates a by-reference getter)
} }
/* /*
* Copyright 2014-2019, CNRS * Copyright 2014-2019, CNRS
* Copyright 2018-2019, INRIA * Copyright 2018-2023, INRIA
*/ */
#include "eigenpy/eigenpy.hpp" #include "eigenpy/eigenpy.hpp"
#include "eigenpy/geometry.hpp" #include "eigenpy/geometry.hpp"
#include <Eigen/Geometry>
#include <iostream>
namespace bp = boost::python; namespace bp = boost::python;
Eigen::AngleAxisd testOutAngleAxis() Eigen::AngleAxisd testOutAngleAxis() {
{ return Eigen::AngleAxisd(.1, Eigen::Vector3d::UnitZ());
return Eigen::AngleAxisd(.1,Eigen::Vector3d::UnitZ());
} }
double testInAngleAxis(Eigen::AngleAxisd aa) double testInAngleAxis(Eigen::AngleAxisd aa) { return aa.angle(); }
{
return aa.angle();
}
Eigen::Quaterniond testOutQuaternion() Eigen::Quaterniond testOutQuaternion() {
{ Eigen::Quaterniond res(1, 2, 3, 4);
Eigen::Quaterniond res(1,2,3,4);
return res; return res;
} }
double testInQuaternion( Eigen::Quaterniond q ) double testInQuaternion(Eigen::Quaterniond q) { return q.norm(); }
{
return q.norm();
}
BOOST_PYTHON_MODULE(geometry) BOOST_PYTHON_MODULE(geometry) {
{
eigenpy::enableEigenPy(); eigenpy::enableEigenPy();
eigenpy::exposeAngleAxis(); eigenpy::exposeAngleAxis();
eigenpy::exposeQuaternion(); eigenpy::exposeQuaternion();
bp::def("testOutAngleAxis",&testOutAngleAxis); bp::def("testOutAngleAxis", &testOutAngleAxis);
bp::def("testInAngleAxis",&testInAngleAxis); bp::def("testInAngleAxis", &testInAngleAxis);
bp::def("testOutQuaternion",&testOutQuaternion);
bp::def("testInQuaternion",&testInQuaternion);
bp::def("testOutQuaternion", &testOutQuaternion);
bp::def("testInQuaternion", &testInQuaternion);
} }
/* /*
* Copyright 2014-2019, CNRS * Copyright 2014-2022 CNRS INRIA
* Copyright 2018-2020, INRIA
*/ */
#include "eigenpy/eigenpy.hpp"
#include <iostream> #include <iostream>
template<typename Scalar> #include "eigenpy/eigenpy.hpp"
Eigen::Matrix<Scalar,Eigen::Dynamic,1> vector1x1(const Scalar & value)
{ template <typename Scalar>
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> ReturnType; Eigen::Matrix<Scalar, Eigen::Dynamic, 1> vector1x1(const Scalar& value) {
return ReturnType::Constant(1,value); typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> ReturnType;
} return ReturnType::Constant(1, value);
}
template<typename Scalar> template <typename Scalar>
Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic> matrix1x1(const Scalar & value) Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> matrix1x1(
{ const Scalar& value) {
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic> ReturnType; typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> ReturnType;
return ReturnType::Constant(1,1,value); return ReturnType::Constant(1, 1, value);
} }
Eigen::VectorXd emptyVector() template <typename Scalar>
{ void matrix1x1_input(const Eigen::Matrix<Scalar, 1, 1>& mat) {
std::cout << mat << std::endl;
}
Eigen::VectorXd emptyVector() {
Eigen::VectorXd vec; Eigen::VectorXd vec;
vec.resize(0); vec.resize(0);
return vec; return vec;
} }
Eigen::MatrixXd emptyMatrix() Eigen::MatrixXd emptyMatrix() { return Eigen::MatrixXd(0, 0); }
{
return Eigen::MatrixXd(0,0);
}
Eigen::MatrixXd naturals(int R,int C,bool verbose) Eigen::MatrixXd naturals(int R, int C, bool verbose) {
{ Eigen::MatrixXd mat(R, C);
Eigen::MatrixXd mat(R,C); for (int r = 0; r < R; ++r)
for(int r=0;r<R;++r) for (int c = 0; c < C; ++c) mat(r, c) = r * C + c;
for(int c=0;c<C;++c)
mat(r,c) = r*C+c;
if(verbose) if (verbose) std::cout << "EigenMat = " << mat << std::endl;
std::cout << "EigenMat = " << mat << std::endl;
return mat; return mat;
} }
Eigen::VectorXd naturals(int R,bool verbose) Eigen::VectorXd naturals(int R, bool verbose) {
{
Eigen::VectorXd mat(R); Eigen::VectorXd mat(R);
for(int r=0;r<R;++r) for (int r = 0; r < R; ++r) mat[r] = r;
mat[r] = r;
if(verbose) if (verbose) std::cout << "EigenMat = " << mat << std::endl;
std::cout << "EigenMat = " << mat << std::endl;
return mat; return mat;
} }
Eigen::Matrix3d naturals(bool verbose) Eigen::Matrix3d naturals(bool verbose) {
{
Eigen::Matrix3d mat; Eigen::Matrix3d mat;
for(int r=0;r<3;++r) for (int r = 0; r < 3; ++r)
for(int c=0;c<3;++c) for (int c = 0; c < 3; ++c) mat(r, c) = r * 3 + c;
mat(r,c) = r*3+c;
if(verbose) if (verbose) std::cout << "EigenMat = " << mat << std::endl;
std::cout << "EigenMat = " << mat << std::endl;
return mat; return mat;
} }
template<typename MatType> template <typename MatType>
Eigen::MatrixXd reflex(const MatType & M, bool verbose) Eigen::MatrixXd reflex(const MatType& M, bool verbose) {
{ if (verbose) std::cout << "EigenMat = " << M << std::endl;
if(verbose)
std::cout << "EigenMat = " << M << std::endl;
return Eigen::MatrixXd(M); return Eigen::MatrixXd(M);
} }
template<typename MatrixDerived> template <typename MatrixDerived>
MatrixDerived base(const Eigen::MatrixBase<MatrixDerived> & m) MatrixDerived base(const Eigen::MatrixBase<MatrixDerived>& m) {
{
return m.derived(); return m.derived();
} }
template<typename MatrixDerived> template <typename MatrixDerived>
MatrixDerived plain(const Eigen::PlainObjectBase<MatrixDerived> & m) MatrixDerived plain(const Eigen::PlainObjectBase<MatrixDerived>& m) {
{
return m.derived(); return m.derived();
} }
template<typename Scalar> template <typename Scalar>
Eigen::Matrix<Scalar,6,6> matrix6(const Scalar & value) Eigen::Matrix<Scalar, 6, 6> matrix6(const Scalar& value) {
{ typedef Eigen::Matrix<Scalar, 6, 6> ReturnType;
typedef Eigen::Matrix<Scalar,6,6> ReturnType;
return ReturnType::Constant(value); return ReturnType::Constant(value);
} }
BOOST_PYTHON_MODULE(matrix) template <typename Scalar>
{ Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>
generateRowMajorMatrix(const Eigen::DenseIndex rows,
const Eigen::DenseIndex cols) {
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>
RowMajorMatrix;
RowMajorMatrix A(rows, cols);
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Vector;
Eigen::Map<Vector>(A.data(), A.size()) =
Vector::LinSpaced(A.size(), 1, static_cast<Scalar>(A.size()));
std::cout << "Matrix values:\n" << A << std::endl;
return A;
}
template <typename Scalar>
Eigen::Matrix<Scalar, 1, Eigen::Dynamic, Eigen::RowMajor>
generateRowMajorVector(const Eigen::DenseIndex size) {
typedef Eigen::Matrix<Scalar, 1, Eigen::Dynamic, Eigen::RowMajor>
RowMajorVector;
RowMajorVector A(size);
A.setLinSpaced(size, 1, static_cast<Scalar>(size));
std::cout << "Vector values: " << A.transpose() << std::endl;
return A;
}
template <typename Scalar>
Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> generateColMajorMatrix(
const Eigen::DenseIndex rows, const Eigen::DenseIndex cols) {
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> ColMajorMatrix;
ColMajorMatrix A(rows, cols);
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Vector;
Eigen::Map<Vector>(A.data(), A.size()) =
Vector::LinSpaced(A.size(), 1, static_cast<Scalar>(A.size()));
std::cout << "Matrix values:\n" << A << std::endl;
return A;
}
template <typename Scalar>
Eigen::Matrix<Scalar, 1, Eigen::Dynamic> generateColMajorVector(
const Eigen::DenseIndex size) {
typedef Eigen::Matrix<Scalar, 1, Eigen::Dynamic> ColMajorVector;
ColMajorVector A(size);
A.setLinSpaced(size, 1, static_cast<Scalar>(size));
std::cout << "Vector values: " << A.transpose() << std::endl;
return A;
}
template <typename Matrix, typename ReturnMatrix>
ReturnMatrix copy(const Eigen::MatrixBase<Matrix>& mat) {
return mat;
}
template <typename Matrix>
Matrix copy_same(const Eigen::MatrixBase<Matrix>& mat) {
return mat;
}
BOOST_PYTHON_MODULE(matrix) {
using namespace Eigen; using namespace Eigen;
namespace bp = boost::python; namespace bp = boost::python;
eigenpy::enableEigenPy(); eigenpy::enableEigenPy();
// Square matrix // Square matrix
typedef Eigen::Matrix<double,6,6> Matrix6; typedef Eigen::Matrix<double, 6, 6> Matrix6;
eigenpy::enableEigenPySpecific<Matrix6>(); eigenpy::enableEigenPySpecific<Matrix6>();
// Non-square matrix // Non-square matrix
typedef Eigen::Matrix<double,4,6> Matrix46; typedef Eigen::Matrix<double, 4, 6> Matrix46;
eigenpy::enableEigenPySpecific<Matrix46>(); eigenpy::enableEigenPySpecific<Matrix46>();
Eigen::MatrixXd (*naturalsXX)(int,int,bool) = naturals; Eigen::MatrixXd (*naturalsXX)(int, int, bool) = naturals;
Eigen::VectorXd (*naturalsX)(int,bool) = naturals; Eigen::VectorXd (*naturalsX)(int, bool) = naturals;
Eigen::Matrix3d (*naturals33)(bool) = naturals; Eigen::Matrix3d (*naturals33)(bool) = naturals;
bp::def("vector1x1", vector1x1<double>); bp::def("vector1x1", vector1x1<double>);
bp::def("matrix1x1", matrix1x1<double>); bp::def("matrix1x1", matrix1x1<double>);
bp::def("matrix1x1", matrix1x1_input<double>);
bp::def("matrix1x1_int", matrix1x1_input<int>);
bp::def("naturals", naturalsXX); bp::def("naturals", naturalsXX);
bp::def("naturalsX", naturalsX); bp::def("naturalsX", naturalsX);
...@@ -126,12 +170,64 @@ BOOST_PYTHON_MODULE(matrix) ...@@ -126,12 +170,64 @@ BOOST_PYTHON_MODULE(matrix)
bp::def("emptyVector", emptyVector); bp::def("emptyVector", emptyVector);
bp::def("emptyMatrix", emptyMatrix); bp::def("emptyMatrix", emptyMatrix);
bp::def("base", base<VectorXd>); bp::def("base", base<VectorXd>);
bp::def("base", base<MatrixXd>); bp::def("base", base<MatrixXd>);
bp::def("plain", plain<VectorXd>); bp::def("plain", plain<VectorXd>);
bp::def("plain", plain<MatrixXd>); bp::def("plain", plain<MatrixXd>);
bp::def("matrix6", matrix6<double>); bp::def("matrix6", matrix6<double>);
bp::def("generateRowMajorMatrix", generateRowMajorMatrix<double>);
bp::def("generateRowMajorVector", generateRowMajorVector<double>);
bp::def("generateColMajorMatrix", generateColMajorMatrix<double>);
bp::def("generateColMajorVector", generateColMajorVector<double>);
typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>
RowMajorMatrixXd;
bp::def("asRowMajorFromColMajorMatrix",
copy<Eigen::MatrixXd, RowMajorMatrixXd>);
bp::def("asRowMajorFromColMajorVector",
copy<Eigen::VectorXd, Eigen::RowVectorXd>);
bp::def("asRowMajorFromRowMajorMatrix",
copy<RowMajorMatrixXd, RowMajorMatrixXd>);
bp::def("asRowMajorFromRowMajorVector",
copy<Eigen::RowVectorXd, Eigen::RowVectorXd>);
bp::def("copyBoolToBool", copy_same<Eigen::Matrix<bool, -1, -1> >);
bp::def("copyInt8ToInt8", copy_same<Eigen::Matrix<int8_t, -1, -1> >);
bp::def("copyCharToChar", copy_same<Eigen::Matrix<char, -1, -1> >);
bp::def("copyUCharToUChar", copy_same<Eigen::Matrix<unsigned char, -1, -1> >);
bp::def("copyInt16ToInt16", copy_same<Eigen::Matrix<int16_t, -1, -1> >);
bp::def("copyUInt16ToUInt16", copy_same<Eigen::Matrix<uint16_t, -1, -1> >);
bp::def("copyInt32ToInt32", copy_same<Eigen::Matrix<int32_t, -1, -1> >);
bp::def("copyUInt32ToUInt32", copy_same<Eigen::Matrix<uint32_t, -1, -1> >);
bp::def("copyInt64ToInt64", copy_same<Eigen::Matrix<int64_t, -1, -1> >);
bp::def("copyUInt64ToUInt64", copy_same<Eigen::Matrix<uint64_t, -1, -1> >);
bp::def("copyLongToLong", copy_same<Eigen::Matrix<long, -1, -1> >);
bp::def("copyULongToULong", copy_same<Eigen::Matrix<unsigned long, -1, -1> >);
bp::def("copyLongLongToLongLong",
copy_same<Eigen::Matrix<long long, -1, -1> >);
bp::def("copyULongLongToULongLong",
copy_same<Eigen::Matrix<unsigned long long, -1, -1> >);
bp::def("copyFloatToFloat", copy_same<Eigen::Matrix<float, -1, -1> >);
bp::def("copyDoubleToDouble", copy_same<Eigen::Matrix<double, -1, -1> >);
bp::def("copyLongDoubleToLongDouble",
copy_same<Eigen::Matrix<long double, -1, -1> >);
bp::def("copyCFloatToCFloat",
copy_same<Eigen::Matrix<std::complex<float>, -1, -1> >);
bp::def("copyCDoubleToCDouble",
copy_same<Eigen::Matrix<std::complex<double>, -1, -1> >);
bp::def("copyCLongDoubleToCLongDouble",
copy_same<Eigen::Matrix<std::complex<long double>, -1, -1> >);
} }
#include "eigenpy/registration.hpp"
#include <cstdio>
namespace bp = boost::python;
class X {
public:
X() {}
void operator()() { printf("DOOT\n"); }
};
class X_wrapper : public X, bp::wrapper<X> {
public:
static void expose() {
if (!eigenpy::register_symbolic_link_to_registered_type<X>()) {
bp::class_<X>("X", bp::init<>()).def("__call__", &X::operator());
}
}
};
BOOST_PYTHON_MODULE(multiple_registration) {
X_wrapper::expose();
X_wrapper::expose();
X_wrapper::expose();
X_wrapper::expose();
X_wrapper::expose();
X_wrapper::expose();
}
#include <eigenpy/version.hpp> #include <eigenpy/version.hpp>
int main(int /*argc*/, char ** /*argv*/) int main(int /*argc*/, char** /*argv*/) {
{ eigenpy::checkVersionAtLeast(0, 0, 0);
eigenpy::checkVersionAtLeast(0,0,0);
return 0; return 0;
} }
...@@ -2,8 +2,6 @@ cmake_minimum_required(VERSION 2.6) ...@@ -2,8 +2,6 @@ cmake_minimum_required(VERSION 2.6)
project(ExtraLib CXX) project(ExtraLib CXX)
find_package(eigenpy REQUIRED) find_package(eigenpy REQUIRED)
find_package(PythonInterp REQUIRED)
find_package(PythonLibs REQUIRED)
add_executable(extra_lib extra_lib.cpp) add_executable(extra_lib extra_lib.cpp)
target_link_libraries(extra_lib PUBLIC eigenpy::eigenpy ${PYTHON_LIBRARIES}) target_link_libraries(extra_lib PUBLIC eigenpy::eigenpy)
#include <eigenpy/version.hpp> #include <eigenpy/version.hpp>
int main(int /*argc*/, char ** /*argv*/) int main(int /*argc*/, char** /*argv*/) {
{ eigenpy::checkVersionAtLeast(0, 0, 0);
eigenpy::checkVersionAtLeast(0,0,0);
return 0; return 0;
} }
#include <eigenpy/version.hpp> #include <eigenpy/version.hpp>
int main(int /*argc*/, char ** /*argv*/) int main(int /*argc*/, char** /*argv*/) {
{ eigenpy::checkVersionAtLeast(0, 0, 0);
eigenpy::checkVersionAtLeast(0,0,0);
return 0; return 0;
} }
import numpy as np
from scipy.sparse import csc_matrix
import eigenpy
dim = 100
rng = np.random.default_rng()
A = rng.random((dim, dim))
A = (A + A.T) * 0.5 + np.diag(10.0 + rng.random(dim))
A = csc_matrix(A)
llt = eigenpy.CholmodSimplicialLDLT(A)
assert llt.info() == eigenpy.ComputationInfo.Success
X = rng.random((dim, 20))
B = A.dot(X)
X_est = llt.solve(B)
assert eigenpy.is_approx(X, X_est)
assert eigenpy.is_approx(A.dot(X_est), B)
llt.analyzePattern(A)
llt.factorize(A)
import numpy as np
from scipy.sparse import csc_matrix
import eigenpy
dim = 100
rng = np.random.default_rng()
A = rng.random((dim, dim))
A = (A + A.T) * 0.5 + np.diag(10.0 + rng.random(dim))
A = csc_matrix(A)
llt = eigenpy.CholmodSimplicialLLT(A)
assert llt.info() == eigenpy.ComputationInfo.Success
X = rng.random((dim, 20))
B = A.dot(X)
X_est = llt.solve(B)
assert eigenpy.is_approx(X, X_est)
assert eigenpy.is_approx(A.dot(X_est), B)
llt.analyzePattern(A)
llt.factorize(A)
import numpy as np
from scipy.sparse import csc_matrix
import eigenpy
dim = 100
rng = np.random.default_rng()
A = rng.random((dim, dim))
A = (A + A.T) * 0.5 + np.diag(10.0 + rng.random(dim))
A = csc_matrix(A)
llt = eigenpy.CholmodSupernodalLLT(A)
assert llt.info() == eigenpy.ComputationInfo.Success
X = rng.random((dim, 20))
B = A.dot(X)
X_est = llt.solve(B)
assert eigenpy.is_approx(X, X_est)
assert eigenpy.is_approx(A.dot(X_est), B)
llt.analyzePattern(A)
llt.factorize(A)
import numpy as np
from scipy.sparse import csc_matrix
import eigenpy
rng = np.random.default_rng()
def test(SolverType: type):
dim = 100
A = rng.random((dim, dim))
A = (A + A.T) * 0.5 + np.diag(10.0 + rng.random(dim))
A = csc_matrix(A)
llt = SolverType(A)
assert llt.info() == eigenpy.ComputationInfo.Success
X = rng.random((dim, 20))
B = A.dot(X)
X_est = llt.solve(B)
# import pdb; pdb.set_trace()
assert eigenpy.is_approx(X, X_est)
assert eigenpy.is_approx(A.dot(X_est), B)
llt.analyzePattern(A)
llt.factorize(A)
test(eigenpy.AccelerateLLT)
test(eigenpy.AccelerateLDLT)
test(eigenpy.AccelerateLDLTUnpivoted)
test(eigenpy.AccelerateLDLTSBK)
test(eigenpy.AccelerateLDLTTPP)
test(eigenpy.AccelerateQR)
# test(eigenpy.AccelerateCholeskyAtA) # This test is not passing. Seems there is a bug in Eigen with the support of Accelerate.
import numpy as np
from scipy.sparse import csc_matrix
import eigenpy
dim = 100
rng = np.random.default_rng()
A = rng.random((dim, dim))
A = (A + A.T) * 0.5 + np.diag(10.0 + rng.random(dim))
A = csc_matrix(A)
ldlt = eigenpy.SimplicialLDLT(A)
assert ldlt.info() == eigenpy.ComputationInfo.Success
L = ldlt.matrixL()
U = ldlt.matrixU()
D = csc_matrix(np.diag(ldlt.vectorD()))
LDU = L @ D @ U
assert eigenpy.is_approx(LDU.toarray(), A.toarray())
X = rng.random((dim, 20))
B = A.dot(X)
X_est = ldlt.solve(B)
assert eigenpy.is_approx(X, X_est)
assert eigenpy.is_approx(A.dot(X_est), B)
ldlt.analyzePattern(A)
ldlt.factorize(A)
permutation = ldlt.permutationP()
import numpy as np
from scipy.sparse import csc_matrix
import eigenpy
dim = 100
rng = np.random.default_rng()
A = rng.random((dim, dim))
A = (A + A.T) * 0.5 + np.diag(10.0 + rng.random(dim))
A = csc_matrix(A)
llt = eigenpy.SimplicialLLT(A)
assert llt.info() == eigenpy.ComputationInfo.Success
L = llt.matrixL()
U = llt.matrixU()
LU = L @ U
assert eigenpy.is_approx(LU.toarray(), A.toarray())
X = rng.random((dim, 20))
B = A.dot(X)
X_est = llt.solve(B)
assert eigenpy.is_approx(X, X_est)
assert eigenpy.is_approx(A.dot(X_est), B)
llt.analyzePattern(A)
llt.factorize(A)
permutation = llt.permutationP()
import eigenpy
eigenpy.switchToNumpyArray()
import numpy as np import numpy as np
import numpy.linalg as la
import eigenpy
dim = 100 dim = 100
A = np.random.rand(dim,dim) rng = np.random.default_rng()
A = (A + A.T)*0.5 + np.diag(10. + np.random.rand(dim)) A = rng.random((dim, dim))
A = (A + A.T) * 0.5 + np.diag(10.0 + rng.random(dim))
ldlt = eigenpy.LDLT(A) ldlt = eigenpy.LDLT(A)
L = ldlt.matrixL() L = ldlt.matrixL()
D = ldlt.vectorD() D = ldlt.vectorD()
P = ldlt.transpositionsP() P = ldlt.transpositionsP()
assert eigenpy.is_approx(
np.transpose(P).dot(L.dot(np.diag(D).dot(np.transpose(L).dot(P)))), A
)
assert eigenpy.is_approx(np.transpose(P).dot(L.dot(np.diag(D).dot(np.transpose(L).dot(P)))),A) X = rng.random((dim, 20))
B = A.dot(X)
X_est = ldlt.solve(B)
assert eigenpy.is_approx(X, X_est)
assert eigenpy.is_approx(A.dot(X_est), B)
import eigenpy
eigenpy.switchToNumpyArray()
import numpy as np import numpy as np
import numpy.linalg as la
import eigenpy
dim = 100 dim = 100
A = np.random.rand(dim,dim) rng = np.random.default_rng()
A = (A + A.T)*0.5 + np.diag(10. + np.random.rand(dim)) A = rng.random((dim, dim))
A = (A + A.T) * 0.5 + np.diag(10.0 + rng.random(dim))
llt = eigenpy.LLT(A) llt = eigenpy.LLT(A)
L = llt.matrixL() L = llt.matrixL()
assert eigenpy.is_approx(L.dot(np.transpose(L)), A)
assert eigenpy.is_approx(L.dot(np.transpose(L)),A) X = rng.random((dim, 20))
B = A.dot(X)
X_est = llt.solve(B)
assert eigenpy.is_approx(X, X_est)
assert eigenpy.is_approx(A.dot(X_est), B)
import numpy as np
import eigenpy
dim = 100
rng = np.random.default_rng()
A = np.eye(dim)
minres = eigenpy.MINRES(A)
X = rng.random((dim, 20))
B = A.dot(X)
X_est = minres.solve(B)
print("A.dot(X_est):", A.dot(X_est))
print("B:", B)
assert eigenpy.is_approx(A.dot(X_est), B, 1e-6)