From 78cedb306f1397589ab83ee8f4393c2ecb0669d3 Mon Sep 17 00:00:00 2001 From: Mansard <nmansard@laas.fr> Date: Thu, 17 Jan 2013 16:13:49 +0100 Subject: [PATCH] Moved the matrix util python into the sot core package. --- python/matrix_util.py | 105 ------------------------------------------ 1 file changed, 105 deletions(-) delete mode 100644 python/matrix_util.py diff --git a/python/matrix_util.py b/python/matrix_util.py deleted file mode 100644 index ab43f0c..0000000 --- a/python/matrix_util.py +++ /dev/null @@ -1,105 +0,0 @@ - -''' -Tiny matrix functions, taken from Oscar source code. -''' - -#-------------------------------------------------------------------------- -#-------------------------------------------------------------------------- -#-------------------------------------------------------------------------- -from math import * -from numpy import * -from random import random - -# Convert matrix to tuple -def matrixToTuple(M): - tmp = M.tolist() - res = [] - for i in tmp: - res.append(tuple(i)) - return tuple(res) - -def vectorToTuple(M): - if len(M.shape)==1: return tuple(M.tolist()) - elif M.shape[0]==1: return tuple(M.tolist()[0]) - else: return tuple(M.transpose().tolist()[0]) - -# Convert from Roll, Pitch, Yaw to transformation Matrix -def rpy2tr(r,p,y): - mat = matrix(rotate('z',y))*matrix(rotate('y',p))*matrix(rotate('x',r)) - return matrixToTuple(mat) - -# Get the distance btw the position components of 2 transf matrices -def distVector(M2,M1): - px = M1[0][3] - M2[0][3] - py = M1[1][3] - M2[1][3] - pz = M1[2][3] - M2[2][3] - return [px,py,pz] - -# Obtain an orthonormal matrix SO3 using the given vector as its first column -# (it computes Gram Schmidt to obtain an orthonormal basis using the -# first vector and 2 other 'random' vectors) - -def generateOrthonormalM(v1): - - v2 = matrix([random(),random(),random()]) - v3 = matrix([random(),random(),random()]) - - v1 = matrix(v1) - e1 = v1/linalg.norm(v1) - - u2 = v2-inner(v2,e1)*e1 - e2 = u2/linalg.norm(u2) - - u3 = v3-inner(v3,e1)*e1-inner(v3,e2)*e2 - e3 = u3/linalg.norm(u3) - - e1=e1.tolist(); e2=e2.tolist(); e3=e3.tolist() - M = ( (e1[0][0],e2[0][0],e3[0][0]), (e1[0][1],e2[0][1],e3[0][1]), (e1[0][2],e2[0][2],e3[0][2]) ) - return M - -# Convert from Transformation Matrix to Roll,Pitch,Yaw -def tr2rpy(M): - m = sqrt(M[2][1]**2+M[2][2]**2) - p = atan2(-M[2][0],m) - - if abs( p-pi/2 ) < 0.001: - r = 0 - y = atan2(M[0][1],M[1][1]) - elif abs( p+pi/2 ) < 0.001: - r = 0 - y = -atan2(M[0][1],M[1][1]) - else: - r = atan2(M[1][0],M[0][0]) - y = atan2(M[2][1],M[2][2]) - - return [float(r),float(p),float(y)] - -def matrixToRPY( M ): - ''' - Convert a 4x4 homogeneous matrix to a 6x1 rpy pose vector. - ''' - rot = tr2rpy(M) - return [ M[0][3], M[1][3], M[2][3], rot[2],rot[1],rot[0]] - -def RPYToMatrix( pr ): - ''' - Convert a 4x4 homogeneous matrix to a 6x1 rpy pose vector. - ''' - M=array(rpy2tr(pr[3],pr[4],pr[5])) - M[0:3,3] = pr[0:3] - return M - -# Transformation Matrix corresponding to a rotation about x,y or z -def rotate(axis,ang): - ''' eg. T=rot('x',pi/4): rotate pi/4 rad about x axis - ''' - ca=cos(ang); sa=sin(ang) - if axis=='x': - mat = ((1,0,0,0),(0,ca,-sa,0),(0,sa,ca,0),(0,0,0,1)) - elif axis=='y': - mat = ((ca,0,sa,0),(0,1,0,0),(-sa,0,ca,0),(0,0,0,1)) - elif axis=='z': - mat = ((ca,-sa,0,0),(sa,ca,0,0),(0,0,1,0),(0,0,0,1)) - else: - print 'Axis should be: x,y or z only' - return mat -- GitLab