import eigenpy eigenpy.switchToNumpyArray() import numpy as np import numpy.linalg as la dim = 100 A = np.random.rand(dim, dim) A = (A + A.T) * 0.5 es = eigenpy.SelfAdjointEigenSolver(A) V = es.eigenvectors() D = es.eigenvalues() assert eigenpy.is_approx(A.dot(V), V.dot(np.diag(D)), 1e-6)