diff --git a/concha/utils.ipynb b/concha/utils.ipynb index 2b9aa683d46b29e3935a00d2d43c38ba771d6c5e..c672672bf682d2af877f647b4aa5da01b4fe9542 100644 --- a/concha/utils.ipynb +++ b/concha/utils.ipynb @@ -123,7 +123,7 @@ "source": [ "def plot_2umap(embedding_2d, clustering_partition, ensemble_name, results_path):\n", " \n", - " classified = np.where(labels_umap >= 0)[0]\n", + " classified = np.where(clustering_partition >= 0)[0]\n", " \n", " output1 = widgets.Output()\n", " with output1:\n", @@ -135,7 +135,7 @@ " alpha=0.5)\n", " scatter = ax.scatter(embedding_2d[classified, 0],\n", " embedding_2d[classified, 1],\n", - " c=labels_umap[classified],\n", + " c=clustering_partition[classified],\n", " s=0.5,\n", " alpha = 1,\n", " cmap='Spectral')\n", @@ -147,9 +147,9 @@ "\n", " output2 = widgets.Output()\n", " with output2:\n", - " repartition = pd.Series(labels_umap).value_counts()\n", + " repartition = pd.Series(clustering_partition).value_counts()\n", " repartition.index = [\"Unclassified\" if i == -1 else i for i in repartition.index]\n", - " display(pd.DataFrame({\"Cluster\" : np.array(repartition.index), \"Occupancy (%)\" : 100*np.array(repartition.values)/len(labels_umap)}))\n", + " display(pd.DataFrame({\"Cluster\" : np.array(repartition.index), \"Occupancy (%)\" : 100*np.array(repartition.values)/len(clustering_partition)}))\n", " two_columns = widgets.HBox([output1, output2])\n", " display(two_columns)" ]