From b527134b31f6d1e2b3cc4ca77f4e1205efbec546 Mon Sep 17 00:00:00 2001 From: JasonChmn <jason.chemin@hotmail.fr> Date: Fri, 19 Apr 2019 11:03:21 +0200 Subject: [PATCH] Modification in doc of files in curves folder v2 --- include/curves/bezier_curve.h | 14 ++++++++++++-- 1 file changed, 12 insertions(+), 2 deletions(-) diff --git a/include/curves/bezier_curve.h b/include/curves/bezier_curve.h index 50d45bf..036423c 100644 --- a/include/curves/bezier_curve.h +++ b/include/curves/bezier_curve.h @@ -205,6 +205,7 @@ struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point> /// \param order : order of derivative. /// \param t : time when to evaluate the curve. /// \return \f$\frac{d^Nx(t)}{dt^N}\f$, point corresponding on derivative curve of order N at time t. + /// virtual point_t derivate(const time_t t, const std::size_t order) const { bezier_curve_t deriv =compute_derivate(order); @@ -212,8 +213,10 @@ struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point> } /// \brief Evaluate all Bernstein polynomes for a certain degree. + /// A bezier curve with N control points is represented by : \f$x(t) = \sum_{i=0}^{N} B_i^N(t) P_i\f$ + /// with \f$ B_i^N(t) = \binom{N}{i}t^i (1-t)^{N-i} \f$.<br/> /// Warning: the horner scheme is about 100 times faster than this method. - /// This method will probably be removed in the future. + /// This method will probably be removed in the future as the computation of bernstein polynomial is very costly. /// \param t : unNormalized time /// \return \f$x(t)\f$, point corresponding on curve at time t. /// @@ -228,7 +231,14 @@ struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point> return res*mult_T_; } - /// \brief Evaluate all Bernstein polynomes for a certain degree using horner's scheme. + /// \brief Evaluate all Bernstein polynomes for a certain degree using Horner's scheme. + /// For a polynom of degree N expressed by : \f$x(t) = a_0 + a_1t + a_2t^2 + ... + a_nt^n\f$ + /// where \f$number of additions = N\f$ / f$number of multiplication = N!\f$ + /// Using Horner's method, the polynom is transformed into : + /// \f$x(t) = a_0 + t(a_1 + t(a_2+t(...))\f$ + /// where number of additions = N / number of multiplication = N. + /// A bezier curve with N control points is expressed as : \f$x(t) = \sum_{i=0}^{N} B_i^N(t) P_i\f$ + /// We can apply the Horner's scheme : \f$ x(t) = (1-t)^N(\sum_{i=0}^{N} \binom{N}{i} \frac{1-t}{t}^i P_i) \f$ /// \param t : unNormalized time /// \return \f$x(t)\f$, point corresponding on curve at time t. /// -- GitLab