From 5f5e9331a8788455d290e3748559032f8484a20c Mon Sep 17 00:00:00 2001
From: JasonChmn <jason.chemin@hotmail.fr>
Date: Thu, 18 Apr 2019 13:36:39 +0200
Subject: [PATCH] Modification in doc of files in curves folder

---
 include/curves/bezier_curve.h | 24 +++++++------
 include/curves/curve_abc.h    | 16 ++++-----
 include/curves/exact_cubic.h  | 12 ++++---
 include/curves/polynom.h      | 63 ++++++++++++++++++-----------------
 4 files changed, 63 insertions(+), 52 deletions(-)

diff --git a/include/curves/bezier_curve.h b/include/curves/bezier_curve.h
index 45f50d6..50d45bf 100644
--- a/include/curves/bezier_curve.h
+++ b/include/curves/bezier_curve.h
@@ -148,7 +148,7 @@ struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point>
 	public:
 	///  \brief Evaluation of the bezier curve at time t.
 	///  \param t : time when to evaluate the curve.
-	///  \return Point corresponding on curve at time t.
+	///  \return \f$x(t)\f$, point corresponding on curve at time t.
     virtual point_t operator()(const time_t t) const
         {
             if(Safe &! (0 <= t && t <= T_))
@@ -162,8 +162,8 @@ struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point>
 
     ///  \brief Compute the derivative curve at order N.
     ///  Computes the derivative at order N, \f$\frac{d^Nx(t)}{dt^N}\f$ of bezier curve of parametric equation x(t).
-    ///  \param order : order of the derivative.
-    ///  \return Derivative \f$\frac{dx(t)}{dt}\f$.
+    ///  \param order : order of derivative.
+    ///  \return Derivative \f$\frac{d^Nx(t)}{dt^N}\f$.
     bezier_curve_t compute_derivate(const std::size_t order) const
     {
         if(order == 0) return *this;
@@ -199,12 +199,12 @@ struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point>
         return integ.compute_primitive(order-1);
     }
 
-    ///  \brief Evaluate the derivative at order N of the curve.
+    ///  \brief Evaluate the derivative of order N of curve at time t.
     ///  If the derivative is to be evaluated several times, it is
-    ///  rather recommended to compute the derivative curve using compute_derivate.
-    ///  \param order : order of the derivative
+    ///  rather recommended to compute derivative curve using compute_derivate.
+    ///  \param order : order of derivative.
     ///  \param t : time when to evaluate the curve.
-    ///  \return Point corresponding on derivative curve at time t.
+    ///  \return \f$\frac{d^Nx(t)}{dt^N}\f$, point corresponding on derivative curve of order N at time t.
     virtual point_t derivate(const time_t t, const std::size_t order) const
     {
         bezier_curve_t deriv =compute_derivate(order);
@@ -215,7 +215,7 @@ struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point>
     /// Warning: the horner scheme is about 100 times faster than this method.
     /// This method will probably be removed in the future.
     /// \param t : unNormalized time
-    /// \return Point corresponding on curve at time t.
+    /// \return \f$x(t)\f$, point corresponding on curve at time t.
     ///
     point_t evalBernstein(const Numeric t) const
     {
@@ -230,7 +230,7 @@ struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point>
 
     /// \brief Evaluate all Bernstein polynomes for a certain degree using horner's scheme.
     /// \param t : unNormalized time
-    /// \return Point corresponding on curve at time t.
+    /// \return \f$x(t)\f$, point corresponding on curve at time t.
     ///
     point_t evalHorner(const Numeric t) const
     {
@@ -254,7 +254,7 @@ struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point>
 
     /// \brief Evaluate the curve value at time t using deCasteljau algorithm.
     /// \param t : unNormalized time
-    /// \return Point corresponding on curve at time t.
+    /// \return \f$x(t)\f$, point corresponding on curve at time t.
     ///
     point_t evalDeCasteljau(const Numeric t) const {
         // normalize time :
@@ -357,7 +357,11 @@ struct bezier_curve : public curve_abc<Time, Numeric, Dim, Safe, Point>
 
 /*Helpers*/
     public:
+    /// \brief Get the minimum time for which the curve is defined
+    /// \return \f$t_{min}\f$, lower bound of time range.
     virtual time_t min() const{return 0.;}
+    /// \brief Get the maximum time for which the curve is defined.
+    /// \return \f$t_{max}\f$, upper bound of time range.
     virtual time_t max() const{return T_;}
 /*Helpers*/
 
diff --git a/include/curves/curve_abc.h b/include/curves/curve_abc.h
index c0306e7..a36af6c 100644
--- a/include/curves/curve_abc.h
+++ b/include/curves/curve_abc.h
@@ -41,24 +41,24 @@ struct  curve_abc : std::unary_function<Time, Point>
 	public:
 	///  \brief Evaluation of the cubic spline at time t.
 	///  \param t : time when to evaluate the spine
-	///  \return Point corresponding on curve at time t.
+	///  \return \f$x(t)\f$, point corresponding on curve at time t.
     virtual point_t operator()(const time_t t) const = 0;
 
 
-    /// \brief Evaluation of the derivative spline at time t.
+    /// \brief Evaluate the derivative of order N of curve at time t.
     /// \param t : time when to evaluate the spline.
-    /// \param order : order of the derivative.
-    /// \return Point corresponding on curve at time t.
+    /// \param order : order of derivative.
+    /// \return \f$\frac{d^Nx(t)}{dt^N}\f$, point corresponding on derivative curve of order N at time t.
     virtual point_t derivate(const time_t t, const std::size_t order) const = 0;
 /*Operations*/
 
 /*Helpers*/
 	public:
-	/// \brief Returns the minimum time for wich curve is defined
-	/// \return Lower bound of time range.
+	/// \brief Get the minimum time for which the curve is defined.
+	/// \return \f$t_{min}\f$, lower bound of time range.
 	virtual time_t min() const = 0;
-	/// \brief Returns the maximum time for wich curve is defined
-	/// \return Upper bound of time range.
+	/// \brief Get the maximum time for which the curve is defined.
+	/// \return \f$t_{max}\f$, upper bound of time range.
 	virtual time_t max() const = 0;
 
     std::pair<time_t, time_t> timeRange() {return std::make_pair(min(), max());}
diff --git a/include/curves/exact_cubic.h b/include/curves/exact_cubic.h
index 693109c..18fdefa 100644
--- a/include/curves/exact_cubic.h
+++ b/include/curves/exact_cubic.h
@@ -158,7 +158,7 @@ struct exact_cubic : public curve_abc<Time, Numeric, Dim, Safe, Point>
 	public:
 	///  \brief Evaluation of the cubic spline at time t.
     ///  \param t : time when to evaluate the spline
-	///  \return Point corresponding on spline at time t.
+	///  \return \f$x(t)\f$, point corresponding on spline at time t.
     ///
     virtual point_t operator()(const time_t t) const
     {
@@ -172,10 +172,10 @@ struct exact_cubic : public curve_abc<Time, Numeric, Dim, Safe, Point>
         throw std::runtime_error("Exact cubic evaluation failed; t is outside bounds");
     }
 
-    ///  \brief Evaluation of the derivative spline at time t.
+    ///  \brief Evaluate the derivative of order N of spline at time t.
     ///  \param t : time when to evaluate the spline.
-    ///  \param order : order of the derivative.
-    ///  \return Point corresponding on derivative spline at time t.
+    ///  \param order : order of derivative.
+    ///  \return \f$\frac{d^Nx(t)}{dt^N}\f$, point corresponding on derivative spline of order N at time t.
     ///
     virtual point_t derivate(const time_t t, const std::size_t order) const
     {
@@ -192,7 +192,11 @@ struct exact_cubic : public curve_abc<Time, Numeric, Dim, Safe, Point>
 
 	/*Helpers*/
 	public:
+    /// \brief Get the minimum time for which the curve is defined
+    /// \return \f$t_{min}\f$, lower bound of time range.
     num_t virtual min() const{return subSplines_.front().min();}
+    /// \brief Get the maximum time for which the curve is defined.
+    /// \return \f$t_{max}\f$, upper bound of time range.
     num_t virtual max() const{return subSplines_.back().max();}
 	/*Helpers*/
 
diff --git a/include/curves/polynom.h b/include/curves/polynom.h
index 2fd55ae..54cf5a4 100644
--- a/include/curves/polynom.h
+++ b/include/curves/polynom.h
@@ -25,10 +25,11 @@
 
 namespace curves
 {
-/// \class polynom
-/// \brief Represents a polynomf arbitrary order defined on the interval
-/// [tBegin, tEnd]. It follows the equation
-/// x(t) = a + b(t - t_min_) + ... + d(t - t_min_)^N, where N is the order
+/// \class polynom.
+/// \brief Represents a polynom of an arbitrary order defined on the interval
+/// \f$[t_{min}, t_{max}]\f$. It follows the equation :
+/// \f$ x(t) = a + b(t - t_{min}) + ... + d(t - t_{min})^N \f$, 
+/// where N is the order and \f$ t \in [t_{min}, t_{max}] \f$.
 ///
 template<typename Time= double, typename Numeric=Time, std::size_t Dim=3, bool Safe=false,
          typename Point= Eigen::Matrix<Numeric, Dim, 1>, typename T_Point =std::vector<Point,Eigen::aligned_allocator<Point> > >
@@ -44,12 +45,12 @@ struct polynom : public curve_abc<Time, Numeric, Dim, Safe, Point>
 
 /* Constructors - destructors */
     public:
-    ///\brief Constructor
-    ///\param coefficients : a reference to an Eigen matrix where each column is a coefficient,
+    /// \brief Constructor.
+    /// \param coefficients : a reference to an Eigen matrix where each column is a coefficient,
     /// from the zero order coefficient, up to the highest order. Spline order is given
     /// by the number of the columns -1.
-    ///\param min: LOWER bound on interval definition of the spline
-    ///\param max: UPPER bound on interval definition of the spline
+    /// \param min: LOWER bound on interval definition of the curve.
+    /// \param max: UPPER bound on interval definition of the curve.
     polynom(const coeff_t& coefficients, const time_t min, const time_t max)
         : curve_abc_t(),
           coefficients_(coefficients), dim_(Dim), order_(coefficients_.cols()-1), t_min_(min), t_max_(max)
@@ -57,12 +58,12 @@ struct polynom : public curve_abc<Time, Numeric, Dim, Safe, Point>
         safe_check();
     }
 
-    ///\brief Constructor
-    ///\param coefficients : a container containing all coefficients of the spline, starting
-    /// with the zero order coefficient, up to the highest order. Spline order is given
-    /// by the size of the coefficients
-    ///\param min: LOWER bound on interval definition of the spline
-    ///\param max: UPPER bound on interval definition of the spline
+    /// \brief Constructor
+    /// \param coefficients : a container containing all coefficients of the spline, starting
+    ///  with the zero order coefficient, up to the highest order. Spline order is given
+    ///  by the size of the coefficients.
+    /// \param min: LOWER bound on interval definition of the spline.
+    /// \param max: UPPER bound on interval definition of the spline.
     polynom(const T_Point& coefficients, const time_t min, const time_t max)
         : curve_abc_t(),
           coefficients_(init_coeffs(coefficients.begin(), coefficients.end())),
@@ -71,12 +72,12 @@ struct polynom : public curve_abc<Time, Numeric, Dim, Safe, Point>
         safe_check();
     }
 
-    ///\brief Constructor
-    ///\param zeroOrderCoefficient : an iterator pointing to the first element of a structure containing the coefficients
-    /// it corresponds to the zero degree coefficient
-    ///\param out   : an iterator pointing to the last element of a structure ofcoefficients
-    ///\param min: LOWER bound on interval definition of the spline
-    ///\param max: UPPER bound on interval definition of the spline
+    /// \brief Constructor.
+    /// \param zeroOrderCoefficient : an iterator pointing to the first element of a structure containing the coefficients
+    ///  it corresponds to the zero degree coefficient.
+    /// \param out   : an iterator pointing to the last element of a structure ofcoefficients.
+    /// \param min   : LOWER bound on interval definition of the spline.
+    /// \param max   : UPPER bound on interval definition of the spline.
     template<typename In>
     polynom(In zeroOrderCoefficient, In out, const time_t min, const time_t max)
         :coefficients_(init_coeffs(zeroOrderCoefficient, out)),
@@ -85,7 +86,7 @@ struct polynom : public curve_abc<Time, Numeric, Dim, Safe, Point>
         safe_check();
     }
 
-    ///\brief Destructor
+    /// \brief Destructor
     ~polynom()
     {
         // NOTHING
@@ -117,7 +118,7 @@ struct polynom : public curve_abc<Time, Numeric, Dim, Safe, Point>
     public:
     /*///  \brief Evaluation of the cubic spline at time t.
     ///  \param t : the time when to evaluate the spine
-    ///  \param return : the value x(t)
+    ///  \param return \f$x(t)\f$, point corresponding on curve at time t.
     virtual point_t operator()(const time_t t) const
     {
         if((t < t_min_ || t > t_max_) && Safe){ throw std::out_of_range("TODO");}
@@ -131,8 +132,8 @@ struct polynom : public curve_abc<Time, Numeric, Dim, Safe, Point>
 
 
     ///  \brief Evaluation of the cubic spline at time t using horner's scheme.
-    ///  \param t : the time when to evaluate the spine
-    ///  \param return : the value x(t)
+    ///  \param t : time when to evaluate the spline.
+    ///  \return \f$x(t)\f$, point corresponding on spline at time t.
     virtual point_t operator()(const time_t t) const
     {
         if((t < t_min_ || t > t_max_) && Safe){ throw std::out_of_range("TODO");}
@@ -144,10 +145,10 @@ struct polynom : public curve_abc<Time, Numeric, Dim, Safe, Point>
     }
 
 
-    ///  \brief Evaluation of the derivative spline at time t.
-    ///  \param t : the time when to evaluate the spline
-    ///  \param order : order of the derivative
-    ///  \param return : the value x(t)
+    ///  \brief Evaluation of the derivative of order N of spline at time t.
+    ///  \param t : the time when to evaluate the spline.
+    ///  \param order : order of derivative.
+    ///  \return \f$\frac{d^Nx(t)}{dt^N}\f$, point corresponding on derivative spline at time t.
     virtual point_t derivate(const time_t t, const std::size_t order) const
     {
         if((t < t_min_ || t > t_max_) && Safe){ throw std::out_of_range("TODO");}
@@ -172,9 +173,11 @@ struct polynom : public curve_abc<Time, Numeric, Dim, Safe, Point>
 
 /*Helpers*/
     public:
-    ///  \brief Returns the minimum time for wich curve is defined
+    /// \brief Get the minimum time for which the curve is defined
+    /// \return \f$t_{min}\f$, lower bound of time range.
     num_t virtual min() const {return t_min_;}
-    ///  \brief Returns the maximum time for wich curve is defined
+    /// \brief Get the maximum time for which the curve is defined.
+    /// \return \f$t_{max}\f$, upper bound of time range.
     num_t virtual max() const {return t_max_;}
 /*Helpers*/
 
-- 
GitLab