diff --git a/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.BACKUP.4492.py b/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.BACKUP.4492.py new file mode 100644 index 0000000000000000000000000000000000000000..840571b88fc4891fb2994085f0b84dfb1944f6cc --- /dev/null +++ b/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.BACKUP.4492.py @@ -0,0 +1,139 @@ +import numpy as np +from mpl_toolkits.mplot3d import Axes3D +import matplotlib.pyplot as plt +from matplotlib import cm + + +cma = cm.autumn + +#~ plt.ion() + +## Display a 3d plot of the values computed for a limb database +# where all samples take the maximum value of the octree they belong to +# \param robot FullBody object +# \param valueName name of the plotted analytics +# \param limb name of the considered limb +def plotcube(plt, ax, c, pos): + x = pos[0]; y = pos[1]; z = pos[2] + r = (float)(pos[3])/2 + + x1 = [x - r, x + r] + y1 = [y - r, y + r] + z1 = [z -r, z - r] + X, Y = np.meshgrid(x1, y1) + ax.plot_surface(X,Y,z1, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y - r, y + r] + z1 = [z + r, z + r] + X, Y = np.meshgrid(x1, y1) + ax.plot_surface(X,Y,z1, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y + r, y + r] + z1 = [z + r, z - r] + X, Z = np.meshgrid(x1, z1) + ax.plot_surface(X,y1,Z, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y - r, y - r] + z1 = [z + r, z - r] + X, Z = np.meshgrid(x1, z1) + ax.plot_surface(X,y1,Z, color = cma(c)) + + x1 = [x - r, x - r] + y1 = [y - r, y + r] + z1 = [z + r, z - r] + Y, Z = np.meshgrid(y1, z1) + ax.plot_surface(x1,Y,Z, color = cma(c)) + + x1 = [x + r, x + r] + y1 = [y - r, y + r] + z1 = [z + r, z - r] + Y, Z = np.meshgrid(y1, z1) + ax.plot_surface(x1,Y,Z, color = cma(c)) + +def getOctreeValues(robot, valueName, limb): + res = {} + res ['boxes'] = [] + res ['values'] = [] + octreeIds = robot.getOctreeNodeIds(limb) + for ocId in octreeIds: + sampleIds = robot.getSamplesIdsInOctreeNode(limb, ocId) + max_val = 0; + for sId in sampleIds: + i = int(sId) + g = robot.getSampleValue(limb, valueName, i) + max_val = max(max_val, g) + box = robot.getOctreeBox(limb, (int)(ocId)) + res['boxes'].append(box) + res['values'].append(max_val) + return res + + +def plotOctreeValues(robot, valueName, limb): + fig = plt.figure() + ax = fig.add_subplot(111, projection='3d') + boxesValues = getOctreeValues(robot, valueName, limb) + boxes = boxesValues['boxes'] + values = boxesValues['values'] + for i in range(0,len(boxes)): + plotcube(plt,ax,values[i], boxes[i]) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + plt.title(valueName) + plt.show() + +def plotOctreeValuesCompare(ax, boxesValues): + boxes = boxesValues['boxes'] + values = boxesValues['values'] + for i in range(0,len(boxes)): + plotcube(plt,ax,values[i], boxes[i]) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + +def compareOctreeValues(robotName1, robotName2, boxesValues1, boxesValues2, valueName): + fig = plt.figure() + fig.suptitle(valueName) + ax = fig.add_subplot(121, projection='3d') + ax.set_title(robotName1) + plotOctreeValuesCompare(ax, boxesValues1) + bx = fig.add_subplot(122, projection='3d') + bx.set_title(robotName2) + plotOctreeValuesCompare(bx, boxesValues2) + #~ plt.title(valueName) +<<<<<<< HEAD +======= + plt.savefig(valueName+'.png') +>>>>>>> rb-rrt + plt.draw() + +## Display a 3d plot of the values computed for a limb database +# +# \param robot FullBody object +# \param valueName name of the plotted analytics +# \param limb name of the considered limb +def plotValues(robot, valueName, limb): + xs = [] + ys = [] + zs = [] + vals = [] + fig = plt.figure() + ax = fig.add_subplot(111, projection='3d') + numSamples = robot.getNumSamples(limb) + for i in range(0,numSamples): + g = robot.getSampleValue(limb, valueName, i) + pos = robot.getSamplePosition(limb, i) + xs.append(pos[0]) + ys.append(pos[1]) + zs.append(pos[2]) + g = robot.getSampleValue(limb, valueName, i) + vals.append(cma(g)) + ax.scatter(xs, ys, zs, color=vals) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + plt.title(valueName) + plt.show() diff --git a/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.BASE.4492.py b/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.BASE.4492.py new file mode 100644 index 0000000000000000000000000000000000000000..a2783bc87a06aaa8f602ae7e6f8503d13b4a9b2a --- /dev/null +++ b/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.BASE.4492.py @@ -0,0 +1,102 @@ +import numpy as np +from mpl_toolkits.mplot3d import Axes3D +import matplotlib.pyplot as plt +from matplotlib import cm + + +cma = cm.autumn + +## Display a 3d plot of the values computed for a limb database +# where all samples take the maximum value of the octree they belong to +# \param robot FullBody object +# \param valueName name of the plotted analytics +# \param limb name of the considered limb +def plotcube(plt, ax, c, pos): + x = pos[0]; y = pos[1]; z = pos[2] + r = (float)(pos[3])/2 + + x1 = [x - r, x + r] + y1 = [y - r, y + r] + z1 = [z -r, z - r] + X, Y = np.meshgrid(x1, y1) + ax.plot_surface(X,Y,z1, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y - r, y + r] + z1 = [z + r, z + r] + X, Y = np.meshgrid(x1, y1) + ax.plot_surface(X,Y,z1, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y + r, y + r] + z1 = [z + r, z - r] + X, Z = np.meshgrid(x1, z1) + ax.plot_surface(X,y1,Z, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y - r, y - r] + z1 = [z + r, z - r] + X, Z = np.meshgrid(x1, z1) + ax.plot_surface(X,y1,Z, color = cma(c)) + + x1 = [x - r, x - r] + y1 = [y - r, y + r] + z1 = [z + r, z - r] + Y, Z = np.meshgrid(y1, z1) + ax.plot_surface(x1,Y,Z, color = cma(c)) + + x1 = [x + r, x + r] + y1 = [y - r, y + r] + z1 = [z + r, z - r] + Y, Z = np.meshgrid(y1, z1) + ax.plot_surface(x1,Y,Z, color = cma(c)) + +def plotOctreeValues(robot, valueName, limb): + fig = plt.figure() + ax = fig.add_subplot(111, projection='3d') + #first iterate over octree. + octreeIds = robot.getOctreeNodeIds(limb) + for ocId in octreeIds: + sampleIds = robot.getSamplesIdsInOctreeNode(limb, ocId) + max_val = 0; + for sId in sampleIds: + i = int(sId) + g = robot.getSampleValue(limb, valueName, i) + max_val = max(max_val, g) + box = robot.getOctreeBox(limb, (int)(ocId)) + plotcube(plt,ax,max_val, box) + #~ if box[2] < -0.15 and box[2] > -0.25: + #~ plotcube(plt,ax,max_val, box) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + plt.title(valueName) + plt.show() + +## Display a 3d plot of the values computed for a limb database +# +# \param robot FullBody object +# \param valueName name of the plotted analytics +# \param limb name of the considered limb +def plotValues(robot, valueName, limb): + xs = [] + ys = [] + zs = [] + vals = [] + fig = plt.figure() + ax = fig.add_subplot(111, projection='3d') + numSamples = robot.getNumSamples(limb) + for i in range(0,numSamples): + g = robot.getSampleValue(limb, valueName, i) + pos = robot.getSamplePosition(limb, i) + xs.append(pos[0]) + ys.append(pos[1]) + zs.append(pos[2]) + g = robot.getSampleValue(limb, valueName, i) + vals.append(cma(g)) + ax.scatter(xs, ys, zs, color=vals) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + plt.title(valueName) + plt.show() diff --git a/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.LOCAL.4492.py b/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.LOCAL.4492.py new file mode 100644 index 0000000000000000000000000000000000000000..eb8d49f799c4ec4964cc0f58e2f6660ea01ad042 --- /dev/null +++ b/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.LOCAL.4492.py @@ -0,0 +1,135 @@ +import numpy as np +from mpl_toolkits.mplot3d import Axes3D +import matplotlib.pyplot as plt +from matplotlib import cm + + +cma = cm.autumn + +#~ plt.ion() + +## Display a 3d plot of the values computed for a limb database +# where all samples take the maximum value of the octree they belong to +# \param robot FullBody object +# \param valueName name of the plotted analytics +# \param limb name of the considered limb +def plotcube(plt, ax, c, pos): + x = pos[0]; y = pos[1]; z = pos[2] + r = (float)(pos[3])/2 + + x1 = [x - r, x + r] + y1 = [y - r, y + r] + z1 = [z -r, z - r] + X, Y = np.meshgrid(x1, y1) + ax.plot_surface(X,Y,z1, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y - r, y + r] + z1 = [z + r, z + r] + X, Y = np.meshgrid(x1, y1) + ax.plot_surface(X,Y,z1, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y + r, y + r] + z1 = [z + r, z - r] + X, Z = np.meshgrid(x1, z1) + ax.plot_surface(X,y1,Z, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y - r, y - r] + z1 = [z + r, z - r] + X, Z = np.meshgrid(x1, z1) + ax.plot_surface(X,y1,Z, color = cma(c)) + + x1 = [x - r, x - r] + y1 = [y - r, y + r] + z1 = [z + r, z - r] + Y, Z = np.meshgrid(y1, z1) + ax.plot_surface(x1,Y,Z, color = cma(c)) + + x1 = [x + r, x + r] + y1 = [y - r, y + r] + z1 = [z + r, z - r] + Y, Z = np.meshgrid(y1, z1) + ax.plot_surface(x1,Y,Z, color = cma(c)) + +def getOctreeValues(robot, valueName, limb): + res = {} + res ['boxes'] = [] + res ['values'] = [] + octreeIds = robot.getOctreeNodeIds(limb) + for ocId in octreeIds: + sampleIds = robot.getSamplesIdsInOctreeNode(limb, ocId) + max_val = 0; + for sId in sampleIds: + i = int(sId) + g = robot.getSampleValue(limb, valueName, i) + max_val = max(max_val, g) + box = robot.getOctreeBox(limb, (int)(ocId)) + res['boxes'].append(box) + res['values'].append(max_val) + return res + + +def plotOctreeValues(robot, valueName, limb): + fig = plt.figure() + ax = fig.add_subplot(111, projection='3d') + boxesValues = getOctreeValues(robot, valueName, limb) + boxes = boxesValues['boxes'] + values = boxesValues['values'] + for i in range(0,len(boxes)): + plotcube(plt,ax,values[i], boxes[i]) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + plt.title(valueName) + plt.show() + +def plotOctreeValuesCompare(ax, boxesValues): + boxes = boxesValues['boxes'] + values = boxesValues['values'] + for i in range(0,len(boxes)): + plotcube(plt,ax,values[i], boxes[i]) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + +def compareOctreeValues(robotName1, robotName2, boxesValues1, boxesValues2, valueName): + fig = plt.figure() + fig.suptitle(valueName) + ax = fig.add_subplot(121, projection='3d') + ax.set_title(robotName1) + plotOctreeValuesCompare(ax, boxesValues1) + bx = fig.add_subplot(122, projection='3d') + bx.set_title(robotName2) + plotOctreeValuesCompare(bx, boxesValues2) + #~ plt.title(valueName) + plt.draw() + +## Display a 3d plot of the values computed for a limb database +# +# \param robot FullBody object +# \param valueName name of the plotted analytics +# \param limb name of the considered limb +def plotValues(robot, valueName, limb): + xs = [] + ys = [] + zs = [] + vals = [] + fig = plt.figure() + ax = fig.add_subplot(111, projection='3d') + numSamples = robot.getNumSamples(limb) + for i in range(0,numSamples): + g = robot.getSampleValue(limb, valueName, i) + pos = robot.getSamplePosition(limb, i) + xs.append(pos[0]) + ys.append(pos[1]) + zs.append(pos[2]) + g = robot.getSampleValue(limb, valueName, i) + vals.append(cma(g)) + ax.scatter(xs, ys, zs, color=vals) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + plt.title(valueName) + plt.show() diff --git a/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.REMOTE.4492.py b/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.REMOTE.4492.py new file mode 100644 index 0000000000000000000000000000000000000000..2965bdaadd6eeb974c4ffdcad3e94cee243ff092 --- /dev/null +++ b/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.REMOTE.4492.py @@ -0,0 +1,136 @@ +import numpy as np +from mpl_toolkits.mplot3d import Axes3D +import matplotlib.pyplot as plt +from matplotlib import cm + + +cma = cm.autumn + +#~ plt.ion() + +## Display a 3d plot of the values computed for a limb database +# where all samples take the maximum value of the octree they belong to +# \param robot FullBody object +# \param valueName name of the plotted analytics +# \param limb name of the considered limb +def plotcube(plt, ax, c, pos): + x = pos[0]; y = pos[1]; z = pos[2] + r = (float)(pos[3])/2 + + x1 = [x - r, x + r] + y1 = [y - r, y + r] + z1 = [z -r, z - r] + X, Y = np.meshgrid(x1, y1) + ax.plot_surface(X,Y,z1, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y - r, y + r] + z1 = [z + r, z + r] + X, Y = np.meshgrid(x1, y1) + ax.plot_surface(X,Y,z1, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y + r, y + r] + z1 = [z + r, z - r] + X, Z = np.meshgrid(x1, z1) + ax.plot_surface(X,y1,Z, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y - r, y - r] + z1 = [z + r, z - r] + X, Z = np.meshgrid(x1, z1) + ax.plot_surface(X,y1,Z, color = cma(c)) + + x1 = [x - r, x - r] + y1 = [y - r, y + r] + z1 = [z + r, z - r] + Y, Z = np.meshgrid(y1, z1) + ax.plot_surface(x1,Y,Z, color = cma(c)) + + x1 = [x + r, x + r] + y1 = [y - r, y + r] + z1 = [z + r, z - r] + Y, Z = np.meshgrid(y1, z1) + ax.plot_surface(x1,Y,Z, color = cma(c)) + +def getOctreeValues(robot, valueName, limb): + res = {} + res ['boxes'] = [] + res ['values'] = [] + octreeIds = robot.getOctreeNodeIds(limb) + for ocId in octreeIds: + sampleIds = robot.getSamplesIdsInOctreeNode(limb, ocId) + max_val = 0; + for sId in sampleIds: + i = int(sId) + g = robot.getSampleValue(limb, valueName, i) + max_val = max(max_val, g) + box = robot.getOctreeBox(limb, (int)(ocId)) + res['boxes'].append(box) + res['values'].append(max_val) + return res + + +def plotOctreeValues(robot, valueName, limb): + fig = plt.figure() + ax = fig.add_subplot(111, projection='3d') + boxesValues = getOctreeValues(robot, valueName, limb) + boxes = boxesValues['boxes'] + values = boxesValues['values'] + for i in range(0,len(boxes)): + plotcube(plt,ax,values[i], boxes[i]) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + plt.title(valueName) + plt.show() + +def plotOctreeValuesCompare(ax, boxesValues): + boxes = boxesValues['boxes'] + values = boxesValues['values'] + for i in range(0,len(boxes)): + plotcube(plt,ax,values[i], boxes[i]) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + +def compareOctreeValues(robotName1, robotName2, boxesValues1, boxesValues2, valueName): + fig = plt.figure() + fig.suptitle(valueName) + ax = fig.add_subplot(121, projection='3d') + ax.set_title(robotName1) + plotOctreeValuesCompare(ax, boxesValues1) + bx = fig.add_subplot(122, projection='3d') + bx.set_title(robotName2) + plotOctreeValuesCompare(bx, boxesValues2) + #~ plt.title(valueName) + plt.savefig(valueName+'.png') + plt.draw() + +## Display a 3d plot of the values computed for a limb database +# +# \param robot FullBody object +# \param valueName name of the plotted analytics +# \param limb name of the considered limb +def plotValues(robot, valueName, limb): + xs = [] + ys = [] + zs = [] + vals = [] + fig = plt.figure() + ax = fig.add_subplot(111, projection='3d') + numSamples = robot.getNumSamples(limb) + for i in range(0,numSamples): + g = robot.getSampleValue(limb, valueName, i) + pos = robot.getSamplePosition(limb, i) + xs.append(pos[0]) + ys.append(pos[1]) + zs.append(pos[2]) + g = robot.getSampleValue(limb, valueName, i) + vals.append(cma(g)) + ax.scatter(xs, ys, zs, color=vals) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + plt.title(valueName) + plt.show() diff --git a/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.orig b/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.orig new file mode 100644 index 0000000000000000000000000000000000000000..840571b88fc4891fb2994085f0b84dfb1944f6cc --- /dev/null +++ b/src/hpp/corbaserver/rbprm/tools/plot_analytics.py.orig @@ -0,0 +1,139 @@ +import numpy as np +from mpl_toolkits.mplot3d import Axes3D +import matplotlib.pyplot as plt +from matplotlib import cm + + +cma = cm.autumn + +#~ plt.ion() + +## Display a 3d plot of the values computed for a limb database +# where all samples take the maximum value of the octree they belong to +# \param robot FullBody object +# \param valueName name of the plotted analytics +# \param limb name of the considered limb +def plotcube(plt, ax, c, pos): + x = pos[0]; y = pos[1]; z = pos[2] + r = (float)(pos[3])/2 + + x1 = [x - r, x + r] + y1 = [y - r, y + r] + z1 = [z -r, z - r] + X, Y = np.meshgrid(x1, y1) + ax.plot_surface(X,Y,z1, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y - r, y + r] + z1 = [z + r, z + r] + X, Y = np.meshgrid(x1, y1) + ax.plot_surface(X,Y,z1, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y + r, y + r] + z1 = [z + r, z - r] + X, Z = np.meshgrid(x1, z1) + ax.plot_surface(X,y1,Z, color = cma(c)) + + x1 = [x - r, x + r] + y1 = [y - r, y - r] + z1 = [z + r, z - r] + X, Z = np.meshgrid(x1, z1) + ax.plot_surface(X,y1,Z, color = cma(c)) + + x1 = [x - r, x - r] + y1 = [y - r, y + r] + z1 = [z + r, z - r] + Y, Z = np.meshgrid(y1, z1) + ax.plot_surface(x1,Y,Z, color = cma(c)) + + x1 = [x + r, x + r] + y1 = [y - r, y + r] + z1 = [z + r, z - r] + Y, Z = np.meshgrid(y1, z1) + ax.plot_surface(x1,Y,Z, color = cma(c)) + +def getOctreeValues(robot, valueName, limb): + res = {} + res ['boxes'] = [] + res ['values'] = [] + octreeIds = robot.getOctreeNodeIds(limb) + for ocId in octreeIds: + sampleIds = robot.getSamplesIdsInOctreeNode(limb, ocId) + max_val = 0; + for sId in sampleIds: + i = int(sId) + g = robot.getSampleValue(limb, valueName, i) + max_val = max(max_val, g) + box = robot.getOctreeBox(limb, (int)(ocId)) + res['boxes'].append(box) + res['values'].append(max_val) + return res + + +def plotOctreeValues(robot, valueName, limb): + fig = plt.figure() + ax = fig.add_subplot(111, projection='3d') + boxesValues = getOctreeValues(robot, valueName, limb) + boxes = boxesValues['boxes'] + values = boxesValues['values'] + for i in range(0,len(boxes)): + plotcube(plt,ax,values[i], boxes[i]) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + plt.title(valueName) + plt.show() + +def plotOctreeValuesCompare(ax, boxesValues): + boxes = boxesValues['boxes'] + values = boxesValues['values'] + for i in range(0,len(boxes)): + plotcube(plt,ax,values[i], boxes[i]) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + +def compareOctreeValues(robotName1, robotName2, boxesValues1, boxesValues2, valueName): + fig = plt.figure() + fig.suptitle(valueName) + ax = fig.add_subplot(121, projection='3d') + ax.set_title(robotName1) + plotOctreeValuesCompare(ax, boxesValues1) + bx = fig.add_subplot(122, projection='3d') + bx.set_title(robotName2) + plotOctreeValuesCompare(bx, boxesValues2) + #~ plt.title(valueName) +<<<<<<< HEAD +======= + plt.savefig(valueName+'.png') +>>>>>>> rb-rrt + plt.draw() + +## Display a 3d plot of the values computed for a limb database +# +# \param robot FullBody object +# \param valueName name of the plotted analytics +# \param limb name of the considered limb +def plotValues(robot, valueName, limb): + xs = [] + ys = [] + zs = [] + vals = [] + fig = plt.figure() + ax = fig.add_subplot(111, projection='3d') + numSamples = robot.getNumSamples(limb) + for i in range(0,numSamples): + g = robot.getSampleValue(limb, valueName, i) + pos = robot.getSamplePosition(limb, i) + xs.append(pos[0]) + ys.append(pos[1]) + zs.append(pos[2]) + g = robot.getSampleValue(limb, valueName, i) + vals.append(cma(g)) + ax.scatter(xs, ys, zs, color=vals) + ax.set_xlabel('X Label') + ax.set_ylabel('Y Label') + ax.set_zlabel('Z Label') + plt.title(valueName) + plt.show() diff --git a/src/rbprmbuilder.impl.cc b/src/rbprmbuilder.impl.cc index e21c6b4f5d21526e111a2b325684e8a046914900..b0c4bcb6c605decb54febfccf637c33bbd58b229 100755 --- a/src/rbprmbuilder.impl.cc +++ b/src/rbprmbuilder.impl.cc @@ -559,7 +559,7 @@ namespace hpp { { throw std::runtime_error ("End state not initialized, can not interpolate "); } - hpp::rbprm::RbPrmInterpolationPtr_t interpolator = rbprm::RbPrmInterpolation::create(fullBody_,startState_,endState_); + hpp::rbprm::interpolation::RbPrmInterpolationPtr_t interpolator = rbprm::interpolation::RbPrmInterpolation::create(fullBody_,startState_,endState_); std::vector<model::Configuration_t> configurations = doubleDofArrayToConfig(fullBody_->device_, configs); lastStatesComputed_ = interpolator->Interpolate(problemSolver_->collisionObstacles(),configurations,robustnessTreshold); hpp::floatSeqSeq *res; @@ -646,7 +646,7 @@ namespace hpp { { try { - std::size_t s1(state1), s2(state2); + std::size_t s1((std::size_t)state1), s2((std::size_t)state2); if(lastStatesComputed_.size () < s1 || lastStatesComputed_.size () < s2 ) { throw std::runtime_error ("did not find a states at indicated indices: " + std::string(""+s1) + ", " + std::string(""+s2)); diff --git a/src/rbprmbuilder.impl.cc.orig b/src/rbprmbuilder.impl.cc.orig new file mode 100755 index 0000000000000000000000000000000000000000..4fe99b90d90b3ac0a9a1e051adc910a75dae8b82 --- /dev/null +++ b/src/rbprmbuilder.impl.cc.orig @@ -0,0 +1,973 @@ +// Copyright (c) 2012 CNRS +// Author: Florent Lamiraux, Joseph Mirabel +// +// This file is part of hpp-manipulation-corba. +// hpp-manipulation-corba is free software: you can redistribute it +// and/or modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation, either version +// 3 of the License, or (at your option) any later version. +// +// hpp-manipulation-corba is distributed in the hope that it will be +// useful, but WITHOUT ANY WARRANTY; without even the implied warranty +// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +// General Lesser Public License for more details. You should have +// received a copy of the GNU Lesser General Public License along with +// hpp-manipulation-corba. If not, see +// <http://www.gnu.org/licenses/>. + +//#include <hpp/fcl/math/transform.h> +#include <hpp/util/debug.hh> +#include "rbprmbuilder.impl.hh" +#include "hpp/rbprm/rbprm-device.hh" +#include "hpp/rbprm/rbprm-validation.hh" +#include "hpp/rbprm/interpolation/rbprm-path-interpolation.hh" +<<<<<<< HEAD +======= +#include "hpp/rbprm/interpolation/limb-rrt-helper.hh" +>>>>>>> rb-rrt +#include "hpp/rbprm/stability/stability.hh" +#include "hpp/rbprm/sampling/sample-db.hh" +#include "hpp/model/urdf/util.hh" +#include <fstream> + + + +namespace hpp { + namespace rbprm { + namespace impl { + + RbprmBuilder::RbprmBuilder () + : POA_hpp::corbaserver::rbprm::RbprmBuilder() + , romLoaded_(false) + , fullBodyLoaded_(false) + , bindShooter_() + , analysisFactory_(0) + { + // NOTHING + } + + void RbprmBuilder::loadRobotRomModel(const char* robotName, + const char* rootJointType, + const char* packageName, + const char* modelName, + const char* urdfSuffix, + const char* srdfSuffix) throw (hpp::Error) + { + try + { + hpp::model::DevicePtr_t romDevice = model::Device::create (robotName); +std::cout << romDevice->currentConfiguration() << std::endl; + romDevices_.insert(std::make_pair(robotName, romDevice)); + hpp::model::urdf::loadRobotModel (romDevice, + std::string (rootJointType), + std::string (packageName), + std::string (modelName), + std::string (urdfSuffix), + std::string (srdfSuffix)); + } + catch (const std::exception& exc) + { + hppDout (error, exc.what ()); + throw hpp::Error (exc.what ()); + } + romLoaded_ = true; + } + + void RbprmBuilder::loadRobotCompleteModel(const char* robotName, + const char* rootJointType, + const char* packageName, + const char* modelName, + const char* urdfSuffix, + const char* srdfSuffix) throw (hpp::Error) + { + if(!romLoaded_) + { + std::string err("Rom must be loaded before loading complete model") ; + hppDout (error, err ); + throw hpp::Error(err.c_str()); + } + try + { + hpp::model::RbPrmDevicePtr_t device = hpp::model::RbPrmDevice::create (robotName, romDevices_); + hpp::model::urdf::loadRobotModel (device, + std::string (rootJointType), + std::string (packageName), + std::string (modelName), + std::string (urdfSuffix), + std::string (srdfSuffix)); + // Add device to the planner + problemSolver_->robot (device); + problemSolver_->robot ()->controlComputation + (model::Device::JOINT_POSITION); + } + catch (const std::exception& exc) + { + hppDout (error, exc.what ()); + throw hpp::Error (exc.what ()); + } + } + + void RbprmBuilder::loadFullBodyRobot(const char* robotName, + const char* rootJointType, + const char* packageName, + const char* modelName, + const char* urdfSuffix, + const char* srdfSuffix) throw (hpp::Error) + { + try + { + model::DevicePtr_t device = model::Device::create (robotName); + hpp::model::urdf::loadRobotModel (device, + std::string (rootJointType), + std::string (packageName), + std::string (modelName), + std::string (urdfSuffix), + std::string (srdfSuffix)); + fullBody_ = rbprm::RbPrmFullBody::create(device); + problemSolver_->pathValidationType ("Discretized",0.05); // reset to avoid conflict with rbprm path + problemSolver_->robot (fullBody_->device_); + problemSolver_->resetProblem(); + problemSolver_->robot ()->controlComputation + (model::Device::JOINT_POSITION); + } + catch (const std::exception& exc) + { + hppDout (error, exc.what ()); + throw hpp::Error (exc.what ()); + } + fullBodyLoaded_ = true; + analysisFactory_ = new sampling::AnalysisFactory(fullBody_); + } + + hpp::floatSeq* RbprmBuilder::getSampleConfig(const char* limb, unsigned short sampleId) throw (hpp::Error) + { + if(!fullBodyLoaded_) + throw Error ("No full body robot was loaded"); + const T_Limb& limbs = fullBody_->GetLimbs(); + T_Limb::const_iterator lit = limbs.find(std::string(limb)); + if(lit == limbs.end()) + { + std::string err("No limb " + std::string(limb) + "was defined for robot" + fullBody_->device_->name()); + throw Error (err.c_str()); + } + const RbPrmLimbPtr_t& limbPtr = lit->second; + hpp::floatSeq *dofArray; + Eigen::VectorXd config = fullBody_->device_->currentConfiguration (); + if(sampleId > limbPtr->sampleContainer_.samples_.size()) + { + std::string err("Limb " + std::string(limb) + "does not have samples."); + throw Error (err.c_str()); + } + const sampling::Sample& sample = limbPtr->sampleContainer_.samples_[sampleId]; + config.segment(sample.startRank_, sample.length_) = sample.configuration_; + dofArray = new hpp::floatSeq(); + dofArray->length(_CORBA_ULong(config.rows())); + for(std::size_t i=0; i< _CORBA_ULong(config.rows()); i++) + (*dofArray)[(_CORBA_ULong)i] = config [i]; + return dofArray; + } + + + hpp::floatSeq* RbprmBuilder::getSamplePosition(const char* limb, unsigned short sampleId) throw (hpp::Error) + { + if(!fullBodyLoaded_) + throw Error ("No full body robot was loaded"); + const T_Limb& limbs = fullBody_->GetLimbs(); + T_Limb::const_iterator lit = limbs.find(std::string(limb)); + if(lit == limbs.end()) + { + std::string err("No limb " + std::string(limb) + "was defined for robot" + fullBody_->device_->name()); + throw Error (err.c_str()); + } + const RbPrmLimbPtr_t& limbPtr = lit->second; + hpp::floatSeq *dofArray; + if(sampleId > limbPtr->sampleContainer_.samples_.size()) + { + std::string err("Limb " + std::string(limb) + "does not have samples."); + throw Error (err.c_str()); + } + const sampling::Sample& sample = limbPtr->sampleContainer_.samples_[sampleId]; + const fcl::Vec3f& position = sample.effectorPosition_; + dofArray = new hpp::floatSeq(); + dofArray->length(_CORBA_ULong(3)); + for(std::size_t i=0; i< 3; i++) + (*dofArray)[(_CORBA_ULong)i] = position [i]; + return dofArray; + } + + + CORBA::UShort RbprmBuilder::getNumSamples(const char* limb) throw (hpp::Error) + { + const T_Limb& limbs = fullBody_->GetLimbs(); + T_Limb::const_iterator lit = limbs.find(std::string(limb)); + if(lit == limbs.end()) + { + std::string err("No limb " + std::string(limb) + "was defined for robot" + fullBody_->device_->name()); + throw Error (err.c_str()); + } + return (CORBA::UShort)(lit->second->sampleContainer_.samples_.size()); + } + + floatSeq *RbprmBuilder::getOctreeNodeIds(const char* limb) throw (hpp::Error) + { + const T_Limb& limbs = fullBody_->GetLimbs(); + T_Limb::const_iterator lit = limbs.find(std::string(limb)); + if(lit == limbs.end()) + { + std::string err("No limb " + std::string(limb) + "was defined for robot" + fullBody_->device_->name()); + throw Error (err.c_str()); + } + const sampling::T_VoxelSampleId& ids = lit->second->sampleContainer_.samplesInVoxels_; + hpp::floatSeq* dofArray = new hpp::floatSeq(); + dofArray->length((_CORBA_ULong)ids.size()); + sampling::T_VoxelSampleId::const_iterator it = ids.begin(); + for(std::size_t i=0; i< _CORBA_ULong(ids.size()); ++i, ++it) + { + (*dofArray)[(_CORBA_ULong)i] = (double)it->first; + } + return dofArray; + } + + double RbprmBuilder::getSampleValue(const char* limb, const char* valueName, unsigned short sampleId) throw (hpp::Error) + { + const T_Limb& limbs = fullBody_->GetLimbs(); + T_Limb::const_iterator lit = limbs.find(std::string(limb)); + if(lit == limbs.end()) + { + std::string err("No limb " + std::string(limb) + "was defined for robot" + fullBody_->device_->name()); + throw Error (err.c_str()); + } + const sampling::SampleDB& database = lit->second->sampleContainer_; + if (database.samples_.size() <= sampleId) + { + std::string err("unexisting sample id " + sampleId); + throw Error (err.c_str()); + } + sampling::T_Values::const_iterator cit = database.values_.find(std::string(valueName)); + if(cit == database.values_.end()) + { + std::string err("value not existing in database " + std::string(valueName)); + throw Error (err.c_str()); + } + return cit->second[sampleId]; + } + + model::Configuration_t dofArrayToConfig (const model::DevicePtr_t& robot, + const hpp::floatSeq& dofArray) + { + std::size_t configDim = (std::size_t)dofArray.length(); + // Get robot + if (!robot) { + throw hpp::Error ("No robot in problem solver."); + } + std::size_t deviceDim = robot->configSize (); + // Fill dof vector with dof array. + model::Configuration_t config; config.resize (configDim); + for (std::size_t iDof = 0; iDof < configDim; iDof++) { + config [iDof] = (_CORBA_ULong)dofArray[(_CORBA_ULong)iDof]; + } + // fill the vector by zero + hppDout (info, "config dimension: " <<configDim + <<", deviceDim "<<deviceDim); + if(configDim != deviceDim){ + throw hpp::Error ("dofVector Does not match"); + } + return config; + } + + std::vector<model::Configuration_t> doubleDofArrayToConfig (const model::DevicePtr_t& robot, + const hpp::floatSeqSeq& doubleDofArray) + { + std::size_t configsDim = (std::size_t)doubleDofArray.length(); + std::vector<model::Configuration_t> res; + for (_CORBA_ULong iConfig = 0; iConfig < configsDim; iConfig++) + { + res.push_back(dofArrayToConfig(robot, doubleDofArray[iConfig])); + } + return res; + } + + std::vector<std::string> stringConversion(const hpp::Names_t& dofArray) + { + std::vector<std::string> res; + std::size_t dim = (std::size_t)dofArray.length(); + for (_CORBA_ULong iDof = 0; iDof < dim; iDof++) + { + res.push_back(std::string(dofArray[iDof])); + } + return res; + } + + std::vector<double> doubleConversion(const hpp::floatSeq& dofArray) + { + std::vector<double> res; + std::size_t dim = (std::size_t)dofArray.length(); + for (_CORBA_ULong iDof = 0; iDof < dim; iDof++) + { + res.push_back(dofArray[iDof]); + } + return res; + } + + + void RbprmBuilder::setFilter(const hpp::Names_t& roms) throw (hpp::Error) + { + bindShooter_.romFilter_ = stringConversion(roms); + } + + + void RbprmBuilder::setNormalFilter(const char* romName, const hpp::floatSeq& normal, double range) throw (hpp::Error) + { + std::string name(romName); + bindShooter_.normalFilter_.erase(name); + fcl::Vec3f dir; + for(_CORBA_ULong i =0; i <3; ++i) + { + dir[i] = normal[i]; + } + NormalFilter filter(dir,range); + bindShooter_.normalFilter_.insert(std::make_pair(name,filter)); + } + + void RbprmBuilder::boundSO3(const hpp::floatSeq& limitszyx) throw (hpp::Error) + { + std::vector<double> limits = doubleConversion(limitszyx); + if(limits.size() !=6) + { + throw Error ("Can not bound SO3, array of 6 double required"); + } + bindShooter_.so3Bounds_ = limits; + + } + + hpp::floatSeq* RbprmBuilder::generateContacts(const hpp::floatSeq& configuration, const hpp::floatSeq& direction) throw (hpp::Error) + { + if(!fullBodyLoaded_) + throw Error ("No full body robot was loaded"); + try + { + fcl::Vec3f dir; + for(std::size_t i =0; i <3; ++i) + { + dir[i] = direction[(_CORBA_ULong)i]; + } + model::Configuration_t config = dofArrayToConfig (fullBody_->device_, configuration); + rbprm::State state = rbprm::ComputeContacts(fullBody_,config, + problemSolver_->collisionObstacles(), dir); + hpp::floatSeq* dofArray = new hpp::floatSeq(); + dofArray->length(_CORBA_ULong(state.configuration_.rows())); + for(std::size_t i=0; i< _CORBA_ULong(config.rows()); i++) + (*dofArray)[(_CORBA_ULong)i] = state.configuration_ [i]; + return dofArray; + } catch (const std::exception& exc) { + throw hpp::Error (exc.what ()); + } + } + + hpp::floatSeq* RbprmBuilder::getContactSamplesIds(const char* limbname, + const hpp::floatSeq& configuration, + const hpp::floatSeq& direction) throw (hpp::Error) + { + if(!fullBodyLoaded_) + throw Error ("No full body robot was loaded"); + try + { + fcl::Vec3f dir; + for(std::size_t i =0; i <3; ++i) + { + dir[i] = direction[(_CORBA_ULong)i]; + } + model::Configuration_t config = dofArrayToConfig (fullBody_->device_, configuration); + model::Configuration_t save = fullBody_->device_->currentConfiguration(); + fullBody_->device_->currentConfiguration(config); + + sampling::T_OctreeReport finalSet; + rbprm::T_Limb::const_iterator lit = fullBody_->GetLimbs().find(std::string(limbname)); + if(lit == fullBody_->GetLimbs().end()) + { + throw std::runtime_error ("Impossible to find limb for joint " + + std::string(limbname) + " to robot; limb not defined."); + } + const RbPrmLimbPtr_t& limb = lit->second; + fcl::Transform3f transform = limb->limb_->robot()->rootJoint()->childJoint(0)->currentTransformation (); // get root transform from configuration + std::vector<sampling::T_OctreeReport> reports(problemSolver_->collisionObstacles().size()); + std::size_t i (0); + //#pragma omp parallel for + for(model::ObjectVector_t::const_iterator oit = problemSolver_->collisionObstacles().begin(); + oit != problemSolver_->collisionObstacles().end(); ++oit, ++i) + { + sampling::GetCandidates(limb->sampleContainer_, transform, *oit, dir, reports[i]); + } + for(std::vector<sampling::T_OctreeReport>::const_iterator cit = reports.begin(); + cit != reports.end(); ++cit) + { + finalSet.insert(cit->begin(), cit->end()); + } + hpp::floatSeq* dofArray = new hpp::floatSeq(); + dofArray->length((_CORBA_ULong)finalSet.size()); + sampling::T_OctreeReport::const_iterator candCit = finalSet.begin(); + for(std::size_t i=0; i< _CORBA_ULong(finalSet.size()); ++i, ++candCit) + { + (*dofArray)[(_CORBA_ULong)i] = (double)candCit->sample_->id_; + } + fullBody_->device_->currentConfiguration(save); + return dofArray; + } catch (const std::exception& exc) { + throw hpp::Error (exc.what ()); + } + } + + hpp::floatSeq* RbprmBuilder::getSamplesIdsInOctreeNode(const char* limb, + double octreeNodeId) throw (hpp::Error) + { + if(!fullBodyLoaded_) + throw Error ("No full body robot was loaded"); + try + { + long ocId ((long)octreeNodeId); + const T_Limb& limbs = fullBody_->GetLimbs(); + T_Limb::const_iterator lit = limbs.find(std::string(limb)); + if(lit == limbs.end()) + { + std::string err("No limb " + std::string(limb) + "was defined for robot" + fullBody_->device_->name()); + throw Error (err.c_str()); + } + const sampling::T_VoxelSampleId& sampleIds = lit->second->sampleContainer_.samplesInVoxels_; + sampling::T_VoxelSampleId::const_iterator cit = sampleIds.find(ocId); + if(cit == sampleIds.end()) + { + std::stringstream ss; ss << ocId; + std::string err("No octree node with id " + ss.str() + "was defined for robot" + fullBody_->device_->name()); + throw Error (err.c_str()); + } + const sampling::VoxelSampleId& ids = cit->second; + hpp::floatSeq* dofArray = new hpp::floatSeq(); + dofArray->length((_CORBA_ULong)ids.second); + std::size_t sampleId = ids.first; + for(std::size_t i=0; i< _CORBA_ULong(ids.second); ++i, ++sampleId) + { + (*dofArray)[(_CORBA_ULong)i] = (double)sampleId; + } + return dofArray; + } catch (const std::exception& exc) { + throw hpp::Error (exc.what ()); + } + } + + void RbprmBuilder::addLimb(const char* id, const char* limb, const char* effector, const hpp::floatSeq& offset, const hpp::floatSeq& normal, double x, double y, + unsigned short samples, const char* heuristicName, double resolution, const char *contactType) throw (hpp::Error) + { + if(!fullBodyLoaded_) + throw Error ("No full body robot was loaded"); + try + { + fcl::Vec3f off, norm; + for(std::size_t i =0; i <3; ++i) + { + off[i] = offset[(_CORBA_ULong)i]; + norm[i] = normal[(_CORBA_ULong)i]; + } + ContactType cType = hpp::rbprm::_6_DOF; + if(std::string(contactType) == "_3_DOF") + { + cType = hpp::rbprm::_3_DOF; + } + fullBody_->AddLimb(std::string(id), std::string(limb), std::string(effector), off, norm, x, y, problemSolver_->collisionObstacles(), samples,heuristicName,resolution,cType); + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + + void RbprmBuilder::addLimbDatabase(const char* databasePath, const char* id, const char* heuristicName, double loadValues) throw (hpp::Error) + { + if(!fullBodyLoaded_) + throw Error ("No full body robot was loaded"); + try + { + std::string fileName(databasePath); + fullBody_->AddLimb(fileName, std::string(id), problemSolver_->collisionObstacles(), heuristicName, loadValues > 0.5); + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + void SetPositionAndNormal(rbprm::State& state, hpp::rbprm::RbPrmFullBodyPtr_t fullBody, const hpp::floatSeq& configuration, const hpp::Names_t& contactLimbs) + { + core::Configuration_t old = fullBody->device_->currentConfiguration(); + model::Configuration_t config = dofArrayToConfig (fullBody->device_, configuration); + fullBody->device_->currentConfiguration(config); + fullBody->device_->computeForwardKinematics(); + std::vector<std::string> names = stringConversion(contactLimbs); + for(std::vector<std::string>::const_iterator cit = names.begin(); cit != names.end();++cit) + { + rbprm::T_Limb::const_iterator lit = fullBody->GetLimbs().find(*cit); + if(lit == fullBody->GetLimbs().end()) + { + throw std::runtime_error ("Impossible to find limb for joint " + + (*cit) + " to robot; limb not defined"); + } + const core::JointPtr_t joint = fullBody->device_->getJointByName(lit->second->effector_->name()); + const fcl::Transform3f& transform = joint->currentTransformation (); + const fcl::Matrix3f& rot = transform.getRotation(); + state.contactPositions_[*cit] = transform.getTranslation(); + state.contactRotation_[*cit] = rot; + state.contactNormals_[*cit] = fcl::Vec3f(rot(0,2),rot(1,2), rot(2,2)); + state.contacts_[*cit] = true; + state.contactOrder_.push(*cit); + } + state.nbContacts = state.contactNormals_.size() ; + state.configuration_ = config; + state.robustness = stability::IsStable(fullBody,state); + state.stable = state.robustness >= 0; + fullBody->device_->currentConfiguration(old); + } + + void RbprmBuilder::setStartState(const hpp::floatSeq& configuration, const hpp::Names_t& contactLimbs) throw (hpp::Error) + { + try + { + SetPositionAndNormal(startState_,fullBody_, configuration, contactLimbs); + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + void RbprmBuilder::setEndState(const hpp::floatSeq& configuration, const hpp::Names_t& contactLimbs) throw (hpp::Error) + { + try + { + SetPositionAndNormal(endState_,fullBody_, configuration, contactLimbs); + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + floatSeqSeq* RbprmBuilder::interpolateConfigs(const hpp::floatSeqSeq& configs, double robustnessTreshold) throw (hpp::Error) + { + try + { + if(startState_.configuration_.rows() == 0) + { + throw std::runtime_error ("Start state not initialized, can not interpolate "); + } + if(endState_.configuration_.rows() == 0) + { + throw std::runtime_error ("End state not initialized, can not interpolate "); + } +<<<<<<< HEAD + hpp::rbprm::interpolation::RbPrmInterpolationPtr_t interpolator = rbprm::interpolation::RbPrmInterpolation::create(fullBody_,startState_,endState_); +======= + hpp::rbprm::interpolation::RbPrmInterpolationPtr_t interpolator = hpp::rbprm::interpolation::RbPrmInterpolation::create(fullBody_,startState_,endState_); +>>>>>>> rb-rrt + std::vector<model::Configuration_t> configurations = doubleDofArrayToConfig(fullBody_->device_, configs); + lastStatesComputed_ = interpolator->Interpolate(problemSolver_->collisionObstacles(),configurations,robustnessTreshold); + hpp::floatSeqSeq *res; + res = new hpp::floatSeqSeq (); + + res->length ((_CORBA_ULong)lastStatesComputed_.size ()); + std::size_t i=0; + std::size_t id = 0; + for(std::vector<State>::const_iterator cit = lastStatesComputed_.begin(); cit != lastStatesComputed_.end(); ++cit, ++id) + { + std::cout << "ID " << id; + cit->print(); + const core::Configuration_t config = cit->configuration_; + _CORBA_ULong size = (_CORBA_ULong) config.size (); + double* dofArray = hpp::floatSeq::allocbuf(size); + hpp::floatSeq floats (size, size, dofArray, true); + //convert the config in dofseq + for (model::size_type j=0 ; j < config.size() ; ++j) { + dofArray[j] = config [j]; + } + (*res) [(_CORBA_ULong)i] = floats; + ++i; + } + return res; + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + floatSeqSeq* RbprmBuilder::interpolate(double timestep, double path, double robustnessTreshold) throw (hpp::Error) + { + try + { + unsigned int pathId = int(path); + if(startState_.configuration_.rows() == 0) + { + throw std::runtime_error ("Start state not initialized, can not interpolate "); + } + if(endState_.configuration_.rows() == 0) + { + throw std::runtime_error ("End state not initialized, can not interpolate "); + } + + if(problemSolver_->paths().size() <= pathId) + { + throw std::runtime_error ("No path computed, cannot interpolate "); + } + +<<<<<<< HEAD + hpp::rbprm::interpolation::RbPrmInterpolationPtr_t interpolator = rbprm::interpolation::RbPrmInterpolation::create(fullBody_,startState_,endState_,problemSolver_->paths()[pathId]); +======= + hpp::rbprm::interpolation::RbPrmInterpolationPtr_t interpolator = hpp::rbprm::interpolation::RbPrmInterpolation::create(fullBody_,startState_,endState_,problemSolver_->paths()[pathId]); +>>>>>>> rb-rrt + lastStatesComputed_ = interpolator->Interpolate(problemSolver_->collisionObstacles(),timestep,robustnessTreshold); + + hpp::floatSeqSeq *res; + res = new hpp::floatSeqSeq (); + + res->length ((_CORBA_ULong)lastStatesComputed_.size ()); + std::size_t i=0; + std::size_t id = 0; + for(std::vector<State>::const_iterator cit = lastStatesComputed_.begin(); cit != lastStatesComputed_.end(); ++cit, ++id) + { + std::cout << "ID " << id; + cit->print(); + const core::Configuration_t config = cit->configuration_; + _CORBA_ULong size = (_CORBA_ULong) config.size (); + double* dofArray = hpp::floatSeq::allocbuf(size); + hpp::floatSeq floats (size, size, dofArray, true); + //convert the config in dofseq + for (model::size_type j=0 ; j < config.size() ; ++j) { + dofArray[j] = config [j]; + } + (*res) [(_CORBA_ULong)i] = floats; + ++i; + } + return res; + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + void RbprmBuilder::interpolateBetweenStates(double state1, double state2) throw (hpp::Error) + { + try + { + std::size_t s1(state1), s2(state2); + if(lastStatesComputed_.size () < s1 || lastStatesComputed_.size () < s2 ) + { + throw std::runtime_error ("did not find a states at indicated indices: " + std::string(""+s1) + ", " + std::string(""+s2)); + } + //create helper +// /interpolation::LimbRRTHelper helper(fullBody_, problemSolver_->problem()); + core::PathVectorPtr_t path = interpolation::interpolateStates(fullBody_,problemSolver_->problem(), + lastStatesComputed_.begin()+s1,lastStatesComputed_.begin()+s2); + problemSolver_->addPath(path); + problemSolver_->robot()->setDimensionExtraConfigSpace(problemSolver_->robot()->extraConfigSpace().dimension()+1); + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + void RbprmBuilder::saveComputedStates(const char* outfilename) throw (hpp::Error) + { + std::stringstream ss; + ss << lastStatesComputed_.size()-2 << "\n"; + std::vector<rbprm::State>::iterator cit = lastStatesComputed_.begin()+1; + int i = 0; + ss << i++ << " "; + cit->print(ss); + for(std::vector<rbprm::State>::iterator cit2 = lastStatesComputed_.begin()+2; + cit2 != lastStatesComputed_.end()-1; ++cit2, ++cit, ++i) + { + cit2->robustness = stability::IsStable(this->fullBody_, *cit2); + ss << i<< " "; + cit2->print(ss,*cit); + } + std::ofstream outfile; + outfile.open(outfilename); + if (outfile.is_open()) + { + outfile << ss.rdbuf(); + outfile.close(); + } + else + { + std::string error("Can not open outfile " + std::string(outfilename)); + throw Error(error.c_str()); + } + } + + void RbprmBuilder::saveLimbDatabase(const char* limbname,const char* filepath) throw (hpp::Error) + { + try + { + std::string limbName(limbname); + std::ofstream fout; + fout.open(filepath, std::fstream::out | std::fstream::app); + rbprm::saveLimbInfoAndDatabase(fullBody_->GetLimbs().at(limbName),fout); + //sampling::saveLimbDatabase(fullBody_->GetLimbs().at(limbName)->sampleContainer_,fout); + fout.close(); + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + hpp::floatSeqSeq* RbprmBuilder::getOctreeBoxes(const char* limbName, const hpp::floatSeq& configuration) throw (hpp::Error) + { + try + { + model::Configuration_t config = dofArrayToConfig (fullBody_->device_, configuration); + model::Configuration_t save = fullBody_->device_->currentConfiguration(); + fullBody_->device_->currentConfiguration(config); + fullBody_->device_->computeForwardKinematics(); + const std::map<std::size_t, fcl::CollisionObject*>& boxes = + fullBody_->GetLimbs().at(std::string(limbName))->sampleContainer_.boxes_; + const double resolution = fullBody_->GetLimbs().at(std::string(limbName))->sampleContainer_.resolution_; + std::size_t i =0; + hpp::floatSeqSeq *res; + res = new hpp::floatSeqSeq (); + res->length ((_CORBA_ULong)boxes.size ()); + for(std::map<std::size_t, fcl::CollisionObject*>::const_iterator cit = boxes.begin(); + cit != boxes.end();++cit,++i) + { + fcl::Vec3f position = (*cit->second).getTranslation(); + _CORBA_ULong size = (_CORBA_ULong) 4; + double* dofArray = hpp::floatSeq::allocbuf(size); + hpp::floatSeq floats (size, size, dofArray, true); + //convert the config in dofseq + for (model::size_type j=0 ; j < 3 ; ++j) { + dofArray[j] = position[j]; + } + dofArray[3] = resolution; + (*res) [(_CORBA_ULong)i] = floats; + } + fullBody_->device_->currentConfiguration(save); + fullBody_->device_->computeForwardKinematics(); + return res; + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + hpp::floatSeq* RbprmBuilder::getOctreeBox(const char* limbName, double octreeNodeId) throw (hpp::Error) + { + try + { + if(!fullBodyLoaded_) + throw Error ("No full body robot was loaded"); + long ocId ((long)octreeNodeId); + const T_Limb& limbs = fullBody_->GetLimbs(); + T_Limb::const_iterator lit = limbs.find(std::string(limbName)); + if(lit == limbs.end()) + { + std::string err("No limb " + std::string(limbName) + "was defined for robot" + fullBody_->device_->name()); + throw Error (err.c_str()); + } + const std::map<std::size_t, fcl::CollisionObject*>& boxes = + fullBody_->GetLimbs().at(std::string(limbName))->sampleContainer_.boxes_; + std::map<std::size_t, fcl::CollisionObject*>::const_iterator cit = boxes.find(ocId); + if(cit == boxes.end()) + { + std::stringstream ss; ss << ocId; + std::string err("No octree node with id " + ss.str() + "was defined for robot" + fullBody_->device_->name()); + throw Error (err.c_str()); + } + const fcl::CollisionObject* box = cit->second; + const fcl::Vec3f& pos = box->getTransform().getTranslation(); + hpp::floatSeq* dofArray = new hpp::floatSeq(); + dofArray->length(4); + for(std::size_t i=0; i< 3; ++i) + { + (*dofArray)[(_CORBA_ULong)i] = pos[i]; + } + (*dofArray)[(_CORBA_ULong)3] = fullBody_->GetLimbs().at(std::string(limbName))->sampleContainer_.resolution_; + return dofArray; + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + hpp::floatSeq* RbprmBuilder::getOctreeTransform(const char* limbName, const hpp::floatSeq& configuration) throw (hpp::Error) + { + try{ + model::Configuration_t config = dofArrayToConfig (fullBody_->device_, configuration); + model::Configuration_t save = fullBody_->device_->currentConfiguration(); + fullBody_->device_->currentConfiguration(config); + fullBody_->device_->computeForwardKinematics(); + const hpp::rbprm::RbPrmLimbPtr_t limb =fullBody_->GetLimbs().at(std::string(limbName)); + const fcl::Transform3f transform = limb->octreeRoot(); + const fcl::Quaternion3f& quat = transform.getQuatRotation(); + const fcl::Vec3f& position = transform.getTranslation(); + hpp::floatSeq *dofArray; + dofArray = new hpp::floatSeq(); + dofArray->length(_CORBA_ULong(7)); + for(std::size_t i=0; i< 3; i++) + (*dofArray)[(_CORBA_ULong)i] = position [i]; + for(std::size_t i=0; i< 4; i++) + (*dofArray)[(_CORBA_ULong)i+3] = quat [i]; + fullBody_->device_->currentConfiguration(save); + fullBody_->device_->computeForwardKinematics(); + return dofArray; + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + CORBA::Short RbprmBuilder::isConfigBalanced(const hpp::floatSeq& configuration, const hpp::Names_t& contactLimbs, double robustnessTreshold) throw (hpp::Error) + { + try{ + rbprm::State testedState; + model::Configuration_t config = dofArrayToConfig (fullBody_->device_, configuration); + model::Configuration_t save = fullBody_->device_->currentConfiguration(); + std::vector<std::string> names = stringConversion(contactLimbs); + for(std::vector<std::string>::const_iterator cit = names.begin(); cit != names.end();++cit) + { + std::cout << "name " << * cit << std::endl; + const hpp::rbprm::RbPrmLimbPtr_t limb =fullBody_->GetLimbs().at(std::string(*cit)); + testedState.contacts_[*cit] = true; + testedState.contactPositions_[*cit] = limb->effector_->currentTransformation().getTranslation(); + testedState.contactRotation_[*cit] = limb->effector_->currentTransformation().getRotation(); + // normal given by effector normal + const fcl::Vec3f normal = limb->effector_->currentTransformation().getRotation() * limb->normal_; + testedState.contactNormals_[*cit] = normal; + testedState.configuration_ = config; + ++testedState.nbContacts; + } + fullBody_->device_->currentConfiguration(save); + fullBody_->device_->computeForwardKinematics(); + if (stability::IsStable(fullBody_, testedState) >= robustnessTreshold) + { + return (CORBA::Short)(1); + } + else + { + return (CORBA::Short)(0); + } + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + + void RbprmBuilder::runSampleAnalysis(const char* analysis, double isstatic) throw (hpp::Error) + { + try + { + if(!fullBodyLoaded_) + throw Error ("No full body robot was loaded"); + std::string eval(analysis); + if (eval == "all") + { + for(sampling::T_evaluate::const_iterator analysisit = analysisFactory_->evaluate_.begin(); + analysisit != analysisFactory_->evaluate_.end(); ++ analysisit) + { + for(T_Limb::const_iterator cit = fullBody_->GetLimbs().begin(); cit !=fullBody_->GetLimbs().end();++cit) + { + sampling::SampleDB & sampleDB =const_cast<sampling::SampleDB &> (cit->second->sampleContainer_); + sampling::addValue(sampleDB, analysisit->first, analysisit->second, isstatic > 0.5, isstatic > 0.5); + } + } + } + else + { + sampling::T_evaluate::const_iterator analysisit = analysisFactory_->evaluate_.find(std::string(eval)); + if(analysisit == analysisFactory_->evaluate_.end()) + { + std::string err("No analysis named " + eval + "was defined for analyzing database sample"); + throw Error (err.c_str()); + } + for(T_Limb::const_iterator cit = fullBody_->GetLimbs().begin(); cit !=fullBody_->GetLimbs().end();++cit) + { + sampling::SampleDB & sampleDB =const_cast<sampling::SampleDB &> (cit->second->sampleContainer_); + sampling::addValue(sampleDB, analysisit->first, analysisit->second, isstatic > 0.5, isstatic > 0.5); + } + } + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + hpp::floatSeq* RbprmBuilder::runLimbSampleAnalysis(const char* limbname, const char* analysis, double isstatic) throw (hpp::Error) + { + try + { + rbprm::sampling::ValueBound bounds; + if(!fullBodyLoaded_) + throw Error ("No full body robot was loaded"); + T_Limb::const_iterator lit = fullBody_->GetLimbs().find(std::string(limbname)); + if(lit == fullBody_->GetLimbs().end()) + { + std::string err("No limb " + std::string(limbname) + "was defined for robot" + fullBody_->device_->name()); + throw Error (err.c_str()); + } + std::string eval(analysis); + if (eval == "all") + { + for(sampling::T_evaluate::const_iterator analysisit = analysisFactory_->evaluate_.begin(); + analysisit != analysisFactory_->evaluate_.end(); ++ analysisit) + { + sampling::SampleDB & sampleDB =const_cast<sampling::SampleDB &> (lit->second->sampleContainer_); + sampling::addValue(sampleDB, analysisit->first, analysisit->second, isstatic > 0.5, isstatic > 0.5); + bounds = sampleDB.valueBounds_[analysisit->first]; + } + } + else + { + sampling::T_evaluate::const_iterator analysisit = analysisFactory_->evaluate_.find(std::string(eval)); + if(analysisit == analysisFactory_->evaluate_.end()) + { + std::string err("No analysis named " + eval + "was defined for analyzing database sample"); + throw Error (err.c_str()); + } + sampling::SampleDB & sampleDB =const_cast<sampling::SampleDB &> (lit->second->sampleContainer_); + sampling::addValue(sampleDB, analysisit->first, analysisit->second, isstatic > 0.5, isstatic > 0.5); + bounds = sampleDB.valueBounds_[analysisit->first]; + } + hpp::floatSeq* dofArray = new hpp::floatSeq(); + dofArray->length(2); + (*dofArray)[0] = bounds.first; + (*dofArray)[1] = bounds.second; + return dofArray; + } + catch(std::runtime_error& e) + { + throw Error(e.what()); + } + } + + void RbprmBuilder::SetProblemSolver (hpp::core::ProblemSolverPtr_t problemSolver) + { + problemSolver_ = problemSolver; + bindShooter_.problemSolver_ = problemSolver; + //bind shooter creator to hide problem as a parameter and respect signature + + // add rbprmshooter + problemSolver->add<core::ConfigurationShooterBuilder_t>("RbprmShooter", + boost::bind(&BindShooter::create, boost::ref(bindShooter_), _1)); + problemSolver->add<core::PathValidationBuilder_t>("RbprmPathValidation", + boost::bind(&BindShooter::createPathValidation, boost::ref(bindShooter_), _1, _2)); + } + + } // namespace impl + } // namespace rbprm +} // namespace hpp