Commit cfc6e563 authored by Pierre Fernbach's avatar Pierre Fernbach
Browse files

add operator == in polynomial

parent 4d985abf
......@@ -254,6 +254,42 @@ struct polynomial : public curve_abc<Time, Numeric, Safe, Point> {
return h;
}
/**
* @brief isApprox check if other and *this are equals, given a precision treshold.
* This test is done by discretizing, it should be re-implemented in the child class to check exactly
* all the members.
* @param other the other curve to check
* @param order the order up to which the derivatives of the curves are checked for equality
* @param prec the precision treshold, default Eigen::NumTraits<Numeric>::dummy_precision()
* @return true is the two curves are approximately equals
*/
virtual bool isApprox(const polynomial_t& other, const Numeric prec = Eigen::NumTraits<Numeric>::dummy_precision(),const size_t order = 5) const{
//std::cout<<"is approx in polynomial called."<<std::endl;
(void)order; // silent warning, order is not used in this class.
return T_min_ == other.min()
&& T_max_ == other.max()
&& dim_ == other.dim()
&& degree_ == other.degree()
&& coefficients_.isApprox(other.coefficients_,prec);
}
virtual bool operator==(const polynomial_t& other) const {
return isApprox(other);
}
virtual bool operator!=(const polynomial_t& other) const {
return !(*this == other);
}
virtual bool operator==(const curve_abc_t& other) const {
return curve_abc_t::isApprox(other);
}
virtual bool operator!=(const curve_abc_t& other) const {
return !curve_abc_t::isApprox(other);
}
/// \brief Evaluation of the derivative of order N of spline at time t.
/// \param t : the time when to evaluate the spline.
/// \param order : order of derivative.
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment