From 6330ad3f6c2d8607ef0d77e360a22a2da37393ce Mon Sep 17 00:00:00 2001
From: panjia1983 <panjia1983@gmail.com>
Date: Wed, 14 Aug 2013 23:22:09 -0700
Subject: [PATCH] penetration depth

---
 test/libsvm/svm.cpp | 3288 +++++++++++++++++++++++++++++++++++++++++++
 test/libsvm/svm.h   |  115 ++
 2 files changed, 3403 insertions(+)
 create mode 100644 test/libsvm/svm.cpp
 create mode 100644 test/libsvm/svm.h

diff --git a/test/libsvm/svm.cpp b/test/libsvm/svm.cpp
new file mode 100644
index 00000000..219a352a
--- /dev/null
+++ b/test/libsvm/svm.cpp
@@ -0,0 +1,3288 @@
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <float.h>
+#include <string.h>
+#include <stdarg.h>
+#include <limits.h>
+#include <locale.h>
+#include <assert.h>
+#include "svm.h"
+int libsvm_version = LIBSVM_VERSION;
+typedef float Qfloat;
+typedef signed char schar;
+#ifndef min
+template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
+#endif
+#ifndef max
+template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
+#endif
+template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
+template <class S, class T> static inline void clone(T*& dst, S* src, int n)
+{
+  dst = new T[n];
+  memcpy((void *)dst,(void *)src,sizeof(T)*n);
+}
+static inline double powi(double base, int times)
+{
+  double tmp = base, ret = 1.0;
+
+  for(int t=times; t>0; t/=2)
+  {
+    if(t%2==1) ret*=tmp;
+    tmp = tmp * tmp;
+  }
+  return ret;
+}
+#define INF HUGE_VAL
+#define TAU 1e-12
+#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
+
+static void print_string_stdout(const char *s)
+{
+  fputs(s,stdout);
+  fflush(stdout);
+}
+static void (*svm_print_string) (const char *) = &print_string_stdout;
+#if 0
+static void info(const char *fmt,...)
+{
+  char buf[BUFSIZ];
+  va_list ap;
+  va_start(ap,fmt);
+  vsprintf(buf,fmt,ap);
+  va_end(ap);
+  (*svm_print_string)(buf);
+}
+#else
+static void info(const char *fmt,...) {}
+#endif
+
+//
+// Kernel Cache
+//
+// l is the number of total data items
+// size is the cache size limit in bytes
+//
+class Cache
+{
+public:
+  Cache(int l,long int size);
+  ~Cache();
+
+  // request data [0,len)
+  // return some position p where [p,len) need to be filled
+  // (p >= len if nothing needs to be filled)
+  int get_data(const int index, Qfloat **data, int len);
+  void swap_index(int i, int j);	
+private:
+  int l;
+  long int size;
+  struct head_t
+  {
+    head_t *prev, *next;	// a circular list
+    Qfloat *data;
+    int len;		// data[0,len) is cached in this entry
+  };
+
+  head_t *head;
+  head_t lru_head;
+  void lru_delete(head_t *h);
+  void lru_insert(head_t *h);
+};
+
+Cache::Cache(int l_,long int size_):l(l_),size(size_)
+{
+  head = (head_t *)calloc(l,sizeof(head_t));	// initialized to 0
+  size /= sizeof(Qfloat);
+  size -= l * sizeof(head_t) / sizeof(Qfloat);
+  size = max(size, 2 * (long int) l);	// cache must be large enough for two columns
+  lru_head.next = lru_head.prev = &lru_head;
+}
+
+Cache::~Cache()
+{
+  for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
+    free(h->data);
+  free(head);
+}
+
+void Cache::lru_delete(head_t *h)
+{
+  // delete from current location
+  h->prev->next = h->next;
+  h->next->prev = h->prev;
+}
+
+void Cache::lru_insert(head_t *h)
+{
+  // insert to last position
+  h->next = &lru_head;
+  h->prev = lru_head.prev;
+  h->prev->next = h;
+  h->next->prev = h;
+}
+
+int Cache::get_data(const int index, Qfloat **data, int len)
+{
+  head_t *h = &head[index];
+  if(h->len) lru_delete(h);
+  int more = len - h->len;
+
+  if(more > 0)
+  {
+    // free old space
+    while(size < more)
+    {
+      head_t *old = lru_head.next;
+      lru_delete(old);
+      free(old->data);
+      size += old->len;
+      old->data = 0;
+      old->len = 0;
+    }
+
+    // allocate new space
+    h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
+    size -= more;
+    swap(h->len,len);
+  }
+
+  lru_insert(h);
+  *data = h->data;
+  return len;
+}
+
+void Cache::swap_index(int i, int j)
+{
+  if(i==j) return;
+
+  if(head[i].len) lru_delete(&head[i]);
+  if(head[j].len) lru_delete(&head[j]);
+  swap(head[i].data,head[j].data);
+  swap(head[i].len,head[j].len);
+  if(head[i].len) lru_insert(&head[i]);
+  if(head[j].len) lru_insert(&head[j]);
+
+  if(i>j) swap(i,j);
+  for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
+  {
+    if(h->len > i)
+    {
+      if(h->len > j)
+        swap(h->data[i],h->data[j]);
+      else
+      {
+        // give up
+        lru_delete(h);
+        free(h->data);
+        size += h->len;
+        h->data = 0;
+        h->len = 0;
+      }
+    }
+  }
+}
+
+//
+// Kernel evaluation
+//
+// the static method k_function is for doing single kernel evaluation
+// the constructor of Kernel prepares to calculate the l*l kernel matrix
+// the member function get_Q is for getting one column from the Q Matrix
+//
+class QMatrix {
+public:
+  virtual Qfloat *get_Q(int column, int len) const = 0;
+  virtual double *get_QD() const = 0;
+  virtual void swap_index(int i, int j) const = 0;
+  virtual ~QMatrix() {}
+};
+
+class Kernel: public QMatrix {
+public:
+  Kernel(int l, svm_node * const * x, const svm_parameter& param);
+  virtual ~Kernel();
+
+  static double k_function(const svm_node *x, const svm_node *y,
+                           const svm_parameter& param);
+
+  virtual Qfloat *get_Q(int column, int len) const = 0;
+  virtual double *get_QD() const = 0;
+  virtual void swap_index(int i, int j) const	// no so const...
+  {
+    swap(x[i],x[j]);
+    if(x_square) swap(x_square[i],x_square[j]);
+  }
+protected:
+
+  double (Kernel::*kernel_function)(int i, int j) const;
+
+private:
+  const svm_node **x;
+  double *x_square;
+
+  // svm_parameter
+  const int kernel_type;
+  const int degree;
+  const double gamma;
+  const double coef0;
+
+  static double dot(const svm_node *px, const svm_node *py);
+  double kernel_linear(int i, int j) const
+  {
+    return dot(x[i],x[j]);
+  }
+  double kernel_poly(int i, int j) const
+  {
+    return powi(gamma*dot(x[i],x[j])+coef0,degree);
+  }
+  double kernel_rbf(int i, int j) const
+  {
+    return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
+  }
+  double kernel_sigmoid(int i, int j) const
+  {
+    return tanh(gamma*dot(x[i],x[j])+coef0);
+  }
+  double kernel_precomputed(int i, int j) const
+  {
+    return x[i][(int)(x[j][0].value)].value;
+  }
+};
+
+
+double k_function(const svm_node* x, const svm_node* y, const svm_parameter& param)
+{
+  return Kernel::k_function(x, y, param);
+}
+
+Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
+ :kernel_type(param.kernel_type), degree(param.degree),
+  gamma(param.gamma), coef0(param.coef0)
+{
+  switch(kernel_type)
+  {
+  case LINEAR:
+    kernel_function = &Kernel::kernel_linear;
+    break;
+  case POLY:
+    kernel_function = &Kernel::kernel_poly;
+    break;
+  case RBF:
+    kernel_function = &Kernel::kernel_rbf;
+    break;
+  case SIGMOID:
+    kernel_function = &Kernel::kernel_sigmoid;
+    break;
+  case PRECOMPUTED:
+    kernel_function = &Kernel::kernel_precomputed;
+    break;
+  }
+
+  clone(x,x_,l);
+
+  if(kernel_type == RBF)
+  {
+    x_square = new double[l];
+    for(int i=0;i<l;i++)
+      x_square[i] = dot(x[i],x[i]);
+  }
+  else
+    x_square = 0;
+}
+
+Kernel::~Kernel()
+{
+  delete[] x;
+  delete[] x_square;
+}
+
+double Kernel::dot(const svm_node *px, const svm_node *py)
+{
+  double sum = 0;
+  while(px->index != -1 && py->index != -1)
+  {
+    if(px->index == py->index)
+    {
+      sum += px->value * py->value;
+      ++px;
+      ++py;
+    }
+    else
+    {
+      if(px->index > py->index)
+        ++py;
+      else
+        ++px;
+    }			
+  }
+  return sum;
+}
+
+double Kernel::k_function(const svm_node *x, const svm_node *y,
+                          const svm_parameter& param)
+{
+  switch(param.kernel_type)
+  {
+  case LINEAR:
+    return dot(x,y);
+  case POLY:
+    return powi(param.gamma*dot(x,y)+param.coef0,param.degree);
+  case RBF:
+    {
+      double sum = 0;
+      while(x->index != -1 && y->index !=-1)
+      {
+        if(x->index == y->index)
+        {
+          double d = x->value - y->value;
+          sum += d*d;
+          ++x;
+          ++y;
+        }
+        else
+        {
+          if(x->index > y->index)
+          {	
+            sum += y->value * y->value;
+            ++y;
+          }
+          else
+          {
+            sum += x->value * x->value;
+            ++x;
+          }
+        }
+      }
+
+      while(x->index != -1)
+      {
+        sum += x->value * x->value;
+        ++x;
+      }
+
+      while(y->index != -1)
+      {
+        sum += y->value * y->value;
+        ++y;
+      }
+			
+      return exp(-param.gamma*sum);
+    }
+  case SIGMOID:
+    return tanh(param.gamma*dot(x,y)+param.coef0);
+  case PRECOMPUTED:  //x: test (validation), y: SV
+    return x[(int)(y->value)].value;
+  default:
+    return 0;  // Unreachable 
+  }
+}
+
+// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
+// Solves:
+//
+//	min 0.5(\alpha^T Q \alpha) + p^T \alpha
+//
+//		y^T \alpha = \delta
+//		y_i = +1 or -1
+//		0 <= alpha_i <= Cp for y_i = 1
+//		0 <= alpha_i <= Cn for y_i = -1
+//
+// Given:
+//
+//	Q, p, y, Cp, Cn, and an initial feasible point \alpha
+//	l is the size of vectors and matrices
+//	eps is the stopping tolerance
+//
+// solution will be put in \alpha, objective value will be put in obj
+//
+class Solver {
+public:
+  Solver() {};
+  virtual ~Solver() {};
+
+  struct SolutionInfo {
+    double obj;
+    double rho;
+    double *upper_bound;
+    double r;	// for Solver_NU
+  };
+
+  void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+             double *alpha_, const double* C_, double eps,
+             SolutionInfo* si, int shrinking);
+protected:
+  int active_size;
+  schar *y;
+  double *G;		// gradient of objective function
+  enum { LOWER_BOUND, UPPER_BOUND, FREE };
+  char *alpha_status;	// LOWER_BOUND, UPPER_BOUND, FREE
+  double *alpha;
+  const QMatrix *Q;
+  const double *QD;
+  double eps;
+  double Cp,Cn;
+  double *C;
+  double *p;
+  int *active_set;
+  double *G_bar;		// gradient, if we treat free variables as 0
+  int l;
+  bool unshrink;	// XXX
+
+  double get_C(int i)
+  {
+    return C[i];
+  }
+  void update_alpha_status(int i)
+  {
+    if(alpha[i] >= get_C(i))
+      alpha_status[i] = UPPER_BOUND;
+    else if(alpha[i] <= 0)
+      alpha_status[i] = LOWER_BOUND;
+    else alpha_status[i] = FREE;
+  }
+  bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
+  bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
+  bool is_free(int i) { return alpha_status[i] == FREE; }
+  void swap_index(int i, int j);
+  void reconstruct_gradient();
+  virtual int select_working_set(int &i, int &j);
+  virtual double calculate_rho();
+  virtual void do_shrinking();
+private:
+  bool be_shrunk(int i, double Gmax1, double Gmax2);	
+};
+
+void Solver::swap_index(int i, int j)
+{
+  Q->swap_index(i,j);
+  swap(y[i],y[j]);
+  swap(G[i],G[j]);
+  swap(alpha_status[i],alpha_status[j]);
+  swap(alpha[i],alpha[j]);
+  swap(p[i],p[j]);
+  swap(active_set[i],active_set[j]);
+  swap(G_bar[i],G_bar[j]);
+  swap(C[i],C[j]);
+}
+
+void Solver::reconstruct_gradient()
+{
+  // reconstruct inactive elements of G from G_bar and free variables
+
+  if(active_size == l) return;
+
+  int i,j;
+  int nr_free = 0;
+
+  for(j=active_size;j<l;j++)
+    G[j] = G_bar[j] + p[j];
+
+  for(j=0;j<active_size;j++)
+    if(is_free(j))
+      nr_free++;
+
+  if(2*nr_free < active_size)
+    info("\nWARNING: using -h 0 may be faster\n");
+
+  if (nr_free*l > 2*active_size*(l-active_size))
+  {
+    for(i=active_size;i<l;i++)
+    {
+      const Qfloat *Q_i = Q->get_Q(i,active_size);
+      for(j=0;j<active_size;j++)
+        if(is_free(j))
+          G[i] += alpha[j] * Q_i[j];
+    }
+  }
+  else
+  {
+    for(i=0;i<active_size;i++)
+      if(is_free(i))
+      {
+        const Qfloat *Q_i = Q->get_Q(i,l);
+        double alpha_i = alpha[i];
+        for(j=active_size;j<l;j++)
+          G[j] += alpha_i * Q_i[j];
+      }
+  }
+}
+
+void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+                   double *alpha_, const double* C_, double eps,
+                   SolutionInfo* si, int shrinking)
+{
+  this->l = l;
+  this->Q = &Q;
+  QD=Q.get_QD();
+  clone(p, p_,l);
+  clone(y, y_,l);
+  clone(alpha,alpha_,l);
+  clone(C,C_,l);
+  this->eps = eps;
+  unshrink = false;
+
+  // initialize alpha_status
+  {
+    alpha_status = new char[l];
+    for(int i=0;i<l;i++)
+      update_alpha_status(i);
+  }
+
+  // initialize active set (for shrinking)
+  {
+    active_set = new int[l];
+    for(int i=0;i<l;i++)
+      active_set[i] = i;
+    active_size = l;
+  }
+
+  // initialize gradient
+  {
+    G = new double[l];
+    G_bar = new double[l];
+    int i;
+    for(i=0;i<l;i++)
+    {
+      G[i] = p[i];
+      G_bar[i] = 0;
+    }
+    for(i=0;i<l;i++)
+      if(!is_lower_bound(i))
+      {
+        const Qfloat *Q_i = Q.get_Q(i,l);
+        double alpha_i = alpha[i];
+        int j;
+        for(j=0;j<l;j++)
+          G[j] += alpha_i*Q_i[j];
+        if(is_upper_bound(i))
+          for(j=0;j<l;j++)
+            G_bar[j] += get_C(i) * Q_i[j];
+      }
+  }
+
+  // optimization step
+
+  int iter = 0;
+  int max_iter = max(10000000, l>INT_MAX/100 ? INT_MAX : 100*l);
+  int counter = min(l,1000)+1;
+	
+  while(iter < max_iter)
+  {
+    // show progress and do shrinking
+
+    if(--counter == 0)
+    {
+      counter = min(l,1000);
+      if(shrinking) do_shrinking();
+      info(".");
+    }
+
+    int i,j;
+    if(select_working_set(i,j)!=0)
+    {
+      // reconstruct the whole gradient
+      reconstruct_gradient();
+      // reset active set size and check
+      active_size = l;
+      info("*");
+      if(select_working_set(i,j)!=0)
+        break;
+      else
+        counter = 1;	// do shrinking next iteration
+    }
+		
+    ++iter;
+
+    // update alpha[i] and alpha[j], handle bounds carefully
+		
+    const Qfloat *Q_i = Q.get_Q(i,active_size);
+    const Qfloat *Q_j = Q.get_Q(j,active_size);
+
+    double C_i = get_C(i);
+    double C_j = get_C(j);
+
+    double old_alpha_i = alpha[i];
+    double old_alpha_j = alpha[j];
+
+    if(y[i]!=y[j])
+    {
+      double quad_coef = QD[i]+QD[j]+2*Q_i[j];
+      if (quad_coef <= 0)
+        quad_coef = TAU;
+      double delta = (-G[i]-G[j])/quad_coef;
+      double diff = alpha[i] - alpha[j];
+      alpha[i] += delta;
+      alpha[j] += delta;
+			
+      if(diff > 0)
+      {
+        if(alpha[j] < 0)
+        {
+          alpha[j] = 0;
+          alpha[i] = diff;
+        }
+      }
+      else
+      {
+        if(alpha[i] < 0)
+        {
+          alpha[i] = 0;
+          alpha[j] = -diff;
+        }
+      }
+      if(diff > C_i - C_j)
+      {
+        if(alpha[i] > C_i)
+        {
+          alpha[i] = C_i;
+          alpha[j] = C_i - diff;
+        }
+      }
+      else
+      {
+        if(alpha[j] > C_j)
+        {
+          alpha[j] = C_j;
+          alpha[i] = C_j + diff;
+        }
+      }
+    }
+    else
+    {
+      double quad_coef = QD[i]+QD[j]-2*Q_i[j];
+      if (quad_coef <= 0)
+        quad_coef = TAU;
+      double delta = (G[i]-G[j])/quad_coef;
+      double sum = alpha[i] + alpha[j];
+      alpha[i] -= delta;
+      alpha[j] += delta;
+
+      if(sum > C_i)
+      {
+        if(alpha[i] > C_i)
+        {
+          alpha[i] = C_i;
+          alpha[j] = sum - C_i;
+        }
+      }
+      else
+      {
+        if(alpha[j] < 0)
+        {
+          alpha[j] = 0;
+          alpha[i] = sum;
+        }
+      }
+      if(sum > C_j)
+      {
+        if(alpha[j] > C_j)
+        {
+          alpha[j] = C_j;
+          alpha[i] = sum - C_j;
+        }
+      }
+      else
+      {
+        if(alpha[i] < 0)
+        {
+          alpha[i] = 0;
+          alpha[j] = sum;
+        }
+      }
+    }
+
+    // update G
+
+    double delta_alpha_i = alpha[i] - old_alpha_i;
+    double delta_alpha_j = alpha[j] - old_alpha_j;
+		
+    for(int k=0;k<active_size;k++)
+    {
+      G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
+    }
+
+    // update alpha_status and G_bar
+
+    {
+      bool ui = is_upper_bound(i);
+      bool uj = is_upper_bound(j);
+      update_alpha_status(i);
+      update_alpha_status(j);
+      int k;
+      if(ui != is_upper_bound(i))
+      {
+        Q_i = Q.get_Q(i,l);
+        if(ui)
+          for(k=0;k<l;k++)
+            G_bar[k] -= C_i * Q_i[k];
+        else
+          for(k=0;k<l;k++)
+            G_bar[k] += C_i * Q_i[k];
+      }
+
+      if(uj != is_upper_bound(j))
+      {
+        Q_j = Q.get_Q(j,l);
+        if(uj)
+          for(k=0;k<l;k++)
+            G_bar[k] -= C_j * Q_j[k];
+        else
+          for(k=0;k<l;k++)
+            G_bar[k] += C_j * Q_j[k];
+      }
+    }
+  }
+
+  if(iter >= max_iter)
+  {
+    if(active_size < l)
+    {
+      // reconstruct the whole gradient to calculate objective value
+      reconstruct_gradient();
+      active_size = l;
+      info("*");
+    }
+    fprintf(stderr,"\nWARNING: reaching max number of iterations\n");
+  }
+
+  // calculate rho
+
+  si->rho = calculate_rho();
+
+  // calculate objective value
+  {
+    double v = 0;
+    int i;
+    for(i=0;i<l;i++)
+      v += alpha[i] * (G[i] + p[i]);
+
+    si->obj = v/2;
+  }
+
+  // put back the solution
+  {
+    for(int i=0;i<l;i++)
+      alpha_[active_set[i]] = alpha[i];
+  }
+
+  // juggle everything back
+  /*{
+    for(int i=0;i<l;i++)
+    while(active_set[i] != i)
+    swap_index(i,active_set[i]);
+    // or Q.swap_index(i,active_set[i]);
+	}*/
+
+  for(int i=0;i<l;i++)
+    si->upper_bound[i] = C[i];
+
+  info("\noptimization finished, #iter = %d\n",iter);
+
+  delete[] p;
+  delete[] y;
+  delete[] C;
+  delete[] alpha;
+  delete[] alpha_status;
+  delete[] active_set;
+  delete[] G;
+  delete[] G_bar;
+}
+
+// return 1 if already optimal, return 0 otherwise
+int Solver::select_working_set(int &out_i, int &out_j)
+{
+  // return i,j such that
+  // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+  // j: minimizes the decrease of obj value
+  //    (if quadratic coefficeint <= 0, replace it with tau)
+  //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+	
+  double Gmax = -INF;
+  double Gmax2 = -INF;
+  int Gmax_idx = -1;
+  int Gmin_idx = -1;
+  double obj_diff_min = INF;
+
+  for(int t=0;t<active_size;t++)
+    if(y[t]==+1)	
+    {
+      if(!is_upper_bound(t))
+        if(-G[t] >= Gmax)
+        {
+          Gmax = -G[t];
+          Gmax_idx = t;
+        }
+    }
+    else
+    {
+      if(!is_lower_bound(t))
+        if(G[t] >= Gmax)
+        {
+          Gmax = G[t];
+          Gmax_idx = t;
+        }
+    }
+
+  int i = Gmax_idx;
+  const Qfloat *Q_i = NULL;
+  if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
+    Q_i = Q->get_Q(i,active_size);
+
+  for(int j=0;j<active_size;j++)
+  {
+    if(y[j]==+1)
+    {
+      if (!is_lower_bound(j))
+      {
+        double grad_diff=Gmax+G[j];
+        if (G[j] >= Gmax2)
+          Gmax2 = G[j];
+        if (grad_diff > 0)
+        {
+          double obj_diff; 
+          double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j];
+          if (quad_coef > 0)
+            obj_diff = -(grad_diff*grad_diff)/quad_coef;
+          else
+            obj_diff = -(grad_diff*grad_diff)/TAU;
+
+          if (obj_diff <= obj_diff_min)
+          {
+            Gmin_idx=j;
+            obj_diff_min = obj_diff;
+          }
+        }
+      }
+    }
+    else
+    {
+      if (!is_upper_bound(j))
+      {
+        double grad_diff= Gmax-G[j];
+        if (-G[j] >= Gmax2)
+          Gmax2 = -G[j];
+        if (grad_diff > 0)
+        {
+          double obj_diff; 
+          double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j];
+          if (quad_coef > 0)
+            obj_diff = -(grad_diff*grad_diff)/quad_coef;
+          else
+            obj_diff = -(grad_diff*grad_diff)/TAU;
+
+          if (obj_diff <= obj_diff_min)
+          {
+            Gmin_idx=j;
+            obj_diff_min = obj_diff;
+          }
+        }
+      }
+    }
+  }
+
+  if(Gmax+Gmax2 < eps)
+    return 1;
+
+  out_i = Gmax_idx;
+  out_j = Gmin_idx;
+  return 0;
+}
+
+bool Solver::be_shrunk(int i, double Gmax1, double Gmax2)
+{
+  if(is_upper_bound(i))
+  {
+    if(y[i]==+1)
+      return(-G[i] > Gmax1);
+    else
+      return(-G[i] > Gmax2);
+  }
+  else if(is_lower_bound(i))
+  {
+    if(y[i]==+1)
+      return(G[i] > Gmax2);
+    else	
+      return(G[i] > Gmax1);
+  }
+  else
+    return(false);
+}
+
+void Solver::do_shrinking()
+{
+  int i;
+  double Gmax1 = -INF;		// max { -y_i * grad(f)_i | i in I_up(\alpha) }
+  double Gmax2 = -INF;		// max { y_i * grad(f)_i | i in I_low(\alpha) }
+
+  // find maximal violating pair first
+  for(i=0;i<active_size;i++)
+  {
+    if(y[i]==+1)	
+    {
+      if(!is_upper_bound(i))	
+      {
+        if(-G[i] >= Gmax1)
+          Gmax1 = -G[i];
+      }
+      if(!is_lower_bound(i))	
+      {
+        if(G[i] >= Gmax2)
+          Gmax2 = G[i];
+      }
+    }
+    else	
+    {
+      if(!is_upper_bound(i))	
+      {
+        if(-G[i] >= Gmax2)
+          Gmax2 = -G[i];
+      }
+      if(!is_lower_bound(i))	
+      {
+        if(G[i] >= Gmax1)
+          Gmax1 = G[i];
+      }
+    }
+  }
+
+  if(unshrink == false && Gmax1 + Gmax2 <= eps*10) 
+  {
+    unshrink = true;
+    reconstruct_gradient();
+    active_size = l;
+    info("*");
+  }
+
+  for(i=0;i<active_size;i++)
+    if (be_shrunk(i, Gmax1, Gmax2))
+    {
+      active_size--;
+      while (active_size > i)
+      {
+        if (!be_shrunk(active_size, Gmax1, Gmax2))
+        {
+          swap_index(i,active_size);
+          break;
+        }
+        active_size--;
+      }
+    }
+}
+
+double Solver::calculate_rho()
+{
+  double r;
+  int nr_free = 0;
+  double ub = INF, lb = -INF, sum_free = 0;
+  for(int i=0;i<active_size;i++)
+  {
+    double yG = y[i]*G[i];
+
+    if(is_upper_bound(i))
+    {
+      if(y[i]==-1)
+        ub = min(ub,yG);
+      else
+        lb = max(lb,yG);
+    }
+    else if(is_lower_bound(i))
+    {
+      if(y[i]==+1)
+        ub = min(ub,yG);
+      else
+        lb = max(lb,yG);
+    }
+    else
+    {
+      ++nr_free;
+      sum_free += yG;
+    }
+  }
+
+  if(nr_free>0)
+    r = sum_free/nr_free;
+  else
+    r = (ub+lb)/2;
+
+  return r;
+}
+
+//
+// Solver for nu-svm classification and regression
+//
+// additional constraint: e^T \alpha = constant
+//
+class Solver_NU : public Solver
+{
+public:
+  Solver_NU() {}
+  void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
+             double *alpha, double* C_, double eps,
+             SolutionInfo* si, int shrinking)
+  {
+    this->si = si;
+    Solver::Solve(l,Q,p,y,alpha,C_,eps,si,shrinking);
+  }
+private:
+  SolutionInfo *si;
+  int select_working_set(int &i, int &j);
+  double calculate_rho();
+  bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4);
+  void do_shrinking();
+};
+
+// return 1 if already optimal, return 0 otherwise
+int Solver_NU::select_working_set(int &out_i, int &out_j)
+{
+  // return i,j such that y_i = y_j and
+  // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+  // j: minimizes the decrease of obj value
+  //    (if quadratic coefficeint <= 0, replace it with tau)
+  //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+
+  double Gmaxp = -INF;
+  double Gmaxp2 = -INF;
+  int Gmaxp_idx = -1;
+
+  double Gmaxn = -INF;
+  double Gmaxn2 = -INF;
+  int Gmaxn_idx = -1;
+
+  int Gmin_idx = -1;
+  double obj_diff_min = INF;
+
+  for(int t=0;t<active_size;t++)
+    if(y[t]==+1)
+    {
+      if(!is_upper_bound(t))
+        if(-G[t] >= Gmaxp)
+        {
+          Gmaxp = -G[t];
+          Gmaxp_idx = t;
+        }
+    }
+    else
+    {
+      if(!is_lower_bound(t))
+        if(G[t] >= Gmaxn)
+        {
+          Gmaxn = G[t];
+          Gmaxn_idx = t;
+        }
+    }
+
+  int ip = Gmaxp_idx;
+  int in = Gmaxn_idx;
+  const Qfloat *Q_ip = NULL;
+  const Qfloat *Q_in = NULL;
+  if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
+    Q_ip = Q->get_Q(ip,active_size);
+  if(in != -1)
+    Q_in = Q->get_Q(in,active_size);
+
+  for(int j=0;j<active_size;j++)
+  {
+    if(y[j]==+1)
+    {
+      if (!is_lower_bound(j))	
+      {
+        double grad_diff=Gmaxp+G[j];
+        if (G[j] >= Gmaxp2)
+          Gmaxp2 = G[j];
+        if (grad_diff > 0)
+        {
+          double obj_diff; 
+          double quad_coef = QD[ip]+QD[j]-2*Q_ip[j];
+          if (quad_coef > 0)
+            obj_diff = -(grad_diff*grad_diff)/quad_coef;
+          else
+            obj_diff = -(grad_diff*grad_diff)/TAU;
+
+          if (obj_diff <= obj_diff_min)
+          {
+            Gmin_idx=j;
+            obj_diff_min = obj_diff;
+          }
+        }
+      }
+    }
+    else
+    {
+      if (!is_upper_bound(j))
+      {
+        double grad_diff=Gmaxn-G[j];
+        if (-G[j] >= Gmaxn2)
+          Gmaxn2 = -G[j];
+        if (grad_diff > 0)
+        {
+          double obj_diff; 
+          double quad_coef = QD[in]+QD[j]-2*Q_in[j];
+          if (quad_coef > 0)
+            obj_diff = -(grad_diff*grad_diff)/quad_coef;
+          else
+            obj_diff = -(grad_diff*grad_diff)/TAU;
+
+          if (obj_diff <= obj_diff_min)
+          {
+            Gmin_idx=j;
+            obj_diff_min = obj_diff;
+          }
+        }
+      }
+    }
+  }
+
+  if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps)
+    return 1;
+
+  if (y[Gmin_idx] == +1)
+    out_i = Gmaxp_idx;
+  else
+    out_i = Gmaxn_idx;
+  out_j = Gmin_idx;
+
+  return 0;
+}
+
+bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
+{
+  if(is_upper_bound(i))
+  {
+    if(y[i]==+1)
+      return(-G[i] > Gmax1);
+    else	
+      return(-G[i] > Gmax4);
+  }
+  else if(is_lower_bound(i))
+  {
+    if(y[i]==+1)
+      return(G[i] > Gmax2);
+    else	
+      return(G[i] > Gmax3);
+  }
+  else
+    return(false);
+}
+
+void Solver_NU::do_shrinking()
+{
+  double Gmax1 = -INF;	// max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
+  double Gmax2 = -INF;	// max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
+  double Gmax3 = -INF;	// max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
+  double Gmax4 = -INF;	// max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
+
+  // find maximal violating pair first
+  int i;
+  for(i=0;i<active_size;i++)
+  {
+    if(!is_upper_bound(i))
+    {
+      if(y[i]==+1)
+      {
+        if(-G[i] > Gmax1) Gmax1 = -G[i];
+      }
+      else	if(-G[i] > Gmax4) Gmax4 = -G[i];
+    }
+    if(!is_lower_bound(i))
+    {
+      if(y[i]==+1)
+      {	
+        if(G[i] > Gmax2) Gmax2 = G[i];
+      }
+      else	if(G[i] > Gmax3) Gmax3 = G[i];
+    }
+  }
+
+  if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) 
+  {
+    unshrink = true;
+    reconstruct_gradient();
+    active_size = l;
+  }
+
+  for(i=0;i<active_size;i++)
+    if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
+    {
+      active_size--;
+      while (active_size > i)
+      {
+        if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
+        {
+          swap_index(i,active_size);
+          break;
+        }
+        active_size--;
+      }
+    }
+}
+
+double Solver_NU::calculate_rho()
+{
+  int nr_free1 = 0,nr_free2 = 0;
+  double ub1 = INF, ub2 = INF;
+  double lb1 = -INF, lb2 = -INF;
+  double sum_free1 = 0, sum_free2 = 0;
+
+  for(int i=0;i<active_size;i++)
+  {
+    if(y[i]==+1)
+    {
+      if(is_upper_bound(i))
+        lb1 = max(lb1,G[i]);
+      else if(is_lower_bound(i))
+        ub1 = min(ub1,G[i]);
+      else
+      {
+        ++nr_free1;
+        sum_free1 += G[i];
+      }
+    }
+    else
+    {
+      if(is_upper_bound(i))
+        lb2 = max(lb2,G[i]);
+      else if(is_lower_bound(i))
+        ub2 = min(ub2,G[i]);
+      else
+      {
+        ++nr_free2;
+        sum_free2 += G[i];
+      }
+    }
+  }
+
+  double r1,r2;
+  if(nr_free1 > 0)
+    r1 = sum_free1/nr_free1;
+  else
+    r1 = (ub1+lb1)/2;
+	
+  if(nr_free2 > 0)
+    r2 = sum_free2/nr_free2;
+  else
+    r2 = (ub2+lb2)/2;
+	
+  si->r = (r1+r2)/2;
+  return (r1-r2)/2;
+}
+
+//
+// Q matrices for various formulations
+//
+class SVC_Q: public Kernel
+{ 
+public:
+  SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
+	:Kernel(prob.l, prob.x, param)
+  {
+    clone(y,y_,prob.l);
+    cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+    QD = new double[prob.l];
+    for(int i=0;i<prob.l;i++)
+      QD[i] = (this->*kernel_function)(i,i);
+  }
+	
+  Qfloat *get_Q(int i, int len) const
+  {
+    Qfloat *data;
+    int start, j;
+    if((start = cache->get_data(i,&data,len)) < len)
+    {
+      for(j=start;j<len;j++)
+        data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
+    }
+    return data;
+  }
+
+  double *get_QD() const
+  {
+    return QD;
+  }
+
+  void swap_index(int i, int j) const
+  {
+    cache->swap_index(i,j);
+    Kernel::swap_index(i,j);
+    swap(y[i],y[j]);
+    swap(QD[i],QD[j]);
+  }
+
+  ~SVC_Q()
+  {
+    delete[] y;
+    delete cache;
+    delete[] QD;
+  }
+private:
+  schar *y;
+  Cache *cache;
+  double *QD;
+};
+
+class ONE_CLASS_Q: public Kernel
+{
+public:
+  ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
+	:Kernel(prob.l, prob.x, param)
+  {
+    cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+    QD = new double[prob.l];
+    for(int i=0;i<prob.l;i++)
+      QD[i] = (this->*kernel_function)(i,i);
+  }
+	
+  Qfloat *get_Q(int i, int len) const
+  {
+    Qfloat *data;
+    int start, j;
+    if((start = cache->get_data(i,&data,len)) < len)
+    {
+      for(j=start;j<len;j++)
+        data[j] = (Qfloat)(this->*kernel_function)(i,j);
+    }
+    return data;
+  }
+
+  double *get_QD() const
+  {
+    return QD;
+  }
+
+  void swap_index(int i, int j) const
+  {
+    cache->swap_index(i,j);
+    Kernel::swap_index(i,j);
+    swap(QD[i],QD[j]);
+  }
+
+  ~ONE_CLASS_Q()
+  {
+    delete cache;
+    delete[] QD;
+  }
+private:
+  Cache *cache;
+  double *QD;
+};
+
+class SVR_Q: public Kernel
+{ 
+public:
+  SVR_Q(const svm_problem& prob, const svm_parameter& param)
+	:Kernel(prob.l, prob.x, param)
+  {
+    l = prob.l;
+    cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
+    QD = new double[2*l];
+    sign = new schar[2*l];
+    index = new int[2*l];
+    for(int k=0;k<l;k++)
+    {
+      sign[k] = 1;
+      sign[k+l] = -1;
+      index[k] = k;
+      index[k+l] = k;
+      QD[k] = (this->*kernel_function)(k,k);
+      QD[k+l] = QD[k];
+    }
+    buffer[0] = new Qfloat[2*l];
+    buffer[1] = new Qfloat[2*l];
+    next_buffer = 0;
+  }
+
+  void swap_index(int i, int j) const
+  {
+    swap(sign[i],sign[j]);
+    swap(index[i],index[j]);
+    swap(QD[i],QD[j]);
+  }
+	
+  Qfloat *get_Q(int i, int len) const
+  {
+    Qfloat *data;
+    int j, real_i = index[i];
+    if(cache->get_data(real_i,&data,l) < l)
+    {
+      for(j=0;j<l;j++)
+        data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
+    }
+
+    // reorder and copy
+    Qfloat *buf = buffer[next_buffer];
+    next_buffer = 1 - next_buffer;
+    schar si = sign[i];
+    for(j=0;j<len;j++)
+      buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]];
+    return buf;
+  }
+
+  double *get_QD() const
+  {
+    return QD;
+  }
+
+  ~SVR_Q()
+  {
+    delete cache;
+    delete[] sign;
+    delete[] index;
+    delete[] buffer[0];
+    delete[] buffer[1];
+    delete[] QD;
+  }
+private:
+  int l;
+  Cache *cache;
+  schar *sign;
+  int *index;
+  mutable int next_buffer;
+  Qfloat *buffer[2];
+  double *QD;
+};
+#include <iostream>
+//
+// construct and solve various formulations
+//
+static void solve_c_svc(
+                        const svm_problem *prob, const svm_parameter* param,
+                        double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
+{
+  int l = prob->l;
+  double *minus_ones = new double[l];
+  schar *y = new schar[l];
+  double *C = new double[l];
+
+  int i;
+
+  for(i=0;i<l;i++)
+  {
+    alpha[i] = 0;
+    minus_ones[i] = -1;
+    if(prob->y[i] > 0)
+    {
+      y[i] = +1;
+      C[i] = prob->W[i]*Cp;
+    }
+    else
+    {
+      y[i] = -1;
+      C[i] = prob->W[i]*Cn;
+    }
+    //std::cout << C[i] << " ";
+  }
+  //std::cout << std::endl;
+
+  Solver s;
+  s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
+          alpha, C, param->eps, si, param->shrinking);
+
+  /*
+	double sum_alpha=0;
+	for(i=0;i<l;i++)
+    sum_alpha += alpha[i];
+	if (Cp==Cn)
+    info("nu = %f\n", sum_alpha/(Cp*prob->l));
+  */
+
+  for(i=0;i<l;i++)
+    alpha[i] *= y[i];
+
+  delete[] C;
+  delete[] minus_ones;
+  delete[] y;
+}
+
+static void solve_nu_svc(
+                         const svm_problem *prob, const svm_parameter *param,
+                         double *alpha, Solver::SolutionInfo* si)
+{
+  int i;
+  int l = prob->l;
+  double nu = param->nu;
+
+  schar *y = new schar[l];
+  double *C = new double[l];
+
+  for(i=0;i<l;i++)
+  {
+    if(prob->y[i]>0)
+      y[i] = +1;
+    else
+      y[i] = -1;
+    C[i] = prob->W[i];
+  }
+	
+  double nu_l = 0;
+  for(i=0;i<l;i++) nu_l += nu*C[i];
+  double sum_pos = nu_l/2;
+  double sum_neg = nu_l/2;
+
+  for(i=0;i<l;i++)
+    if(y[i] == +1)
+    {
+      alpha[i] = min(C[i],sum_pos);
+      sum_pos -= alpha[i];
+    }
+    else
+    {
+      alpha[i] = min(C[i],sum_neg);
+      sum_neg -= alpha[i];
+    }
+
+  double *zeros = new double[l];
+
+  for(i=0;i<l;i++)
+    zeros[i] = 0;
+
+  Solver_NU s;
+  s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
+          alpha, C, param->eps, si,  param->shrinking);
+  double r = si->r;
+
+  info("C = %f\n",1/r);
+
+  for(i=0;i<l;i++)
+  {
+    alpha[i] *= y[i]/r;
+    si->upper_bound[i] /= r;
+  }
+
+  si->rho /= r;
+  si->obj /= (r*r);
+
+  delete[] C;
+  delete[] y;
+  delete[] zeros;
+}
+
+static void solve_one_class(
+                            const svm_problem *prob, const svm_parameter *param,
+                            double *alpha, Solver::SolutionInfo* si)
+{
+  int l = prob->l;
+  double *zeros = new double[l];
+  schar *ones = new schar[l];
+  double *C = new double[l];
+  int i;
+
+  double nu_l = 0;
+
+  for(i=0;i<l;i++)
+  {
+    C[i] = prob->W[i];
+    nu_l += C[i] * param->nu;
+  }
+
+  i = 0;
+  while(nu_l > 0)
+  {
+    alpha[i] = min(C[i],nu_l);
+    nu_l -= alpha[i];
+    ++i;
+  }
+  for(;i<l;i++)
+    alpha[i] = 0;
+
+  for(i=0;i<l;i++)
+  {
+    zeros[i] = 0;
+    ones[i] = 1;
+  }
+
+  Solver s;
+  s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
+          alpha, C, param->eps, si, param->shrinking);
+
+  delete[] C;
+  delete[] zeros;
+  delete[] ones;
+}
+
+static void solve_epsilon_svr(
+                              const svm_problem *prob, const svm_parameter *param,
+                              double *alpha, Solver::SolutionInfo* si)
+{
+  int l = prob->l;
+  double *alpha2 = new double[2*l];
+  double *linear_term = new double[2*l];
+  double *C = new double[2*l];
+  schar *y = new schar[2*l];
+  int i;
+
+  for(i=0;i<l;i++)
+  {
+    alpha2[i] = 0;
+    linear_term[i] = param->p - prob->y[i];
+    y[i] = 1;
+    C[i] = prob->W[i]*param->C;
+
+    alpha2[i+l] = 0;
+    linear_term[i+l] = param->p + prob->y[i];
+    y[i+l] = -1;
+    C[i+l] = prob->W[i]*param->C;
+  }
+
+  Solver s;
+  s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+          alpha2, C, param->eps, si, param->shrinking);
+  double sum_alpha = 0;
+  for(i=0;i<l;i++)
+  {
+    alpha[i] = alpha2[i] - alpha2[i+l];
+    sum_alpha += fabs(alpha[i]);
+  }
+  //info("nu = %f\n",sum_alpha/(param->C*l));
+  delete[] alpha2;
+  delete[] linear_term;
+  delete[] C;
+  delete[] y;
+}
+
+static void solve_nu_svr(
+                         const svm_problem *prob, const svm_parameter *param,
+                         double *alpha, Solver::SolutionInfo* si)
+{
+  int l = prob->l;
+  double *C = new double[2*l];
+  double *alpha2 = new double[2*l];
+  double *linear_term = new double[2*l];
+  schar *y = new schar[2*l];
+  int i;
+
+  double sum = 0;
+  for(i=0;i<l;i++)
+  {
+    C[i] = C[i+l] = prob->W[i]*param->C;
+    sum += C[i] * param->nu;
+  }
+  sum /= 2;
+
+  for(i=0;i<l;i++)
+  {
+    alpha2[i] = alpha2[i+l] = min(sum,C[i]);
+    sum -= alpha2[i];
+
+    linear_term[i] = - prob->y[i];
+    y[i] = 1;
+
+    linear_term[i+l] = prob->y[i];
+    y[i+l] = -1;
+  }
+
+  Solver_NU s;
+  s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+          alpha2, C, param->eps, si, param->shrinking);
+
+  info("epsilon = %f\n",-si->r);
+
+  for(i=0;i<l;i++)
+    alpha[i] = alpha2[i] - alpha2[i+l];
+
+  delete[] alpha2;
+  delete[] linear_term;
+  delete[] C;
+  delete[] y;
+}
+
+//
+// decision_function
+//
+struct decision_function
+{
+  double *alpha;
+  double rho;	
+};
+
+static decision_function svm_train_one(
+                                       const svm_problem *prob, const svm_parameter *param,
+                                       double Cp, double Cn)
+{
+  double *alpha = Malloc(double,prob->l);
+  Solver::SolutionInfo si;
+  switch(param->svm_type)
+  {
+  case C_SVC:
+    si.upper_bound = Malloc(double,prob->l); 
+    solve_c_svc(prob,param,alpha,&si,Cp,Cn);
+    break;
+  case NU_SVC:
+    si.upper_bound = Malloc(double,prob->l); 
+    solve_nu_svc(prob,param,alpha,&si);
+    break;
+  case ONE_CLASS:
+    si.upper_bound = Malloc(double,prob->l); 
+    solve_one_class(prob,param,alpha,&si);
+    break;
+  case EPSILON_SVR:
+    si.upper_bound = Malloc(double,2*prob->l); 
+    solve_epsilon_svr(prob,param,alpha,&si);
+    break;
+  case NU_SVR:
+    si.upper_bound = Malloc(double,2*prob->l); 
+    solve_nu_svr(prob,param,alpha,&si);
+    break;
+  }
+
+  info("obj = %f, rho = %f\n",si.obj,si.rho);
+
+  // output SVs
+
+  int nSV = 0;
+  int nBSV = 0;
+  for(int i=0;i<prob->l;i++)
+  {
+    if(fabs(alpha[i]) > 0)
+    {
+      ++nSV;
+      if(prob->y[i] > 0)
+      {
+        if(fabs(alpha[i]) >= si.upper_bound[i])
+          ++nBSV;
+      }
+      else
+      {
+        if(fabs(alpha[i]) >= si.upper_bound[i])
+          ++nBSV;
+      }
+    }
+  }
+
+  free(si.upper_bound);
+
+  info("nSV = %d, nBSV = %d\n",nSV,nBSV);
+
+  decision_function f;
+  f.alpha = alpha;
+  f.rho = si.rho;
+  return f;
+}
+
+// Platt's binary SVM Probablistic Output: an improvement from Lin et al.
+static void sigmoid_train(
+                          int l, const double *dec_values, const double *labels, 
+                          double& A, double& B)
+{
+  double prior1=0, prior0 = 0;
+  int i;
+
+  for (i=0;i<l;i++)
+    if (labels[i] > 0) prior1+=1;
+    else prior0+=1;
+	
+  int max_iter=100;	// Maximal number of iterations
+  double min_step=1e-10;	// Minimal step taken in line search
+  double sigma=1e-12;	// For numerically strict PD of Hessian
+  double eps=1e-5;
+  double hiTarget=(prior1+1.0)/(prior1+2.0);
+  double loTarget=1/(prior0+2.0);
+  double *t=Malloc(double,l);
+  double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
+  double newA,newB,newf,d1,d2;
+  int iter; 
+	
+  // Initial Point and Initial Fun Value
+  A=0.0; B=log((prior0+1.0)/(prior1+1.0));
+  double fval = 0.0;
+
+  for (i=0;i<l;i++)
+  {
+    if (labels[i]>0) t[i]=hiTarget;
+    else t[i]=loTarget;
+    fApB = dec_values[i]*A+B;
+    if (fApB>=0)
+      fval += t[i]*fApB + log(1+exp(-fApB));
+    else
+      fval += (t[i] - 1)*fApB +log(1+exp(fApB));
+  }
+  for (iter=0;iter<max_iter;iter++)
+  {
+    // Update Gradient and Hessian (use H' = H + sigma I)
+    h11=sigma; // numerically ensures strict PD
+    h22=sigma;
+    h21=0.0;g1=0.0;g2=0.0;
+    for (i=0;i<l;i++)
+    {
+      fApB = dec_values[i]*A+B;
+      if (fApB >= 0)
+      {
+        p=exp(-fApB)/(1.0+exp(-fApB));
+        q=1.0/(1.0+exp(-fApB));
+      }
+      else
+      {
+        p=1.0/(1.0+exp(fApB));
+        q=exp(fApB)/(1.0+exp(fApB));
+      }
+      d2=p*q;
+      h11+=dec_values[i]*dec_values[i]*d2;
+      h22+=d2;
+      h21+=dec_values[i]*d2;
+      d1=t[i]-p;
+      g1+=dec_values[i]*d1;
+      g2+=d1;
+    }
+
+    // Stopping Criteria
+    if (fabs(g1)<eps && fabs(g2)<eps)
+      break;
+
+    // Finding Newton direction: -inv(H') * g
+    det=h11*h22-h21*h21;
+    dA=-(h22*g1 - h21 * g2) / det;
+    dB=-(-h21*g1+ h11 * g2) / det;
+    gd=g1*dA+g2*dB;
+
+
+    stepsize = 1;		// Line Search
+    while (stepsize >= min_step)
+    {
+      newA = A + stepsize * dA;
+      newB = B + stepsize * dB;
+
+      // New function value
+      newf = 0.0;
+      for (i=0;i<l;i++)
+      {
+        fApB = dec_values[i]*newA+newB;
+        if (fApB >= 0)
+          newf += t[i]*fApB + log(1+exp(-fApB));
+        else
+          newf += (t[i] - 1)*fApB +log(1+exp(fApB));
+      }
+      // Check sufficient decrease
+      if (newf<fval+0.0001*stepsize*gd)
+      {
+        A=newA;B=newB;fval=newf;
+        break;
+      }
+      else
+        stepsize = stepsize / 2.0;
+    }
+
+    if (stepsize < min_step)
+    {
+      info("Line search fails in two-class probability estimates\n");
+      break;
+    }
+  }
+
+  if (iter>=max_iter)
+    info("Reaching maximal iterations in two-class probability estimates\n");
+  free(t);
+}
+
+static double sigmoid_predict(double decision_value, double A, double B)
+{
+  double fApB = decision_value*A+B;
+  // 1-p used later; avoid catastrophic cancellation
+  if (fApB >= 0)
+    return exp(-fApB)/(1.0+exp(-fApB));
+  else
+    return 1.0/(1+exp(fApB)) ;
+}
+
+// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
+static void multiclass_probability(int k, double **r, double *p)
+{
+  int t,j;
+  int iter = 0, max_iter=max(100,k);
+  double **Q=Malloc(double *,k);
+  double *Qp=Malloc(double,k);
+  double pQp, eps=0.005/k;
+	
+  for (t=0;t<k;t++)
+  {
+    p[t]=1.0/k;  // Valid if k = 1
+    Q[t]=Malloc(double,k);
+    Q[t][t]=0;
+    for (j=0;j<t;j++)
+    {
+      Q[t][t]+=r[j][t]*r[j][t];
+      Q[t][j]=Q[j][t];
+    }
+    for (j=t+1;j<k;j++)
+    {
+      Q[t][t]+=r[j][t]*r[j][t];
+      Q[t][j]=-r[j][t]*r[t][j];
+    }
+  }
+  for (iter=0;iter<max_iter;iter++)
+  {
+    // stopping condition, recalculate QP,pQP for numerical accuracy
+    pQp=0;
+    for (t=0;t<k;t++)
+    {
+      Qp[t]=0;
+      for (j=0;j<k;j++)
+        Qp[t]+=Q[t][j]*p[j];
+      pQp+=p[t]*Qp[t];
+    }
+    double max_error=0;
+    for (t=0;t<k;t++)
+    {
+      double error=fabs(Qp[t]-pQp);
+      if (error>max_error)
+        max_error=error;
+    }
+    if (max_error<eps) break;
+		
+    for (t=0;t<k;t++)
+    {
+      double diff=(-Qp[t]+pQp)/Q[t][t];
+      p[t]+=diff;
+      pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
+      for (j=0;j<k;j++)
+      {
+        Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
+        p[j]/=(1+diff);
+      }
+    }
+  }
+  if (iter>=max_iter)
+    info("Exceeds max_iter in multiclass_prob\n");
+  for(t=0;t<k;t++) free(Q[t]);
+  free(Q);
+  free(Qp);
+}
+
+// Cross-validation decision values for probability estimates
+static void svm_binary_svc_probability(
+                                       const svm_problem *prob, const svm_parameter *param,
+                                       double Cp, double Cn, double& probA, double& probB)
+{
+  int i;
+  int nr_fold = 5;
+  int *perm = Malloc(int,prob->l);
+  double *dec_values = Malloc(double,prob->l);
+
+  // random shuffle
+  for(i=0;i<prob->l;i++) perm[i]=i;
+  for(i=0;i<prob->l;i++)
+  {
+    int j = i+rand()%(prob->l-i);
+    swap(perm[i],perm[j]);
+  }
+  for(i=0;i<nr_fold;i++)
+  {
+    int begin = i*prob->l/nr_fold;
+    int end = (i+1)*prob->l/nr_fold;
+    int j,k;
+    struct svm_problem subprob;
+
+    subprob.l = prob->l-(end-begin);
+    subprob.x = Malloc(struct svm_node*,subprob.l);
+    subprob.y = Malloc(double,subprob.l);
+    subprob.W = Malloc(double,subprob.l);
+			
+    k=0;
+    for(j=0;j<begin;j++)
+    {
+      subprob.x[k] = prob->x[perm[j]];
+      subprob.y[k] = prob->y[perm[j]];
+      subprob.W[k] = prob->W[perm[j]];
+      ++k;
+    }
+    for(j=end;j<prob->l;j++)
+    {
+      subprob.x[k] = prob->x[perm[j]];
+      subprob.y[k] = prob->y[perm[j]];
+      subprob.W[k] = prob->W[perm[j]];
+      ++k;
+    }
+    int p_count=0,n_count=0;
+    for(j=0;j<k;j++)
+      if(subprob.y[j]>0)
+        p_count++;
+      else
+        n_count++;
+
+    if(p_count==0 && n_count==0)
+      for(j=begin;j<end;j++)
+        dec_values[perm[j]] = 0;
+    else if(p_count > 0 && n_count == 0)
+      for(j=begin;j<end;j++)
+        dec_values[perm[j]] = 1;
+    else if(p_count == 0 && n_count > 0)
+      for(j=begin;j<end;j++)
+        dec_values[perm[j]] = -1;
+    else
+    {
+      svm_parameter subparam = *param;
+      subparam.probability=0;
+      subparam.C=1.0;
+      subparam.nr_weight=2;
+      subparam.weight_label = Malloc(int,2);
+      subparam.weight = Malloc(double,2);
+      subparam.weight_label[0]=+1;
+      subparam.weight_label[1]=-1;
+      subparam.weight[0]=Cp;
+      subparam.weight[1]=Cn;
+      struct svm_model *submodel = svm_train(&subprob,&subparam);
+      for(j=begin;j<end;j++)
+      {
+        svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); 
+        // ensure +1 -1 order; reason not using CV subroutine
+        dec_values[perm[j]] *= submodel->label[0];
+      }		
+      svm_free_and_destroy_model(&submodel);
+      svm_destroy_param(&subparam);
+    }
+    free(subprob.x);
+    free(subprob.y);
+    free(subprob.W);
+  }		
+  sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
+  free(dec_values);
+  free(perm);
+}
+
+// Return parameter of a Laplace distribution 
+static double svm_svr_probability(
+                                  const svm_problem *prob, const svm_parameter *param)
+{
+  int i;
+  int nr_fold = 5;
+  double *ymv = Malloc(double,prob->l);
+  double mae = 0;
+
+  svm_parameter newparam = *param;
+  newparam.probability = 0;
+  svm_cross_validation(prob,&newparam,nr_fold,ymv);
+  for(i=0;i<prob->l;i++)
+  {
+    ymv[i]=prob->y[i]-ymv[i];
+    mae += fabs(ymv[i]);
+  }		
+  mae /= prob->l;
+  double std=sqrt(2*mae*mae);
+  int count=0;
+  mae=0;
+  for(i=0;i<prob->l;i++)
+    if (fabs(ymv[i]) > 5*std) 
+      count=count+1;
+    else 
+      mae+=fabs(ymv[i]);
+  mae /= (prob->l-count);
+  info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
+  free(ymv);
+  return mae;
+}
+
+
+// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
+// perm, length l, must be allocated before calling this subroutine
+static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
+{
+  int l = prob->l;
+  int max_nr_class = 16;
+  int nr_class = 0;
+  int *label = Malloc(int,max_nr_class);
+  int *count = Malloc(int,max_nr_class);
+  int *data_label = Malloc(int,l);	
+  int i;
+
+  for(i=0;i<l;i++)
+  {
+    int this_label = (int)prob->y[i];
+    int j;
+    for(j=0;j<nr_class;j++)
+    {
+      if(this_label == label[j])
+      {
+        ++count[j];
+        break;
+      }
+    }
+    data_label[i] = j;
+    if(j == nr_class)
+    {
+      if(nr_class == max_nr_class)
+      {
+        max_nr_class *= 2;
+        label = (int *)realloc(label,max_nr_class*sizeof(int));
+        count = (int *)realloc(count,max_nr_class*sizeof(int));
+      }
+      label[nr_class] = this_label;
+      count[nr_class] = 1;
+      ++nr_class;
+    }
+  }
+
+  int *start = Malloc(int,nr_class);
+  start[0] = 0;
+  for(i=1;i<nr_class;i++)
+    start[i] = start[i-1]+count[i-1];
+  for(i=0;i<l;i++)
+  {
+    perm[start[data_label[i]]] = i;
+    ++start[data_label[i]];
+  }
+  start[0] = 0;
+  for(i=1;i<nr_class;i++)
+    start[i] = start[i-1]+count[i-1];
+
+  *nr_class_ret = nr_class;
+  *label_ret = label;
+  *start_ret = start;
+  *count_ret = count;
+  free(data_label);
+}
+
+//
+// Remove zero weighed data as libsvm and some liblinear solvers require C > 0.
+//
+static void remove_zero_weight(svm_problem *newprob, const svm_problem *prob) 
+{
+  int i;
+  int l = 0;
+  for(i=0;i<prob->l;i++)
+    if(prob->W[i] > 0) l++;
+  *newprob = *prob;
+  newprob->l = l;
+  newprob->x = Malloc(svm_node*,l);
+  newprob->y = Malloc(double,l);
+  newprob->W = Malloc(double,l);
+
+  int j = 0;
+  for(i=0;i<prob->l;i++)
+    if(prob->W[i] > 0)
+    {
+      newprob->x[j] = prob->x[i];
+      newprob->y[j] = prob->y[i];
+      newprob->W[j] = prob->W[i];
+      j++;
+    }
+}
+
+//
+// Interface functions
+//
+svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
+{
+  svm_problem newprob;
+  remove_zero_weight(&newprob, prob);
+  prob = &newprob;
+	
+  svm_model *model = Malloc(svm_model,1);
+  model->param = *param;
+  model->free_sv = 0;	// XXX
+
+  if(param->svm_type == ONE_CLASS ||
+     param->svm_type == EPSILON_SVR ||
+     param->svm_type == NU_SVR)
+  {
+    // regression or one-class-svm
+    model->nr_class = 2;
+    model->label = NULL;
+    model->nSV = NULL;
+    model->probA = NULL; model->probB = NULL;
+    model->sv_coef = Malloc(double *,1);
+
+    if(param->probability && 
+       (param->svm_type == EPSILON_SVR ||
+        param->svm_type == NU_SVR))
+    {
+      model->probA = Malloc(double,1);
+      model->probA[0] = svm_svr_probability(prob,param);
+    }
+
+    decision_function f = svm_train_one(prob,param,0,0);
+    model->rho = Malloc(double,1);
+    model->rho[0] = f.rho;
+
+    int nSV = 0;
+    int i;
+    for(i=0;i<prob->l;i++)
+      if(fabs(f.alpha[i]) > 0) ++nSV;
+    model->l = nSV;
+    model->SV = Malloc(svm_node *,nSV);
+    model->sv_coef[0] = Malloc(double,nSV);
+    model->sv_indices = Malloc(int,nSV);
+    int j = 0;
+    for(i=0;i<prob->l;i++)
+      if(fabs(f.alpha[i]) > 0)
+      {
+        model->SV[j] = prob->x[i];
+        model->sv_coef[0][j] = f.alpha[i];
+        model->sv_indices[j] = i+1;
+        ++j;
+      }		
+
+    free(f.alpha);
+  }
+  else
+  {
+    // classification
+    int l = prob->l;
+    int nr_class;
+    int *label = NULL;
+    int *start = NULL;
+    int *count = NULL;
+    int *perm = Malloc(int,l);
+
+    // group training data of the same class
+    svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
+    if(nr_class == 1) 
+      info("WARNING: training data in only one class. See README for details.\n");
+		
+    svm_node **x = Malloc(svm_node *,l);
+    double *W;
+    W = Malloc(double,l);
+
+    int i;
+    for(i=0;i<l;i++)
+    {
+      x[i] = prob->x[perm[i]];
+      W[i] = prob->W[perm[i]];
+    }
+
+    // calculate weighted C
+
+    double *weighted_C = Malloc(double, nr_class);
+    for(i=0;i<nr_class;i++)
+      weighted_C[i] = param->C;
+    for(i=0;i<param->nr_weight;i++)
+    {	
+      int j;
+      for(j=0;j<nr_class;j++)
+        if(param->weight_label[i] == label[j])
+          break;
+      if(j == nr_class)
+        fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]);
+      else
+        weighted_C[j] *= param->weight[i];
+    }
+
+    // train k*(k-1)/2 models
+		
+    bool *nonzero = Malloc(bool,l);
+    for(i=0;i<l;i++)
+      nonzero[i] = false;
+    decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
+
+    double *probA=NULL,*probB=NULL;
+    if (param->probability)
+    {
+      probA=Malloc(double,nr_class*(nr_class-1)/2);
+      probB=Malloc(double,nr_class*(nr_class-1)/2);
+    }
+
+    int p = 0;
+    for(i=0;i<nr_class;i++)
+      for(int j=i+1;j<nr_class;j++)
+      {
+        svm_problem sub_prob;
+        int si = start[i], sj = start[j];
+        int ci = count[i], cj = count[j];
+        sub_prob.l = ci+cj;
+        sub_prob.x = Malloc(svm_node *,sub_prob.l);
+        sub_prob.y = Malloc(double,sub_prob.l);
+        sub_prob.W = Malloc(double,sub_prob.l);
+        int k;
+        for(k=0;k<ci;k++)
+        {
+          sub_prob.x[k] = x[si+k];
+          sub_prob.y[k] = +1;
+          sub_prob.W[k] = W[si+k];
+        }
+        for(k=0;k<cj;k++)
+        {
+          sub_prob.x[ci+k] = x[sj+k];
+          sub_prob.y[ci+k] = -1;
+          sub_prob.W[ci+k] = W[sj+k];
+        }
+
+        if(param->probability)
+          svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
+
+        f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
+        for(k=0;k<ci;k++)
+          if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
+            nonzero[si+k] = true;
+        for(k=0;k<cj;k++)
+          if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
+            nonzero[sj+k] = true;
+        free(sub_prob.x);
+        free(sub_prob.y);
+        free(sub_prob.W);
+        ++p;
+      }
+
+    // build output
+
+    model->nr_class = nr_class;
+		
+    model->label = Malloc(int,nr_class);
+    for(i=0;i<nr_class;i++)
+      model->label[i] = label[i];
+		
+    model->rho = Malloc(double,nr_class*(nr_class-1)/2);
+    for(i=0;i<nr_class*(nr_class-1)/2;i++)
+      model->rho[i] = f[i].rho;
+
+    if(param->probability)
+    {
+      model->probA = Malloc(double,nr_class*(nr_class-1)/2);
+      model->probB = Malloc(double,nr_class*(nr_class-1)/2);
+      for(i=0;i<nr_class*(nr_class-1)/2;i++)
+      {
+        model->probA[i] = probA[i];
+        model->probB[i] = probB[i];
+      }
+    }
+    else
+    {
+      model->probA=NULL;
+      model->probB=NULL;
+    }
+
+    int total_sv = 0;
+    int *nz_count = Malloc(int,nr_class);
+    model->nSV = Malloc(int,nr_class);
+    for(i=0;i<nr_class;i++)
+    {
+      int nSV = 0;
+      for(int j=0;j<count[i];j++)
+        if(nonzero[start[i]+j])
+        {	
+          ++nSV;
+          ++total_sv;
+        }
+      model->nSV[i] = nSV;
+      nz_count[i] = nSV;
+    }
+		
+    info("Total nSV = %d\n",total_sv);
+
+    model->l = total_sv;
+    model->SV = Malloc(svm_node *,total_sv);
+    model->sv_indices = Malloc(int,total_sv);
+    p = 0;
+    for(i=0;i<l;i++)
+      if(nonzero[i]) 
+      {
+        model->SV[p] = x[i];
+        model->sv_indices[p++] = perm[i] + 1;
+      }
+
+    int *nz_start = Malloc(int,nr_class);
+    nz_start[0] = 0;
+    for(i=1;i<nr_class;i++)
+      nz_start[i] = nz_start[i-1]+nz_count[i-1];
+
+    model->sv_coef = Malloc(double *,nr_class-1);
+    for(i=0;i<nr_class-1;i++)
+      model->sv_coef[i] = Malloc(double,total_sv);
+
+    p = 0;
+    for(i=0;i<nr_class;i++)
+      for(int j=i+1;j<nr_class;j++)
+      {
+        // classifier (i,j): coefficients with
+        // i are in sv_coef[j-1][nz_start[i]...],
+        // j are in sv_coef[i][nz_start[j]...]
+
+        int si = start[i];
+        int sj = start[j];
+        int ci = count[i];
+        int cj = count[j];
+				
+        int q = nz_start[i];
+        int k;
+        for(k=0;k<ci;k++)
+          if(nonzero[si+k])
+            model->sv_coef[j-1][q++] = f[p].alpha[k];
+        q = nz_start[j];
+        for(k=0;k<cj;k++)
+          if(nonzero[sj+k])
+            model->sv_coef[i][q++] = f[p].alpha[ci+k];
+        ++p;
+      }
+		
+    free(label);
+    free(probA);
+    free(probB);
+    free(count);
+    free(perm);
+    free(start);
+    free(W);
+    free(x);
+    free(weighted_C);
+    free(nonzero);
+    for(i=0;i<nr_class*(nr_class-1)/2;i++)
+      free(f[i].alpha);
+    free(f);
+    free(nz_count);
+    free(nz_start);
+  }
+  free(newprob.x);
+  free(newprob.y);
+  free(newprob.W);
+  return model;
+}
+
+// Stratified cross validation
+void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
+{
+  int i;
+  int *fold_start = Malloc(int,nr_fold+1);
+  int l = prob->l;
+  int *perm = Malloc(int,l);
+  int nr_class;
+
+  // stratified cv may not give leave-one-out rate
+  // Each class to l folds -> some folds may have zero elements
+  if((param->svm_type == C_SVC ||
+      param->svm_type == NU_SVC) && nr_fold < l)
+  {
+    int *start = NULL;
+    int *label = NULL;
+    int *count = NULL;
+    svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
+
+    // random shuffle and then data grouped by fold using the array perm
+    int *fold_count = Malloc(int,nr_fold);
+    int c;
+    int *index = Malloc(int,l);
+    for(i=0;i<l;i++)
+      index[i]=perm[i];
+    for (c=0; c<nr_class; c++) 
+      for(i=0;i<count[c];i++)
+      {
+        int j = i+rand()%(count[c]-i);
+        swap(index[start[c]+j],index[start[c]+i]);
+      }
+    for(i=0;i<nr_fold;i++)
+    {
+      fold_count[i] = 0;
+      for (c=0; c<nr_class;c++)
+        fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
+    }
+    fold_start[0]=0;
+    for (i=1;i<=nr_fold;i++)
+      fold_start[i] = fold_start[i-1]+fold_count[i-1];
+    for (c=0; c<nr_class;c++)
+      for(i=0;i<nr_fold;i++)
+      {
+        int begin = start[c]+i*count[c]/nr_fold;
+        int end = start[c]+(i+1)*count[c]/nr_fold;
+        for(int j=begin;j<end;j++)
+        {
+          perm[fold_start[i]] = index[j];
+          fold_start[i]++;
+        }
+      }
+    fold_start[0]=0;
+    for (i=1;i<=nr_fold;i++)
+      fold_start[i] = fold_start[i-1]+fold_count[i-1];
+    free(start);	
+    free(label);
+    free(count);	
+    free(index);
+    free(fold_count);
+  }
+  else
+  {
+    for(i=0;i<l;i++) perm[i]=i;
+    for(i=0;i<l;i++)
+    {
+      int j = i+rand()%(l-i);
+      swap(perm[i],perm[j]);
+    }
+    for(i=0;i<=nr_fold;i++)
+      fold_start[i]=i*l/nr_fold;
+  }
+
+  for(i=0;i<nr_fold;i++)
+  {
+    int begin = fold_start[i];
+    int end = fold_start[i+1];
+    int j,k;
+    struct svm_problem subprob;
+
+    subprob.l = l-(end-begin);
+    subprob.x = Malloc(struct svm_node*,subprob.l);
+    subprob.y = Malloc(double,subprob.l);
+			
+    subprob.W = Malloc(double,subprob.l);
+    k=0;
+    for(j=0;j<begin;j++)
+    {
+      subprob.x[k] = prob->x[perm[j]];
+      subprob.y[k] = prob->y[perm[j]];
+      subprob.W[k] = prob->W[perm[j]];
+      ++k;
+    }
+    for(j=end;j<l;j++)
+    {
+      subprob.x[k] = prob->x[perm[j]];
+      subprob.y[k] = prob->y[perm[j]];
+      subprob.W[k] = prob->W[perm[j]];
+      ++k;
+    }
+    struct svm_model *submodel = svm_train(&subprob,param);
+    if(param->probability && 
+       (param->svm_type == C_SVC || param->svm_type == NU_SVC))
+    {
+      double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
+      for(j=begin;j<end;j++)
+        target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
+      free(prob_estimates);			
+    }
+    else
+      for(j=begin;j<end;j++)
+        target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
+    svm_free_and_destroy_model(&submodel);
+    free(subprob.x);
+    free(subprob.y);
+    free(subprob.W);
+  }		
+  free(fold_start);
+  free(perm);	
+}
+
+
+int svm_get_svm_type(const svm_model *model)
+{
+  return model->param.svm_type;
+}
+
+int svm_get_nr_class(const svm_model *model)
+{
+  return model->nr_class;
+}
+
+void svm_get_labels(const svm_model *model, int* label)
+{
+  if (model->label != NULL)
+    for(int i=0;i<model->nr_class;i++)
+      label[i] = model->label[i];
+}
+
+void svm_get_sv_indices(const svm_model *model, int* indices)
+{
+  if (model->sv_indices != NULL)
+    for(int i=0;i<model->l;i++)
+      indices[i] = model->sv_indices[i];
+}
+
+int svm_get_nr_sv(const svm_model *model)
+{
+  return model->l;
+}
+
+double svm_get_svr_probability(const svm_model *model)
+{
+  if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
+      model->probA!=NULL)
+    return model->probA[0];
+  else
+  {
+    fprintf(stderr,"Model doesn't contain information for SVR probability inference\n");
+    return 0;
+  }
+}
+
+double svm_hyper_w_normsqr_twoclass(const struct svm_model* model)
+{
+  assert(model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC);
+  int i, j;
+  // int nr_class = model->nr_class;
+  // assert(nr_class == 2);
+  int l = model->l;
+
+  double sum = 0;
+  double *coef = model->sv_coef[0];
+	
+  for(i=0;i<l;++i)
+    for(j=0;j<l;++j)
+    {
+      double kv = Kernel::k_function(model->SV[i],model->SV[j],model->param);
+      sum += kv * coef[i] * coef[j];
+    }
+
+  return sum;
+}
+
+double svm_predict_values_twoclass(const struct svm_model* model, const struct svm_node* x)
+{
+	
+  assert(model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC);
+  int i;
+  // int nr_class = model->nr_class;
+  // assert(nr_class == 2);
+  int l = model->l;
+
+  double *kvalue = Malloc(double,l);
+  for(i=0;i<l;i++)
+    kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
+
+
+  double sum = 0;
+  double *coef = model->sv_coef[0];
+  for(i=0;i<l;++i)
+    sum += coef[i] * kvalue[i];
+  sum -= model->rho[0];
+
+  free(kvalue);
+	
+  return sum * model->label[0];
+}
+
+double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
+{
+  int i;
+  if(model->param.svm_type == ONE_CLASS ||
+     model->param.svm_type == EPSILON_SVR ||
+     model->param.svm_type == NU_SVR)
+  {
+    double *sv_coef = model->sv_coef[0];
+    double sum = 0;
+    for(i=0;i<model->l;i++)
+      sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
+    sum -= model->rho[0];
+    *dec_values = sum;
+
+    if(model->param.svm_type == ONE_CLASS)
+      return (sum>0)?1:-1;
+    else
+      return sum;
+  }
+  else
+  {
+    int nr_class = model->nr_class;
+    int l = model->l;
+		
+    double *kvalue = Malloc(double,l);
+    for(i=0;i<l;i++)
+      kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
+
+    int *start = Malloc(int,nr_class);
+    start[0] = 0;
+    for(i=1;i<nr_class;i++)
+      start[i] = start[i-1]+model->nSV[i-1];
+
+    int *vote = Malloc(int,nr_class);
+    for(i=0;i<nr_class;i++)
+      vote[i] = 0;
+
+    int p=0;
+    for(i=0;i<nr_class;i++)
+      for(int j=i+1;j<nr_class;j++)
+      {
+        double sum = 0;
+        int si = start[i];
+        int sj = start[j];
+        int ci = model->nSV[i];
+        int cj = model->nSV[j];
+				
+        int k;
+        double *coef1 = model->sv_coef[j-1];
+        double *coef2 = model->sv_coef[i];
+        for(k=0;k<ci;k++)
+          sum += coef1[si+k] * kvalue[si+k];
+        for(k=0;k<cj;k++)
+          sum += coef2[sj+k] * kvalue[sj+k];
+        sum -= model->rho[p];
+        dec_values[p] = sum;
+
+        if(dec_values[p] > 0)
+          ++vote[i];
+        else
+          ++vote[j];
+        p++;
+      }
+
+    int vote_max_idx = 0;
+    for(i=1;i<nr_class;i++)
+      if(vote[i] > vote[vote_max_idx])
+        vote_max_idx = i;
+
+    free(kvalue);
+    free(start);
+    free(vote);
+    return model->label[vote_max_idx];
+  }
+}
+
+double svm_predict(const svm_model *model, const svm_node *x)
+{
+  int nr_class = model->nr_class;
+  double *dec_values;
+  if(model->param.svm_type == ONE_CLASS ||
+     model->param.svm_type == EPSILON_SVR ||
+     model->param.svm_type == NU_SVR)
+    dec_values = Malloc(double, 1);
+  else 
+    dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+  double pred_result = svm_predict_values(model, x, dec_values);
+  free(dec_values);
+  return pred_result;
+}
+
+double svm_predict_probability(
+                               const svm_model *model, const svm_node *x, double *prob_estimates)
+{
+  if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
+      model->probA!=NULL && model->probB!=NULL)
+  {
+    int i;
+    int nr_class = model->nr_class;
+    double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+    svm_predict_values(model, x, dec_values);
+
+    double min_prob=1e-7;
+    double **pairwise_prob=Malloc(double *,nr_class);
+    for(i=0;i<nr_class;i++)
+      pairwise_prob[i]=Malloc(double,nr_class);
+    int k=0;
+    for(i=0;i<nr_class;i++)
+      for(int j=i+1;j<nr_class;j++)
+      {
+        pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
+        pairwise_prob[j][i]=1-pairwise_prob[i][j];
+        k++;
+      }
+    multiclass_probability(nr_class,pairwise_prob,prob_estimates);
+
+    int prob_max_idx = 0;
+    for(i=1;i<nr_class;i++)
+      if(prob_estimates[i] > prob_estimates[prob_max_idx])
+        prob_max_idx = i;
+    for(i=0;i<nr_class;i++)
+      free(pairwise_prob[i]);
+    free(dec_values);
+    free(pairwise_prob);	     
+    return model->label[prob_max_idx];
+  }
+  else 
+    return svm_predict(model, x);
+}
+
+static const char *svm_type_table[] =
+  {
+	"c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
+  };
+
+static const char *kernel_type_table[]=
+  {
+	"linear","polynomial","rbf","sigmoid","precomputed",NULL
+  };
+
+int svm_save_model(const char *model_file_name, const svm_model *model)
+{
+  FILE *fp = fopen(model_file_name,"w");
+  if(fp==NULL) return -1;
+
+  char *old_locale = strdup(setlocale(LC_ALL, NULL));
+  setlocale(LC_ALL, "C");
+
+  const svm_parameter& param = model->param;
+
+  fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
+  fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
+
+  if(param.kernel_type == POLY)
+    fprintf(fp,"degree %d\n", param.degree);
+
+  if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)
+    fprintf(fp,"gamma %g\n", param.gamma);
+
+  if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
+    fprintf(fp,"coef0 %g\n", param.coef0);
+
+  int nr_class = model->nr_class;
+  int l = model->l;
+  fprintf(fp, "nr_class %d\n", nr_class);
+  fprintf(fp, "total_sv %d\n",l);
+	
+  {
+    fprintf(fp, "rho");
+    for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+      fprintf(fp," %g",model->rho[i]);
+    fprintf(fp, "\n");
+  }
+	
+  if(model->label)
+  {
+    fprintf(fp, "label");
+    for(int i=0;i<nr_class;i++)
+      fprintf(fp," %d",model->label[i]);
+    fprintf(fp, "\n");
+  }
+
+  if(model->probA) // regression has probA only
+  {
+    fprintf(fp, "probA");
+    for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+      fprintf(fp," %g",model->probA[i]);
+    fprintf(fp, "\n");
+  }
+  if(model->probB)
+  {
+    fprintf(fp, "probB");
+    for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+      fprintf(fp," %g",model->probB[i]);
+    fprintf(fp, "\n");
+  }
+
+  if(model->nSV)
+  {
+    fprintf(fp, "nr_sv");
+    for(int i=0;i<nr_class;i++)
+      fprintf(fp," %d",model->nSV[i]);
+    fprintf(fp, "\n");
+  }
+
+  fprintf(fp, "SV\n");
+  const double * const *sv_coef = model->sv_coef;
+  const svm_node * const *SV = model->SV;
+
+  for(int i=0;i<l;i++)
+  {
+    for(int j=0;j<nr_class-1;j++)
+      fprintf(fp, "%.16g ",sv_coef[j][i]);
+
+    const svm_node *p = SV[i];
+
+    if(param.kernel_type == PRECOMPUTED)
+      fprintf(fp,"0:%d ",(int)(p->value));
+    else
+      while(p->index != -1)
+      {
+        fprintf(fp,"%d:%.8g ",p->index,p->value);
+        p++;
+      }
+    fprintf(fp, "\n");
+  }
+
+  setlocale(LC_ALL, old_locale);
+  free(old_locale);
+
+  if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
+  else return 0;
+}
+
+static char *line = NULL;
+static int max_line_len;
+
+static char* readline(FILE *input)
+{
+  int len;
+
+  if(fgets(line,max_line_len,input) == NULL)
+    return NULL;
+
+  while(strrchr(line,'\n') == NULL)
+  {
+    max_line_len *= 2;
+    line = (char *) realloc(line,max_line_len);
+    len = (int) strlen(line);
+    if(fgets(line+len,max_line_len-len,input) == NULL)
+      break;
+  }
+  return line;
+}
+
+svm_model *svm_load_model(const char *model_file_name)
+{
+  FILE *fp = fopen(model_file_name,"rb");
+  if(fp==NULL) return NULL;
+
+  char *old_locale = strdup(setlocale(LC_ALL, NULL));
+  setlocale(LC_ALL, "C");
+
+  // read parameters
+
+  svm_model *model = Malloc(svm_model,1);
+  svm_parameter& param = model->param;
+  model->rho = NULL;
+  model->probA = NULL;
+  model->probB = NULL;
+  model->label = NULL;
+  model->nSV = NULL;
+
+  char cmd[81];
+  while(1)
+  {
+    fscanf(fp,"%80s",cmd);
+
+    if(strcmp(cmd,"svm_type")==0)
+    {
+      fscanf(fp,"%80s",cmd);
+      int i;
+      for(i=0;svm_type_table[i];i++)
+      {
+        if(strcmp(svm_type_table[i],cmd)==0)
+        {
+          param.svm_type=i;
+          break;
+        }
+      }
+      if(svm_type_table[i] == NULL)
+      {
+        fprintf(stderr,"unknown svm type.\n");
+				
+        setlocale(LC_ALL, old_locale);
+        free(old_locale);
+        free(model->rho);
+        free(model->label);
+        free(model->nSV);
+        free(model);
+        return NULL;
+      }
+    }
+    else if(strcmp(cmd,"kernel_type")==0)
+    {		
+      fscanf(fp,"%80s",cmd);
+      int i;
+      for(i=0;kernel_type_table[i];i++)
+      {
+        if(strcmp(kernel_type_table[i],cmd)==0)
+        {
+          param.kernel_type=i;
+          break;
+        }
+      }
+      if(kernel_type_table[i] == NULL)
+      {
+        fprintf(stderr,"unknown kernel function.\n");
+				
+        setlocale(LC_ALL, old_locale);
+        free(old_locale);
+        free(model->rho);
+        free(model->label);
+        free(model->nSV);
+        free(model);
+        return NULL;
+      }
+    }
+    else if(strcmp(cmd,"degree")==0)
+      fscanf(fp,"%d",&param.degree);
+    else if(strcmp(cmd,"gamma")==0)
+      fscanf(fp,"%lf",&param.gamma);
+    else if(strcmp(cmd,"coef0")==0)
+      fscanf(fp,"%lf",&param.coef0);
+    else if(strcmp(cmd,"nr_class")==0)
+      fscanf(fp,"%d",&model->nr_class);
+    else if(strcmp(cmd,"total_sv")==0)
+      fscanf(fp,"%d",&model->l);
+    else if(strcmp(cmd,"rho")==0)
+    {
+      int n = model->nr_class * (model->nr_class-1)/2;
+      model->rho = Malloc(double,n);
+      for(int i=0;i<n;i++)
+        fscanf(fp,"%lf",&model->rho[i]);
+    }
+    else if(strcmp(cmd,"label")==0)
+    {
+      int n = model->nr_class;
+      model->label = Malloc(int,n);
+      for(int i=0;i<n;i++)
+        fscanf(fp,"%d",&model->label[i]);
+    }
+    else if(strcmp(cmd,"probA")==0)
+    {
+      int n = model->nr_class * (model->nr_class-1)/2;
+      model->probA = Malloc(double,n);
+      for(int i=0;i<n;i++)
+        fscanf(fp,"%lf",&model->probA[i]);
+    }
+    else if(strcmp(cmd,"probB")==0)
+    {
+      int n = model->nr_class * (model->nr_class-1)/2;
+      model->probB = Malloc(double,n);
+      for(int i=0;i<n;i++)
+        fscanf(fp,"%lf",&model->probB[i]);
+    }
+    else if(strcmp(cmd,"nr_sv")==0)
+    {
+      int n = model->nr_class;
+      model->nSV = Malloc(int,n);
+      for(int i=0;i<n;i++)
+        fscanf(fp,"%d",&model->nSV[i]);
+    }
+    else if(strcmp(cmd,"SV")==0)
+    {
+      while(1)
+      {
+        int c = getc(fp);
+        if(c==EOF || c=='\n') break;	
+      }
+      break;
+    }
+    else
+    {
+      fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
+			
+      setlocale(LC_ALL, old_locale);
+      free(old_locale);
+      free(model->rho);
+      free(model->label);
+      free(model->nSV);
+      free(model);
+      return NULL;
+    }
+  }
+
+  // read sv_coef and SV
+
+  int elements = 0;
+  long pos = ftell(fp);
+
+  max_line_len = 1024;
+  line = Malloc(char,max_line_len);
+  char *p,*endptr,*idx,*val;
+
+  while(readline(fp)!=NULL)
+  {
+    p = strtok(line,":");
+    while(1)
+    {
+      p = strtok(NULL,":");
+      if(p == NULL)
+        break;
+      ++elements;
+    }
+  }
+  elements += model->l;
+
+  fseek(fp,pos,SEEK_SET);
+
+  int m = model->nr_class - 1;
+  int l = model->l;
+  model->sv_coef = Malloc(double *,m);
+  int i;
+  for(i=0;i<m;i++)
+    model->sv_coef[i] = Malloc(double,l);
+  model->SV = Malloc(svm_node*,l);
+  svm_node *x_space = NULL;
+  if(l>0) x_space = Malloc(svm_node,elements);
+
+  int j=0;
+  for(i=0;i<l;i++)
+  {
+    readline(fp);
+    model->SV[i] = &x_space[j];
+
+    p = strtok(line, " \t");
+    model->sv_coef[0][i] = strtod(p,&endptr);
+    for(int k=1;k<m;k++)
+    {
+      p = strtok(NULL, " \t");
+      model->sv_coef[k][i] = strtod(p,&endptr);
+    }
+
+    while(1)
+    {
+      idx = strtok(NULL, ":");
+      val = strtok(NULL, " \t");
+
+      if(val == NULL)
+        break;
+      x_space[j].index = (int) strtol(idx,&endptr,10);
+      x_space[j].value = strtod(val,&endptr);
+
+      ++j;
+    }
+    x_space[j++].index = -1;
+  }
+  free(line);
+
+  setlocale(LC_ALL, old_locale);
+  free(old_locale);
+
+  if (ferror(fp) != 0 || fclose(fp) != 0)
+    return NULL;
+
+  model->free_sv = 1;	// XXX
+  return model;
+}
+
+void svm_free_model_content(svm_model* model_ptr)
+{
+  if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL)
+    free((void *)(model_ptr->SV[0]));
+  if(model_ptr->sv_coef)
+  {
+    for(int i=0;i<model_ptr->nr_class-1;i++)
+      free(model_ptr->sv_coef[i]);
+  }
+
+  free(model_ptr->SV);
+  model_ptr->SV = NULL;
+
+  free(model_ptr->sv_coef);
+  model_ptr->sv_coef = NULL;
+
+  free(model_ptr->rho);
+  model_ptr->rho = NULL;
+
+  free(model_ptr->label);
+  model_ptr->label= NULL;
+
+  free(model_ptr->probA);
+  model_ptr->probA = NULL;
+
+  free(model_ptr->probB);
+  model_ptr->probB= NULL;
+
+  free(model_ptr->nSV);
+  model_ptr->nSV = NULL;
+}
+
+void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
+{
+  if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL)
+  {
+    svm_free_model_content(*model_ptr_ptr);
+    free(*model_ptr_ptr);
+    *model_ptr_ptr = NULL;
+  }
+}
+
+void svm_destroy_param(svm_parameter* param)
+{
+  free(param->weight_label);
+  free(param->weight);
+}
+
+const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
+{
+  // svm_type
+
+  int svm_type = param->svm_type;
+  if(svm_type != C_SVC &&
+     svm_type != NU_SVC &&
+     svm_type != ONE_CLASS &&
+     svm_type != EPSILON_SVR &&
+     svm_type != NU_SVR)
+    return "unknown svm type";
+	
+  // kernel_type, degree
+	
+  int kernel_type = param->kernel_type;
+  if(kernel_type != LINEAR &&
+     kernel_type != POLY &&
+     kernel_type != RBF &&
+     kernel_type != SIGMOID &&
+     kernel_type != PRECOMPUTED)
+    return "unknown kernel type";
+
+  if(param->gamma < 0)
+    return "gamma < 0";
+
+  if(param->degree < 0)
+    return "degree of polynomial kernel < 0";
+
+  // cache_size,eps,C,nu,p,shrinking
+
+  if(param->cache_size <= 0)
+    return "cache_size <= 0";
+
+  if(param->eps <= 0)
+    return "eps <= 0";
+
+  if(svm_type == C_SVC ||
+     svm_type == EPSILON_SVR ||
+     svm_type == NU_SVR)
+    if(param->C <= 0)
+      return "C <= 0";
+
+  if(svm_type == NU_SVC ||
+     svm_type == ONE_CLASS ||
+     svm_type == NU_SVR)
+    if(param->nu <= 0 || param->nu > 1)
+      return "nu <= 0 or nu > 1";
+
+  if(svm_type == EPSILON_SVR)
+    if(param->p < 0)
+      return "p < 0";
+
+  if(param->shrinking != 0 &&
+     param->shrinking != 1)
+    return "shrinking != 0 and shrinking != 1";
+
+  if(param->probability != 0 &&
+     param->probability != 1)
+    return "probability != 0 and probability != 1";
+
+  if(param->probability == 1 &&
+     svm_type == ONE_CLASS)
+    return "one-class SVM probability output not supported yet";
+
+
+  // check whether nu-svc is feasible
+	
+  if(svm_type == NU_SVC)
+  {
+    int l = prob->l;
+    int max_nr_class = 16;
+    int nr_class = 0;
+    int *label = Malloc(int,max_nr_class);
+    double *count = Malloc(double,max_nr_class);
+
+    int i;
+    for(i=0;i<l;i++)
+    {
+      int this_label = (int)prob->y[i];
+      int j;
+      for(j=0;j<nr_class;j++)
+        if(this_label == label[j])
+        {
+          count[j] += prob->W[i];
+          break;
+        }
+      if(j == nr_class)
+      {
+        if(nr_class == max_nr_class)
+        {
+          max_nr_class *= 2;
+          label = (int *)realloc(label,max_nr_class*sizeof(int));
+          count = (double *)realloc(count,max_nr_class*sizeof(double));
+        }
+        label[nr_class] = this_label;
+        count[nr_class] = prob->W[i];
+        ++nr_class;
+      }
+    }
+	
+    for(i=0;i<nr_class;i++)
+    {
+      double n1 = count[i];
+      for(int j=i+1;j<nr_class;j++)
+      {
+        double n2 = count[j];
+        if(param->nu*(n1+n2)/2 > min(n1,n2))
+        {
+          free(label);
+          free(count);
+          return "specified nu is infeasible";
+        }
+      }
+    }
+    free(label);
+    free(count);
+  }
+
+  return NULL;
+}
+
+int svm_check_probability_model(const svm_model *model)
+{
+  return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
+          model->probA!=NULL && model->probB!=NULL) ||
+    ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
+     model->probA!=NULL);
+}
+
+void svm_set_print_string_function(void (*print_func)(const char *))
+{
+  if(print_func == NULL)
+    svm_print_string = &print_string_stdout;
+  else
+    svm_print_string = print_func;
+}
diff --git a/test/libsvm/svm.h b/test/libsvm/svm.h
new file mode 100644
index 00000000..0b42202d
--- /dev/null
+++ b/test/libsvm/svm.h
@@ -0,0 +1,115 @@
+#ifndef _LIBSVM_H
+#define _LIBSVM_H
+
+#include <cstdlib>
+
+#define LIBSVM_VERSION 314
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+  extern int libsvm_version;
+
+  struct svm_node
+  {
+	int index;
+	double value;
+  };
+
+  struct svm_problem
+  {
+	int l;
+	double *y;
+	struct svm_node **x;
+	double *W; /* instance weight */
+  };
+
+  enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR };	/* svm_type */
+  enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */
+
+  struct svm_parameter
+  {
+	int svm_type;
+	int kernel_type;
+	int degree;	/* for poly */
+	double gamma;	/* for poly/rbf/sigmoid */
+	double coef0;	/* for poly/sigmoid */
+
+	/* these are for training only */
+	double cache_size; /* in MB */
+	double eps;	/* stopping criteria */
+	double C;	/* for C_SVC, EPSILON_SVR and NU_SVR */
+	int nr_weight;		/* for C_SVC */
+	int *weight_label;	/* for C_SVC */
+	double* weight;		/* for C_SVC */
+	double nu;	/* for NU_SVC, ONE_CLASS, and NU_SVR */
+	double p;	/* for EPSILON_SVR */
+	int shrinking;	/* use the shrinking heuristics */
+	int probability; /* do probability estimates */
+  };
+
+  //
+  // svm_model
+  // 
+  struct svm_model
+  {
+	struct svm_parameter param;	/* parameter */
+	int nr_class;		/* number of classes, = 2 in regression/one class svm */
+	int l;			/* total #SV */
+	struct svm_node **SV;		/* SVs (SV[l]) */
+	double **sv_coef;	/* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
+	double *rho;		/* constants in decision functions (rho[k*(k-1)/2]) */
+	double *probA;		/* pairwise probability information */
+	double *probB;
+	int *sv_indices;        /* sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set */
+
+
+	/* for classification only */
+
+	int *label;		/* label of each class (label[k]) */
+	int *nSV;		/* number of SVs for each class (nSV[k]) */
+    /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
+	/* XXX */
+	int free_sv;		/* 1 if svm_model is created by svm_load_model*/
+    /* 0 if svm_model is created by svm_train */
+  };
+
+  struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
+  void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);
+
+  int svm_save_model(const char *model_file_name, const struct svm_model *model);
+  struct svm_model *svm_load_model(const char *model_file_name);
+
+  int svm_get_svm_type(const struct svm_model *model);
+  int svm_get_nr_class(const struct svm_model *model);
+  void svm_get_labels(const struct svm_model *model, int *label);
+  void svm_get_sv_indices(const struct svm_model *model, int *sv_indices);
+  int svm_get_nr_sv(const struct svm_model *model);
+  double svm_get_svr_probability(const struct svm_model *model);
+
+  double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
+  double svm_predict(const struct svm_model *model, const struct svm_node *x);
+  double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);
+
+  double svm_predict_values_twoclass(const struct svm_model* model, const struct svm_node* x);
+  double svm_hyper_w_normsqr_twoclass(const struct svm_model* model);
+
+
+  double k_function(const svm_node* x, const svm_node* y, const svm_parameter& param);
+
+
+  void svm_free_model_content(struct svm_model *model_ptr);
+  void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr);
+  void svm_destroy_param(struct svm_parameter *param);
+
+  const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
+  int svm_check_probability_model(const struct svm_model *model);
+
+  void svm_set_print_string_function(void (*print_func)(const char *));
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _LIBSVM_H */
-- 
GitLab