From 41ef3b63c32537f636a8f18e9302180c2518e30e Mon Sep 17 00:00:00 2001
From: jpan <jpan@253336fb-580f-4252-a368-f3cef5a2a82b>
Date: Sat, 10 Sep 2011 05:53:30 +0000
Subject: [PATCH] git-svn-id: https://kforge.ros.org/fcl/fcl_ros@28
 253336fb-580f-4252-a368-f3cef5a2a82b

---
 trunk/PQP/Makefile                            |    36 -
 trunk/PQP/PQP/include/BV.h                    |    94 -
 trunk/PQP/PQP/include/PQP.h                   |   338 -
 trunk/PQP/PQP/include/PQP_Compile.h           |   101 -
 trunk/PQP/PQP/include/PQP_Internal.h          |   203 -
 trunk/PQP/PQP/include/Tri.h                   |    54 -
 trunk/PQP/build/pqp-1.3.tar.gz                |   Bin 326131 -> 0 bytes
 trunk/PQP/build/pqp-tar/PQP_v1.3/Makefile     |    33 -
 trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.DSP      |   154 -
 trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.PLG      |    43 -
 trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.dsw      |    29 -
 trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.ncb      |   Bin 287744 -> 0 bytes
 trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.opt      |   Bin 48640 -> 0 bytes
 trunk/PQP/build/pqp-tar/PQP_v1.3/README.txt   |   206 -
 .../PQP/build/pqp-tar/PQP_v1.3/demos/Makefile |    16 -
 .../build/pqp-tar/PQP_v1.3/demos/demos.dsp    |    83 -
 .../build/pqp-tar/PQP_v1.3/demos/demos.dsw    |    53 -
 .../build/pqp-tar/PQP_v1.3/demos/demos.ncb    |   Bin 377856 -> 0 bytes
 .../build/pqp-tar/PQP_v1.3/demos/demos.opt    |   Bin 58880 -> 0 bytes
 .../pqp-tar/PQP_v1.3/demos/falling/Makefile   |    33 -
 .../pqp-tar/PQP_v1.3/demos/falling/MatVec.h   |   881 --
 .../PQP_v1.3/demos/falling/falling.dsp        |    95 -
 .../PQP_v1.3/demos/falling/falling.plg        |    21 -
 .../pqp-tar/PQP_v1.3/demos/falling/main.cpp   |   537 -
 .../pqp-tar/PQP_v1.3/demos/falling/model.cpp  |   144 -
 .../pqp-tar/PQP_v1.3/demos/falling/model.h    |    63 -
 .../PQP_v1.3/demos/falling/torus1.path        | 11991 --------------
 .../PQP_v1.3/demos/falling/torus1.tris        |  5329 -------
 .../PQP_v1.3/demos/falling/torus2.path        | 11991 --------------
 .../PQP_v1.3/demos/falling/torus2.tris        | 12961 ----------------
 .../pqp-tar/PQP_v1.3/demos/sample/Makefile    |    28 -
 .../pqp-tar/PQP_v1.3/demos/sample/main.cpp    |   301 -
 .../pqp-tar/PQP_v1.3/demos/sample/sample.dsp  |    91 -
 .../pqp-tar/PQP_v1.3/demos/sample/sample.plg  |    20 -
 .../pqp-tar/PQP_v1.3/demos/spinning/Makefile  |    36 -
 .../pqp-tar/PQP_v1.3/demos/spinning/MatVec.h  |   881 --
 .../PQP_v1.3/demos/spinning/bunny.tris        |  8817 -----------
 .../pqp-tar/PQP_v1.3/demos/spinning/main.cpp  |   372 -
 .../pqp-tar/PQP_v1.3/demos/spinning/model.cpp |   144 -
 .../pqp-tar/PQP_v1.3/demos/spinning/model.h   |    63 -
 .../PQP_v1.3/demos/spinning/spinning.dsp      |    98 -
 .../PQP_v1.3/demos/spinning/spinning.plg      |    27 -
 .../PQP_v1.3/demos/spinning/torus.tris        |  5329 -------
 trunk/PQP/build/pqp-tar/PQP_v1.3/include/BV.h |    94 -
 .../PQP/build/pqp-tar/PQP_v1.3/include/PQP.h  |   338 -
 .../pqp-tar/PQP_v1.3/include/PQP_Compile.h    |   101 -
 .../pqp-tar/PQP_v1.3/include/PQP_Internal.h   |   203 -
 .../PQP/build/pqp-tar/PQP_v1.3/include/Tri.h  |    54 -
 trunk/PQP/build/pqp-tar/PQP_v1.3/src/BV.cpp   |   323 -
 trunk/PQP/build/pqp-tar/PQP_v1.3/src/BV.h     |    94 -
 trunk/PQP/build/pqp-tar/PQP_v1.3/src/BVTQ.h   |   214 -
 .../PQP/build/pqp-tar/PQP_v1.3/src/Build.cpp  |   551 -
 trunk/PQP/build/pqp-tar/PQP_v1.3/src/Build.h  |    49 -
 .../PQP/build/pqp-tar/PQP_v1.3/src/GetTime.h  |    71 -
 trunk/PQP/build/pqp-tar/PQP_v1.3/src/MatVec.h |   877 --
 .../build/pqp-tar/PQP_v1.3/src/OBB_Disjoint.h |   216 -
 trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP.cpp  |  1376 --
 trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP.h    |   338 -
 .../build/pqp-tar/PQP_v1.3/src/PQP_Compile.h  |   101 -
 .../build/pqp-tar/PQP_v1.3/src/PQP_Internal.h |   203 -
 .../PQP/build/pqp-tar/PQP_v1.3/src/RectDist.h |   753 -
 trunk/PQP/build/pqp-tar/PQP_v1.3/src/Tri.h    |    54 -
 .../build/pqp-tar/PQP_v1.3/src/TriDist.cpp    |   407 -
 .../PQP/build/pqp-tar/PQP_v1.3/src/TriDist.h  |    63 -
 trunk/PQP/build/pqp-tar/unpacked              |     0
 trunk/PQP/installed                           |     0
 trunk/PQP/mainpage.dox                        |    26 -
 trunk/PQP/manifest.xml                        |    15 -
 trunk/PQP/pqp.diff                            |    10 -
 trunk/PQP/wiped                               |     0
 trunk/svm_light/Makefile                      |    37 -
 .../svm_light/build/svm_light-tar/LICENSE.txt |    59 -
 trunk/svm_light/build/svm_light-tar/Makefile  |   105 -
 trunk/svm_light/build/svm_light-tar/kernel.h  |    40 -
 .../build/svm_light-tar/svm_classify.c        |   197 -
 .../build/svm_light-tar/svm_common.c          |   985 --
 .../build/svm_light-tar/svm_common.h          |   301 -
 .../svm_light/build/svm_light-tar/svm_hideo.c |  1062 --
 .../svm_light/build/svm_light-tar/svm_learn.c |  4650 ------
 .../svm_light/build/svm_light-tar/svm_learn.h |   173 -
 .../build/svm_light-tar/svm_learn_main.c      |   397 -
 .../svm_light/build/svm_light-tar/svm_loqo.c  |   211 -
 trunk/svm_light/build/svm_light-tar/unpacked  |     0
 trunk/svm_light/build/svm_light.tar.gz        |   Bin 51026 -> 0 bytes
 trunk/svm_light/installed                     |     0
 trunk/svm_light/mainpage.dox                  |    26 -
 trunk/svm_light/manifest.xml                  |    15 -
 trunk/svm_light/svm_light.diff                |   543 -
 .../svm_light/include/svm_light/kernel.h      |    40 -
 .../svm_light/include/svm_light/svm_common.h  |   301 -
 .../svm_light/include/svm_light/svm_learn.h   |   173 -
 trunk/svm_light/wiped                         |     0
 92 files changed, 77542 deletions(-)
 delete mode 100644 trunk/PQP/Makefile
 delete mode 100644 trunk/PQP/PQP/include/BV.h
 delete mode 100644 trunk/PQP/PQP/include/PQP.h
 delete mode 100644 trunk/PQP/PQP/include/PQP_Compile.h
 delete mode 100644 trunk/PQP/PQP/include/PQP_Internal.h
 delete mode 100644 trunk/PQP/PQP/include/Tri.h
 delete mode 100644 trunk/PQP/build/pqp-1.3.tar.gz
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/Makefile
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.DSP
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.PLG
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.dsw
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.ncb
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.opt
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/README.txt
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/Makefile
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.dsp
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.dsw
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.ncb
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.opt
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/Makefile
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/MatVec.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/falling.dsp
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/falling.plg
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/main.cpp
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/model.cpp
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/model.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus1.path
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus1.tris
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus2.path
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus2.tris
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/Makefile
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/main.cpp
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/sample.dsp
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/sample.plg
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/Makefile
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/MatVec.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/bunny.tris
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/main.cpp
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/model.cpp
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/model.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/spinning.dsp
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/spinning.plg
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/torus.tris
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/include/BV.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/include/PQP.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/include/PQP_Compile.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/include/PQP_Internal.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/include/Tri.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/BV.cpp
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/BV.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/BVTQ.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/Build.cpp
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/Build.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/GetTime.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/MatVec.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/OBB_Disjoint.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP.cpp
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP_Compile.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP_Internal.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/RectDist.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/Tri.h
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/TriDist.cpp
 delete mode 100644 trunk/PQP/build/pqp-tar/PQP_v1.3/src/TriDist.h
 delete mode 100644 trunk/PQP/build/pqp-tar/unpacked
 delete mode 100644 trunk/PQP/installed
 delete mode 100644 trunk/PQP/mainpage.dox
 delete mode 100644 trunk/PQP/manifest.xml
 delete mode 100644 trunk/PQP/pqp.diff
 delete mode 100644 trunk/PQP/wiped
 delete mode 100644 trunk/svm_light/Makefile
 delete mode 100755 trunk/svm_light/build/svm_light-tar/LICENSE.txt
 delete mode 100755 trunk/svm_light/build/svm_light-tar/Makefile
 delete mode 100755 trunk/svm_light/build/svm_light-tar/kernel.h
 delete mode 100755 trunk/svm_light/build/svm_light-tar/svm_classify.c
 delete mode 100755 trunk/svm_light/build/svm_light-tar/svm_common.c
 delete mode 100755 trunk/svm_light/build/svm_light-tar/svm_common.h
 delete mode 100755 trunk/svm_light/build/svm_light-tar/svm_hideo.c
 delete mode 100755 trunk/svm_light/build/svm_light-tar/svm_learn.c
 delete mode 100755 trunk/svm_light/build/svm_light-tar/svm_learn.h
 delete mode 100755 trunk/svm_light/build/svm_light-tar/svm_learn_main.c
 delete mode 100755 trunk/svm_light/build/svm_light-tar/svm_loqo.c
 delete mode 100644 trunk/svm_light/build/svm_light-tar/unpacked
 delete mode 100644 trunk/svm_light/build/svm_light.tar.gz
 delete mode 100644 trunk/svm_light/installed
 delete mode 100644 trunk/svm_light/mainpage.dox
 delete mode 100644 trunk/svm_light/manifest.xml
 delete mode 100644 trunk/svm_light/svm_light.diff
 delete mode 100755 trunk/svm_light/svm_light/include/svm_light/kernel.h
 delete mode 100755 trunk/svm_light/svm_light/include/svm_light/svm_common.h
 delete mode 100755 trunk/svm_light/svm_light/include/svm_light/svm_learn.h
 delete mode 100644 trunk/svm_light/wiped

diff --git a/trunk/PQP/Makefile b/trunk/PQP/Makefile
deleted file mode 100644
index 2790aafa..00000000
--- a/trunk/PQP/Makefile
+++ /dev/null
@@ -1,36 +0,0 @@
-all: installed
-
-#
-# Download, extract and compile from a released tarball:
-#
-TARBALL = build/pqp-1.3.tar.gz
-TARBALL_URL = http://gamma.cs.unc.edu/software/downloads/SSV/pqp-1.3.tar.gz
-TARBALL_PATCH = pqp.diff
-INITIAL_DIR = build/pqp-1.3
-SOURCE_DIR = build/pqp-tar
-include $(shell rospack find mk)/download_unpack_build.mk
-
-INSTALL_DIR = PQP
-CMAKE = cmake 
-CMAKE_ARGS = -D CMAKE_BUILD_TYPE="Release" -D CMAKE_INSTALL_PREFIX=`rospack find PQP`/$(INSTALL_DIR) 
-MAKE = make
-
-installed: wiped $(SOURCE_DIR)/unpacked
-	cd $(SOURCE_DIR)/PQP_v1.3 && make $(ROS_PARALLEL_JOBS)
-	mkdir -p $(INSTALL_DIR)/lib
-	mkdir -p $(INSTALL_DIR)/include
-	mkdir -p $(INSTALL_DIR)/include/PQP
-	cp -r $(SOURCE_DIR)/PQP_v1.3/include/*.h $(INSTALL_DIR)/include
-	cp -r $(SOURCE_DIR)/PQP_v1.3/lib/*.a $(INSTALL_DIR)/lib
-	touch installed
-
-clean:
-	rm -rf build
-	rm -rf $(INSTALL_DIR) installed
-
-wiped: Makefile
-	make wipe
-	touch wiped
-
-wipe: clean
-	rm -rf build patched
diff --git a/trunk/PQP/PQP/include/BV.h b/trunk/PQP/PQP/include/BV.h
deleted file mode 100644
index cfe42c73..00000000
--- a/trunk/PQP/PQP/include/BV.h
+++ /dev/null
@@ -1,94 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_BV_H
-#define PQP_BV_H
-
-#include <math.h>
-#include "Tri.h"
-#include "PQP_Compile.h"
-
-struct BV
-{
-  PQP_REAL R[3][3];     // orientation of RSS & OBB
-
-#if PQP_BV_TYPE & RSS_TYPE
-  PQP_REAL Tr[3];       // position of rectangle
-  PQP_REAL l[2];        // side lengths of rectangle
-  PQP_REAL r;           // radius of sphere summed with rectangle to form RSS
-#endif
-
-#if PQP_BV_TYPE & OBB_TYPE
-  PQP_REAL To[3];       // position of obb
-  PQP_REAL d[3];        // (half) dimensions of obb
-#endif
-
-  int first_child;      // positive value is index of first_child bv
-                        // negative value is -(index + 1) of triangle
-
-  BV();
-  ~BV();
-  int      Leaf()    { return first_child < 0; }
-  PQP_REAL GetSize(); 
-  void     FitToTris(PQP_REAL O[3][3], Tri *tris, int num_tris);
-};
-
-inline
-PQP_REAL 
-BV::GetSize()
-{
-#if PQP_BV_TYPE & RSS_TYPE
-  return (sqrt(l[0]*l[0] + l[1]*l[1]) + 2*r);
-#else
-  return (d[0]*d[0] + d[1]*d[1] + d[2]*d[2]);
-#endif
-}
-
-int
-BV_Overlap(PQP_REAL R[3][3], PQP_REAL T[3], BV *b1, BV *b2);
-
-#if PQP_BV_TYPE & RSS_TYPE
-PQP_REAL
-BV_Distance(PQP_REAL R[3][3], PQP_REAL T[3], BV *b1, BV *b2);
-#endif
-
-#endif
-
-
diff --git a/trunk/PQP/PQP/include/PQP.h b/trunk/PQP/PQP/include/PQP.h
deleted file mode 100644
index f6f3e539..00000000
--- a/trunk/PQP/PQP/include/PQP.h
+++ /dev/null
@@ -1,338 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_H
-#define PQP_H
-
-#include "PQP_Compile.h"   
-#include "PQP_Internal.h"                             
-                        
-//----------------------------------------------------------------------------
-//
-//  PQP API Return Values
-//
-//----------------------------------------------------------------------------
-
-const int PQP_OK = 0; 
-  // Used by all API routines upon successful completion except
-  // constructors and destructors
-
-const int PQP_ERR_MODEL_OUT_OF_MEMORY = -1; 
-  // Returned when an API function cannot obtain enough memory to
-  // store or process a PQP_Model object.
-
-const int PQP_ERR_OUT_OF_MEMORY = -2;
-  // Returned when a PQP query cannot allocate enough storage to
-  // compute or hold query information.  In this case, the returned
-  // data should not be trusted.
-
-const int PQP_ERR_UNPROCESSED_MODEL = -3;
-  // Returned when an unprocessed model is passed to a function which
-  // expects only processed models, such as PQP_Collide() or
-  // PQP_Distance().
-
-const int PQP_ERR_BUILD_OUT_OF_SEQUENCE = -4;
-  // Returned when: 
-  //       1. AddTri() is called before BeginModel().  
-  //       2. BeginModel() is called immediately after AddTri().  
-  // This error code is something like a warning: the invoked
-  // operation takes place anyway, and PQP does what makes "most
-  // sense", but the returned error code may tip off the client that
-  // something out of the ordinary is happenning.
-
-const int PQP_ERR_BUILD_EMPTY_MODEL = -5; 
-  // Returned when EndModel() is called on a model to which no
-  // triangles have been added.  This is similar in spirit to the
-  // OUT_OF_SEQUENCE return code, except that the requested operation
-  // has FAILED -- the model remains "unprocessed", and the client may
-  // NOT use it in queries.
-
-//----------------------------------------------------------------------------
-//
-//  PQP_REAL 
-//
-//  The floating point type used throughout the package. The type is defined 
-//  in PQP_Compile.h, and by default is "double"
-//
-//----------------------------------------------------------------------------
-
-//----------------------------------------------------------------------------
-//
-//  PQP_Model
-//
-//  A PQP_Model stores geometry to be used in a proximity query.
-//  The geometry is loaded with a call to BeginModel(), at least one call to 
-//  AddTri(), and then a call to EndModel().
-//
-//  // create a two triangle model, m
-//
-//  PQP_Model m;
-//
-//  PQP_REAL p1[3],p2[3],p3[3];  // 3 points will make triangle p
-//  PQP_REAL q1[3],q2[3],q3[3];  // another 3 points for triangle q
-//
-//  // some initialization of these vertices not shown
-//
-//  m.BeginModel();              // begin the model
-//  m.AddTri(p1,p2,p3,0);        // add triangle p
-//  m.AddTri(q1,q2,q3,1);        // add triangle q
-//  m.EndModel();                // end (build) the model
-//
-//  The last parameter of AddTri() is the number to be associated with the 
-//  triangle. These numbers are used to identify the triangles that overlap.
-// 
-//  AddTri() copies into the PQP_Model the data pointed to by the three vertex 
-//  pointers, so that it is safe to delete vertex data after you have 
-//  passed it to AddTri().
-//
-//----------------------------------------------------------------------------
-//
-//  class PQP_Model  - declaration contained in PQP_Internal.h
-//  {
-//
-//  public:
-//    PQP_Model();
-//    ~PQP_Model();
-//
-//    int BeginModel(int num_tris = 8); // preallocate for num_tris triangles;
-//                                      // the parameter is optional, since
-//                                      // arrays are reallocated as needed
-//
-//    int AddTri(const PQP_REAL *p1, const PQP_REAL *p2, const PQP_REAL *p3, 
-//               int id);
-//
-//    int EndModel();
-//    int MemUsage(int msg);  // returns model mem usage in bytes
-//                            // prints message to stderr if msg == TRUE
-//  };
-
-//----------------------------------------------------------------------------
-//
-//  PQP_CollideResult 
-//
-//  This saves and reports results from a collision query.  
-//
-//----------------------------------------------------------------------------
-//
-//  struct PQP_CollideResult - declaration contained in PQP_Internal.h
-//  {
-//    // statistics
-//
-//    int NumBVTests();
-//    int NumTriTests();
-//    PQP_REAL QueryTimeSecs();
-//
-//    // free the list of contact pairs; ordinarily this list is reused
-//    // for each query, and only deleted in the destructor.
-//
-//    void FreePairsList(); 
-//
-//    // query results
-//
-//    int Colliding();
-//    int NumPairs();
-//    int Id1(int k);
-//    int Id2(int k);
-//  };
-
-//----------------------------------------------------------------------------
-//
-//  PQP_Collide() - detects collision between two PQP_Models
-//
-//
-//  Declare a PQP_CollideResult struct and pass its pointer to collect 
-//  collision data.
-//
-//  [R1, T1] is the placement of model 1 in the world &
-//  [R2, T2] is the placement of model 2 in the world.
-//  The columns of each 3x3 matrix are the basis vectors for the model
-//  in world coordinates, and the matrices are in row-major order:
-//  R(row r, col c) = R[r][c].
-//
-//  If PQP_ALL_CONTACTS is the flag value, after calling PQP_Collide(),
-//  the PQP_CollideResult object will contain an array with all
-//  colliding triangle pairs. Suppose CR is a pointer to the
-//  PQP_CollideResult object.  The number of pairs is gotten from
-//  CR->NumPairs(), and the ids of the 15'th pair of colliding
-//  triangles is gotten from CR->Id1(14) and CR->Id2(14).
-//
-//  If PQP_FIRST_CONTACT is the flag value, the PQP_CollideResult array
-//  will only get the first colliding triangle pair found.  Thus
-//  CR->NumPairs() will be at most 1, and if 1, CR->Id1(0) and
-//  CR->Id2(0) give the ids of the colliding triangle pair.
-//
-//----------------------------------------------------------------------------
-
-const int PQP_ALL_CONTACTS = 1;  // find all pairwise intersecting triangles
-const int PQP_FIRST_CONTACT = 2; // report first intersecting tri pair found
-
-int 
-PQP_Collide(PQP_CollideResult *result,
-            PQP_REAL R1[3][3], PQP_REAL T1[3], PQP_Model *o1,
-            PQP_REAL R2[3][3], PQP_REAL T2[3], PQP_Model *o2,
-            int flag = PQP_ALL_CONTACTS);
-
-
-#if PQP_BV_TYPE & RSS_TYPE  // this is true by default,
-                            // and explained in PQP_Compile.h
-
-//----------------------------------------------------------------------------
-//
-//  PQP_DistanceResult
-//
-//  This saves and reports results from a distance query.  
-//
-//----------------------------------------------------------------------------
-//
-//  struct PQP_DistanceResult - declaration contained in PQP_Internal.h
-//  {
-//    // statistics
-//  
-//    int NumBVTests();
-//    int NumTriTests();
-//    PQP_REAL QueryTimeSecs();
-//  
-//    // The following distance and points established the minimum distance
-//    // for the models, within the relative and absolute error bounds 
-//    // specified.
-//
-//    PQP_REAL Distance();
-//    const PQP_REAL *P1();  // pointers to three PQP_REALs
-//    const PQP_REAL *P2();  
-//  };
-
-//----------------------------------------------------------------------------
-//
-//  PQP_Distance() - computes the distance between two PQP_Models
-//
-//
-//  Declare a PQP_DistanceResult struct and pass its pointer to collect
-//  distance information.
-//
-//  "rel_err" is the relative error margin from actual distance.
-//  "abs_err" is the absolute error margin from actual distance.  The
-//  smaller of the two will be satisfied, so set one large to nullify
-//  its effect.
-//
-//  "qsize" is an optional parameter controlling the size of a priority
-//  queue used to direct the search for closest points.  A larger queue
-//  can help the algorithm discover the minimum with fewer steps, but
-//  will increase the cost of each step. It is not beneficial to increase
-//  qsize if the application has frame-to-frame coherence, i.e., the
-//  pair of models take small steps between each call, since another
-//  speedup trick already accelerates this situation with no overhead.
-//
-//  However, a queue size of 100 to 200 has been seen to save time in a
-//  planning application with "non-coherent" placements of models.
-//
-//----------------------------------------------------------------------------
-
-int 
-PQP_Distance(PQP_DistanceResult *result, 
-             PQP_REAL R1[3][3], PQP_REAL T1[3], PQP_Model *o1,
-             PQP_REAL R2[3][3], PQP_REAL T2[3], PQP_Model *o2,
-             PQP_REAL rel_err, PQP_REAL abs_err,
-             int qsize = 2);
-
-//----------------------------------------------------------------------------
-//
-//  PQP_ToleranceResult
-//
-//  This saves and reports results from a tolerance query.  
-//
-//----------------------------------------------------------------------------
-//
-//  struct PQP_ToleranceResult - declaration contained in PQP_Internal.h
-//  {
-//    // statistics
-//  
-//    int NumBVTests(); 
-//    int NumTriTests();
-//    PQP_REAL QueryTimeSecs();
-//  
-//    // If the models are closer than ( <= ) tolerance, these points 
-//    // and distance were what established this.  Otherwise, 
-//    // distance and point values are not meaningful.
-//  
-//    PQP_REAL Distance();
-//    const PQP_REAL *P1();
-//    const PQP_REAL *P2();
-//  
-//    // boolean says whether models are closer than tolerance distance
-//  
-//    int CloserThanTolerance();
-//  };
-
-//----------------------------------------------------------------------------
-//
-// PQP_Tolerance() - checks if distance between PQP_Models is <= tolerance
-//
-//
-// Declare a PQP_ToleranceResult and pass its pointer to collect
-// tolerance information.
-//
-// The algorithm returns whether the true distance is <= or >
-// "tolerance".  This routine does not simply compute true distance
-// and compare to the tolerance - models can often be shown closer or
-// farther than the tolerance more trivially.  In most cases this
-// query should run faster than a distance query would on the same
-// models and configurations.
-// 
-// "qsize" again controls the size of a priority queue used for
-// searching.  Not setting qsize is the current recommendation, since
-// increasing it has only slowed down our applications.
-//
-//----------------------------------------------------------------------------
-
-int
-PQP_Tolerance(PQP_ToleranceResult *res, 
-              PQP_REAL R1[3][3], PQP_REAL T1[3], PQP_Model *o1,
-              PQP_REAL R2[3][3], PQP_REAL T2[3], PQP_Model *o2,
-              PQP_REAL tolerance,
-              int qsize = 2);
-
-#endif 
-#endif
-
-
-
-
-
-
diff --git a/trunk/PQP/PQP/include/PQP_Compile.h b/trunk/PQP/PQP/include/PQP_Compile.h
deleted file mode 100644
index f76c9813..00000000
--- a/trunk/PQP/PQP/include/PQP_Compile.h
+++ /dev/null
@@ -1,101 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_COMPILE_H
-#define PQP_COMPILE_H
-
-// prevents compiler warnings when PQP_REAL is float
-
-#include <math.h>
-inline float sqrt(float x) { return (float)sqrt((double)x); }
-inline float cos(float x) { return (float)cos((double)x); }
-inline float sin(float x) { return (float)sin((double)x); }
-inline float fabs(float x) { return (float)fabs((double)x); }
-
-//-------------------------------------------------------------------------
-//
-// PQP_REAL
-//
-// This is the floating point type used throughout PQP.  doubles are
-// recommended, both for their precision and because the software has
-// mainly been tested using them.  However, floats appear to be faster 
-// (by 60% on some machines).
-//
-//-------------------------------------------------------------------------
-
-typedef double PQP_REAL;
-
-//-------------------------------------------------------------------------
-//
-// PQP_BV_TYPE
-//
-// PQP introduces a bounding volume (BV) type known as the "rectangle
-// swept sphere" (RSS) - the volume created by sweeping a sphere so
-// that its center visits every point on a rectangle; it looks
-// something like a rounded box.
-//
-// In our experiments, the RSS type is comparable to the oriented 
-// bounding box (OBB) in terms of the number of BV-pair and triangle-pair 
-// tests incurred.  However, with our present implementations, overlap 
-// tests are cheaper for OBBs, while distance tests are cheaper for the 
-// RSS type (we used a public gjk implementation for the OBB distance test).
-//
-// Consequently, PQP is configured to use the RSS type in distance and 
-// tolerance queries (which use BV distance tests) and to use OBBs for
-// collision queries (which use BV overlap tests). Using both requires six
-// more PQP_REALs per BV node than using just one type. 
-//
-// To save space, you can configure PQP to use only one type, however, 
-// with RSS alone, collision queries will typically be slower.  With OBB's 
-// alone, distance and tolerance queries are currently not supported, since 
-// we have not developed our own OBB distance test.  The three options are:
-//
-// #define PQP_BV_TYPE  RSS_TYPE           
-// #define PQP_BV_TYPE  OBB_TYPE           
-// #define PQP_BV_TYPE  RSS_TYPE | OBB_TYPE
-//
-//-------------------------------------------------------------------------
-
-#define RSS_TYPE     1
-#define OBB_TYPE     2
-
-#define PQP_BV_TYPE  RSS_TYPE | OBB_TYPE
-
-#endif
diff --git a/trunk/PQP/PQP/include/PQP_Internal.h b/trunk/PQP/PQP/include/PQP_Internal.h
deleted file mode 100644
index 90cedcfa..00000000
--- a/trunk/PQP/PQP/include/PQP_Internal.h
+++ /dev/null
@@ -1,203 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#include "Tri.h"
-#include "BV.h"
-
-class PQP_Model
-{
-
-public:
-
-  int build_state;
-
-  Tri *tris;  
-  int num_tris;
-  int num_tris_alloced;
-
-  BV *b;
-  int num_bvs;
-  int num_bvs_alloced;
-
-  Tri *last_tri;       // closest tri on this model in last distance test
-  
-  BV *child(int n) { return &b[n]; }
-
-  PQP_Model();
-  ~PQP_Model();
-
-  int BeginModel(int num_tris = 8); // preallocate for num_tris triangles;
-                                    // the parameter is optional, since
-                                    // arrays are reallocated as needed
-  int AddTri(const PQP_REAL *p1, const PQP_REAL *p2, const PQP_REAL *p3, 
-             int id);
-  int EndModel();
-  int MemUsage(int msg);  // returns model mem usage.  
-                          // prints message to stderr if msg == TRUE
-};
-
-struct CollisionPair
-{
-  int id1;
-  int id2;
-};
-
-struct PQP_CollideResult  
-{
-  // stats
-
-  int num_bv_tests;
-  int num_tri_tests;
-  double query_time_secs;
-
-  // xform from model 1 to model 2
-
-  PQP_REAL R[3][3];
-  PQP_REAL T[3];
-
-  int num_pairs_alloced;
-  int num_pairs;
-  CollisionPair *pairs;
-
-  void SizeTo(int n);    
-  void Add(int i1, int i2); 
-
-  PQP_CollideResult();
-  ~PQP_CollideResult();
-
-  // statistics
-
-  int NumBVTests() { return num_bv_tests; }
-  int NumTriTests() { return num_tri_tests; }
-  double QueryTimeSecs() { return query_time_secs; }
-
-  // free the list of contact pairs; ordinarily this list is reused
-  // for each query, and only deleted in the destructor.
-
-  void FreePairsList(); 
-
-  // query results
-
-  int Colliding() { return (num_pairs > 0); }
-  int NumPairs() { return num_pairs; }
-  int Id1(int k) { return pairs[k].id1; }
-  int Id2(int k) { return pairs[k].id2; }
-};
-
-#if PQP_BV_TYPE & RSS_TYPE // distance/tolerance are only available with RSS
-
-struct PQP_DistanceResult 
-{
-  // stats
-
-  int num_bv_tests;
-  int num_tri_tests;
-  double query_time_secs;
-
-  // xform from model 1 to model 2
-
-  PQP_REAL R[3][3];
-  PQP_REAL T[3];
-
-  PQP_REAL rel_err; 
-  PQP_REAL abs_err; 
-
-  PQP_REAL distance;
-  PQP_REAL p1[3]; 
-  PQP_REAL p2[3];
-  int qsize;
-  
-  // statistics
-
-  int NumBVTests() { return num_bv_tests; }
-  int NumTriTests() { return num_tri_tests; }
-  double QueryTimeSecs() { return query_time_secs; }
-
-  // The following distance and points established the minimum distance
-  // for the models, within the relative and absolute error bounds 
-  // specified.
-  // Points are defined: PQP_REAL p1[3], p2[3];
-
-  PQP_REAL Distance() { return distance; }
-  const PQP_REAL *P1() { return p1; }
-  const PQP_REAL *P2() { return p2; }
-};
-
-struct PQP_ToleranceResult 
-{
-  // stats
-
-  int num_bv_tests;
-  int num_tri_tests;
-  double query_time_secs;
-
-  // xform from model 1 to model 2
-
-  PQP_REAL R[3][3];
-  PQP_REAL T[3];
-
-  int    closer_than_tolerance;   
-  PQP_REAL tolerance;      
-
-  PQP_REAL distance;
-  PQP_REAL p1[3]; 
-  PQP_REAL p2[3]; 
-  int qsize;
-
-  // statistics
-
-  int NumBVTests() { return num_bv_tests; }
-  int NumTriTests() { return num_tri_tests; }
-  double QueryTimeSecs() { return query_time_secs; }
-
-  // If the models are closer than ( <= ) tolerance, these points 
-  // and distance were what established this.  Otherwise, 
-  // distance and point values are not meaningful.
-
-  PQP_REAL Distance() { return distance; }
-  const PQP_REAL *P1() { return p1; }
-  const PQP_REAL *P2() { return p2; }
-
-  // boolean says whether models are closer than tolerance distance
-
-  int CloserThanTolerance() { return closer_than_tolerance; }
-};
-
-#endif
diff --git a/trunk/PQP/PQP/include/Tri.h b/trunk/PQP/PQP/include/Tri.h
deleted file mode 100644
index 496cddd9..00000000
--- a/trunk/PQP/PQP/include/Tri.h
+++ /dev/null
@@ -1,54 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_TRI_H
-#define PQP_TRI_H
-
-#include "PQP_Compile.h"
-
-struct Tri
-{
-  PQP_REAL p1[3];
-  PQP_REAL p2[3];
-  PQP_REAL p3[3];
-  int id;
-};
-
-#endif
diff --git a/trunk/PQP/build/pqp-1.3.tar.gz b/trunk/PQP/build/pqp-1.3.tar.gz
deleted file mode 100644
index 5d6a386167dbc1fdc61ae05638d30ae37f8b2e69..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 326131
zcmaI6RZtvU(5{OGmmt9{Xn<fL_+Y`E;O+r}ySrQP;DZDW5(ut?yF+jp++AjvL1usd
z-nGxgIaR0XS=DbZx$o8e(j{Obac#krkWkM7FCOax4KEM(dfW5uy6$$er9IPbX?|(7
zgB^c44N4cw+f|~|=o8pvtC+rxTpYYyw00s%T}z9%dU?2*4k>;l>g6KsOn5<(<O(r#
z&YJ?-n!SYS;rxl{7JF<qtfhH&%E1T_)#j?JQ&|vM0k4YMHGB8i=Ny`zZF96h<%xcp
zRtvc?4uj%Rea5c73u2K?`0fT_rGfUFGj8dO@x?curQ#)TCECnhYa=#M9cI?R5|S_@
z4ACblSV&wo6GA8#(1H)pczvqvjzIMwyPN`wdH66QxZQNdd-&|9>HZRsT))0viomWe
z&S@231LuOADTqId;V`hj4CRt(h&xPT-M{9nu$j_oWapOa_RkR(9{~YD4&Tu^`?a$#
zNx&Elj_o-^Vw$k1cgZXiC954vv;cK4$omu)Ow7|1RES3?JsAx+oWm;=AiN8e$Kg)u
z<}p_s)#VjjK@;IyVaWGy6g@=O5_s5Ux*e{LY_z@{`iO5kR!ikpb)QB)t1>WV-xo2c
z`gY-CB6;B-miv7;dP0%1VD2Oq17^g<H<IbDNKU=EPl<kx^+wz|G1X`qQ$n+$7uJLx
zt4{mOSOnPtG;T?oJVln%jN%}x<y0!BKzklZzdcnLiCyFls|SADhMVuecggSoscc_j
zDZ$T3B0&;e58)2JD3gvSa<fsL`6H7iTw#`nQWYSAY^0bGD@%i`aFcrjpMTx1*+FaK
zqE^%2vrJ6x<u;2qJ+>NN9qf2K)mGgCRwT|$nhe%0Mk+3(pou_8QBVbr-L(J3v_Y0|
z&=SaZ0{!B>B<PZ0RncWd%p3QZrMnShbI<e%Hz6s2b(V7r8dFL3g3}q`_eNG@Ms4lr
zLeL~{4QK+q=h~`o1YOkk)gwBNB>e(b8vizh9MGpq3T(GEbnX`0@^vECV1LBUQ50Em
zC07&?kEhfDp8hX55$IF?bvUT#Ob71^TjWj1KQy@%Ci;6rWgw&ILF<=Z{<djaki{D|
z`jjT(2n3^O-21wKk>01)Uhb#InoUu80TiAT2}e{3_dp(fjOf5QpU|@-F^pI@IQqka
zC|&-;wlHeME7Fvo4<=DWn6gsp``*EXKThcxYfOK)ZWav!M$z@8$#q)U6x4HK8y!~Y
z!Uok=zWc0ncL<%}Q@FMh0NTyf*8~6n3t-Ep^r|FASr}?Ok&)9sQ1DR=G&<6<1br-c
z#jn$6$CG=FY{Wz(ueuK@6ffguyYzxyzJshnKaQdKYs`utB2q}P5)Eo$*~XFW|8<h|
zl7?yzEj&jo%wX6V0QLKk5e@7tK;)m0@oZ22u%!K`|KQbc5zYKLtj~rf;shg)h&N#O
z#=L)7YE=kULViBZHYpoH<Fm3Xx_z?L%&k9M{wd)M>9f}N`UEQ*nsXXjXDzZ11AgS!
zM{iQ##eOS78?7x<5u4JEi=2%Se;sJKUTuj4_4-P&AoaS{FL!g#{Y#C87Y;6@DzHS0
zj5&%Rq1qrkb<^HP6gwi7=f#XhG91Ai!K1o{G*-2J{v-7!6g27IzTzYCl-VzfOcube
z7i89G|L{A_ZKJQew+4C`Dfb#}KPCdc!Nc~Xvl+ml(cZDW8Kg%SML0tmimf8ztePvB
zbZuzdvZObPyXec}%gE0@nfA#@yemP6ciSS!6W#b9MCO@LB~wKobpHWNe{oyf*#F(`
zzpy5s<p>uwqTgw*^FvbmYp>6<c3a>7Fn~Q`)qSGv5T|<Pv0TXCd(&?$1*WdxVS9rM
z(CW7_C1Isw@t7&3eb<59>az#uNGg~|WrjtPH$fZ&8=Xby(?ZQU{g~Fh!VcN^sA6##
zQ2Hz-7bq5~<gcH4PVk82mnnQ~AJDg6PynjBUsD)&-#F0xoe^Q(x*miCABILt-KZX`
zV$C>kyM38mZu?^hi6RZBNCvdL*_R{<dqJ-r!U#n9B2KqxZ;GT<xJ;s7%jf@U{D2Z4
zRF|Zbdv>G#RTBzs-g4QYGY>~h4+h)?q0-jWV){SjKJhM_m#+k}=c@k|ek~5bxvGVt
zN#8yvda_8a#fWEfflZbY(x+zc<7q`1TlfVI>fTgdQYm03h~-OuJ_>Jt!87^rlGW3U
z@Xme-fmBT*B)_J@rpDZ1<Ut#S2!nvy7qL{tMeE0j{)a-bw)OoGv)#4*ki2J?bcEAw
zkLqiMS>E%N+g*?CObguwiuK!XPoFh8HTrf1z7KdT{peC;xA-8wbHj9-X}4Fn$M-!B
zqdk7A4&(h`Bd^TsF*ZFj@K-AE(eAA8RErrkti#;B8*@lTN~GNVneu^=g^Kg!@txg#
z4O6i3mYwizdtTzB%>ERg3P>VwxpU=jlT5&2jPsYAmdRl;%y1M)Sg`i_^Gd@)4*rb(
z=TaFau1}7W=|)LgpB36w&m9;PT>jpV4fGoq%I=_0wZHOPKaK_Vl{4M&{__hvx7wGc
z>_$37pt49rA_YJ10mI$}VWJuzdwyv&=EPU|1}UzT?Bn>2Ly7VjBixEaDYFwP9f^`A
zv1g5id%dS>BW2UzS?4zifwVw(`T);QwAtp6(O)CfO_^?b2MQ&Zyx$a?d+bimpfJEG
zr`Rdkbb7wf=Mpqx%=mZLp`kcYPV6MaQ8{h*?iX*+J9pBV5|{QmYWf$$`sLy$*muV{
zVX=|*FBX(6bZgtHC*|pxl~k;??n&;mM?#s5P3a{=m6zmM!=X!9OkW^rKelbOU8tPc
zvmSN)Mvm<+L=6MFH|EA^@RCb*`fe%X-WR*N^huR;6-p&ATzjFGOvzkS{esLN*XN4=
z8PqRZiOiJ_RVl}gn8?qbQ!1ljvQXucBpjz6W+O14?^dB`{Q1dJlm?#pToz1hXOLyJ
zoIC!tLRD%IrS8|F51De}m|ieSAE3mQk~p+IH%{S0?WZaI?t*O*)rglfv;MTjbh(HQ
zXBuAP+afuvfG8YkeaG^bqCRvv25EN{N%8WHuu|!N7L!S?9MoEA^94W9<>%&x@gIx9
zKbgdssWhl0Bb8~?`!Uhmae3DW3~DWJDLzI@$+yxThz(}Gv*Gyt898~nA(E}2W+fp@
zxV$Emt>>Q|dJ;<s+$h2XTZh<EiT~b!-OwQG)8n_efu7OT#1#-m-WP1uH#||jkCGS$
zC${iv<vr$j=^cG+Y94itxj-|ylCa<gE%R+Bbcwirq3G2>e10|j#+vu%NT{5jpC8Q#
zJ2WGgG)2HfvNS-y2W_f?@<2xbJ0n;epAq~jCzq!9FU}Y3&;~b3jaeD5#r_%J`JKY4
zcKScIw0o+yll_caAD<U<9W}q)9r>!Lvm%jM(N9rqa!79ywPizERNuf1(#MWQ2%rtK
z`skLQ^5Q2z@+**a9-O2hxDwNVG@2xC*(@$QDM{+rKsE;V=reK5;`a&fjeEVaMg!z&
zKp_<ZTw8+7e%%JN@z;{cbc9GuUskwR`7edFf0$=7qD+a%u+6UYI5aF=XG#y-7B$@h
zBQ5#G29g!(kN#2x5RbB4(fh;}Vdp#Nei@}@gLC43#w2F>M1u+GW|N(!h$-gWkPeK`
zh_h=&y80rgdZrPJc5DBNB_GD&mQ2-PlSlJAmn3{V(6}<A{Vm<v2}rVdgYW<kvpIzD
z@+*5GE{#-MutI`;{>8$faXyawIaRY4<CXi|FU%U9Cd^u+E4(LQT!`V-_wX@y_6C_U
zQ|GvH?bXqKwJ-bh86}MF&N8XY><{kBpUafq34w+eRee6$2KrAaI^j}Qkpn()NaCg7
ze)!NJ`CbQ=a8SiMuJ<$P(`EJ|@AZAqWn<ZureFWz1~6VndHL=QHtky*!X{+nk~oiZ
zQjx(fXWFeQFO6fT7S*PHM}<MPqQS5dg@<&8-#T9cey52KDqG>OM{Dw?{SzP=&X*gs
zXZifb5sLmcK{x>w8Pg62H8L*0R9W5QlG~Pp4z-OAl``XtS^7G#Az6p#=h?7Fl9Wjw
z$;Lb>_cgPI4QoY4$uG)RjgR`iVcBA?9ywbo6(_;0JFh9b<=5n*MFJV2y#Q(hFQa3v
z1OfahM#_k(15>UR2x;}3giVTU0Raq$Fol!|uffx}`gK&nCR7RaLV+S(U&h7561%&v
zO|TDZJO_<-K#Ub_2;rAl+NbEC$bV~Qipxd4rQyp9V#w~KH|iX3pPGsT@KVbE5n|<+
z%^b5}q##zW0NI6tkIQ~g!q<&nvjf1xs1kF6@3**lZDub<tBh!VnL|v?mQ~<N)hMe)
z{~$)M{t4T^51;IWY4h=l1V&Nx>_XTn=RbciC~lCOYO+cs3H=aTsj!P@P$P@|R-+jE
zd&$?Rtl=`<>?+(--6bO58`S#ROR;9k5Y&r>xeqOE@f;H5z4qO#;XYf75=xH~?2m3(
zrp?7Eb3fnj34-h4<R$H-k%{gDd5}?yeagiC&VQvt>~A|6{<se{%{dg2)lg(PoGOpv
zn`F!GMcZlRh8@nCvH#+=5ajBg3?4aIV=mNPsbf)|DvR+xX!qsGD^eWSBxOmDSu)l)
zV%&5hGI#wt&c>gnX1h&^nmhV7)aEi$`Oc1?;|mML+{eD|Q5#WJ<I<A9+wW6Dk3M#|
zvxEWzk-cA?KEjcciz{>6c#v#}nn}H)=G2I49}Njoh7@A3e@rh37e13$1h`5vX5S6I
z5bDt?JEYCae)ue__ji5JgY&N-<SLPUK>T1Cu$`LMTeRZC*3Rtt-RCplQqCNUrHwz-
zC}_W9p>3L8&W0gx%mR~@Ib6t7ClRb+wsY$LNBE25a0P`+l()`_E~Qq=18Wi?w+7|p
zq`WFJj9T=1A^l79M~}a#(!+{^B>l%y2BFHoOOd?2?PK0E@UsyD?5u5LH8m`7zXuhl
z>Fod|^^{rPpwY;nUiPTnG?7!PCBFKGs_@RgBR;=;#|LX^U#8c$pg<m=x(-Hq{u({C
zCd|cpB-ilhp*T`z9jz?Ra97nYCz-w!Fm<?n%)XXq7;uMt!CBj_vuRpCh#!d;>ozh`
zX6||_YZ)oGmb5eyNmC?kdxKJ8U*jQdbN2lgvY2z8ya76QG>pA@)RF{V!c2Qdh!l=J
zN@lr@7bRvgZ^Vw18}pYbarEw!Q1vIUUibcSKx)O+kl1}U9PhrnBMTHW9{cT#2?YZt
zl3CK&54N+2jY#`v^)*Z$y{gr&q%^<pEHn%gXD-u~_#~1)`>Oaas#t0?(*sGA-B_yC
zOd4}lx;F{~=6ANLOrb=&NLJ1fF4=#FPsVT4<qN8flTELRe&HyOXkM0T1epoKk|JHL
zCAO<}_5FiBuf6^1JJwqH4mL{Y<W7juFQg<XpA#?@7?2%@eUW1_vGexqE2`6MSg|LR
zf_!oVQ?}msw;>t(1O3M-e)?JG{oJ5G@2;@JzS>wtwYsr){~#v+l#{uIeo8$BH1Bq2
z?bn)puJK0BiQ!oHk}thcGPwvh@xk_9Q(VSwfE=Q(85sstcf1%<IUYIH16%tbVgf6f
zOLMR91g0|u7J}>XTJ8i^rq|7%XsPm(&X*UUr>5}BzcnXJog+=<_y*Gy6>F1a>~N~d
z{Am9lImDwOF*yqz`VNOOtUUvh#qH#kf8tvr9cRkqu=I7l1>~n)_)*`57c<MYWD^AD
znafG0Iald_n)v-M?QM&KYEwLXasF>;*FlQ*VD%fa)H{5+yUw*sTF%6%+emc&zqk~=
zRo@!s8{GK#O#Ff-Nlnm_d26#0-wIG_`5P4Rsny_8FE#~H8sPoDIGXx?ijdGdfVl)J
z?#oooGIn7FB492awtC$NAPCXva+#fX2mY^8%|~qgUtYC<h?cx_)oi94>r1%A;V=1%
zwR~j6-WGB>Qi(01gupN*fJ{j5?;+1!M^@-fkx9z7x)5#k+qMExS;Gg2c?;{$5bC|T
zFh;+RgHj=1s$HAlzaVd2qy_LLimgKFvK{UI-uyxJsF6Q3i+t)|Ti&;yWWp_B!=%vr
zbF~}EU0Hl(vNw$XD|>tFFm`DjZMS?D3RD-3wb}_Uj8G#l;JUGC+m-_cQyp!&Wx8N4
z5R%;Iq7Vbs30*xK22+?|)lt47ttF6=n|s9?eC2<e>Z`;cBjpO|ee+ZiDgIwYnt%K8
zr{7`xJeDV*MyAKVJFdgW5jv+OSV2?adf!1vJ3>9-eE)v8PkzG~x{0NJ#E!S{w!W>|
z(7L5~Sl;M^(0`wXlUY1hge`4Unl__P<VcZLrAP1x%5+83O=M0nN&h|QYx7+R5u<zF
zX}6j7ru;u6k!zwGhuBz2hBYa3Qo0lVHao%tH3CnY)vsCoez~#SR)B+S($6ZO?htKd
zAAJ$N%KY}dwynNF;<wFP2|D#dzz?Kv+P2Ht3qedx^4Pr}QL-sR4Uo;>A%Dc{Wk<=D
zO;h>7)ELgxsF3zM)mk^jnpE)<f7&E=S`C9@rd*niRGJRc*t|jmyFx=elL4ioZb7M`
zzx68KWjqIU(+KIc6Ci+ZvBfB>I7IMhVRQ<ZDJ`~;Y|yHTe%ISCJzSeB#KVE5>0pI+
zi$_~C{1OmoReTvwwlMP8SayP!k!=virc_gdHq2^zQ}`Ed#@GyVv4_Xsd!`iN&qq}K
zh;;PQCTpv2SyWsM-(gtEB$@ddjP_SQ_}w61X+bO<j%2G$S9PqQj-pc6+mLrR?%y;U
z7QT45qyTMFfi_`4m7|KBqY8uF|DipzP*kadlW9c8y@o;fq__#&vIfAb8%JI(lh~Y@
zy_u1Xe_I~Wb&}0Im+SYxAt0?aAo{<k!V4H^U@KDM-Zexgx&@vb>KzZ}^R@r!IL~Ss
zIOU(KBW=k%WfX1p6@fX`H)kvwQT<CMCWP3;vi4kwY_>QxX`K24cM+4MnDbNE^HU5b
z1ez&;O`AApzOv2_;nbTBlfB?O+*bC=mUwLmZ9#WWBjyfHDZvRX=gjjP%5ee@5WTH8
z-xU4$frcSLYqRrMY@44c`*?zq__T8QnoHAdY2LfiJlT0Vdu8|1Jm&eSPYWE1W&@sl
zS79DD%v#APC(tux{sY~(TWl|0<x_WpgUnwW<7WxKe`9>zns=P4E8X}A+qd`ns{}A}
znVtdy4s6~W*reW?)p6O39cfo9GoPGggYsB6tLQh`(_UTgH2-Z=pS*)x{=7e+osS~Z
z3DDUsItLiTw1z_r+r=GrM7d5ICG!YSbuJP6y1Kz3bcmg&It+}%F!-yw0|qn%f{!l%
z4tZf%wn5l7A{ti_tLKPkKWIqe)KTbbo{`kZ%bnC!jnN~Eqpni*6CtQOW$^w68&in^
zT~`drgFInx%sz~=hBN42`Kd>PCD7zwf|lAYM2qohzv6?vhEovbpJ8#AK>O`136I%y
z9#ewEpU~c6Q&;s74L^d9Z<ZXwehU!1WY?XI|KNFuntle6`>`>h0yBiTayB@HMeIE-
z2tk%%;zYf9$5E*YhU#)m_cS=!rcIRq{P&V6b*sLF<H5T_?$sEFkAo&<-09_8L6^gp
zT9X5Uhr><W@>k80SGN~SZ#=8EKrA9Zj|PKy)e4bNy1xLtT$i3|d*+r!`rlx5r3-_g
zYbkZH614ITqYU|&;dJq>@*x@9`(%2JL>q|WWsBqHEnZrfeA4E&4ZZEdbmjZO*t(|q
zGmX(l)>YdC-tLZr37O#BN33cBr%vSd_f8P3kLj@sr1bUg*4zUbam{Q}z@P9PPUhqY
zSld>lx{%`rh~v+=o|qDzTp+LAV)2a1Z)2clXIlHdJ{v@T`YBR<79b$WJ!c4p0D7NF
z@(6*tB74zVno=cG#Ks=%{Hk5fMpvgmfydiNU763RG;wsaEnf(#oOkg^Dz`<;oh30l
zw#RGH);F>5dow`&wDaZAIu6h6rDE*%HlJa2hAd+s?xG+YEjP2x{2nEL5!qG?gjp^}
z9;XUy5VM<Ee>t26iZ$?}Sar-_cPvb#qqc-@`3aPLP_x__v`8<U4Ij%#5jwqn&OeVv
z78<ij;1iQJB@tGb@|0C!w+XkXn3)#x#lkn63Zu+lm<s#-z5<S|@r_Ejqr3W08*{z>
zNsj9RH+w5$Z^+{ImRq7mm7xoZ?leU53iIvQ!aIeHYji_ZtoaYVH$%Gz%m?Q5w80l>
zYU_Qj>vmzvlF)lJbWwR}C|3;*xo6<hbYt_u#f|sfN*j)lmRh81;H19w6HiA4V0>!-
zBz`96{HTtb%#}2>eM~a20pQ|t%HH=Q5?L)v-UGkyTmBtc3WxA8p{}=<huJxI`r^5K
z6Zs6jly94%sb-hO3fbC+9Puc`DQ5cqPZZ1~Y02=XXc&$Hk)hcZl{xmcsv>Qeu6+vq
z;Ssr4Ecd|Sv-6Mvi*M}Kw9BPPA07$^?FR~wUY4yb{p9=c=y!CV$h)N+pBZDUY5M|`
zvuuwCk+u^btx$~zi)Ow|rG2`es}Rq6F;pg2U;QQBaEw3jX+>`Vn0!Jt{8A^N43Cj}
zgzs!o8vAbK{Q(=Or%M3Tb-s5uK1*mIY!T}O`p6%45odvazam(<=N(>VTy8vS5$#I|
z<Fk-I4-yD%c%ehojA0$P<#pz@mFivS@mKlpjU7UU9|L4Vujg)di_FOFHs7>8l&N^r
zZVZicX4oAkehOu-{pPw17AisEZA}9f5(jbbkkL)0Oq7uk2%2t)q3tYP1RXvsYWUlk
z`M2bRh%kG#l+`HX2g}4qg8O!vF+dB5ZFxdwz3X;V`FPGr3zR{8q)>k!y2nc&=|x62
z0r5gQkGTB1vNW+kVmaAG`K!es&a1}P(>HJH7H=S}-(!9ss@WpvTdR%3B1=&+%*{#D
zey61TU=C<OdA2P~&ANDw{TaxObjq){%8{a;wg*eV(Pj@t^19+wxxU`r+09Top{AYD
z<p89)9H@M_Slq4fvkhl$Y^C{51Id$-IKjcYKjO?8mXj!LrKdDu;OZ^ual77=wY|;}
zdGt2RVc{^x)~&K<u(<K5xD)KL60r7uRKggTn|AhUO#?mnxfri%tPR0<D`+F3-ro9-
zh<uEv%x&L?1yicwB&yUv<QeA&Xda~nnq7p!&IH&(4;|A9;9%quX=DFSY~fj+To?}i
zjH<1Jk}(~|`E>ad>0JdqqR7(ikJ}Oz?rdATI2Bm8;DvWwz(!z0%UP`1otBFi-~!_c
z#w-ncQQi;t<HE?t+xnZPLXB7RR~2ToZf1a7(%Cjat_*vLO>vQ5tScw!!LqFO;6C8v
z^POoc4rIRk>bPr88A|LsFHWBvO+^Lda(3zxc}c5#Pn+tDD%wV<Z8E7o{TX9p$B?dL
zU_R$TF81WLOtm<QZf$6Q?A*7lHAXao_vW8>Y{<pM!|g%M*5q^=Uy?26Hv5>n1y@{`
zKjftr$>ds|NbVdUUdp_OBChnso@BV#z0)^P^A$;Lwyq&hyqBYVUm|~E`9K-?B61c~
zz2N#`=Q(EW#Mbzi^JYaM!#hk?y!DSqUHGiIA!(mdEVn-6Gg@rk<%`ZFd+%2ky$Cml
zyvHaE2A5xncPb_Enu%>`&uLEIEY)kCkorgqAO1@Ad9z#)TI4nu%YapKSAe0A+rUV~
z|3|E6Oq5vdyOYhMY_7>wqlX%0TZvWq&cha&D3vJC-Twz(uh?D}KK8J)`!Q?GM%K3X
zGB0im`Ndn4?@<&&dnEMNZ@WPRn-!Otr7z}s498DTJTVX21poS6ynDHFK|lD!e#wUa
zjL{au=fYJCVx36v<CZp)Xr@LjEOB@UK$cZsjxV~JRTRO24}jO;-p~WSV8MI1!_yfA
zXH)`pxqe~Aba<LN(P%NiYhrV^kk5a9`sN6tX9$6KQRmOtN;n2^Jb&TNW0lR--DPQ8
zF}v5_`esXP<*=D~C=JE&UVdm<cDk&Seui22=)ZoK@9k`DY#FMUaDCTb)q%P|FTqN4
zBsLV*>W?1~;^4K4Xe+#cgO!D<2r7`09uePiz_SS5Rj-#G@cxk@BA^!0y@W753qkz8
z?^%8g36VeDu7J`#TbR&&oPp<>&Rv_HQ_~0B=6^0EiGNM;ED}_!Y`G6u>q8iXpr0e?
zs_yw-WX=&fr;T2(b)yXquUD;)?T3gzu%7>9F5;<T7x9Mz1kT^#t9g9?rQ`q-ihNQA
zU(0+wyLrA2kC%WJK(w+@27HfJj|#zlETrV0qye^^S7iAUnIg}v_m318FiBke2zg1P
z;`5#J3qfuO_~ZJZN~809nb;rRVSY={V2^C7aOWaBKf!T=b|sm_)8ejWNP7tAnB?q*
zMVngGj7cywx0b~|H8?4x)*wyfcm1_19j*9A5CF!ajg;Q?0^Ic!LMNIX0XFGdzgtLF
zSmsVUj}C6kqP2$(mxyH-Wrsc7_*_)yidN;t02VQDo}+Lio8SEE_o-CVcK8z5hJdVI
zGEO}``-TUBi~>XMR1(NECn^f#a|7x-Ls~Ca{h<#TcdQ8ut;C-6zREwF{~SX(;4iFj
zn%98QpF5KCC&E|3^Bw1!Fs6SCdy;ngP97%PMH{YVcxqI^yU~SBVW?LFnH}EBFrlS*
zm-m6<;osb=yz=`Brlo1Y_KUF1X|s6%bZymJBqmr5y?bqee{|0&LWJVpzRu)(g~##H
zx7k97=gY0{dXXvm%lEp?vRR7S#~8;TN000>!33(#rYdzmi4QjvtSf8hUPIk~O0&RQ
zXRMbG#1H<Mt}Q)in4<duexCsm-$f%zb|_TVDX8&g%&Yj`rV1&xNS46UFsS~J!~{1B
zJ@0sec0UlA$0XN-?y+<bqJ=b^TxFk*)MGWjXy7mLiUY0Ot}dN~pTDEj)tD9{7?9Ki
z-aiiX5BWJ#rAKBVzf8N#TH=Sq(*%d;*=ECB-2P_M_*9WJcaAiF0Jk)o?0Z##q<u(Q
z^S7<h8}MRlo$5^_ckB%1p6GVodynrr=~Wkr>()HeQmI$&&H0FY__lW(Z0W|a>W&gA
zz0C;&buCWY6tfc2W01Pt6H5sf>ODy*Nw_~Q)RM+QDo|M^dGo_;CgxNvDyifpR5hn*
zf9*xHd5!1*mVrEQSJ{yRtpGnzpmh2=MUk(SK+X*xzuj153I2KX*seMTN3t;}`07H0
z*>|FL(;l;ndL<odmZX{DV>X>_a>Zr)L-!%G1gmH3MAH<{bey9*Lk~6UcED7uHTYoz
zzDUK;WFqPPH_wNEcgdu-xr4y-?9Y<n=F>(;H56?DAC(VZMbvRZbgQG<OZUY7ap@)e
z;6uX0<%D0Wkx%pVq={3H*XaBDF14_55(~~x7>$&Mb2o3TK1rn&-g4PBcSmW51AufW
zA)iEh46Ou{QtXlVf`u)}#!QF4;-6n>o_D_w+ZVf8-CpuZ*rI+&rNUo;-%>x!AjQ~G
zaTi}4U*LUY@%QwyS`sMAXcp~siyOJ~zLI<5xW@%v%NzY!Q{x#@e+t4+y&`-J4epkB
zN^hq|Pfy^Ay`DC9@BV##UI(1{goDrMoyAOU@#5BFKSTQ8tZVS9`+;XLv$hZfT~Zef
zka&q%2^>_>^0-^B^3Ca*2r$7XKQ!SQc~>~Q{)0HzJIM}C;47BGZzK_4d?tl>G4~k+
zg#8fxL<3@COy0hF%=N^7e<DHWp&nb4fbzvh=QCbM@-I#Ec$M6UJ6#Xgk993o;YP*R
z%QrrT0Cj)D1iz0Zt@aT{#XUGLz<WKxiBjUin`2VZHZya~fjbu=_5Mr$`Z+mwxadq8
z75SnJ!vCLPZWYfD$nm${5Ws37b=ygnd^)N+ek(N!$^x3k<=pcd*m$*^P?xU?H*Jhc
z>c1-}QtXOvk}z{IEU>PSs*BT;W&P$(fZtRjKQd5g7J?CX>tA@`H*%m+crvUhf|Ifc
zAt5>0LR=t#fohC96lPB=uY9k#2Z-kseEM=kjIu}13Bo9Iu^BP)U(t7gaQna9s2}`K
z^5nCR-;i^(L;ZGBt{?`KhhbZJDz=kdmc2YmcSQD-knV@rd4+uuQ}jNp$YRA3rI$c<
zbgxrAo%MTs-Wrg93MrVi34-JdgHgUB$JYx9=g@I(FI&+oalcioj3>2;(=TwLIGyg6
z5PuQD9dg;o=`qevGrGInio{?s<QM(*98rvPpSiOgy&2U>pw~`wiSiwNsMPWl%d-$9
zsVRtRQ1G2Csv1M@bVh=przLfwV&cbr%IEXN{5^kz0QSDQ8G>MAF^nQJ+UaC%lAj~b
zw&cW_Y1Ab}40|adN=HAOLZI?;Y(6a=y_wgcVuOBQ&`Pi`(~@`QGx*G*d_^5M3;{oh
zz%cIWN^h2wRmufRvO<6sC+$zar%%$BRadOy)=be8Na~P43-+B}Ho$kU6TL*D{%6fO
zF4GOFyG2G@1<RR1bV63mM)^R-;e2Ipq9|j__7x1pUOiHe_%D7PS^51!550<oTlU4M
zV#(Xn!9MVA+JT-F7wyh1GTTrYF4J?A;GDujb<7AR==4n15dsC!%e-@w4ja3Dj`uJ?
zIajd!v9P~a`v}>)1gh{<@Af<&os7J!o%muyX(fX3n@+bPj(WQQh{Nh5f-AA-!<#~w
zJz6LJp?1!9QY&L*e1#mM@Amm3#0nFg`H<P&fQjNCkAkn4JxEc-b&yQCINkMnY)egx
zvX`%08Y)+BtU!7BZ?XxfjPR4gn13o|W_SAi?J{=4E!KD|Y4x+KFR^|^xp(klX-zLD
z<!Fg-+teL>GGMEl%-nOo63E*FL$sKDn>=y@t(a7&`|eGurg3UC%}phrWjbBRy?V;i
zSTCArktlT7{(*pt7?N<`*-g?<I=$gr{fP3Hw08+vddJF7@=pR<2&Q(URk?l!3*1JO
zya^BQudiRn{(T1lFU{E;5q&4dS*Sgh?$=RDN^4PkX%dp_6?z7qP>m7WNJ(F{-+?aY
zp^WeNLfYd})~(FzzK&%Px)Y)WwnMh?z&FiLWapDiDmq&|ND09zI)NQeD+Mc*x75kv
zUf}J#7+bwgp&iA3@rLYqTbL!8cs<#(E;L%fgr4a_4R5yX)%j%XCI>5Z*ik71-tJ*P
zJ{CzMU!kKrvCz}n(jxlZ2lc{qP3%a?;A;B-HFz7<RD2sl{D0&zYEB?M)uSW}-6*<v
z${0pN7{N!^Wit6(%;>%sElzsMp&_VRvcO}j*_-5MIyilH4c~^u2QID4cXv{(9)kpx
zP|M3;;;__rBO9(#yucq{A;;S7i9<ux7s?qkNrt$oGID~OQ8lK08Nmt~SMtO*`7NNN
zP&UxH&=K^S=iI@(e3{3U?8?5C-wGDM2)=mc2%kNHX9i<_tXV*O%hs2Vv)sFsa{Cr$
zs@o+xqx)V|EG!<oBERWUl<qLnkJ<>fV@@K&CD`&Z&F8TEWb~?b8=jJ@DplPRjywjR
zGM?BX#CB{&{WFr6$B8j1^{?_{Mb4_Dn`GA67s0{_a_Se?;9F1r0AbcXsP%)U2LCJX
zh%7+DX1xMw4rq%jUEg5@48HDeP7<^0ESsJsn@Cu_@$f}e-3H!BTqNKAP9kC%KlDb!
z&EG51huw$=hi-=oLe0Rz1<xG19c}a*eDC=NOMx-e2sjT?(|rN;r!Jl+3tIGF|5831
z5)4|Ku>iX%$!QrAw_KioP|?UlLFxx~kGqf|X`NtzZ>Z81>yvs9{1mlfwy<ITkc$)`
zlq*qC$Cb>jZ?+h~1VCC^KmMJ3FZCGInR)8RonCe>1KpW1s<;75-`Nq;1vULZS^qSu
zcXS71Jby4J{DhH|3m=yEKRara5`*oM+^~?2`r_KgHk)0GFlG62W7tNqeTHV41TC7>
z3WufZ6kD-=@Lcmt(wqn^*cb^6t8fKIhLLLzK643lgPUW$_ad-2>e&$SL(yE^{&`Pz
z@}7ihtiThWuihBXq76DO95Nh>>0j-Nrn3e2l^#q<u8w!Kw7-9&Ld$PC#U}2M#4It%
zb<^LGn&4<%zdj(PKeL74?y{3g@3@Kxhy5UPc~n2^=9)uCiDa3To}9#*ygoQ}my^le
zf^&5x?;_ba=WniUMPpGD_;-dC`{N!wC0~JG;mHJ-%wRw#^s(<ke(bfI^$A-gw}wyX
zGJkRlf6&uASi<;ju6_3R-`vNEeaqy6H$&GJPv`X|N*!&BV`OV;7H;r_it8s%t;cTu
zs011;0?u_8aCY}aS{O*Kx~`3KUcGt747%mF8F1v)(vmChyE2oMNjBr{hEKG&D)1EC
zXyz~tpEBryt-o&9Eu$k^Bp%P2`+6=2UPTr(ADm>4jYdqpJCj|f+UA=n^7BO?w^Wxm
zOB3YaFUc;&Bdt_cz7!?P(!%c^`?G|`O-G_s^8ozq!CGez!^_cCPC#w~4G`{{!Sve1
zU+#=1(g4#xhfH7^&S0i{S)I16k24{?*15;wt^iRW&?iHGUjh?%&_rO?8|m^ZfdcJA
z=>FFwEz?#!FvJwz0wp@finioyfT5qUMwQj1nS@#)nT8U)E$u=6lg+ef5~_`)F0_*O
zyw+WkrFm!PbIIZ%kz;FYXb+9b>$*-SD?VDDxJzH<g+`$knbWg^K{7|_j1)&@d0qGE
zSt8RMf_?|Ab^SuWwBUj%Ho6?2{=|7Ghz1GKdSdU~kmi30<{v<Dc%LR}U{V{Zbe#>@
z)g!+xaP|6}f}QkVe@|$56<MP|Z!8gWWoK$}%DOpY|2)H)Hh5K)^*SU#FraV7Hi?>i
z27pLcZ1S-SnYyTJe|eC5%3nX)5C_|Z^j&bby$s1cDLaRZU2qGonYlf2IEOUP1&?2_
zCZRTU@&)WzJ9FnRn+Y5t`W?9Ix}P&mb0FhQdga|IMR5YxsaA9jaHwutCFy?>Y7fsU
z4Dh==5I%F(IfIVY;W4d&<b$2)=WfMr&rsvMufDbjq}V;sese&L6ZoIx?K8r`V6)Ys
zI)JnK$=k`R?wc3*Pu*p6&E<OYVt3|ZP-jcWazls9vL4h>7kaUFYC3TWGBMixpGQWz
zf<82|98JJ6eUIg@^|v0ZGe$$~5=VazK_wbP=-jBVB!-`bqJCTK8nAZU3@^`#m6S0_
z1Nn-{86d#LYwX$ha|5@vQ{A`!;r}hX{y#ha&z=9DqejSn0Zjq7UbSs!g{1i5qXf%6
z{1J_|yBFbCUIl+H^OW%Fz6_nVh@2Xs_|^Plq|W*}y?KPTrxhk7y}_C+IzuRbV{LkG
zCYjHS7u@|mJ=(FhPt>$`Si@Aeg*RiS)FP;I^5&Od^my0j8iJo=0^OJ!8KdYJmH%vZ
zhs!YLtU~QQFa__p!<>dZWQIvrzgmAu-H{O>#)PpD{{wk{f;9gS^m_vDr3V78pq7vV
zZa5TJ6$1YKU$BROw5GOvs#e>6J9oiuUu@vFFNgm{f&0ZL)!YBQj%&}csLwvt3+?<!
zD6|l5T`&s-kClDXeYyfgOGGrj`}x@)`CK$d4S+48d|2^21^u09H2U%$;ZEEFTi=zb
z5+`qbaEtO3TTA;%mTf%FLHoiH2(fW?r?N1V|23f^l~%fBq|dze?BdVDWoy%uT0r>)
zL_I*sown09eL0(IY$wF^(ABfX1Ut8EK>6)kAHfXOu^)FZ`-az{<2lO*4)AY4vkLx3
zixkt@*}Uo(EY9k@Ea%&+guT@XBy4U&itpjFxo>;HlOZv%W}z)S2VFj-x^gpboxwEK
zcrF=M0KPy_NZQ984YuW#%dqtbiJ-@YtElQ?QYtu8yf=_SA(i~+FDdPSfZ~=PR{vP<
zK|C+FeSwhhZof(ldmMi{r-0FXixhS7uq2ubQ+>->-vvrul<D8_Iu9??sN*2|H4OiR
zV-yQ9c6r$r^|FSRO6-H%{&VrZHz{Pjo=$9=Do*y53xZ<ZCj)se%+4WvEQJs+lS;=j
zs;;^H<}sJg-_|mk-!(pdVvs8hx-hnZ8@ZHv-Z^YOL!4I)TODhu3LNE^KgH(#zB4<R
zFVck`$L`r|W6qplJN(9{q}3T|0}T;|__#5FpM+(sor|`X<7q;kw62_G=|48ObeRy-
z(@TmV^|{%dOnF{OJI4*rL!2-~?F+@i_i~En5A1?5h4}pL?Bj-lnv}2u-+DQa?aapj
zO<tM~PGi_@Tj3_H+o5X9&ft-l@DwP)NspZqW|s6#l=|yg57Hv<*2+*$U>qH?C+S<v
z<!@{G7DtiJ%{1-!#7mZr3%6n$L4iWw!Qz9hbn3KL`*rW6ahV?WSGlGF8hTz|UmJ*p
z9HD@#LzQ$u*pm^9%+-Wn-P{+Zz<P9l2lrzZ$)M2dw^Jubhg{+sJ*9P*62T3K=SxAe
zD=?^YMs^v6owQLU4f1<<Y3jDewek6Q>UK|HqG#O(_G;rrt<@^ILXXe$J`s9;QyK(R
z{|vHC428CKb@k+*Lj|Ue{kcpA{uofXOU|P5+;d3IWd6ABv1WXJ{BeENNhmftJBdcK
z<v~KX#vs-@7S(a>GhvC}bs-3bP`T7$u?Ah<+4=do;wI9DHx9B~L_6xT9+&^^09@&#
zj?P4?B9V-g<WrlrDP%~VU1WP!YPx>$hkG5*b_~wVzUq<Zl95xBvdw>M{yFqt`Kmgs
zZRGp0sG_G+vOO%2%C2ryHQ~pzlhhzYiJFUhu5Izje#R;i<Ml9Rb&+X5AwZgykbL_J
zsX2&y1hpax;>eW}(Dn<vJ%)pul=c$#=J|}}zlJn82)d#U=?1_yt+5fS2oU1!D-!0*
z<|U}`va|cjM+6-xpk-U}hg*&fdtj4uB_Wwjlt&Y1C)AuMd3iG5Bp&=LFx2jmPFG3I
z8?6Tiil&vv#AymPn4lNAIw!hNP$t&A)ph!dd~G78Cd2YYkS#XuX<UhD?N|GlVFxNN
zL~~r|Bse{jbD{Yruc&6n1u5;!b%O@3fVc>0l2_SdEbJK=rP-~vZS47LEmjOHvMBo)
zwf|*8mYqA(cI@U^UQ+j1EXS1^!NS0DDxpY-Q^84exy=I}v2d?8HJhHPD=_OFII4!d
zhyC@P?AqJE0L_?NRv4Wu&A*;o`T-;=s@Amo+#q|7Zh(QD+4=2v%Ijge=UQ*8^p3@`
zZNZtxEX7of7{&!a8ty~+536!=yWwosGKhg7$v89c%VHN;;o;Y<iXL=coJtoINPaO9
z3LiQr{m1R#Oh>1Y4dcIO5T&VL?ck6!3C^$M2`$j(qj>_zEf-AN`WBiNV{Ofs-zV)}
zNo(RSNVzodGBg^Sjn!m47cBp0<5BILb%-FKj+!s6L@(3T)H-kGAN%cH8Lia&j*0F~
z>kTP8AKax|O>H*fph!A&o5)B|-;`<dUC=Nq5+Y-aGQ{<)b8A{{v9hgk6TPk<5&BQP
zluB1vg0*U8Kxkh$;<}U)DY44>OOgTd;TJQ)79KH9<AAopk^W8N4?MKA+<JE&w^>%T
zhmm(N#s%qhILT7Ap$S<P`G!%?$eY%3mgu^qhtIh#YrAVbc`r#Dy1_n=oxs|SMxH57
z>5qY~6Ixvn=*T9i3J-Ie_`0mO)6>J1WH$TnKgbh(RS0C4_g@LBV6^DO*8v)w#-@-a
zhI&?S0M0&8IAR4XeKoF8Trpz#S9~YpB%zz|$#N~Gq#{TNaKTAzPcf=06+-?t5aTVr
z@lmf8d)UAwRSblx5b_!Q4{Psq^qYe%8|;DBg9G}PKUm}I9bBE^?xM^Ry53-cGEQy+
z)$c~j-^{!bex2u#6SBCgYKpPnt$7^DrI^djnUnA(qLpxQMoCal_j^DBo7na#zS}X>
za5p%Te<RtrhXq|?^J3vQTb-SEy}!7`2p}x91BE6`(E0qAX&fABL?%e!*u0XV5G_BA
z>Fk;6)?TqQ9*eX^J;gRW4t&}L^N@e>*x&N&zeH6R%HKdc!BF)rAJPrp@-IQ~+Po5A
zy!(Z7Hiiy1o#rk<=|?gmAtsInQ@$s4yf;b5<7p*WY7CirdZn~teuR8cuHXtJ3hwcn
zwS0gWC{O(TsOdZXImKY~+O@Er0uY4yXbC!7p|8TdEZ3idxvPU#*eyKEo0f!;3}@c1
z2gAA#@U?F1t&=P7=geT<yiDw|_deE=3^3+TV=3AUKSJ;%g+FF@)!E%TV6v9`T4H{P
zU{D%WdY+SaXg0jw-9-BhKbs&%YhL79m3v^DSo2j{r+?u8mA~&A9lw%Q=^WHpiupd1
zf#qYX0+c_0c|bQdM+DmJp<Md|C4T`~O<T*Wucl0iQ`ImJL~d!u2`<{&vjd6bTfGi_
zGZ%Z(qWfoYU#Flh{TEUY#R|7Ee5SCh^Zd`_xl^=(_PQqsS|T30W@ShUD)nLh-bai~
z$9TwN5jtMuemt@8j+$AH!aURy1Ix#ZWym-y^~&=4_0pN2iGZQd=%rP_G59t}Wwlt-
zX?KlfgP(;V2G}{E&U`4hydaRCC>uoU63@^1I85RG{9X1pe$)E=^6~PL3~$a8U%`_c
z6jUp4J}^f)!-<o{tAe(a+UZva6`7B8yxl5r(**fwnyQV14Ff2}*uWBOi0b@|ke>A0
z)b!iD&DMepu(xJ``gqTRB5W%C)?IU>Q_sLWq5&lO$JNR$icapG8|hv|as2dP>rNsU
zi{FZ6JiZClK}bDv$j9`FZYo+lYZ&RQK#|)y{ltTme?1HuM;<*b%OgYP0&u+Php3YO
z);w|gO}C*b@oLNvAv1FzD2pn((^%(XnaQ0^N(0`iO-9dc8D0B#Kzm5Mv3d5iLxWWE
zG9ZFjIxEgg#jNnZ;&fe(AtNBGxbN$xomu!5&G>UcHgjYY%FluBDtn>(VA`GPI1UTQ
zV|4soH*cU`CxS`eR48%k+jPINvv=5ScKGiWr`vE1)IbJo{pPc5+WW1+QC$<E<{)pH
zKe@bN@vn0`q)U4837+c<;deu5gIJtM8V@JB0it<@9tD;w)Yd#2kc&#Cw!w`g(vc;=
zvqx32ulwrSKAd+3^QG=v#~EdWMYoLJ$3o9HH$~OQ_T<w`1-_?^jRp28jU}^0Mj>oN
zW@g7GIK)5KvjdBv4SQ90$iTW+sg2-s%F&*rfNA}aLLVPCqFjmbtE1~hqRok!tSmD9
z<zR1L1z}Xv-8de-q)J~_Uw>ko;igF%x>zUpNrB#M0lN4-2_ha@Co7?^{ju)tffU~C
z+N|iNN`$A>tRhCUOZ6agtB84Po4MoYxkYH*1U{%epGiu3c@;u>knd&5%jHKVy8peY
zg7^XWNwIV2k4~QOJdc&C>o<RQH`wk_j5k$o+IRX@tiqGEHzEY81HGM8Z_xXjUNIiu
zJUITNc_Wt3uY+!?k?8?xl9VE4%=OCi*-v{;hT@+-VPIKNw^(qm{tCw%Q?oll`N=FH
zW**ql`GI?`=p1rO9RP6YM(I%qM{1Lun!yW!Udpcn<Nla<{~um0jJ^94|A=`9$Bn3g
zlhF#DiGJddj@<vkjKE7z?Z&_SNzm!@cwJvH=6#h-@cA*I=5)Z(_AHjjbn{wfb=(bK
zV-)Hk>&I%A0d<vwsRn)Zex)_}y7gn>g%u)i09ByajS&2JaW##Td=QNn{75%?R+i9<
zUNx8OZL^B@0KNXUnsmK2lk+V@P#Je@&(ef$0WsqldNO^gcN;$EFOW-u(p${$R88dc
z=^SIBd)0c))HX#lZ)xkufi62lfG(SKa*1=3E-J?pVD3*Km~>L|%J#y5$Vwi*faE?+
zbapKYmw4|Y>ZiG{BA7Qs&9Qp$l#M%k{twSi8)kz$oEy5Jdz>5pvs)?@AtRYEPOi@{
z(C0QN!z=&b<!r<@11j~*TG9F!-x!&MCY>g#uJZf1fV1OunyhSK!LE4|<qnz1(6eS;
zw%VZr@Z3L{Un1LrH5-UH;o><}arLR@>vK7MX}D7s)Az<jyenYN^4BfuO~Yog2LjCs
zrkP)E&Y!P;(%J;92dn3trfofRuKIuXEQ|q5)GUvvEwjDhb8#I*`H1-u`8W?ACj?)C
z$=@=;SiKnE{{+{RBpQOS@bxsKuH`)kMGCE)w?PyZn`rf!jQkfThy^jPdrHl`3r`ib
z((FDsW3SW9T$zK&(hhUVNYa3Ep&_1K?>9&~)3*m75fY1k%!LlG+zxar8dR%hFbrt)
z>Lm{2_G8bVkl?(+#${VAAHFBt<Zb!qZ(hN%Asc}YJD}8lb%Vp}I`xH`-X0Sj>wD?~
z9Ubf*J--~%Z$Cv5J(^jz1`j=H_XDaHk4Hp}7R+M^L*VrE;eR#^<?4YU7v3`P?NK8Y
z-RY5pu*=HoB5e1dI$@AsHG;x1t)c=)#k{et2wr2xJ;QCv>|=X0u{U&rTaCLJ^oA-V
z|M|OHVB+)o#opdNZ&JNdXl-F3Lg<KzKl$*8HDNKnN`o`i=nLog>LOY@cqoD6)=R3v
z6C`8~LFV)2G&9F47v|>*U6pF`!mJtpEyT+>){h-~zkHsZLhWX9KYViQ>F*616zR3i
zI<l2iLt-w`MYqGoeXzv$=ncNbJl@T_8yb2O``>{0=uS8oJ@vL427BIS_roHGp(MC?
zKPTmc#r(Cwn4mjqqTdoTFC&csxQv4v0q9D~|IXeeCYml?$E~h%Y{O@!Q;Jb132Mj_
z(X2ima;!BxnX#IMq;CXxU!A?|j}<ygAeBF;L(?kEz#-mOH|bALA!;BPwg_Mgq2&&R
z?77fxAmHBa0TS&`73;~DVhXRGba1eg^I_l1x)1G!GNeb*IppPNf9_)B`cMxHP<wSn
z+;n$J7F>qZ_K5j;UR}Pd6I{=2K81wN>|TKZa&3=?4qO!71Q%m;&JtZOBLV7_;E0Nl
zHpBy6ItCc9sxHa!c={?1=y`d3B@Tp7Ed=E=sZb63!uM$rZV1KO{k%E|;sUZ4z*8o{
zbggt7<8mn;6l=E8gP2+-HuQ8yR5!mFpwCl&UAVA?nitO^Aan(r7;ZA4YykXlEd9yn
zQX&QDe|vvfXpWR4>g4Jv`du2-5kdxeoyn%Syo^|f((MZLPw>2qv|32`Kk+DD_NMi`
z+R%Bw?7ReJPreEg!>3<jl4&<$de)b>0~AWH#G;8Kq9#<_q|J$Y(8uD{P6U7}FP-Xi
z8^QSie>l0W*A<Jpi6EiN@}5gUU);-k*h2RRv>^B;CLo!3<-o;U9i%1>dO>@A6l(W)
z8VdqYJ@yXwTg3iw3JRZvP608X2!)tiwD$_2bU;@S;_M~B%<2~aDX$`#wr}DCxkS)C
zMheXi2Nd*5EU=p@E=8^+DOU<CE%t@(SWa^7oC51A|C}Jpl3I>?v>EkA1%sp|(*gOM
zNfK9a8|uz1A;zZ0HUAmxl0rgVHdSaRLyt7?mWF5O4#}4!p%fa~u@y&S=>tQ?wHrpk
z1@v4(X2`iPV&f@Acc|KJ4<CJ?^vm+wgQ-yF7}I0(X~o-z%|Sic1(g$G-_p9wio2O*
z(^V(q#^sFQ)2gmMQ>cIstD@<27AvA>U~y_<VIVJ**2mlX^)4bcj;io$@W?`mFpfsZ
z8Vr2R(Qy1s_PKzT){J)Qx6rxA#`)0A^C3sgM#ob5JF9lLM_Y|ms6|js#d)(Tz}x+4
zE~v<Ca8o>w#%x-TZlf%qqcOrJ5=WDs7eh6zX>?BgYax;~hGa4eWB4q4I{-D-*o2mL
zTCbWcYlO*_ZYGX;8caJq!=;TM^LK`ufcx5?&<z;Vv)lvF7@#ia^Ae%k!p&Zw!llRs
z&X<}ZMb2dr*j7}E>C+ldhNexaXJv7leb0GFDEpwor7?~guexZ(>t-we&;pPQyE|;j
zahi<#yq%}@%Y*T^Yz6W7#(1PFdSlid596XvZ@wvKa`OJc5Zk!PpeE9<?vU}W(H&d^
zQtaZi|3%eT2SxdPanndHN+~U=f^;wJf+C@mfgs%>ol7pIpdyWcv{EYFu*A|Ku#|M?
z(o3_;?y@hx?>p}w@64Hd&Uy0AJkQ)a_uS9<oRO2e8Z|NBr{4FuC&iPA7k1w)uI-<?
zM$!DO7u%L@Qu@{!;b8iM!`@5Q<a4>x6c-V>`tgI)28YUT!n%K87ofMKaJ37^Z$2k3
zsKXAHqruk3p4PG#mI6PrsJ+P{s8z`m*Fm)DN_6PLFj?IKk_OH1x_c}Ufx(eS^m3MR
zsIOGUY$`XSFqy4Wh~}8&WXu=|{k?M|F@~}|%1#EXKa>OFdkgj2ZDw;I%lSQ*7&M&^
zDF+091cQqi&9kl>ajF3S0E%&CLp_1I%~=TpR>ju9$RAMu8ivETRHkeS+EuFaE3|DB
zO#j*H&im^s{=ofqJ;-xSf+&lFioCfdS3mhH;SF)S1aYg4H)#togHgQwBxzs1ZaggS
zkgp8_a32twJ~mrpH`^eAwM`>0TC8Xzi2^vHA&)M9#f}8YkjkPh<3@wXL?k62HDVgq
zW0HF$q+lgAJqpe;=>ffs12T?xdPok3)kcj=#K5^-&wALWa_HhusN1hfZpHy3Zt3j$
zKfeB}WTSUDo+CjaN>mF?F0xs~fXMxMfj}O!Pv^)ig%gX|xk_~nZXS!XHGc)ZQ%Po|
zmS{O*>!%geH}03q!%81nAdXm^ZIf-&ymC@IKK>4yt7pd9wzwGkEt<28ACu(f==5)@
z+ypl1!|8eHh?gNA%}-x^8ZG@qlVQO?{G?QSKH8dPt-FCJw!QdvC;XnDatm<~31yfh
z*S%v0A1aS5(K{J=XEC$8tDqaW4r@-_N*<AIaklCl*7tRBeD`*6T)}&FUCItf0@2+M
z8?hgSgc@XdJ~?B(oGi-sU+_5?ukFxzWVnRA4`IaedH4#5mY=~mtte9HPDi2=)eMJh
zS`JG|j^D5!{`F6;n*8&c_#TzO=#X6T&2Tz=h*;XK3D|CA`|>=e|MxnudeE5BnDp)@
zr`O7Mg;dK=@_ZpT^tb7g=Ru~<r`GRdCi4bT>Zda;h#q~hR1fD?p{Zw(&3{2$__Kp}
z&h(acc%v8~F^98`o?ki@5p#I;eA&9@2U~7fYOZ;nY+<ftoOp4{6Fx^&$FE-;Gp`vf
zT&!pbycE%K*>F#u{A6BIJ)i5;zI70?MC+GY>x$BT4XgKs2AQl(%abn2jy7X+$<-CB
z^j0g9+m4uuu#Anb^s8ZSvt@){pXHOi>S=$$`|!u>j)Jm(PbvroeF~&ZFnL^XbU>;&
z*ZY5%vCs<T<i1bK!1nmiF9Y<xhcZN*J+Ki{sThdZ*{$eOi_ZiPmR)+yPVqsh$-FX_
z2Y29IMm49Wv&@lJzyZDu@!8Y~i{Bg%q#h6-ET~v)#yUU;Yh03Cbm=LJ#?4ywd=Fib
zJ6)I?)N+FM+;;NhV5^Ds2h}JW0a{W`QIBH%H|>A?4O#iGpIxl(XNj*<d9aGu5OFGY
zj^cZ0aP(IvH^Iojc#12`RE5@E?4-A`sT$<A86i<Hdt@XPDZcEzD^TR0_Yy7Y<n&!u
zaG(NmYQ(iDxe0-Xdr>&v(SWyf8E`YTwJ9~7YAf}-pXZWFm&=ejVp$+WW!8FI(IrdS
z&t5$G32xD-H0w@?IsDRsH*83ev*56(!f7tDG%kNC1+M2&2T=@3AIP23@Ha`o3Z5~t
z(XU~L{kWKzubGE7ZbQ#HB3j&&mXzKVeS3X~qIOsG_|BgBr0YC)3GC%#2Q>=X4blr`
zY!}QW@Xc_fc$tJLr(3kB4v=Ds!`|BsNOyDJ`nB~FvK^V#&U*;D!&58!K$Y)Q*e7a4
z;?N2FSxtna55j>sZ%y*O!(_12@87fI)b=iin_D2aKZq&Tt`!-Cs-qPi+Bn%rdG5kU
zYv(Stf(jFC5eWY3&N1{>{4n18E!pkmsr8?hmN`SKNvanlW&DrW#w`1*Ry{_~gE97j
zl31FrB-u!$_5l~FbA5xO>fF<-k@C&nF$B3B3PFd=WME5$TktF4Q}RJSO9~%3f`5K-
z<=rQ$9(ZtdrW@R;l;9zRud!LY?cER|q95?&gVtU2`ufGjOiUhoRt@aCQj^kC(wAPB
z61px^%0W!88uH)1G(LWJi<MHNL*|!ddfJO>!TawEZy$nkptDQmerc>4!pu8n$G~*4
zXSBC<6EPR^?dMfarY*Um%lQ%*_xR8XZq<s>g?g!(ww~HFY5D`n`@hm&CG36Vzc&Y~
zBl1iuE~RWVb)6;S0$|MZdS9FwY`J!L)g@O}rc5!L_tkaer@dJ%f`^h$pk>f~GLK&X
z8YPTM);&mHbiZqPm-jY2-8L-qkl)Zb@;sg@(l%X7HRCaR8%WooS;KHLGL&#ly(eJd
zvM&THH8LnnFSdKe$a4~)0k>+VPId|U@MvP4E9Uk;0l1*TUh#(@InZN&4}6i!objDz
zKv%KA-?31A-N#>_Q?Ha$fm}Fm2TeJAcw_r?r#ld5yjKgPlBg+2OZj6Wf3$B&-i`U0
zdsHG-JUNT=IJTAm?^b$SDVI^0r@=&TDSI{ZHvO6zE}(9Dbx_9^I6ct}C+?amCsn?h
znd{^i;^+i=xjHk*$GPTvcCt2KaN_&>lFSZl1U|2dV9>hu$X{V=gAjjD1t9&pgxp0H
zzZ(r{X*OJj=ok<@sjEK=E$^niRNGmncBk#6`E59gx%(}yQcA=*$DG71w1b~b&gy!N
ze0IVoWTQ$mnG~T}h>xQu5<_8<?umJcs%vPZQ@nq{I(XVc4j9f!`{Sl)oW-|3sR*1n
z;1RO=7ce#n`wV-RvDHNOih+-!#$N^uS}#+Cezx#`HhsWw{-zbE$*~Zlp!la;bjv}w
zx}dhDe~n3|_?6_D$3W*@&#oD)y;p9xsO)ey!a{_849@IpcfwT>Gu6D}nrpSFa`BKi
zxszt0V5i6HIlNtNl<!kk8><{rPAFXUO}P#ZBi28`t(Su2RLK^EXoAQKTwk6)ifo?^
zhWZ3VG2xG*8OoJ`N?G}74=uPQi-~BfHUSMtAFZoa!%>ASOm3?C))6iGcU+eUVx;h)
zTUd0cM}TelyWu8#g*#kcNBjl~VtfATeuYbIqlRF0fbeWwOuR{l-Q;0sMW=r(qVmgG
z=y1piD@6*f(?97Z^RK3qm$C7(gm<sbBMY*wG3OYzoO1si;Qm#eLQ-ASrGwTX+z5c*
zQ8(ZJ$rmJ~X3I;#wEA|=>YsCxAD4K+M%F=%6pdQvGEbB$vF&(3NHVjvM1sQy`BPg^
zS2JPl1Z@u?NB#Y6l+{0n;1IEztfUnF_Xr*!Bh)p~4yx0iw)qEB6y0qFWY5pkSeO`2
z#{2M1At!N1(ahs%bZy0(0SVgpHpbJ56O|AaN6sw`aqt1i)e3qM#BapB3OjYtg6(^_
zDCzK=S**=-M^}O0I>UQi67<NvU$F=|^clK3>O&ei!>wKTvzh1f=I-g8A0;{%wW$<R
zRzG!Aeq&^GXD3(!n09YOce;0_o10_aE4as8xxiJWf~)8kP}T4eLJ67HUOxPmRdEeA
z^sVKG+pBYL@+@NdA7Rgh6+>=NQ3H*R%=>PCzYLrI%z2J3pCp=?v}-g!lKejL1RT$g
zVUvSERUZ*qS@{=q4SE+0q;J{=knm$Z3651A-nxtw6BYeL$CHhqCXFB}T-g#88)@bz
z81ik}@I9Tz6A{9nJpJbH?W29?k?Qz}*a=~ojc|OoT$y(Zz(i)<7rGI!c~Xat=e;~s
zyk5V-Z^scD|DT|XzYrSf(MEgcCKSOuf5J*C;VhW3fQ6_492bAAp`1m?EEUdQzS&<E
z+?^2Lp_#~;x^l=RhPX(JcPJKn#`HvEv4;8iFV(<|Dmmek#6EdOgy~#>x15JlF76YV
zwGIj1wjQ$`#u#9!uK?Y>9B_$m!#tCGN_m-(#gH5Fox^cGe2T<hGBkkIb!XQ#T(I3>
zd6W8D8>A(=I?-NKfk-W8n=Ln9ZlnKJAIVW^(4!e+Hf&K{U&hy8<*IKCL$ue79*l`#
zq?<z4t&<A)-Pc0xOPSjVt*U{P8j^gj5|6%zzq4Bm`&DRnMrFw|^*|^seezQXtt0L3
z(z`oB@w@WY=q*FT=o*{nj>NT04}=-K{pxuwW(`$0Zx4}Gt17Z&9BM_+Wzx{MPlRhB
zB6Q6KubU0Ll)xcW3A3|}%$m=|OAv@1KhAc)#U{^(^S+-63JJ1Id=;=KcPgc7CQ9<)
zlsOuUEC1XjHRozIH(b?vgvTY2Rx5PQO{tTTO(Rc0!V&(q$FhR-Pf1l-h=#<uf&luq
zqo%GpynS_7p5}WxEH5s>^yTU=l)uD$bIay%8#O-a3G%5l`&?=CdxErH8JNTQSeM9y
zz`f$SvJ__sHcbTg$%$AEjz`uUMa30R9?03PqZ%^4Zrlz!=j*<i*DD!!cTVirB*=I7
z1wNslNjzQ!O#dU-A5ps<^>6Z)p=@4^UQ*0kjt?bs$sp|A^<-Pp&%sF?>0%2|`XC$*
z@d<>r&jl_}GO+Z(YMT_diU%2eo@f>gln1+@)X`-+L&NwsP4W9NTb_w;1hUX1xqpMO
z;_1OReL1@q+ph2!W^`$tq-%fwg)ELBuoXW#Jr^#`Jtkn^v$H`7ckzC;O6%6pT81L~
z7d-H(Np3+ExL}vwU%Vb=-wh?4&7K4Yz)WwMy1)LGO(Mn3Ah+gHn^4957q>0YEbrd)
zfU)Nro>h>d*Sr)qg*2>LXZ4tnkf&N!CCDc<>Y5C7y-vy;lr_S!EalD@dwe^4w4AeG
zMXRGX3vcN`1rsjT{Z-xX-gEApDhs;iCFUaY$m>b&eqVG?9rdbV8EUI?Ph`$+d3U@i
zm1J4SP|TjPWDya3Nwl^YZ0r<hF);Y=(Ko?QKG2rB{04`)cWNi^#_xUk*$B%EqRI=Z
z)QE>f-G|~I6Z;43^@Y<24>$foFs-x|I`7~^KR9^Y25%Zf*}+!-VZfcK?d%gj<T}*_
zfM8Mz4f!`ZX<>(k;gfT_77XQ6)ZLFhOaN`O)$7A0Ejg>ovm$S^Y?uZ@zg%s;rfM*0
zF(vw}k>mLBbE-q%&2HYEU*Q#P**=Zgv0R`1FW1@|z1w9jGD4{zt)aL^=moJgk*I+l
z*FtW<d%%?F#J@1G(St=7i9SwFr;BU?s4-&vYx?PZ!IcYsg~~b92VkjwQ$BXFdQyB+
z=is68-eUjM5S7KgPY+e;w>Vg~q;_HQk+A;Ze0j(txEKA;QBJ(>YS+%?5urhmuH1Fy
z!->@cCy!OS>CmoY_Qio=#hOgtBDuXG_o?re$jL}V31zk+K(T_WwnEV7)M0UR*fK}1
zGty+yzF}#<an^U)Z*)J<z4>rH+ddGRhdqdlb?5e>MA}a~A8H?jQRoFlHlJ@TRn@oq
zh$p`>%v#;Ilug{Lnns~NSkfOC*#l{$8OCT%Hq|1uqV7yo8odY{f9tM)_T+<e2)5((
z74jkBoauTu`+)P%FS>bg)eRyGQx22idP;L0L`497gXjKT1{`W)Ii1qrx#P>UhiCzQ
z%0@AgdbGht(yyHf#P8R86O_(nP89~rA+WJOjydKyWyq>Ei%(U6gyKor(Z1x@zLA_L
zs669iiS+)TJ56T>)s^S$dJVzr9jWe0oakOsJOvIJ=duR+LH>x6H^^VZZzqqk6k-dI
zGk)zh3CVSH`exR`*X-{Q!iwr2LizX|#|>TSI<P*4*O}3V#G1Llk9`K^xLh#36XEVY
zklSu|_r+8lnh|ERCt_3r`ovpi0fZNw`q_VM{)HMMbS=;ogx&GjR8KVy2~~a>r(-)x
zpze+@IvUkui_DKts>=<tg#9vE@>q5k{(cKQ5yDF*4@H;%Yv|3@1I=O{;HsL1fe(Z^
zO=&{nS^kX^NA+-_+cg3n&kIhKtJ|ZU(vprcJi?AXwzldE=HnB8m=L3_y%ct|M{xbU
zE%hP3Wi4HdrUgq%cSRHS+3}Pr45D`UfwH6W2}rh|?;Z+vbodOLGkw|Oce;lPfL7$*
zQh3)2g3p9dya=er+McM@s1rnJBAiE?C_M`OU=1ti$1m#q$+^@j+6&LFD+pi02(_Vq
zo!sFK9M8Fp>Lc4!0=O%I9(YU6@@3}IW%4AQl@N`vMa8$810bTWoHH?DOPZSO03*(Y
zD;3X@&VP{y=?3jCoJCwMVB>6xM#a0HjuSFGY)`(KB-+uOOK2+`R1QrL8Bnehhu+nx
zZ$FP2{XxqTSzh+*5C!Ndd%6}WqiNdbW+tw!c-~L4kb!i`Ye19(^c|z%Ivn+MF|Dla
zR4qOBybpxlMgM`2{vpypkKfWhZ+P-j`QFYKy8_|V#Bw8b81<dOZ_h<UHAM_NJ1l$!
zSc>nwfXf`z?KbN*)VgV!81lNBeXbQCtlj*Z1-!0>|5qNl{>FI=oQzDuaEx2Ci8`J8
ziq!+(`gshU|EEL@qi{8{=16uxeen8DyBycH+!XnpjUAJ<j?8M&_yT8KC~sz+XnsMI
zNVP0(;&B&vM)E)94>O?E3fgBa#l9F9dGK3%TA{Kay2uuAo^7T5t^D@Tfj09?J=PyN
zW{+RZQH#xM{;tt-x}x{en3Hte;otFeR34L4ywrKLEjYkZ<iqqxyIG{aKC$5o`<?|`
z$Gq<mU-EiYggU{Db%`_F1c;J&2ZcNmkyPjIkFS8e@h9z^w)<LgmsxlEcV(ta@~)y#
z9kaSfo-EZ_P~<VN|DIFYD3nKYQE}>)u17(Z#GTRJb^}R%$AS=58^$2xh+e-IC!1j>
zrk8&D!~fJ{|AnadGY?fHEaN|iP1i;WHuQ6hIakuf94mro)l;gLXpnfbbr|Jd<4yF=
z)S-Pn=)PhiAFsooutpubq*A_`#Bp`*e^Z5YjE&IyN_9MEiF8l-RJKTYe-mr1)4yPY
z7>ze}CG}?WI4#`PiWDk(j~8AQsR)E<OkSCoL>d#GHx8dqwWZ&;?smP+w}C1?k)!G}
zwEow0CqE7s6j0}6|8Bj{z1XBwWGBObFR`NB#QarP=l}OHF43OMqUGIlo|DX?YT8W`
zx4$2L`s7v2C;1Vo$L*8r33pu^zdF)upe0xi{-^Rd&0pW@dL?(jvGW$#$6O`m#!i~r
z7Wt%nBp*WCG-3PIPgMU`Tr5OqvAGBwb62Lbn$|Sc%~3i@rPP6ax4OT(VdiOIspAW*
z>rh%;Rc(6F*P}uc>f2}85Gh;J?nLBUy4*k7=t+y00~$O_a#jVIg0ze<jYpWNyCw8U
z4og1X2shIA;ZE}(j-mPsq-%64Y<UQ7`d30X$+3S=V~LxO^)GTV)_oSEs+gUrof`)J
zw#xm@x)|;-GZXC^^xG<T2#!@r$-~}?Or!AiieYYe_uN_>PUjr^S~|Wf4Bj1h+=f0d
zRCjsa%3YdYPidl`NgRRtIK6cHsJ_EE?H1VI!jjR5ozfi6@Uxd>49HV#G2)`C;vo=>
z{dRP4;w}#8hYvNp0ODJnxK!FaW8If4=?k3a{H;pmL@0h+-7{jp-br2McDeVTQd+cT
zYP^%*KAG{-GSXdd`mX)hocqy<Q<l4)+zj3iO=%Jp3bR8mSsUjlA4o{ge<hLa1I_V{
zHt)|HG0pQ@N@C|H^;iaT+DL0^bVh0is+#G2IkkQ)yghVd@|!JMsB>kUZ!7q9|4Ur`
z9GUt`aT!~J=fXcq395oU!Em1me#_JSb!j`N5w5n6_hX6sWb>BP&o){DQ&3&)Ui(YF
znlqFnGi5fh($rs9ihE<CQNxYJA-y3nIxBzn&Z`hGh$qtVUz0t{c2>e4^T+hNoD8-!
zSGU7<8w*@yz&=QMHmSIY`M9o+s-FiVaZxjea@7<CdsAUL($mr1zWO+FN71O+A_`d(
zo7MHx8ET(BkrpaDI74OcT*?x$4xSCY<D=EVVNB=VIV-DY@1D%O1x=9uy}r3KxIrGJ
z=GATht|txbocu_zR#hc_{Cy!!D^SXHK;VK_3eKz|EJ8HGbma}#6JQgpb!%CvZ&~T2
z`8q0>Zu`B<$N!FnUvF02_wHVr`5WApw@Q`mt(L`y0lxdjxp%@op+qOvB^?w6-XFkM
z>ft=Ey{<azLpro*M^*<B2@?|DGyYcI^v;%K%gcpkxTK{kcuQgK1UFd=$@C0WbTR#C
z+(P?E2Frfyop9G-!g(Kt+&%}VFSBxhvv4|m)sRCN#GWY<rf>4IvI%=P#!W`-9?pXB
z1_LkOgA?!tq}cUVJRS=`mD!Ox=UO}LW8E*|2qi?L4!xhM(%-aJhmw*>2Q)5>ou5Fo
z7E-DoGxSSbu9;Id<un{zeEG?1#eHa2IW!!Og8tOIG+y@K9H`w9ENmr6(|Vke(c61^
zCM~poVESGVL2OUgG*Xrfy;N8?Ne7jJchb_wFKyd`J*Au97lX83d0&7*7Q=w%(`cbI
z^rtP0`cvdW4Loe8<r>qBnf*&}j%x*+#cEzJj~7oW5&&@XQv$qaM1~MLOt3g5OydY(
zu^apBbi{q&4BXO6*k4+d$pI_Xo)E5~zMi#47q3Yw><DxgfoR+qKD%xq5KUWGc4aBn
zyyImk-6m4~vuV<+LBzL3sdYbiTL?WSX1P~VQ}fO!qF_6yISq%@t;QN!E#-pKV82Fk
zM-Wxg0zQo&m5GoQx_;nZh@b{#-vAt@byBg@mn*~_dc3x7Yq&HY3CHO92k9-RsN?pK
zt+5KZB8azekGDsEhxyX!wFmIk4_~IX**Xjc`$2ky4+(-34Fkx5`PR4f+xCWw0h-^&
zEXp0A!TnC_@)&mCfGX@UyiI$XKsfc8cjwmg14Uf+UrDc8WL>Ypk?O^<y6k52+jV2k
z`F-kBotHxRh@x8TWC%~ToVknb=fmOakJ{WYypCaI(_ZLh=2G@a%|Y17Q2J3Hqhs$_
z?%3!^eLTCuphIFL$7Ny}79WGWW{@AApy3f~o*&Vtr_c{`0pZozY2i(oOauJUMcKjI
zYGOs%x*(tDPlZ?&%fte_-LO{HSZi698u9oR*OcgJ0MHpYZJWfh@}$CVG7I&R8+J5W
z2MF=+zX1C0!kUXv&4;2*7e7!g*)6DMU;zqyNZfeiX8ql|x&$v!G#+*#$i|21wpBkg
z5w`(=2Uw^LX<)mIA88IJ$a$KuA3VP{?|inO#d`V`j@i#bUVMdL>}P?`UG~(uMdR0V
z1Ak%T17ZMJ?m|wb0?tvuM9~M014RI3TRdUbZ|<z_^kvQJFj&bV^R_!2<d@yo7NR6x
z(*PLBi49kk`?o^LcF_>NFZ#6$zT7T{nbw2wTX4%MI{D1AwMt(>*W0dCeBDT(gYTBT
zrW&%2AG5Y?0+&yw8d}aDy9W<OyYJL3E<ANOShcr7nz;D`7B7^2rnp|&NY;LK^JiSV
z(D9iPbd#lrmNa~ZVg&=88Rgh-Ztu$6ZgBtEAnRG<d1TV6d^UeMY7*2qD~~QK6Zt#;
z@=Q1i2(^<w-s6q3U}eU^(g=oahwwvkf^WrHMbPKaMdxOnUm;izf;-fp;YkUq9Ft}`
zSvCsuJ-clBV-oJWw@qs3E1bjTYp^(naB2Qya{RBcWOu6Ge%@g5%P(~^gNAyU`SL#v
z^}QOEMrVKA;tos4mXH6Z%f=ckCfoGU4ZME@<!?Uryv~8eIpqEyyz;#68*HO>`Xd6h
zS{+;}QzOG~BxqhoCNVGM^>l~R&2{d>;wt~0l*#<?Fn00Z^;8SZ%LCNVMJ7zw@@w|J
zXK%35GUc!C!U{(gqRjJ~Cr3<ay0Vo6x3+Of2yd|wJItS~?X~v0j)ithw|PtU2kx%o
zVDWSdc9&%C0KW?wi2Lbp!b;Gek=%f1?A-4ofqcz?=K1Wz1~>eB>{5d&-JzlUr*Dxv
zuFA3T^*KEn?4vp%I~=e+hTcW_n42Tr8th?+_?^43Vg`yO`7iPHTsKElxG9$YVDQ5p
z8V)v7R)Pl$qqcPQKn+QXdLVl>d4P|u*G(r#0{Hiu8|GjkC_wvOUZ9O5FqSjc?LBb6
zw~ft&eSXpJUo4&Mh5x=R;V~pY7`pWQqJIBGc8Ftf(~9IlzFXH{3Tv*V&9>Vc{BC6T
zV(bI#Cu~XePP&T*C~|C)By{T6f8SQS;zVBTj4psUGv<rCyo0bCtV88AgT30T+ixRl
z4y4@>>Fiylg-_1ACIP2%BeE_qc5j?#!4J6^4}&|{V_?-ka*X|4&_+{ovd|-Ioq3JF
zIbHd+2b<{DGptVP+UzREtL`c<Z><g9ktx5a(>nH%p7r92B6lohWIsyfIZEYKKpIdX
zppZuQNAIeXX!y)KjdWu%rSH8=cYoX_=XZQ!V)xO3<6{fjsm=AMKG1!nV_;D`d89W~
z^8SRQ*LuvxCxXW!xaGRab&<&(UtV13dCMw3zz^1^dwt?15=5G7UMiY{xx8)+hW_PH
zJaK7-lQW~nON)kFUKC%TbcOT)A=^yXOI`(hmGQCm^;T)Fns$t7w;lzww4mc%VL$6r
z_M=#~J(}iPjSQDcS&9$3!enZ@GC)r$O(4;Z26w(BDVCFz4K2%Fm>SfJ94u>y>IhAl
zWFQI~YQtt~yXLfgDt$FR``tg-H*;Uy>4m*^b_(TclFl}AcT!AS8Yf|!rgxSa>zMNU
zS(C8T;WKq0J9R*jcCl}b8Rq8R|5CAbvUxlJDPL$|jn4;>o;`|@Rhn6{35Thfn87E{
zO+w(4mnJocjBVAn<A>8b<}SfstUj;}#)|o}m7D`6*||?#QTFS=Z1ps^;9v8*Q}B&I
zlS(nU)XZw=Ylluzl$<a4rAtn;xQxd(>tHk|#mX^-J_<q~Ob0^ub5k0*KFka2c>LaP
zJ~LYydoY|chz8N;wM^wS<hwhI&W$z5q-BrcQ!ikgAtv4vacyO@g-W>Vi;t(X`|jE4
zg9V;@jS8n=qtn2PE}V3LXPc7N4L)5oj+HW*fyUe8o02(4TShjwK<H2L)Y)(HcKLea
z4TLx%NC|dh<Q8|U5P?`P7&QRzNZx-7aOeNP2zUK~bZmp&#9rksS{8}&Co!uH;(GG+
zGE<+O?6JuCN&cn?0={-FMS(xDHGrn1`Nored7Cb<v#a6g$n|oSS*h`g%AD}|1@&^?
z%pm)K;o#}UiI3+G#_#;0O&<!&wvNE2!V7U^u$5)^<8Z{~e5g=ULa!!FPiO$Qb|lyk
z9F=Q)ju>PFG|mUCs)zO;P3Hn1hfc+RzJFgDr%^l+dS*^&&>e(p-N}n(=3$M<oCvx`
z9^s0YP6@ZNhB6x#k%Xv`<uw}ja@ib<vC~}H9D*8YYe=)ieYWj`$zJc9R*!uoAg`n(
zmU)!M5bUZ%pvonjP4xct;JN#owB(5Rs$UTR*72*T{MxPuzFlV?x;}#LHQ7JfDt0{}
zs2+ej#BZJr!Z_ghX~h>M+jGxJ*<S}@{je$5rMVwk!ydLSqBlZ6=)H<AIVZk;3J!SY
z4Q(#NgQJRld_T7MRrkJYG0(ED9bT}_(uEc2b<4&KSU6sZr6QYS#8%#mLUTJpLHHCY
z+tqdW%73!G4nGv9&$}&tI)1qJy5X{7w(QV*WCTBV3fCvVUCszGNaW&mWkk>AGX7)z
z+D0>+DAp)!n+#5@V3e>etQX?HD?K?s5&`E%u!=E<hlT`5f-N`@amjtBT|KkGAFDn>
z9>Vyw=2hanrQ)6{Dqq`&LS)17nK*HUr5EN<iS?$X=jI(1;9$a{1n$vDo4<nD;!Mc-
z&LBH$&7g9y_JKvq6%!Xct8J~%KaVx=m(sz7_zlR&+=T;q8@#Xd-Ic=wuw#)mVpt)_
zTCv4iLlx}pCGjp>`)#sea$0hi$w}`H=H%z)cn3uLQCDQ{6gRHl;y@Yrlk#Yzue~03
z*Z&hYwmR0w>qjym8<uq$uY90gGPL8lazvn9kbWJ7c054k2Ig}e?MbZ~|9}u~oG$Jo
zGW$-mC#dUXux~fdc3kFwDUn{8_sEx8@3AKV2C*NH2mx1~nT~G0C**Or2+%8XV&vCL
zXLo#}MbN*%v{B_C;tw~F$Tb?o+W9mYDJ?^_Ah^?c+a-=cMj-;M7E;+LPzQRlrN&`H
z+`v0;;~4Q7!(Ng+;#b3duSG-k<y^wjE*v|Z9WTy1SUBpl9_)I50HGm$k#=wE@y1)F
zrdB-*=<ze;h+D~C!z(UBo^8noBP)Cvcjy-hYiZIib_s^|&gLBp9tk_QtNwBCcwt%%
zj~*^4;%TM`&+hKm7>?&kS_U(vVs9_Xq-%PvPdXe}SFO?z;YVy;cIz%5I#sV67oT0y
zL7%sJvYi#%hd=$5VZJb~haZA-jOQs06|>5TGTd!zZ1nV}nVA_Bdz(A95*_p@U(~JN
z#g-PvG$EE`NOGJzUZHU?k$;q8vF$DivPwzU#dYf_1(Ol3Z(sKkyjR_$Lw&C=a1`&a
zotRoAbD__lKHA2&FcR}b978C%m)+0Jj*eN-Xse@R6fNjFyS<NK79PJ$4T1`z(K<)R
z^X+}E#N2QS5R@)Bm@HTX?MZ=i;Z1*ew0>iHqCN9h`&t=sjc{SKr!v~pWVMg3E1vyB
zZY?F)jSjlNhHJci)CKp*m=?P=Lu%q#`LTEfp{odK{1W+CgdB1)-qiJm!^MM%^ZoPW
z@w}nQo-rIQI4M}$bR9X+<MlmjNVg)XrzeZC?M?}nU>`jgNuGe5-JzCGOt!tWh`(@q
z)wmh)JyzucGUubKoO5|Yv<E<3BoUp4W0qb|{ru!2@vbFD1R)q|W1p^D9&3zGL`$yS
z8u=ukgvCF+X7%qZ5VGeCZjiSTWW4SnJmle^lfm)R5j*mmxDLj}t*d`TrNBGiI29?q
z47|9aL3b@0xAgW^9D7ES7yfSLvVH;q@$R$U9V3H~bCKCgE38q{em~k{11ol?)>qd^
z{wkK!?c&##^~EOo7-o#VVl*x(U9qz;7ox7IBIO=X``-WHg6V{K@l%%1^}^JiFMQhh
zzM|G05R->BkFqo4&S;KGNXoSe_Ux0@PQIUW5dSZ|aGz0?$Q0_;wsulM)x~uN>wmK>
z`%^pBFKQp^W^7Da?VgQ|C>C~!1^!LpN*o7imz;^+f7d#l;Q#S}mrXF{mL6tH$3*d2
zy!oYOn)$-cT>iOvCgq>e&x+sSIH;!|je#UjA9**9Rn7a;A<^P>)|tiq{*Mjj?k&$y
zw5{hEONxuvcUC6hE&&f0PkQ4?llK@*t@)u`y|P}Dce(G>y^%N2_GidB)6b*5y6?C(
z%#$vx{^Y{zu{Y0dw)E!UvLf9a_+VrT7YY$&?bDD0j37Wma{IW@drCucC!ws9zSr>O
zHKZb8`Nr78g-&A#*8!&lGbG`fy?}%Ru@xPEGhyzHgmH#6C7uJkkLv)^&c}VW<1K^;
zC!(Zq1<iiS{t13$STSqyDf5a;o|MWnB3o!ywwS#~9Fdx%vF?$pT8q%>J^fGQM}NW~
zfV3m3>i8Rs=k_)CozR;6;|`%~g#|^)gouJk(CloY_M*^>54mj(0|zGjx|bp&%HR5*
zPx6D8sY!?F!z0S#rJyP0%DAJuntk4E9%<K^!ICxyqx(hjh*dG&(4E~G`<sd*_7CCB
z2-KdLS#impk8h?~NO1|u=X}r1U1(k^V(eAUX;ieY&IVbM9(~}8?lmpkJRN%T;<1zG
zkDjtR^ynJ!aVzJK3xmCtxkJ7AHQ3{}`87DoJ)^eq(6Jntu@|=m%Wpb#Yy)PX;<lRe
zG5?up>c2}9UGwaj@eNxF=1j_A=3k!#Q46^mk#MXJ=$wxR^;1H<UWc4;o&3&SuoY|R
z7?HSJ5mE-21el~pS%A9id_WKTmIC&HVPf&qpk?d$vgF1R<JoJah}Q$nS1CjY0D{Z^
zrY1znRwMeF;`%fV1)c}J<TVa_5J(LG?ylCf)uVk0Bd5dikuP?S`S6#qfs#ZgDekwC
z)C-ri1NW|>;lT5gyHtWv!e+Wj)9rNLL&P{dU*+<u`)Be1DJ{`=i&V(_tZnV`4?b7<
z*RbwBczw!h3@J09?fP($$gn+~Y*=G(GJy-$@@^go?tV{S+V!$p2}}ZuJEfcpcuo>Y
zdu$&-wLxn16?42s<|uh`xBqgYQ`9i6#zv_odC*2hx@7YMKaI<K4I`^?g_+N%o5cND
zDv@EghCh=HCqO9Q604KbhxM*Hl{pfodKEr=&d!JPjX%h_^a)wo1K#ZLl9ZBvVG_Al
zN++Pl^=N!qdHuoHY21jy_YYua<+v0<6>uM(<I<ZQ-*R@kFyajs!z(t|gxt3(NSzto
zaPzVE&zBlzm!3AkPn%xKOa~16ntQWXU=E$zPBTy~TiA*w6cFg0U!yFi7*vaqnT8Jg
zwrwd|c$>6s!BP9DScKs6_I_<kulu=$Jpm`0y{-LVvR9>4(cO>zqu@&Xd+ZUUtQPI1
z`^1fPMq9-OEn!u9AbHE2#4H;HFg><aeCCwtKAWlVe7PSL-d?`#Tnq>eb8y?2mGh@N
z87U?f1k*8KoM_^66+&-L#bxF<ihrT`U$YmxCad9@{nGSq&&QVwTMzD++uMkOhI*o#
z(BiCcP}=!RQwJtibx$j%28A!n96b>AV=E?Z^<xu_*$+Fa{#;>p$zJ6tK1)R7H~egx
zZbWfrp3vdfD~iVzIX3r6S7UlGyCivsX#Y47+_8je8ts5_!DdH~iziG~8iSvtYLT+|
zVZALqS{}CKezB{yL~-@6dO)5o@To|K^vio{T)zGcW=|}irGF{+1OUQk)A?=Rb}I02
zdz}vHOmU%OMQ4}Fbgj%d>>}-Ja!K_Nb@sFRHBx6z(<_Q@JS~2ni^;JoD4$?3%z~hN
zKDS-6jDOcegL~V|&AyfR5LY>D<9rGqM(7cj;9evtg>%v(>q*SXZb9WoLnWdd;gx*+
z-l{}i2qls^TUlaKmAy?#g>=qqo&}O0ojpx!bqM`mT>I6ud)}Frd%x-L=LV3+z{XWY
zQ`<3FmJ=OoYr%fdZ~D*CnZT)4`D5a`AC>Dmt;F)5ueF~39iuA4Hm&~{``cI3@HiT@
zSJ_CJy$op1VR8-@GuCxzAQPug5=*A3FXGy+>AINx0lLZ9ekoEWpJ>X^=7g-5$LD!t
z@u^LC=->hrtR(j&LPafCn7A)r)y-=Xah6~kmbiVCAaQs<f48emtdhY6$CBXG9xhZf
z`JO3`I=M;JH_oKR$GLSDl8IOMo^pLFc&=}Yl={32PFC5h*$0-z20wUm_PzTeSL;mj
zX8jN|Eou()--$5S)*_leOw75+67-W|2<@DzXTO?dr6L9o|HOCgaknPB6iyA-(EcXt
z<#2Gw&|82l?R+-uVN?oPL(k;OgD!>2i-!Z&NF&d?DZTLBp$%J0*WHvXyPpBUql|>b
zjA$$)_e`b`=;(nS4x;>cd|9IX7&^<)7vvPlfjZ?G8t8i>tF%$X>D+bJwfN-p#9L6|
zv5)RN%ywMBS)khErpk&?u4h-S=gIdD(eFM3#@`=hRR{MDI^d2RT7vB>UkI92zonqb
zYpi$beLs$VKmNExtGPsL{Xc0a?ezt(ujP6kk2GF8EZwf^SX44=TgBefpQ1M5@~a{z
zC~gXSM~WdFz7lc!y(GJFoo`&dZRGUJ?vx4y-A&053rcLkf&WggzZ)mkr>$8w$Gz{g
z^*A_GX<%vmuUOgH_-^dHi13f4C&i9J)<6|>@qmbed1-&v<SMhn!0x`krz*+O{=pNn
z<a;h4&EbNx=c&a^sF+me!|>E9@_Q551wMvPc3#K!-&>R{%yY{0NuNiykb!PT`#&ue
z_RjzNt~81D0o#C)JhVC};LC|34g^#m#8{|6BjOJhyCt|7bE|(Y5h+l9ZNCk@lUQJM
z7$^gTs)pMP&_7O4ae;)jl_?DQVajF3HDs8xp1)L9evcyV5nY=W-4b$e<-gyWo(J9{
z3J+(#;VE`F;*7$_j3f_A+15Y+q65!(tmau=cDZnY(xEXE;ol}wh1~AQdv7e*REW;W
zwYL013Ek3fC14PQr4xeNQp;yT6hszk>9*=Hh9`kl<>)Aqz0tq36&rzE6a+7%ocoyG
zT^pow${W#M3XEydFDftX$F%7{3FJA#*N-Cv%x^D&uh{`*0;9a@e=V+Xqvve&JJ-if
zH6!q+NM)RBvp9R(&Pz_;+HS@tvwy^*e{vCZ$Y~nItP7j=ocM@Vbg_z+zp-6>HiIMK
zlOpWF?_l^=rj?^i@mQ(la~H4=+YI4`a`Ic2He4yVP98L;Or(0xUB*H#u*!RVEb+_B
zKJsPYe&y5MOUw>gF_U=&A(V=Q-^(=YxvnQUr*`$LH{;fcoUd+|{MiVG`UkX;DBTdu
zG#`Eur_(v%P~mK9L}V%0rznDuh6+UJ)e}c()`I*hHq_%UA?mlgO%O`yg&Rkn%pWNn
zY}O_<ORNX}>G5CXpRC$XF3-{uHm!S#cvXU29%hc{3M`UaB23s*H`QF7K6R_fL~1C8
z^3g5tEKqTl?N!aC2@VJ~SMrc7R$iel1v%djQRqrqcZ51MwjDJ3PH61Qf0#@1oe){H
zz_1@Ce@NsWv0{f~+a`KxX6&7tfvXh+_omlRPlgu<gfgA8e9&|PiJ#S;qLw0W!U>Qr
zOb+MBsKDMq){yWegITrYy=xK|>Z6t?+d|i55MtW^`R<-EG8y_u@AFe7Fp}>Qe{WRG
zbOs5`F~so;2uxaR-jjVL=CtvW==hpTJzP`?L6Qvpas71ZBs;N_9c^~E1WPfb9d+rv
z40@ki_br-BZ+xJYs->N!3E>?*!m4rBqGRg?2w=c%#0K@JsZiQ_pdaEy^?qbqc(2y^
zw34=_mIHb#FiXx09lmW-^jl}nz@Mphu2b0#=oQN=ft6<bCdi92e)X*jak>mWbAzm<
zOnXJSMk}#NyNzYtRt+n<?@a>DkDFZ_tGW62`$k-m-+h9hiQ14Zj<9LJPHhN6PJ3-|
zSb?W0P3x}Iit@~f>kK&uex;8&x$**~2R|xPJUN>5qDtQJPAK)GjlY$A%>GIzCS5b^
zPpd2XvDVZu7JWJQF-;i$BkO1R`k_*yW0tWcTY5v!eMM@+lxL2QacaLw0kKMgElaCn
zI!E7K64UB&M@o)v*`HlT!LpT9m}Hy%L|~q$S<)nMO)G8VoVDBO<+7dl2gE>Xp>Ib6
zA=XciNU<U08ks7g`siwyz*<fJ;~l}VEusc&owGV=4UIc&Hca9BqP;}q>z<12)0jBL
zNX$>~7{tCYy8o0ki!w}aKHqgQ@!u1n8t$!;rg`s!`t0Z#XsPqVzyAF9ab%Y>KFHZq
zJQxg13r<pko_v5Vf@W;@9I;4gmZxW13Cjyjr-x5Pflu9nTy-!w^uG85z|M3SAE6K+
z4j^JZI6OaMI`kOqD9gSTc{cS_{`=i9<>0<6F=Z%HDo<w*P#t>R)(m&8EUZJdU>cU3
z4MDyHTI^2}#_-Aa^o`#e9_&Og8E6sbW%q}eVyA4Zytod_m2=yHn#!fEs_}x2Wb8o_
zWAlF_ZRk(JMdO9AxbL?!<&NqKp{@$(y3LD<DrVEdBF1j7o0rPv7FMgx5UUlsjgK{p
zJBOF+OSR1nbi_BJ9#eK~nQ&<-`IyY9E6plyYV8p0KIHs4V&ET0>mMXGX&YsTX9gaW
zCx+={Ehmq?;hksI(PfVt;u&KpUqn^_7CL-RxL6&l2}{$3A-+fUF8PI_dv^==a^Z_3
zQ)n=5{rX`5Ki6{bc?{gDkD!oi4}E-H;bRxbNw_q@ncl41|9|<IyDV~zTF0M01Ajsx
zq^MVbN;ze3wHV}8W@Z$cmE_GipyhMEEVN<%7DEcnb;jPaZ^vX77mTr31&+QG52zX{
z@mcZw)3dB>a1ee6C=PsO|G6izAl{|`!1}A-j#SnXdMA@X#wPTqE|Y^lG2YKH746B=
zyY2lejr9<h9Es9}!zUHBM`ibu&W@K`;dXx@TVkxmxXR`?2^G7oCbq5exf7D3pW<!Z
zC&D1kw-A9~7hOSWAIUxwqNgGwDbRA3-j7Dy4t`KjvvDH!J+LX?w*I*;(wirtx^`Ye
zqjG1jPT4KXH8l<v4(ekcsrC(_{Qhg^RXBVJsJy!`3JQ=12f#8~vnJl=l$!s<$NVeb
zcWdtplmrvYk_9d<Y+=XEgqlt|ollwlguw4kcApL3{Tk;NiSN@x`9><CNIEQdYEB*N
z<=tE9;}*(}N>I-}t_AKC<||a{r1i0iKm0bj8b_AT6nW-N)^Q#*21*&ast`jW4M)US
zgidcrM^>M2?l+_`$9BJ8qKba8W`UPgfFWtCxc^0*Y)TnfA-|N#Ebtap*WB~S!*Q@_
z%3*DfCxSyCvVIaRs3%&fR2bLcpO<`;Vkg-;ylYw-i#!nQ#G7$MW#g_+HV`!-3)PE=
z)`J7F`MpN5u%ju&LGNq#*(-O?y-O=(ZhJ4p;vG0SZ#ytN`2Ldi`QB~g^dmok{f?)i
zq#rVWvEzb3l;&5Oy()hG6boV@&pPkuuF}a4aQ!x<+gersWs<W@+jqnq%st|8PDHWv
zEjCKR>A^;c6|igRSdbJvZ#L&9f3`8mzqoh672DG0TP=CuN9Z5(B#iE;o3&wAv6=q9
zips5%$)!2q7}fX9hZKfIXk1Oq<}ofy9Qadmu5vbB<*kE%5)=QeigUMJ?hS*cKcPsu
zx>(|DZZKtwZwYHH2xv6Wb@+NQtIdI_>DJ{E==9{B>Czta!lsEf8{zih0#r|$=8Usq
zcs9uc6ik+9SrsVbpn7QQ36pP9q6(Q0>N{5PkmR-bYe4hp#Ys2N=yCi@*hhSnA$@9^
zBRXkVF_T-=Ttwfv2+n;>#=xtf(=mp0rj!^PM&(35v4`MSMVuO@cJ}zD4}!KR0x{+l
z9zBX_))p0G;NG%!F(Inc5ah^M>`s6RSwj-kI@+AHzLj90bp_ev-Y8lK9V7N2dA=m)
zN0@si*3#;i)*n@wu_v&0|4qkJ!+ko%_%>C%79r~K+xFOyNUN9bEWdcy4CUMfqXmz(
zN0mt)<2|A+Ou3eEnP!wZdmVTDh%anEmL6vsdYcZ8w$*(QT45BZ{O8QA_|aq%zd|%h
zJ!!+(xoj*IfIl_Cxl9t0-(0V@S?v)fMD!LjuE8U%@F@a;1w4I4aK;nrt_j8j!bk}L
z{`Ts0q@v<1)RQ{tK}=vg3QTz2pF0iODZUJf%WRX+Nq(k6_RLb}3KZ?YZq=t+I0_n2
zd>+*^R^}`#hoe0XeSi*rz$M;E*nHQ7ATYP}S781ZzsVpp|341!+%JS?KQwy&1nR+f
zA%_76ygv$a^s<_=g#fN+oFd&6a2g@vYVKbP)`qLoR>C5p=L?8|W}8PHxV7P6UHde~
z=VB_VeP1J=av>0wB{7={*2kwkkh2aH9B53`&-3}}x=0%Z1p|s_Y*<R*D>N$9j%U*;
z$yR&R=4XP$|8{6kx%0en!y9^oa^7LNpZQ7lg2@~QFvt6)oVl-zyV3ym!lnB$6o1M3
z$Hq=R?B}34F}&ZOO|g8T_F8h5zvmT#Iut)M%d0s0A|+K?%++HSjn#TXN7=#j$K8`z
zZJIQuEuYf4IG;|=M(0P{cw>GY@)e6KDr1=&J-b4P-x3;}bl^T?@82*qkmx3?#~%?4
zHcyz&;Z78|&|_5xiKA0J1Obpm*md#zLQw@ExrKsWKcnJZJ;x9zz*VQA@>t?eXH|7l
zW4WJjs4SCs!Y@ff)4~6tF$lU`o%D{zBa=!20oqDkgEkC~1ANJh)gl5)C<ygE`21{B
zkQ|0L0JBpJ1cnA5aj2zhG^i4xdA~0a_Pu<szk7J*TCGQ7A+^WEGF)QxpowL|VpE@h
za$>n&<?=B%w^AXYGxR#-`htX@(9}&3Jpv;-LOqj!K)GBc{O(OO7K$1`Qca2M4ecEo
z0^A74S`l5X+C|I$>2o@`<>8SP!nZ*jxcOlJ(vJ%lzTEMBshjZ9BHh$>3vjK%Sp2=q
zEP{}8)Q|QTo1MjMAqbK7&zq{`TOVEv%B2CZ4cvs|C6FEcO6*7Sjz?~y;APDA4bG(X
z1|E_NKT(A07DW#bFn9!lFuR#{0gBdJX$<<YCkk1dh_Z!gKY^fiQv2ZJ|NQ(AVtQbA
z;Hv(WF!QbO-t2gUUeZp?MsH}e=e#Op1L;mTFbzhXGIkMYi{Pb9mSlu9ySL@*1YX~1
zG~p%};y-fyigWn%)v_}lRd;=f`n9q=u)k&iUs&em4vyM~f{hcJ7~jxAg#9cfnU3E;
z{g%e4ccmIOzXLYQa<aX37aihisKKX6?$}uc<YdT}`~gZzEWkfE+xx1?A@1}NbUMHL
z$x*8WASrc;r@Nwt##S>ygw{K4-9|T>UO%cR9hUzFx!F-RlywM&DS^Lpia|4?$v*@P
zMDmFu6M|Fq7ts#V(n!isbyDxSJqKyA;afVKZkmh4yJOd@=YVvYXWJpy3Y5E?Z6seb
zI&wx{%5~JBcR>ul*~P>S_hL3@aXxajdLR(8n(d~B8!$LA7=PA5`W)QDwpsU{o!dJ#
zv)P}X19_%^^9%^~xdN)(68Af)C?P1}{l^h1Ck4aHqN0Aqx~Hl4lPeXovfIKcbV1kC
z`SC)zS<nBn{bdrKRorpLB4bdx0`H0g|2USf6r_px2NkWHV)iweQE&F01?*%L8Remg
zYS)*ZVxhA_j`Qscu!mXW1=!*}!VY}-I%f}#yh1f~Tm}=AmqSOSj<)~S@l!p00A@)j
zAVW~D;kw=>*(V=ij!a<F_1qtdp*3dZl}h03AwkNye@g&YIxV(ihJi}bVg?dw3xpmL
zdG{-g_TH>Sf*5Uomn;UWK)xN4*rIg3j$^XfeS5>Ne7t!)eJaOfJAI&lS&u|Q-~s4c
zqTy#hKUw}$*$20UV)wwH#!EHtTJ;VpkZQ?59CW{eA~T2BWq8>yqw~VW*;_pm06aTE
zFYSz#YjZ#+?{*e=pA$?XeC}=fcz4(LJTBPdMmV?^tPid?tHj9FJG<`z@7im#0#4uV
zU`er!RXo8$F1`9CQYInIq|HHa9s8nm+)avBV4yFf)dn7J^_NhnM`KtvNH9n>``>sF
zf9cdFrQ@Dj?)fYc#^3rKX<(3lmb2s|TGH6mzbE4U{{4kh*Dz>s+i?Hoh7K{Q|NhIs
z?WZ;YX;Yi@vHHwhMx&D9%M%NR%=M|ho4>0(%LlBqU54JLjg|N&53Cp%8_Lkf9f*%*
zf#~7whK^^YF5^X-j$DXuIM1}EpFgKyA+2H2@-3&&p1vUcRN}Zfv+a%k#*+B9{Fjr9
z%do$l(@Ug6t0}8Mot@6365Z3Rx$&ZMbX}=OOTLr2|NhzutkhrbZ*{7~Y3VWSCd_%>
z+c2+K!HE{oIjwCMibZDYhEzpnez}YVr>1_NK*{Pvxo;Y%yLVK{)M^!$ur02)4Ez--
zMr{P7PDE|$?E15okocvj-|+AzUN}5&-j*Z*7zP9=2vg&D>Vnd~Ddbvi35)UQf2;hO
z65p-hAFtT><t&2AJ;*>t=NadCuiU~9&2yfTaaQJiV&5a*Esxi)(l!N%wYK(*r_A5z
zJd;x6`1VRzw;<uIJo|oQm%fSkSB&6!9Hiyfd&7^Me|E=LuRC^#R3zIspJfy0@X3o&
z%fDOtC|Pl<#Ys`;bz1P}(Q{^#iBj62H!{9uxeqcGA=Nr<e&pGK<k2M_FNuw)emRuu
zo`0~~ky$RNp32-JRx99~PFQD<jw$Uw&oj%Jto>5jZ`tScl|)zV$3$^kYQPrx-}DH&
z;CHg)JprI(4srv$`nOG|0ahZv^!fx*GlSztRyhGr6KJOOR=~sIN=Lk$`+Rc62KT~-
z3m;JNQ6KAQjRID}Aa@RR40ywuDas{(M8Qh$v8?_d069R$zoNk53|$#I*1E3c)L^F@
z1-zmJkmXa$9Gx0WI;#Y3VP^@-<8VPklnsCeUmv(}aw<7MZa7#E`zaS54vsDoKs=*Q
zk8nl1omIZZbE1t0sL}n7!wmp+&I^MJT-9<Q2#DOCx<)P+prKq*EZk~F!nk2Y=5xVA
zWsOIh0hUADw!=`&X95?d5`<Q}CgWyT1IptgEAx^Tm**wTei)m<!RL*95r{<{My(>K
zj;=Fc=bTQh5Twtz!qJujB*AuLYX(>kH<U<E;b=EtQ{WwJ1?*i0Jd@>onrRKRju(^H
zv`bCKC<M-i;m-s4qLskG5NgT`egj?=)B?X&_VNeOwK*WdUJmOk2)~tiD%YoIvWzex
zuBj9(l>#vi?Vb@~4v^$RJHQ3+PEoru7gzu+Q_$1^Zt7gHSViZFdz%$>*3dm*4-Wu_
z$Ce`ZAdQHfGHNX0U>I+}0n)pOgK2NGDr1}h=%<oPP!~lm01OwB0URhcT~eeY4BAzi
z3BF5}cKN2La3}K`E(5gzA}M&S9&Q_s4oJFojO5@-NSiPt_-fOqnTjd_f5KtQR>5^w
zN)A`a$!-^bw!&#td~Q5So++^hBFy*&E^8+D19vRXd1&A!DyR4oUfaPn)P&vn?q{`<
zRzQ;llKs*FgcD(N&{J<dY!g%F9FD{(y036!>1qSeDe^#SnaliK&DRAlf6iME=rOAV
zxz)tMFs6db!?+1<fiOdWPv~@uyd)G9JAx8v5mN%!;I=c>hAnSVtMxh{2BCBSRwZvR
zJQP9)7`c$qJ@Ak?!NT!ZXxoY75S-{Ue2uofsl1DyN@UjuQN<88h}`(-A;P6;oN{Qc
ztmvvVOklDS4ole8wBnnB=pt|>u@h|I?s2nY^bSXm7v}LW<wdSqkZ%Pvina^n4CXmg
z8J2jNDpk@8M3%164zpI7vX!uIFB=Y6U8Is4I1xHwpsJpbXbRl)D3K`O8xT2g34FRp
zKnPR0B2Y{ZEM-RgP0Hk@#H}d=xdA-zeM}YZfaWMC3ygMMF?RzboJIzgxFJ*qTSGKb
znpu+bjZ>Hg)Kg?K?G!+8hY^6{k_<%@nKl9&5pfvD>v06h1E@e*6N!giChVJn+#@VN
z=@D-O_~(KHa0H?7Al}z3@c`Nd2;<#^D_f@m4j}n4a}DQ2Xdf8&LJt!7np{@wowOD#
zLRKig5dZ;*2=)fBt>s1N&zKW{Lbj^N!d6v$gg|N-Sm6XJMZCDOdM83&Z8>UioA{pP
zEGW~xsZm&^oq*k;!-perjleu`RERK{(QPFWIA4G+>fmx^7G3QH@_-G`iy%rlycfi0
zm#)ra1YnnP9sxExR~UgUN<#<04Ju3lP0VDLxg2MlM~HA3u;n!E63<q+FKDmRfK%$S
z6w(R&W=&KX_9)=y(q~RlH>{kO0Q=%~jU%|?qV{<!j}?uu8-SM!MIg3FHjT)1gy*ZY
zl$`{8LR18J4`Oy=6vQAA5n*PKoi@2<IUB|<rOQb4;*%)~-B-A7P9zaHgQixVrb(;7
zuvpN+NUCZW7Z<3UQHBJ7l6W~^)^#Qj3~W;oFgxHFI(;C=8H@5c@|DWHJ6|bYx5ePH
zC>ePZM$Bv4A_tUF6;7~$wX`D<O;rQa6hVZAOI8cYLSdC>3s92gVWVIY41fU1g=_&!
zfbpG1oC>5}w*i*sdAiQkHJ>DGf-7{EsQ^k-Af|?W3Ok7Iv?Z?uD4=rah;a$`HFehL
z0l-mIaS{WvJL+l(=5pkt1uzvO`?8UBXLyT+F9!TRQq(oLvWN@-BvKRuu;HnE8L!hi
z$=(nVqDVb+z`F>6t656$a6m4G?@j5#+$nP(5Ca0Q6%>~sAu&%6_kO(*Fl@MDAde&H
z03#yGtirW;Erp%rSp&OT>uLenF?nFj>!G1)IX2-S;A*-?=@Z};BG(>SO}RRiT>TVf
z9Fm=ZK_bx*SH#yI?ld(OHE?^(D>KA7Kqs{@07xQut?)0QSY#}e{RFmvd5~~Ra#+4D
zC1b!r=Gw)W7E>0*&%=^<w(wEDgRr@*OUwZ?P!pm`*<4h0^3_9{NW<1yRW*u*d|pN+
zXInT%S|+@7iCXZ0lThuXqFRAkR8L#!0!svF3pH0hj@Nj3snDeq6{$3dv@9!`B<xGh
zt!2fWE$l*Fh+?8b@MdfeqM~resj0O#DV;&h2=xKKCHoJ@ips#E1gQ~kEvl|qp9`p8
zsB2L>qBc7u;Z#*%;92^ECb`u<RUIkF3$7737QPa2g*3vUmn^=(xk_W9;Fvb9Vr~|B
zLLRqpa6Zf{GzBv~tZidnw=9$^bAUQ?#+-pE0`!t*g%VRXvSdw0JSI!5zEY|Hd_md>
z288=iaC54{5-gtggpdYo;tsK7d8O?jM+CBw3hw~>S>`Hjm32<@2N|Sg9m=8<vJ664
zDwG2#Ovdwf-UW%yGp;O1G0lpwoD}$^i1Vb^ZCHYdzzCo<@A=+4)<OUcrJINhshEvY
z=a|PuWuTKmvrO0wIF?2*U4cLHa?Lyl0D!(+m08W&(9G9*RPaGBh@yx97vA^In~3&Q
zslm$SF@r}&KxUKVB5H@t!A8K#%6C{SYf%?Y#|AE-VOqzk36M21wX?aJ=>e0;rjR4d
z@UF?#C|ywm2r6n4Fk#|3V*p2_9d?z_VobcOKv;t*6HoxZR}$T-QWa-lqE%oz7!3eJ
z#ilEZX&`FmfvInyUUe&g&4WPZ8^G2gkdbsjl13`h4#**;KvBUGW$scDKn#E%b6<*f
zYQWo8Dh2tHc1SRlPg%(IO{uCs7@<^Nca%8?xFIz@0F4V>0How#i?S|M=mb{P1^XQw
zAn72H?-LHSBD9ZI;4G@1B<i0cKhLO^EEfR2b*75$ZFhUn1~djsMGl25%)u0rHBR)I
zz_^R4J8moo!YFEqG?zn#Ww>x85o0>Sg_t7ipjd<hL)>1ELc|CwYznP}{X?iMgUJOj
z46Aery}=|DHx|4PczpqERD>&Kkp;Xa2jkoJB4?`??_DPRtE*8!XSofK51}x?Ydd5%
z@wM;>KtO42O;sra0f<UogGCaPMH~QwI||hNE^N1F{sP)`XOT=4+zdQgCY&Tv0cBnt
ze8B0tG9`f^a8~sQGq|OxpT?E_%%U}gexN|3w9FBNu2!<F8ifx40JUDhdRSkJTwcoU
z8OX7$KZK3R=%&_c1_$;E$-T&N%w-Ug@~VIWtn5Yg16xE&3215bcEIFR`h(pr88}BM
zuyVXjJOyBF>qZp#UN|H;SLJdLaB>*{CYuHO@t_P?0f>pN8rp)X5onc<5sLWnjyM|2
z5n?QlWZrF)D6odH4C-T2mQyQV`%+ZkfJrj;KB@CKYeqr~Dg<e@Adr;GEu)f)`6NLn
zd0GoA9b^hb^$K!8NIXHmC{+m803$`>Gcun!Q%;vEqmt#ylBQ^`COjqg9kExgmIb)&
zX+{9gQcG-P#K*!>0N=%}KsQmHWuu_TM%o;FY?~btRDK&SVMZvE)QdG^%qo{gm$Ok3
z*gpf8#&P|WHEcR3Ps$mY6A||&4wOW0i%P{hAZgU<^IQ$SgDBhHX}lp`UIlzDY%&|<
ziO(%lZUo+@7IjVmfQ2vzoO{XV07ST?odg1#iK9*x1RdB>RYL$mU~Z?$OKpYEReFcL
zxOO3v7&?F;u4dg7@CEPrh%F@>kK%!>@zh?qv>Am5Vn7%Z6o-M7<Z!rjyy?I*i2|pn
z1xu1tT?7uO0niJwGx6#Ua3l|&!2&Zv1+HXyyile9aG>bI3c{l#%D2M;bFCsd@IsAe
zSb-ZZcqW(?NOUWGba3NUev|okScC5Y5)-7(rL8?FeelMPy3}KCPjtg$_;naL$MCCx
zKvUDDhjp8IFp+u&UA}O2&?W(fsw=Uvr7G^_RZdLpDA|HGRn*ad_X@;&zOJ*t(hW)n
zQ<jcdEdaw2pHPeI#RxNmD*`K6ip)}rx1dKlubLEurtq$CK`0}TB#Q-3Mbgd+HIO)9
zy#(ojn8|9swBWmoT6X>_7D8p!m54>LYY&vaP~HLtb|vq7riNw2i9DG!%}6=|@libl
zkZTc*7A%6LL01N*!&S9vtx9GoP?8Tfpw2||n4+@)31UUgBEJb@a4I!hs(hKUe@<SA
zh=E95zze7$YjpsH`oJltrK{z_J9Syh(LGL8nQ#?@zN=1Y9|+C*D$^|~TyTgi;coKX
zW?ejgq=YLaN>#X$s;@0FvXe7)j5r9!{r_@xfX0(48`0aPF{W+sJP9SpTOeOoV*CX7
z%e<0Z3lm51Vb;29muR)550^z??*Ry%iU>ehM0f<|!>d9DnGc23l0*OzqB|Dgw9Z5o
zUZcPxI(9VW${=Yah^=(uk;n+z(-nnZYC&EF$|Kqigf1VA)=f^_B;mYKz@PBtM=u4L
zf5t%L(_A<`5dGPexh~oA6ZLEnf=0Uo=#OnfE{Je8Z#zs6Q2K*~DsPjc%ch(iV62*y
zH7-*coueZIiCM5HksYg6!JHxQq_Sh#dP$@6Aak+!Db=39_9?ExyY9s~p+=uMk`61f
z=QM0Ws)QT@@^oYep^eSexLKirBG+3Ov=^wuL<R*WRs`#DEpr61j8u^5=~T(PIeHd|
z=L3Mbix`FQ3uP*953W?c5l*8vEk<M5!7&`AS9r~kp&(!_U5m(KTuS6R42YG2hzlmc
zJ}cPaqA2S2mZ%vs&8muxooM)!VFAC1QI2JrEYHOrYdRF0E)Ii+f|z#67ibw~WSf&h
z5hxpJfnvfaQ94+cTAKhA*dwK=eRw@YFr*dh|A01<dK+XD{w$yZ7W;rH3jTFt=vYbH
zNVh60#Jwu7(LtAKp-t$_+2uY<ox0%xw2*k0RkiFka1M2)(K!W~UjZPZx`-IKMUkro
zbQVE1s3zQ-EEkEg%$4v}MF6^p<YV&jkvlpiD~HIe$QFrP7Es%wVV+YA@AP{xSpuyM
zf<#1j2OL2d0nnXJA2!5SOdD+N9=j%HVT54z!V9h>0R2KW*a{ZMkqTuY{GP3Sl)GC9
z<6KFARH@4TMwuF5pDW%yxV&+FO$M8#HxsA<S(o9PF1U%pFtu<?z+mXMz%8NHrd5XH
znguR0astyYr0C<*x0%7}(Z9t@yBAgfcq2NuqQjUE<JRblHpf3OuxSD$fGO0FjJ6!L
zj*|u@imqZRSdXC+tkVUom5FtusW_B`20+g|HOVz<)Gvqx^9N9aL|7kg7kvoTJv@4q
zdG*T`8#VbSu)i^|1}Nze!<)jd;=NLd`@#-AP8CrCkx_9P0KBMF>uBS7V|U`}ck>1!
zGRo^9cp|%;kfJ$n-O?hymBb0e{X}fvGy{u9LDrXqxADb{-F$L#9uloqgk6ZS8bg@f
zVwX+7f<bf?wH5%XQb$RU*nCia01H#=Hb){mteFj3K5<ByG5he5&zEeyaMp0|)QFy=
zdz8$_He^R-<;cP3A;J<arcf@0Nl)wmGhS6HR&2(eBd}lu`3`?M2FWq>Iy^0s2Al+u
zfsj(Fr~v#K>FhG}f1pM*A&VCna604#22u#k1dulx?fK2ZXO+4QsHb9%4o0doLnX{;
z$Qy!O(=_XmKhm9c9EqKaLN%()AB@W!0_9<+9=g$1sDkOeZ~ALm@dRVM!Sh;_4i$^E
z0(PBX^%$!#$TQnKam3zbhi49=M_U~f_X99|s77F%2;XLF07tOYPTY#7q~zhPE?kIQ
zin81`J+tu|9b%a?;JehZUves*01-hoVi+}aJaHb$ii)b>g4NRI*kc8oeI>p+xL(GH
zs1H;*)Vo@FJCle^V}dMwV!J;T-9$Bz=E$p23q~2@un{k=aWZt(I0csqqtpbPYS$6r
zf^G_#GFn_-1-}Iw+@lKZC<VstSAfk?b(pG4d1?8gP5Jbt1x;^iCPsN&6?c{u285=f
zQZMV8*ixh+>iCkSb)E|&QxIQ|I)+j9o#9s_+#>U_D2u2q7h`<HFROE?8DP*5F6B#c
zM?vK=?^u-zP!#CR!axDj90~7Ho@>;Z+Mn>PwHGZ_gep>&Q{z*JW66lpBBGg$vVJ4D
zw>T2E(X5H0Eha7soVK)L;CBMfh#kd?U5VPglS`SQQz5lS>@3u$s!I)_tuP#&FMu!V
z(o1`${=5}B=dw24m%bGjiz@hI0b<Nu=u!kra4ciT_UQX5M<Hk;5X}rh=j6rHK8}=!
zF)p2eI*_2!pw#Q1`Cw0tYTixg9|fE#rHepV5^F{dm_)OKxLkn~fS)-WkQ*{tooj`Y
zrpbBoP40vTHtY>4#mH71PSbD<u?K)6*LAq$#E4@oM4>!tD)FJCP|7eJ8K!Wf_%WM&
zS^OI7X9wdw(!j;Ksuaa;Ny<Yz5`_8wtnnHEFAkNtmwXr49!;5J<->__*s&;t;Sh$%
zQN<29$`Xv=pAC`!mtURX%VE=mILWYwMjr@auSH`(m@D{BThSS2Op+CI6qOqzh-@Ss
zH4hXOrCxNKrRLiJbQ&D2jRPAYEDe&&siE8(fj1l`TvM~P=jd)`qN-qZ4%Y<u7Ls{#
zjxcY=LAnX3h5{;$d7>KjkcjUjVwfO2izYe^9w4?yT*McTE`bB)ffyrLDqH^m>_`cp
zmYCu(A&03<(zF$Fuj-Q1lz>RdK2@;q<v2zc3xf%o1hz)Z0x)0;Ko&-eqqGq?(VjvC
zkVZnHQ((a~QsEOWZ~fs4MO{F$SzS|b6nC7Vh+I$u?+xkcV)zh*a?C7KGN@&R3*Hzx
z4vKkVO38&%wxJ@JXQkoh5Q-0A>cpyw#lmWdM$PM7pa!;<*97D6#PUpbssgDrXWAGv
z=q2!z{3a}s)ts;uJ0tX*gPzzX@*l<G4C^q40?DFA*AmSL!KWq7#2qa20{0QOpB;WJ
zByf~O34D2>FLOw>28;uF3z0R>OWv7yTm;;eM$>hqZ90|;HfGERVA+*~r2~cw8Qs#l
zZbq`Sb`W1whK?d9`(8(plf@n&*yyGA@&ds+daS4MkkV-y&*(D3t{62M#@UA$|6x;U
z8}%WtET|8bt#)19eI4Bpwx(%3p~sludfW8Mv#4qok$fe%0lir?fGq+<m|sD{k_(Oi
z&(U{n91{~`qawQ>JKYFr99*}YO-u7?cExP<i;+ERs#@f`MztuoVIi%m{kr|-VOks?
z*{0*>c8+8wq72UnZo^u_5V&CzFcs3&q?$hsW}5}Ipsi81gaL!$n5L1C0PCYBBNGe5
zh-H+Bguz*^hY@}x%5@kCRA|KQ`PHUrEY;~42#hg2F{(GhYpqHHkBCm}>Xio6QZhN9
zE4L7L<T7N0B5z&9B6rco0mEcxl!nh3+NN1?j(xi`$Pg<Zy?3_K#JoL#6*$EorQ8<6
z=PLBpCxMY&C6LWa#a{sfbDOxjk_1raRLR?jLm3Fr<l9Zxqi)or91|ajCx05^$_l;M
zX!n$ie6Y!NxIZJpnBr*`qH#{P??J@1fM$uwj1@$xkiP{36XT9^hSME3`?@OGaSrx^
z{Rf;zgv3`L^H_0cPLSQHBtoVvT|LTz6j8p|dO-8jBc^V6(%82%db?@HsR$*2FeuO+
zkwc+zgE8L=ORXFUrnKDat$a+D>wU~=A>w?$-9LRNjg>Vp(}Y`j$s;GgoQ9~ZU;|kJ
zhe|MMw8aUGl+)8`G$Sfz_6!Vhih>kNq@^BTF0o8B0;Uq+4uB6-`H#6f0&&0+E8L?Z
zE{ByPb)nX?=r_<YO0~*>ejRfjm3X4rGniW18KM#zgXWk@<rI2Jw+d)ZAn71^%BiKm
zuCl8HhE=NVGc8r#2IzI-8RUZ(FJ2B!QdnqN4+P>=aDGvUO%rw|X9Xsv*5Ov))Y@8<
zE!8$RcHHSj&p+?D3ai&SJWJI*)XIv)2DXOvvsKQ?l$xxPt2CH|DRyBj#9&{h*gcJu
z2pCMjC|0n6TwH|cWE*qg#hHZCCYcc(cnH9?XfikCCpj-RCy%7&XtE#6*=oe9IROG5
zB1<iB&9dCwjwy*=PI$^pz^e6<PSH7x8`F&Mb5Xkv(iy;L$|Z|6zRWe{Jwm!@XVAdR
zty!g!a~_DX$O@{9h1QxCY%qnY9L2+#JQ^|xUXe+|NS2n3bZG>Pm^M}efJTMH0CFlq
zkF?bKM43y+C}$a2)snUd#T&^71wHFgibosKFb`8#$^&7-Kp7)z{o0}_tL(I{<32K`
z)Bvg*cnpl<l*@$U1tuCKRgNSFDy0gxEG0J`$*z@o)f6|v7GW0{P9uwpLUNLkU{nWB
zUl6FXxZi~-u9&h8GqY5GNYWp1WCx8<cG6g3epk6HEMoEW02lEP&TIHir6v{XkaAwk
zNGT*t*IDSEWO^Cuv}8Am!CVtW@4Y1d0Aaog5p-p+;n`)BhzwbUm<R}}z_A1H6l_H-
z*bD&pHCGZ-2{HowC27Zp@^Uib8&3R1xUH5%4h2A<=6i6#U!Y7Ibu`R5JctEcKw**a
zN?Y+0)9e@u8d^Hmg-9r!Y^If39F``tLlB|}l`J#b-e%v)nK)UNwIUO21;@<6qGjbp
zLl#c~W8^J}^P|HoCqaF%|D^4g(L+ASpnxn`iPEHE)Xp0T*!Q`p^>Z&7vzeh1H}A{~
zI>EFI@~Tum8>ZE%l~&0n<Pkp;GtJbHqtqx>Tr2|Bv@^zdHH%2wvM}GINJ>Nd<I(YL
zM$SrRGRWq!z8c6$$f<x}t!J7C|1&EeK9LS9pFX<^G7^FF&h&LO(>l2}wUl!xU56m$
z9K18&W++OpXl_wgaE6}T2{>SfT*@}Z9OtZxBxY9dSn6*xpV?p-vJrb%Rj!i2iL@>W
zCpt7da9iy~wTA^gSU#vzRbW+^t({eGfTOsSBtTf3k2^xIMa6`EUP`Zl>CD1yH|e=a
zjZID>X7CuoGxSv~ZNMN}HF^_^JnL`~2AdJboR}S3lsZl_wR5~b0rYT&(FoZysLP-p
zByxhp78JGaF{floSf4!7%mz24DpfsNwweeQ4hqeI1t7<(&D%tA_CbtMpV}d^!<Rp<
zJRO!)hc99pO^h^jhStePuUYhxf-ERbKega*BBfbACOw>)o70|{eMw{2+e|w*!YG&f
zGDP>GLakAutSRC)yEGQkXcF9*swxU51{#R)s34+bS{V#e(UKJg*dxhDW@e&5Aw>DF
zrqb{`k93W65mttNyXr?IYtl|6GZK}W!ewR5BIOFj4yNgN^jZZOpdXZx6PPTY@0e!F
z;fx={f%!w$O~x6+o&mN~!9YbmbI^1!4|y8RHDl|mOtocPcr(+#nTRf$A}5ZlY<y%?
zy-KY-^21dNBC^sT_?a}u1VPIVW)Y`I$}3|`Gk_bmztI$e6`}YP-AqXytJ)G%rBo0g
zt^g!OY|pTWiy#r;LPTX!kD^OMiD1)+C(Ta8av3YzVdL(dxT8+Y(Z|SeYp1=(>tD&9
z6$Qvc@@Zg#lxjt!)G>;g0p&|f$8KwcrZHvGuzLqxq`Gk$%b1}?m7AsV6K3~QNJ>Sw
zQr66%M&(~3Y*i@PfH*0btTN((;{MN;ihf6Cs?)Dffh?>_>Cgxw;YKY=u8_j9(J)Kf
z-0rc;j3SzF;@AQRMXs5pfv&O`QRkW}4P;iP-ZkeF87}BH1}qCKDZuwFRo@Sw;VKi^
zU`xDQQ)w-_B5ms+qHvAP-ZfQF3uSEjBbg&@Br6B7ed73zHYUz^lGSx6FcK?U5Xn1c
z>80rPNRi}NHD4D}k%zFx)Kg_H@^%$<TUEGHlSaaI%E^*fyWo|}*-fP#BiFILk^*M*
zeimxBrm0pyB`X-$=S-#8v~y~KkCdq<EICwzH;rUVjCdsuE4FtSy?Mz}1MO@v!NP;V
zRoYHDj8<cILTS7Nk+wAgBQ*$(ntTW^G%n241z$z=L?Yj)O4X`f?fxv{(nYc}ry2R|
z8P_$U97m%#|Jyp>0jd=#(W6yLuMm7q4QME&OX{(b(GK?(kqkR>!rVINV#*${0s9G>
zrS8mnc9Eorb_##9$eQz7=ER{kpLUuVQf@9&P7G18hNsB#U}my_D+U6QvfyUPY7?|j
z?<Z|8*uLNf1&^T^@R`Pwn1vj}V#MPG2J{l(Qe>Tc?vV|TAR2RD?4cvL!1}V-Lk;)l
z;kuGmRcc}+(e6$!O671^g4_tJUbP4Mpe}=rZ<HJWHLFMMa~?JlxX+AD#cjIrVYnX&
zWO<WI8B|o;l*-CfRj|WHz%Z61I+6t%m(XUN0Nmn)6$LS(&EbrwDd-Dwb`+8nk;w3s
zwH8n>U|4k}sy%s@m37PT0jkj)&wzy48k^(Q)a0`TJ6!{x>BOD9)-V;+*(vSFL;f(>
z%SOvKySmggK(M@!M6ycT)E%(18gzmzA{Bl{UcF#jE$#{xq$@c&17KCJRrEmMP<<~J
z)KlfQJ$;mrLjp?#0LEj^^VCBdS|Djxs^G>O13VjS4K^aSWg|AdlL`#@A=)zFj9kGw
z13@1|wQ342!o)oaZq|+rk2~r%jbN`L$jhz}92-3{Lz3Z3l+KxT&0D2n&01Xav=J3=
z%^|Wmx*LwWr9-)&5np6M;6q?%pL0oN6>$YNj|Dfh4!#y%OI4IqOAt$ax4DS8%$ILM
z**u%0jPawxH7@MfhP;%~KvK>a22<9}+nzwN2@P_<F`$dzwg`fZq{tO#n@kddQ4Kf|
z*eZ!-MpL4ODgZ*rq#0$02>(uRV|{jwCg$3CEHMGBvp<Gojcitlw;F+&<CrE%&`Ww+
zg2#kdW3MT?n~H*=GFMRiOIkE6d;{0Yxo5pNf&#GBlEmJuh>lqh#83iE0AqG^#S6yF
zMvW|0mSuwYB|xANmLIJ~OiqA4RC2W=nc1z3^HvUH92qzRwcen5TO9i`Evg+!32%T8
zpO2NhedwYQw=s~{-E52uTA({1%_hqTg#m(*bVcSJ8$lfGTZr0+TD_IB5aG#wjifiI
zyab(7=^zem$y3!@nFh2`GIU|p{4pi$I2Q@Rh?6bP(pnv#Gn8!AHjLFPrANlOM9|$%
z%Cnf27=bZT#=RDYE8<YNYPAerw?#4w_0j}sr;DV3FHnc{rqJSea3S3|@*3SHSZ$@|
zb@YB$%|PY#5YRvr((<I4^U}Ep$?07x&Yo#qRjM`%#h_zW)T}HN2T(#PnqgUq-M|LH
z5s1Jh^HyyLJO-r@jV`QYSIxpzA>9P*b#TB%r2})SMmC5s0_FBAZ<6_O@M0kh0B$E~
z#9YQ^K~%Sdh#+8NtA@!I1z4+jmS&71yQ~<EGfLD@_~YGld8JAVb$tN>Cb^@~)1VM<
zNH4xlP5>|sw-Chx;W5*q&`M`qk{cx5TvVbGc2!_)Sym{d81Bo?O{fzmg{t=ocOcTB
z&RDdbIcwalTJ)q9EmPH%!)5at7+hCr!LSu$Pls7sF{Qgo0mM~YmaNW4pv5#41WOAp
zfKKM+cfcue0X)LgM__46!Zs@jKmf~~x)IbxHV!$DoaPYzp2l?uF$o?hck2mUXvrJ2
z{uFAmv1I&d8jr7v2d~9lg6m8Z_yY?QRP*R5z_=Y?NjE5^jBJ?Ui`r22$$TcTV)`Qb
zZSnDrNHrYGj7d44b&M1XkI5KRe_68w)^+<GI)66$!R=$^*@$q2XuJVJpeoI?l)21=
zEp0X5^*U4)L-UeOv}O`Ebd3pi1qERN4-Njs;EWOMQ-t<S<5G$p^fHagF;=ptNZJG=
zk)|z|M>uzj+%w)O8mE*Q?g#!0oQ5AG^9{0lmSPI$6r{Zr7&(p!%GGWdopFxFN6B1-
zrVy>**rb(ORxoo98(o1Ys@Vh%zHmV%DKpXN7DZX9eHBkAgr%SpkSZUrwzy(6CltDJ
zZ6-4(E_Mm&bqWQS3iBfhPII_GQ5(W6GzF0%8<|2?jA}(gukdrZ=0N2{FrJLAf{p50
zgKN;8g%hiEsveA3J;+LM`6Pk`Riwc!FXO^N6nD-f!?EhyJ5f)L6*!_K&8FUQnb71N
zVhkV}=>^h(3{tjp++)#Np!ts{j5CnUK~HA$UXI%t^UK!I@r3^|G8IYD95n?*{0>Xh
zd`PqBgJL#8C47_FGw+*yrA$m|a85DSEREKPiYLs8xz-L<Pmj{-4CxM&CG=WNNa*xU
zjOC7Sv&JD21&DbX$At+~Odes^H!|}XCjY4AB4!M-Oi9GS4!dkkQ#0?=uz^!#Mzbh`
zEqlbUpaCc5cdc<#yW*XhKhZq=_{ethMf2NH*Q+${x)p(a`?kkE9veKymkgADHK2gS
zF0<N*ubgU!T-DUdLa{QfZV2Q(r!^rOS_x&3$<%TFBF;Tnch0=5kxXm=FRVMtncYVx
zMixP=q)<~<!?ELFDLRxXSvImdUMA8AYBuARv0o-IU)I5;ElarubA-NO3Y6eRi7}4q
zX<4>udknaW)FU=4)x=&NE+uD{dWz&g9*&)eyE?=?KO<SfZS2CACS)ZptGv>n5YMi5
z83y6#Q35Bg+!>GqDcOh`8P;9rDl)m+yD_-KP~lm;SsFKgMr(i$*`P-#I|ewU2x}ET
zD$_YEs^^cSv=}s06W$uGYYv;53+IL$zhX5wxe&ZOMm`@Qep_6_Fftgv?Zj7#k)Yzh
zI3PQ9R3Blu*o*-zqk3#=JD*0_wn29`(|v*Uq>*G;W(xLrrYtizIJFPw`!Ms8vj#36
zf}UXzu;}i%UIz0*b;#Qs&EA+=4)_FugB}9b4T^g24Ew^EXo$9sC@*h%9wuB0TM#`I
zOq#~L5?-^44<#+KF)qQe_?w~lnkmVDsT5VkWOOuTi6X%)2HcdffW<makiCfj4;iws
zt#MgUUgd@8R)7a;B)JQw{G+4IG;#oAILA4A7E(hNWwkai0_Vq`2~}M(L+F~IImg_y
zTJ*1g-KX1Gr7SWK>O%@EkO%TZ2tEk$dYv?n!$~bhL>mpu2Igm@0V9@AUc|pK=6*RH
zrSKXO1g3^EEJ|ffb3}{;S6KEn5BQ1mfVhf$-p~e=N)Zi!+EB-><RIS>iZ0{g3|$Q-
zkVD4d7zo6WfRR;=5Fpx}n8mNX@U7@R8_J~QF4qoC>BQEMab{fV0B0xWX<+OGQI)#c
z_Booa^5!|)V$rZ&Cgu<sS7F5z0k(>38uOx$B$^t4E<#{Hc5~$bDlyYz_CiU=hJnOV
zp%6|o<J|=OCYe3~P55A3OjBVmykpP45i_^E{HMbbd0aa;>~2coqD`>h0bppTekB2C
zwhA_lx%FV4GeIVB@i;$DolE-8SQ0HejKq>M3~OwZRf#erb|s%U6FOMxhnj0FO2Ye)
z%8gDj;Q=>p533|78jQzeLSy8ci+HITeyDUUBxV}}x=Dy=nAYvEvrn+vr|4%RLO=8v
z;XDx~u`wg@2>;&*OBK13$S$jWq!eE$MEU4fu@mt;GChmZNI@yv5)H@c>VVl<uiz*R
z1RYqVn+{lta1`(xBSVx&(04eWTonCOWKs>Nl*mId_z<HyDE*D#U~SoDI4ho|7f3@$
ztjoL>XK~DP#C;|mU>vz?@G$4D1&1TX^RdQ4iP0S=xV)rous298nqb7l{1KvI1+rwo
zCx`|*h3T>qgSvB7cQd7pkvt+Y<(QBe3FsPSgNwWCjWH%fXhg)JE3S)(7uz<i)l<Io
zg{EJqNg_ujrvzA4mALY{l*=$Qc}VtO;5rraVBP>af;!LD3OeZgJ_hQeA#-*H1k7J0
zd0U-if|`=@y9hbi(zH=iL0Sem7ftn&lndls$-0Kq)($X3t>2qgD0n4=n1iYYr83UH
z6-iP!9K#$ZX=Xgc2#Oce3da1Tqi$Cb@0+sqzRB5$gzkgl8De<mL>Sfh-6w@{;5PD{
zGur@ZtODYR6eo=5&yHot9%1FMik;dV?-*t!Q*&cy17U;N*Tdvxrs<g6BC*6FQzi&n
z<EAb}B*nZcs>q3n<Aw)=T^~DQxELe48XlezS;bC;6DjNyw|>O}bZqO`7=3@lT4dOn
zV%1-4m^UxXID#He1{@C{H6x)BNh!p7p%{q0E5b~6!Y^0*TDYM?if%BsiAh)JzECv+
z;so$gmfQ-=Gz)|or@IHNoL6d!=j<#D@`F~qnEB5%;l!mEJHua0xUnJvO-ui<Rf<F=
zJLz*IHBTfbbewS<0g18twlNeB(j8IN9P`%*2G5E*hW^J$!UlPmre=h}j_F-y>Fx*J
z^wLN<^5Hylsg;tEz^#_#W2KiO(73$9Yq}tKB5`iOdLvOR8R_{DDC-K}sM@u3YT*HZ
z%tL01;m~j+pxkx`h+SIqcBE0~F@x~NoDNODu@Q`0MCyxSZ-Ohko-K8e+~I)=O&KMy
zjtnh(f~I{F1}Lh+htjWxj|g4O#wqfF{lK^b(!HdTqnf%{X;Vdv3HmfZdn!F3r$sz;
z&aPS9?6meC;$+VMUr7oFoI~9j`A{Tb!6pvdc1e#I=;I$_3WwOkMCLI<H-bl(*Lnp}
z5y`ANPiLHN(za(t)A&bCk0aI)OEzb%ac6}6Xh3_PMq-xOo}4zC^1cvfhl)eW3S@{_
zQRe^yX`?5Gr_>-V#By-n)CjxEG}g+iYUX3L(&p_%j81WzRn%r`GCWboIzSz%)`Ul?
zK~THXqVzc&xDt&DO^15%;bxR$@B)ZjAp)-q)}_*qpxwi6Vi69~pn(yDZ)Q(1ogfS=
z$)M($H@FT~Pq?%$u(OCl*^#fVRBeOGE(I`jEElKmI`a}jS9<lINJ}cOHjQ~i4Ld&J
ztHb`dv>|5oYLFmk&CtZMI_#M+bi=;OBltlxq}1XSrx6>N?c`$cusd;M<}kjC`trt1
zRd(QDOsi&d{SnUHw3|d#ezvOLb_bZooSiH$DZ`IEYIYux)ISzT6VVk}fk&}8hNxLI
zPwT*?d5q(uGAuwB;sNDpJngiVu-&Tgzyu%=8enO-NO+pNkOQP?xgOM!=E{q+J1%3&
z(#ajetS?F`1>T4~Xc~n$=eT%hfy!dGOxUU4jNERBu2_?T=6Kb+!x0hgAI>OkqF?&x
zh^o?d>E?*<=O_hTME0}28luds!2v`|lj7YDhDMOMGeY($i$%co)s13Jpk6g2Hb&=V
z-DDwgZ&d`Y35d5Cl4H(QDIS=(W8_ZUG0;M*)eA5+yjbWd6q?f7rOe}r*YB`bFUiva
zZj@__5Lm_;Nun;lBci#hrcDi0Y2g{9&>Ec?O&x?KdBm*~zRW<u;SaRII4x3z;4&GY
zQb{h08JPGz=+3F>i#)LRsOi@TlbpQ>vaD9GMYD<&awej<$qOzMmDl1ni&3&QSANHO
zp*ihrEud0mo@-P<3!yv!V=ZhC;M?SUhf+K-YzC%HCOgy^9d&3O)QA`*SMG%HltZbS
zwoh%KM9F}kA&gWv8v2Ey+&S0Ef}=?BT@TP+1|b>4cNs2mM~G|7SwI?-;~nm;#4;DC
zYG4onrbNVrvK;}vLK?X@P1a)R3QMSoyn^D05YXIvNpMz|dNV87F^!BWRXdkgwU(_$
z{}Tdyrp?~_QiV<wizVL<05i2_PA{x$S~(36UOp~+ft8wI%I0M~7|#Y+j=xJg$wsg&
zvPg5abAcJJc<oryD@fHiemlvMIn=5OHND{is|6X@C!rWth5%+h!y2(-W5rjbVUY9=
zbvV3f4HGTcGKEPC*J7<cJygJuUUl}hWGjpA4WT5jpaWEtm5@Y}Jf-&sX)I(3LtS(z
zK#J<K9inNj2s({2>>Utm$);^pk)!4Nre@P^O7tCMWWg)w^izls<D9zx09qz16bNXw
zx?&ZYA*F7)qKZ;6a(l)u52<U$QVGMm2pC^ZW-c0N*)EaY%#`J%%~!D#je#vBIdWCB
zs~G@o5=RCkKOr6pOV$ekY7~b9E-KYm0VTT-^fVYgK}f=gy<k+Id&y&gqAcaK25erA
zIcM`UE01}HSUZXSmcqrNh6$n23`De4Ej#=$QYyVH%UVh{f^6c2mGa2AF^C$K)M?x5
zQm<i!^@>Eb2&9_HIxyow+XHw_;0@UjACAR47l!b@RA*yRq1sGq8Yz@H$R{%bu2El4
zoIk)kZ7tUG<E?X5r7L$Dt^hEuyk1j<JVadS6_BbE#BRUaX~t>|!k}V$!NwjM+p?fX
z#fS+V8ZZdCG<twyb=v@(BAVV5Bz9^pNDie-Br$kZDY_<r3HCT-Mk`Y#NR9dIrg4ja
zT_tTe4$jEbYfCC1E#|5yXqY%)aaC5z4#rp0{3)t}Eoov|OG~jF#%fN(jgwk&o<+r$
zq%*5CSQM5~YaZ&*RY-pHx-_AxJ8%ktDpffhFm*vAF3%ud(8dTZ0YGVF@vzc7gr;kH
ze#DoeD$A>o{Te8|=5wyKta1jVJ#2tSd7hRHC`83W$-9d&0m9=~wc=Qe#O6~eq+9_Y
zt&XyxA_f&%A%?!HDwNg&ER&uT&<3mL%2aA?G7J%Zs-#ehCDkBFQMDhXSr;~?7WO16
z^%!}J4V7Vr4hAwOG=a%g!fI(uX;7c1R)d0g@f=;QgLHrz1QshAz$ApwtHA9JN*zqZ
zfXIgAxGd<WY+a8^EM?|Op?{bPm9P^?a#7df6l)xclYU)GF4a<V(5ILIk6VEa&xF?#
z1{toeTqlq)>MSUl^HfZLzD~ncKotqK7L|Y^2>jt91(jST3`2}&M|OET>qhE2$r*(w
z-LNC3ut{2=Fjly!sD(qzvoa`Q&@wC)YhXL8AXX3~l8I^8V`PLjwak1WMX6znYbi$N
zQ2Qq{L)(tT2j*(~#&X{Qb7Jl*V&MSY=)8+8RF4H5UX)Q5kMys;5gJm+WrQ_*^#`qe
z8T^b(Rb07>i-nR(8>KBtY)~Q7AYE{-I|hBj7WH-mtfp$lwBXzq7`zg!?wFiWsAiUl
z`OhRL$XQ4wX{_t31}W(2)J+#LZ5xkTXkJ##!xqw7Rz;|tjrv}u`ZXtnG<i>8%H&D|
z5~uf4bw`Mur@>RFW_>L>0FP-F=@2s#k(pAIDM#9rndsUHdox}}D-4rhxO_?n(f6fP
z>CAVk9HVcP>Q<^?-YO~{Aot2wrhr$y97)9t7V0C_Yn!XRV(>ySMh=MrxhWMAl)^HC
zV?(ByWW6t_<SP)g5K3ENP>I-^ea24btUOV-Qmh`ULQSLLU>R(32z!C~$vvsnRF3Qf
zYr^nuaU;2#A)6tt@S;^fooQUWu|U((DvjVNYgOc;7Z)R8FR6cqlbnn(_s0^En&G5&
zVu7I`o7Ai>ky6Nlk_G^#;0uB{jf!j_jPRUl3ACWIBDll)3T@1$_Y9Po)WAfxU+)8w
zj7p45De7Ivd^&BN6oDaYf}RJM{fu{{E@?-qQlh_@j<aLalvwDRcp-p@vJ#3#q2-1>
zg73MeB|_mZR}mFCIBKo(U_Y<fNfKkq8I7PZMrm!0*|k;4Q)|WhD4ayEqY?HQtzbBe
zLgN~ZA;eDLA@KvmToZ=~yU(a~P?H<cL<}=E^ueO^%;;8*(R?LQWmv9Oh6E5ORhOr#
zSLAwmG9E=)qSh5#zp>(u>JETTS7L33ePIIAp!~-SS|)xOs9!GP6wy+**y;i^7G_wN
zkVbO(#KLHZFDH=<PMEKUrW3RyxnsGWC>&Su0#Gw$ZGg}U-nVR4aF4v+FNfZ|EaC`A
zSoW+j%w&WPN3I9pUdJff)qzL@wo65)Z&b1{D;-1yziC`>v`Zz#@rKQqMI{WmdC_Ve
zahqMlCKu)CO@^JEFM^v%MR8J7wuAC6ML98xW<@zQi+PzwZE12bsM)bjv`$03enh~F
zi-=L;kOB`SnoH+Z-R6A7nvFpfB2l?C7rdGyb1bh`Wt+++MpvhC4t{D$01@LyUg2Sr
zE1avzo`@`zirz?t3toDLs(wN54XVUhUyk~diW$e?tcp=8BnVbH#w|!-8<1k<E6c{2
z+IAMNt)%;e@Lkxr3IK{-j#0rPlecsKlXPFE!IdyCg&~@<(QJ%@azyFwJZ)WR;r=NI
zVDiY2;N40U8TTK<D=5BDE-jT-R!+)hTdZW1U&Moy^Y_3uv?(5diV9>lV)JmNsE@Fe
zL}@b>F?wecO4E>808~^Q$%3{}L9|t#2NOsWoMs9*G*ux`z9zYEIZ{(~e1i>Qq{fQz
zs4c@p2L>h?1yFIAG_~UF#T{-HyW5Fy+7RPqP>Iy6^KDB_aq?sfO>`<Cn+36pwYrjo
zB3JJS;Nr8E17l?bW+stznsy)sQGzx|96*x&nSl^w9EAl`Pfg^x)UU=|C%8O(P1lYi
z3h0*Vb!gM5h;ckxU7ohbw<TFiENmc%Bp1h=ylR7O0MVqin6guC2eR$-fO34y*4q*Z
zvF0JFYB4FHpw56(*6ct5r;~|8H#!gmhQ47>a=0JDycDPb)D>V>crvr+PE^zA<EW94
z$W779sNWNBESKes1JTc1GB-I*S>V{wm`}!u^I@D&<c-VJX{HWQBXAPUI67iy5E;&c
zgN;Dtgtac554>r{bxz{;YLot&1Qtc2CIC#zVT(;!gs7qsKA9HGF$suxj+kyI7(}UT
z4@e%Op=s(7*rx7y%2HIT;3`BsaZF~DRMQ`{tR=7(aD6T}pbG9;(bVx){&&-}p01E+
z;oy?^Qq_L|UMwJh{86hjN`=`Ah><8+LmzimiF=L2TzE_@$1+enQ*Id&AD2a4Y3MR+
zLhypJMXeq3A1X@aE-?2AQ33X6BSli0X-xtwM4)~c8FL7@(!n%IgpQ)sP$dHk8tqu6
zk46!h{ZO$~MzPW8HniY~<A4vMj7R$*4Q|J%#yPqeJ2)JJHI1qlF?K@)7$!QL6f7+@
z(lV-nB+y4rQ=I<E5Q$UiRv;Q;9;X)DNtS{}U4{z+K@lVKN(FG#4$A$j@-*<;d6ey9
z*f+yS$E2B#<d9CIsZgv8O7Rp)@p}`wc*7}Ei8V9QmKnKL&2L7=jm_6Y19m)_nXS)A
z$u~m3X(~sJ96|&`5yx@3m$e92RjWiyS^sIIOrECE3_p=1GeZf0n2Q)uc`Sw(B9+NT
zWZaF>_QBE|BNVhz+G>zy`ncsIGwfLdY@cR$%sIjfogPM2_K8!`;p@(aAbD}Th+04r
zys`lf%a%wo53g5%_1;V<Gl@n50mB7h14CF-O;>1V3yX$OkBIY*)b%oaP0gBL@!7`;
ziW!NN?dHhLP~(S1&{XMC$sJadI3`zpEaYj}62bhB#H?Z^yr827;A4+LyP9dFVre99
z)o?Vk?jO;SN_-H~y7Fwc1aeE4Xeb2`aZ^6%D#|QK+$mO1-WhXAyfQS%6EQ1Urz*@x
zFHk(8X9P%XFa%8GB-S4zPDwDtyT$r?@m<2KK@{ZROK)ssY$u1414K4Cjz{9j-{Q$Q
z<6CVdH;l}Y33uF|->g<2w_U|d0RRn3!7;o^Qs7~V^TI|e@vv7rMM5kpb_|@GnQvo>
zCu4Olt-_TCM*%3z>GcA6q6$vrmCKa?*$H=3BVqp-N)S14<3!Cu0XBIu=}#;i-iUW6
zoG@H6aFq08rGgvI^)_ngSe3=W8j4Y?vS|;9O0}r16J<wLl(M6+J_?`!%BrdkFDX}3
z4nW}T1~_LD)Pxf8MOC{tD?VIwbtl5ULFb%GP9d9xEGx-li;0C*PlReG)#=&-N$lF%
zNihr30!h9`jw&W7PFc}{gjOw3Wl-j!sY$i7s6SI!E-Fpxg{F{TrLv=_ENlF*x3(IE
zLjo3{ENs$FeOu?)R{EOWth_diwZofMm8EitMcw+&1HGxm#}~faRE?^@Gv57}mQam+
z!i<*a`LAPuP|rlI$_pK%p-i{ZUZ!m{l{L??>dG<YyUp*!$!DAv*yuR=x|hH<y6APK
z$~%A~KZ4SXBeQn(nCJ&$9EMG<hJv|9?7fqyWw@7Gk=vnBf5grjUrwX(XE|KnFgC}6
zBR|*dL}xYlCaE_0*3e0FE>?Qgv!&A>I07akb|W$Z99O#~P7`W*APti7b_Arvs!!X6
zE3Cw6(=i%0KsKVq1v0Cb9SwB>`3)=Kkf{2iVAo*yl&XQk1`tWcun6n`pHhRPLu#}W
za~Fx9uK^s9!y`_;HQMEl9K7gk;0oq(K09{yap-~Xiw7~Vd}*#+R+G!&j{1VR1DL5n
z(QH;S`^FGX;R?|WvR@xjOxs-Hm?MbYujm(S0E*yJ0}Dq$FKrFg8O~9@iv_o08%shu
z2A#_5z@JLO7>~)G)U;unR?Hmo)6^($Y{x?l1?G-`_6RW92T4p!r10|Kl2Y%3E}_&S
z6e*lkIdZdYDE*~SZXQ+|&F37Sf8+z^^oW6WO(^II+?pUlhbj$w;|*vTfjq{XO9W;-
zY?p{dm}g62u4JKhj9g{aH;=hMjqqs63iOg-2E0umnK`adY#AD3WgAngGR~A#mVD72
zx?j?HbK#{F_JN(FVf36i5sIJy{wU`hj147J^QF4V#S|R?eH=Me0|G@T(1`TGJm4bN
zsSPfp_-?Wo6{;e{WWSB7?ty>fjVmMzgP9wHq)q^3C%y$(W?s*j+nf{IA#8G`$TbDw
zl#O>o0m3o7pSLcB83y<&*AK@M)0;#v{)pQWxp7gm<TT<xH6~?|Sy&~e0Wn}D&nU8<
z1Hg*RtB8-Gd&I*QAz~u0OO`OQ%EweA<D^kbQZyBW4&74ts%0e~M(Y*q(S?ZZyLHZr
zlP1^FyL#O)r@Cj9R<t?KtTbYFJ~Y64s;0>b7AG+I+0F>yjZ~KyhV3zMXF6yP0wv+O
z;nbZ*G1g(MHHsB6I1ZxXR2qV;hQWU{#k?^L%Lq&=@u7mIVw}sXjiuBfB5r#w6Na>N
z14T&wphG&(Fx83&Xf@RwR%Nc?TXm%-SD=tew=&1JzA2Nv;L_e`J{q95ZTZOpH3qze
zT(^|yw-1?C;tEak+D}s><FI{eBX=_@kVgZz%=*^6_B{70)0ef_4Ltk*=CuS~;SOM8
zRQ$L^OY*iLpOg^2DLY=(bsew^=CBAcI+|qM7p3HVvqO-m$8Zb~UrSdBpTVAnba$%U
zMX(~AJ}DZ|k5F>b!NHH^10(iygH2?*W_ue&jc#Vi6RV!8nS*-RJ;B~f^g^x##63mI
z!09%zUA8!~*o7Uzu>rT4F=GlmPtNFw+*dHIIM1mr)N+G<S?q;e@ij*FoJ|Z`hXiL8
zN!~F{qxI$^<>W^kegt&tqH!9~iqZGvCMAGjy85HXddB`GvgJghG)lk-1Ry*WXk(UD
z#O-421e2f)<Ev81^@Qg`2p*Qfsh0pAQi)C|xk5PMdJz_U<rLWABx<Ged`*Wv&PU+Z
z6pmk@mSXv#Q|1iF83yzSl^#Lj2XkeO5vYyyXIA>TF{Y}*i5iC8?m5x}#?As+jDa&?
zA}<9qN=iTp7>f@+j%5chjsl#Sea!X+HTT<;I!q=oL*p@DP6{R`2yr0}+akqLVj82y
zyy~ca-X`~k@_x(;;_S!>)2ET`g$}2YEVfuLPh*XNZm?+;qZQS+(C39{zf$1l>k-_-
zFsu$kqPd|l)<44A$21F;Qo>_Z0d9lEh{hSNc$-!!5?vkr_%LHfJKa>Z)Rw|Sl$(N;
zxj186S_hUJpgxyl#=Pd{9VDz4Nkbh;L|jqQT*)8+sFn6DYdU(3;e0Drc5E{Rxbu$v
za~$w11VJD&I1vy^CMs~d*}o4iK$J-x!8sclTX`GIaNo!YMSMhJ9w6jV5t3U`6j;gB
zkzA$l@HL)=%DS-dSfWcjsU6|KGHutC1MtnFiATug7$<~{848OcQ6Z{{n-~B=K)$~T
z2^#5vX<v+tA4DA^DMu*ZBKwIJK<s4#mAZ8}Ow%u^yXso-yX3#L5-i%B&30zUVwPzx
zRuLXs@ZByi)72k#__qUDjc@?q$*YhjEiFX9(TGY8Yu0j>w90w5+NO4O8#2TrN6a&*
zTq+CnL7Q%UaKJ~{<VuHytl^Cwag8IY(1^Oz@Pp3ls%&(BYSF=!6!~jyU36y$56jqb
z8vzeXiX4zgRG%|I_@K42RK$Z8u80z8@Wq$}5E<9JiH7iQF+EWaz^LACgpVNV?h6em
zZA4<tb502=vZWa%9;*ov0b%=!4_xBt<sS^pGZBMTNPfgMk8k#XiO<AICg#cVHlh|&
z%W%{#B7D(Rm^mNwvTa1TQu|X!#S>Ei3|E1(R0A;%!Q?G4K9(dTpo1#iU@2_ImcyYT
z21pErjl^V+G0s{sfzn7Y46<sbc`fS9DJ^#F!E2=-jt~b}fGT`4Hk=}4x)|LcSzxfZ
zT59DIq668Uvyygsgxb&4gG|X@pJxmh1*(78Kv-#BpvdL6G!oXu=bLZaSAel`8ueD`
z>*$`KI{pYI-$^6I^dgn`a;zaLhw6)pzn(W*{22rkujm=o>&)C{RH505!Ws^?vJid|
zRB37L$(;c<j~w_0A(k<j9b6khRJPkl{D5o)>##}~XH#mncA!sG@GmF*HI+cCy=2M;
zOh?igye>&b8p&w`{1I_Rz&N$l5%CvRC1)5oA)wQSNm|<Ch&p(LIWTU^vy2NnWJbtC
zK1;{?fn4$)nA_rTS+bih=Nw*e-aAGU-P9~(8Y?*^7sl^Nxn-|(0ckBM7G2TC@J52W
zBA#e@8(ao7LH!vspSAUlF-oPazb6?tJeKOE)~b|MVMR!mH!(96wP77xbuoeE^8!)B
z%;h<$QUh%Vvm#kVsTwmb%7+M!MN5wX8`MzOHNR1&EFR{<YmD%uiMo$Pd@L=@U=XZ9
zq!IVfiBH)It7836B&$F~O*Wj#&W2h8)`!u}4k0Q{F76~S97XzC$;bf2M5M`KxQP<3
zt&(PB$RY7`VEQrYKIq0YHEj`N`M;QZfyp0QXEL-45e_b9SC2%wN6hY)Ezyt&rnV?-
zyPw49&D1c2+sGwyT_QUjXDea?XI#OX0XruJT^PLpgPP0b0<tRQVN&!rrp87qR;O^F
zUiFyd`~_&DXh!gw1~WN$p{FBKN0}MO%`D>{b53a;oLqc%3t&NYtp#c;nK+i*SfLsl
z#ZZkvg*R!wg`|&(<_s9j*<fS^GHCBGwKiZ-luPVX0OYUWds)@W6%Q*MA{xzzQ&JSG
z**;MS7TvlXKv}i^0svYp(<nlyT-hmGHZ)g9no4FsxHf#P;9B}ppuCj2<4(8?RFr5K
zHwaCX9|`GB!{<}wY=R1jWn+f=N;LIVnq{ie08S%Q86<AWFA;WyAAoCK$kYUZnn~cN
z6szVX-3OKgknI$0fWbi-eAnPcMuxNwU|@$y{gaAqxCzG0lI~Q7N)P!KTu|b}fQ63X
zXdDz1SQkp;N;YhinM5m@oXhsB%ED&Uufm{%7NLXtQ-s?R3J~}v<!GO*O~Q_0(;>%W
zl}j0*c!Io0kv3N-o^7f^u4Gfi6Y)m~>GnfMZlugbb%K1caOi*oxTw;wsA5v)L2zN5
zhzTT^W6wNWWyI)77`u@Ab|4Rw5+DMCH#Y({m&S~d9}ucqcx!`}43i)nH1|>*$Ad7V
z1=K6lV(E-Q-ja;Z04iFQxngG{nODP<9;?WThzje^)B=G%*V3Wz72BiJQrVQ!Ny(Mm
zX)J!8i}q-mj>-dT83~w5Vbw=!uE>5#1;z6kHPxI-9eq_K`Do!pPA1zewc^F%)~qNb
zH7UHFOO}bW&NR_c)d+WhjwQ-TVICSUf;HQj@Y|u*d-McKtN}0jN#OoVQBHCe7TDU7
z3z;Bupe{M6&}74s<jBC~WKMM1XhjYLJhC+@QW;6wS!xEM!k3xuJ{+Z_F9yNaw=mlT
z7h%LWB;!!-z+f+zYJ;&dl|vOSN1R*q*h|*OQJ0bhXiT&&BzIV)O9a=9j2ux0uBZ?n
zDJ~Rtu8?|JHZB~*qQV{x)ZUzuidY%w%!|dJ+qssT>37GMp_B+(v>C~5$Arh4Cl%cr
zq(jBgM$`exlQ4fyjebSR*(?$gt!njQEi`TvHbEf{3*Kmq*ieYvlt@DsikR1-A{%Bx
z*EFQ)NEOs7jw=rG?F%71SmZ(QB^(zU65!rTAU1~i1=R><hGs)UT?bP%9=)7TiHb}4
z0-)YTcL~HOy_nF2^UczlI>qdVbFwl{7ZIvx#L<qpL}e~g>?nS8sndIlI7QksCpp&g
zy3zDWAYW&ip4)UAFv`wG%F0H3JW8rYp>Rz%surL5A>U?Z`E942oQhj;Ye-)SS0>j|
zwwm@2NJ){&WgC?W($t@#(p+k!0^6t98H1%-cW^5;=8(q=0i=~Kup~D~Ce^-Vo5PfW
zhQ)=(>+xo&Q4IT)vBNUZ4fa&XDpA7_lF(d)sKpXWQxn_6(-*z+m|GmXr$kp9UkR(^
zq}qI$heXyU)g9(}=-pC_Sa@{i5{{)L{o4qdY?E}>o40NWKw&~!J-F(H(jJfp)H|*&
zC2R{T90b3O+-b&VKpSEn&oVAMDyY(hbRR_?3iEgrRQa526Z<r^%Qng(3}pjOt=fs{
zV7YIbm1TxPQk19SGgzQEpt>py^3UT=w#lSU1nP0r`c$$BTbR8{%NjRoXTT0EI}`ne
z&F>BJ_}rQcuZ(PO%{W>3|JZjUQ#WxwUGKqcY1FD>K$&_~bLDmB13zPbp3b_e<yKW{
z;d6>eVb!&!V++<0<XKy%@uJm+vCXcOmLiy+D^JP9@{CjBG9@cj*9ZX45sn!BYAY~f
zKx!bT5qoJSmouP1uB=oLM2;my>Ufstu&|gHn}P7)vVvU7)@RD!Ap=2ecvE+TWe_>7
z4k#Odl}$ToCSI$#ER-4xt*)6Cda-gB9Ckr=$TGc~m=(BCRZmTL1O5!=sG<&$RRHP4
zs%IP?ApCGssZk$@Ju^FH>-}fKR#ZZ@fzO5nQ)aipB!<D!_d^Stqppr40lbr{xn6(-
zW~z*~M-`3UNZ?6j-AJ1`d16_o!YS8<oM$TZlTdW+nJ@tBri1}&T1j?uSC@gwjfbYj
z>k`JQ2G|&X3_iEft-Zlo(v$$l<(k;NZc26g0a-^JvU7~>M+%+#_5h+3ddwGwW=O5T
zE(J|Cuw|L5XY#ZPd)(GutuQJ|N~@Hd`fx|)uG|;~k*iCGFRC`*j`P740n>RiUC#9e
z!GQ#Z4&>oVI3C0m!3>6Mj3#C**!3H3xG)+xVNFyEFsd2N^NNcma+ip%$aW_kbs#am
zHF991cyCj4Fs$rR;o68Du;K&oVX$ks%qyvOqDwIosKj!wU{tI~6TTK<6mu%JsAy1J
znc8wrBxt#;DvpJQ+g-D-4(I;id6lK=X)6wV10oc_zQm01x#Uxj(wiyOQVYTJ(KMaW
zT%lD^z`^HI6{SF=uUo>1_MdP=n?j2t0py1q4zcoSRh_BX4-5WEkunf#gCBH;@{*RR
z5QGZQKvsLa2ioK+CzPTrDr&6jkc7MfaA8VN6(M_AWFM(VTI3qYR@dz2#677Qu8)M0
zp-YRhjzE+}qZKI*M;m~uPF@1veeMF-Owtxc9L2}sFhE;U;RwC72nk9>RFRrf&9s4@
zMOsa>7EWUv?-!LlO*w$>OuSMPfNRJJk~OuK^uZve5Z_}|bD}F<sT)vUa4H+X%HonZ
zLPIb{0}$ogqPB^+)RL9z?FUz=5%wYrdk~RnZ2p6LY`1<)$LLZ`RVjd%x=J{#(Mjmd
zvFa#>`UcS^UsvQ(CI3z-1-<e3Dz*g1;GDL*41^X%19~4VjJoe8=Y{?j5(EsCisLJo
zNnLN{+8y++lju>i3}-Y+n~{Nyc!I3)nw>$43<1D~GFSz=IA}<wmkWSqQ^g;77Cd8-
z!In#fLSk_18|IV7;ixfKDEH(k!<>K@fA}&)V25JPz!)`cV)M!e^>y0mle14EQ<So7
z(@)ppz=%w|=z<)f5($(Pr|Ps~;TuKVB5Y(Ot~^;r2G%02GbvMBw%jVfK@pgO25=K!
zX&+SM>XU%}lZ3S3E=az4;5gOs18%uyTN+WHcZ7Do#0(9Lt}qjuQvHf8F5(rKm9^;i
zvO;lJ&B-H1bHtg`EL(60K2yq>w>j40)EStOU`_(k!G1Tcb}`D0?G<8X^>C=NoEbH*
zuGp1MkaQYc85zi46~{r*Q?^c$@O3761b_!}LG_NcVR_<cOcMl2$`-oOfp4owTal0v
zkyT2-frR*TW6?}q+j?5Sm!y*8z+-t=)rBF+3r<8;CW4!jYi?_YnZ|1t1-P%|8;ly>
zJP?i;Wf|0$5JZ6RpzLI(<!Mrox}?rx9f~D;U}M?C27}y1yzy*!!ds}I4|mczwb`0g
z&5KZ}x0Go4T52+&%%=*E+_mW|%2aJuv1r1$02%Ql$TNajLfMkT12KIW_7yfQxRwFv
zJ3bh66`;nv2vsK0VMpcctd$-M#3MnXFAGjzr_=-Sya)>D5GHVu`cfTe+Wg<Zn2<MB
zjlN~f3z<5}D6bV~rGgI%`huydB@=Ih=?K%XcdGiwJy)FQU9ABTLq>&|Eus|1Pz>Hz
zP8M@vs145MMX^gKdn%T*B0er<D5RM;VRsyJ;t6YqvJr6{BWmHql7CNQ`an8%Omr>F
z^cA5sENCrxr&7_A@z%0pK}%Q<W^9e5%Q13vMlc{O%}YJgvdFa>4(3>)R^S-2fMKx`
zPs*XqTGwd!D$qUjb*_#f!OzW!OBDKcwftjN=8fjg%+$Oe*Qkx4-BD!~yp#(j6*dMv
zzJqvX6i~y|t7`mgY9)SH)k`oXvSu2a;tLn<3;K35>sD2vLzUOcs3Pbwf9Be9%77tr
zEgX{8P9nJqz@Os50)kPgVJ4dCsNF&UsfrB|Xx9<JrU_2WaEz4@7;)x~<C#Ifp6M8W
zrI@y&WI~J0SgS*b0NijT?lFCaVdRSooVKaLR#1$P9smN{s<Vx7_B4e|ROU_-G@)du
zHy)vdTB{19A-o7*nl>o)!nH*&mtip(HtMIbh()w@sv|DqaTZGp<}2)?(`HfWxGmVU
z4n>s*I5iiHVg-RB44$iAEw9-+4}^wIBY>cpxkfb(wV-ngebWnSjD&?@eWgmH%5cU?
zt6U~|og>+mK=jWty&rYS3ocW&f5+o#MyQibFe3C+d)4Ek4vb(l7af4jCPkGWvHgjZ
z0~R1Ryefuy9F&ll4tu%dh2X@fCM@ojXJXYjO^xxU!!(!XA61LSZ`!cU9DON+l8+&>
zU@noF2`%j5MAFI&V5T~%Qt{^SrHaova3ocWTrzgSg<bdTnBX&Ix_}U<Sp~H+qF_u_
z+=1PzRIv|R#UTQ<D2$kgiupsf!Wi0EG|UwJ(S--I6k0L8_%!7z6T!9sgDH1hc}4kA
z>mjlzfqh2Jps-Bne>93{M}ad#ViX+la!s67<$*)DeetG-xt!5LR;gAFcoG7z41N9?
zO_RQg1>u~vyuPffaR?I)?V1aXyiY2Iu*?Sl&E>*_L|BS>2qWf{uE+e%42m#~d0yCR
z8h9;N(-DfRlAj#?)a2Taux-_4V5d?4CbbG+S~7Fn`WQ=thgmoChO<&se0j1`vi6zM
zwyVluTL(f=2aJ}B{<4K>Wb!muB}yh@wrcV=%q&ISHxpZq5*>v#W8a8Yp)~4DGIHA<
z;6H}anODMwdeavz;)xXZGy=Z4P~}!xbCH3(tm86Oin(@$`<61pz-P3M-DA*LOgM??
zIHnP&%xM}+pqe4sXZ}1__6pb`@faB)z1aNQ2<|N6xobO2S#G^iYHN~Hx^I;PjHHs=
zgXE!B^0Sb9j4_Ovykc@?WZ&(B8-pm(U0zPkQ70@Yp=iFQx|dSpqh_$~xHN-+m<EAA
zD>&E4l*CNt5`g2#gW|IZo{0|dOYmhXYB70as3fN5td{V@7~eb{k<h}(he6*Tp_Lh<
z+ZkbWv0wq=5Iuyn9r$vhiD;P|%NFL8?utnhWmo0U_B7z381=%0JfV7WNz4HWz`#2w
z^@>&&vGr&%@<*bMm59x(C7H&nMMgtpBJR*JeK&DsjNKe3lp%mFbICecaitkd=)+K*
zY4nW4ppS%A?E=igk4M@45uOzzeAFVg0K*AA;-+mUg|;)H7`fG>yjb2wr&mQt?}N(}
z8Ag>>z(iDfRw+ufA_n<Pwat00IemeJWM|nNlfniOCln6K#HRq5kievsB$A3^vueb*
zu9jRtM779M1JyY-W33Pd$f+cOVa`O+=;}t_Vm}7BaD~bvF&_=Xi(rh40Bn>iMJonK
zkcdfDv*{LL#<S@@V+Fr!#pz+wDHC|LOnP8)1VD<$v!x}q0-2{V=crK}waM{Exa|U%
z+Q9!clyQvp+AyZ@>xSOR)QvLxSxPFAs>p&*HK6}o?4PQqK!hDIUY(UHPB{3a#KTf~
zF~OO@TS-`0+;JzOK*r*xN|zcIbTLg^sZu7asusHB@>;C|u!BW3Z6qT`HTpPoUy^HB
zRF!xeq#}!^MbK~s4#x5|Fkq4nt#zKvYR;Dc9jV^3t6FgJStu!hPDVR~GII?;79vEt
zII(rxoVu+^&+67#j4lj9pMYUf16mXuyy~uH2Q(K7#<x~u-~}s&2nB_G2}NU?+)2Lf
z)(8Z*G;cMTwHM`+8uN1;NzpE#mU0{tD@rbJLJP}D{Qyj`AK_AN84Jv;h%rlo>2Pcq
zex`B1k(isc!J<z`31%@b*)iH0OB*<b^&NwQVpzsLgt$9$#6Cx%&ua52h+OA*y#s->
zU59?zDG%zarj`UpxHswzYq_GDLHQOgiej>;&Cl}riMoO1oQ#MW^$tyG%2E<LdeIia
zE~*_HF+OEn!oo4iP8XaTjcKk^*9-IvRo*YFJ&UaXVXpOmAJnYcaBA50;sOZr4Oy;+
z>_UpZ<&+-G7JNnucXr*$h&d;c`a6<0e7FP<HxK3rXpp^N^>0;6_BpR5`>gx{V|-q*
z5V9up1VPS8XV?1Im?nrQdl+Xfu{3~iM|CN94V7RL3KJnd5u_HwS`p%7e>|qVBHwS$
zC;>9BuT@amp&f3#dZ&g`fN<hv9ZTUfjoCJ0A*n+S_B#Y%r5-lsQ6-TOE>$i0HLxzN
zC^B7>myA?I(@YF%rjf@r`^I=*sUKq`W@t**p+d4Kmsp)Ck=d$mb<9V3l&T@7hPEt^
zw0#&j%I;r9s=4lPacbAX=qgR++@M{SX3|t4XPuW)z65JN3;{SWWFRa`DSS>a$Q%oO
zJ1<*RSR{8Iy2a`cX`%P7fF<Q4*mxV)*|==XQ8%uVqXaQIRGh>ZSwD6Gu~bHp+=0Nd
zIgWBGeO_up#j3*<$I}nSk7>+Tf=d~&5h05wa1>eV;gq{n(qWM&oeUz;69Cd#&@p9|
zG`5b<Bi#R^P(9)!(GwjtkH}~2tr!DV(Jz=_WuGT~YcLRY1i^}tJCjwm6$z$x3-EL)
zHPL-ZOkJ+GIlAIVvNkjH7yb=3f-r7L-v(?L$QiI7s$NAmV&;0OzMA;x7|~1Pj%)<B
z9R|BGY=~u}LaDaoEWK!zBhl4WTIU+erpe;VGL&M>d{zbL{1Nyg2J`5R>{vX5`8zh|
zRl!-N!VF5R*G@BzJgdE4D3HD}SyU;_WD;+*RBJ3WjPSfsT5ie;d`;d~yE?SPerF>A
z)JioNxvz0|fta#q$oM)AG);78+&o@d&ZUGvBF~gt%2Kk&He;d7Bn%_r&&CjuyA}5p
zi)25DWrK>$Zp89p`6y#@ge`^GNIxDRF%Sb0+qx)j9R*=F_~1?RYVy^r)3|#%r@NyL
zPO>_nW;oN*RUjs_RnM?4kk5@vSw&u=qIF8@jJzOWWowx{QtNY3B`i?Mj{cd(CS$ry
z@$zjjGYWl*MR5%J3Kffd2;?HqnK5^bPdehnY*&yiF}^^(lYCBgH<#Cq=D2J`83wF<
zsPKvT6hoFUcv~%`;>kc7co}}k0f|0s`3ja59vx9QOg~?8TZk()mo*N`Dv4vly>}rI
zI7<B4*u9S>qZsA$XDFh_d?PP9aolz50a1C)%MtP$RG6eQ<ilvwR$w?K%ize|30bNo
z3?mI1Nv!7-+~#TyKSGIGu>lZ6s!qTlTx+epM%<WS^SS<bhDuolpE!US5abwB(A_5I
z7NPPf8`%x-Hw$dX%?n^kd?t`FVerDD+#x+*<9JW8da?4TSyqx)=gyd`1I)Kf!TYLH
zC7tWIS^kV;_9o&EiS<Rq_*}bi>;On1?Nx00kq;QtqjoE(%MJ&Nj4VhTuZzzLr<TCN
z2M1{@-v^P8+NmSCDnBbY`LHp=^`J%^>(E^sai)=du`W_tICVDkn#_P1Q))Idzxt50
z869D~ZWqSI1%7WtVZoy0WWq!;y$br?wS`zP6|`rjOG1u$=jsr!HYz_(EP+r2Ay-(M
zKqwPiIl8r=2PGS7OB*ezj)`^?a^A=zT3@Uz$NK_c$%05qW-ycOuz++Ne)F}|9Y?9J
z6#Ul4WJclGD41rUE>an~5Yk$>LVT;zx|Ujf>Q{kz!#Oc3T#-_W4mhlT!0kR1#Y1aD
zU=4ibaxH3trP;+@0IomhODOZeUDkDIM#n4lCV&A-?GXa^eMrXc8}%HiGLBuKn*~?5
zioH%~t`NLR7e%wg!#p&5DIQX#{v9dnypc{9l(8ExRYK}?_Rhk&#44`Pcaf0@{y-Vt
zbiRQg|CVF+EwU>Sv}nPL0cxWa9uaPDh)c(v1ISS;9eVXJsYAp;r7=<;l7hkH1ZjmD
z7`Am}<W<CkZ^CM1To^Q~q$ok;mPVscZ981VT#Yv@6F=@UD@Bh1<RDahK#x_Yp58@6
z=n$iu7#$8PkjAi{HkBUCeG?bT?2O>1(8k2B;3_M*mkb638%(23xqlj09ncuCS&{-4
zME*jY|I(}yTYKA_JEvt<fp=mmRJuYVfH6%b2N0B8gbmp{)-8eHE__j5M(RD|*rn&j
zyfwO@=YU|Ayb))%vXOd8bW&9nSP0bZwHDu?)&iW#{CX@~QG9^-98CN-?jtth&q$4~
zvX~3*v8Zm~I&wqC(5Mx)P!<eOOe54@xyG1;2<SCrz~iEXQpY`4pd2GajvB_C$Z)!{
zaho3@tH#-k!8S%JEh~{v6x&#u>S;vN9YsemY&1s65o7dX3ZUU_B_a^9g2X9Igo?zN
zF`L`MW#I~g$351a)pF}~rhaTyDwZ&S(xOp>TXFn@Q8ke-LP<hR2K0;?%1VqBgIQ{)
zQHgDYOcqN37(*MD97PL@Rhsl|VV}CKK9j;3iJ`*GH({1i0>-~6IU8+_7AsEGib5lU
zgi&ZIRyWV!y`wC4EFp4~IT*altk}phCf-ie@&xGW9ypZmo;wZa%8yg7=q2G1e25hT
zNl%X(13%TbB;s0Wy5YgOIF0oIUX|rGggoDRZpFyhSSn_F3^Lj>Be8+guEn;B#u9Nd
z_2|pPH>a)y>E&3?o#3#lHBGBUh=$!qBQz?4Pb^eq=2#+DGS4()7jTDM*^&}`V8~#I
z;mS}|F49RuAqQ2~h9eL*68R&0hxAj?On4)5HbgDmaDC+3V}&U?={A|dupxXTfg7^*
z(~J>;aiW2|Q0dMWrPyzx_cq3{+O#hw8yAh!7-M1Bi?noB3hp?^GRE^M&eX((ydo{x
z<HZ-DtelG@;b;nrF%^-@EU36Jnt;bhU7IM~)uq-o4e82rujxH7rx=5y2R2ZSM!ue5
zcFKfqzF-Kr7$V+eS_p%bm_(OzCicK?7Hy?pkfg+rm9qM7%)0n0q(~MCp~1q~Kd=hM
zpx8x<aC&CEfOUz6ZRKRSZmQr3kcD(99`900fqHp2_^0GtBtm*KPmcG_=_R5lc5N?^
z)3J1RmhRVPHV9+0?-tO65Ht+@pU+6pETnW!4WyXX1Kc2)xNE7kS4y2}rUaFQru&k4
zI=-+Wl_9{T_$3*E=hU9V-4SLDHk%yYk?$AJ0jtzw-DnPFfW<PbSL1Q*vba<B%287#
zs*rhCQy;={sx}@n%YtJA%3q3#vBb9;%K?lurv$32HF~xPm0t3?WNlf-7HxRXhmhY=
z^Ic%vuG;#!&|F^REC#r8tOYpE*2JnJOw)Kl%%R$VwC=&Gf{|vLKgOG|m8B4e5%`-k
zXWC^raaZ%87QiH%;c{W#X=-n4H5WBIee>5H)pd_t&Jon#(r|(pR&#(x>N%-^)>Mu8
zWdKpC)K-KQCFz>i)d-&rgLFj;vY4bTo?y#n!KX15&j{bMh_b}e^7C0*q1;xYYa`N)
zkE^UhK1o)BGV(~%))OZS+$snSUW5V|g)69-_-T};C&ts5ryJ*#M<hra!A!@*yhtjI
zVIeRcql{_412^n3idW)_P@W^XA0vr1Vjg5ZzMQU<BIvfI$1V?(#>?$8e`b4a*lrm#
zvjM*eWGC=~5}$!mE6=kuZH9x&jvdl8OJo^*+$%g~ux)iJIZ6kV(zZ66R*}1q)WvC@
zHz!e)@q(d7LS;sSR@(Lwr!Nk5a8U|jt3vXjRHbfA;VZPN%2?7Z^FWL0tWCb1I+k{;
z#)-dM(TM8_>HBhI69L?VvsekBsKPL?HFSD8?xs)#I5CD?pHW)xqSo;Aw5~kM(D1n(
za^o(Q{sC*qOT}uaBX%N^{65P<{4*ARu0+tQ)sZ+&3l&kSkl2&uN+Yi^UF|%aUkcI`
z-$MXA2?sT5dl3U%l^lZ#d_0r#sw68Fno?v9RiP&4Hem+NUA$aMl+<xu6$gZnjVqPX
zhroJxH8*AzSCidg7!lP-R@9*e7M73BLb!HZ0l2-|@YJ%~Azt)8uL5B$O4WI$SX_e<
zCs0|HW15gz9Z(-<1Hp*tknkUG3cZ~J9U{aES1#bLTzr6#F|49-!6{Y83z_*e)d?M%
zm*j)?l>^BqV0E-Wu;)$cG=e?kyKz+!ZcPf@^iBkr==I@zG-lQrO9CGfvgwzUo%hi%
zQZgQ~=@r;1P7#j@V0pZ%$}|@Y+;<Y@Fxr5R27Rd5Z-_&#L&6XTXFjt2o}uKhc!_b$
zhApm{b+rdUeQL&D#Fos&!^utp*mCR=#!RO}zTGr<Ue%JJDHEm}poWKwWu3I#T81m8
zM<EPNE3_?6w7QrjrY*&u=1%l(fC-on$s~DW{Jz3@3VqG$v^ABN8GB#juTFh>%hr5C
zVa<w5p`i$@R)HS%>Y-kx;sgbfP_RBVa^(SmW^uhGOA=+SLUG~RtYc{^NeZouD@3uZ
zj4g5MXQ%yV5|_EK%SF~su#q@6gMdcgr`PiksgH$#GiDZ4iE2_<pa5yeZ4bgH(@8I-
zk%xJlX=-HY0s+d4-wEtNSqekR$>ST;Mll<QDk5Hq4=IIhhZc(}T2@4s8RLGXCQ2!?
zs!*}3Y=Sx&rSecMF&+_R1k+8&L`<1<E>7kwuC;2VqTHok%-66}jua@EJ4`+NG3AZ;
z!#V^d^0Lh}mMsS{MRIJw;>)(2WHct)j>^t6C$E=5rpHQoA&EyU4^70!zzjx==Ar<B
zt4)>0fgMaE8VR+IB&#qFu1ZBEPDsCD!c;V((?*BFRO^Yb?jmb~f+_VHo?ADL6-iE<
z(5xa5!;Jfg=?+e5YVcY%S}_-5v1kUS%FyMKrLP=*7*nYhXgd;%O>zjoSt}TY`-WMe
z_vWD@9)g(rSxgIPo+iTLN`coL)y_&dk<pb27mm5+C}B1w5$b?EjcSO}QsWbWDRGhy
z&deoe&2J=OHR<v&TQEYmU=D4FL9vTqO51k&OzV2t^<ajO$QZDWIsXiMMH%>%TCLI?
zgWk>~j&6vAPEB@-x6uPf&NMRfxz^iDF^pvdRG568jd2GJ1#xuTRG~HvP#{8wl_;ts
zM+@^Vf=_}L^8r4^Yf>NEB|S&cKA5|zkdOnNjG0|aJ6UGoUMow744EJIi3o<VwJA{~
z79Alrg;8h<GiR#=1!y|cjV?+#d=qY>)(9IWEr^bbAJ$!pDF34VqK2K{cC{G=IMHJ@
zfp;8inpMSOU=zJP(Ips?`KY@S$>lmoyJhf7p|0@a*om(@^#P19ANKHZrNOWkG<NAn
z2w@QsZjjfHv8=;f=^%>7J<W<*Vm5;H220>prWXjlh#t2I>Dn^&!uMD(R`g4#?U9s&
zsCT30lyj@wF%G7J9#vG0B&A5v)t}KvQFuy?*HHeGq@GVjA6ARw(2&`S4wQ0Y;!=DX
zLe~L@h0K)bno#ksBgc}pT|%lMGXWjn$Pr2G;)S#$d9cO~6J0UPi8}xfScJJ2g{CJ&
z-<6<`1m;YtLzM+vo5~QniKtC{PzySTqN-X0YMF&lf)w?`vH-7X?n(>?)kQXGh|;m=
zH|9K|9(srjB%O3YR$|JF3;@+u)zsR@fMdvs08{nV#HZUH;+AJQz)7b1-c+iCq-fUL
ziFkqy8wZ9mnMCedO76a#_)B?9tP)*BE_ZD4g9}VK>zHz?=tdwMbV;Ma$%thR(`za0
zW2Fc3UnT>&XuN@pwy{63G1WMIHKsRJC0N;Xa9-Jlvcv;q?HIEinw{kQugI(|e0!dg
z?;Q}AAX-)~OVwA&5rH9(YcYJ{ZiPy;T=qM1`HT%Vjl_{R2OW8by?^64Bo8jd=sP6N
zf+ZQrZ6^ydvKOwc5AAEIY?ETjE!!C#Q^#u}9U!)v&l?z<GK)opU=c-4u3CG?qvlkq
z(!AD1BMwbd5;@y5g$qsIX_%lWSQ)rD53ktQ8DG_+tcy0+t`yp$)9?%xIov;GT8gX;
zj*(d2mfmlAJW<ep19($n|GLBU)PVXJNHQ{7mW|^qR5-sXxP)N}S=#Nqji$&XuOMw7
zx<nGg6C#W<Ors^<q*+mFOrC_J0_pW!*1B=x1G3eON7v0&{0{K5BKdkoBc>JG+{Y0o
z5n-LD6oI3hv9Dby3+1JHq#fW$gbA}-6IL#>S_<jZRc_<!0e6VlEsWrcK}-|n|L`ci
zm@ad6HmW7lrorMd>95q}418JURpyjhLa~ZFR#hFq#2Uha#m8D-rce$GMPDh)3Y<U)
zaw)mg`wk;aD+~sB6j2spppf8wto9KFy#mXRD9&q2CjQXI5g6t{nMXVvgpo#*I%DAs
zc?D%yY6Wzvt?+_c#nC5U>Txu@6N6dQ>;%_C$xdwSYdB3An3;%&ly|`KaXpN>03eDH
z&}PAElohst#e{|kTQ}?*HGn{PC#qa{y1e4Lm89<zrpF4VoRTZOgc_iuV~4&GuE3-f
zm3%QzIqC$9ZZ&b@VpES8D{ApHLyQX}+#%N<UrMrESEx=4Sg6vZNx15m+r8~OZ@R}%
zqfrM|z(Nk>+p9NqojX-mWKJt48}Hh<+8o-Jb_NqA#R6h1P%~kP!#P_>l$4Rgd*s9h
zRfQHH!W5vKFu5fBQ-Qcu1@ky!HQ|6TLXQl_QjQyqHsYrWNI>F+F|;648y=g>iEyUk
z3|)CIIf!#F$@O4}a@6U?a=~LwJ=xAG#qvkI2+RmAX|wZ86cQyWVzs>n$w$BglXfKJ
z)6n{d0g04k?ua!Bbef=7Nzt%iuPiDH59RJOa%IJ~+1SZAs)uQ7ni?!9CfZh5N(g(4
z6+4TRrgA9UaytehrIMMf<O}Y6rf>UJ*$gulZ}CFX2UVC$MXGjTyvqn#DiXarC~7gY
z)C|WH$C)vU)uLrt;s0i|dyJy7SW=0WxylO-5ijzV6~vTIa-vyLNIX`N*Lf9FA5AUM
zX2=oIpi69viMVQ7=}7<$s2wnCvr_?7HLBe-a8Q)^L<mgeUZP1;UPmV!eZAmVM2zNO
z!dY>hRi2t_7`96%niz~=)--XzwdOWHA0#3Sms`Dir>5vOB%n>xXo@T77m^hKGIOes
zLIG8El~x)oo3o4UuW>qK7#pib(O|5hZ3eJq%V8VA2&|Kih<Aa*kb;p-tGomF_nNpb
z5<?IjB034CM}=3h1{hiKVgPuiO?P!ESI)u43XE1xtY<)qM2<pcoq-Yk+(sxjV(FRU
zF1-<_W;}o4%4@AC<(LGM+a9+SRV@zKfMv%Sqzqm6cEvgqkzw!bVKiVY(L(UUQ!!AB
zSdGenfI(znHdIXfa7Ip!8#QA}7XSc5YFD%-D~n$X3Ye1fa~|N$+We_a=?RAAD$9lS
z$bArkHj;msj5G49Sh1BS+9rwxY+Y4KS8ByBfC0qaw~zwK!(=0d)M7_Cm{xuW&LaAY
zVYLV5=-1b>nyLffITW#bHcXDJ8yMBgr;!*SBrq^@G2pO22LGN`m6%S9iCF<*=Dg`q
zRIi8bkOH@Ig|dRpFJpMoXyw*OF_6l&VS!ExKqo{6Ijh3Xa9pREtIAMvn4;ZultnvQ
zh-;L=EuOP6k`{6lhg4v)3F-lzRj==1jkSIyHdmB(JQdDm6#)#c%q;E{Hd7{@02`??
zQ*gaq%uq7Isuj_cnM|w65?D&D!8|j3Ypnci=rYC$Lw%8pMo{uJqI(GebA`$B)wK`K
zpKKN}Rk>;5F*K*R4><}Uyq-E2s^EPt>B}&#jI;-N2rKuJ;BRP?#zLS4#nT82UtxIx
zc6iItw^sz2szra6D<=w|n1_LIQcYDhT!nG*8pZ|hI(Eb5n$mzpGRbAyXetJZ^b(C2
z(kOlrMJa9;=9CCdrJ4mh@z=2Y6-fzZ0<*=lWko<(82u(j=OQ1&QxCGuge%jkQ3CF3
zjjm@QbWoQ$pscb@BqNT+!}=?Iz3^h<28P6`10_}|A>I`zXjU?gk>nZHnU47MFBsUk
zd&9RjdT!{lCd@IgiDfMpSMmv(<3>akn<F0PdhHt**`@8pfa4h6OcyqEW1>zRF$34I
zlLza-RA~yEp|lj^@PZ2#77CIMTxb+y?n4rcG!1Sx5^+X^QFK-|K-t?o1jec9*f^94
zV;a>vjM_`f>CSTPDM1dG?D3x6+h`{+Z+D!diMY$eSQhK`2uEWnmt%{HIr(ITD3?%I
z6q3C;E~rdU-&ATe$Al#zvsyz8NCsFY7YF1*vLS*1)|MJJ^)G`o$fPnX(z-m9E38xH
zGSFeC<JqYN<)DiTbxs?vj+3_YCDW^|$p#`8yY1;^EKdNSe;l%gX^uEuAb^1C@oW-k
z#?2d%@zFgt*$0aUFnEi>Js@&}?pm~?1$jRKxgsDN-W_XChx8BAVWkCQ+97kquy@wL
z%uSyQ3ssp0`#5_(V11w3oV$6XF+g&uO4qeoR1iI>C;L#sB{K<#mFmO9D>nCPGf*ls
zkqW0&t!{>vgWzyo*AkhK*S@F%1xt%i<PPIhLzha$L6Czv_lbS-hS%_*c5JlhHAW3#
zDH#m9A1Cg#%mMYNp_wMA8?+}GN^8{j(oMhsf{^SNj)upC?Ip|s5X)|!0Md?%f26Q5
zeveWbRKn7_0MKw&A#?@9#dsHLz7T0NcUn9*THMz(!cdqRmT5XBa0<|*nCa6t=n&XY
zmL@=M)~qTOr9P$8%^dM?re!K(pBUB-4=0Wt&<Gm%g*6Ss-c6R6Fo;G+I1)x6$8t0r
zqj$FT%Htr<%D!YeDh;CR5&4vHlS3{;Ojg7EGoEbFTvmCmds~&5T89IwOV_$2N5lQ>
zkhe%MV2Ww%IdKQ#cwve-x1u<hSe_ULKH{@8^AttGI#M$#WCX^D$UjkpVp^F@*R6<U
z-A3b)Eg#m)j-U{xQg?`cFqs?nj2Luk8MJIh7^MiZ9j1?F*>7ym%UY3Dk+apF+9_Kt
z3j$f*b}3jj0T+UkiMwE^f*W6}K_jCKkEFE_?4M!DPi-wTuIin}+y@ZihaIoexC28h
zD`z|a3P`19=EUp@G*eEK&B$c9fFOgHU9&P)56-Nkx5Ir0Gu#(ds&#-ccQG@oPO7Z~
z#&BuCv{;Cm!^mqNl3kX<h$0DO#-Wr-IauRVR7OpqO)Pj72%*x{avW6%haO>}&m~e9
z>$8Op0OOK9yUYa50Pe381)>gEqjfD~dCbm^;GC;pD1oFTG?jcgK!tOW9#AZmwKr_m
zh$SH!*ic#)@X8_e0j6J4GrjZToex}rR9`Mi^qlg-%;XXaGMpQZzV49Ym+MuuiKO9z
zRIwy5H2KC08&~)u<Y~@;zhE}2sYC9#int#p?J!qyP;7Fo|B&W_{s9SRnrAsm_^q%l
zBz%C8LX>^!B+oGiAp$2C_*l%#72F@QOftJ7BdCNC_KfQUBC2NNaF$BBFt{<f7lt4c
zkG&?Or0{4N2?VArQ{m_wrlXO?w*dnl%lu+%EskMR3W*QSn}EY84z$$l#{jrZ9%8ie
zPC2uPyX>GtEFGbiP)34J+TRRsTI4F*IKZxRg*9%~VxvlAAj5T}MAkHtV#k*Jr?z)q
z#JFb_{IQ*SEWe!?*xI?5<4|qlDjUDsNIaIOC7MYRc=Af;o+G{p*e=rqdr^E9%~ok-
zwIUs{4?+Y0jn?mmEhWam-d$?1R7wLnk!rFT6rM-LsKN#ZO%5zy%Mhg~bYQz#<Y6Zs
z<Z6PJ5dk}f7QwyD!|{Ra8Xyy4B}S}9;M+k1^E9f^uGGw4m2};NUCc^lxvbCxT%r?|
z6%LeX-B<KC7=scm%mxfjQG~`SBqz>B?zwqoqKCpaB2sTA=2ai7M-$U0<(({7sCd;5
zfXU04!U+$zEQNCewx*JrF({o%)lOg6p;e=j;Ivq~Z6(kjaUEmV*$OEyumlXxEEQ!V
zX)7EBy94ZquU1{6z%FU2cvurl#dx9!3X2X7G%sY2gJlLsGK@JUhdb2rXx^j>D^95C
z+%@A0(ZJ@W0f}dYSHC+Tni8?q1ce1G#Z|(4IW3@-VUo(=JS9Fwz~%@CgLzSE6)!`f
zE7WZ007k}Yf||hs@0OBq8ncR;1`3PUrlYhH9ost=ftVOkv~S6~5+&z-a7M;d;x^HW
zoHk(}I4mXj@H8AZpb|Z96W~S<0vOE&H5w-xqCS8mw9c%Ub+Sqd2xC58$<P#oX`47k
zAl@cHCiSwp_SjX8Gi(tN(m?(+bt^;SG-m9GBH9@Kw{hikgokk~_!QPG8BI$*VR^qy
zHRvOTk8OM#<teAb`p#)oQJR&UL9Ifcj8IZDQ|Bk!wj3$#JdIeNr>UJHYdXrm8<-om
z{g+i4N}YfZ(N@I5%UWoZr4JB>qL4bm704*iASsubO8Db)|4bM1G*;}%DCT5>w}@;;
z?V2o9AO#30HS?-0sTs_BNv7f~=UWZzb}flhbIIq4S)iowRUvaiR;uK<utE}G0nMP|
zWPmhkDNq@)aE%DPFw87tOk^V_VVYv%pnzhLf<jYx1qI9oCUhVgaA3+w=9vz=PmH*&
zgU+7uo2(p{)FcvbcG%RQ{Eb#0u`7&tki}KcSl2-x4;M=vDJ_lt)YkX&&e>TY?C{fw
z70j;S!SGpxRM3c*f{a&=Npu=}J^uYhi*gkp;s@>xF0km|qM6d8YHmx99VdZNI&Ndh
z4D-7N=*l&+s>-$Q0*IK6aCTW%ihr;;umG>;)YOK>FGNvG8NHnv<AxH)(B|4{XY7*p
zshwrcE_Y?8po`z@=@?NfgDL3Q!*vmB7^a601UAN4qdyT76u4+jU@>7|#;Khm`Uwz>
zL^V`ma%skxxjLK$yi}prfq<nS6)R}(ezcgFA%^lE*UB1asP$LYy3B*8>>%96#j5C?
zh{HX=qNE=MT2Dp><dwN-l5;*3BLU`9tQR@jt@X~ivXHld2&x^^ySB{T2&_LM(WT4O
zj#`J1Ie;8-P(Z@2E-w_A3PK(Q@a+(OS5XT{C#AnA2$6D?y-ZC0j!pPE3A^Od1Qedf
ztf{z*a1dpw?jUALvQd6MfGoKVP*b-Cgjy<A0m=7VKD7k&$e0jr5CN5w0ylZy21%#L
z8Ay6EFVRd{8IU+K3H46Yp*-S{P9SA^@WgXoM=N2Ckq08_iKlUaV29YxGO)mb4a6iE
z%FB+Z#vZM<J`^pBLUV9Jh3(;{nhJrFKi5!h!idt+EbNJ!;nJXNO%YXdK~v|*bdh21
z^I$SV?neN(BpnFBcC27qgvF;N0VhuUx0A}}1fr6Y9>I;_yGcbkmoo?AvrO}k6`6Rp
z!vOh64$UqCXOyIjlQ&<sR0bfj2p!5iAIF|i@|9p}u2cyD)Kv&5aP(>0p;nZFXqUB5
z81oy*AbOans9#I&##pq;h{LzA%Lpero7j#?dYY9Tqds8%RtTxQrX7#yBBO2rH0L@C
zo+wpFFXDV9g%)e^-vMG0YGZS5WLi=19V*4MwQjinSxgZWQ`|?8))+^{5yy<AtP*G!
zNs2(Q%r&{p7(`J>b<8PS*jiK}3f1^`=uKFrR*&-XK~$CnQM_<WMqM3jKOj;tS6bvE
z)KIXLSAfkhe@ys7wCGw)!D&}zquufX5P%vaoTTwy5GI^c5S#&ti&rv0L^bNbtthZj
zM9ld9&IoUMOlhS$@urpu0Kl6WyLZSJP;7?4U4}}19zHA{f>@*^AZ&ES37Q_vMu#{R
zMHFTZJO)z;W0(moGq=?~5qoNpZ^w=#vfm?amOXsz-o?4ZSdHaT>8WERF-B4?xoC`z
zE?NiD%1Jq9f(A*SMkL<o8D_}O%dJIn9h@O*NvIM(<1yqs$`V8(ObhR&0;X>Q7=cjI
zo`P9xltw5t5H!!wg<ZP9=G9>#_Fc_`$Wc+wHO(;7kTX_>Sq{Vnk0fJ>CmIoxY^CqF
ztfes@AKMGobS`5aC{pg&&VDwHahoGBfL#J3o?j^{Uym>YL;@~s3>~8_0ANnpZES37
z7B#ts14T{hc5HYAf?^WlP);S2B9ByUSmjLs*wjXVB@Bh3f_-bN2b+Z)tqPFCb(>=v
zm-woTEb&uI=)~w#FRoX48j65Pinh%8OxVxD`EZ7r>ZW3O9tV>(q+_x##)>@Hsea-$
zAjXtPikWw#w%bTjv@{lpB0~sJmT4wM2wCehf?12v+6WDdq^gYBg^VL)#dzH7#a8o9
zW7>P}VWwY=m`4WnGPr&xhGt+jDmF<9QQKiTf)5UWh;=T2MJW?v^kky1$3LwH0}NW5
z>l({n#s?oE-NvVHi@)PUXk(U^9x)=g*^#uPq&NH0nKF<y>lj%yiC=Wq5nj{cB|$FG
zJV0>5nyk}{7JMg-hLe~q$*3)l%^>;-`_Q6Hk$vYzj$q!)_!oc-i)35nF64(mr(&kK
z5u6dl3UT#XL_Z#t%j^qaWqz{D<;B6n4rq!%Ff)gC={!3oHO5<}cIizs5;u~J04u?Y
z?+M0QD}^gF=1ft>RQt2XlV;Zi5a`%=05mtqpe2C~ale^wB!JjU68^FvmRhQ=*JR%s
zc`u@OHyWWHBR7%bW37titY$_v4SGFA&(+LRGhA<VOgyU{u{urTNvWffrpblGd4y;+
zO8e48<YYclGh{3p-hwzxP;TQgNyUg(7C$N{hZ#j43lg_=a4|E^ke!A=!>Dycm>ZX!
zN-{uky@ZP(6^90^(a>d=U>`!XAfc%#4{eq-FQ3arMXV%9xFNl@83i?lzZv9UqV!=L
znu?-2%pNXN%$qW#Nvgygfjuy0mX9STNl_r0N?>ymeJ4SKh^f_K1fz%wk*e)7IP752
zD7H)`B?g>hTP6o)!?zY~MNFlzUbqOHBf|fqAzgVJF$=Pl01*7fcXB9JAijfR&Hy%3
zj7l&whLJ*|7o(dyio-H_D7e+KdpVXS4<lgRyK$5%GKUyiiE4{tx)(%xZE$gwVWxM4
ziZtceuwf?)KHH$3O(j7Y?pi4sR7ZqHnO<k6<s@1<Bkqq?>E>0y#|C;rDYY4U*-`Cf
z7D`0<Tys45JR0*JReML1YDIi-N2ywDhdkTgZp6)u>7}ik8`Wvs@~1g;lyx+vsu9;U
z%H~8-f{j#I$y+!rrG<Aj<($zKbFWq$DjhOFYY2i89U3i7J>$%*oJN!kk)Do`UD7wf
z^=PfBhSMKIt1_t>Y!BU=Tx#DL`s;DFqPXKx#F!L;J39x51(hS%ktnT<kUN@RBvVpU
zsEr9#(b{5G<bqZ5bQ+V%%&5cRl;tD${{PS3zktbgUFU)5KGoF(&>;Abpr>W?2%;ze
z>~5S#JwbxPlO!yF0D&eXQq%`Gx~qU9yStiQ-FQi|6<LwuvHgu4M~RX+PHZc_i9Ly&
z#GW{D?1>Y9*ON><$<26fJh@4n$tW4$?@p}P^2Ao0M0c&d_j&C)XRUL(s?iPd>_(yL
zJl0<4vH!jPwI6G9OoDH0VcQcpCc(Ts{s~e3Zgx;1+TrDt(sO{wx<X15F>$gdu;yWQ
zJTtEa+@OX-?1L9pYlggue`D-L@H)8IV?6&OAU);qLx;(+N9>TSDP|A=6AVlGc0gs6
z*Mnrt4G-6H)i^}2rWB^uI%Fr369IderL;2Q`Z?q}Qp6%?vWn8{zqlA+TGO$nE9cx}
zU8klAHXSvE&%;&(UD7cGnhHjVvHrDPX?c1oIX@tnn6AW58&RW^s5v_`dE5wk{)jBb
z^w>W(o+{Ui1TQ6=9)iUy801m&0~?ZM{%PKz+yQFVI<|@i4ZeOeoTmV8N-M{Z&KW1i
zyeoP-CG&cwW^~*@gt4lSYO*yzPwU1x>Fv6XC+6WPIL0Jgh6i$N=ph&gE(z9_7X(>%
z^vXWSE95wF+1}a;22cZ`(6t}jjH_3a#TyG374h1QU@B&-(a`Q~v!%>{GE&)-1@SN)
zGLIWA&rx+c-b~F6%3MRfIA0yjA1s#$?8wB?<;|C@O53`P50@DU%~un9?iK4{NDZqb
z52@wdDVB)P(K5(rQS6{>KsQElR|Dni(PGn{o<%|r+Ln)*oP|OM8^)STuSWpKo4Q`A
z=_SM2u}EB#JwreET9a=7WEucjmnpkW<{DmeP)MHtu^w9vh@ls)n|FN`${)y#mjivO
z5r_y^n7%TSyh0+7;S4h#SyrTU7!y7y0T<qei(i!OJIL1wWFo9M)l@vy(4cM~UKUPK
z^0YaQ02>5h1w`vgTeg>}r{j5Q1~t=2K=g{RaFI3v%2^mB6(^0fb<dBB?zWnC*=$Cw
z81;sVGlSKbTMO(aFw0h;2$x-#X0hg|Nvl&tr6EhC9FZ@_`GnIZaf-Oh)K$tNc?~~k
z*pfB4Y$@`iDc~}DbwVSsdEf!m!&$f)^MF-X7!_NbTQ)u0SCF-FOZQj7n^E(+eT=-U
z?pdxaGb6_yDi=mRFfW|mOoedPDA#ojE^^V-IBo?K0H{%e`6>b?9$3R^g&`5ZEb3VJ
zxat9eHf7+Ls7|zQHrg05#Dwdz%^ZTFD!?2w^w^2(L?|s;XVg_JBq)7BvlTprwimQQ
zG~I?;)e{?v^tFJu)Z`tv%o3TW^@Hzrq^npWpbuXGvkoE0*SJVd%zPL=L<HA6!oF9c
z`XuR^LVM<71Dxhu`LmH%Gegg@&yFs&+0TW$FI7hoQJu+1#6;^SixsZw_gcCO5jkK(
zu{T#Xw5f}R(x)d8$bnnh=+yKYTx2ln89A{QZ%c{;kfL?fon}3E9fp%!!nKq<9g(f!
z)mfx*wG3T}%&>+rhwYl788Bfs^Vm&h33Gb5Kg+MFIO0T)MPAFq)sbwZ9M&r)%1vg|
zy)<g%EQlPf-kev-j;diDL*DyiZ-Q=@;EOh|gfD~gS?F;HIISyae}&f?&AoADx2L>W
z7hA9bj|8q;9;Vk18Iig|G<{`UTTAzKad&qM4#i!Hlt6HoAcYnUF2PD$ikG563PFkm
z2?Te$K(GM8ozmh?3l!?T_f7kM-Vc0WnB@G}d!4n{+H=l~b3@aducGyq{CyVmuo+%0
zlVaM?(sgcTMFr~#{YR3Q(r4?l%-uToI-9%L&%&NvV~4WGveO_XCY{$Wzf2rxxa;H3
zc{!01jC9f*)QxWXb2%<7nbZXdxY+|p26SzrhaNyH&+AE+T_RHUx1i@pxBB;APQ?6@
zE}HV%-!)BJB&UNDUWnix*i892<E`imVXBE9u%LK%+{=<ii%rX%eMbo$Xf1^(qAQ3G
zH8|JiSJQ(W2;^-J3kOU!+B#`$R6R-ei<^92Vbswdkz$FQHnjndCbS4Aqw&UWpE=cM
z&Amm`{yL+z{^lN_E%aPlSk~5l_Gb-AfMsU#zJjqYzSXBVivW^%t|18p{H>!^uxh^$
zk2rOo{p~wgr;8aS%6%}gFMiAh(U?S@Lqe!`KWU^PYqsfRII*C5KOnT_h-~iFY6IyT
z>QCzNmH(<UHIf)5)@(0!GJM&H-KYa~;UU$zqLqc-A%70Kysl?!981iVjLjByjCuL0
zo64l^d`FAu4avuj3rIW#`GzqnonQ<4>1icutOVHjMLe1`lvzJ(qTjWe2KaqxwyH9^
z+PUT<F%yzy6lB@9<*+aGTSi#q$Rx<-j@0atV%?boaFVe-IB;de)7t0Q<Lj#rqzyU@
zBqJwZSFFX;kFDY=SI=J3+tEbFR|d$<=}oqPsHD#BB`JN#|J^+Ky2gEAM{ghjKDr~G
zOK^%ehz)NLeYb#?f;0w1hZYTstO3`ZUZd@OA?;4<DQW)r$e&&1wT<jLXFqlm6ZcGw
z5_j;gz2!@Vk0++_>nj`h$JTm&wz`b{1V%VC{deZ(6;|+cdnre|tTmu+h&DaCo~?7Q
z?|HLyZ^Ogdm)OY_NUv4b!e}gOt5E}!!f;OdachNNSG?V3?RoH+!o?>F1DWtTl4pcs
z)G2;MU*k8Pn45yNKeLBlPGx+Ewo1|*?I_{cZGrdtF!k$DgRgz5G`xxIBEG~sqE}`G
zXE&6ET^YiB$>>jq!d`;L#f(;%6#lt9O|0kAKoHLQ6VB#1Qp9d7N49&Y1sX+Ac#U1=
zE4<=qn8Uv#vDFEZe6A7m<sfJJ>&2GI1Lbl$LJpF&Wwcwkxi;bJr+o^KR#k#*p1T%)
zR_B#U`)U7~Kh+V9vDdCwY=pAE6QS2s(853S-#EA=%=vXD8<dc$v)j&2pW9*EoRDti
zTW>+fnrUUyfVW92KR>)Qkqnqn-zf-ANW6GQaZVsFL%)O#pBH>>L0Ivzavn8OHi6|N
zHweZ+-+3#>HROBj2Grk!BWG{XZa-a|^<$D_`d#<riNmR~sH7?o=fr+IlU6lTh8-(k
zMvm*xAJ)>veQ`|V<d83QrCUYMLLdtqG^qOL(2j6jk{ti`O4nAWhB7vVJqi1>)l7WT
zA<@lvegb9_6{oTn)q8<s5UmZx27O6a-Ullqmn5MA(zba?WLkzarGANHRuQ`@AyC(}
zByM&4jWHp$6A0DHs-cM<p9x)PSE{Mfh|5OocI}{J;t!yBL1Ve?+cCvLptNxrGb4+B
zG+yi6f`zWaa?C+wVL+62EPdn)suilkM5y5s)n-u{BuhK@q}!~4=s4F(D%vnS=KITz
z8*s+Q;JXz_=q(5Ohsa4UT2SfyW%E8E7azAD;W-+ApexUThF?=!>&Uo!DJ*`1oau?~
zpydQrb%u8O8aegqGpJANcf&5mA!j0~4vQrt`u(bf-hdc^9xD4~V5GEtCLPs_*Mgd@
zKN^)P$h4HbfGvZaVUR7A+9%ZSC+PJ{KO_<S4Dw85=Ozv)8YJUXJtm}~O;%YxAo|uC
z2z&bDerF#MuD)~d)YK$tEZ(ZqU9J7<O%1WOlkB&zcs4Movvo&6K*hq{KuD21P}TvQ
zbB3(KLk#$6`TatyE+`}2Xmh(io{?Qa!)`p@AAE}!eWu$14$@Qj{m~|Z7Wh1X*c2w5
z=@yy~j%2)yS9DaabzsA~Zm3n24sZDp*|NQVx{cLWDU{*487Uv90p5t;?fjQam3_sW
z_n&ZPbad|HO3?e8T)+3;dSeYPO9Ylfp_C9-*eeEWj`NeG0RG`%RP=3iJo*wqm6CM3
zCtc#Is7!ogx$@Y&3Aa0Js<qvl;&?4-i9|1ucVk@P!gEL8+TEwtOwSEINw+rP3u#H+
zeiw;`?K|s~aQ933-R1_^7~QEW6tTtw8K#l|AMR&N*t8Ly1>9D%r@OWz!#3<0uolyt
zP-b23!sC%b@T__0G+;W}iN>y=QR#QkXt3j~XBmpm=hCxEe1&uk9A@((nPg7O3<XJ$
zqt0dE%j{LncsxykR{u$bO|N=d(ljIwSLQV7;mtUn)ZWZ8nO|EUEtPQg9HN8SFxb+o
zdWFPvQHqrx&rYRT_!k5podk~mc*2=HuPiFJ_f1lX<!xm^%0F)<ybrrKdR<N}Ox<%=
zUV_bDKBbqCSn^dJj7mn(ZV<lo3Y@Vy4t_|cZxvE&E8qFPo`iz5?CX8;jo!){4SDB(
z7OW+(`sn%%VRYtt5;e3qZBs))xBXkI8b!fN9?IvRxj?QrjKJ219xOI1=4Qr(`3f8w
zD&;GUL{;cIB8htEuUuHI9#47M?t8gh!qP42`Drau{uW&5{HsN+Tn^}An_^H(%V1cs
z?X2hQmRaf^osFOwuU9dru4{P$v2E2y65o}3{&zJuK_u_L?lg$31l6lK;@hb<$GY~q
z0~}abju%OMcl|Wd^ha5soW72B=?;-?^ix<x5`z1V<L$#TN~}jI4Bj5^8%trvYwPmz
z3-QZu2!F7jF^NU+q?V2|WjN%;xgjQ2!PbZx-wxi8d#hAu<1JOq{u#z?{Fs?YsiBF%
zwk-JWg}}D_`5I(X;J8oc#8z$9W89L9R^7n_Dej$s_rzdv7G{?5?k0fb)cVRJL&w}U
zYBXeSwgMgL|AR0xNxR1<l8WeinK_=_N*2lcbCQK$-5K1ib-ZT(hC%gGb5_{y-W5!k
z*om83NfsV@zji>g%J!beny-5=Lwao-GWK&0rBY^x-UKuX&O_tfqF710nJ3kt9hCQu
z19ArWcGH)%$E$J}a!tFq#=>%p)(t*M+$?W<6LMZ9B+Y#xuq@B+-qBxvJr(_PlEe|^
zxlZ$Gw_DUfUm<?dV~8hiUP`&sY=9^&=fqpNJytboiKr+8`MaFH07mu5t@d>_!=S)F
zbvhT56T9a<&NorGBWh>Z{o8-XFeyCR_}nP}-)iAi@Ur8f#_Nl(r4w6_A9U2}c8(U(
zvZeYgVZG2YW)0~NQ27miCHSzhajRrWn{&f%{m<uFeU(XuJH7!*E3yFx$m3=9z_2E&
zH4Am!aFV%6G0lsMyb}A!IcV2PY9V(>3jSItT46(8E6^&rDF}kxB6|wYrHa+(`qp%1
zj`;7QFFI<NxDn<;L9F?GFk|pI0gqCpeiHhk`572sF>@3b7Qqy%oZM3Vjs)p~ctrHQ
zT_wkO!#T=ElB*m2Rl~>1G2_U$dnloP+gOX*lk$6)?@LrfjNMnf=}C~t7O|u5Ba6ng
zx-HD0OLbs^eO%t9;!CAt5tK<szi85%hU80;bk}$Ha|u<b7!>o+Vl?N<@{w3`h@S$9
z3cMaDg*rOBPWm=`h^@UIpZs+rzb8$}n(0YMFuHiu_p*ydPswSFu~Eq^yV`kehW_m|
zsijcv`L^qLjX76+!W)b_=FfX3e3`DUH5AQ02hsB;RAgP{vczh;geLbHX+>+V2h#mQ
zY2}!WnU`mn9u=JEZ<ObRtglA1axPJ*4F%0VbA|7wE8-KxQPfXTG_A#LSg8D>3pv0$
zZD@x6FwVeh>UP!R&9tzp!t-AlVKJhOfsM-HIP7c7Q#DqF4_9FVC2QgAbiKcu`&jMc
zD?x0lnn*P^1D7G);g3qU!7SKkt}E-OiLs@f@Xr|~ZrVKksUcZh>q>T~L#6D_-Dh_@
zgjc*pDpRwROZnOgUoA2s2qNn^tqyk{syk8#evLnU$mS_CvE@!+n8gRDt$Uav?3{Z(
z{KF|)U2}DqO5t&dIGG$I+F+j03SIrVjIFAUq;oCU#Y7s_MFgPa;ka?~f4=RSKxaLE
z86<7uY%@UBJchS0=F@-U+Q!Vt1gmOGeA(!>kkR3I>DuaENjFY)ci5}9ICE;TL-j}>
z^#+SD*)E$>8C5A-F3jF@+Tv5=&4y0Z@xA^otM$T(!#s_&5%R8A@nIVN_ekH}DjR^$
z)LZY>`0pF;C(j$Y2;8n>;G0aN-&4gh_*8gv`ffQ16noBnyPheH+G`Y3ob2F-;9+J;
zBVlc`!WQfIRM`oiB%C!NAf0fQq;p6+I0V9JT1mDRJ|v^lYuE3vwre;1k1a#K^tXas
zzxn{`T32+>SJr!~q^q211UcH1w^|EuFdyt{Jw$$XVP9rFUpu^?SWWL`q5Dv~#<3e8
zr&ZYn)8SWxZG{J})jJmkkFYCla|XT>TRIXpV#bIwyYUqt5pmItT840e<)CL8GnQi^
zuF(o!-KG|edT{~PuAAcPF2Xo#?qBdk9EjYT*8SYvy&D6*oYc;%`ORO;UL`ysv6PXh
z>U|rSFnm6;qv<ZAEzaI>aavnynBcavTp59Uomz}rKL@MoXxfFey?zv47=9vi-mb(S
zI2<v;aMpW&=*uInDh6~D$x^^j%OaIHbz?SyQtN0_wmZ`ap7bKWu<g^yvGEV(Ulf2o
zF;8WeRBS5w^;NsIvH4ZE^X7crn+6sJYblX}7pd3GVb`@iy|?o2d7}OS&TNleD-^hd
zsz08B7E04}8Wu*vtiRK(>4{3&GgX*&6&~FXv=U5UgIwYo#Vc0BYQwBKa+CO(CwCT`
zS99+KG}XUMh1|WT3k9v$u{m)~z@#2;2<0ny{1B2rz%eqStAQsyzfJ4;m;?k6bkl3d
z(@4*6S{aJAFk|->eic;<Zvs$g1E<FustJQP{+(VZy2MD`PbO-yL&d%>_kZHfu%fhJ
z>EuCnEjAFz5s4a28twlWi;k&yz4XaHN<mCMI6S^4Mg(g+ufE@5L-ir(P;BJFT{zYB
zFsf(+%F1RhH<8QcsU@Pclf&UVl*TRmmSb&3APSF-n3EuaP``Y2;o5dbr+S^aR2|w}
z!}2KG9Z}Bjue4=aRMe&a^*{P}<wFzg4wmL0VDS`zy?fzjJ>0Cn4Onvw*q<O5F=Gt{
zt6q!h%~G!q;G^}UdvFbg5MU2g$Gv;$W#u#_DXz{`)sBUC8$OhD-=^ghli2<nfz}(D
z<+?n|bJEHaZM})y4z1L_3>onBH{Tp)BoGPcsO1kXo<BOVK^}-=%g%{on=BG(q&Vqc
z`<o9#SGPsXoAyueNEP(&dmufFzM+D85WQc#nw^CK9+zN&8~gt7XJU`2+b42$38H}9
zO#NGjdQ`7l4{bRTtCP7{xu>OqODfC!StDa>RK>um>Q74F6^=tkY;@#4o}Rc|?fC}G
zuYGzr&G19@xf-uiYcKm%X%I^80quA}Q6z1FzW^crj&K!}s)<RuEC2k+{?R={1jh<?
zy&pB@ZIoPDhXJ<U)8BlBriLcAb~<JEA~IE<ufsR32Of35kMXt#<WZ<T*t+AKr9ZCi
zY1zo7q8zT7VJ<l4ouNIwcydMU{A_KY`Rh9(=90=d&zmDdbwtr!l;_Q@+9Gy+F;#1T
z)%*-dP?&bsYN4y=q;!x;<)^*^BrN(C->Jhtu9UUk{KUSg_+*mq)$XtN>@0W*6wgf;
zN;sGDCqZ^{t*_O<S9sUVj2}JQws%^zgR6_7rs23($4LhKpIbHgCwM79b^!*hO%Ngd
zOrE9XBPHETRQY{yFkv@-)XNii;tvjs6>~c%NzV_@#?8biyl(rX!Tw&3hJ0IJqFG+&
zlH+F5D?got;ZT~SC(&pA#w}dpt=u!*ROsw>PF<yM{965P?-{0LsFFyXhu-iG-lNr%
zctq^r0nk5+x@Y`Y-i!@at*@V^E1O2aMpWPa9kRoq>BrR2$2L}zZDCAMky@G^kZfad
zb*IWhCCnNyD--^&hSzM~;%Ww5mh1M%WAQF_hMh#2qc(6&-IJK=4L@2MV$@-}?RwJL
zlP<~4;tMTOYK>7h!*KfV+6V#t>GQE-_SS4w{ZTnp2<r#UnHefffYn;2ywj0bsw1fw
zzN&eq3~|E(^viwq`La(X)xMlQBZxjQp3lv8FW9TTQA0JuLVMf|P19)1Td!)C8TR;6
zo4c&l+bhrA*^Qet#8m0rvXW(i)OQ+wPBf5qS?yBr2J!RZvr;L74-{P5VKZnC3MaF?
za!zVJA>SHb%I6n(uNS<bzYNV(9=G~~7($RF@iCuO*h70_*_^&g|F^RdVK!J8^C@Fx
z*h)u{BFUneeI0yXzm3L$&Tyj6_A|leZpWbrSw9&G=d;7bCl5*olU#uhIyI4Yhd&l(
zs-ycFlg+!`1QVX2A?|rDYn+K1`lxX8iL8uPaGvhPq0B&nbhu)zp!N=*kM#<BI;R}9
zw>}I^mU{NIS{3Eft{QbT*TH3CQcj(_)SpG!8Im?UZMTkr2|W_%nfgvS0Z$Ru?{dt-
zx)WCNJI<fvo8H0LJDRmSB+<TGtx^W4F0?{-Yh`~(8hxdZvKhu`;^kfRX1LKT`RGPE
z6*MiSFORL>C+SIrW^PjWRpSocx&5L`{WdAfN}>{Ta|IYxJ#L}oyirl<o6~ttf_;iA
zgG?M=-ljAHM@2b8Ojr~enyX*cs}{b_oh^phSu9cY`8eM33e~f$%0;oSd}oLILMPH3
zwcX-3MO}4W<S2Ow4;3Iz_-@<34i%*D|1(I7G?)&-%bm759LZFz*^%jppJW^gVaoJX
zV9NQ*(QDwQ{3CkapTT%L(QBKOL?dg302`-_O!M7Kun(-WiA0zkE5#MP5n#qABCVDl
zdF9AqH$3K0;Kp^XxZKKfvPL}Mx_(!ADClGz?E8Hoq1nj;)<ao68M1d(8;_UgFKn+)
zeO~JNlEn7qr{xh_PA56N79y2LQAw9%Xg=C(vlN@mLHyd$Fe;nCF?<*KtzJnEiCUIX
z$pha&>JZ*{q+2%{{bn{*%^pfpfUQe7gUiFp#^3rEUzSS-hWt4-bej)5N7xcrpMnZC
zv&^B&>`r$D9MLnTR!xuhCq0DYYyVSj7(K4ElV%8(6W$bU%KwNYWYw$eWv8lP8#Ra2
z1BG}{W|2-%f1`HY-+6OV*m#ecast#3sueAXsA5jMbZiO=eDYLvx6JL)-M@5vFE&ac
z)})?Y+}idiDNO;Bwx%`ybSU4jbB9ivLWQddp}~#luG@?=Q1kty3u&nEj6GF#r)!OJ
z_BJ#?d7Rt3v#C<7{q~^hLR<G{H+Z*uGWhgeNMBDR0mVaRZ>;xszJq4dc?0XfUN<hF
zUA!OH#5`!~V73`hiV`Wf=t+HuJMcJer5-}Ofb>P~P5$OAJbrlBV4%EG%uA`SQINIx
z1s>BhO*yUR8Dh>NWiM!@kqDf(-0cX4qBxbSIYw@lBb8+U>@{oF1cQ*_IKMP(d0EAb
z3cZy73p{c9S>+XR_CrI(MBEN-i%zuKY(eDV&NSnYsZ`Rf%lO1fxNOEt`H_rzPr1Ik
zpaOBF)|97LF-B}lzjC&Ra*i=eiw8zLlD<k+u?kJL6eE`>JwqF*HrUNtlD7Jt4y7~p
zD=G}n*7q}^xbm5UP@nG2^y?Ktx{B5GnziENY7Dly5ttDzN~4d_hO)j9&SVZS7S*^)
zxg;LKON;jRsrud8EUz%wYGi220n|^LZg4&rZZOYN5hJel9GQI;?H+b^_HtGI5*Tuu
zbWvKgTgP{m6%@cbsH$*Yy&Y7ff+XoRDe?$llq<p<mL6Tb6rGYm<IISkx2c#lI}64?
zDNu0oKBqBekAqJB09_Pc^PbZ5-si2O`%-g<`xRHc{w&$meb0t=zlJjYR_Eq_@w#|F
zFMd5lFGVy_g^JDQYj8)At_jmyH+_i(In3ul@}}LS$|MNif8!hezlx@;GWUjtM-vG9
zwe^3lZIlGI2BuI^bI9vpA}%IpT4Zb`zl=5^#~v2!=w2@jf5Bx>G~^xM7IGRNlgK&3
zzfAo-@q=Zaf^%N&SC&D3i8MTDtlzd1ln#m)b>nr$-&ieR^fta^bU|CGfO=omzcFk!
zNU`9fo$0p*bLOy>*qqoK2|`S|8Ab*nfOFfsU2-eH(zPjj-a-2x*8wkhLCD3rdTy@C
zK{gJb4~u*OL)&)KE>_TdWY4y%j=3(h5{*sZ1JwrqqHizVN@Eh2I>FvRhcRybC(O$H
z$kE(Rh213riX)Q#o}<wpcaPiR;4WG-jv>K>HZsF=S&w&HV}@f_;2|a<xt2nPggwj5
zT#pmUYC*{}qlrIs+*neYX4w4FQx{jLS1<J{&WYmVrEBvW<%@TM`nc|oPz7|ptsHmr
z6SVQOIl8p9Zhu#Hxf%?eP(c+>mvGq)S-j{xkej>?8nNEFBW(FL(D{f)cuo3q;0-PN
zChtwm1koJ&m7$p=E73*wAbEo!i&W#U1H8ZtA;;=e%yfB_S$fg(!NfPJq_c>4_&7BF
zW0HE;%(fYI(WJF)nEx`luYeiUbBjIzLSLR%uun7)!s;O4O>G%k^?h7uYPl74UMwgi
zYTm~6!$F%?iF1T=8M;9zY9>dxkbub+M~dzG!klKEGhl^iW7$L{rHzU$hSMWcPirJP
zNgb(D`-tOdSwJdEd)T+N^7gxjX+a0N@CG~DeVF>d`rY%ar_&JxMI@i>A3z^mi25hW
zGtGcXn$E9}S~dhuk`ia2atdEsCN2I=cMUECIukS4y!0zc(#?FGyOb`wwv+WK-Q^h|
z=U-*(haylfhn!r1g--$>m+$a5yn8hhBr3RV6r|k}YJX(wvBZ~fdZg`ARx)X4m<6T1
zBom*e6q=<L5PM6}L7sumpg$xj4!XL9yRFq;{4&>@@<C=tFvhI3LD{pJ7W4?*4wOPV
z?v+iI$#9Bwy2dCqYKaTe>M8J;DnUd?ES7R(iw8$d%pUJ8%-26*Xv~Q|O^-dURG}I-
zz|;Ax!LV0&B(og_|8GN+Fx)U)4#^lBO>)PXG(Z#g;E+^c5_Jw_eBKK?;-IlX=qG5`
zi2FtrP<qZLu^w?K$)s8?%dw7&M}QR+EVJ)>`)NO3eVp)Q7$D)GM5If5n?>20=r6?c
zdtU>96irH!=CXZ7U3_prss)r-HNAgbarS%0BBAv_+3k0nl%Cnx%J%Dr(j}Z!@o9Ak
z$_~ak7jZmp%lV~`odohK=GUuiYPmHcAy7|6TGmG*$pNipuYXFS23u73XMgD5AB?;{
zGx^oB?(mT&gVOe?xcETcx&G=;Uyk^VyN>s+pH+j3iRQz<0k^Ct{QU@Xezr(byCelw
z=~FP}o|7q)6B)11ehZLO^QT-rUh{LLv^}y@8;zp)eYi5L^U1|&alqKTatC1SC(+EM
zVARLQQb}}zK3`m5eP##T@N;F#5awS#qk0rQ;z|m2)a8ik8MWl7<W^YJ6X7bPucD5P
zG;(>+$g^&ZwbHtN*Guk5@FFCUzBZdv$vJj8OHkXpwqvE|uJ<BBS1x(~Uqla)ZbfxN
z`)2gQk5P>ExTtUr+t0@2IfqSl&RY?=dulbwich=Uo7{slzzt9BV=c1;wM4FlZFeIv
zqfFnaY6+~FDD!;VOeoCBWeE+48n3Hk#n*hrQVNoHpX}4fN6F>|Z(<&fyAbHov+1o9
z?73K(swwN5D7g$J5s477;aA~1i3E|JYlWT-j))iA`3eOU@avpT=JG-(9p|w;Lr#Z2
zT6~OoRAOS!m<#Rp<i(nH*u74KUnaMxv~N$+RxG=}o`=M}QPs`oICY9t2Htm0vdt0I
zMP?&jBoXEVn$};*#;BG&-TWT*Q5zwxyQ&83z^}y8^5wawnj4Os$pt&>-f;-%h+*i<
z^V+d*l-!B-GS`$#X4LP(#6Hj83Qc{>N;hU4WMs26$|tQ9bQQzE-BLgR-Xfug;#15O
zOdYsGSF6JKJ_*R~-_*Y3k>Gf;Ie2`UMJXvoQxB1kF%e;xHCwCyE?IizA$m~wxKk%J
zY=z5jqb+axz3l@qv}ycih7wxr)Ts(jS5RLOS-R3-B46@%dq@ly^n~oMdvq$MmaPmi
zE%OoYTpLVThZZwSzCookOs@iSy1-VA3V2Kj@SPmpwE6Muc|U(ZjqlUaXt#`}xGxD!
zvF<Hwo5~q*RJu@9M>YF3m8!HKxL-MkQr?J1SpT&0JMTDe7F54&A>6uA`?prxqH$gW
z00FCdO&vsKbMh<=!_@=@sTS2`F;p?i-Ui#(a0aEg;WmXUs>^3VtSl0Sp5#s0S~aau
zj{LG>EHa;=$Vv4fhUfr0cYb7?RSU7nBJ%PCJ7CMpwW)xwBe<7>gN3YHM>QP<bsf{E
zG-?3l*@)d-APmdCDtis|7JFL<%L7=4+^)LvzM?k^z4Ak;KNIed4U0_K7=th;z459)
z^Z<3Z*NY7=h(g|?vM|edDhkLsUj=KWfNj)M|0HJgvrhNKQ#Y2_nZ8x;DdkwksJUg}
zw8f@~?Yr0r06~iOZ+<WJXlljx(#sk~Yy$bHw1ZJ>H8_1cQ1to1N;5&)(WL{Dweu}1
zbq}q4&$LCg7OjC`I(C%3uahL3bnYcyx!!!->C6RohMu%pCWwK>9GNijMH%<Eplf;c
zQHgV<A=It8G7@jifefyfc|9&|f_B1GM$(v-w&fPi2aa5z=fm~}Q2SwpeJI`~i@W#!
zL2HLa8cWTR!tL$jrjiCbP*Q1m2A#l)jKtdVN#yeZLH(QgQFTY*xl^(d`C)}e0^CH4
zj!SZ029J1+M5RDtf})LN)av9SciZwO!riRpxlD*$ONq6HAos>~gn12_N_kc=w@4yj
zLZSXsF|5ka6lM*gb6R2-av{~5B+D!Qs#RCjg91s>kCnLZCs^9%S{p8Ixs5Q}2m=^|
z!&)nHO_3W#ds`dw8jf5!UZ{-9X8+rcaxL*>qGQuFwhG63OmJ8T66);vaWz<m2%hHU
z`{aPspK)!BE+#~kff{UGPy4My6_icpk;Yn{#@qLN+D83d1YA;qj)&YfeRtoX*Sp2f
z8L)A84#kL<F$YdFd1|P9FDTz<>tz+yVbKc@{#6~rq4{md<-Uv#8+yMjZ^3#kQ9>{}
z_<Q#{y5?JC{{4(`ud@p8#{I6t&qLA_>EM3CoaG13ECPBbQ`Oy9vh1=!Y8hHz=<n{0
zq2;Wzaan_{_nNHP_>BifnYQX6>?5l+ZSOnsjCm*Dx!tP_|IwD_XV<A}nqjUl=dgdb
zYcYwcW~Qw!i0CxUZ_7~y$@-3H!&qx6wj?&@Rxzpcsy?c|t5ULCib-b&lekH?uw@WE
zxNUq^+)(WBAqXK~sgUmaYb=Yfcpj5#sS48ZZB2bxC;S~Z)fBc0YT0yyGp~p+{uGiA
zfh7Q258?b90F^oGN%u3|bfIB~&*#XE3KS3Jus<GQhPc<BtDpIyl4=k$_8&QG8Jz^N
zxJ`bM1GPFltPgVBR|Lq79hA$HdAu<t5^(<A<k0{VWgI`v%SVni8xi?p;8b%xX-CRn
zF)x<#?#H>x@udPE*#0j8EhslpJFl*)C)n2>=Z~vMoe5i@5J`PQx9&XKUkeP&YDP?w
zdbRv1lBRvuR4bRjHae+(z~|X{J=}DDkpFi5xrlNp`5v1!9^>7t`IrG6l2ny~tq!>{
zc31&!f#d?dvrQ@EGN}C|xqbIQxheZ!R)Nqw#9tm;vfCfP#FrHc3?=|=vlb14?HCAe
zTq_qE7aHCyPWBL00b$*6XsY_=Vqy_s^AAWZ4dv`AVYA|(Gj~1F62@SKbeFvWb9psK
z0RaO@)vJ08A3ag2`^Nv_xn<4GlG#R(aqdrqbAd=_)gognN_8uayvk3@oC-FB>F1Ms
zbj<;mW%a^2<I&0tE<hFU74{IVIL8R-PA=RrP8|y&xr%X^xcJJ@hOS#fS60oJfT09g
zV468F$f4(BVT>FrN{>pTt`93@()GXa%TjpEuCPT<@p;Ri-7%YVwOKFVpcgmO>za4y
z?LxUSA8<e~kh}0WS2k|8m&z<%`3w8=J_jT9pMK*db!l|dwm>@YKMq!jWNFQo%#3bv
z!CrM02vQrulCf3U6`qaSuDz9e+TCsP3zi#jQvP$|WU$Gj^duT_t2lqJ+KNOG8^U-l
zOX3dwr6&d9owC6Dj%;I2SS2BnR>h%^APF^G0RWy>I@CLSyB68W$pJwB-0HA)c-||{
z<#&Ec1MR7@!{9b(E3C>iwG+M)Y6`Lx6aXQs9O`{O?FA+RHWEy2aU1S0+U7g}q^e_D
z{x@}iTCTO3zg$_dJSzvl=-H{6W3Br7g%{+p>}YpL$jLLVel;I3SEQ8x1C6=K3RiPs
zhqmQl?j&_$mvVlo4S<>>hcK?Vxi**XFP}qBWmn=}wlH(ZPt016rFbCuztz|O2==`L
zSMre&0p$Z^eyKXsN#>$b${Hu#tnaB#1lz<Mz@6e#tJc_%tmS?-jKO;QYcMK$g*nvE
zo>9`j6jag3`b5ifc_b_1I@v7yT;lIwS<}g{pOC~0_@|y%H%4?968`P1b&^GBRmp>8
z$YO{|hjwzFmg4lRE%3F)lnC>=7SnE>=98ME9~kmH{;dsm2W`VAia910C(2l2;%`Et
zO68f^0(aT!;U|)NyI=xx$D;l1T(E7vtx>Q80|zW!A!y_tx?i*;O$3z#X!CqVpzlnw
z-Y_8(s3R<Hcv6LFaEL$7t+H-~<r=0=30=DF<(apuIr0b_oCrku!R!Hss+ev$rjWQ?
zoj5EtL%Y3#4(&%{Xc{Xb!!NnIR>1@#ry$!CSGJXJ@nV;%efih(G^UTT{mipI(_2kz
z9I}9Jimpe(8`6lh>}lJ4kiT;p-6`hc3|TaaQUZ%2L`(%`Z|7wTqg$gSsrz%BBRf1D
z^&k5yK|lL2f10&^NKThZYI@$Dy*xQ`<ksx$L++@sLJFe&^fzkht{tXr8{U|ocO0=Z
zF(J9Czzj?MD{zg)S7-exmF^0MJwf-jPkzue&hm_^PV*tWx3W#q=$rv1H;Zc0$W9&8
zEK7r6$C_2hH;8>k@<PPE0=^!)4fnrR>7>3>4Z(S!I8t<ou$Vn8+3Wm35L5!_;aU{C
zY}!})t!gw$HlX4T8jweGMK`s2Fs&UL-yPHUzqI_TOe)j}ISzaSP}yg~!Uk-ArHQ3e
zM6KpX<#XM&CxkM>)*-k8nfj4><@!4SlvfO>gSqxsuNe1d`$0@kDv3m&G43mn8B{bd
z%&0r^2<V>)ur+BP&_l^Evt%XxB8VLC(P~j;?QJ<G*}^@su*Qa0!3Y&lEGJ1?tCbl>
z(GA+qzASljeb3<Fip=Ss2HVdDFw@h0LeXa%G3(a{gaqH;!4(dTcM^b>8Osx7^gl=~
zFLoBA7tL3L*qBzfT|Rp>IL7sQ)#D_?N_N9~u%mfIy(ys9z`E`6fP=5}g@z-auz_e*
zij4Ji2v$IS9qBWOA-5!V(AMF@qy_K3O=9QR2#5~Y^DyVswBi#t5CIgnoIfUHRbLNs
zY-J`lQo`)YF}21e=)jocOFOwakJYG{I%OMV4484cjKSR+mb>or^Z63)(cewgFb`{n
zCH2zzBHjE|Bda|=Y>4~4q4DEa>Ijugc|>9Lm~NmwtgBksYh0R}u>1{+&>ieuB&k*;
zBMTKO*tpbu>b0dIC|ccGVRr#oFS?J&asS^KOx^nQm{BnA2Di~0Oq|AH>042`y+%1K
z2Vetpk4mW;oz}oyk|Fv<>T-E!bl*w2beO*@HOClQiq&<7Bn>aUdtfA-(-bq?J>M)v
zv-WI2q{uE}3%Q%^I%mm>1cHjryYmsL>tuP)O0qp}k7$MNJY{`0bd&0l7~#{OP%_@w
zaOahTLRdSF+?ESLHHfNYi^qoxNpXFz&!v<=I1ZEo)y{Y>x6bV1-?gq@mxbF6bF0$|
z3W9LLxlT66x?b^B{;lzDXVD_p9G?NiT~IW=uz{WEcjt#(DlyIFR8;s)x;w}cM;Mk*
zgzEEQgKMj84>vDu)hw3fa9`37D2F{>ZXF*saEI*Zi`y&7HW-k)Sq4%&0Hw5R5%S9i
zgOKpR;Rlto)uTS!JymSm8x5)^U63(9#do(|OdvVrXM-FhSxCv3M!{#no9%$gJeKNq
z&zy64`Q6?8^LEQ;-wg6C;kqzuIJVIWiDdHw5+Cg?RkYi><S)ZbnwKuLOdTx6r3@j0
z%Hi-llm1da2e71+Q9V{@(?>#xIMxpY_Mvvr@ljkdtxUm)2{{%lP8o%O+c?fXU%l9j
znzY4w+@FRz;+4BJ`MlYz(?u*bgeEwW@7pV>gX?=B)vTmSJ0Wat;9zby%V5Q8phG0}
zV(02MT<SZYI;PsnND9AP1eNy&(cuXTbRhf<Hp2gB0cpgtjaNAjsjigxi;Sv8Km3de
zZeZ?MeB<$29!C;I&JwOnx#TVuf`)BMmh#<KC&Dvv)T3#eHUGxsA1`+ch~go>kV~IM
zC{_t3YINdGq*79N;E3P7&`@t+x^DiFLr~Ky-*$R>5kmG}k`6c8ajHRcZqnw0$*)#8
zrah8pXm?DFw-VqfIRAE64ld5}3_GT;fifJZnW*I3bvXn!FPGSs7{RSeFvCml6}bK4
zK)yK@?Kq`k0mlw6NhjVeKpojiUjU57XZdhHN4sby7Vd=Or7Is0SXA6dOwb@Q)n-!M
z$Op@Zi@kkhD#m26*w4YzpV|TJ&rD@jE)Sw~2f@S~a1hk}$7Hsk;Ry~GxF~{U7H%G(
zpAw}RWg`mbz^1=^FpdG8xeZHk<kj0V+Cwcx_KWMP8T%_O@4%9ew&gD6Xj4N;mr_B@
zAKe~R7Z)tyKefqezsDmcVCai;S114tNnc{mYT4|Y;VPMVo%;OL7DDG4Tg+>EF;V`H
zoxYIPmmiSl=C5}8*NTcKvJja$0(W!(PQy1&Pl)_q2)t!Qq~}bpj!Orw1+H<3J#?u&
zl+Ou_3ukW4J<0;)Emm>xUQQ+=HU2rOrH-vFSZdVi+~jPn0w)FRH#jrtO#5{A2C5;A
zS@roGL%H36aweTy{x#K}K(tZAN*c203q2`T#fj2X4%2OA-Df^Va`7sRj&!VF9#v5N
z?#MU4LmLfUoQB3VyVqm+jF1SGu2;h9XSz1<kJtLGRk$nVf?;98z7jrxMd`qjP`Xy8
zRv3=(d^wVM|F}_>DtXvLoIuG5j1M7~Rlt>BAk4KWLC|6oRKsf|C}n^IL_x_p(vS>`
zY?HQAuNMt5%+E8<asqU!T{OLTkbZ{+itK{{Sp3P}bWdu_%bzHCgT`*fS+pmWwIMVk
zYbiREG$$J5dD(YqYr>>&_FOFlPcSJbM>WdAP*}ThxZLJa*1uNI108_AX2&v`3)<s$
zjQ>+VTYV!P6lSKI6yU8LvpzlP@Bn||;#lLv23|x~*=i}pPxz*yVhFkA4`mfg9#EaL
zh(8P#-O-6VzbrlkzcsHF2Su21@{;y&_4FHd@%<`-EL08)B5aY9Jv<7Ms#pKsydQwn
z_C9)Br;sdy$lIT5r1@m=#bCI|w=*3MFaNy(4<)mL`;eDZu=)*dJyv;8E}tw>o?A6H
zK5es%IR=R0m<s``o+A!(H#uA_Sx$;G$X&!3!BokJ{cVl9>raVd@_Bz2lCx=p`Si-t
z&otli)@A1b<SlPEn#*3j(U$&g3@zqFWE^0Lg+YuVup=*|JB|(kPfW|B-R`tQei{G0
zKtP%ot2*}Iw&fePHR*%5#a5rXhuOpYn+2wzl^Y>gDA@nEtz#qDa69mO$BY-914svV
z|5!@u6+LU-m3>ru<gDO?$IY13jR5$R6pPg59L#EE!&?itzHUL-{DYW_6yRYw><%D9
zfw9uz)3w)kZnbh7A@34coXqN(8E#dq1jG#>08HDOH=&hue9&DK&fPWODv{^h`e_5n
z?AlpIQH&&DV-AN5m?7xq9i(0*?mjQV!i+gG^}?&(eVfoy5Cm@#tu0S#>nM6YU2Eb^
zB48yhHRX)}g$}G(Ue{}w>1(7R{gMv7&ar&P=ZJ#O&ET$=x;+l?zr7I~*yu(i>PAGJ
zFca~;@GlvFN=)V_E0t^EHQx&j9V{$Gv2U?rAa4I&lhO+>@k2cjf-zmu_gBnc>u(F9
z^FbE~eIVEV(S}2J0uTl);uN&l6P<lqm(2uFu%uK?{H13@ruV(gCIr@Q*t<|tew(J2
zg?KZ^<`p=}PEh*Hs%iB77dXmRjU>KNVY`=7n_z93vH@`(6(#bZTsc{~uAq9cgFV9%
zU72x?$>$?UZi=F$sOh+At+GuuTMJSq8R>WU?7^u~vx}atd8Ld)0q&l2-)vH{d1zxN
zsr9KH(oqfZ<g0s84YY;L8+`WuFnl+ITU+#d&?Hh0W5LM)b#`Mjqx)^AIsqZC%GcHS
z9A0$(ZCiZyrg;kU2oh_~6Kim`eh1oni^^pY%##JM&*tEH?}Rm-aww2vf3@8mU9o!)
z$mawMo7S<ciPo|~l}vuMt=zP>gW+a0=ZUH-b1_pgU*6)%5UzKXwi(maO>uA8b5gl3
zmkIZEX`8V$ACVpGCJ&NHvJii+04v^XC_S*4s9U><yvO!`NvO}sdts`LlM9BmRgoQT
z)(ldKVR*O}T1b^9%(}>0(BeIah1W`03UunudM8cuhf&D>$0+$x83#Gke;DPscMaLs
zD)AlFDYi<Tq2e2@auUYnQpgUWc%KO;Ay~7E_(l8)?|*y_cJ@Wrg)DOB%B$?I*5SRV
zTXEotou8Uo1d9eZqg`i^;vf9$hQN|Fhhp=V&$T)YZDE$6VBdc(I}R;aW^yE&8{;i}
zSe1Akd5&Ame;C+a{-m0)z%$#<za{)^U?~;_(h)SN8(_9B44Kl%Q1KT2Kyr%jes-Y2
zY$*(?!COGV$>%ryrhC4&w3<fW+c3m2nkX6(Tpde3x7n!s`@QrT!zSLOZLw~?g)swU
zZsEz`rYS+tljZGp8ZDn$J`-OdA1K^&XN~HE$M1VOILU$ZDCoFOMcl91Fo60nNF>fr
zO~b%G5dR&6BjPtZ*Ns}$mM*!LQ(3;1a2Rsv`%Tn;0#>4*^s)>^ll%)}op5&HkCV9Z
zU1}A2Pj*V>jywSP<jMCbvKm#4F1`QzX=_8vb4DFj8_{;9EL?ICd5b1rD7R`f5{(C9
zW=|G6&XA>{(6R?ZPb!_~hU@7@T4(FNM-SG#)&@Ggr{i75$;aiz<=&6Op}8HsPPEQ9
zNZ{62%MUSeHMqF^F(&^Ie_F9=iP=$^+*L6D+IJs~Th8hKpmPFX3#XFJs_*FQF39jR
zxxI&>n&p_Zp2UfD(eTT7RBj%%YwhLgKn$+@tOl0L%P#kB+vb>+|LSRsuG^*HbAIWE
z=x5Ou6ZBEIItC6@8*(<<=1P2OCxF%Eu^>8Rb2rhum-K?rNPMKe6w;E_F4nw6A8u>1
z1fe+zoBu=zoRotEZnE&oAJclu%N=Z5rzdNV&K=UY`~Jy;r%2~@#dT1nt?$tlS?kKt
zm9RkvV47PeH>M?v3_b7D(JxV#FR%qf3GzHbUt2js_;Ct_x+%`uC^P^qalnY^xOq>6
z$aC9H!kF}PZyHTn|7F8f|HVQ=d{!wwBT-ym%tIssCLwgjx(J$F#k{suJ!O72PEz(e
zS)xNlHb8Nu;+*>1Q^^5%_LjGr=_ZvR%4%RCY}xM+JncKFylF}`5wYN2vhWAnphf4e
z=l-v5*{L<GEIb?~C;VGA@yl@nvK@wN0Yjq1T%>@;jddv%DBLcuDr6gC4sVjILBXHc
zmvbON3`zLbGC>>}E^#k!7+P)qxNUg!PpU{#F-F;3$&H0l{aov*p9;B_@Ti}rM(N(c
z(gg;6d6808^;!Q%EyaDiz2w5&fR!x<rl*^BldDDOxw1Rigslipw$_Q@EqjolILo-%
zAJ`Yz&fHvf)>QBJv1$w{L4s#3CRa<Qv1QQEhOK!?NyqxttEESFBUP5j&&urWkff(Y
zfsXWeWp13oUh>CT)e3UIwjMH*D`^aH6YL}1#b<YevQky318m)3fYo<to2vBHOvkiB
zOmYw3wKJ%A;Ig!)U61JL_Ibr1^(vgZ6-RG4k(J3|ER09I>4jOH>f^4mg=cU)lyx}I
z;(l0dX$!NM3L})(#J_Z<MSgZ~q@H^?LA5O}X_xFpKe7MSq?bP7jB_y!0xPSpl)FZ^
z?CGh>B!FECET@~ppkYG6%19NF8h%IdPnq*zP(@?rEPz`74sbf-{<mi@Z?~rJMV}lx
zxd@30OtCczfj;~58QGt?FSKj_H1#>Ha2MK}ctZI4R*G~?rI-OMqr0@STR3{nT7uw8
z^TVnnuwglk>?XV_7+}<d`;Ta+LVJMiAsKZvK5s!!<qI{5%QZ5UYfAVobfumNp_Hp%
zg-(U0$W5tiY9_Q5GXAOoh4zLji>C#^`)TZa<wW!R;qsNL$?_<8<&~}wpy|&qYa_MQ
zg}<76O#7wAPx-8IVYiV>dk+AD60$T&5d{&htYe%Ap1m>*<ke>&>19tb8&GZS>rf<T
zvD`!Nxx;w_FNn}>buputSbpF20fI(({~?#KuBIze0;P<z#RUgnH?gH;zc1XB)J*=!
zBTH44kS2Cn&*Iw8?zMaZCi&Jy=r?>Tiw7=BELdd=mMQa43%Ep`VzLAxU*Id!#+3iT
z2@oS_e1_efnU7|}eOAi`TJ_U1iCt?c!Dme67n`Nb#HGy>Id1Act0eZKzk|3xa5mZb
z|BO_>Fk^#kndMd69A{VCgciF%YYco=-ok44RFVOX5%(XZu3{~J@Lk?GwXuk65CC7?
zk1~Crf06vC|A$W)ceU4$vsNQz0mTmKztVf|8eU=R)v2MIpC{!u*<cTxFd+2f+l-o2
zxv9^}w(TML$3?b+UGkM`nJ;wDJ!}8XqB853n^l>z#SxJ;mi}3elwkQtq-erNbxrEZ
zBE)xM6_Zt~hD;srIYBdDFEvF2o`hi6R-5BVN2<^wvWXrQH2PgdLr%h@^y!?65Z6*U
z`TJ6OFkJT?rs~t#1k|YTmUi~=UVf5_Q)3bSA_&SAyGla~`GO`{d8E7^?k>g&G9P#o
z@N#d#b#ZFGcAF8Wls+w+8>%EV5d$mzq@jXu{uk)VuaIv&F%i)}rsl6c%l~m;FOsaM
zWuB@`J}Sglc<JGt_2N%XGUasZ4n+ovjrcyig&Wf~c_=H17zJ`aNLrqjiPD#{p)+;{
zEgv+{<kqQX;y~tcB|4RSOpcgd+6;Xqx2b~v;CB4_+dLyGEDHGSeiTqccQ;u&$%`7B
zV#MT?drVi87s~m()-b1#BZtNc!L}WxE^MiU-c6p-cfpxwYMkxEen_4PyYXKrB`H@)
zo_Oec)cuo|$51CBSY6~WYLxAeGK#0VR99}qDv=FmnV7+HOA*>nncDSXsDe4LK4k%!
zF0ryG9l@T%L|QR*h%^IGB`7JLvnpi~9OYmrjy|wqd{ro&mLSKe$N&EWC?pjhwlmB-
zx@Ml0!3eSxmNGm!u<uu8PWsMH{sP8t;4`z^<n9aD=*tijcpFRoIZr>=97AC#rm}bc
z$(Kp5GIR{p*ae7AFz@KfQUoFIV<(es4MmLLMjsmDMsF&rEa9m0W~&?R$!@FJp!GUj
z`2RE?5TM?SkAfZ^kxdT=On$O#MB{iQnk}HTB1##z>w`S%Z-n;`k9^1Xb<58!$9!<%
zq6aFWr<0`<Cz2}&tN*|<Woe2nK-2meW(FIS=Chb~#yLw{3HLls%A1s&7Qt0M(W8_e
zpOl<Wsn?>d3dg~T-dIX0p2upSSZQjaay48Mi*}Dh+e4Ir0dVO`6&!OEehhLgCf?kg
zw4L!nRf<e^386*QL@jdn9VS4%<i8~N00Ixx&@bOwJ@i4TxQn6yCTrOp*LKaT7<2c_
zKL8Xr6c;S)O$Fcgwe8q^#nz#&m$f`;NY4%`ZNwkmUvO<<5TK1o<^Aii7Z{!O*53wK
zbeP_xzzm}T6D+69!#d*d{v}^kWdjfM{x3(MxJJ8_tbcC7!n)!Qt8g>_SOSyTJ95r%
zMv}vHO{NAf_#H*148;%*J>Y|f|7O(}1H}9`3ny)HtvqX^rEA6kv@fQLEC&~3ShNbi
z=IwJFOj|YT_S!$HFQx?~y`s@3%cMbN<%-RU%<ca-Kc%9oY3;vzUA|IlImY%Ec>qBk
zS=y*Xwz2;Ibj3Ztb^9dbG`$W7h+tK!e6W;UJQXUSH0kGre_~o$RDOW=3yI7dlE;~S
zDXe$38XfDSm)CN#OrIUjp@8dJu)!k8L0`5MI)gmTle$*#xJAgd-*}_~P`Pgea~Ch1
zn#59J(NSN^ZS<`EXG8f<AT73cgv&P{bzgT-Q&^I#Xj}4OW>?s|Z%}84+sUg#CfQZi
zH?Rc5BzXN{qDN<R@K<%*>W2$%;Z8PmAX<)_YBih(JfQL?rl~MPHqZMk6ZsowE8EG;
z6Q<b!=nZZ%Jg*));n5kgdu?x{(?{ok6Uc^wCKD_0kGMdemDbk!u<#rCP=j!W3~jZn
zs@a^+`7c4aQl>QG4d2dD{TRA*zy0hK@j__W1cx>{A%)O`r?>`b|E?C-{1L9V7lrHX
zQU1q`L|#Qs>#^`Bf6x-0<C_&ZHt6<Yx-pXL#o@WvhdzM)!-06^0Ey0DO3)oPd7eW^
zwy#Qy3^iCnveB37@Kvh5`oc*%ppxJ-;BJR^%$^mX_or7;d{blF-qdH(@e8pO@+-U#
z0}B=@EQMd#M1YZ9L#UohoPFMO`Lh~vR`sphj(}O<HJ@^%iz5}CPdDD_Y&h5d$t76U
z)6&Y%eyh(msP>imna|bS#oYzT5*b-0Fvm~_yC0H~>aug5mBVV(Y=2u5n30#`B93QI
zgTSWRh5}NBsBE{Lt7!J<!e*cmDwuhYdedzZM;S0N5b?)O&VdW&Wt9%kimaTEI@LJ8
zVhy?pto4XnZ=|yG<gnqX>dV4CFi>R!Tjn^6sHrv}Ggv;r=V{q23}(f_r?ufRESg3<
z+)4Utdc#)+HjtszC;$0qpH+?9xNGGs@rivL8vm#Y%0uorI_|(#Uldp^xepg+0aNi~
z<t__n4F3GkB#lZjks*{j*ir%8W0I5QSg`!J=gkm+-eZ?ay=5RB=$Ed0Q@*7eBSc2E
z3HqPIq5sG@!djnfApCN1nqn#XG~nJiP1&;)zp<FrfXZ#lu^N};BAEX0OaEl5VZ!g@
z)uMOZXA0}$CdFF~^&CRZL^{6II1&a8zhqjrscXQ!nGAf4{x|e+Jo}?gC(ia*8`1_B
z&s4$1eba5XKQod&VO9V8j0WuCyRld)a@IzY*zAoTF4EEhTRxMv7(>{f-ktmwq%7gl
z*E5t8&V-s~E$YL9YA)rApi0sejn_H`Z~rKBjELZ??j=9@b1~u^621A)3?3!79HcnO
zkIDz^QKy`}8i-A+CXc4G6|VZK^?$;RCc^bCw>BmC42Zx+(j=TYE#^XSEKxsR!u!Fy
zyI38imML9Rw7Z9H;)qz?GO0N_4gz@pj*{KEl}n3ZbvyGXXfp_mPr-zqeVz<G19=9l
zdbR2#iS_8c4vBW~0ZW<8BufBY{`SBvrLfb<7r{4z+3#_S3U54aWk+LDZUE)O-xzXl
z)c4Xt;H5M&MwQ@-ZF0j1Y9CXjZL6Vg)M+2IYmek6$gTAU;)Qpn6^yu=sM$I!L(Smb
zLK#Cjzg3h~&GdEx6yQ`{<EpH=dz>Tfk73<v>G_{}TCY}~i9EXr!uqsn5+nY!(qRW&
zehJ6EO&u#ix$e_Y`RuBgbYp}H0E7S}N1SzdT2W=9qOhL2*nh6$vYB)L`J--qIvBGf
zcF0aTd1`+O@=fu9&i^c0Q@+-ZTWvVsZN|dEOX4wV?Z??DrDO@zo1^QD%uy{9`Gg<(
zWWI#+xcaV`DP5jle#L#|YQ_`Laj1;7S3rN`c8Cs535f>%_~<&stWmz?ABD^lM=r9x
zP5$HdEU*?|-R^Ecie<G&lP`PXirJ*?h8Di=er<HMiGW1)(^$S}q-6cgna)GZVe770
zK>wb~b@@0)cxCDT5%$(mZ9QTCU<(CG(W1qnxVr|YK!HLi?k<Jk?k)w2Td@Ge-QA%S
zDDLhaToN2M{l4#>-97uq?;N-!Fz4pp%gj8_N9GwHzhb+-KG%(5);W~i>&xDHgY<E%
z<+%2#`aRO#9~NO_SR_X~Wxw>_%X^YL$_V!Dho^l-p#8xt$v936A2<w89Pbt9zGea>
z565Z8A@ts~TG_#FT5nhNPH)TRCPW!9_3a_v@b#)h;2j0erpk{mvm_N^=&ZW|DJkQq
z@Em<ewUxU?R9=!b=ZoB`eQDZzHYVqP!V9xp*~s1<L)2FjwT4;i`6Fv-^}+l<g9+B~
zKxK_udS+xAP<0eYEDR1K?pdD#1!Kbjk3ot?h9dMUUZhrAMNFghUwt^c&h(EHdowPp
zO_4wQ!MJGkdSwSrRMF1v#TCq2)c7R1=vNi$IFZ;XjK#-FP%0#-{WpA^V%5Kr2*kX5
zbr{I0YWyMZU0595{|E#52J#Pn+&@7Rb|oCb5%O7s0dru5^jW2^_i9g51Ok}1IyT71
z_&dXaEeMgbMIAo%+eQGLa-JgLaN(j%N|=>aB3^!>=2K3-)vPD{`%MF|Z0g*hY^|L4
z!~bS_(nr%avUXNFuH;ray#0sM<?yBC@2BeFa4ge0Xtap)7me`S|NX1n?(|^MS4Mb|
z7?|ExrrR&XzM<`J9DeeRZhYSDz;Sgln~jDBb=&~N?^XadsiPXI+EurD#5v{F7w|v*
zlvR$|++40;F`t~aN4Qw8!%Km+eYt#Azexg)(LLo<EctQ=gndNv>gH?!F*+lKbKi>k
zSd;$8I}kLgz|vG-(ml3Zs3TIn$#YZ>S40!dTr5;QeJB+fv`f=4Q)LGKVSj0>f<-;@
zBVaK%zH{*Y=FAWNM8^O9wJ`an&P{JxjZyv5P*66jf;GHx1)lG~ySJsp(n!K_8Vcsp
z>S%BUWiM2)pT;VcWu&SEg7+?en&Zep2vNsh6b@OWm#44uo{%g{$LjoKyxBZe0MaYd
zYXEX&@dgnYI1ESQjznDphj9q6*jcE5isz{KNoawGTP{-ZF|n#$y^J6J*g4rp80Z+h
z(_03a|9zBIKb|45W+>w36Fl$KHkM)UnO6M<M0g(pXF^ipKDgr*nv{sr@B~`u-g`Qz
zN(Yvp-oLa^ZPWq-8dF3}1o0c5tsx|_Z8|A3&*U&6-zk^OobN~}%hQM31)5bc{*>g@
z*Z%sU5n1fLkXUF!SwA~M|ATbR#@PS~PD{}xsR)x*=jhNv8f2uJ7Wp<>I7FrY$pXr<
zSI$j=t5=sfhz*@C^qB<bvSV3;GjJY>SkCTL625&O`~A;~Y}EvnfBLAL!KqB5UtrnH
z4|hpHoJAqHl0+{x6bN4*hUq_gvtp)QM20HKeii};mP~8CH~D}M)?o7Q<mwDR=;8Bc
zsP-&6hP`LZyvl%alfBwnCYFTtIQ96qq7sjExA|~i*0sPKI8Q;x%dO{g;Ja<i@%se%
zOaeR7^B+>_5AQAj|H#t;SfK<>48NQ9vZ51J3mszqHk0K2r4<WKBfwM7t8*%nc+C{G
z;b9ePD`GpXjoTxtRb)w8X8B^8!=@h4R)6+2A=iICfFOsW`2K3Y-1d+!p_!y5ai@ev
zw_@7>Gl;o!SZl9U8O|z9SK|1BZ_Hr0r^(zyWYrv{Uy1A{U9oD^`)!hiLHgVmW&3k?
zGJKXI4SPW*yQ2931vy4*$9qWzvp0;Pcu?e{X$`2)sI3?8P=mvlkBqVqQ@BizcLLiv
zW>Jsl7Xe~oSoItlL|weE<%Js)WFlRpYHrloi_Y$C8+`QONgv!QQ$};gC#f0Xh0#^<
z4RkBdfE5V0f8hubrAGs)J{WDc$%C|Jtj;KP|B0=;3k^}u0(b);{v;%fqxWN+aBeQ1
zj(2*7cr7Q!A##!ix>>zsp%-M+FK9;8Pt&0E6&+KtY%BuKrWnh!j+TY5ReQ16&MJPs
zM_AN>Gq22}rQr@Vyfdp7iC2hk|I;Y)XQc3xNAkZ`70nIA!%;Gv%1+4i8bsfLOR7$A
zc_>H|i)i6@)DY~|+t43yRcUKhs+`tf2Nf$odGKw*J1dziNu<7ap)LsjPFIm+GqC?z
zbe9s_YccbQK#isqx2h5mvyqdDN4Dt6g4#ogyj`957p7Z~<8HHmp^`@2oLsGSm%)v?
zRxj~)9$G;c64!b2w}KV_?4c?vOE-^&6dP>?>5h|i<+DU$0m?&gsZ-7g!{rm}0qs>B
z^<Fxw?88bDz4*b-C&nzE7G&==<*F}Xl_mT51up+tlysy{rd3>H_PrH}2w1&XlbFSe
zci<ilngX{?S3Y%-H9H=X2n1m3>kuWSq!~F*tESTu1M9(_Y23Gc_aPr&7Kz~)fm$(l
zRmY?GJ=;wVGbsHU_dg&kouiucF|^cDczHs_f_VqtJ$PLC4EBGxsJP@Y3|({o#~LQ^
zW4%W5-@FVdflAQGAHtdDEE-$#($JYIoh&%8g<Gps(uFeAec&c4ct(9lb9fc^^rP!T
zI>Zw4Ut53jkMtKNz)N4rf8=Pvkn_76v?IKPGh8@)lV_Z!1D<>Sc|WKjZ;4ib5ZUO(
z8SqM9pFhJ@+l%N@ugtTReW=RRMZoog(axn$Hr(q1S9dY>5wX-~`8(Hbh8Lt_mTl&V
zS+<MnYvC$Pf=uxE!JU^H3#s}{=`K@t<j1Ff4`oWO_8UcZPz*EbwbJF3MO#eN*+iz8
zE;T(|@sg{bx2|6*Exg%O^z?*B&rEm+$e$#KeYQqc2F)edhyFW-M$&}b<u|PTg3{8O
zuOJ?4xP#a6*(N#@F7(k&j=D*Wa{M;m5zdpOvJ%TphJN@~L6d0LT1j4i(iBt~TfIi7
zEe7|l!aJpnkaU@@{e$*6|F7r&@tD;d=DIV*-Zu!1_Q@sxfV*<`rlbPmWqtL9P$9sB
zf4LM-GT+fh&-&9rIW3;6@fmo;7Gh))QJdU{+eWzH%2)blETYK;T`Etp+(dYfN#ODN
zp8Y#YSni?D6)tlrB}f-dc2x^e{qH5<C|;n~&<h9IMB6mF7QHV=i>xzHd+;yAOm@*2
z;~YkeEiSN@#k!o1!uIs*n1yNo1u|N|(JoC?CGV2!YTEkwwMk+pBGVG-;lC%Iq>&(J
zI`~ece9FEd!zo90TB7ZDwVx!s=wm5O1dljkyFL=(K<Z@hCe1ul<)~aBo-WDh9}yz=
zK#s>4`qQF~me6L1_FsI2OL=Kw8TPkAei28FkO+RM_x_T!`-O2#a!e<iI`NU4o}(#e
zbnirlo>1Xqv>+*W3cNix`_+S^wV$qB<J&3lzg(0j%g#HdRK(H1XSulB>KS;j>x&}8
z-e0PE-P$0d3Z;l=dzG7%Sdhe3zvR;ZH|(gIeh@53Or~*7s9y>h`+@h$q+js$B9kC|
zl9MY7htQf=cBj-Ti8rb!!O=1{sBUijzhDl(*gA5q(hGj6dw6Ricx(7H^+BP1BGC_i
ze)vCnYDOp&JIwXnAqw_?B*m)Cc(w18D&=*p;5;ZgC8awcxYYiYl=6Pgta3R*X44YJ
z?3WDzt?W`9=~jdg69c%8GzD^KSPiq=L!hoQ(eY#z7u`pXv(`3NVI8Ut6cJoXguY+7
zJ@xg_z!;;VbaDCz+70J3Wu#{1+3?g`cv_C;ta-DYQT`Xn8ay-<(y17kg8cqLQ+l~?
zX2q_{S84!4(SX8i588ZYIM{?zeNLvSfLSYQHigzxHn{=5u36ns>oPOTgJ|U%_W4L!
zEo`@rapsHFKWhf4jQr(_B(gpc98KS%$K+cE*;5wxT3H5Yj7BAvT193R5^b|I5SPos
zwFKOPWG<FvpFW)Riq-)R7ai6!<v44rLR$p6IdDZ`y0|QWdQnFkjtHe1q9f%k(11a3
z7NS-OsUR_bNs5oM=wGHq<I1JB%u#hQFX@d8kM3|ofn0rfu|oU8bc{sde@^4XV?65*
z8Z7yS;tb}}j0InqMTZ`UQmJ%VGdNeu(mOVd9wilXeb-YZb_M<P?FDQ_zBjK1Sj!S?
z54O<l4{|8IF8Gfx-&u5}_>$m-X?r^j3NgApAlN5Vw$_F-b#jd$)~X6(3-O%YQu6~5
zEOM%CB4r^#*{~V8$&++VcSt%mgDMjcG;am(4fJv)`3H?yp<hTe^uYCtW3-={%-TQ5
zQ;pUKs?S4>dRq6J)P;99qT?!G|JPl(SV+2crZ?%V!LV<AIKT(w5QDX<9H<lN@>RMq
z%T?oc>CbxO)!tUx5I7R7cM1cwMW=viHu+a6DQ%UrxYu6i{v<5KclKGHVL2+(DO()z
z*@#aR|2DR1JdsWW=L8DPSKkmh!U4{|>>%-s%7~HVs8QAT=`-9GBt)FAlOBLIYrth%
zw3ZJ~U*X<?q`Zwn$3aGgvfWh-_^tPav)DhLOn~M88wc`N=f)<uvae1Au&o8PWmpw|
zhc}!4s?E(pkz{8cKA>HGB0>qgW@YH`nd_FZrAOJdt6$Y28%G+o>)0$>cj^TwYhUdb
zSSWHsTGwqF%$^0@YYsiyyEw~3Q{^Um<Mtbc+6?T6@CiS=iDil$Vf|c8yl&oW`@k(O
z&y!&g9M4f_Ij%GWw&)fWfPS8Kmd`IS@{QoZry1xkyuRh8O}lk~m50QO4Cs<97$>ke
z@r)}mZCH7xBZMX1FDRS6N}`&O((#B_V?{r?b~)+C-rg+tOydB>NFt|=PsGw2W4N3O
zDt#HxGXCB(4QCC$28|RRY=%x<JD5$(?ptoNDgjm0&RN_)BaOl&mB-_tDnS_Z>gW4K
zB^v_z%6GfTa_W7!b85Uio{3=}pF@aD0Odicoa)spUr44swDUdlb3dY-eNpY1tb#Au
zcr}tRL!~GfGR4bz(na->XJsP4ruys4wtSg=`B-z^b9@xLLAw{OKZ{$+Lojvl?Al*>
z`(3YFQ#Z%zR&6rOe3?AtbugkdNt1rHh?7`;;qrCJba|lR^tU;^+Y>?XJa!}Z7|EzS
zNig(|cbOnK`EC}|aZS?S)3th{jWE@PeH!KXsw1@FIcHtJ3FvO;mU3T~#rtr1|Hq`t
z-cawTYff9MDf@)g^_b`(^lo>o22mnH;FUMq7<;>@e}}1IbHkK20OoR%=BsKJHtxF7
zeg_@<<?EE!RL{T-Zp=QZVjZtq))WE-8~FEEjtgP#Ip0?M-UmJPh6+B69M(Bkx7fdP
zAJ1yOURfC?9A7{YUDCY}dDuA7*pBlp?czG<QwMA5>qA&as-$F4Z1x+sg+wE>ykIS+
zJ)wQB%tO;zAd>kT#g3Q9wBb~su=^iy+a$@txqU&G-S{&9eyUd#?DFv_i%oC0Tx7nf
zYADKJ0G{~fEq*YHVb2u1i07WJDd$5b6R0xHZs}Mu)NL9+(z9WZ9=>9Z;`5v1(=frQ
z$>!pJ_&kr94Q0{$6S#O?XLxGAfOf?UGis=tI9dy2Haw_u@t)_O+fl8yUp*+#sZ2hX
zH0_-~U5Iipzx-fub}8HrAOWXfBs5buZxpP(6Nc}9=C%)eyo9Lif6E08u;l$p^g%?K
za&BFqK=+zIPg^~>ArL}rL;IW9#MhPLO4L`%=9(gO6+HI(VT1QpC*;A~bsf(z3^P8h
z^eDELB_*3_oE|Xm&HQ@CVW3}ukZmcIkf3r)^mnH3hPcT~%X9DJRR0~6<g&XYiZFKd
zl$B-H63_&AC}h(Yb+xgTctX~<%x*YAjHL(}@IMIfJ^pZEG&B2|mL8}lYTCtfpeOQj
z%(zUn#%linX<2J%xN9J9C)!RzBRMJ~Ino5)%pD_sJ-y%_t1Ne)O94cQ6r&Yi?d{E1
zy1OV%=58|Qu`~IJ)XDzxankEwJYs%o7*j_w9T84Bndr|F@YT`hYsYyQl=m<3@35!1
zE4HWbJT-;Iqk(;Qc<|!t*l*Wf-(7`HTPk&4XWsilXF>_t3<ca}?6br?AzY6>L_1&+
zTMF&Bwc{gqEGtXLW#?5*wbk`C3xXWT=9dOJ!i%ygIZPFTwhx0QKfgMtz%CL~fp=>)
zpkSnODfPe~yUel3H#p>Sr^4>A&{%PTCU513b_0sPl4OmBXXO<xDL(dYs0LVS?V$U8
zXg~PbwXBIt>*OYN2YKdOl)^kT{;ogcs;tK<m?W!!lA_!88sujxGU%7rR19M?(0!{E
zkd0R6MeQRP91RKv1VhIzCz13qNCW>uk=62K$L}j-9H{TfE7?Ptx(zDzu-HsxS4kYC
zVdR>GRb={yRUh2ZX!G4|@vY1AT9bMU%N^GI_f~efeaP?^A{61p|J^X~FNrE6{|Y!J
z3H@FDM20UM#W}A$T*~HIfC3%*rR}Llrm5KQGp}$dr1m-;!lbII&k8C<$744k;-*5M
zFzBjV5)?Wpuk5-jtD2FG(~jzJAZDr&$X1<D^~MXQ{;s*l_<l~kGWCH3ghqDAXFQk6
z-tKZZlV)01#WsGUVL_;&c`?G>J%_tr)BDsvHuZgqpUccq^PFKu<FiZC@)avCUF8!!
zgLd9Q&a%I7(dK>WQ_<_w)@@V)2rtO|VZ7tBEM_cohY+uM@Nk=#Wrh3GpVkw&9n$+$
zX28#?z#UiDZSHL0sqzV-I*9~Ua@QcL_1DweZ&lP4k^C{?$;aNxioi*rrryl3mlRo9
zBB;N4Q9H9glN|vAf?<X@=|y2X#Pc(17BJ1HCSJRU2ubN*GxDu)w>9m^Betr351D(^
zktIK_z@p6PfA0O`WNEI?OKFrSY3V3+w|Av54I?hjG}LXTqV2{WDX)aKb+~%Fn%Xvq
z9iSKX7*(tv*q2LbtYYdRf{WZ2uV57oYxiE3{ot<7xx*Y{8>QAs?IXQ5Q$xcH6t*UT
zXhm6m?<g{x&q2$EU6X<BdsR?-w;ha<qNXXsGuGmxKN>&n{H;p-6?mt_$6%00;^Lo%
z9h}wsnwp!Dw#B*osVS87gNQ#1e9SBjs|}ltvRj<s1kuCg75!LN-98w_>#=u{*%CgY
z0XMb2o7w`KQ!7`n65Ld_07fz6?4NZ&5&x~NG-ueA<>q6eC1r-QB`{MMMffJjcPljY
zB#NFbaHo!tZLw(FK*-tJj(Fxx7n`B5GvqkJx%p^jaXN><->^Ak7vbAV8lhp3zQc;B
z@780){+M3MewO#)^&%m-Zd|`vI6NP^2%pkleiziGI-Z55?wx<!tfh)gjceZivp5Xf
zMH?UUz5ZRm?I2fVi(LaW6o5{7&Iq`}deNpY3s36CiTTmf(AVKNRrzWFfViJ6;JbUg
z%U#qU^RN{<oH`B`_Er)r8D`J&BIlZzXQSYF5ZFcZgdH<_z}Wk)T74iZ5q0|)oIxCV
z&jq;W!Z_o`OQNVvKWxGKV_-1=3L&?<u?|Gg`+2LSu9_?&P;_wbF-_t8&&D5U@)lxX
z_-!vdhV1GJQLQg5s<LMR9EUn@r)ZnYxa%NO!QtNzT3t5Zwbx9;pCMb8C#v490-x|M
z+W8lQYOKs=bP|-fA#lGt;=3?A(%KJR<*7B-`U0M($Ih1pdVg^8p$q%KOkd;E5j1)O
z0axV6Q3XQwpmUzi?WiK)$R@7fRqvGtwjq2^F)7#`TG4J|l6FZER`;uW_q;B?>eT(S
zg?Vi8fMX;Z!_LJFF(F#CXkWk1CYPBQdXHE8d-KRy$&3JztkYM$bF=}uV?s#kVl#{&
z*lwtSrFm{5tt(Ma7hizau4ngFy)PvH=`{t5{@k6+r~rvZlr}<5sne3*X3`1o(FyE_
zTHx6^GWL94*kDiNvgnMR2e)0_+@HEJbTQ23&b32!3d0X0cI7N1lD-1Gyimx(aqlLz
zsw%}qC-~{w$hT%byW`@E6Cw8DPN%ui;*iLA79hw##$^As5o;Yk=5M!ee8lUnetu8#
zmalIVsfGk&Ef?nbG&H*1%5UcRkb#ONzTvxLWk*kCQJ|})!jrzsZ`DsTGiq3oh)f>V
z)-_#$tkd&xMC)LUb@$#?qp)Ms#-kA-BZ^a4im}u)a;LxQQ;d@O{@=c+3ui)AC4-}?
zwjRgZlYYO4o)VAfD`pW7Ke81hP2ak8-AtjjDc!EAqZLSbplQuQm+Se&41F$#uzO|O
z3<|Z2$sKXhF*Md6!AumD$aD4Z_sePdbc5JalI?(*(oL&AM_=w21u)rDHl4F)LtS+Z
zPuCx2`9vXSZ*{aeGFKIr{xPw<2+899<U83H5bN9UBL!tqAyCI%!Rcu5cvjo}aRC~8
z0Bx`#{aCiJH?sdxxbp$yrAu)Z7zvG+Oqg)br5;_278ve6fGX?{3$4>C0}f=vFKh2n
zyV`h)5@PAZ0IdXq1)%Yd{AA#)BXD1x^O}>3-!lNyyw?5}Pv8j@sCJuF8N^G{N`bvd
zZ9Y~$f_Qqqqe?iY-|PYvUMN%$H&O#jIO<CNal=0_wijV?VME})$EuD%!sHeSFDe^G
zp1ys|q*f2s7A-4Q-~#xzO(rv>U9XB$V)iEuT2~N~cf6y!9%(6ars!~haxEB@xSdWZ
zSO(F*k+FaJQ)h&b|E8MPGf$4UXk0JT`<Y4WphX;V8GY9uGebiGX~A{YIhesYSGk+P
z61so?=>=)3hW>F%5L?U<@`bXqrvCc)QIg)HLn;-)XZtb2+0sxDmw5`*vFyR<@!{tm
zcLc^zSz_UY=f|x@X@+Sddn}0WxFk|nXN?awN~%DE71ZCvbk4D;hcUWRphQ}9irI49
z2M^O<XSM-0BP--y3EiJ30A>j{*Ki%^8@?8;bwK=le?(R-s3o<oVd##zSW8SEfKubI
zO-U*m0{w8R^OM5m7^~wVH*X3@+#JlI1Vr*qr2Biia#}$VqR_8L09d_?E`a87I&Um-
z_YkbT6wQ*^mKz>p&9S?7<5jSY4qN8gBcW605ZfWL!yvq_lbR^^y6eAZ0e@4jTVXwA
zh&EmRrz;B1nue_&pVuQ<F}4y1@@u^1PvcTBZ#J+R6qW!hp<*+Yg94C~L2(F~BXtB|
zPUwgP#Jt%tq|i!WFhv`IK)K+o%+MPp6;=6#){apXb6N8Y-7-Q`@Ze{H-Iq%~`8B0c
z$aGCn<RB(F=&z|7Q6FzVd9D}1?Tc}93E-Sg{W(0wBc}5u7Y&_!p{J}V_{yF_NQIxm
zkP9G8nyxmIz(CW1PfBPsY~t^GC~s-o;k?}CsXQB{DSGO^g{>C4`MUVJQhf2zCFN(K
zpp;WoV5XN(t;i)$lDndbi#o3QG`*o0Y?1ri)otuKiA+Oha_!Y$ndqD|7tF`&9vty}
zlCmZX%-(3R2=>jmN+CAryd&kXgijdoFFlbuR05w+49l=T@iO#4b>*OaV{ELPh3@od
zu^_r9I;V0;tIG%E2i=irLKBrD&9@{>#m;MGqq>0CH0-V0h3^`{m^~Cv4a=#svoHT!
z+hJC<U3c(zQ&8Ci<#nM88IFcV<FCSiHEj%JIiTY*T9a?fN%+PmF2BQ(2xk~Ap@G0-
zM(55Ug>&U21%GyAwx_7Tm5;-or{PnaCYA}N&N`9j`|8~-4P`)gBcbg!CNQh=6}s-w
zw8-}L)j6G*+j%=6`i5y8_0;oj!xQVq!+QMW3T6CZ+F{C*U3eFtbtk+?FKF9iE;skb
zQ|=Fa(e2MSwCrHc_R-lf;!e>;E<UWvvZp^XmM2PE7geq)m2Pu$zpQzLx%_Q8e0J)`
z4pl5)%^{JDj8LOw2V_k<#5$i|<NlotI!eDP%#NG0)?v<^TMVC%r2B#)*;~v1eUi`r
ztK@sJO5~JE=KJ~76tPo2GfqK&^A7*b7H1U4Y?Z2b=l9C_BW?i&R}P2P<G+OUPnEP5
z(kv0Q21)PBz9LJ_@0Nl9JU;I|miyU08c!TXeHW_@rM1b@Ytno$Qb2}1c9XM=v$HM+
ztK0bUfD7PpBW^at{_)qFHR(_D*Z6l2@~?WC(KIm)Lbm3JMhslAN_CV^uVzGnr>d#5
zX@<?YY)H#u-qtjWM)(V)d@k1;2)oRF@>ygWTnp9SWnGQ+#be0}&A#T)zdg)so#RpW
z$ri$6)oTVJSFaa65Gx<oA3mvt!r<61byrGI;Ao~u|1tH#r@;=(a9jF`&iMeAZwG|H
z_{sp!b_EsfbJ|_AhvoV0Hi~QB!RVUea~IZP0;*n?-<+$OrM!c1(B=+|;GBZ901k2a
z_a~F^cpAPd&^(-KITP{uz-LGP?gY0{hSWzgi!xRiACO~<$7S=7vtwJt-X4N6kv+w7
z+LG7<v|0#`zGBbH0C?a1zKhx)3mJDXuHf#flrdRLI3a(%EkcWR(1>j#QwwxYdFT#e
zLkSkfLB8m<w%l!TZnSYaV|~>;QMk;_4XbrysQK!T|DAKDNdVKi!@Z8%)_smp4e+SE
ztsrcFC-b^&evi<A;>~;!MbPyh$viR<y6W4@IIgEnKe_qc*NQ8qvJ(MEQjxx4A(o~h
z4q7`GgWjm@btwF=_!ryC$l<i=#YCOuW&`PI<u3wMn3Xruy9@EZw56)mRLohrjhDDs
zgHm-Kg?=Ne>H@h@QYbhmMOfuzaZLgFh~t75U9apuCiI;`h`$|^la{mpVij~K?W(D7
zzRYzMeD039^l(LTQudqt!7NAfjRY=jx={5UB2wrHb3BE#?@3KckIN4hgOVXN83#r{
zAyl_<Kb`gbRqxB84-%TlR<j)<9gwxa@zq0hEI;q_<=}PEN7!bQzb5CeTWJ<o+dXHa
zC2%CKn@FHFSX=~{^NU`28n+mNIs<*f<c-kK<L{2e=xa>Y#dHK!*B+?4Z*^;OY%-HV
z3C6_=j45(x0-bhJyL<21`I^F43(1gM>|mJhtj4#E{%EJ9_Gh4`;Jys!x;z_PwUFt_
z(_n}G-r8ExIol{jyTRlaT?OFXet`(gm|tkJF>8B>Xj8_8dHt<l7;<96GEcr*=uu3)
zVu%ge)k96$eN<E*n^hQP+lL5fj+qArPl;+7F2nr;qWb95Uv|GTcuy(-9Nr&nyvnGI
z8|$c<)Xi1|h;}&*oFc}U<$VCRtabVMmgHp=iI-8iR!-|@zYfuFO5I3(3aPjslED7(
z=dUZ?C&!#r{+=m|cfpnqZ}2vCnK|XIS7#jpT&x6%sdR;1Domy}`-Fr0_@N{3HhL7E
zo*_0y+v9y;=W40Cq7x$Q{^%D}uW^}4iP)E(w;%nSo>P~vS1bgd_YLx$9)W_-MWipP
zF)yA9(Jw8+AhCHvLy7<-LoeUIO2FL@IgYWfA(bp{tqD2VVw~=~BPC_yKwt4O(Gwc?
zgzbPZ6l^N`j>t2VqQfnYZ1L&4GQx4C&537dH>gKsq3~?HmA7dPM(o<P=4TB-%)+mx
zQo-J>tg`v-)P=@4ND#ZGrJsdW<$b5*{=BrYaUumPQ-$>at$8)8)-ny3UL83=A&*P0
zG)GN6wBGoJhmS^g8?Ten4B8vb{3o&+#STaXtSJQMM2skAoWhNCZG*0J#Z@SNR{$x9
zTlaR?AV$B-5aJi5n@O8#-0Ky3l|C<n<y*kPDE7gIhorS)HsdReu}e)@ilHX0y2>~4
z^5NU}643i!<dn0kdFeQa**n4Wws&W<$@PXPg+;J{%qvuzRCTeHjqn>(*9i>F)*cCd
zp#vn8j*Xlf)Y-}htE*qhO@7KvQB+bxo%h{!;nR&!%&_eH82^I{h0X*6<w|TqA0uK+
z(^E~eInAjn^R-?4J?TBwg!^{cPS{mPjwaxV3_^&g9^iL-nd;Lm0G4ot9i|dw?u63I
zNzl6`5Q29?=vy}B_E@nDm-Rf1oteS~X+?{il!kX7d+!!HDh}6-aO@p4T;?z5ReO~9
zR}N(W9S%iBt%UO??guiLc8`oLlS=HcgZg$tf5|}j;k8};bW}(3=0i5gI-<iiz?5(U
zT`b^J1SLg4DhnXKo&Wk3PAKykVw`>~mC@XkooLWxGOsJQX3`il2(nbkV5>QoRLWd}
z<(1p@yG)2e*xyD-_cK#6&_M#4TiH)8-^|=P9*X{SYq+$WvNY$UAMJIE2Ks|vGC*<c
zX4=;A&HYdEs%V!NEs)5i4%34OWp66-xaX?!+4lqO>^Oao#$Y~X>wQj!+r%_V$Bsm~
z6DHBEj6PezaDhup2pj**Zoi9X5?k!l?)%nuWzAR1o0bPE;|{k*Us5xk&{wbjy;CNy
zuOt7J@r1p49e$vK<#=mUSovG(dWzzgtjO=pU`~Al*#Gk`trcf{Lcu?b9Eu)}WdV^d
zU}$n)WUoA3*s?YOF^5%DylW(Q)J4CkK)Rii^a4q=H&iP+Tia)6FS`{Nrf9JHjpvE;
zHq;mHbrKa963or4aOb4!0C$5*LBeS~#f5XKcR3K^SUQZ-5`1;G;?_TTa>1ptBE+#J
z{aVGC`==@`gdq@zQ}SeQA+<!MO*bO-T7k5t%&-}nnWzu5JKPHVr9-VBmznGXzbcBR
zZE8Y(ue%e&?GkY^rP`TOap^uhi%4E*Kddh&(MjmSrQkpDIN?jh6Jyk-yRm_Esb3YB
z)H>y;&<dRN+-f7Jo{M)EEPVxQENM`rmVrw(PvEsGd$Dhs-{%8mEbQQ4Iu=su;P|xE
z_%us1z7g5Va`@)pVK-i;{)Ih$g5*BsSOO_^fVCpBVL|95)>O7{vxq~}hBUff=0ysO
z50>8<B_dUz3ua!IdgKkc!|aF>DX}*hSC-Ih+Xa2^3gy_&)vTe1N*@z3T^s)?VePsp
zKm9K9p>9NgGh|6-F{UFy*c<>8S7C}>$l&3+a#AC2yt_s&iM78%T3{&+uOp|w__P>K
zY!0~Ai;x`_S!I~dMfoDU-5%=+$ab=R%Cv^5fSq(kM?`mR5R07^%aS7^1s@pc0TL;9
zN^$M8<*l_u-o;=wLOxThS?9lIBMXO6HB4&#^Cj>|Ya@MK<;l=7sLj_iq%11cd`o_F
z7K5vb&&}aBa<=DNP($TCN|igjf;D8Cto2WZAi%3nbfp`&?apykmGGXQJ3=2UG&Jjt
zKnS8+!k=(n*!^VLB0qNbo1>sP2!w?GM@MZ1NUDM5C?hh{cQLgYHhy32CCd%TBAcV7
zy^thjEmLx8_`F3I1WIeIozZUT^rLp8-fSqrMu2TZH$a0m%?exN23cIw;xv;WEPC2K
zs0#uYG^|$+^Cl)L0f3_g*~_we^Yvoi+n*i9d@HwMgf{tWw<i8ie<!e!Pkj$9oj82{
zLN0@fjv=hTuAfrct=_><=C#5G&=YrLKDDia&C$|rPJ1~~e-l)0((RZAczWHN*n5(c
znx2R73zS~}j;_Lhs8Y$r_M>H75f5Q#+gvzt5W#(L@R7yCXigK(2|9Dk#+y7j>cJ7x
z_wO6z-!!P$)Qj)HWKnSQ)Wdu}2^NU1cOYq|G&gOS;M@>s*!7_PDR`5X7EJpK5W%*t
zxYEq+vaR&EHlph-xL<)pn9|&^p@Y*zps@>YnEWP<2>8*BI)Wd!&EEZ>b9F>_+Ic^^
z<w>f$`F9LS+^@eKU(?81^P{rJNL>?US9iX$d(J43LrrgJ+-JhnT56_`q)OF@;!#MX
z(oIk@3V+STePkDE6UnD{n{W-o>yK?Mq~pJMyT@ZTOC{#X;MQZu>d8>~OZ0J#w<a*P
zb4`qb`gLm9JE-1qD9Nr=$EAX?cJz-NHe}#XpWVH&CIxH?%bTfwu%McOWB~N_)GGYw
z-+`oNr6Xy(g5jpV@8sX1GH?4={(7?)zjF!U-u=Cibti9sActEYT;afPYnwA{TwnNU
zXb92Iz@+c_$2~$eA77*&JmJaxa}0TO^mc;5<4@LLwtiT<&9IStjYw5DIeX21UiE-K
z(^vb2S|uM&CXuMDK+JMZwI9eJH1=NCUJ&;}B3T&c*Ni5VX&Bk<3fV^e8{LM|^;Qgb
zcN9_gB1C?Sv5>4L<NcG{F+lb9m_Bw_nFRuQ%CrvFFj5kqhSyO~=$GXx+wKZu(pTtb
zJI2Sf0!U5v+c6tnhL1n5G0e%`e5xY3a$-m&)PsLNT+(0&f4~*U9N}8=5_H?y6;C_;
z@)oNd2XL4iaw}^pD|(O0`{H<j85g$ECwJ^GxZ=-W^O79*ccqnV{pIV5KM9iED$$a^
z>}eOE{-tu{0Ctj#mO!-H$z5+~;qq`g;g>v_1(0&5L^@p|Tk<EoS?>V2Sh}kxg=lFb
zA*n>jZCf4(=bXt6ev<Cwq%n|*SoY|xXtNqHj2}3Y<ZC)bFYysn_9T%Cz_2`b$}u`f
z*w8LCm>Le0_aJbPYYJEE#3@apU*Y8TpjGyiHMlyd->xz<oXP@xZnO>7ZlBccvEn03
z5MUi>6H^zCnxCnEdS2>T<IKc+si#m1*K9NFTdmqWoex^g&Qx&?7<rA@NPaAGNPeI5
z!w3KLX2x%P;U!)8r6Kpq@M`Ay_RayN1L*U}d&iI>_DsC+om>ETjy56zZ0+)@B0Qaa
zLK6BwHnYAD=s1!<`j6kPXyWKHGlZ~QYXG>M#u)|s-e{s@(m9vMI}2XRrLv8XWoC!%
z^FQ5RPf<PG*Lb>C02lc;_K&h}Z*d-H9%A&fiAY5~wug?w=lA(BH|;zh7ozEnZ=h);
z)=lVLB<*Uhi<86ci|bkxURhDrmNw&$6KG0m_eY?tp6Ej;Nfz|ZYC^C>R749*{$>4V
zr)bA{Qi_)LQ5AhirSHmH6}R~n$E$6jPueTmFU>L9Zru5-{8E^X+=nX%i7V$c?81y=
z?e=s!-+m!yy+I83pP$LS3&3V4UUtWAF;LyQN^j_096D)>IIb!|`#FD%Gp1y>9^E40
zASC*wA7Q4T-$BFOMEqeViS4q-=Pi4tDf{U3CFjWd&TL^iwEcE3gYXf3a1ArD@khrw
zB&imbZMHF?58jCML`FmDov0=P8>9*|*B@;TV8P(Xx<JMh6q&JetdglWgnMM<EEIwV
z6fjOv6r~^UFa?0L=3;^kD3<0!-}1uee~{D^!3Nv2FHY#e6CZx_yB`c44aD^GZU38N
z7KB64r7cS<jbhtrMubW(h&+=oAAw9d&WM#5+-cfLNnSvQHu+QJ;$B%oo1P~MG;V;C
zR5p8_>M5$dd+cvwz0XhQ(bSWpTY;v^*RcofyV~L4q-gEx2e}qst&?QSZSz6J^4RlL
z<C1i3e<o$971UJ1qO{i2>FFH4rpfduoDhsa+~#QG@X4YRUZAoV+IMg5LXLySJ#b9Y
z`df_ApH0S_u&+a&@-EIXwiGAJ%6=&eCXQ;i9%B3G+-FPJWU>rS=$`XWLzCPaqBl>G
zn0&a#Qw=a9VmI(<hfkpfKEkE99*g}0%z8fUlKlhAU;76XSVax2FD}BOVpBDIR+6^1
ziTVe)BVz~fC`uojKiv^k8aX9Xq%w)I8TzfP><+N1`K^$t`>lMsb5tFU&CvH-8M)l1
z`5OyLqL^n8vx~XR^ZRV_dftIwiMg`C;hk%388D_M62zD!nRR@aXqvyZgq`<Ydm32w
zO*dje8}@pLICkmisk7t9>+fDiWDN<``K{}MT@zh%QK5Olw>|w*bxwcHf$`B3$JE{_
zb(yaLj$_^?ry~niRW3$<M!YrEm?L4Vh2HjGZZwLT($I(D>lpPqh(6H(7Ic%79H58z
zj}!vASq^oTzU@t=pXq$I=^5TeX``G%5RG#uzgAKUrN>5Fuaz|QDkN)`vZ<YVZ-209
z213`mSM4`WKOiNi!ej_gvzDkqU2)%+Zq;B5?}-`+XJaVk@5qB=EheW1-7()n{%$6p
zfBc-D{w%-cZau8qu-gFvG=s0_3qpy!5WKHLnW%ARz)L>eR#Tb3`KHIbs6FRMmJSx&
ziW$mrrKU~wK99gc=IE=%9DFRkCKrfI<|+Qn$wzv}g<-2~6nfs$jcFdVRV77|w_w^c
zZBj&<)EL39sKc`?baLn7Acr=96U~T9jh~rkqh4L0s3D0St$Ev=k1@^v{#1Q1BjPw|
z1uE0)g4CVG>6T`R(KV6dVv;ce0^Vq3_tFuaZ}&#t@s{sZxAwh?a8vn|q8I07`dR)j
zyrvaZfyPv5j)5<$^q^dPbDE<gXE1Zb@1i;o2?nn^g*=ETX*!3lo#0eXEl_CMabbkv
zR$rN#s^bSj@ZcGB_zC448lR56``h{^7nAuHH8kt!{NR`u6mJLy_j9%`^ZZLYeaVj(
z%|9>9+b_u%FKa3nFMpw8(RHWl$6^f#`gkz*1+Yp_q58^oO9R-Z`0dANKrN?K=vAX;
zF!b~FBz{W-NRW+X6bqRtyf{m$LdGbZXgS;%IN_5^__?+9jRhi?Rw%kRnrv_#R%rn<
zM|j!lT7u5Xd7Ei&-R?r-x4;w!+&ud-?4_uz<?xw)tG%|>IX?l%NA_FJwpJJ4Iw7s+
z{kER_GxAJ^4gYah`Db_bsW0+EvxbMTN_z(Wvtly5*WQ1gzuEWS1f;UM?xAGyO!`{8
z@(DjI$=J&|Qkw}^xxQLMQ6lq&=2;qkn>Q5k-Mf_CW7G3dCj{8f`KlANYa*I&#xC~v
zKmx63B0*2j_s5+jxK6J4<&eCnPw54fC;x00*fR^v!J;#m^ctG4ryxne^Bd`ewzvJ6
zp5NAII!mG;31U3r<L;>6=5+QCI!i>nVWj6BX`t@6Kr%t-PGTb_pp`DoY&ehwt62Ax
zZPbur0VSsVI`w}30TzF?e@smQJ)s`=9T9cvsf*2Qz#19reD~s#If)31pN75m5a=xO
z3&Ie+n{tNSsOJL-$Fe4M_kmypXP=$LS;TwA-^#5Hh%xQx^5Bzj*^8C_-*Z+EgF(LH
ztH5(5l&5IkoXj3FqMI5sKodx5S+w?pe)`zPj?N1Kw(G<7<Grw`DMxb^))2~guD=mq
z>k=q9lp|G@5bQfAI<M;~@?dN-;j^Bh57AF7Gt@JjBB89ELgnk`)|wWpVuxL`=Zpob
zd&D{+#<e%Q=u@N_whML<XYw^qYQMV-lzjh`j)iY;b4@V2)(=AKK|OaiR<{=qW$Nk!
zklW~ytPqvEr^K=y)Vi6uUMzieVB46#eC);G2>Is%Ko-u7hUQ)DPq#$xA~@-08Fo3U
z5q?<sK~6kl@MQi#BguMKevJy;K6;~Q6qC7pHIANDXD?qFLL(A2c3B!7#)drI!oAPl
z>2-M7-?;8%u|H-wbNRVWsCjH*8qnf%mcgX5zHyIUhgMd0t_+S4!DnC@J_sF}{EI@6
za-Ov?5P_2P646=$tY_IVrdsFceJJ%SgFvsVI#L$smkW(7VQ9fGhU0$bcDH}c3c@wH
z(Fo`m-aQmni@t-EcHNo>OSl}5E$R55Y-~*MJa+PSg$)>i)-m(FN*JSFM%k;_Tw{L7
zq9n9i)Peh7I1XW57Sk0y_Jkjd^%tNQ#YNM)nJ<%P6s&?8MtO&Dn|r&P^HZu!-Dc|J
zi$T6>(XlBEN}rvXE(ASp!5!CctZ~Lhza3fBejFhW^j``AW&v1%i-?w)8U3-s@6>ro
z1>Ir!3Hm_^Z(i8T!a_?*7KhnI9*!4dvs!#+{s_5RLoN$cQ!ges0mYU@g>0F>8<sdN
z)yIK~qyIceX@bHE_|nat&X!8;l)L0&#p7ac#AYMH#ozDnEQ<*>>|X>IDfPqyOG)nQ
zMe2;ip08)rJRp-=$eW8Ovy0)!X?{sodbn$s+bB?K0UG};k>IU{=;XW_v_;&uLL?3~
zW(PUhN~lImIqNdF{!9qJ)3=N{Z!X;Emko^Q!r(t$`}`!)-7oGW4Pm`qnp^PuuYD;x
zeqns@|NETXr1k<dc`7=r1stroqnKCi@wD&YR-WY(7`-Ei63Wo)W)yZfJvJ|Xm&th8
zL!s8EpU8akQ80NF+4{o8V@1`Aru2BB2FtJy)uTDYzWI!C`wjcan}UPiAJyhTB6<XP
z%h9$S#ZNlyu4c0;{(fII4nZQM3P}61*7x((P)`m3AZqx2Y4vpK&qf%5NIt$ypZDlc
z9B`;i8|;rUvP{eX_f$npl@Z+FAiClH8Y?f7_GUi(CDBDJN=u3tg<2HY$H@_F)M`Hx
zOs4CIRpk*b^2Cy|VeGO;X!oWToPcq;r1i7WK1?c-@ScSELZW$oCCzfgJhIBO@4-QM
z<qtxP{Hm6RSAT!iZE3&9ZK1FaE~fXbxzap(_E1=c2Lnon_WpT)T{u4h=Ax|4h}Y+C
z1^j>`&nb~4S{H8pVa0-eh4+IKPTVs=l7(vR%PvbPN0fb<tUvv}GwQwfTmuIpIBJEV
zwM2N9W|P<na0uvK2^^`h3(W!naH_W9PbTp&uU4VpE&@l6+@;Q;D(-x`Q)y~CC|Z!$
zvBLUSkf;l{qitHa&vqQ)yoe9O2P7<k2n|1E_!gT*_?f-vTlBL(62U*%USIU@?{az`
zUg70rCpnTjkPM_3#`5UD@h(W=1eTnIje+}^Was!O^mv$vc`d11SE#fXc_Y-}b?+@P
z4n?{4MoI~?b(|(`+TBfwPU<th1{(+K9Q#<_74$qp$0Ybi`WDQK8>QN6r@GA7Ax0GW
ztJ3$eQ9#6kxLGa_+$Qhg&%|@xD6g3XeyU4uATO@2Eg9*DE5;+Tm`RhP&&~FE6p;L4
zEgo^S@{<r^XQC*6hC6>?_Z5DRj=6n~|Ad!sSQ?wxd0ri$L$^?(ZuOwNFk+!^D7NR0
zb18e8Jw~jfRh#Ln!?!UOh`8mFT_N$5?4d`9qb2e-V^MUGdhZa#$@{W<Mh+DuCVo3W
zt_vth%^bkES%le%E{xwXh%)!3_ggLmhf~`>*AOzo!tlJ~P1seAF&JSV`wj9J9&XP^
zP6YYiq0u(=Za2TrM&aF;7TVD`{=zPZLZaz&RxVe_g@t5pRYLE3%+DtTat|VOe&^2a
z)=jal)r(&wWL%BsyR(7YjBAh<#SS9=3+NQ}F+E>a<&N)0>GkVu!ClBCC^mrH)CBiy
z#BemPmp$<^R4XqK?r9#sPJ-$lh%QT5&A;(~Wm(R6rn}4C#S^fF$`NlmGY>%YeaF!d
zI%dSt<+lIL2me7+vpP+}(qfHQ0OzPlXrupVtCdNPSdCwHb_2$cLCBYKlBk)~nx~9a
z;)MeK%|a^ZX^weAA<RP)v>i8PzVSIl*`cQFD&UZ+C#qRf-nbrlD7eUk3e!Y24L!oa
zAn}*PCZY}&zF&2t2OhK5V=ghxjD5?X>4?<<ZDW3VUDRpMT5kOl`EhE~?V*EHfKM!Y
zu^X1ptVLRU$D9@ypTh?fHL+UZ!Jx_5RB8PuxibgU56^$wN!h1J4&3rMt}Mq5T7?PC
z*qsOPr;(4c?)tUJL8TKn$i~jmOzay!58lmdD9R|08$08qh&>$?=0$oGbg>OrZ%qwv
z1Z3-{N|Pcolt?na9J%GpKrYcz+hz=Z8iqfJJ7euB?iM*`XEDX}{AOjwmWlHqi0;pz
zz|##y0-z!T&@ik}!ZxvgK1Ug^{)o=FVt$2rCz=xjN6pQ~Sa#R^-EWW5N^0tI@+I&o
zlH#Ymnkst<P1QXd4mNP3%<ckLcKj`B1hbkeN1PJMezMs8`pGiYPtz<c;9o+58shHD
zP%k|nCs|SU^^Jg?gem?v!fL!(OmA<CXTF&?wkWqad>6gjL96c9ZIXUrYKnX;uUrfV
z=GI<4!DD*0c57FlDODxhD<trP>yWc{>$jVS92h6I`P;xE&<Ex3$S2Z4Zu536QW?Nl
z#>ZC9vDRHR8Cx80wR^dWH?hU#`i+%txkm)&HZ|4ZfVSGlqx3zUfzB9H+leo$uMpju
z>gM=CX`Gt0dQ^*d>I&!ilMy;+?16;%E3{r<7}9ln?`rT^Yk6?aFF9c=A9|*?^U*iJ
zw^&0Kqk#~3saLL$AKkp<pIY8rQic9R8=Hk0i&#*o@dR+xd63N5^m+ar+1$WA+G)db
z<}!TN+iJn{dia_qMkzZjtx3}Uvst4sr`-NmPWd#_?u?2*c4z;Fyr>PuPbGtt%#vuq
zlB@lV>w_9{Av_Cr6s50<Xio3EtGx>-MmtA63>z+ePeyJE4hEcFEE0T*!=OmMg1#+f
zST7ZfYwvG6hkYqeFR4t&$@zLdyCbbqAD(S&++kv4H*45<AIh=<n(jeW%S~SVb0@oF
z_tDQ=;?wfiiIv6;?6Q|P_U>l<-8g(at_Z2#)sd$6yRUqdy<eAd9k28C$KkQwY<4L%
zE%#w^SLihgR+tubX0pC2py3F<tijTlJPUVPGz^eMuM}<7=<cxCOZA%93<7bu<i7A~
z9h8q$LGP9Kp$3}UuO^mtzACETitp4#5l)vBV<A?#1$6jcU22@>Bs-C6HUY2aX4(RZ
zSlePP%n$N&wCUE6RPCFVZvteXi4J|GVg|(W1P!w+5b_#uIbmC08n6{#C9ZT`SK*Uz
z&lK^lDb{6&;I8*_%NYjgD~^(L1aPFS$Hj#C!7<QRi0?Xy{H3JR;oTa8DSFz)dbCA{
z#h;h+4yVT(5jl$L@f!!!LO=Ia(bbkkZAjJDU?DWR-(Y<%k@CdS5p(*-Q}3hG{=#c@
zI?QfZ|6S<(ewF(%T9bwlXaHO(QfD7Ia@sN`FZ-TZ&{)v|5KVQF8fc*3lMC#&geVUi
ziH2h>7qJh<J6I}ZX9X)}`d+;z3D+3!@VWTm8<5uT+3jWrsN5bFv>O+7|Dx|E5Ds<O
zU-|>}RXr2)-@Dw!9nV75uCpm_vPT%!t51a<hiiLRRu$EiJ}W+H@l~s@`E5Q%#Ac?&
znB!k_X0}9UX}fWRf6Pn^$%ZFGKR+E8jf{#;H9(!gp-}=H8Gfh3PZ+a`$e;8u19|EC
z*IHjEGk()SW#^_tU(tZwl}Z#Wpu9dC4WkduSAjZx!Y#4b?M2F3zD$TAXm%RmVBi|E
z^rsX_je6?I3CDdPw7d33OP{8<S5WL%#O1?3j4(klarR#{asECC)W5ZGRz=dn)O!~f
z3Scv6b(rjIuXez{q58e^dt~9+`6=|SAnM9!^ZY-nbcxmX|CdQx+A<qS^*c8a7~t}X
zdeU43)0K+rC6S&jyT*{%r4sB9OFBV6OL6ys>YXhu3G=C^73nQ#8Ln!fAh%mke0Pe?
zb|kR9bF!>KX)YSe=zINIsOVtgJb983zYDxb{Z&-3a_bn1f38x+G-0w=V-wDH`ulJi
zQoCvUDUovf$}mdFEm>8^amhN)*J8}{r#2w}%Nkk|9l#ds{{M9~bE-T3|6I*IE~6ps
zLXCBF-72_-+td2NB$GGTBN?k-Z-V+jQ7fttGyV2SxUDj?EyVZm-i}I&gY$|+p_whN
zJa;U!%_pp^0O6?mQ0VVyWnNJGAu-cQ`Bw<NJ1#WQ5o5bFD@9%8QXUJEAYHfBEL5pu
z%_+;;fNFl&Fr!|W(yBA3V)fnNH-ZI%HyroeXU&dHN?5wC7PkiJY>hex=gpY1XNFm`
zC>`Lvoh6sv;u_NYgZh3;JtkFMn7}20V|kd+pw$I3QnRR;ckl*2Dqe{JGmG4i2=f{x
zE7SH~b}wIKzdwaUT)cD?QjETo^C!QY@hH5&6KCOzY!$Rix;!zc1_!Z%<@vprKQAqD
zlp54}=2%U}Z|mdsw~#eL$LyH~f*<!TaM0w@1#<fE_&7D0-1+W1t_aeCP#iw7Y*vlw
zFEL)9rWE3`VjtcX69QW%;jh;ds(sj@^PDEwztA7pU$XVJoB1$Fq!#_>t2~V#v%^$x
ze2HF)Hj^(X&g3G~kCL?!O?`cB{T2<-nOuR516?<O?BK*QNv$mm&??SW&&xT|(Qh|H
zpR~Vfh3}_vB_Df!7d>CSTvYtHHazco+0<RX-{bG1KT6_CF8N~4r24Pj|KVkQh1^@?
zRh*;jCym7y!~aw3|NC^)z8RetQZciSrxMOp*js3clBC*chNtKopv|RtS0b6prm2&%
zlila7KPm$&qL;^$npN)i!$RqrTnU=k<!s^I)<ERawI73bcTnc6&_xpI`VDJs>8dY(
zSH6p7QXlqA7OR?NcI}|*NW`n+MB0@u97@^mwfwTD(+}|BuKx_lFs{$<OcUl3tapJM
zp806wUStxOoK|HS5<I%^XODu--gA#f;8Rxc|6q5$AK8r^(Qg(Y^=5zi7#UTx=JxfD
z1gW4zGD|9*Wm9^G-}6ce>5j8F26SH1y+8RPd<*p7J`6XjP8s05#_{p@ll*?udqe8e
zh0^IyD5@3u^6G876pC9(?>=&7Y{GcYjp*$&t-!O=?X!?i7h0!3GE59%z3UzQ^7)hS
z&j7^pr&!AMo1UA8&4<<VrzeNCzVjzv2Xceu0dYUEJrs%`T(Dt>$FH}~*gkHDSZ1`M
z2>bphJ}-DX{}*BJ0vFTz{f|osAxUycgWN;p5>n&dAx>@y#h{Z8sSzhdmo3+B>bN9M
zG!Dn*h^9m#wYv|wgrply&CuvFW=3Y(GqY!}|JwO{zu*7s_x-(Izt^j|?!BM=JnLD{
zTJQB<>zO(NCYlI7h34&J>Xm;rQ8}i;Q_Zg8&)0C&g??t?F1-&oxO|It^o@O&d_3G-
zvm<CzARK9M89U&)yh5TGQG~xPQ7-3BnBMDRMq>1CQ^GKJFU)`XPom+wa5L|Ca)@z0
z*w=)N$XAtcdx@!?<XsX5h5HyWhYSX8k>il};v;;sSryTngO<+SH`{%2ly21E=8(lr
zp*f-5V?Qi<bh9N)AByVb7+ijW*wIJ|N(k?U1yCJNH*8+37P-fgvGZbV59^ala;MA+
z$!=i$C9+29I2GU)0LQ65QRBzeFhTzwN}hYW0uHH6yRUxXr&ir6=^r)z^NYj!;LK@n
zdN5vjhGL0*?^zM#-5h?5ecxGELZ<GXE59%|*3)iUtNh7r(^>0R=WRXLto<Ze_2{%n
zY@6Q)JOyPnNkj9#=Sg-%e6&noXc6kccU-#UYD~nqOoRNIMWAEPzg{2cV@QliE(%y6
z9?&N3+$1cnHaYG$$&mjvUsT$rqi?=c9NRfN({Q||caB&0SDiK=^P{R0tHag|8W3zi
z$TNuBuU=J=9;;(+X2OKVjsr?<&pbm#V~6mEg6Jk72GyV9e;;P2YrOh{pL14!)T}&b
zk?i@(Z0}3ou~vIRv`kyM{pziz5uMPkxUJwtDfr#8^ug5fG1P2|89elx_?V(HW2@nl
z{iffcv)Hi?L`@^)MF0HE?WrgE5A+9gVdnW~rl+?lDhlx+SCu=N#DCflxlz_>H($Uz
z#W%?(Z<2&NM;N(eq}WW%F+QuM95>|8HbiVu2r6Y$BbPiE5=&b2A05x<bN@~xmT{n#
zzdgLt_3v-GUxPk<FLf=Mx3FZb>U`)HYvWeEO@SuID3Tl*TK?d-sTJMUMwBhi{(dd^
z`Qg&V`QLA=@876-8Pe^bS)Zk~COfG}VNs4{qrSdhIO!f<ogQlF9NCn82WBzO#;|iK
zZE6e~=P-(%4X@^(Eatih++!5xzn_k@kQ;kLY^bp~o3io<4!`fv)0MeM-ELs6sr{PT
zOiCyG&<JuO`{px`sEmehUV@WCdpCpF<jXgE_dEXc%zWF#9$GQiBPNpQ=|b=q2ME8)
zopm2qJnQ_V)K+IG+>-v#a&P3217FzY8@xvGj56{%jMVXx`cRtVd5sSAI3JN3<q+Ru
zdf2NrC)#X5pD*6g&+^^<$1{27TD9K7tDlckBMna*JQr2Vja2%>`Zc9#SDl&a!}`C=
zb0>c-KREuqCNY|0@vii}Nbn#v=Z!k|pB#u*8xN@y!?m0dNiw_WWcwnh>U*KOW01Yy
zgzkFAH%jx}M6IcaA*ZU8!}1K`7;^lJPDmGmvxTtmOv^sKUDBx?_2%RqZK<6kw=ta8
zUin>Y>g(EV7qNuH8!Rk5xSpOH=y@Vy(bFFF0jiMTNHI_AV0~yy_&OeNA23#wE`y4=
zBId`epyrQb*6`gobB+pSC5gZGpuhV6DV{gu-!B!LIVXg162oD=N84=b@QU{j^A9As
zAIVQH^&4-QYBhOeP2{pEZF0q(m&F=U>DD}F-s4{N!dUk<xqnj68s>QD>Nbdz*hevn
zLBy6eeg8Jz&Vb3dV;1~g9PJRs!Dc?Bs`X0sUzAX%-5Xs$ikz}5IFdVx@v8Y2$ElRT
z2-8coBP4${Fn82h%7>$w{00WL@I>z>KRK+I-Qyh>y2n=k(Aax{JEe;c-9Dx#Tq_}l
zFyb4&N9B)FiMhkBbky$Asn^%Te5sAJp7Tzh5S2cpZa1}UwoBAY*c=mSa-Vqo7vuD(
zVqve2GAWTa|FTJ-pFEK-Y>ilys%k3~r_H$JmsZ^QQodxQ@8nAScXRzRo946txrc(>
zcXi-x_XEskGH|pBguV5irQ9>~dNK@*VJ<BM$O|(L14~nFvA}o`?~`4-U%|#}BqZKC
zA2EO0uf2bC!i5GVWA3y+dGz|ci0*qQ%~{P!=}T*~3&!tnso?abG{;VI$qJ>6Gsvv1
zO`9wUoAP-=E{->rXI>MjJhgt0-qlxM9I0|TtS2qGWBwG<LjsTG&({7XzD2{5Go;`L
zkV~|1D`<q4@;M3o5lo>ziQBEBLl8$y`x8u<LKx3DMuh`WRefOi-l^Xsv`ix{c%WQu
z?LeO>mRye9_O+#VW4KV^QUA4b6!-A29R3T<nPI9)3-Y~c+>e26fvK+H-_S6TxvF(T
zqx<%-XxsduHm*dG<%sn`M6nw+m~-T*dy!14)S9ku?FjiH`pl%Lmwne+-xQm})qc8>
z!qv;foo>2-zm@Y%6$944u^Fn=3uFEvlq1HpnDt<cVqkJ56Jncdu&>ScoL$#B{<J2~
zdAYvf7(TA!qds1fmoq|L7<t_#^wb`)>5C304}C-BqC-UT+x*TzW3ggJU1x)TW7s(c
zD!tkvPX7Yz*E8o|05_}HK=}UwJgvTRdDsyR*u?{X7(;sKz^NPv(}!?FtG@v}9UxZP
z(wB<ZUg21(SXQDSR7UfzzT9^5$uKQ#)*@F7e)MRkN4N){m#o?E@L)nf3-?=}Hp2CL
zQ^XDfv2KC=pPU}SV?P|=-l=yC61ypLjRo#5f99XIzR!X%hld4%aLOV&C)+wht2P;H
zYC>0(8(kb!VJa$g+FN+=h)mkuQ0sg|=6CS9rdZ_MSQa+wRAOVcy-lYP8FmERp7O1&
zzVg4B=axKJ0FRt)JH%6&ZVB90n`B00Lxp*TTIbv<@rjY=U0ZiAHg<L&PX{A`Nux3G
zA&}w-16OX)<*sXsw#$9r`8oabtyR8<?QRiS6Lu?ByJT$E!)BH1i3cD51lzbG#^;?l
zWsUmOiSWksg?f(C=!?+#Dz$K2qw)G!v%5XR8%LL#Og7?#j@?Tf4z2ib;Hc2>W{U;C
zWz4f3PEq!qk@FTro*g328!;`s)2h@j)r6}yS3R1m8ul0(|H*K%&F{!KZPuK1>t5F4
zCygS~f3eG={6%dB!TRdi9Y+o`VP6_fSyTtpXI{;>veX`Z=IR^K99s8nz3vHP<ZV%R
zBJci%hTP|EHA~M{t1r2h_$3l=6XdCHt3AdCK)_yc#Fk&{qT9h-dvk26XJXuSWsYOP
z%o@1W$mbuCrAkb~j4HU<UaF}1HTt|GvLl@BVL!ILQJUwSmbZizGH!IeC@SK?j<7_D
zi6$s)W2;~tU9eF@*wdxj!fmSU@tl`M8kf>O3Ez(LKld)MED0<%AIs|&dE~}E`J%P|
zwm-k?v@(Cq&774*d-mN1-gGG}+fNhWuXi*rt@6$~F0i?4uhC^WrkcCkR|v%g9Fv9H
zHDyLovgn5L!^@X1nMqAgyU{TFQuP5@f;X>jQ*v#~u!ANgQQKF_jDiAue7__V^sA7r
z&1~S+551k|S*`c9s&3}@IrKSW{@`yVFH0W2RyULfWY&luW&e}&ExNQ};Y+c6s_7#`
z%1(1ft1p^sA2UDjLR4Hc=qROEntjW$eVzW}gYd`vocaDr<q&;N$*V~I+VFo4$hHuX
z0jl>aGP}0Bv`ncpb!@I~uXYMio~g<C0wImV9dQe^X-@jK^*m$sjb9(f%I<dR?DoAo
zAWQ$_!w07vL&~+>_X1vyu!fTpp|{X2FM4$@bjdAMV8z`j<%+C0x7%O-;AcFUMYy)5
z@N)A<efAi6l3VlS`O|;*EuWg-ly*z^A}#MmLimi3(M^dRp7yDhriP@#C-*qtv{kd;
z1aDO=eeCA<>*cJ9G`A|N@O-<9K^3XaA-$&ENV`#z^hZ;pi|`NWt(cCy(%0pO`CF6X
z2G909>3-2PeS1^*sy$N=1s~X_EH6s>dfd+c?@dIX0gaX3YerClx@{IRzJQnK@P{mL
z%z=*Et|OB?okpt+2Qzt65OaIi-!d1wUeh(s;c-H*4f$ZwP79Xo?jSN`2UB!lHp~E5
zjvAooD{%iv)Pv`7!$tK;OAT;B<2pfRDjnsIdE#x9^y^!X3AYWi#$2}z3@?rgxO-dN
zO4NAsjy>7Nzbo3$ox<=!^OVehJ$`)^J@v`QB023*qR3J0GfVSlw%aj1+KWS?6_zsb
zg1hzE8C)|9&5|+;jqtCQHnXK<rrALK`_7h*bt>+3B|pJrmWoWExWgsHGq5@d_CrDJ
zKoj*!xTn%WXylqeVe5TeXCKdD`c3sZ!w&H$y^l<?sap@zR#9X`yHlCVFMHQ73Lll7
z2{w8|hQPYsd>~Q7k5&)S-0*=}J9~&$G;ZqKo>=B^S~~GZjmf;`?)s~l{kum*J~g}R
zcr3D7{2}6;pvrJ%lPmMjn$FWMFMa9~3p35<GTrshf~<Rf@TegZ46hX*B7_u^=}x(2
z`W^9^lHpFx{^T0pqG;t?3y;h#4H~y8XJ<rA@PLH4f{-``q&-<6$u0PP+-LB>T=GUo
z!HmAqvYb+S>I2)=@+|m8(>7^+;aCH)gMz#O4V-9#xT6gDh9NjK#A-nCJHV9e#ZkZ|
zR{*&eM*Qll7e}OI#5?!!{c`4!!Rn-e{JjPec7W3gJ@-2ew-i|_ay(ddUWB+Ai7;CR
z+z5dR9KQVeSP7QK5K>7)ZzyjN>3}%V0y%wuz>7H%p8)J88Q|I`Am%Z!`YR+)3Mmqu
zkoT?8>>KV<Ss->-lsT@Z^daZu&}deph`OK0nf`S$6hu0He!@{w{<&2er*2MqBeJ88
z2(_o>CVK1m35Rp{9t-`2zUcy2j@&aS?UWNTPS%-`%-BHt7*XcyIx|m=K}RhamCLc+
z_d7@yDSK*)d5!$`b0YER$N?3Cfr;Gi_w|cJo(~zrcg0po*uga2u0gHohJ9v>A|9Hy
zPL9`^Q?_Q$qzVtUhhq(sosoaITkGG3BjVT}D{KZOH5|L6P|bh8*3GOf^115+vU_m#
zp!a@Riv;5+`$oGB2`+s}@c@BAdB`NZVf+giq3p*cCw$-9U@Yh?mJJO5wblK|>8k@u
z4#4)1`vc;u<8}x8)QYvu?oMME(KmA$^!8yY0{`>)HZ=i8_k9hAj$eYTuoM}z=U2!e
zI_EXbIgoGmq3sJT*w46MDnEZ=os_WIq0?_XB_(=kpKJ1ccbLdO6oxih*80yh*O)Me
zR4{NTxkP7Ned3e3&~(AjA7<aqIt#*znZh*5UkmdKRN}cZgDOl(V;rlW_nhLqC{}U1
z6OI03MD)U$OhtDtb1ELPs-wa7TM#X<v}Gz{%|W)Nkm45McNZz{we2*gumoxYO2FK<
z3^vb@K=e@+@hhp7LJx6T8Fl%}g*Pj?lk1`CYJ4|1w|MKL5^jy`&YI5~B&1z?pTBzz
zTtSo3(>FSo41yQEIA52BFO(47X@8YCW*}r3JXDTLqlub`XY;L^$O-M8&wa;?p@~!8
zC&v^)&I{l1vzR8G&AAu9ETxEC@ARGgng)pW*5JY7`{aUHP-iSiSD9%IosuQycqS9S
zSNMiP5PR-^-XbYExqV!a>v1Ysweawm1aSSbf0#K_b?`X8yKj|vLKRh|-b1@f=A=U8
zj5Gyb=so1~k>6Y7CSUGzI0F^c^<keKMkc1|x}__Q%$<-C*}L_a)m`4h4Ck@8&1}wA
zNdKgcTo9Z!Xx18(10Kgmr*lS;A?4#1+$>$amGjhXnwx_~nQ6U!^0=7RQ=R2s+^*@G
zoWIi(U24L<e7D7GY!2m5u&J!i{nEaHaD8v}^_Fyk(&N<=iCfZdTcgBIH&WM7oIr4I
zgk`;;x<8%59GR}P@5hFhMFr$`C2uzS$#WPTGVH&<!!NvgF}b}MyI#zRD3-JkH4=FC
z#AqU}5U=6SpmK)N?!zg;L=`uE@M*9d-t^(kyeikd`fb}P8@TCZeoYrWK4)?M3^O|+
za!)N&?G=Q5j=MHLSZD9T6qehDR_#;g62F_Kk3Vb!jpVTN9Yp23i1~~{z4eZ>|E(mw
z{kJC}UtAL4x7bvXXg+t0u#Nw%?$Q^ACtnxT&*pp>XRV3g6fZGj^TPQ9$`fw2=eQ(~
zGv8MG?T1u&u&U#5w?u{c{vHL}9@7nT2YFZf-67h~%q*@han4NBJ=s>fqgt&HrnTwb
zrC#yKk8JN5yp_!G^GgyI$F)Am?^AtTZhz;b@<(vq>IL1a3dMO;rLJA{JT0yaE<GRr
zrR1Tj&Ac_WhI|nb?znN~{%ZJJER}U8L~gD9mkM4TVNf`qu2$!0zTNE{>RnB`o_lmm
ziEn(&zD?2NYaG6A!&gqkKEDe>^0d|YwfXl|6*u0#@MK9y`Rd-q4^*V>LkNl2kiIt!
z6%KWPK%a~`DhF>pFL^fz9puC=Jz2|4xTqnob$$C*L%jGMQl{6zomG0$_W=as6@4oi
zv0XictkiSzEv<KFoeSMo%XntP>2XPNV(-dc%L)rNSA6N4`tAyE%SzJ@-*2943)gkL
zzcrxLXWrpIMn?<ofAs1@ycQ3LoOY*Ry=U^_W9seVva1JX2f%?VYRtIGcFx#5E#w1o
z^?xYu90;A<Yg2b^V~_Zt6FYY73*q}_9`F*0wp5C%)twJ7CY&?W%bK=G3-1gVaq4>8
zsgcQ6&B^l@-M!=%Gja7{zkzPC;eYJtchA~vs8}8~eNdfI(Dp--hMTd(ayJw6s=$~L
zJ8#S+4_exM?3>@B^n~V-Ba8a=DA}HuHF@Kl3&P+J>6%>6paWMWHy?XeJ7qi`dSXkZ
zQPtDNBQE`qrQPds>V4Tb$M}oE%8ZDKs%Opb5@Os^FLpFe)qD^(oS#vZ-mq>_)sXb9
zTg!gg-D+}jNik2@HqoET&3QC7v31b6*J_!S{cE8(`sl%t56tS_3sT&+MF)jWdpcy~
z(0lb>t#@DAhm?#Mapj?tXSL$)!IFhTPN<o6egTobf7|}=+OhY1-w!FT!e{neT6FEI
z?|uK1_YGXPYkPsC2u_ki*%{^QcZrEv2Ch@>k0$+X1MuBx1D<klb*H}`+*>;zRn~!B
z5=n@&f$wtqx`8Xxk+)0}fLGhBCOoqb(Ga-Hz$=Ug?r-=gxeIm|RbW?!&YsVxAm~oS
zZ@x`+<~1KTwOT)y?O73{);?^zqPE?fIwv^c`xEKmEbrs1?|~ElC1hSwFY0wjLIn8G
zytUJriocJl$oV~`VC^6Q>**4>+fM{5OTcm!f;|2=id(;x*n5*Z>fV6IRuSDFe}GG~
zl+F_$F^M&gRRm#3;blaQ%qM$^Lm!hS;sF=5@S|tj$nI-fW7>vX`*(nQkLwpk8h!Q|
zd$qIsmQ2s@K?|!a_H|BM&bgn#X<ycMRvoJz9lAJii@n#Wrsw%y+ld?fHM(xw2kWZ`
z8HlQ*2Ey_t2>pIQ@F@`x3(MSM%7AyDnc!d9K`gDKh^n-`31CJQ<pu+<z$(9g>iF-+
zu5#C?&7SNa8grgAJp0e4iX@r-4);x8ow2{uQSL`~%EV*8A<?949@x7A@CFmhO0-ZB
zEwBt?xITaTCN#rs#t;qM@g7TQ-f5F)9Rw5<-IT%RVgnHC7wj(8f}rY51+%8}7O|4v
zZLR>`1+`ZR*q2ia{{r_RCD5Z1#8Yd4FA+N^xrHy`-{wnTRg4x^JX6V=p%nWn?N`$L
zIY|caj!ku~1;Lqe1~UJVe}#%)-*!yYL%eO%l^Yy;J;ZMHtOY;oK8h)Z&|2_pe^Snn
zpJxY+BijN0`Gst)2F3{|@wKrcC{rJos7Qf%#ZncSTq3P;8CeD=%Z<I7@!QM@XB!w%
z--d77zCTKU{`EBsClL&@=o2cEx1r6VL`s<4i(Eu2HXow%nhy8e;}i?0<;P<v@uTK9
z4$~XIOj_IGa<_U)bSYeDvk*y$7o-Cdaw&Vx=#5o0S^3T<{sSEREw0vnPx$4dq+t>L
z+A1;5tXLd*J9JuWC`>4cSxSRc5;}%~89`Ib0mjl_%E;+TvZRqj3{;A$eC`NX1=Gai
z<tt*qK_36(G-v<a<`A>Lepy6z%da-KPF)afHtp-ZKlG}<do*j#c-w__bYEf@DzoZy
zs?h4q+4=Kr#YLH_GghrG&kKi@P0Gw1R@kTcua<egu9*0wcJqiII=dzO@ez|vRJ$%d
z=9Dg5Ctj60Y<y4Q6lT}{(+?(1#stdAQ+0~ZDqLDeSI7R}lO)5OW(IXLo0H4c2~41c
zzrgV4-SnWj0}dY$2nOCiwl{F`vzRQ>ZbKHBZP<`JVEiBT{7s7w_Hgm*(?S{6Eqj)b
zEA%|xo}nM+Ht!C(#iPGng?r!HAYJ14<Cl-<nLe|fY5mlyzm*XlqlI!G%h4@O_I*Y>
z4GFqvdGMFWUwS`|pAwnT*=p-C+9{COv-sJ7+{8X#?lI}(axaxO-1&24Sm@Lmqdfn0
z&tmGu_G2ptKZ<@??-=m0Ttm$HJ0W<=252(<;9fl9;z|BT$Re-j6Fu`uBfh4(X@qG}
zb)$a$n(l;Ie$)P?>X0hxl0j)$7J4YLxD$Hn{mHbl%F8GD;h9~$duGAiF5cbcfAQ|H
zb@nuwzfRxzL)Gf|UWIMUnD`t1)0Zz^mEv1!W?n>t#PK|>L(aV-0?Bs^9p(8$B{1|#
zfWoz<;z=S1UwYZXy|;UU@t(0|@YL&ekh45q#hvT&HNzSX{BqT*BWg8imxLp-MU%Q;
zp~=Zoyw?EXi=R~fPk87Q_s~K#s)ts0J~fap9sv31w46xxX(KjjVq-nBA!)a4Y{}&8
z&M<VRdxT~m6lfH#X^5%@&O=CJqT2B-FJqY;ELQ1>>H>)K`pEEG817yW-&1jTkn?0h
zQNHDNPU|r@q^0n0I2Z<j?{NNP5$ylh8oUx9&++H$m-V%b-#_;a?%zH!2eYr#F`fyq
zdRwKT>&>f2NA(X3_W4YwSuAIWN=+s{qm16_#JquUdSW$9TYsr6W#CB_#aXoA>RpP<
zy_)kpl)H1T%`?Gy)&22Bp`*yjOlEHt8j<9GSJj_k+Nz<gI&%OO@wxY~W1H8TWbEp<
z<(2jAzx>ZDE03v5w-K7MnUa<-_{(OLv|I1(@p~4SEZOh(+pJkf&9b&&4ey~7YlWko
zoQu94nLDsw%Ysqq0eA0yj5)e4t)Oy`qDr0LZz2BY>N~|(E?#={;c<i4<9pJBY4@CV
zW;zb+2nl=9JrHhgDtWc+ao)s`yXxw#bVV_Qk6e)ZlVf?dsfy$A_Z_|_EKXuO-$DKF
zxt%_~Z*ueBZGPapumzcw-_C!p{|-+3PLDV?;PMGCPvO79DBZeS-lYeoH_pEN<Ktty
zD-YGL1K?(YU*x!9M;6p9h;ckV<8A4sq-ENOgF$^BejV7lMNHSJPmFr0-tn=EN?H1U
zrBYTO-(V&4tX^0hoHsK*JHo~MxIWx7bzG`**tdRVA3v;<tbDR>pTP5ps<K4eu+z^s
zFDKIVx7&{$!WR$BGT;{Ai|@C5Z*6XDOgdrrwvXqB#hJ_?>w;U4ug+0&ALfmJEyk_3
zzF%K|TH4&aHgW!BVRk|EN6Gbljx)a>Tz@^laYm75_vWveE9VaH@O)aMsJhd)@aT>&
zf9@O=TzK=UTL!0iP^m=%QL5Ytt18X*ZYc{)5|^m5GdR2ZA3PEH=+5oF1Du!cIk8$Q
zPEYB3CVzY9q?0v;<5%x}?RxmwXus(%*P7N?9L(7{H-+$C`>NN_1{oX|3r>WCAGJO7
zI!8Eh`0=g(e!8<~V{yj9bLZ}~n5FE>nABs5?7_i*|6Db6SN|nWqw|(n4axPG@ngVA
zUby449h+?b;FFhjE@s}BC|%lzEZcKxLw}2tvx{!_=tumBs>#x?@i@J^Z2Fq8M#qyJ
z`i1iJj^VO}_9uOG0d9}=oD+tj4JvVQ@Pb<%)V=tD^J-S-nujIJnuZfqUyG@=HJv=W
z*lRn7PUxpU_Csx#0gA#~#+>%orGNfW^Up)KPVbjDKiZ!>s}J$84D7vR!?%<*pFDXb
z(-%Hj0sORsMyj?a6Pm-+4;_7~wL*2KI7%TtWp<L#wHg=eBwMpY<2^e2p0p~Oz65%H
zetndwRvMGs{-VqgBZ?=Ci4l#<5A=BNz^l2!^rTLIk_awsSRK1am%1sd`^jM4w(Bq5
zJ{=azeD)9BzkeC`dPrM@u<SSZ{@dVfEi?BukS8k?#WJ&|nSHAD_Kh8VD0;)P6MOCy
zAn&rc|LTHt$M%y28QzI4GHrF{)31IpO@{Q6)K`gRsUuI8>+VN>s5!nNG3g3-`d@3_
z^e<XZ4E({&`B=|yX%i`r4L#b9CUe?cjoIi#lkpoS-X=}S84D~={wP|rerRmJ;!Dq`
zZwOnu=kRJ-TzbC&!3A&D2$oK1y&wCkNo>ODSASxMX>ya}fS`hnQ~O=f?e#dZcZp+r
z@K%=@3##07F2t(jTc^|-ay1$6kms>}I+z8mdkuCnNa}!cE%AjW_cP*@oeb|%&4$--
zy&0}p*_SlKV@Z7I#sw2n-Csi3I#Ew<$_y}b9WX%#JHkI@ri0hW84TaO#%k)`UC*N7
zldptGX@kDD3_mFboRAktKd&NkCigT%bk1TrdvHL%qOGT02(3sphg|;>$nIMPLzdGD
zd~x~Bw+zx9RAlaQnqSyR?r9Y7RC0GWB7)+pRA9daeCA-#3Nc4jP<l}co^Eua-3r=%
z1f>{C5oZb^*cdVw9WD$#vRDOaJyrJ0<3aq&0t6V|BKucDoG9e_!LmhqE;jBc(Q!PC
zVXHA*h+;!u-$vqH0W6JyS2w3-A`QVf^<t*>f^)r?3H|8K<t0SURYT5y1<%+x?>u<f
zO2iMqBHkc$poG&YPL9D|3pHm;2vGripHmOlXpF3hssbW-DZ_iuq)@`4)PFaT8*dP7
z{{RwYg$kaVSHt93BF!7x^0Q%CHQZlbLhgnMrV^9^c{ou^tkrWTgQJQ+jB>072QBs%
zg(9B)6G>t#?XYw=h?25PK`}!^94&<7QAFA(5MmrZB^uJBAT|o03ICUra7YQpmwu;f
zn4BsN`58KM3^E$KDjuF`5c)R~`{T4Iq}+ZiL4d>L&KLvOXZMd%HIcSTFNlF{tcXT7
zfv4$rlpB;px52?n8m<M~@2PuW!Z3z^`Z|zD3<_2%8nXNcq)_&9xNu|STSVG$)8MFw
zc?@4dT)T>r(~#>1!Y;j_R0-33;1vURqTt({4wQ+O^pFtVyInQFG8VSq*)hbJYvFS=
zjWVf+RrCRx{2kcQSpHzI#9>bMffq<Q-ojgnr~VGEa*$C(X#w%@D)48>iE}t0ocr8T
z1I{|MItPMO$*W_}Z-NvJIT5gH_mJqE8cV!pQfP9^8^&{}p09zB{<Np-XE<k@4Xfjy
zL9Q>rqjw2kaZ1=p_=KQ(W1)()@CgLFSXP)1;M{HlW>3F-14k{+Kih_9KRU!sPkQWj
z{Q=l2cV06?q+K;A5`KrYUd&@H;jI_UV?y3*Sw3br;1|~=<ZXk!ikp4h=xTPjL11N?
z4l`#+blheguUW_asN;Q_kq%kcs-Z|tYz*ode_l=K!j^t1U9mPO?b>~7FYsF?1ob_`
zD6e$zxT%^D16HDV_;#@xBp)DU=uAeG$5=^-AxP$)hQ5u&^GzV!dDqYhy=YEP+TNJ)
zGXimUnn)`l5RR;qLtLj;M_4lx`btQrUbIOY#GF@i?c3ClZ^_eJR2$F!01LKA$W_wS
zK25N-7g%`h1<@<ueeABc|Dhv|7`quXOgar)j{w({QW!J5SxTM}?KO^hF{@!LYTGUb
zBm;85>lNe<qlCr`nIr+PG978v4ML3I)lddIMf}^<orA5kU|8F=hb>xi7j2&oiT;pm
zAlws#25~#IIT(m#QsPnvF*#fhH$rLd0Vc5)M5W*$f*=*V)DVFTISkS+LsrWJq%ALY
zKw3YX1@1CEyrOu^RQxiSiKiN17l=1@LW+t!+>3d|aMOYOopztec)q0syAWyuzjC+h
zOPC?&J{50nTV^+tK_Um+X{N|)D)KkFVmE$Oy-@^HVhQZSJm8ixyliI29Of~_yJ^4x
zPhn3h9%#8}E7mf2*U9CuUIe8|v@j_eaXgfk!j$0<mj%|$E9{<>2vTuZ(<vPUE`Sbr
zq2;Fh>a>$_UyGlJmlO}rV%tR)kL)8M&T7P;0lRrk#brk&Cx(Il-ab}g)>}Xy<YQ2n
zIkXXi#%f^BmW5?7ofraJMe}Pp-P9tpXzsLuVnn0@i_rUf1tw34ZQ+823rs4qygPGO
z`3`rMM{Bs1%o0On$&>Q}Na=u8fW3WQ3Nz(sS7vV9MRU)=0Tr=YkAuQ&;1D%DrpQSu
zXub=RNP~C}2>jXAG4DSToLLV|k9@Xfmkoi660Q~4&t_zM=YV}HHUg_y$>3r=55*l3
z&vmXFn`!PeMlcMH#eu&BXM|?~<3RjJop}eWqoD`0T3_)BM$Be-YiWKk&BINN!{A&T
zBqOU5g^L@ToXhsht`(9gj#u5kQo`GR+6Y)CN2RDPA<`+r_3lUZq>3gSmH&5GD}|dS
zkh|0HS5g@5-ZfK=5>zGP6-9iZ1V3$vin}AE_;77`JUF&eoM{Yi4=w&HX&4B9rxU|Q
zLZTFo2ok+u7HN<vD@tLu7U!e$l`n_}f+O3l#Nq7C?-&xBaN2GfWD@v`)m83H=F~8#
zz<zWo<>zQvAt7>cV<siO{{WR`a1j~|?8h!ze6I{{)5J#&y1SJ$*#ngfR|hxCP+`q-
z5%J)c08L%3maDoHhfW*@IsT1!#PJ(@D*2uwXV57qaXLi`t^qK@5gesx^)5kTJ(G;S
ze2Tm`2(nPAaP|)vpqYYe?AeKX*dAOjgV|D6DskV5X$<ESk!9e2q>-v%r^W!2D5C7I
zoa_LG-%7!)EEVs8q2d85cHC?D(oV(@&xk^uY$JB0nHHnGsxO0AmwA2*I9De+^*h?O
z%wb$l<CF_h*qy01^-m45W=NsMdr|G+wiI4z$$jB(b?{p~kpNbu<UGhh8!Cf@sq$wG
z5lV{g^|b4xdDwNzem;2Cf#2PiTJpL?5C=P0caD`J=5XD|U}~2I<X4)<_Fu(a#qc!1
zpN}Kw`qGLOY3Bm)m!e^<3~ovwG}~Z59EvZ4e;r`~Ud~{pJn%{9S*yV=dd*@^#h`q+
ztLS76frbK|p@x%PvB~kiieE=$ffz5#hD#I<qMYK~`Yy#TbS|P3tM7vI2pA8JGWbg)
zkir*QeB}gO`2c2$&O>c#nzAovJ;c9qqGHQq88+Z3NAXQ#T+s|@xW0_|zIwKQWgGlO
z*-MF!JQkdAme7goH&&Nl2FE?Xbp#arep(T;SI?Wph;Dbl@&FVew^4Rdozm5J&!2r~
zL4uE)QxUiqLLdJbB<sFkX^Cc<hpU@P)<AJB-W(pux=etc{~Dyta7zj4YWpl4Biu^`
z&j$wKe`|o8IH9blB?dq<>Y5gHjjv`kDKUk;eu^;*BW7bL-ND{uSy!Vg^(2~T9iSmW
z{3C<Yb%1MIs>EB_%?AP<=0|q<&#QyJwKxN4<eo#w5JnULqUium_r9oV(b%JK;OXpa
z6{;530&kASSP+9x97o{xgorlr=1T^+&Nj&;r{G%okIphgIn5gc-hi6arK;;?U_o($
zX+>T$JA_nr*|NruHOBwD%QPYf_NboQ%HEOV$IjYE8oRkm&v9f>!Esf#cTF>U7VkUc
z3}HgHz)t{R%^tA20*-+U4t7LU*NyZ7TgJ6Jx+QiFQSDJ!6wb+GE$Z%nfge0uMsceF
z?}|c(o|q4Z+4T_not+NHwQraMZA3ynLQ-5Ar>CM?quNy+m3Il8)kVuv1c9sR#QA`B
z=pzm1wS-qWywZ?C6=0_a$1CfqVcw3rU>mO{Tz>!gYUAz&GW$N8-)U~E!y~uQ{m+CM
zIBU~k{Y{5}Wp(CK0)?=<2Ev@d5lOz6I2HoUi~Sy0&7hhfXmV&L=P{>JAWSGFE;2ZY
zj#mzrP@I{Ji3|=%i85!%aT>!)1RdQg4N6luk0JWC!C4wtn$u(^?mG-ZRpp~)lWv3R
z2XLKT&`zTmlX;Bj2MUP9+{!$_lV6->o4Ft*=3F_rlto>{&Jq>Z8gS$&OBoC~{nHpA
z3_*LcOaz#YiH9Hpmy(9)r{WG`Pr`LM0(`RB`SIG(PQ0Z!sD=j^yhCy^4rGFeA_k%C
z(A41GT&4&HAc0l;<Wd04W4Nt40WMwpT~b`ym(k1<gRj7gS{O`=v-1PLAQ|=wzDS6R
zI8GIJJo8uuKRwJ0=GH_Ovzg>Dw=e`i>&Px$*7(`s>}W}gUaSz%+&ofq=jnN`VWig{
zdC|J5d)+Tz;L~ku`Y%`zB{i~+8CpdU-j|P)hD~QP$^0;Hmasii5f}D3NI&;-7Dw6A
zDmO#!RuiaVbMZ5R`ek?CW+LZy_Mqjb9JEX3vn55`^G)LSGOlfEl>AglVxi``n?!Z<
z_d-pv1oNeXKcD=)NMkF}7t4F?<xWnmy^-yIZ9qNWg7daM_z*3Z$bM+21`W>cY*Y0V
zl~yWG`Thv|tdeT_ov$*iDZ90nDV1u>wF?@?F^xvS;Tvs;oY4AoN)uM%)1<+oK;i8v
ziep>kqp1bG1$oL#M=OezwfzOIjUC;>H3fd_Hazj58pcij&hPG$SR|7xYs~~91+suk
zQVwR}pRQ`!)O$gv*}*jV^R2DNNMU<y`SuJhGpW+c_9vwAI%&Y^O`&mm{mP&b-3tq%
z&|-AKnU`98i%OZe8|DFFp(2*w2dM@gYw&Qg6i}m3XR{2%1`rf;WpJwuhF)jwm7^9l
zLtKJS<ZZ0LqZ~!BkF^+FZ<>QfO9~e$3?FY+CJcph5~$dmgQ>&QFf5oMCNuWFQiM2y
zwFVZ2T<m}*+UW!FjL)w5%WPk*)QAIFE4`mK`wVA;>&u;47wt_8ygR_&3mwD(ji4Bj
z4XV#$iaV(T6kAB2FE+3qF=hubm*JJcA^+2WynDymw)7+%*n1Th*Zq5nYwwGZtP~V#
z8Xc-}q>FEaZ9QYP6_Vq?hXr1OvyeDd9*xU~VHYxSfUZDivR;lb3$3~ni+B-S_`C)j
zFanoF?3(O6%#bm#pMjcp3HaNHQ=?fMsv^2<Xq<%D&=oGTQPg;5eKSl@^8PTONPj{Y
zw3uBG2F38=e;|xWgF<vqk?nwvem-kMQig-f*RE4XB0LGoVeOd+nzWH+I>TNT7=GHL
zNBA{a&dOVfj>W9r^Ik=B4jNUQpK5DBoasgrJHs`&#$Mpu;c8bAh!aqvgBh6DW|pPG
zR=y|^zaXajAG^z)jKC9(uK2wQF{ro)Ybs<PU<R6$D}Y9M>TtO34Iz8GfB-J-p>*OC
z#{I39L>>Yi-<SV_GAeE>g$B-^HNqH}{{L-H^Sz4AIH72LiV3{%9m9KtoPi1(M~i`G
zBsYfQ2y&RXq*~zp!3b*^jK3UJygz7uEwFwRjk${KgRKhMfD_E{yYO)$x`q0gtY1FB
z@X?YX{BmGKDKD7B(TwQDhg&RK`3Ymt_WII^iCZpp5STS@WSy`h%NRUnFXH_Pfo<?Q
zkp<W^c^PuElw_q2rW&IiB(Je%I=POqDrOxQOK_mO^rjQ9QLGQ3t>oBEoRsNWvKE~p
zE<Ud=$Q8{1(({PH<}&Q6(XxgX-84oE%h53w)}U+W;aB6CxH{-k#omAlgz+}I-PqSK
zo5ficESBz)tu^FUp?0E&!?@C!jTvVm|78G-p{@bi(YE2}+gaRtfZ^dZ4rOu<GXkVm
zSVur0Q<Tm+#AZs2x@$NA@^2tRrv?1?40Z#rs$|d`;QVuO?tXe_RyK%krS1O%O5Ol3
znzbpH*=7-baJu|Dwm%*NJOaVN09FrovzPq`jNlvA>0(_9iu;}eCDXw?JpzZzkUSsh
zEyTTqVm7O#>ave)qxjCUOW*9eG@RurkVg}E!MQe8$OxX=aSr$&J6QGVdNRPgW;jQQ
zzi9~!qwYVj)nf?^8ai$u16@Fe`xE8pEAGMO!T)dYp{!5?q6d34Uq-a}R0o)<Sdp$}
zuiwp12(pctH@avS^t}w)&J-zu1D=VR%5X&N*s<Cyg~cMbUPApl6}hYnzTAhODEa{Y
z+(iXQ%Wxf#zoQ3-M0Pb0%j5`paC{?BvEQ<Q2nm-i?D$Fx=-zc8at0yJG)@tA2OU34
zw_waS4}=q0;a{&q2$Aw@ltH9!o8D7H3~v~BQ`jOO7Mgr9atWW?M`2TG_ElcIX3q4U
z6t}l;pY=yz$(jpzCQK;hSyFA$4a~Sh)k%Mv(X&+t_JuFDeqYbEk6hH4Qg(aP@50nU
zj@!f5h1aeV@vPdqtAMZ8n8lH!28#c)x5xXEB7K_p5yRQGc@5|NvXR+hn-3<lC%Q$;
zW;V^SAx=>@*J#S4?)MF`wJDRXA)c(+Xs$5I4{}~?G&B@9_N2bam+DS*FQ*<KXZWV_
zu&t@!qS~7KUfs3XNPX<1=D0z6|9#EhhRBzPjoreddAx0ykqvgMt-SfZb5Z7<#5DPY
zlI4#+9hIBKI3KP*(|KUcg7loN1;am>1YO=cWafBH{<sa7+=~a5EAHG@@NaIPG*#g6
z#l8M0lt)um{g}L|Y(m!_$sxxv3@&=)v5;1MjBL%j%IrqsP@D?Oixie6q+cWHFa{Sa
z@q(>W!Ueh(Iir>q@sau;*^7?LuDU!cB1`l+{hpG)HyQ%W8>)0oMa)^sZSjTo&U^H?
zO2q@eiYwaWoPmV*RRWgiXj{pF?(WQ;2IeW{62*kCX?Up?8gu(rKV?*5-#@dZZQO?i
zsSEmP-dNo7jjO2U6l|P!*UY+h=S?M|9|S_9BNOA+D|0x?u(bj8q8;MM0%2MXcZy5D
z`rJ~X{G>ca`V$8I{*+@i0l`n>X33}d(^3&PZ5I*;a?TRV7Z}%@#c+<vUDG5%58U-l
z<v%ME-$s5rHIwAz^bB;|u3xKqIql(T&0+3)Z%(1ys#N+D3n}S7s=0MwP<DFY>Y$3}
z+)<p-jy$Cc9Fi@bbTi~%x$XBuPu*yv%kcG#^sGJBLo#y~H1y9F+uEGd?bG+(OIi(m
z<w7m!AuwsmvT|8}ZKrcTac)yb?{J%eN#!<F>T!3=1o<FKt)r2^wW;GE)qbkNsj(yb
zrB3k=Q&N9EV;WnQm{XVf@rDbfFHgVSe{u~6&bQn<^X-L(n*jKOHeT@{_Mu2$CHS6%
zuznzn$FfeE4GmY;p8{d*Tn0>3Bm2-0tP;oJhYOU`&PvMB0Odn+U~@kvxj$QX7FMd_
zd--csiX_VZ+)AfGU~>#(V4>$gmT<T0d}QFoiy5mTB!0<NljXnAUS4}KIw1Epl6XqP
zMHO$DIhr2cb9iz7%)zlN)-A`X1|JFL3B-2M=l~7GKZZ_BiB573FlF*)NQpxwEH$0v
zh$P2Q8jp}3sEOjq(a<oY1Fg^tRNA8~dGA;cWv9`9Bu}#aluQ%3BJk>|!W)b0o7n~|
zdqLhH;D7johnl-fuL$U%STbF~(&*lGkhABBy^>t8iydR$$OiDs2KBcYAUsbISvU3F
zF^-pE2WuEV`E)w0r=0MOQ<2^hc=cDqVBCx|RRdvO@yL`^>|_aj(mMgBs>sI=BHD<F
z^aPbnDI6-*J$TrHgd&z&1{(OAA^c^zH_pjWxaHJL37T~r%SeMlk;z<73Nx5t(q*O;
zHX>OZVCfCH-r!TYTQ4EXl;}T^%TH+|yu6+=j_BhIipdt>IlYaD3rJx7Kf82alz@ZE
z{-T<DJPKAKTbTAva}Q=LXASobBzNT8Q%J-Ug^h^LJ{@f%JTIw9bRyVhX*Jm50&gSG
zwUv;V!>)Nti7%+R*?(fDqzqQYfSUxv9pwMDn2CW$a-v)(Mj+BgT-2az%EeU2i@Okj
z1&9~b<O?--&XsJw!K^!*qG{HNKk7Ib4P*NnHXW1>pSpN=HN2!q1V8EEjEM@IM@%#%
zh#;bhL6DdguR+5khlXea3fTro?=qNJ52AAz^P!8G;OY&x_S6vms3HmIkI9`i&}WyS
zB5)DI^F_=iCntV|5QR!7@YbU@zW0vd&j}FgxJ&iOw5)vtnBPE5AA@NG4Tf}R*#y=R
z20;(zm6}+^a0~B3Ep~CzBgRYwY2$$7S(mRSdh2<<N|dBe9ZHZbd%-MAE>4CYo1n-B
z_rWaWb$tjQ5cT{P13@=N&SU&AFI5sPC7$4^w%-Z=IMkn|NX`+l-w|xPt8Ij^*%w(d
zhL-@f$g(lS!%-kBgAJ}M4UPc7kkeNpp8Pu|bwE%fQE@Q~!khG!b-2j!u|(nSpOLoU
z8p|T#4eyU)(lC{ghP~N^nVFid%#4a#WsXS~%<f?R1G6zPgFw0x1CEN4iy}6+;n|<Y
zx+kL3Cg;D{s7mA)a+X`OgY5$EEV`uKs|$#v%>RjJU*H71loI2IF{t`H%-OtB;Z1ot
zY!__6uZ{@BJ2-!1si{+dQ^0a?sCvs-l*paYtU~CExiu_u#hO(%zjl$q{DzhYDbbLv
z*s(5XS1*BLtfQjru*6qj&b5<JM6K?;r2slzw2Uon_taIxt1>%dAo^uwVm4ut6yPRx
z+ma73QzBYw4T8bEAwjf#jMEqwkRAORvs#J>Q?L`vq7Pt;ifo2&7s3LzG;`*hCUX3P
zPQ@UFc{ChRke*WT__VFV=FrErp^7F|XP*){sS!8WR&@3YQ;0)C#lPOYbt6E<B4o@o
zqB1O7M7yIF&xahpM&5J^6L?k_(`O?R!te>9+ME+0e$9t@|5MZ3Rr1@F3JvfCVzj<1
z#fH=Wg^jgHuYoxKiWw}9+OHwb77|H?#5h7vOw)@o>O%M1m1FawVcIeL1pi=GESi$F
z6Xg`Sn2mae9Ah!<NH!qCIrg%xgKdjYY1rHyo9ujd@HEyRv!BqgcrO0|qSJVSzCwjp
zA$|N(1y!$<KnP9~$Y96dmuxD}rx`x6%2Qtjgu9mDmuS!u<0>EG1Foeg#>dFfQG%Ez
z21BS^lu8N*1TPqOOckPu*n*7WN}SN2AK3(JHH$Jxhie8!|4ukvf{+$j>5mk-wkvHK
zh<vDcvWgJCJE(?psO@l@jhs#-VupeZt$qg{GT>t0cJ3*J@Mdp85Q_>)6ZcEl44;x+
z*>woWha5vwg1kD*cjHIIiI}HcQN|$YhZ`$!$`r#XMUsX{dzVdtML#Ai-XOr#*2uSv
zS3f4V{v+^qU=)jtBdpbu!MH;PbJtVzCLxZeF~sux8&iR!fYYhtoI|1$^U`@UFy+*h
z8?_k6bR~8jaoN9=v&WE+QaoVTULugfWG@%<wYXeUrpO_0CG^4_pe{p8JNi=#$1n=%
zT3YO_igaJ9iX_bMB)MK?C?l2Z#L_aGrTxo<hDlKr^S8-+jk#)GR46k!aEX>?5!3{e
zijEyv;T_&!CRh^o{s8^f<b4QR!~E*ThiMP?3>9m~ZsLy4XO7fG4r<-?VEQ0Z@`w(b
zRiKCymG+^+1|y1+XdfBkLwjY1^zr0#EJWMGa;S$Gbx%?a-m5V0XnjOYr=9!G!8At8
zqu-0g*S8l(t{1?A(BavfLEP*S*AK>tX4q)1@AIu_Uspd=tXn&`!}jn9>4EG04f7%*
zmpo|H2i$Qnig0Z*3ux`y5oo92la%pX=4(mNW)fR&3(!5Pi@X)uFDLhrvuVAe`^o#B
z8z!5@uH^TPR2-`a>_SV8Stc&$u6+-+bje-1j9FbEGp82x7337knqJPA|HJf{Gv>Bb
z`H@>QvNq8!_nP=z?pXo;l*BJ}gV7R8*fi~SCHbI~g}#`_6!)M_yF;}Rj4U9mlwxDr
z(Fj(bh7QbaJ~*)MIGDMa%}5}Aj54NeQ#pOL`k<&#qIY??wb;yvk!tACbLS<<PIYq%
z3S$N~I<s%x2US?~tuQO(Syy~LSEix|(y>zQXv$L5vE)e3+*D3?S|rylIYOM^705>%
zsV+ZXB<wlV#6Ii$E0djbtTP&jU+NTny&b<KpMNy9(r|VxlROYAo()Nw%bYRmLAlc3
z;+i;Z$0B+$ojs{)O*rSWwMg%Bdxs=cY@%NDF;Zddz2d3+#HWg5<lKf%qn%Rx-g7vf
zGIwS|XN0mXb6?ny>@$R7-9^FaTL0ZI(q`P{-VShTjM&AWb~kybeWl^z7(Mj6x>!oA
zXySOCmr}%=0ywrqf2Bx&?9V0E3bUf;K~K58=f+75iwX$#GY_A-_mYN+=E&zZaE{w0
z;*me&@u}qi_v&=M(QC5jBc91+UV}xkZrh0vf5Bao?++X=%(bsf8CR+$qKO&t#EH(a
zm}lcPc}RJZ$Ilx{^CnJq%6%qUnHWCC0^CvxxOLiZfdR7F4Bwv)=^n;ItjWJO7BhD>
z$iMRcWp_dGhF>@2?4*R<7{cx(Ji;72?`F>Svj&L3$_AewU_S!4yU}e1=Gr$gJdIBr
zrUr<nVteahYdb)oIVMF^6}VB&7l=#c4<4?N;BH6)@zkeY3|x<bI4rFw+BVQ}Sv1i&
zBBX?4KAN2xj#Us%EDleeh&OWx2slfL0~&!loFX^vqXoMmxocwwE`Kx#FE-o^J2RHK
z)di~WnXBxF(q1<V_UkWY+Xlq4<q|)SVEqbi6vrNnTp=O-yS9nA^<sFx;r?Lk$hj!6
zMQi+@*5>%KJiG+F5&hJGL(*=qbu5=f1X?qMXNgK|!H>o=$H|qNo8DNE(X-2CIroCF
z|I{C%U*cOnfUqu*-BpoTCIPE2@M0Y9L%wuyaorFaL-D@#$WTwPWRi_(?w<ujj27?n
zl+EUs|M;-lr;rd7Vl{`%fwKBfr@9*Fe>xuvjB_(M8$%!#1}C*_`)4$*7<LTA_Hw-R
z5AIkCFlsQS`Q;79`NEil=z9H#YxawuE-_5E+h#tx;qS;$4{ytH4Xo5sa1{)rSyzUR
z#WuS$S(CrYx9-ANwzLM}BhTgl!DH`%!`}^fK~CUg_8!<hFJItUu?WJkB*0umte+A+
zmvNGuTuAfMaNGXKwN^#ZqLD(gegC!hd7m(KBVO3N^4~UC_4zb#ca(r&mIS!lOVHim
z<DLZUQI4HM@%S)&9j*cn9#_o7a|Yjox0Na&&vO}KSO+So=6ozMV+@nrSHc@y0!xi(
zDV8r4K+B4}4}Se1cNUX2oOP<chyBORWO$Q-INk!_-X;8Rq6g!o#P+bw*`3QMPIN8~
zA={cWxCx$wu0BuU?0gHTn@sb63F9=uxpfXj&?j?>gi^%Kj-sG)I0PtN2f}k*<KG|E
zi#Bu5|GO$2&lbjcVKcc74gBLE-MOMfMP8E{VNi#SZ9Plzb}Av#m~~atj=`5MwfS|`
zp#OXx*T4{o3uYpbv!NL~VS7I^T1mKuuRKoiUYCKmx_&}wNB41#UYtfvdU@WVGSs<W
zS>cmjb$U!ZTZru?6#V+w=9j^WwruL3XFljkQQ@R+k7+n$493QA#asnDyC%`;YzY(;
z5T^=>1Pyl(*dv<i(k%He`)To@1aKO^Z>U!|E#CIGYC(|qf}TW}j}-PTXl$sV$RV_R
zbvy(V9mG?&`OxBq=?&y??jtLQ#Kg{eQwpCynGz~hWLW937<~RRbenU7XJe@N&h5MM
zAxXbZ{}6(X=0wG@Ywtdt+Z<9N(j`gh@*lf?#h~bxEp0!Hs+I;xDNl9boF?LE0eM5k
zU)`FSpIfy_oLa_B=zM5%-scF8tmR(n(NNN?chw5bxIE`Ro65!-qS}hmyI+`YIJri8
zVnR3l#eaxy;Wjf)uF#n@a(igqVEg8pAs<HmiN8TZ8|);)-n4I<9AU3%y``!lZ;#%x
zt#XLYm<U{Xb(cOuQr|>PQzZt4Ev^xdwy}7$?Txrdo|-{!4L?;--Xf43^r%UU=`{Vp
zN!YE;i8Ey6d3ry1ud)3aywLFW!F#Ql&(z*((Xfx%`$i;k$J&&&T^g(r59SpAwYdFV
zb*EoRVxPN@nSCn*h;`w^vOD9%g#n>1Zju3eNjLg}OXQ*-+p!0CKET8eNB6l4$7YjD
z{wR{?6l;7W-jc%ss<ZhGuAj9Et1KO(DX$%Fveb<){b(}UWmH3Az2y!?l%G*mI>l3~
ztq01s>yJq)`aCo^f8ZBaFKXHyVfI`W^h@|cnd7*7g*$?N<&#UET4W0bv%m46I38x%
zIMc=PMyfbcHJ~QdTu>xcVy>ydxIRk~_K*%M4cnoQ4)qWK;&yXhzeLh3du!(3IbwwE
zB|bWXV)>G>bjAQtg~`I|6;!yj3$bHm1e3sQ-^#>WMo9K^jRb;Y74~1{L@xnxg8*ZS
zK39|Px6Xxk=XOQwZ|D6+WV>%X-(c@CCU=mxD5qHV@ZYat!TURg+Kl@@su{Zw21b?`
z*kBm&bHAQ{BU#?a>-qx0F$NCTMlo0^$d*d(U_%DMbftKNIm^9mSE66Quq=)R+g>{X
zIhc^Xb+Bg<QpcpI20=HX=VTT>vf%`qT>lwv*u@)ivTGRkgkgZ@`raV$N*c?SLnbRS
z4UQ_aTy9`Q$Z^7dDZ+fP@qq~g!Cr>Bor`QR{OzKgyO$`_9iGFap>ydeXR-NCgzbO+
ztg{&c?5FuJF^7(Tb}bvVVZ|ah2}DZPf3PKEJ+&AEOf6&UC9ziVVJVGl!frr6l{1-*
z{jd@fV?$e(Lq3Pk3FwUEL}DSHvYH(%x+d&aAFS-`1sfN!p<+^3tbufYxSr?^9=+hh
zMHPmkT_FeFjIFJlHwJT8Z2UQ!Evn?7u4Ot`B8P>%42H@(C=4|nGfOcnB0VtdAMzPf
z<uu6#u1ncy>oSY<`AHN;_-71o4qL>CWcE(Lpq<TZ%wzBzOJi^@W4thY@2Z)pGS?EA
zRJbt55~QUwD!}3k#rhnlb*+@xDx`)I3#K85cHaiXr*Q{nCR$f(@Ve=+V`VA%NJPQz
zUSN-+=}GZsmw^eDQ?6ovyyMTYKs;;2t@t#-nF%39jnD|h@^E2qE!@pO7JAKb8b*JH
zp_~mJa9}8>y>iTF=;#HC^E8PrF!p>a8^#dN3Sdb;w#xQEum6v#vw(`?4gbB0lt_ql
zr!+{XEJ#QQNQr=elyrBlfYRNP3Mdkalr$^dtduCVG|~;bu)A|-fB$>Wz4x3s%*O08
zJM+HJ`@G-p=b6E7k)q*ZNaz>b04<U1tG5TJ{LhOFIK2$44HLknDoLDfl^Edg=oqST
zjjKK-0PL^94>WLVf`eHiIDq{Zinq!qv0#|?SOhbzp=D?~Js=LQO#XY1=Rw^6Ah<Yb
zhaQQrz$GBt;TrQ|K$Dp#)(TDsCKsUZHx7ud0Wa{kfJAw04zCOrTC$9WfaPmXX6XPB
zr$m9XK0r$r3s`<~dk>gX0iax#A}kIJ*lYstK@iZk2!I?Qt-v$_oXrh^hg~Eds_%(~
zgNd0lPHVXV)E~Kn!ag|?x=g+tX#Nz&p1%K1?V2zW1%>coD}P!&0k29k#G_BV8wGn1
zuKNMz`OE`oN8(3tuhnPIg=;NP{DXv=dccH#<F5jURjFwRctL|mrBI+wF<d)Te_3Ot
ztu?f%S3k(UEA(gUnaC2$NkrZk;@<jda(>*UyVyJVrcq>>#?6e!-?IZgR&y-jT`y6P
z{t0jDZlZOC@iZKgPQ2Z}jJ~kg27XW={DQF8y#f0Mv%vjTp4-34yDm~j((Pi9VW7Hy
zk768gzHtr_wwy&te(EHTHwLd2;e1V8dymDV>msI?MW7kdUL3W0e1r{+I9Fzp&hJZ&
z>+>Lf7bW3}AI=aC6~{MsLS^zn=h8rx6HKf*aBX4()Jj2(MZFhhOaVl8fnq<X<U*@H
zGvlWAA)KoShI`=4Q20-vE&}S6^1rphs$Rfcaz7R<7(W7d?p%T0wjbDW_X4ZN8vx_n
z3y4d?JW%-$00;$|00;=ovD^oyY~}zh0P5;wz6zXy7&i_w4`_OY7I8^f1LE(k0f~(N
zq1m}0UmUv+UATgPLKUuJxq%ae+jap@aE=eGKS~CiR$&GYu{C|mI3>jR0d`B(>>7F#
z=bbfx_PEu3TpOtYk!Db7Yr$FiEl3y+=mx_mlMfmJ65I=*WB_Tx>irjC#*nbzu@_(}
z4Kup{5LGxc71T|9FvUxtHjrM6>*h0&7l^r)W2o#kq;?DgaAOZm=h8q35)JYM_5a0F
zu<z@mX&V9Kek>UMY98(aXCN7Tng}p*0wQa`k`)rMy#~dpf{5Go*rp-Sv%==|fNUrj
zw8(IDQ{x8=NP&YTn7C3xzGECwTn&gjff~pv(h4WK74tfRk!v672MTLCxJ<XrwjT_0
zU>pKHustXk&3@o^T_5L7R)HZJclJ`^!9SNEmMmI=DQ2n#U}BqCz+D+_zHtRH&+=bK
z!s11-@VU)n7>LRMk@SFr+c6SWB#QNDSw=!@n1IXII`flQ!V{?e8bo%<WFGnlQ+fU<
z4g4}MG>(<PS~33sAR=i@NdT(8?o90hFkID3Xa-<{2k}T`al)!(tt}{8{=yd1g4Iyi
z*mHT1LR$km?x6rxFdk>u;UcJr_$joS`86N_Mt*QdFVzb`{0v&v07~->7Ha_I1+@D+
z04|ZB&O(2Bg($$#CSnfhFRbV;5KO?pU+5Ib#Dh8*Jx-Lg{sRT=W0#mDU^n{$B+c9U
zfiyITN$?H=A*Cq*_c6jA2@YwXU=xS)CqcXZ|M33;cX2cWNbMm3t{zaagv_J^9>#Ov
zfB{NEI3bh{rw9Efi8TNnE60#`IJmKj4V#b*I-DZ?psNAOQXn7VfU}jskxkHT773XI
zPaWt5`ygwMKpL+bd=uP!oBqEM{Xczb1S};OT?5oNfDD`{1lqy>32i>Ol6@2Pb)1Iw
z8&vN$fu#BW_CoAGM&K9%>QQZ=`SJ;asKgn&ePjs$H>iylO<-Z6AV~kH6oar?1&q~Q
z0b2WOAYT&nP6R+h!XqXH*iNDY;QTUJhyUNjI|hRBj}O6wAu$LnAifsqX9DWMUM}UP
z4Ipl>0heIE)a(Ijl0nNu6bo&7b!`RSLj?46D;{FO86GYO*z{h2Fbgym%&yHV0lmZ)
z5SM|;VrLnA0NkMhKM^nr0{fg7fH5ihvR?rha0LZvaO#8WtNZZ)YOBwRk{!zqE2goc
z_Cj0L9&jDi44b?K0!B_K8vz(evp*AXcvG0U3ApBB;kbryA5*MAQv~(yVW}-SK%YvK
zc7^rmnERL$oXF&_#;CPpfY!4o9B63y3o3T3eLG99p&c;eZwFj<H})Rae3J&zjUy!1
z^HK3-+}7<?h$A_=>>Q}4Ktwz;2@K+BKvafbKZ~_8E@rxW%(x8sj;K_WW12g})G3CE
zB_dG%L7{T4Foei%%zFx0CAM(!UZ747Zwy@8g?}E%3gg5;M~;9TP>HlfgQivyz@r6#
zmZ($P6>uNddSNbqpd;V^iy36|P<sT&HB4`Ab`T5UMfunPteFF)#}MLc5%mUOvXg@~
zZVxv1`@-tPqXC|VF_~pNhW0ruu_kZn{DF$P0$EUszd(~_2<GE=!1C`F_$BckLa%|W
zM=5)-RqZ+KNML)Lnj^5`wazn#jafSfC+<@?p_k{_;{?neK?eZjkHLh701S4xrk4<j
z%TB=-1_Jb;ejPxHyV?ZEO6adb%Rlcs1K@9S8O6C0xNOx1%$dL}OZ*6zbhUxq7)+wT
zbkuAW2-lpK#1?}b;=N-8vpDFO;hY9g!T=*GDA<B!G$~!6J`E-cAW3nU-ynp=Jp;`f
zT+zqZNaP`CKEQFcHUNlFfT5NNSGQsUme7C*pp=^l8gUz2WxfE++Wx1?`hXoB%zghS
zy~G(N#df$H4pHIs1PR)8U}oTw0G68MUIPhpK+%7NC5BhPlR8{l31$yqzEGI=Ljb#_
zfkQ8Y(MVQGfTjl+SOlb7`oN-f(KT=nxB-~QRPr9^TES*O2P$L~EK<QaP5%W3dMrpt
z=p@JDB#mpyMOqBbrvbY$SY-k_oH<>9T^ANaX25j!fAsN}0BBk1T!R?$qO_Aaj>Yl;
zzY|0@ac<7yDi-G6h5K?a7UW`K=>V+p7~*~naRzYNJ*ew|IyV9Y1^0k@I-CWCJNTeP
zeVF_QFgXFPrQ8z0)Cdb3x;GEV;L2)7{(!C-8YF~3uJCIl_=6^~Fw-ee+MW>ttr##c
z9zje&h!g{Tu8f7R;CLI*^M8$lq!*jEI|~4pBpINouJ0HSe2qO6yAM<~^_@aHys;kd
zjlhKB61=nxhyj2}0x&F91H#-^iLszTPy_aRFx4~)HcSNW+k(C>h%&B0gTb^7A^BgR
z1;e4}JWw487Uo<5moBX$bGX=>0k%D`NY?~R+^Inv7DT7OdZsm~46YS+)B%S=AUCau
z1=(FtH}~9!f^-A4V`2?RLpJp<V5LpR0g>b4B5;6%_~2N0mjxVmw#EX8o2G)=3>Lu*
z4qxCPum;V#06KLpLH|Yk2q82GGzFu{X#p3IlPjGAhX+0IP=e$QNLz#F2W&&2gAu|E
zRDmT$xL$+HHktj<dQHnnRuJ|Z0M4|~2oc<QbVuuXfWtIM=IS4Vp5=Bj?ns#E<6H-D
z%t030;mA^}4P-HMJ{a#oR6Az~Oj5uqj}|NhoB>_RfXFwlDf!WZwg(jVd&knj4ME=;
zM?BNc0uErQ4hKl1E&vWEILr=gQV_5uf%o`^`MZK{A#4bIqPMh$0!neSlYBIE8VmcH
z49qZ#V?(&H0id;gg=@I(nBo##E;I|wE?T1ziNK8Q6=(<k*KE>3Dek|HgXIC+FIb|I
z1Qr8eAsGM&b?t)v(xVq?1ybSm03s{{+&M7&0<B5h>oGNexcjxo3G_bBBgcIo2yW?Q
zuR)gtaR;X!@bJ#Z%``5-(d|EK`X##Nt0hqW1p{u}3MN-MU?Kx<27d`cx4;(+6#Na~
z@tp<7twA6GXE(nFis^xob>Jm{01ef`JpbM+2#D2#b5Gp7Yz=J9D9~8+0t?PWYk(<%
zX0R0kU`@}!XV8@k8NGtdkAbKa$m>GDP4gF4ao#R?YQR(UUl0OEQ*h!4rXSv;NU#XN
z*66=Y)lj%y>F~xNt|c+~k2vnZwO1{`Ycd$Dg<#J2kd`o_nL$nj<%L7<<sDPXOE#^y
zn4sgRTWdiW3YKCug#{Wq*ltxb25>lZvSpP0mcOA{ejh$QbdZxTH&~$i<5RtA+?B#m
zfP+32x99^kX3gUR*Ot-rm+8Ca2a|2uVMy=s8BwMt_X+KY2C`qRo~Z;V<OG+}uN!Kl
zmv|b6O*#<-j+7Ef2_;{l4PH}NjmRImh<wxZ5pHg+M}^fR`x)8wr{|kv`9U6?4$z2S
z4ug`BC)hYLOKAB}P~=Je_VU%Mw~Hy~EGOlT(86D`b*dCTje>f<r*$D4ywVeH)Jxof
z-&ow-4o{fwrdW8ceD8iQ>^gH4-c<jqmGVStu%DRzyzAlA^3$R$Q!zZ~fXj)3HcJF-
z%{YkQnjR@nc7o=Yz`G<W^N4&Jf#H=U*Ep1Ye08MQx|Z5)>&R0^emEsh=0=bKB%6wn
zLI-Z5*iMT-DQ0)(ppST))-X{6D~C(MZ5ZJbY~CW_McYS0ugt&`i{7<uuA*7FpW%st
ze-QUpgSxa8ek})uhteL0c7&KOM(9;0<QG~brH}}txw<~)0v^&pKotzkmVp4dE8s+@
z2nYaa#0zYV|0xt@-VT&6qKn&rtsfC8wE$ce2>7)H6rMn<E`dQZ)M2|O3XWJk1R5Cu
z`3*z|unTV10+8>(?N?L)C<=ZEpn;sBzWoi@BF1We6L1Hu<TmnxuX^Ee%NWGWbr(#d
zQ{x$y@tTnQ_gPPU_vP)(Lv@VjTrK3E^*7e_%5Xa0e=+ReSmmm&y0-qXO6>h2=S)T^
z!)(Jn&wl+Q+$vmyRDd<m?}31CK;u8)P!n5t4K3ILE`kA*&LnUYxGFZpdXxb0bqmiy
zr~@Mk-joJiO@&UXWAS6q0ekw`H~~=SFd6_z5kTq=;`+-EVCMWyC0aTZDE)qU2o23b
zlh%#^h;$gIKMLSpF(f^K7Aa`$oj|m2^)6u{TCd~6(5!6AHXZ;x)yXCYitR|c!m?sJ
zQm#-iFPDyw`~ZTT)!h+vP0;k<7YXcLbDf_;VB=>h7FfUjifd*BVeLA^s&RG}c<}d9
zX6F*>6<o1)&31kP%&*UvJpd@M=IiF*`UCl9oci8AP>wGccXQw}a_0o1!ou#4g1#-_
z_D2=JM(EL3CXtWVoikXuh5m%ah`lstT}NnFj6i@Q4GS#lQvD?g;`ry_8bW$v<;V%p
zGM!j?55jyiP7o9S_h_i#j>||$CU}s5aj6r;N-FMffltU{(D(maNUjBepcwSl{2;_@
z1Ni>f4~<|0KH<3ory;I@{9FTImvSPq=W~6S3GHGB>Qu1r9u33lF#*HSC3f6<h?ap1
zm@T+o83wE)vUh>rTCCnhGZqLMxPmy<W1-f?v%n*ZSN`3$=D?xcEtq9sa*q$~v2W`x
zAl!Uo29dYz(}hoaAmO=z09P-68n>6et?6uDjwA`7X+AjwSHd6AA;gIN)kqTI1=HnW
z7`SSAa|&(tp)tAMTA^1U*sKl6c|iNpbLG{IfHVj(`2op_Jo??|hs=*MS-5ltpen_W
z#S}>on~OK7e3-wW;1MNx`$3&s1lvdBfF%O2h^36-3*@5KTuG;p)#{o$YNBzKeVtXF
zc)siL;D}$Vzq;>U?lSv;d+M(Cy4*H<7?)>Z%VhxNiX7^vlUDHUlZAGQ2i3f<A%Sl{
zExlyXl|d<N&HmEwv|5w#c{HIk>#8^K&3pbXi+{vOvdJf+SqF1jLZQ}90*RGQ@`a!Y
zH~j#%pZ{8yREqLDl-<TvXe>-x$s9Uh6MoG*81C&RdJE_;Kbc(&#P>KP@xbQWqXi%0
zrC|RIxT%Kgk9TcHXn#@XOt&dLvk{+gW;MXQ+n<{m(R7dImtV(PU(qvhoqd_?AOC{U
zsT1di_`0(LZR94HV88cM=P`>hRpEu>UajG`C04N7-`LfKS`WA%eIT>6LbX%3f)`%@
zaig_9;B$HTtj`{{Q;$XEQ*Qxwi2n)hP+#0Ic?rhI@pl1B;ahIgH$|4ek5XvctCgsn
zl~gAuO*WTll(5SdZhd<CNhz_ey0Xs9aqFd8-NX9lsST5J!|$@rTA@NbSrWEMww3~M
zbvq;3BkR@Hn|5O+3VP$&s`arV9TZ(Ad)#!<gOx3$90GsUjp7Ten`t<E@ITpz`Em>K
z@Wp<Y=Fj8fOQ?AtU+I2Nl}^pd#yPle`J0oW_Li?#)WhPbg{sZiK@D~O!JP*~PFaaI
ze}8D`O2r}*Uvi{k{L)oilK=XQD$hQJU=vs2boY$uPXyAw^XK!K&ZYXkvecbt+s!NB
zOwlx_*O~U|k~PpLZTX-jn<o@6*TLb&uKn-9_2MlCf#};Ge`Sw*_AC>Sr}sbnTwOuo
zD4L$`YdFVb&J(0|Unj3b@0aLRSyoz}ADOsBN(*U)?CWTsJD<fw812;->L%}>KhAzw
zsoTT)=l6W3Q5L59?UeFYqipIp>QV6<NJ^cWx0=rlNi)nwld}CZs$R+3v<LE1eAL&i
zRP&U8KTdn+$#uJI{p$;^898ss;)?c1baBJ7nv(Vzvk5dqWqEj9RaADRKVAfL`e`0L
zwKqJ!!Ph~fWB3!V<^2W?dd0s`Rl0P;$Z#A(I#}3QDv$d8WifFz<M!kqb3+b3sE}Rd
z`?r}{M54_BV?9Tl{Z!4TR!GgPWxjd`acdIIl74EZQsVRAtQk`a@w>5~HJrNye{-a7
zJ~oo<;Nm|Kr_|h#xL@*S{e6Xg<hI&c9xCur@(`17En<W#Ppt8eO_|wsW2C_?uuZ-0
z>|@Nm<MmX?dBndRA8yXp;W>2DGwi=2)^a4%;+Zz#{V`d9hyKA}oUn%!+gEX2xaF5O
z{}h!6Y6FY1XZ$n??afJ^Iai0Izf7HOJ#2k0YR)-66T0JWqw-72IoHW_y2se9q{&9(
z>ubr@=Pp#>eH6uC@|m~d=USJYit*zeTnk?QaDA%0AN_+PC2e|RZe;XnP?=Uu(v5?)
zCUbQ+nk)&54;&H32~IuXc~qHs{T2&4E`Q{n8EQBAe9y~si~9QfRU5GhSCGEGndGT%
zz><Jt+|->pBNlP-zx;q!ommLAbXAS)(oq>T#eOBDMCkVOgM{>!mweoA_UWmk#wv9T
zHADnz_$0^s#za;4aw-CXZf5(X?(gwOM*mFaPDzz2Rdp~F`v=Z$6UL}Mf6L%H)2N<g
zE&IIjG`V`d#gmaf(SF{1msnYx<WaKU67W~nzp=<Il|!FfUk`81NN{^D|3|02pEcVp
z(Wezpr?vPvx1EHF)vLO$b+8S@cXWnl+RUEEI5+HA<M)hbnVqj@H^V;1UFl6l5M*<k
zqtcMPn#qs(hF=F4o>xpVwi{-Rm1+MmTow7l+}$MbT!aK+|8M1k(+n@=MDIepqf3w@
z<Vy+R$8`d;UA=?C>IoY@k!kbF7wLmj)S5A!8_(&3XRG;h^EkFk^0EdK-82-PLqr08
zPH7INtYEgh+T5j!-zP?0AIj)50kuCp+6D~A1LLVp<UF$u+gKil(<~fMA6PMSuItB!
z)aBQp*EFFoD}st8eIDI72oF3`l^OrOwnJHz*>`_Ba0fej@A30i)b?JD`G^Wn7shG@
zBm47u_GsDZS}zz$ynT3UJe06_;}PD9oIL93Sxhzl$IB3ulbu3Nauaq<2QTn7i-V<A
zq-UUaJ1hDiDiG0ha$QQpnTL>@+>0)cR{MF{&^Sh~_jhfW9CSbJ*A`V$-C0>uVtiXy
zIvAHAB%9)|9<W=qGv7EI>z;X^u#AO2M+utAEX{55QWx2L`!g(dM<RTtw(R0gbI00>
zKwx0ijUt<Y`TL6a2hdw7x5<nAv2PnwXYG&2W;tMi!5Aw!<Th&S27K`e(s_r}Q^Z{0
zsWCG8-61E<zM+&Hq5<7WzDd5^HBS@{IQj%%WK3+yp`2NZG6(MCDjB*{v4+T>*OEsA
zhD(8UECGef$r+^N2)~p3qfn|P*xk)@UBw=YcjWW0duG|KSe?9vu>~6!kwQz<8c!Mn
zeTz4KyiU0OJAUPMbC!J}{|J4f2#7Af{|^%qSoC(whb8><4dDqe!HF(Y_;!1(@(=NR
z$!5;?&KK>yH9BRk?LmG0@~q3jfBScd%@<K0Z8upxwts$r5p0K(pIl_CLBdJ#JbGn_
zH{lTos~gFsPmp5-H9hi6-`+?+T^=J26en2v*5z*e=XD$OeDjt9bqWs(LWXLKuXCI+
zep!gJ4?KEKjE+|)UOIjY`BrsTCHEa!cofmnE$_Zn;-w$ooi|R6s}u{r?;)IYqDh3C
zJ=u<|SQ+nqE|UEGOc~3KzH58gdxJBdUP`TlO*u!n#!LQ;Qy_l5f&9?<bxqjY&t78(
zrPHllAsU~4^DMa(loZPL%s+j9K=C#umf==Ik=CN9hRS1^e=(M>hC_SKnST|#lez0h
zCbn1%oJ_^q7_)vPtuXl<$aNoxPb%!pg=G>Dn5)4SHA2cCw%@Y$*i!DkbWaLffrekU
zbD#3092NcA`q^vl4P!g9AQd4Fo&Dn?qjf`^7#lbuywsk+oRdSu=$lITlhq@pLv_cT
z>bo_d7qNJ*X89)YP)&X%WFnlp8@L;NN#UQc=W-j)MB$I1@DHY`jk)t$fBE`eEn#wq
zkSA4C(}kklyRi8lCoeDuyC6J>A@oQNuRSGQ5n$^TVGWBqACne3ReM;Bw{i44WQpRL
zLny(XCdF0Fo49%cDA}g8k}!;Tlayk!=_gt`l5<J=4^5S=g$L0W`Gfk=@Q3;r@E4nu
zxnJak{k%efiJ{|rBnSsN*`ja_=<QMQY?L?8CG_<6CC@9%TOCtAk!zo_Q948cB8fMt
z*+r<{maviN5tpRit9z`Abo%9fh))^_31SU;{NjEQRk(iY+hUF_{B}2VBn2%CEei)`
zon@sil}7QOdzL5oTVDP@e^!3HJDJ*Ghk3Z>!k=`L<fkzu$D45d7;=WZy8X)An`v|+
zEv=Tg;kx`mf3AG@KO_<Tdxm1B_qhcOmnrG@fL>%K>)~6-jW2YczZh!WH5NR~T&#Z1
z&uEHb(~#4kptg?=ZmX9ap2cVR=(2P`nW-31|KJa!#n-=^t)<dc8YOcK<o4lTYyYAP
zWQ1zw|2@FW-v{Zli`@}=#_Ke7M%1O=YDg(sPdBOg1WG}X<>k?sExp~|Ak1fGI_cD1
zy>6FeIejLeZaS*vd($jZx%G{Cl}_GjLXvN{w3v6(B~=GqtVm1_t;4_2MB#yS2?<u+
z$rlCVF&rQ5Vjtvm69<dZKm}_liK2Pkhao{tv>XQ_Y{S$RAzH(E;tjKt4?4C&8yh7@
z-pW~gR`FFEwY*0{ndJ5*J^Ww~8AMYoUnDPo^LLd=&C-5{|Grt&Ky%Mp_UlLigVCr)
zyOE@MKEmv7hoCRtW}aJ-g(=cd3vu#`x0O2V{hspCUWYPbJTym+I?E!o!kwLM=CQ1A
zJ^|&Q(QEC1v}im+M(##)&p9;z1d-#V)OLY@Y`6mDXsl=x24w5hN`KyT)_5S9kj_34
z`B+Wz$#Lcl<A&<k`885!X9>f!ET*u*N_z63j)XMdK-p$W4dDqNUtWcmqG#5LAMcJh
zKd)FXv%X773^$HabycR46@Tg1vVJ+h^FD!^U71~m*?{hz%CL=H7N#4{?R4KlIEx=C
zu$F>2Jinr>A|YAP{@8oB4<l~r@sNn_4mo6xR9N*^!d=8OSE?^(D{G9=&;*USSu6P9
z8)-2(hc9P~V(5z(ACh9~y`xqteaZOP<d4itm?~E&@uqimdZUPa6`oXuggClcQ3MWb
zDpK5eAS$`})wC#YHveuft%_!>!!ctW6)}D`ePw63z|xKOlQ(!j@szfwUbioXVY=9m
zFE>nK>M?Z<ht;#@ByzSY&qx;GD&)V|za~!?QP!2#AZ*|_LhRq41)s;u*>aZ6tKVm(
z4Q`7Ouam3J`S*;)usiW?vr3!FO}BGc<Np5ZR}L76qO9Cx8NeP{1(4s0);pxF4(iAx
zXgtXlrj37auBWFrWv5?KRXKW5o@Z_}GG(tLogl%x!!Rw9)*UGJ;&#7)ujX?q)>lNl
zcak^>qWV8Rnw<SqKrULN5v(coXYf8lY5YyRNkJ~DSboECk6LvS_|=a0XB(|wxkChf
zUi;Bsv_}o4NR=|C>ax<y@~SOLgLKLbzIB_+>eH9Waq;c^<w*GGyz|U-_M}d8gu0`e
zK3!Bp+OGbK@l&O&oHqn_9c1;>-2c@%Y4KB&v~pRCQGManYR&vxf^T7@!zZnAbECB&
z!&|9z(9Gf|_v;3~IQv*1y_u)7Biqq8l*&sS8Jl~i1aG}Iqw&*tEJ#brpFN@^n#HcK
zcJt{QmF&Cybw^@%2c3AS&2%Sw4cI6nx&mXr3C9?I4CE+ie`-rY!A6$k^N=D%t$XAq
zgT~~t!7Fa6kJ{Em5ZYT3X`ZiyZ{eZnNCmAv3q;8DzWjMJT!u`ihmFfHOuPDR<ciYm
z!pM~%4H|^4S2b<zhU&j=ewheJA-O7E!pGYrw5EmRA|jI-f@x&}$A2En5FbPY%0zst
zo#CP+w!=%FQH?e4CeDi$;u0ZPWoL6LdQ2t9O7cxzw9iiFhr*zkP7g`)UA**7K@ofd
z_Cema<fG-?alhKLI4t70DOXxNdsmHYB%5y&3C__+&DUj!+Oad;Ua}$x=Z;KMl8JYH
zJE#<{a0BhQ+{0EFCAcP`#l=L*6On7@n)>N}@;BA)S2a(f&Ti;PP{mM2C7Ne)sJw|A
z`KTJ1W$-5Jg-kO8aqsr9Gm|&<iPvP+Q`PPG0fT2Yr@nkt<X?s1F{@O~On60tQ%g#>
z1Ur0%Q;BT<D&5kdC#2GG)p@m_Fs9a>Q2mVZMO3w~qXdPeZge)@NEd}s{!A8itU|1P
zyBMnm$CJk++W+Fz@_x#xmevOKYevWWu-;awe)Dgez_<8^BLO}UmpqAq`mDWI{|G;6
zQhc45%6{t6gxZ)ylB>Saw?HSC+#IFhrw@8RG#!QC`6VEyV`r~9rZwNE_2Jep(qBT_
zY$;I^GEel9lwF!E0%QEoW{lSS@44=HrwS8p|C{bTJEPFPHB$SfVlt6a3uu4_zY6yD
z9fU|KCVhN7Cis!6=@a}lsg>H;l@d>I$5LaM3!^T1NJsg4dtS!L9?LsNw)c1Nr?i(0
zmpQ5oN;z*gUTw~pzj76xVYJ!NO}<vy;akD5FGc6$|H6-<u~h_`p*F$3-Zri_SN9J2
zG~Y?RRqGAJZ?x%gUsN|Z70Mp5NjjK(ZaGSa$;a~@)4r}T8!DUHEis7r&0a`zev6Cf
zrl&n#vmnDKtYxBj?g;PMO@J-zRarpvMbXIRBreR1zY-JZW%<(IpfKU@_91RF{iT$9
zI)Ciy$W2+LNuc)fOwVn75Sv(a0R46BeCcXyt1b9<@q4Gq+g!mzjqZrGm+3k!XwhZ%
zekpO=??WR1*6eFanmWV0=5pP+Fj>U=gXdLkGdl<LaE-HF)jR5*?8G_J-xT^*3()F2
z+$V@KIi8fEcB5ZocUI__AiPJC9(TMy<=FVEWdz6{u9O=gi7=c)L0+dZB#{tkV%U@X
ztZssaDp*W$yv&E4HyyMZm8nMTPVshkhN#lLxOmZg0u3)7f98E&B)dhe)p@pM5XyG_
znW6bPFvYk?)v_Ouc|jQ=E%0V@VScc6f2++#a9)7GyF<7A0_*(ud`?Xbpc{^epkPZ%
zdE)p=reyy7k(#RHy(!f{-`y!hb&O_JjqckU``f!Xb(uw~XiInyk1Gnpui>PN93K}>
zPy|L5zXKb}-x%RJ-LYdBTsn-qm~O~(*3%J~pc=e8HFPoBkm?K{z4?JJmA-U!2hj?_
zdv@QE=ve^itDs&3yod7vlNY0+Z#G`;GJII{D8FjrEI!$maDMXm{f~e3%*21^N}Bw+
zTAf2klU%&N?(DSGLB7q{2gK9tmEs!>I8u>no$qa(!J#O1^Xj`lvL(8a7+%h_hp=0Q
zc%ufM$#$WS>ij}eH`!m1m2CL@<v6-GV83L*<gWbfXNr<RT$v(QhQ@2opg}(SP3gk~
z;obk1?S!4q+zDFq-~TO>v{PXfPP=od!u1~$B(6$OQf1+cllD@oTtng<W6~VwjA_E+
zB?+VZBVrt<jA=sPV~Hypl)7CwXPv#eZ(2*3sgzwfW1YPe?s1TICdv%uV!Ri){P6gD
z#EP{_SC1~1u;_qXzKhjg3$n)*{>N#z?MorVBkZ(d=luEW9kit3%<fmq11mA(j`5w1
zB5~smFXyinTH@KqI>sIaW*(K3iB6%0GmKw;=T%DBG9ZlXN1paPSFO!5oY~OL@d8FG
zcDx-%ny<?%!}O6~({~I4hAa2-D=v(Hf->j%(PE?h7iq;=tZWr?*<LXX?#WFapM^;y
zM;x4g7lw+@Na=K{K$Hv`b=DqyzN&ohoWJRlUg<^;JRN(G%bjg1P%$U#cP{j<-E{8r
zco^x_v|HZQck5EAzGF^;0?lS4tHpwcwy&b;$E?-EMhjANtoyxlYwwCTu{i0$CWD1D
z7u$5G+sBOlG>hOd7Hnh8=9l**!}gjwYFDrE?y5djRycHY4IHrPId(7W^LiMgeCpS4
z(<4vGm|RNokSt2}PF}4z72{IGAI}0y@rxxCrm2st=b>qF1*3STUFbYrx?kx0!&sg`
zI?ngj{lAG=xLi8^xO9pHELT@$pN_WlmIx%})%oqU_BK>i=X?9zZSU>h%|n@+{belf
zaDv;~TiIDUZJ=-Swp^8*r2j1Nu)o$$t(viltY&=u&dzwXSCjokmW-EfSt9@OK!s%b
znZxjpES~x2MXu(kx-od?W4WoE9F03Fv|Cy(Y!-3&2HHAy{|0mn3J!gl={<g<OH80K
zRo{Bumxerc&dzmaZiy<Za;sX{7#pVY!*3etReW(YfgWa4dAsCX`%+(Z3MRgwRu{@&
zQf~Y@Vv|^DGdetJSbei%<VR%e@Plkht?bB!{QhUEBQ*F!f(#i*Ijwj%JO0Akrdq{H
zaqYAu+eK1}o7>q!3bvK?l#Aao=B_L#(e9a<jCO3gUxK=)<4n9d;mM~&J(b7lQhd$=
zB*&Rq6$-ZAue5@~)(#Y{7TWe;{PDh)KTNm87-;pYE59^x>j#5j;<lJh8T?UHtNINy
z7N^jg{j??vo*bpb2-2Z|HjOCCE%j$mO4^J)Ouh_Lxe~JsmGWkGv`uyx2S<m%$CC8p
z2BqM?#T;MDjSE~<J8P%%TKR?q7c(DbyUR86MJDpbn_gJQ8D$uSI`dfuP}StO+8c+|
ze|FY-s4dBz@F|aMBc6>j&L+F|?Z;S2vFN4giTusV2S1ki8QSbSN>di%yjo9MZo2Xd
zd)%&{tnigD`99rmz&PS6SYIn2txJR)+Ky*fZ__pDenNp7+#XWG7VQ6{E$7TO0Cvu7
z*_;-)2YV-7^`^y?wRKG+=4$n$f1dF$+WXh;CbtQ?uCq9+1-$)QYm8TPOfI@!K4&t;
z#k=^5d}2D~GvyfC@!OkK-ABk`g9F7g_u<8ua63;27PJUo0PEFkW*fQAZe-X<O*377
zw#h>}n~1X$jOMgbBZFouYow@b$^(=2;NLpx)-@$ok=sIpPJ_~l45^4?Ox8ikho*K;
z08Jav{OJBk^mPn=5DCR=WlKCe2Y5W=ZQE6d;h|>0n9qWSdoE#5c14lu<Ws#ZuXlpW
zfW@elHrwjAt9_;h^PfOleCty@tsCPvWuzlWZU`QHKrtsPeI1RuS+>%nsrq{Dp?;*%
z;HO}W)Mjh<9-C4(e2eMBI%W%YG)ECcao>zxc@jaB%W%m5qd&o#{)GfXrd#&aUQ$F*
zsa%HD1IJ$TsDEE)(2Ws6V<U~Xyd;<HiKLV9p`|MUH0ZCw_U>B`(2_Cmps4wGcvfua
z@dyNaDQe*!5&ak~858~3Ayf0Kh8HpnucG=2@nCC5ZSqgV$BAU<JMS>R;`uAqsTKbV
zLG!T7wb1Q2x+&Kua$cSlE3|s}W^BKE`y^?HlFsPS-K8&NOld!}Ez_312zSx2O)hMo
zd_ABfrZFY(FwP;#3_9q6jnO*QF84_d8PPa9jDC7Im4!OzIl!8<s2;<4^hI5NPTz&j
zM_8Gga~Ci%g${M)Fojn9WF_GsU?UvHCv9@vjwyU}fBbfV{c?^5bo-Z;*iGqe<)|Y}
zo3=#XOq=%LJ@%IhUH8hOC`6##nNDBOoo`b0#KIGpmDO%QMceL_d`B>+O?_b1jmm`?
z1-|jfO%1*hd(v=bL8j?@RcE~S{AYL;d6s_MONrLUzaNRc?IAxzBrQMdW}uyEe#zu+
zk(qH&-P;xGakuG4s6O+ZhpfL;Nh>MjnV)v1Rfreh-IQRnaCr0eL$Ru|LN!+p+xGJh
za4mzl8h$VP7cF1TF6|P$Bs8nlI|4Y2oqt-;cyb0ezQVhGV_iK*NV+w;xmLuT>)wp&
z)BEqUE|dIX9&~)PHC{fNy8q=He=OnqQ~3lJJ&D8NO6o8B;NvhoqF-4v+|TB>0{ZPK
zQhjXW`ITZ{kJc}?icTofl#Ntfvj1US(@C>^_{c(1<_WTGMrmvBPDoZATlURQdb!IA
z@-eDGY7D$qaiLsjZoC82EJnwER+%jpWBQ+Q?NEw?E>+4TQWo~n_`>v~2Na1}YgJ}m
z<?VR;M}55Sz8wB_gV0DJ%}pD~zIbQqzon8&y+i~Ira*>e2cLXv@SAX?D}RtZ_d-VK
z_>P(wHKpqZje^F-HH5xa8NfT7$3EEq-iYvpfd{XjS{u7>pHBI>5)l3RIipta(tG~&
zH~R$Rk`#7L3e}&6y;bpE!X5;18at7AyuKMo0w1{*KmGEq!p3oI3iD;9b6t7s6&Kmn
zpwaigTEoNv(dq^VhsyNwF1?a=OCrZ~S(%?C(g}6roulr48t_<IVS7g=VI=WAX_TFV
z>$gDlV}ZMJD_hc@<A8pcF6zD4xGG8bC2PwOUwz{{!K~dd{%TLQvtxJw>ucNh+lsF5
zufK<0S{Lst?$s~EU@8`3f);U0%Rx`*fy$$U9<l$H=gn|2;G;Hrfb^jYiriuo;@b%P
zYQ)5ZX9K@Ll>gZX^vf*Nu@m_95~wi8s)+x$%pS3Ny?KW}2;Liq`jMUvdu#=lRAqco
zc^O6TQ%XiPHFyPYqHFx)3R>|sI|^0(cdj-w$Xu=r;+CCcTCS&&8p59VpAG=u>kLbx
z?H2jukCZJOeXInZ+(I|RsQRLHuiJzBn+mKCawQMLtAY;gMJ#_V_$<oP1n93fs&Th}
zdpk8OEgbE&J}GVD@m;tl-ZP$i<*Z2*AeCgV6|N6H?5^MyTM+?jn5<J{nlp&@C5lzI
zoMc-qCHZ%CgFdUNX}<eF)aL$^c#)(=7MT~7L`kLAHZJg(gpm&8%dXXIeB(ocz8J-g
zmG_>x6;DowC(q_gslTk9ydbG<czRAASHY)jOuWM{+5Ej`R<uWk=1*#5JXdK+`BPS<
z=<QyabA5|>qgk<SiW2!rQT_6wL^kz<iN8-aSbv%jcIQYLOquZwjw{7ij4Sh#c(vV7
zDr57Ju@e&;?H;<D&awG<rb1I{46e&qoT-6{_7m^ZGKg1S=l6SHm_3uoBjP4JYHdJF
zN-bWKx5;<g!n{ITXTg~u^OHBBQ4kM|#|LFDv$)n|w=AbixT(#u8Q2`<c^&sh=a<jN
znZ~I*^XrYR{m*TooUv6oMe2Tf3HeMbiEk6$^_HU@Im`26V{(PEiYqn#Oi>8j*7|&z
zCf;=Zt|eZhz5OXI0m#>h>AQ3s<^M(m6E^_=;PK}`qH#T}J%xG~hJ6XmTm)9Oo}3@<
z!T@tcKrOrahKR{Y|2aZ4tNouPK555~R_Ol0Cv*|MEsH|r&7jDHAz=%X&X+%)XNu%_
znYwk)(ztcVI;HE>&UkrYM@lJW-vmnBWWOw*(&x=So##3aD*PP~SRd8nKzhhB1m#1Y
z2c7P@0;U-a$oPmO@uH(Fw0mo*r_#6elY#lNPc%RK-r<)|KCI962|W%4SjXbKocl-0
zt(Edlx4E=p%~apNA-6c@#vlPlDJe6$n8Bp!@pJx*dA7dIAH~QqJN2tY(YSJDRukoQ
ztF+=6TJd|OL;DZuPQUe=>6UtVC?8F#RSVF)`SH;EwyPSFBcaF0GJL-_31LCt^D+v1
zycIhx>)cd32HW295sO<(h4vv>b-TkU*5s0Y*evqu5tZ|_SYJHgyI6+55onqW&>Eq;
zGXcvi^jzcV!Y|X4?UGquKieRd-My4&>UUuHyU?&a5W2XY;V!1y+cl(V%X0CgZN5tZ
zsl9Tx_u<}opXiyNug2g5tEo#<r;ORM7O8vPuUPdi;CbuDOuj{|EUB#|>R;sttVMRz
z*%LLR*Ea;;kEf4MJ><ye3&>b?y!)xg_#qMdEx}Tkm7>i^4z-qaA==?ghqmk!Q<XbU
z-eAi0-Z{SVGhozH&qyGy=vZQJbO1OSa}uYEBFULL{#fS+B3GSGhpHS_n|pFPLxUDF
z9pJ@G1zjtQjseKb>8toK;Vn)I=ruVqjbzeoNyXs{N%P%`BsLAK5s)=ake9|WJOGiE
z|6`qGxv;gOk1Xh-t<|DUs*M<UB7(gsxXCWF5n~baPAP+2S%OSm-ZftYMk*?q9zz@T
zjAb!;El}=#;?eDrnODB-qKjQR0hNQR)(;IrUpaq%vS?cJ2i_g=hAcQt?FJYI6(*wY
z!-J1GbR(+<!epmhC}d(NI9OTt(I*;w9Dd8%xdQ%EuR=feA`Q0*)RrB#HIR}242jfI
zK6!NWMW@50Qs8+4Q7LyYR!qT;;s5m8a|l^jXJ+3rU*TKxaQ1B7E)=-OvJ_3hLGU;5
zS4+xr#<sOR#Z{y(M)^xU2a#VV;l~1Exn*o-VfmD@i0RX)0k4PPMRC+WXT^&UgLemg
z+#n_(CQ6F0YGjT2WXPf>SC0>`9}-M&bM)$W5V0y`kzkyMei34qvA;j;n&574+nCgA
z(!jFWu)$_e<n@_k#v`ob3gZJSroMz`CWITajvNBtivxBc3D=O6owEtJH&A?d4aJ%(
zA}*oGPN3%!!`gWW9D(;s!J}JlX6)-~RzepahCmiBm&j4`(w-Dl>r$hOmn(n0lB{a~
z$U_Fj{HK=gb`yLNs+J-_E*<$Sz0J(flt^&mA+}-3=;O;M55ZUNg~WSO_<0Oamk=Er
zDP$yv{Me^n*LHej=?@oJJ$xL+F20iCH}9uGAFz^z+-ZEgY__T%Mp~tTFH}PKVE-pq
ze^J{S#ofNCTb(j}%4~p<LQf?5ztL~O%G2))0%R0ue(su52+5&$G$@9{?>Fa0Qq64r
z+P^xmREE9QiQh0ZGax^p`$h9u=ojB9rI_*;me+SO#&zfxA{|qw2{PtO0wuQp9-|y@
z$$9~mg!hGl24EktL|1jE@#p#Ov+$wvN1<G5jX?}W#VW=h=FySU+a6Z=^-jNvlUmc<
zRnrtOUl~zml3Rv<J)4AM6H}BCnSLX39ZK~H_X1rh-Yrg`ND*2`M`s%(gI_%x0Q8W4
z2CMe<@~IqZokE11-Qjtr)AQ8Rmwg$kY68ubU58IZk^_q>avzvZd_kd!>i9o9I?)_A
zEB)xpz(hf-YZ^XVYCGt3d>-b*TruoQq3*CgRnO39oP55c6z+GXuambX{M1-C<md#s
z!G{nl54uC0^-~~*@tCp>@7y`J%>79aktS4`;%1J@=YfKk8l){(m(Q6)qUBaJrVXUz
zE8O_w9M=d{)C|Ssy1p|wyApZ_pEgegW9obe)NcCE%Y}UcbBltz<m^1wB)qKp`fd5;
zV;R2>nR)5W$nHebxVA!nW#&fxb@ctSPv{(IB<;|1z@{|eNs)X>T@`iD=(mhkUu%Qu
z)rjXjZ^7wiyX3TVDD3I?{K=3>W~K@U2JSry0}Zh@{^t=onDTg}TcPW$6FzJD>1Cw9
z3#+76f*<$8FBc(&Rm6dzX)#D$JwYrYZUfPRZcBx~Dax?n*_7TYW`;TYSr#7gF!teP
zDO|fsJ|u}F1Z0E=vFbmZG#}Kt@q6YL$w)#d*q$0N^^)J_9dkTU7;~n4^;(MT89Dh-
zO!~8hBAQF8Lc%*6G`XfE<5S;*gEI!vBwK~=Mhq0Aa-1}ive9Z2;|n7@8E)Q+Jn=zN
zGzH4MJ)PZj=m1j~uhrhstcco^PYhMsDl+N(Bh>OfY7mhbe>Z`-QU6Qd$LT38Ct^Ex
zlsx4(iA0(GCPY5z-uAts5Dd<6m*5@m_X-q^w#kF_>f8{d$_y6Px_zFwaspni>=py-
z=*EX|X|h4YH{c@Iu?xxFqOZB%LYJNJu~pb-KJX#Mk**WXq&Hjn=*P6wS1b?I?oGUX
z;P;EmP%_Pu$`?|`C87P8nKGN(nruin+irlpg1_qXxmgyis}Tbk>*X}>`Cz&J{7RK~
zcdgqvY0hc(va2C^<mrKHroxXAJx|%NZ#)P5CM1Lul~da#^kq|Ozw6b|ZE9?{Fw4&y
z1BusmhYP+2s-XFrbN8P0UrM}J4Dt*7^A_?%=me%(o=sJ0<Mp5{fp2D2Pbr!0eKBK8
z$uQm)P4O`|{goaMF%(-dSiVD}`$vMcs=;RR7}fc%-ZK3eWU+?HbYrj;>0uYW8ThIq
zOeU{SB`e|e&|kNJD?9&iGLsTDpF)nvC|^-$LVe270QdNk=AT*RABuhvePNnIr_Hp#
zJ~`=jl76=D`)~#?CX!+8U3AmZ?7M1(JA_?M6j40s;Z*-N7>lC4y2DIL2nZ@aq0Lq)
z<3_4^B0Gk@Wb3MLq|2D>r1Z((Xk=JX)^?rOaa0cG_<dJ?OO4-ZV<h~8>D_Hdt*e4(
z3mb-dzc@%5DamLnytNQs5U7>YP*nN}@;;r0K0TG>o~+}8S9q?%_g)`;#aiS^3QWK1
zZi1#n9^Y`DJbt%hFE&#sQyClmO5-2f!-k{W7;1%9(NB!mT8l5#rBjaZ#gi*OmTf=N
zjUqx^Z~JU@%a6&R@!u;7!3D5`h2zZm@nN<fm&NJWljo=f3XPAtFnckVozT(JnS|ep
zh>S4!?%SQ$((e~;PkfOtTy<OHO$^(Fk<WUgA0bwlf@6&-<H;KmriT$mE58@RMcd@I
zqv>)+XFcA^E|8h&zv%UUf@gMDJGdfBL2s~m%Yptt5$zwh;@ytI-W~A1JMf%N7yfQk
z!sbANVNhc)UyWaj7RnUbCt>y|#e43P=A_?S8J>8^^qHxY{>x&_?+L^AcUZ|;j%#`;
z#R`?&lQpFu92*Bna2#hsH>k@wi{>a1(vpiB2rh*#Nk%=-AmiF_&Tq548eUBhvz5-e
zu*V6*D)&aYa@k)H)B9elu+sr|gsI@-1BT7$t;;!-;6T@s;n}u%@zC1^-I58VXXWYf
zjqrI1X1`Qk@gwc(8j{|K7q)eg2^!BQsiW*Ar6TscqX`68E#6olkCUGyyVP8JQQ20=
zN9c&NG=8?ZOKtmw?%JSll1#^;XReNxt4aCcMPM->_ifrk3*O|ON`qIH5^#wZCRJ`b
z5u&6~X046|>%JLrN%HQlPep1Ky7Xr&`dBl-Ygbq?u^1kYPW%+mR-7Sg-YEV3U0#=4
z2*Vlzz4jSPFTAuq4Z_9~-X4wZpSJEWX-vHB$zgu)@!y8W?5uZ{>BwTH*?Qiu$*TNS
zq6GF$tDc`PVSaowzEpW%yB6lE318@_!R{|wG&+B+s;UHBi}wD^VqBgvx(Im`%c%V>
zXG6m-9k1OrN(;h`y$?C^67(&pj^Jc^=AD>r7^;50(i3}Xg?YbMGUz`J9TzYNzZ`)9
z=M7$)A<58nk)D97dC0Z7a66E_MS!ix)WeV$JWyl?<XZek12!LeO$$BV-#{t|GNEg*
zM}(DbFUEtWUjQe?7>VaoutCB$ZuDRGK+L`#>}ul>oBa<hw*mVIR-k=a%1Jo&_&0(%
zm<85$39*+sdYHD$$EPqe<iAe%Y}3jH^GQY3--jm^m++#-H4*T?)NFT;C+?k-VAmnn
z`-t#-U`sFjxEzM=E5@FSV9!iW0|3S)!sSk<4H5Vgkv4JcIqIK%NdF=7)}@;$G)VDI
z=g%<nVcgRs>Hqz7ZKNhF0+v34R0RZ35qke%lxKwk0*(VeRsX4oY&iLrT4PSgp_f%1
zc-XBo2(~nknd%z(@gE&;0AkN-f))F>IQ~`W2~36wNo$ieN_Y#nsKH`jNDn|rZxRL7
zi$Pmqi!Y&Mv@QTEaD~A3Sz)SxYbdG)I1$-Yp}A$a3XDL8gC&FL+Mp4@h|Cd?O4xvY
ziJ6BX&k+DN|N6oTPW`6F@W?+45b`^NqG%EQ)ny2Dyn(XR=T6xtFpDD3<Mwh^=oLPB
zM7!C33JjG3%N`TxTWEn$Di(#^MZU%CT48qp)D#wfON~x1cIjebR}SM6&Q!<B1Xm}E
z`SSzHnn7qT5`YGzn2#`cZJgLneCX-??EAkx?UtjLbpCg$(5giw!&b3r=kd%?A#>+;
zoAVS-0OPgZ4f*^?Zep8UamtG=|5&HU8WYEaicmhKDV%(#@{lSbbdzFV&jE@51P!ci
zZ3(Mcqx1$uf@EOVkR+yEzk^5BERXpGtln({y8_G?10Q^6S)(RRp?861ieua9SbffZ
zD3_>HZ`r+!$L$Nbz=;PoS{uWP*C^!t0)`xO`PC7cN|}Vg4wb#NeI_r}hit{@yTu>>
zrdp%Tw?W$&CKi82!p1+-nSjr<4ADXxKM{dp1F_9DiAaQJ5H{ga?y;BCqeF7f_tyy>
zar>;PKFO}x92a^}bPojW>>AKTc!A+Lj9P(|k6u{lVuq{?3eToCJldb^ABMwwmVvW;
z*p?==^ekUq3I4<i1}vKPq|6BWpP}&3Pz&_1753mT{Mv=#4bXE~A&=b*Kwyt{VW<_s
zc;Dak@&S<Tz6I3GA@s7%D&>6^bgXK0ApWSHcS2Ldejif}UH<zUhCM}~lL?25lQYHx
zDbJ-Zw}2<%<LD{!fKPWT5d8!%p_q9nvQf~D6>&nYkYV;TViqOruw1AeuE$E3Qu}um
zwRQ*`90u+!id;7#fCD%bXo6nPb-vB}3GLIq*z68$O@v`EhfuV&-Xp9eW<%s3c|FxN
z;-HSs1vAh&{ExNg;RWzTa%LCHS{rr&AbC)S_1LxlcR?Z?FayBcZzy^Q{7A9FSD?9r
z#;4fNH?)2Z+jMl)1dXJ%8JA|p@}OP=T!%77mX8Aqeo1!Dc6zE=zBq!7x)44gMZ$rW
z%*fSZ?``ZM%Cx(<kmXf-d(`Z4j>p4`9kdrTSd>3Jh}SPD@R+9#8x!Eouz>)lDe!IZ
zJb3_{0YD5SnTO$2v;UfLls;=sKbqtO(ntEdI^N@D1@jnXWi)t4oFfFYLz|EpjqRP^
zBHSj+rv@)jYoTv1UT(X9Aw(B`8^|07yW1uLb5y#u)j9ysj|1Y^HU|rt-ELD_BMXJy
zRa5C=!9!T+Wz45{!^HtES=Uomu=0D)ULiL`ERnOY3wq*Ebd41>>2j@}1P%iZXu+st
zbr`dRv4vcDOR(r9!16;@!t#GeW=%s#524sYC>+Q?xI$nqtgu%BP-Ot?q{w;QhQLb0
zu&gL@U=KNDmFQFrT!{cPR(m7NmU^wg4gy^ToWM{yP|;%l8VR1qiB>&65_+)BqZjC~
ze||wl$%`!ItjT?|)N%?hSOF%82c6>KHvpo?sPTB*Wm2ke@6n83_?f~;PXFrs##Q|j
zQh5WLYxGzRP;OE4a$ug^W^C8S@d=&+1Hwcp@g1<S3;T2hK+tP+>X>3J@b<uspUx@(
zfDd~;4HRDih5!`2wgd)>J~RY?@^1i;ZBPKiJRk`NYHCbA?*Z3a1`ZwkA8k!FH}Glu
z#CTTcQ?ARFgU$lhpjaqx6?Vo0iki~%j=l`hRren0uqz5QO1gfTX!}@$2brde%(udv
zVy2q-GwgxW71NX4zo$iAmsiDGf(D%n3n(lwTZ+LzI05<5+o*7YQNUolC2Jmg$QOPB
zgT@1owT`#2F)v{#k0L<dU?+}Nqv3ZQ99@%XFzD@C#RyHsW|yWwwji6?Q&P7Z`zTOW
zjakoF@rgbVQ?Shpm(xK<YR?tN(?jFedW9M-NdTA9XY}*+w?&Qc?QWxdd8`H3m=p;i
z;eLy&QdnwU6*BVT=&f+Hj7)&D&@pj8U+_Wr%Ma7t*>lf+5hBqM1ZiItNGOyI*&ZiL
zF2X3oM#+_(81ZkZ+$5^JanD^^5M_YWnku(#wVd8%{-uXOI(hE=xqtq~B`VoX+gbv?
zaP?r$#5N?AE&B7%yH^L-hk@tl7q*$;oi?8T2;IvKxXI;sM}zKO0$|J!kY7EUt4kS(
zrM~?Bxp@1G&-XLxoT>e`EiE}Bq}=Pk6rZ>9XUX2>)XH=5@$II(HjcVyt#?Z-Aw<3+
ziZ2cJIuwZ>F6+O#adBhClY#+~Zl<{(PZZ^Qk6{1a`N_WUJ^1viWZ}mJp|G5$i51_9
znp=U`0XX9p;>niJ8Z7B!ISq=do6X{_a>!$!JB&@fYm*;Yjp)jp1%C;|cDEm9F?COw
zI(+Px>4bjJ&f~r{z~U7@K*(9xL241}^gu=NwYa2_XExb#VtZoV(T&aYCyJEjM_r@T
zl0}7fl?u7vCjJ*oR~gVow?u=xySqzqDDF_)i#rr|w?c7uEf$>OF2&uwxJz+&f1%&|
znPijf-nlb#&Y78A&nIc6gLk6UHZ%6vIYW)7(jLPn4Vn8D|0L{z8vFwlT+hNDHZ^~!
zy4JJ<)19WjaX7AkZ-)TnA}^hS_ndcerqaS$B4NDBkh+<#MBmK5GmY49T-hj8{f%N*
zjkYMR_lK?P-}c7;p65uG;uD3+WAw*A1r<!0IbC+>^(SH>u*jrOBE2$#-39hrQ8LPu
z^t<-3pZZw@u7l%<=kKhYu{kZPGPkP=BU`Eg{H242ri*E5vB)M>bJ)f|s5YjhsfHYt
zQb1DsZ!-YvZ(FDc&WqMb2Fao&bP`Gw4ee1`#lHh*?S&f}!mLbx@B8eo!a2xPs-D^q
ztBmhHWFL+znG_xJx=U0z191?pT$BDXaO^}0CQU%dMtMRHpv$aAL8i-OWA4NS*V`sU
zC?#@Sc_4+D!4?${md@4y;T>15F)mmCK<ZN&CCiAGvIci>sEpgLjPMvBROAL}(-@(V
z0?T=3JlNmn>PW`<Z`4$|oZOMjhX9BLeep9JwBNVAYbYUD7$I0P5oh5FuY;!)Q%THD
z@yBHDTyf<B>5@Dx1qDJJY<inTl|GDUh%ML7E{m|N9Wy8mNOVQ|umg2xjh(M<iso~(
z=XnWyoon>BLsS&AHty_Ce);bk(o^c0KrtSQ(e@2d65rxFMm0!!H<8F{mce$nXwP*y
zim2q2V<lBMAkSdCB%$C4O6iLE-fozc6&cpw<^`4x`e3EHFn^__Eq$qh(RMJp&xYDE
zLw!r9ObZ@OK4~!&MWs-30`2YJY|oqX_BZJf%1{wLZ;(#T*Ewf}D1N!mwck-X*U5P!
zh#u`9a>VcrR8|+~O{Pqvvnkx6)GgNH&4NbP^IK(8bEz}M{WUE+QB1Rq4_^j=-)jNR
zZfI&~Th7=gzA(l`STl+h)d{D_cGks2MUe+rQFz&K7Fn5Y!y}Xd5U5*{d(u~v$#YoM
z{mq74uw@+Rl5BVQ36K_FJx-1A-^M`uH#kAZ>L!7a<Bl>03Ab<)e=H6RSH{LSIk)?s
zYTg7>_^}C^-4p;_r%hr)Qd~|Kj`09r!ty-tQG|S9DCiBL@{^v*hzvYK6c7}Ca*F(v
z<Wx3k`xNI^CM+A~&lB8!4@&}$wBVLq#b!%q*z<CWZq%1#6aPk39;9QIAv)9tcfx5=
z70J3Vhp(GCxDMUBu-5&ByI|SuhXT~$i9i!*G2@)9S;T@3X>;25EzYHX%-9iGz=5G^
z{h|FG@}(uDj?K-g^(8e)7C*SOxbnegp!Yy@{G0e-k}rW?5We5CAzOJ~H7rnAL$;Fx
z<$KtZ$*BB5wr-C7Az$*8VF+T^O??Wvi~UP+ABwJI)yb-m(RM{%wTx7EIhVbq=3x!H
z9icU5ZZxQDjK>Cmu(U0w0OsZ}YW$=Fr!1fOLR)yN^+GJ;oI#0F#egzn7i?AnKrpQb
za-&N(+aAt&DbH7QS0i={^U5a6{M^yFE+z#e*d?0{0T6a;bQOjf>nnmZkmE7;R`AD?
z4q4*5*DX5!%InI;Sz5EG7WF7?dv#jRIW?j>43zCK;`IQdZs*?w%&OZ3aOSGyWCroH
zKKE?#-(t%>loUHwt~|EMG!({J?UvrdwwH(OLa|Z?7TgLRwcE#KYf=zmlM{|;ox}D0
zZqGl_hS3&<6xTWy!1IPeP0~H)mksk63YurP5IEH^ItU^p8Sp&tNW|0hjdUTVaE&f~
zW_^q!*_WQjI?Ukz9(!+5JcCG-8*q{g^LrW#9f_N*Xv#MpQg*URJ&g>4C8-0NK6&q}
zJ!a=%n97qz6y|?RhsXF@hC(2utW2+kg0}2j@3~)%k2s1dH)$lcVns|8sGY)JRi_3B
zRtG?_X^wmymBu{i(-|$cuKKn_KNfe$lGGEjT1*hv`!H4p7f7jNhR2pwNK;K_tA!q<
zDJwH5oV&k>4;P90MP6U**Wup!jVi~VYilf!J!Hmp&KV6NHuw|3Qh?x$N%iY?X|esG
zrhD_eljujFK)<fjabIJ%F64gX&RYo1L<HGGd5bSCna~=%PK6{~%9)#?BG+Gf#K{lZ
zri<7nEHXOhf$NvZ0f+>wNOb0TtGC&bgxZ4AwP4dK<mA$Z=U<liQv4Zp2Jv|PX9d0`
z$sOZ0N3cyui;2Pcq_a0H^C)N?CJm1miBb9D@jmU~+VOwY;hCJb3_+d}MwewRjy_KI
zg>yEXKq~6+Hv_c*NE?ZTw@2&D`eIAfD&46&W>nN5CQpcdw#ju9z?aYCG8nimN$L{}
z{waoD)`N)WA3&MnXPIayl9OOyI|BId<`LsV@F9n_pP5g-k0N;$-5&>u&!_U@E0#N!
z4RRq~*+d7a^TO@cP%H-<CG0I1I<4;jWE!w=HH^}-N4y#{2eR@Eh-7(!)#B_ydj-am
z^rtWB6>ixdjPq^;Qh6%TA3=9+DDB07ujOL|7g6Y7mxlD-r>G`RP>NHQ8fO*k@>HhV
zjCc4(1G+~{ZlzU5M@ZF;*v5{;-bkyX+F=b1u#t63#||E?A}qJiN~-Wc+R}C^+|c>h
z1bgB7q_D7r74OzNWLjFVg@7VdKs+ass%=tUnea{lVUgJ#{$v6AMrh8iC&T!yPO0b1
zTc#?3P-k+zL`mSswzjI26>vT-9V0oHN;n)HRaBdCB>G4*l)pQ^<{@U?+a}f)$p@-W
z4!M40gShjVZ;>RYG=J6y>jdxzi@#RT?D0-akr7IJ`bGj5E@w+ob~%Z9w0Qj?!mEn=
zXdci~eXrOEo?UTn=5#>@51LIhFleOad!Gv3_euMjsDa@^6k-N|Ry9C>T$L2mdfn^@
zgczB2&7~6;PI{a<)Je=SaKcsJ;oI!t*Za0CGbDa^4v|zmeq$(2HkSfUJLYfCt)}tn
zxwH;Jb>eSHPloZgvni%0lwGf?W(>dR1lHP$6&v&xfWuA6((!s+W(jS6&X^JOHK4D0
zWDRJMjfi~+I40d;%})OvyVu)fv%88Ud=`_NGUxxJ{DEwc4-zk~i=v25LeA7@ho6Z0
zfqsUUDVdw<3T4PFQFB|sepox{npiSlcp(?b44-Ty*4}*Y5@5mLN;;I_dq8nGRyv`s
z9Bp6}A8o4NpUz7ZTDv<fGT56b=gv6n!nm$Tj(gY!&*2Ii#%4xBUv;w?$iX<w;bP^0
zg+Ml~MovDI;_2y&ES6@H5I)z43MNkm$V*xZ#q2YY_M_-}bn_q6r^yf%53+O)6XY7^
zp9zx*m5f36$+DnFL!%leyC~s7#>O*2c7!N=pr6JRB_B(JP$$u%7Ph&nG2scJ>rl{(
z6Q!5QuwP_VQlUmq;&U!x1h|PH)UeogtS`m$O>22^u>1Dup;9nU{InMcMQI{7u1>HU
z(wh=xp2)P14@a?odCRgee}-)%9WYGe-w=JT#SO&iLyclTSXuPyP-fYe+Js_-+!23D
z_?_tuIrfa^CK6T6k}miyc)vQ3?K_br0~)&4siafvD0pzVBA=heq$B_Rc<`@Q{{9zf
zB=bKrSXR;Gx3$x$`)+BDZ}!6SbRky54XYwO(Xwd?j5xQJ*F^A01#}Y90`0^zp#NlL
zeb)Y&6h}5o8rcxnN*b)jISRUO=ha+1Wl>7vn7(cJ082@qoGN^}Rh~dnc=e9Oa>3U{
zQR(_*{}P&IyVbV2U9cwm76bc;UlK|>;XtcKfdaFY0WPl^*;tPzPx;XBMm3tF@H^C^
zM$ejf)zsmJL5I8uFc%RE;ahQ?Il&P`Bz-iu$i>!W;ZLQk+LMhri}~mFmMe@60s1Op
z_1TUa=j`vn9RNKdM$T#k;~=QRJJqjFFArocV(_I5+QLxjcVd~wW^xU-A=t_|1#$4T
zC&dAV>WD22+Cxy5ce6^~ZDOsMCOCbtWz@@x>0^aB7TSIF!D*#M%ZjDjR1+535Z2a6
z<wsjpYJh65sqXofN52cNE<r!G<nOlYVYb%&W4}Xr?Y`KV++8nGc7pnmO|BB~6aJid
z-=xnE>LaGN$|aY6&l0sg(L^Y1oXb6edqDLTYDADGi2mwiY~Wjy;6A2@Mp2m^8XI#q
zx>&@bz8(G@-&qk(7UYn|B`INbGpa=_NlC~-ttCOys&Mh77^%}G4Xi*aJI+yv&EBl(
z{y1xErpknvSYdqb^ci#lGv>o(FibjgZJ9_owo6tYl?*<&fJmxhoj5S7z;^PcMK5~6
zInIKb8s@dd*3PMYqWJ*Ay3{#r9mOH62T8F_^Iu4J350cj+FlO*WGVBRLmF^DRv;x!
z=$1h+jRM>F-{zqB4y*lAoN#U9^b3<!zOZ|)?lRQKNFAXDK|4(S`Z84c-s2kw5oCr8
zBxLx5n1Zw2wJ>6}tV&qF=Y!ah2P~5?VmE^^B6KWRrXDeFL$G9{B9W(%KdU!`5@x*c
z8eP53_(U(o?Gbgd!xwdO^U9kFM5X~|3o`8eEu%7t?1{UI$!H%jBuAhdKv&1cL7AG^
zi`m4wT5S-ot?Gr2A~aM^CnAjn17&W}6v1DuiEU<iN<fGuNTshnISy{t0Y0y0h%m5r
zJPQJ+0M$wsZBDvZY&n9GuHvo*WB7S}vsGlD*@AUpsHfC<3~noUaclJ@`U))W>s(wE
z`$gApqf4`hB+GHy+Zc{!m#G#6?ZC*ybJUDawaO-l><aB-t;$@0n*{uPqqkRoWU_@r
zsNMuHhp&BMk%<?fzX{nSzB2@bE<!Q&<%z#6r%RGr|K36#fhMw~M?<ICTJZ1xZq@Ey
zXEl}Hh{<Y%?MH+*p9K5i)ux;KHFrKzH(nxzTD;<7boXM=*LM5Wa#L}QsN_aPuW_Uu
z5O9nrE+urFxl_-e$NT8=Sm-{F)fAGy#saRPNaqX=v6*(4YV6qR1pc&zH(oIyGBN#S
z4nxB!UaqlG*Emk?s$+b#*nTD8s^gd{ZNyYnZX|NX*GGc7_DpZ?-}AqA8RIC7gG;pa
zD;u=19WHLUlrB~tVnlK&V1klPGn2~MHIwJa{`)!KNd*4moE+W8&!urcb%c9HqTEAi
zK=CflYa6ENhc1uOwvvZF>C8$|fo(4vkM*~>(&};5#F9<tdPTETQv)`kYQRETI2+n{
z=hG!xWtuc&5WoTYXeKNpl_XsOSEspaMZICaRB`IV;IEHEp9x0hxhv-Q3mEC=QbcJd
zs?XbLZ+P~HHh%~QFRQ>xe7@sUiUx8%e-)cW0LQYVV@0Q0-gh*VhY2V`2Z&^Va61aO
z*e6(yG%5&|G+iN6Mo`3$07J4wK${sVvp?MA`_UyM{B2ofC`hm)`Jk6vq<5J{;kuh>
zE$%VRe1+>t$W2t>?utl&>mmW;vu=ic2)2kVRmgS{Z!r3xOW&@^#gzrEaugy0Cjjs%
zj1{+N{^qNYn{u&f)x;lj7h@|Zb1Fb}(R|mB7v9FSYg`FySP>gVUfb0ku_@lY1%FFA
zBx<=z6FW;qai8}ei+~kl#KxK9A-<L99kSH>XSsbQwg~V({df~Dg&MjbY|nV!wF^AJ
z`WhGxG~gqLQ1q|okvw8{Ml>|Y9&`tT0Y0f=LF0Z~YHvV;5Y0#Z`3Y^E7SZJb^vk_!
z&&bH(J!hhpxvI8I1wFdYTW`=uyS{bS5Li|+teEC2D4>Pao@>6IKy@u)l2FQY5)x<7
z$8Qtx;<Bd;0xdOE%YARIAp+SHx+v*TJBj3KFVplfB#1tdp;E7-ERFqc+2Iul&QL*=
zu)G)Rd5EDdQJ9J^LMN{Qq8tNsMM~6;+g^~*YRnTi_<2IxqrvqIhMQIMi@14ZhpYB@
z+n}1M20+OVdMEQI{Qws;)osq|zA1FXrQo6~IB03f7KhqA*~eK=1qUoWJVq3~<o_^Z
z0X#&ax+Sl&e%M?{;>fO_?)a7x6v84<L6BCJkS$5KAIjW3Li2++ekvjJES&2$&GZ^n
zc@BGa=^Q;d9{dT#04=PKN?@AlGnn+##(q?f&cGX*5f9Z<1Zi0EZv31eMUMNvLa!IK
z67Sz1@qopuaYU_|9tx%~>4^&d|6LY@?*JI$(1sNkTo>106%uNhAwsJgN)PgV=1aL^
zwsb+;953t92h<(t=4xCeN;>dB9;{CBGDnWS;9nwU%PM_AhYx1bni%AHrQ+ggksDHL
zy-Xs7fs*yX{$cEwp?!bX){WM3*=#|mSNtVgpraSAoY19&DOl+Sv#SJ2Ngc>`dTnmS
znNI|zZ%nad!O+2Vx<Cj+8gZkp?>|uQ$l+~ek%H~~5uawy>l>KQNh}DYs09i6^<s>1
zka*pJGu^tGJ~Z%&J5a~K+VDXYKRm5k255f}h+&lbt*X#ILd!|5eqER=m=K}GP$H)j
zo+jBUPZJ|j>tEd|XD#tBCp4&>64$l$$M5sm?5~)p!SZ?(w)q=oS`N<SXY$T*aZ7u;
zL*%n5gJS7ef4JKiE6kFkEklI?I5IQJe=EBX6W*jvvVBSWO1SLk3FtyFMjU{<Cn9{v
z>XWRDDQ(17aUAgN>?E_L`}$i{3D}4!>Nw(iDDHE^xetyFOFx@JPCe36Wi&GU=*)c#
z5e?dtXnU&*MuuNt15!}Ije2~Ejbq&*uwm$@)WAs<8qSwSL7LZ$u*kA#SWx<%fPfDS
znl4Vs2hdr(;a2&cZ=+Ow7w*h##0ZsF<E@zIU3PT?_igd>xE{{I&+%e54!|Gt4@^y7
z60g6HD~nowpHL0$hh<XB08aEfH&`>x(7qx1>&3-$-(N{VTV^@QKmH0F$FSl-rLMoI
zhL${<=Fz5ni+}>S+K>&&xbU-9qF76-k!*)*qrb3CY?=D-zuZc`BWWK$ryDfE%!Bz`
zEuh9(QO+?<rj9iT!)+8^5}5gq=uH_{#w(_#?8!SfTt>byD-X~@xLo~MBqjLb3RHH@
zwWh-?W}aT9g#>s>L{Iay_=(<2kI$kK{BttGXRrK62Wi2oIY{0GY!ha=hAIK8%;o}5
z6lJ|!F?qTme7Ji~o6D_L<8BqX1_T7@e$RVXQ_V!tkDZs~WdOZ?oh4%S1G+v4754hf
zTEW@swpmUISOhZ6ysskeMgUYY9Pf;pF{R5xG#fwzm405(@o=tsu({)MlgR|R(@Ajg
zi#s#xF#pTkbz}6bQqG0QZ`{yrNC%w0I0V)6%!myPJQ6dS=T+KLOLHLLgW(xH$+v``
z)Q|C9G)-6du6e*Xl<5MLR3m_rcWb{$W_!ZV_U*I;lFo9(7U*7~H-nuZ0v(|hZbgW7
zLLZtR$?a#f&`mCW;Qnw#o~RN%+HvZ~e_r(8cE~YY`}ld2Xvnr}uMM&Zed<V(C-6!F
zfCuoP%aGx<vY(rdDxdKyKO|9^&D1c1l^oa1dF?PF#bnI8VCNOqRz<CdL{%75eSDz7
zqEEAuLv+!yVbu`p%2@xTyLTqv1^QO-l?ctJKg4l11-lCqoCyTP;wdsX$!$u3!nMh1
z2HT6x<W#qYU(tEpfbapD6hfVdIFZ^>dbHxC*wlwjj*mW}4tV*-@=OEx=}(-mpWUH#
zwGMQ3tQ{O1{p8su<6*wy0&F6YSo{nPlhB$Wr@I;UQ+m&QUz~7hPMsFBVo3ZrD>?q#
z1D-jdYljat@!f1Nxj1vs_}?zBtNDn9ZY(t2Nw0q3CsbhSBmdsH6gvqDh5@A#CfumR
z2hT;K*iYfCACZ<P67>Dchb_tOWe9%|ZLy)c{Pzb=pEP{{SE75yagNBJq}DDk$Yz5J
zVKza@pL6!!akX7&bFvVslHcV{W$nk3B=~o;-^HU>1zb}IRuHy@7fmat*%@2;>$z1!
zNUh1E8@y@WM^B1Q2pvjYnhq4Do&6m5m^L}P*ghh5-O(p+ToH_;Ob<U+{dKh7Y*z(0
zxbmq*FM^i`e*7GM<NV5dk5eWi@=!=W*!5HEol`;phM`UY`~j;yoIBe<Q$1XH7VtCz
zD&RYLckhuLRrC&j`l|m+yeT#O4JhM-DR!aKAK0aF^a-nlkKeCFeK*z^Rv%5QI{q>8
zb_+Sy&~AP(5!)C?hA60E#*a1a;o=x>?2n<>jOfV^Y~$!m1DiIqoV&qK4BBBJ%2ytL
z9;q`DYM^LfXLp#0>x3giIK+AFds!6f_5H=^x`^ZtZhPK<1;Yl(B=`V;1_eR^I9Q_Q
zawU@<IIPk7Y0@A>m$>U8bpKPV6GR8)paa9&_q>g4Pk|AnhXlgj3YT}k*}=yuMf@B^
z!;91#=#8<*^LF`xrt9mqZ|(gCyaC<Z*Kay;1ULsza<7k&(BDgsY92JMzLRKmIDj7`
zFlKc<fSZFk5KJh#PthBY`W-^z+W&oDcsX1RD8GW5O8rF=X!rO1KI)cB;7H51EA<AX
zEn##Q!ZBN`Rr{K!3lGAWL1%qW6L#mntO4M%zlFHSJzn4AeMgZ&)SCi{4X^tyGJ^Ei
zbg#a=dx0PpL1n7#`JPrbBDHUvcC7mchD@9}iHCPa`eBgJ5c^El$j;fHqyW&Ov_eX$
zaBCLADSNNZ!k_}%PzY<a|G*!b)$mN7c1(CjLs!78&dK{n`phi3>i|PNMQL3Fj^7f^
zRRq3NL*-K$tK=Z=C~HhWKcf`KMFehOw2OX92jb-_^n1t6o-)!fgK?nE?xp*UZ^d*z
ze*V`vTwAIOl>4WS=3}jxEm<c-Zl`;l1$>%L<|6MTle-A~y3_Jk{Go>j+r#a;^{!9J
zOwj8x%k~h1I5*IKU+gy>XZ(orKQ$rG6NI(phL|!Kd>;xrv(EXyZ8NJjYR8|+uVLtl
zmT%z-wg+*VL%Q}tB^wm^xruRsmM8q1=L9H(lRmgBe-+@wcpGIdnzGP|lhQ0@&}OBV
z%}C%=MkF!cI#BupF-1X8BClSL>%q_{iJN$x>!JCObP}DMSYdInh>mf!3GTOD#ucf!
zxDH$xk9ul_MdtT&l*U|0@!!;7;+X}b$U+n6IxmFwu#EH^d2~VInVF+!Uv})GPZM8!
z?+al5A-sOAmJ<a|yQRhKkq!4^ueg7~o`N8is4K+H2JA118^9Y~?Cb}&b2R@8a)*86
z9pyj7MnL!QioC(y=>0Fg21c(w11SV-$RB72Pp~-6bv*Bxj4v;r8>3^r0z1f?4m8eu
z@$frHn+_NxLPZ82?|otY7GrO|*u>$?rA4V;gi`Kz+#V<Xr;C7|!%lhCICz!_N{bZ%
z!IP-v+W>5A-bF#z466B6|0SW5P9OeDR)W;iyim6joYV6a2_b2;Sq)L@i6Jv?ySG%E
z!PE2KjzS;FT9j61bYEj1z4;f<;6la3xlCAn5-!};RZAfMyKH0JeG}2{xhQOX5Nz12
z(^6W_I~CvcCpxkjHBrimk-Z9-9sH;TV#0ISN^-T29GICrszWtkhFg`)!{x3k@ekOs
zQ03U4;ySvvHSXXlIA8%qLGsJCjZX)j1oXH(_Q2YD)D>mODiqV-ZPOPppYL$v|E?0(
z#&r9h&*%Hr<j2b+6htnki_jRC@0~OM-=KRNC}hW5(HfIpas~+|t;vBxh$v;Cm_W|G
z$%FPCH~9SA)*GE*7mAa5NB4znvZa&q{7Y0ff;tK`!SI7XYFlUA#m8$9q?&{?jQ1Z!
zAhOQ#=qPhqjlHaudB3O}*$I!$PjAz4wy0~{KYFqohoK5t)`kq$dh~ImBT42?eR__R
zB`F94(Nv6Ye|IXXcdViodY+zjj7Wk|EoH&bzx}<cTysPk;H_Et?M4y=us{GqrP;fJ
z-f?_;40*(&6aIi%bdNqlH>6QG;yHG3jAUvhbp1+c36uBsC_Nrv_oXfQ=%S&^Dv<q;
z4?dlb&B&I5B5fTTFCy^&upYhO2AL4^ut)d{o$d~}=zgUI8P2zD6vGikr=b+wz^{F<
zHoIFW?u#@d1{w1x$d7RUxY)N%l-HrzU<$X|GMIlrpW?X#igA!6EUWcVbkBd2!7LVx
z8~tK*s+yT=ioq#t0Pn%}MqureCf5OozxUuD-itXo9}qNKe24&J{g3wozWm~3x@>^6
zAGl7_J7D?r!nZ*q^^*h!e7F0XdsOKis$)6n=rTQYdDQ8@(tW?U+O24`Yq0@}m?Y%V
zf>jrDMj2H%yy7{*S{m&Z5b5WVjA@7Z=$ccQv)bWnxXvpgL<Y4){UJVk<YH5q*lnj#
zDC#}wUX-UI;EyMe;g7Y`<%df=m4DJXvz7^}PX>fzoX3@TQ-8KSH3?sOw(AlF(Fsu1
z(3AW1fmsT{sJArygOGukTmKjL#bpL2y4s3&hM>)V?;-X-x>;bli4z1ePJIux$d^$9
zX=Y==hj$Q*-y#ynL7p4|LQ0LV4xs|R0nJJj|E@Wj|9L)ol_j5oD%27vJ+%airM70v
zO=10mV*9@A*jA9z2GayCX$~79A?h_?js4KLMXRa6d#~S0>Hf`)xXz9vuW|EjzhRg$
z0PZ4)Ej-5^`%$4RkY$irRx(KRevpPq;F5U2AE&CJNo6OUA{8B@&(AWzK!hdt-1(FQ
zi#o=^V#y}0aK0jD3otC2t$^N6LkPX__!}i}n?H;=|430>^lWikIi8G8rjGs|tQqPz
zcvr%aKCz4b$$>-fBukFZ=buaTxh#ZLVFFl??%UcFwoUWT>Wcn}Z!B=d*z*~TL4_sR
zV*Kl9n(Y4w0SnZA|Eit_p%gq1Q`XAoUwCRI6@5x+{up)k+cJZ%<AtHZKO&(08ycXo
zi#D?D_I-%HjI}?xATKmq0d}!!L_+W$FnB{6v1DyN6eh&$^Jm+?LNf;5VML>>OY<3~
z49^|+bZ;hCYR=1tzaNoOCJcQcC{Q{jSOv37;f8)$<oo&GK($M7UtO;F*D!N$GB`oR
z%wDZj`?T0rrwJcGH3WnVKQdjmxZ$ZOfj}H?Vl?C{S(A?xt**N8)epkNtwiuLhc1cG
zfriPG($_x0R%d2TuJnEF0~#jEBbQj~Xw{Sb-ptzRd$vC450J-VS!|%#M_ybcNp}ud
zV#}IgWI^>1vGKo!T*t8jXR|UjIQCH1fCZy|gPu+TCm-AJwR_G+E#2Gg7gTWN#t~@&
zih=}^9?WcBPRITWAhQZiVOnc0lv-M^>R|DlTogtG^s9%pQa=zwo{D_?WQ`_*lfCAU
zZR>Vz*RdO@^0go=g57;GdnvO-Mb-Y6P}iX!82GgwBx;;d-m^{;rtzdI*(DLec2EyG
zq_uBsy-2lkB%Nq3b%GhF5IC@VcCNcxwslmglRO|WW`p~JF?e>mbG(@#Ek)v3{~_k}
zm5)Buc=AKA-iav|fE!4L3933^T^-su-x;j^5K7Z*3oh<~PfiOCmjMS1PKkD=SNCHF
zb7tlEkXH)|{*Nq$o!@||VNeWcLHejaEgl$q%DEkCer(Pk9vT?^T+!XHmH!=PCv(Oz
zmA>>EC)JYJQlPRo#}r~?iFB1f7%!4Axvc+pt^7G6f2NU`iKzz^$uvf<wH9md>xPPy
z&7=u#e^!goiDrmKL23y`mZ3=GIqV?KQk7mmQvmcnf;dFE`LmzROsW}~_6Tc#>#u%I
zoyZ!ip2-=^h`wLqcuH;S6!H<kqB;Lx!-CdQoa8X7L#f2MGOT~*jp?PYv<SDU=bg(b
z;Zubn=HlAO8;87p2+h5$gMV&o@IpBej@^>A!ibr9rg=M%thsA{lBB8b=-$SQvd^V{
zK;h1gZCo5lshI~M`@l%H=VJYVLC>-k(^RUo4odC=(x&h5mN5*;t?Hny4q_L01-FVO
zgSG!a781r&ar~20XB_ct>Mk}>!OdF=t{yKuD!~EPXUX26^$oTuS<N3#um*`HJRbgA
zI95pcD$`RSIsR;pNg89+v+UYermbsG=(W7pko(MLoGqGVzh05OFe8d2guEhvvjJLT
z{6uRsvM^XSReD{C;IUA%8JV@D2wPRe_<S(rq9StfnYv1H{{Xv=Y`{>*#$Uv0vUsWa
zXH;*4yH=W%dz_?$SX6i8A|UX^@8)4@zxQvFXV2lU4-kTjnBWuhN(CiEqegl3oJvsm
zQMV;96d2zBZZ|GlAK`*C+n`vY9R)fEY}0$jN{)e%zNaJKb_rs==wSro$f#Pc`F*Z;
z!b8zNK1kQn_M53U*u<dQ0(K<VFF}QOe`tF{Cpl*=J8G4?t$4<W`lz6y@No`r8UZus
z-dGBL{s&P5EoJvu^srL{)c;R2=*@Cd6YGP|1}d|?bI9bJV=9^4{8$z~PH+1z9X=r-
z_Q$xql(U*8_`8e%3Yj$MRRw4DCS9-rEu({0UfpS8D0YN+-=&FpfLtnh>AoPMInd78
zU6B6Nc-g?U)wWyh->>!B2r8M;=6}626a0MdnSY)*h7TD4Vt!F|k4nb&&R#UXzigPF
zpN}(&pe|sGF;DD?-GL^3^MkjK)7H_O77IW1f<qeGG7a>IXZNbbFLeTKYnZIb=I2Ej
zCw9bWpE+LFf61BpZjfnu0m>_aH8Vj^xTs+N11cmhWCN^Gx<Em7VQ9VO=cs-+>%wRE
z15`JM(||>U<j8)m1b2K`r=;Divkf2jExtJdSC}6l{>Y=SnX~zV-f9ax5&i%~y)Um@
zZZJm=r!4_F355Qf{iu<u_d0{y`8Kd>b?YB8xQgSlAA*5TJ(r&<@w{kxMZacR%?5P1
zI#b`Wc3A)8lP#^_8kwf?f2UU^WXgZ84`4t9bvnhtW84<ET@hIt1^`t-wWkOY0nL60
z5X-Igw2Igj(Z@<|WcitTPO!&>fX92D%H!^G;QGXnZ2)t`#0tG)41uV6gZoUql2eSG
z;R8cbDqCnbj|FQJ$%;#T$T}6BTAlNlMe1~<3A$^Gx+ZC5DQ7c_{QkFK=Ma(IXu${C
z+o$zG`JiN|U2Wq)glm_lS;B7ehS7{vP&o%w#4S3UJBsL=)|{Qcx+MlKgFDJsboYPu
z8uAr#^=too`UlU@7OcAwKcM0yGr^w`rJtg|7%x>nevp<C;3;Ag=jcSNBCje(bF|N5
zKZhCCmKS20mMs)-$uXqE$^h>VqIZmPlO$&>onlpVoW~6LVB)gjVJx4%A4vd{I|QJk
zoBq+gp3E2Q(gzEB`AYC#<bb&(QChhn`~2=aOb{#%>T!9o?DO5gR|DOCkE&lODN2Zn
z^E?D40>&Q%%EJ>birX%Ul$G`XxgbU9k{u$Sxr;M+f^#y{CxcIKH(}Q((?I&^@uJbz
zasBHCW!h6l)B5-ikoYWv*zf6nA~4z2yQ13}@?5RN2&k;+*QL0O8K3-WNTsN!o4|m7
z`y3`D+2Rk9AHuk5&(oS7XUZ1wnD_tMGL%65<b)7iF-C}Xb{K)3$=sXCdrw$4UU3Sv
zrQDw0XMUxl?g&cd3ps`v(vLIYlIyp;iD36GFi&IFgTzLKwbl^8jhuDB?=8>^v9*39
z40ky7uWrOORz_9`l*V9Su%VJuJyt*Q&l8bamI(@?d&v4iBw#zuh@)0e0V$mpAhbHE
zG<&12+@6chL`K<j^IX~)q+eu<Gzvvz^@SC)Xahw#oV(!X0*V@fKZqe>P;V%1eV2$x
zD?(>=ynE#s>o`Lw$NF!jJ9Dnmzy1#01NYAW;lGx9vE_#dy6O+T3?BHv3ZREEBm&EQ
zs1L_cQh3g@XLnzx4Z=BXY8%W}L%(&J#-<P1wV-#|FV_Y$0?CovnLn*1mRgt^3C*em
zC$a1stf3$q`*EW%&M=>-70n)fflhx>OCr<Ez<ZXBgBsXQn+uQjL&|K=B!ve}!l@Y5
z;CQ`7Y-*y__~y0Ev(Y2UeYMmHPM|)U@3{O747$0g-fKL6YT01bBqOb4lGLTx_`484
zsv-pc>MS$z+hh|T%)yrFZ(af4)hd1WOc+DJ5mA6rxc|SNgEl@dVxxUruIp6yI4O1T
zAE5FBs7`^wNhwO}{#T$4{G$^g&0A<qZDg>tRIA}*IUxIo?^Ua|Qfn|Pa)k;)K`>mD
zcBG>!-jcAKRXtw~@UfYBt~;RLCFqPZWQKym?|Vs~J7}sErqWX|*^HK7lSbQq^3!9u
z6qN?aWx5I#L{^1?mq7wJ3t=OozU#tv!HZI56pyz#$;1rsZ%B&M&?)m>8l3>GleSl$
z63*2;z!IrKbX7t6T}PHzF2QH9Cw}LGiG+rgw+ZQgQB<Y@!+phfYSq-*fy6^UdnVn$
zljNfxupa#cvx)!P+8w`vfYd8R3{h3o2p}G3F3yH>aYb-HUNvB0B@JY*Whkh=o|}w3
zpX3e<ncNG%7TIdd>Cz%hRYyM}cE!I5uz&7v1FQV}8NmNpvCd|sh!zYtbcf4;_dbTF
znOXQFK^oP{!_9MrGH0I=PIMD}g#m>oBo>*LoUS?C#7x{|*nho?`>QDT+`CLP6(XI9
zI7C)5WSGTk3;MeS5sVqp7ZXUXC3L|`X&wd;e|T(vIpHa#=Tb0HiTAWUbD=WIkj*84
zB0`&e;OS*!E*lu>$0zmAWLcgKo|;sE54&Z$3z<e%#r=qcOtz$F#o&FDqykuDfXFM)
z>?Yc`Px7pz)A-&|Zawncql$_}K|C-oi)B>7YC4f6EL%kYt^Gg^diVRA!a0qKC*f}(
zOZK&J32Fb_%6=mog+Y&&=x0O){9(30#rnH6w_fxt5nmtdxUP0U8H;wDW_~QE8lJ{8
ztibBIG{k<vr=MDg3c9>G>FOq)CP>6=g;a$m=&w)!>#vxo)}{-$w?UzH#&Pa0ZG8U9
zm<NVB*8b5q8TbC_@d;in9-#hbRx8k2gBocm7h8g~=<l?}<cl@!KBV_~V`ha~l9m^X
z9_cC8k8YcZI(u#pmgeH0!C+k(+EM+(cMTNd7=wddmnp`-N`uwX>^6G-Jm^ZlP4jw!
zx(E_POX3|2V1gv*f<7Fb?%u3TU>#4F^gvEEB8_&ZgPMKN4P_Jp%L0}RwRl<4bDLPh
z&@mU(LuG9IlZ5)c*=7p(*HczT?}w{3=7n31U^El0QBfA1unf&bH2ACsS>`>a>{1S^
z3`9^v0XDYzN;>bL&mZOd-9nkOJx~v}I*DO*X^3H()9hY)&H4h9-Sr<Ux)DL)5>a6#
z*$5!ZzCv_sV3aE7Wf0<<6fknO0v}9yJOf(AXe7&{SUg^3>ZbPbCIVYUo~~fqhwrlS
zDB&qNt+ELQ8}6gQXnv&8QaHi$m*BNGTTdwpt^~N~rzBk5XpA%b;^Ey=c!n##Sh2ot
zGjPC9Z3G+2wZaJ+TFj=a%#Maow|oVEQyt`C$#q|`Saxo!T(^o`XHXQ;F1^2H9xWZk
z{;9_dlB_ENhFKsw@9Bok8VxOwDyar^DG)k?t62Rn2@b|;!3;s7`?lN*uOuS~K+l0%
ze+JL<FAnc=XGFf?%ZvrVJqnC|b_G)tCjCXlS;9lpxtB0#7#IoL$Jw8TKmv(d2wu(x
zm=|QHqTP5=0oQ-n!up=EuP)W8#yqt2Rq)ZpEz@vcjo~$etn@S2u%jcKQ~qLt6#PWN
zXOu_kz^1QH8?1HS!iyOUJ<`cKvM;?4RRs3%wtsJM{I$UO!5!G-+;fYnEQnbf|DpwA
zth@YfW8wb(?{FD&J|Te)4)ILS;uQf7wp*#7^op4!_nCFq@!cl{ZDoOY2aVQH?o5u2
z32TPCYwg25{<=V%eIA9ruVeLs_byfpj;mF_dn*ny|E_;Q$dgJ)raZ%(I*&;o#ps*x
zKS!lNTlH@04LC{y*C%b<#QUMzA%I_LmCai87tO@neWA>TvI8Y9c<dIs2EEz0T!2%S
zeYky1PWCd2m7Q}~Ax2<XhW?yT=VpjiZs%)u*zE9g>G!v~_tW?Lo%f4;1fc?<_tE#W
zPw%hacfWs(c)Z;Uy*_TdT{U&Sj-S7sO};-o3%&FzUWN+2ZE*|v3I%THO5UQrc23Va
z48HT#Ck$+Ou9Tg;PWp@{gG-H)y+y^Sus+q<zX`2P&b>c}=Da<O3i&+W)#ZSu1xdam
z3Er1&yuZc@y&iGDV;UUhTnQZ=z3o$oJa}%hnzhL>LQeAGI2A88;+CjN^QwC9P_jk2
zx741K&~_eCJRW0?OHz8E@@HzklJYpN4aC&=a6Bq)KadCX%s=?pUWJ^hj2_(H#|G9}
z=PXQSZy(RLn};6|e4<Fc9*px)mx%hjdwO~Ov_v9=Jh{$?WRc)}^;|^x*N&{_eX!=Y
zjR1>3`cE$XLI)iGYwH}T{n(bTk8erF<4rernGX^Wev2iwL4gyf1AMV(;E+m?uv4_t
z40?haqdwiLWt>!K4+-q=f5rD<_muqs5dbiHs&vcu7r}3(Zs;-ORT582<OgI$Qefb;
z;INx|U_X628km<9_NJK3zU5VqwWm?IjmLsRPC){c%q0kAVXu02dt{vkPefY#Ufxv<
z)+CwT9~pTsXN$YT>2$;D&<_o2|7cd~MP;`sLk#VRm;N1$J>K_w<KS_xw9T}DjI^B)
zngkZ{j;xJ!Chll2iW04?Y(Q<kEbmW0&U(PKEJElUIM2J?vm%S*S80)W+LoVc`NL*_
zqZuzA>0ha!f5ur;nM!ya@SOem`0SgK+9x0l5XE97BYe}IKo^;4{X4ewsV1;#T3}7e
zy_E@&ABk#iAB)`RaX+`a21GhWln2A}u5zWNZVt`ejCs|iv49s}l$GPuXw|8934JKe
zdA{7)T&*HK-{jfOhDLYC#Z?QU?h5l|adBvKRfMSIL(b(DPbM8=uytTzcT_A5=PSSm
z<b5ICO*Z_T*4t7{dBzlgD*uDboBqhK_BgwCtqD?;11_jd#Vu3@{9X;C*(9ZkT@B9o
zL_HcpJ<*%~=Q_B!hlXK~{{3e)mDWL!bPtB82V^S%_xq)0&`|TsS8aNlOQWR^6I`dL
z`UUaC{LAp4XU!Nz6AYwv=^K9*!AkOa(IiEw8so5okUIJ);bnBxQo?d&o@U0vZqnG$
z4AzTg0k$P(BhlnT#)2M3wGz8IwgFmfE*U?`&zPSj0(t%GTzHW+s@fk|*8j-h<j16j
zUop%Xhw}Qfy8vKhmo-cXk_n5y?4%Y~B+cg{Zz2+PZSgh**U-2R)kI@{ifth&dC*V}
zQ4s6iPQ5Br4xOPpvM>uLku@z*RSJR56;{t|I-3>t%<h;FN+st(2SZmoq|~HV-Na?>
zvlmomdFG<7491RA2*sm^6ia5;gD&-?6`9C?mxv&!5hdEj6YUb~cZr~CWK~h3X024P
zDwQe#{}@g%R3AS-Ap}WTK-E1~WR=x4A%eMA{HZx#sDn*+*D`JK*V-F7iM{(h^v_d(
zn0Wv|TZSmi`pP=rxkQTS6+GDj9t}<Xq)FjKIE?oRmUkLel>FD;C*|qG>9+$mKqlFo
zV{>CCG7B=&PpM-ODs55epxZaI5;rSor+RXi%)&W`=7-KAeq=LeDf?}_Z>6Xc4iL<T
z`C?0#)8$j~Dd=QKv6~4Ad}@xFHt3*kBr<d_m{j_~0QfUg>k?tv67cvOhcdh@eb}4|
z<meEWG-%r}lf6^_NCy`|myE($%cjBCNxz{$>%2_W&)xF{<pl^h%de0)?d9rnRCl-q
zo>R17(ecNRTcNkt)*-#kkYC^fs-wI5uRCXY^*(cfK?O;`4>{mB>i<x?{TxX$BTM)k
zQ^uABLJd&5AxvEB<i>~>HL=Tym0&4gX=JlTL&mw{^wD&kZLh9zBQ3*EScX9*A7e7R
ztW%1GXG67_rf6ac$;(0sV7Q<!Sg~PlNVa_0A9;EIOK4_I&=01J*DC%^*crGR&pKOi
zVX_L`I44j$q%EIOp3=@$L{h&Ln7kezENh+2i_3+Lk1LJih0=WNr+Qr4$*}da;1Ppy
zn9>MyvBN`jp48ITNYx{Yy9RcF8p;n-z+c;kjiaLBbLbbS>ubUA3`MX^$w<gj@F|l|
zZc-Vor97tbFv)YNUcjfes*dIh!XC}`!r`KVR&E`i)`Yx>0Uv<p5q1H4U)X?Go7mri
z77a}YZUOm3$%WU87}S|SPRW8%2{wHQe6#RA;3*g5IiS*o#(@bL%ijZDBa&^FYV?@-
zyLt6oI`OF?P5}@(P%4+AAs&~f50pGZkS}u`9mY|Kr2S&4Ly<W^B_rQJ*^X0TI!6~C
zmt3+S;Wggoub+_T%xGjKptMD?EEZw*Wu^{qPjx~pLb$;#hQ9J7&nmD(S0WFxgT`=<
zESU!b+b<1&SkU}IOb}F|fsc;gX*Hr%!?SnJZzjtZ{zQfAHWKVFRDr=k5P)3B^EY<4
zHhNYivG5G~6cZ{?A{Mt-z~ZJ(>Pxx|v8TaRrV&}Xq$s`|_&k`If+b?o5{;+EhBoUM
z5|-Hz2WBmj*TIT354zc)Nl6|UX^d@we*-YL8a6l1yQ_*labAuj#z)a9+4jZ13Rqh$
z_YDjtpsAkZcV_>5$qveNqsWE`jR+bk7!0uQ(OLB<pZ)Ll9#nN}H!vYrhDPMtzo!B7
zx6W1Xdl9wjY=|lE$Ka4Q3>6$xQp(`nT=;TJ+Zkpv-N&#7q6ZA-Ov202P|H$NywY4k
zJYrWhVpp!Cuu(%4mpp_hNw8gs-!Z`)SY{yvk13wg1nmyMw|RgbrjFlJ>MdlX&c$Hs
z^Mm|a1}1A~IX^4V(xF`#nbSYN8!W8|lLct)VC#zPQkvfjgkT~ACtulIjwFIrlJXXV
z!54)L8tCSv=0!b?MgGrxj6tIh+c!qn77hm-<q#aZWV)f2#rwokRbqukczGfaTNx)j
z0-=1oM7)!z;KcPPm0I}_OBes&3)S8Z6P;Q58iabtMBiY+6u42&T%#cVEDftEJEX|<
z<01Ey;=5S+K4X)mY(<qY?lNSSSr$Ko)5PxJnS}w49KAr5K@S#@`b7F~X~RxiG^Ziy
zEN%qGe66YVigru%T)Ya!gCu_xt9W6vcm;C`=H&nWRNhW7k>rXH6-fz`WF3Q8*Z-D_
zUL#qnD0EvRLh}39$Bb3c3JmA)>Pg!zB~jMezB~>XDmobI4e~OzwY5dp4aMgX!g2P0
zevMm;LW@PLM{nD3^-IQT@x{(I7o4^PoYsQWrsK=-PdYf_xyIpTvE4$8kI-OBW`o(0
zhUSfAA_(E$UE@hwt;&I^28PLodSKx9P~7It_&O=v&Q6X*ipLflR1s)vP$_!pw%Q;k
zwi#lI4`&U4YlUt|rlt~`FgY~erP~T=0``E0n&M1Q>EsC~*T_4wT?j{O4ahDyIa0`G
zwWeq`J>T*(kdk?~cqAWmfl7l~wN;yhPkDCA5oreM+37=+&HBW}8&8RWc@Rug0P@()
z<z>PHDJgETJuTj@K<w^@eO}b~81s-1H-**vp^EB4T1%3Jm}L&Dj(-JP2@yUUI+&jb
ztVTpL6banq#pjDNC(J@5vVcWH{S3L#HxLkYx@r1fgh17G7KcgL038j1L<SBXyP09j
z*B-{hgU5?FLMq1%ccvZ*(Z4v&GaV431aqX{-TvTgCGxC7hN(t|S&KSxTQ{rc--I}g
zNB}vNU1Y2~9tG1W#<wG{u+fUCg{#4B75Dn(J!N)~y|X1yXkw>$43f1ing;r<d4MG|
zFm7cimw`&QY&|4|&6FM<M0R@$x_X79bqM2K`WHQ@jp7x4bOfOI)=$rv;Gul`T8;!|
zR-%U4h$KVERM^)#EEfl5B4%QQWhk;j`pkwDosh8zT~zna!9`Yb`*;*~#Ky`xLPC1z
ziJ*KTMt+!T$yogygVti<;=tA*OF1HR@w}U9vgNQFom0XS&S#C&i4(n&r)F;C|4U!R
zgFi_rmY<mWRmqC*HI`W_&ZE`v8z_^Av20>OTG8!DrKSutR~vt`pe+Zd-9@=L%f0&f
z2zQ&NRI_UaN(1*$nSmS5O9M*b23WkC$e$f%ar6+0LS0cq+XAflbX-|oa;YGNEl_ly
zPku%ITl*v8Zn`@rEnHrhUuwu~(3Lv_zk-2Nh*)_d2AgabmCHE)`6*N--B{jt;5G=m
zfIi4TsBFcdpPV8i=76rWyv+;z7wEy9H#Kt0A8|gWZ58fe>|ECq!oe&;6!OWAH}x4m
zrQ`CBDUmID_5>Rn>qaBr2F22BN?0*PN0c>G-|i<8PEI?go>KFy$54$qqa(U-oMG-<
z`{#K<2}llaJvK<|M?L$l$D5m#kkZbGbkP~cIzmG6TH?VSSi@sivw=K^43h=knAu54
znjN}m0g-2IcuHEcFd<h~ct1WyoZ<i%Y8?a4by8f!C^<%y8jQ10*<j}JNE2|Molwe0
z4G$LqfYXEoJ$aLmUjA;!SJCFrDLQEUiXQF>lJ2o)@=IR1-QrNyVRvgF5D1z>Jk$`$
z`dv-gflfi@C0{!~h8_$~83xY(V^<8nPRRt}3$=1bQ6|Kocpx4d5wsq741)T^ff-5s
z0;J#Cppubhh~W_Bru@=TSnZ$K#%q0KuyRDul&uSHBTSo(8YWLy%oogOc#K^W3l_0P
zWak6fRw}YhUuE}QBkN5kJ;LTa8VoT|HiQ(P?`lZ?JQbi&84h0`1b`LzVV&bjN=PLC
z;dNw6uJDyxla^$!2j&O=!VtP{2r3M8e}4KubCD%(vcdBSH1TNT(Ibum5b+=v)CK}x
zP7F;;IK-eWrihy<gOCeaqzJ_JKQQE77gd#8t~O5^F6d}f#59P7?Y={*h3Ot8%MipV
zHTO;Zt<UW?0uNLlE{v!Jv%tF)(E83K{xNTQpN<_7e`)GbLZhKDV*!gFJMLW`Ae$Td
zVRV&b%fPJV>w|>nb^57=W|OE%3PcAa?KsRTTS%LPuAvyNuK6jW5QSi}om_O2IqSLS
zy|F3*KmR&lO*MRt%dvkTKQ{`m(c%8uS66#636OQc*TJ%yqnxtHg{z7yz6LY_fw}Ox
zx!%H_haMi92O-hy9gUZwcOn1AXAy&H&6Jg^tl0^`(7OWYqXS<8D~8#($3A(IkSyKj
z%<3gcAtoK*9uV#N{@$1`WbNd-gt!a&!KTIwj|cO!%5sC>w4mo)4=Erqueut(I@ex_
zwjuLR(AZDU^G|SXNdHEsAD~$W*b;zgI&pBXReIb3@p&JkeqghtPsBkfqPXl$$UoDL
z{)Wh~n;PVPzTsTUKu7DO<;MVib7<j0UcFEJ4a8ugA}62ST%IR9kfag%078JE`G4^^
zG3G7=`J>b3Bv2ODg|v;t7C8%)IZ^OnQ!o1t#dfE6m5f5<Ldo7YdCB>xdU>=7>ETCR
zFxikRAEO|&mZ!IrEJEO?<D4Dj;j^+&iBFM;z8wINJz*AZmJii?r?;jYHDMfw1e@pS
zkmn4f62(9hs(>Kqp2A({+%$oINt~Rx7OQfvPAt1?`cNq#1sObt+JwKAP|+^T&wP(D
z8G1H)a^}859#JTu_%wQOjgWr8bm(3-CH~kEMhhHrW-aK*mskg5I+n54_Uet9YVCYV
zOS7mhE=%b^GKzE5b|=Vwm;QQBrR(CK+jJ@C=FW%oD;hO?9ai~U*6P0x>_JRN7E2NR
z>znvc`A4C`LM{9G_hj5D@MFT)zba0a@U(RxiEC-cs6!UHnV5bwu9R_2_kyh{a-w=z
z$M*jIva~T2Tm&8KhYge!qZYOC6`{3YW9KaDA_FKWpu(lW2ava&*ocvk<SZGWz}cW6
z1*`MIYr|K>6iSwQd%9eEO;S5)a$u)`VY6X6-P*1ei3>Q|tkrZjV5Sqpk1By-*J9+A
z|CaNU)lUhV_}WE2DrN#2l7;ex<n4aYS#?_6-F%bLv+$(lk-dXj{Ugr9u$BkHVZZp<
zf$<I<{K%_Mb%S}}9|@Uc>mwmc(nLz^Xz})m3HB83d?aMQ(22SrUX;&p3#bP-Q-1Y)
zYWOK4_zoDAV&SteL-||49Z=9d^y@L>cO&ie&?4rAD+R#u!lk+l1VElzc$DzS!Z-|l
zX*Lf+-ffi{{4d!n^l<)m%XQ!Z0sJXcQPNuU%7zFCv&HG_DNq+UAU@fF=_ONthFAdQ
zBe%f323upD#&J8a34AE|W5rqou`z>*?0Gp_pAnj-^p8D!?j3$43fik9qHGV;kk2eE
zTgv(OAoM;kngX~3B*WP79Tj!(Be%e#(WuDr^6+@GLQWt@E?!Dl`HHD128+PdvE`0Z
zLg7JJ4EiKUF5WG}za>@q7p0Y9$libE_Y*~KTi_WLO(8lmuBf2_-J(DY+OV}s7*8D+
z&X8!5rUS{jbqLONR7^|+OBBqWY=O-Vn)7;5a`cdZ(-{QPK6sWc><z@AjGPtsPQ!Xl
z12KLAh}eNp+9ww+vei;Tyh50UJVXgVuo*qP7Xno*VRnLv<z)bTF|s&4jI|4LE!Kg(
zNhuR2QBJ6=9#^ZBbWt55mLZrTnG0Q1DfAHq^s_Aj(Fow<egj@`H_uX>TBRbFRrg8e
zbFCso+vz=K*<uEBO!Q!vkv;5aT5ze>J6+L2p2YN%Gi1a!=*+g`0SYevBkL>!qWZqJ
zO@lN@4h-E50#Yh4bV*A|gLEU^-Q6KWhop2PEl5ju4Gj`f>hC#&|M%1Tae^7<?0xoL
zd#(Gv7I1wFOQfVWnGGJQXG5k(&DE^KRmvnpw<!NmMjpt{LIA^4UN~jgF~)Z9lqdfy
z{#;s!kU5({glQR!O!gcCcfum)e-)^3_OAJO{n`y~t=(lY_yR$nSueVM3I`-*x3aB8
zRi!Aq@Blvw0lpXJLi=D)^2veUfw&?@;FMacb`Y*+tL!6uB|r&%-QQICafC%Ei&|t>
zQ*wV+EWYaMr*V8>%KF<xksCJQzUKSCp1~>k4;IO0!qHgjR-p&vNBKgf;xGhT+9sjj
zWBIMZSG1E!C>01}iH97<9K}bEa<x7MbH?M>-`yZ0$%h;eRGr>;a#@#1@m<wFwGDP+
zEq<FD`<25p7=g9oHr#z|gZzeE)Yd}wZ@2F7{|cl-XLLt&3lhE+UoFGf_2?N<a6p6z
zaBr~=);031)rG(h{+2ISem)9B@xLO_`uR|h_mP@X{9bWPu2VOvg47YyX*G0vjYgnx
zA14P>PP(`JW*9|KZ8R}?NKDfQcLvMYxLs=VM5t6NXg(v-?6RS7V_j5y&8;#py()TT
zwzESH|1NLL>*HaEFP)#(t(G*+TtY)6d%w6PmWg7Tu*)-bm2u%ozrsNq^eBc1eSSom
z=sQ20PmR2j-U`D2hmHMkJ~;byf``ylOoo{krkLYeAe)DcpJ&BNK(L6lpmK7(=+<DM
z2_L*Q!`30mvVmVksD(v!O41T$TOz4Ker{q9)PT+n5p+phQ&f-aH8lO7s#iMh&%|1%
z?{<`O%kj98Pa(Wtm~H-nIGV4UI1m*|iSM!-q&SqldoGJC1=9sK{F<*#{>}wFq7T$h
zlhB2TtE2!~;B5NOlvg_bMZpgz)++ENrpiQw0)JSbXWrz`UEkGlf>XEX{DstqpDi4}
z?*A~9xelc7hAF<%z^ABkaVgMtAfxe!z3~d1jzhJncQ<Fv`z!E`VB?kJFs?ZUfGI)y
zjCyv%_aTZ-A3Q8sL+}m%`^+K#n!#q8f04?5OLyF8H<3}7-Db@)H5;6{p@Wr*KTsd?
zZY;GYmh;iZrh=9{5RQYGN3w2aQe-Y^v@MBe{N4LoRV`czLTf}j^9Lj?SIvmy!_>(2
zn1y@{kszlFMA}DM1F21yzXmB^0qxvrOwv@;Ps4g|@TeDksrJx%is=ps^Md(BP!}<w
z=w5q%P$M>6_PihO7&O$vF$w~U@Ih%EJKDvX(L$K^$F60{KknfH(R3md-zH^4Unqb=
z;P)aPzXUB3eCG_8EN_c<kVihHq$zZClP&;^)mtJ{eYHm<C6V`9dr?uRp~u87<pix)
z-!%cfrbJSelf5^tdv(zt#Kd$$x}+Yb(@9*Z$|7{6$aF#i_lzw<iae^*4VlRJuY6$C
zld!SH?OtOqCkgmTgM^Qy#_S6+`S3K78Zi791+`8S&XjU%@qZ)YfeiyU3v<C>I*8%!
z0LULHhCB6Yv@)&XYCcE*w@yIPpN5}L)SFslija=RiKwQj0NMR)`ZqBAz+BpM;;aT=
zV5zL5i|Z-G`ex4kJP8u>Vm!)9`*Oi$wbN%-mfu}6{3TaKGI+|Oemax!K%-#VB&2~k
zmUD_{#1ezk!A#2-Pac#EQ%)P3#Ss-G!1?eEU*#4gxi(XNx}tr|vg_yggSi|c1c`9!
zbu8GeV-Qa7(xLNLG=cC*0SQ+e9o*b!xF8F^FU4%M6#0?g_{>EVn<yoto)ha42XLt=
zmAA{mjN>K{!yzLU9NDGX>!r~SAWh)zp4DwX#h+nfceAN*?kp9Zsxv}XJ!IgRk#9f8
zC&atnajTwOsPmxi;6kF|0FD|i81-X0%H`+}NgP)i&X|sJ=vMIY-4Ztm7)$<E#`8<-
zmh)B_)66*TKwJY@BAp_YHbdNF%wA%z*V0RINQrAi29DTc=sSey6m@P4%q|tVNt?$3
zIm|oMf)Jx0oC*Y2Ro}3l3*#)X@2b)Z-P0k!%fIb73(YXqTNju^A)r?errX(Ct^i}|
z$$Fr`$qq*(0|F`{ul`aS5Q_JUh(mA(+<ToLXuRDNfXphg(5|>axIKD9QjuEW6$kC+
zA?|>{qqB{I$F;mBd}1_EbFuDP9V;06y2-ocv(9;q__bPY7gfHCjxBmyc*z0YroG+L
zn-|h-1p5)@Sz*!=Ea5FEOhYB_%+nFzm1ryF++)WGyRZ~}q{L<-8tVOEF;T{Z_-|KU
zX|8vMHdI)>J|lVWHrG^KM9_O!L`Q22jaU0edKIqK%gUQak%u0{z9P_nogIucTQtVA
z``r)wo{<VAqyv5!-J4+9&m!U5GP?6})Lx{AHcL!_08>D%h0z!9_2`)r=N%bLUZ1D)
zc^*Iwdi#=vrON)YvQ#GIaxq*`HMCqD)kG)4xLtNjA18TUu-(Ju+aJH^URgEkbnGd&
zqOUK%RSY{o+*gLo-?hJ#AXNV$H?12E<mJ8u>k$gDcH^ei$R%SX=a}EM=M>IxkQW~M
zhryUn=pDCia*OiUTsZew2VXJFJ&`9G*nLaPZ7$Rk{RI71qBA-WVu`^(MjU^UIREHK
zr1@9H+}W^CUb)JiIx!mooPfZ?A$BvwJAX;MC{uQ0Hamlqh7Wf#laq9-2U4^o+Elf9
z*cWIjV%iwjA{1BrMw;1jJSJ&Me6Tpo!o-PLv2ZCDXuVSY0l*{7l5CxA!*Si4Q$~Z~
zeygM)=hHo0>4ucq;PPe?wWKs>oC4f9{4=5>t>TJMxy=u&;f&~LYeiQ`@HHf;)){<|
zm)}p>McVr%G%zAJPJek<T*mX-*bVMxSX*sngsLdlB`{%c!gqoBA<i<7a#P_49+4SB
zkes=_!7+me*LWat2>iRC9nS0$!-+-2%gis(RP9+ykM@VFJ7N9NuFef+_%rIDk;h`9
z@9|!j_H(XpJ~69e74-aFj&rMzfXz})d=1ul;4090LEZXuY@3bbO|M-L;w)!EZ<q6!
z#%i-N71n*Ok56}mV?CnaAc;=X8@Vy^<(fTd8&h@*P_5`3NJr7u#QjC+fLQ0rcDq2u
zE0*fSuF1efgd9NHnN1&LMDppjbkVbEtCdRsAiUO8ynZgUQbm6AWVYo!g?@6d&CcyJ
zw{n5H^!cwg-SPzu^j(ge=V6Smd*`30gH$;Lpp_w#dJ6lqbJ`$l8MBpdCry<zfqHrv
zKm1ZJkpIv-cBq54bmlPK@vT^ZqqdsdFva+3JLN8?PrjpFe?FeLo(NV21?yHs<LS#U
zG76_di32$*cQ}eTpBV+~+H)jl6zW|`(H{oznf;G3<|Qjx1<Kn$5e~(Ot|%Vwh2*P?
zys=D2;N8z&=61=usa~sGH4aF4_=-0FZAaR*Jg#*%FWgSwp+0Eva!L|>l7L<>(fk8V
zw?&T%5(H5@FBmdbv<-2e-6L@VgS2oJuxu*{NIbdU_Gdwgnnkg@MCR1>RDT3{jT2KU
z#H{kRA?hgFn7Y5%=cRS!d31{)A}r!;iqp=^8XjNpO5N{(G~o87FCx*0?AH&GQL8Fe
zhO7qXxKPyS3nZYfMONsc`l#w#Y1kJA*<R_qNx&-)?*klW_HED5*C&dMcwZMR^P#t)
zw(JT17MzxK&CjP~bNf~HyzS-%SY?;Wzw{^j#?gn}Y)l$x(GJye>U8nCO{}3hJ-?g#
zY8N%d+8yW6E~5Yq#CG@<iVD3$_m9L*1~hZKi`EFJ&2-AwO=1BANXqc5V$`Z;qHQi~
zcdn1#tFO@Yn@VXs<UhLxZS7DIt_iqe@{*>CXtemQc10ox4Cuq%tccK+7XurIsuCB;
zI_UKMvV7_14dpcM64B)&=j7Yx{1rT&(y_f$r{qWHHx)eI@_z&xUv%G-#<D5>$912D
z3;tBb-r}G|e!(alO1}cDsORd?LIVt<Q{nel_!Qm7y5!dauL_R^ry!JujnzDGZj4({
z{*Xw^fq@C!Jz0-+ov6}k@re0lVOL~@Cpe$)Ws9A$#II~nef{(6RF)2{=U7iKIR)oq
zru=LXc#icoV~#Aos~|#8RqrA>!D4FRIx_xy0quYO%viGvyNU5@h0y=}xyO2I4|)HJ
zKol6Tp0~uhvNOB9)fmlJaetlCtboT(ZK4PQm-<MYy>^`HDaA4646I?H)f5O?^)oFE
z_&yd2H;R!}uDm&WeRCslMXX5cE{#=Qd9~w^5^dxforL>SiFUifA)#Y()?axxTtVCb
zpRUmIx^-puc3~BWXT>xkJuAohCGEk~nn;D5Qc`Oh<O&wN)S7g=!GyG0A0pC@f?u;p
z1McUn_KFvc%ayM`hb<Cw4jlPUOxf5z){&ULYs9Zw5&Eq4?#_gBfXk{U)csDh!$N=|
zAmUB|ZT)*cs%xtsuo9xNv%&SeWH0gJX1BUM0nIKzl5oG;r^OW_yTS$3zXWD=4jW>j
z`Vrx2AtbJFH*9WB1mgETlgH|(Z>)^}{_4FG3%xfx?QFVa>Di1JgDLKQwj*aDmmIIw
zjpZumpgT`Y04uGl1ZL()ob&BbUmx8ejm#=B=l&5>Y{$C~6GaNwG~w{aNaurVF`ERL
z*WUjX3>^?R1q}_wwi{1PnO-D=f*qe{OI=!#z7kdZwybz6c6(aoP$v9IdZV5KgIb~#
zAvp1|@O%LWkVPrd5@mBAb+4&D%feD0K=~EZ?)Q?A4h|*S>@LsoM1~WNB9Yf)8uDHy
z)8?|yIrn~4Yq>@f0b5q!W8ZTw53S2Zc$VV-44f@Ixrj3lv^+$>X=guT+EA@Pwg;oo
zy_4S9rvUtL+NMk{n%7<3&?hULB)9a&PYMNEH;D(-@_wVm>S)^A<7F(;M`q(=M~<OQ
zVqP@JBZ?hD{2*B;jbQK8o9UNG!+PWI@gZE-ZyR6rLGkJAStaStrPjzP*%0AdU4!!V
z_r4@T0%ckT$w{ddMoLWDnRK8`sCb?CHHi>G8H^&CAhp3s3CO_GO<DM5uV3}o17^@h
z{Fpd`I!7TA$XPUrYmga|AfBu`wm=EVwTVc={<hfts|Tu+<*2jTEFYoid$A0Ujr)bF
z^McEyCK^Nzt3-o!ri0szXOgsZ%L-B`e@AXm<NO2O&=Vr%S3tzf6Ag^K4q+7BPZM~P
zHe&YyQ>~{*g6J9I<Q#3jL$blf@X_r;{ShC^3*acik$k*j|L3oZJ_C@y#0ctTZ0qJ+
zoXkK)CNG2|04bA?*)zI2opnhOlc6*6BSdZ8Ez9S%)iRP`Ac)0nr(MVhdi?W#Q#C5F
znUEGr?BX{mlF@#d?f!4#PocGS4z2gBo8rN>a6KsQcUT=-yu1GIefA`gcfG4A?TF9Z
zToK{o_>({bied<OGVd{A0)EBaBx+u*LkoVTKRF7GLk;LFG=?KHu(vs&@gY<r?wT$S
zPLCu{KiMkKK-M#YFB8xZ1IPm;yxnX8;a9A_0Coc3l!jltCaWCc^$UO~00;o+A7|xr
zaJkVsAdM`Ed={5r`(syC_b#2Tw0c0v%EzEmEdtZQqb5h|D40a89_+$;4Zh~Z)suRk
zXnHg&1{y5%;&*LKse+NeG2=+{7aP3C?mTl#DblAbyL8LZds&_ReDHy%6k#@mON#u(
zo%gc(=8Mo>Nc}i@-iK!dcv)0gT+%r)prTZ%xe-QNsk2y2{xA#-gM?h+pj|V8+pU-C
z3cL%3NFFkSx+0;FZuB@Zuf{SNXiMzn7j4jUD4b4(L<b95na~N*Qk?9+FWA>&h?Ay@
z19IXR7~k>Oc)qc0Rh9_}`ulIZtP=;Ghkv{hzK97G1T;uUcUeF0Z6y~0@G7_5C>TEC
z`p<>ETx#Z;;T)3-Rn<XL9r+y@=D}iO5<f$F=cOGXl4to10Vj(pDLl%=-NLAJRJU2P
z4*x<4ye-i|AHFWLpR9MTJkG#1fX!;UtS~U3jc$bJU|Qi4vK^wCu+VP8XwD_KkcI32
zzNJ!nj$3h3vwySIkQtpKv}5&MTt{J;!GW`Zej#M-d)`Bw3S1pu9k2M(gC)96Lrfjc
zx=Gq_j?Tr6d)9$H%>gc;E!q*m5a#dhPDQXf<iQ7l7kJm8#e0CSQa`$2@u+oQ0k<UN
zA9f_na99A#on_h|P&)#KIX=;v!#}O|dVjX#!y=>k)9|0=#s6>IpC;F?t3iw!`nS^-
zcwjCid9|arE4ur>^$Rsr-M&J?FB{L*!<@>F!fCtAb&hO@3AV{NI0+N_6s-5w*3|4q
znIn55r^}tgFLa3z15$$?*3*ge=7qNI6h$Q4KF#F^H#nrj+?U8<ihjhNC||a3RG-s9
zH4;FrA|+j^5$@qO%o?1SrAFD?BI+|?z$0s6YOiC)SnK|-@cM5&($wZGkpGQvUV_24
z)!#J2?_1u}Y2Oe<nIb=6BH{^Cr~cjld64<Ca5cPU((fTrqG(GA+)H~KLU_f;CA*%i
zMEREWF&m110i1Ub(HT&kVHMfMlL;=7XY0PW<;(m4-jJ58;f-E3<w?1)yt>M#a&jOc
zF+~fye#Ix<?mSF*vq*5*EZ#&$^zU}_Qk|mkHz@pcV$rrvQgu36E~Ot8*?UqDE3E=*
zp&a^ixdh8c(nKn#cm$Ld=STly`?P4~_$w`!a>mve_99aNuN7k-uZZPVo+2FZ(IP*q
znUD{<<b1Y-i&E2qPYBq&kUDli?0K(oJHsMB9MItDgBR+Dp-DhfRX7f1>Zld_0GE-&
zk<mOG!0^ZnGb+2V;P|o=%xEJq{1UEdD}yZE0Kg~sr%pP5KLoSsud8DSlmKa_c-y93
zRfz+YusqDB5`6e$@R4fuX*}Z>T;TQS_ldS~=LHd46Y-${Ekp7QXggLU?CR=t?OF*d
zs9KNtEL9amI{hl|z&BqeDnSVk>%BkipA7-Vm6Eo8yJw-a3q@+jWcu#*zf<EA+@oin
z9nnl_9*J9dYi^H}nwBuV`5Zd)fgkcKb_ht4MTjM2E0A~FUJ;$hh)|j>DtXADW&^pC
zQuMs;SYl`@`c3_?O=Z_GZWsofn6pU5h~~Aa4EabkZ?J52=kV`F4m?g`eT)CTfJu;Q
zRHfy8i=}2dR6}>_XMuKO9O`Y>#_#^&yD%{Mk!EIzB+str#j|GJ<T#5h)>)@OfEIk@
zM#(QGXf$j0XfGB}_KRr$#Ck1r8aVdP6fCKAa-cElDiLlAWd%v104qskXFQq3OZx{U
zGD}&qj(a-zE*;v>6jAnCD3W#DKA-iiQb%5x0ePG?d(T(5yT|r_OZ}E)#*Pb=(hB>`
z?VWomYnW0$OsGX7LL^JnorD-33bcbWYEH!ufbay+*c5Ml%tbDR^!MpM%PJ+}t6y@a
z3Z(>@Y&_XlpLN9_m!CEI?r}nd6fvAec3PR_a2Wy|OD4XUXQH3R*>)eQO8$Xw8PckD
zjs{nr5ejK7aPvsGq|c5Xt*|C?H$3_vAo8Ken3;ucFN1B(^Q;wUpNmp2WUot%ea*wc
z!0DhFTpVWQne-noaxMDw{*@ZHvf+EB4e#T<dnwq}6!+Ndl9E34tbwmmy~!T^SUL@f
zlc;y>Hv5JD<xbE`$IwstXB+iDo~jK~$5w9947PS&(g!UjeHt~-{*9y;nA4IxgMD<U
zUR@9Z1Tv~HiP|EPZwo^P`^uJr7H^^CJ`6x@86S5Eypx1=rBIyfM=`2f0!6_@1hVA$
z4qikX7FrN%zj5qRDXXf*R5f{>l9a?H3G!-cpOfP5IMUszrVAW6dy|%|PDH)LNW|P%
zVxRQ`BN{e&oaG2U4hXDCSj^#ITW}!y#zLQuZHkDFrcp#FFxGWYkjh>4M$X+lToMHU
zwM53n&zq}p_V{@GF1ldy1(vN+e8l>`tuCd%c%6;Gj^wZi*H0LBqbzdz_o&7F8}pnt
z1UJVsFNhy0GOBh}HJr-yE8!FZ(}<lJB=C{>zx8>LYPiHvl&JgZp2UxSAFnv&W~}N|
zc2V=R0GI8E5eoBs>kdnVXM#P!8P01^-@z_UayZ~Q{8hYd_^#^ZEqu=oRkCt6P*;gi
zKWZW5Q)V?a4cSQ^5!Ed3OvA8dqa|FXSU4JiKAZzyYJfpBwbDwGhpYMHOo!@NPBAKJ
z@w}Df3YVPt%uci%4qtmc;o&7{LUjtd**)@NK^gd2nA~1se>@2j&a)izN@<q<<Kns6
zcdL#>^g3Aym5w&X467|JB&`sg-VB2foJd@>tptq@`72Y~c_=i-@_}qJ=8n?`@yIQk
z5yHRe;G``~sx_Q^B}b)KFGhxAIqF8{A_)3#k%oR$kP6Qnv!|N|TtLnz6>=u?J#{tS
z^+$3zR<74(pvb_N&`5L++@n%wJ#O9@o0Ym3NN{X$V!s6b(jjdLlbJ3TrFjzW6gD6_
z3ZTEy9kbh^+FKaYO2R3c;ee_@CS)+>*NX=NDvL<XZ5~iDwX!Ra`0Z>{L9)~(w)C}Q
zQMsg+EKkAT)Eq`r?5hvRaV_*yVfAmh0I?hpk(+;*YC|C^uTJ1ORa}R$(%ecT>wT?7
z0ROIZPzLlg+WA?F!>tCi5uhN^btS;i!AtZ=mhqI)EBlwx1E~y^yb~pA%6+3d41({+
zA78}x%|MfS^XS?Y8cWy+C_ou~!$C<uz{7H3A4X~L9?4<#t3hIWoS{;R&!VQrTbX2W
zi~SuLC9?qsl;M!Tnj1}yKRdxRp(LFfUk!QZY*h-dXK*qyNK)?rqF>FkE@1fC5ea?B
zGC;FIm=D0&Od~3C>PM^gDegUi;}cuJH+SgL?u!_R?`SmbDwNvyQu-m?CBC2aVAdoh
zf6*t4`|pj`XN5JVHp%g~$dPA8c6mrcI+OY@vp!KGyANWU2Lb}gu#*_h5+XD%0!M7y
z>niG;|LS`xgcN}!ZZC}i2A^7US^bjTkwv#W!XgJ7oZ-sPqqh>xA<Vr_%8PDgKJpX;
zASOkr`CPdZt?F0vy)02vUrEB<!Ulh(r6{uN_R6{<`0ZIdu`=rZFFQOnGNNB$He9pl
zrM@d9=g}Yz&$Xk>bzwi0ebQIJ)84$LJtiFJV@nJ99V1n7sDnTu$PHnC8~rH^)k!bk
zIvsPm&Pz={DLcJzXi-B@8+50X123^-gzifh=caPYM-r6`FWKVa9N|wA9f|d~U|hQ8
zhR1>S-lJdRxP&Pn@Vgr!irl?lD<o0x;drHiv#{-wL}`U~<|gW1UM;O^rDvf33G!zw
z?;&caF)h-1ktD<LRCUf}7@-&fEWt?U+hnYHA_%Q!91FTSWnbz(ID?%jL5geEO1@0X
zB2okSgBEumY2J7N`+&M6gCHlDd=f->L-84)k)^{~*-o|=Nmb~1GSv`?kS?ICLoxSC
zLg9DvNPBC#G_IzfBcqg_LZsCEVAG6SLA3v~C+=L`3x|>ph~)sVpM=jDzaCffx_n3V
zp6s*}udLur<Lh<<OJwdh`CGoh%Q9aksy#<n>}vOdO#KXt#F0Y+3@P;oUE~bibloy5
zG)zW17Z=%x*#kE;?(M&uPh07PSx>bu`pTPyq@2t;aiw#R5P!hbqU7fS)RLagx|O;v
zc>*EQeY$*r;9fe$?KT`LL;cC@EVvIyJ=1PV>;y-Lv2}3$#G+o{Bzc0vgUH-shO!CQ
z{amk?fWO?+l^oDej?GOT?=2Q*Hu31QnwC=ym7D64V|*5`(05`nTSEK^K7uF%zfj%7
z>W#c2#r{03R89hAbXpXo$KdE6e3H~S^nOIaimzj$zqnzb`(gRBe#hv){t2q0H00CM
zEUo^HIZM8=;MZrR*0uq49~pHi=WMkoll}k?tbi+t({52E4aaN<h{Y;yd>qq`0pcY5
z=-gPv5jWfXnD~B?*nX}dFASHl^q2|$5@6KHGI-ZGbGX=mI%%neS*`|S%TfE2w<tW$
zc~pF@;joYoAp4lo?<6mDSj<XGXR8PD10PqtJO7>()f$VIP=|csa+Y(2i)}jbNNQ|L
z=-rjWcNaD1QtT}*4K1RUJ<Cz6GR?`lrs=F1+YGR|%~ZW%@rU%qz3)w~3Ixp_HAKgN
zoXV5jtyn6n;?rSv!cVV>arILYaHuqBgojsf{a#U9Z?-<EwC9~vg=Ne{zeq?~2bq5H
ziMyTV0c$_`u%Roud#!XBP+$uoktvh1Oc_?K82z1jTgkH71XMGCB1gYf+oWdD1S6!+
z<bCQ<Q#rhJGxfE64lATHnPtQ<`aDdn*9NFX;a?;ssId$syq@aHIOIJqQEQ)mlEg@m
zhD2AhFe1GjqDngN62!dY1i{PS{JezcHG;T9KP5E-4A>D)NQmK;>1DF(dJ(Q?7IS`L
zvu{3sMfe!=bgWa3owqQ)BKoC}R&}kniNrygX7!AhV1<-lJ9b#STjTb-%XQZlmWu&^
zp7}#Kx5a%zGMM-XUVcI9L$;u}r<ww6%~b$6ZU`he)W#_?x3OBkfdF@lomd(?wn3od
zd6LOMgp6S$1j@iTnj+hZ?=y^m`^D0Syv$vUSKWsRG@11jr1*cwUKyXOvR!G@6<0{f
z0e?Ni95K_MK}Z1jQ9+hNjLhyV05=vmh)J?EzTnF0Mh+VX5)I+_$n`nS75S8vI2-Up
zoCuK*2<AO^nD$E%%{tsH#A@nHXyF&GC$S?O?T_M{J9uf{EtbW<9Q7mRI-Q{=ym!`2
zsj5gT%bm?<uKU+RpUOBfaMMPVqoISxEU-T&{iQgkT5nPL8b0}AOx>DeY<-bMnS(H9
zjOpBa>1EN3GFe`PI~v|Sh5l-AXP>R@eFK=c(T~4?6-E5OsZRDR#vr+EYs2=Ke|O+%
z$ftI!1irQ1y{9sx55LWK8;Mne=T(y?)%3}#OeFJd&tQT9y^(5ga|3Na2uO2<p<1~~
zMG^Xj$+ArI;+cgNKBfqT*YWEpt@q}Z_dYMojQh&P6fr!f7Dk9vh9oBOpu@h!{rUO5
z!P9}IxJXI05~Sv<OzpDQU$|Guk+EdpmwKR7W?MkSOspbjPUk$%DhaiS(4LV-@&*09
zm>~2fRc)c3dCfV)Xt&2oPXCUvIK*h-|7E!JfoOBj*vF}Cr4k?;BiMS9XM8+R{oq>m
zx(J>!F=gLb9t2~WoslKDRk99ho_sL)S_VNL0PxJsB;wE_XK*?tnai5<Z_TK5d_v$c
z`F>t{SF0JQaEGHLx?g5Uz{rJ#+*eVnfHg$i&fMVYZG`&CQ`{X2(jH>`;!*AiHy#38
zzZ3tNKng@_3!aV9jL;hzY9nzknDPfm-29IC1R_+!+v~I)+tm=Um5ynzgy;JCs~NIY
zu=~y<VHVsI+dLaTq2WCuVPf*M7Lon39>ZA+Pu>raKb=w3PI2;q@an|Bu#qd_-EPT;
z#h=qw=_*CK^D;Z%F(VR1G7W<NXt}gME4r$i*rfds@{sy@|4M(!JY@M+@uA?j2uR`4
zNjet67{<1I&$UWjx{U%O?a07zJ4QBTT*D=U!sPQQS&o$ruBhCnr`4N8+4d65R^EJb
zIedt;3D7UwA3k6y4rV!U*NkQ@+-3dE_x$AMNMrZgft*HE;>Z~b(I45JGD5qY`##?y
zjyemsTv{n1EBD>y5TY)MrrIRWuJt)Ad-6EA+e8m6JjV|r9Q@f_o4jZg6l+Hgm{4d5
zguqclxWcx}f=d^>H!jx3-wwne7+zDGG=`jJ9L27oURj3cr{Sfsm`!O$!6G{p9a;iR
zKr&e}oNIW`RCtPE^>7}kyaK3dx~ygwLb|@+r*IajDYKSl3l6vCh?0%1vN9d6qVn!a
ze%YaffXNuw0c>|_q}3gG0Xhnuz6G{;jVNgQu`|U5c;v&XsK7K_Gq-rr%BY6B7wO13
z1UH}N4|58;v!Dmq!mX*FO?(Ve0wNT0TS&~5tAkMYhr60x%6;9+L{!U`_3~`IXke8;
zf(m~Fk>2dSgw$?)t{*~~4+T2ywywyCPcHh^?hi395qPQHcdT=@-m&K+^mYEWCz=Br
z?-aHCuI&L`;iisg9CLVpEA7@>?!-i9$*i{~_Jy(ZO7;c3rBbuqh?<Hq<>>;F<a<+S
z(IYE0CA`ZXKq(Bs>zYP{@=a*>Fh+awFDp4KC0%N82=<mPBA8VbYs?i;^8XP>ek<3J
z=`xjH_XOD;T9>bSJ?)wAU%+47{C<^{$nt;hr!R4c(l^-Fjf8d%=>Mbua+w--LC`97
zdM)o${ol}=YbFhMx*R=mbc`T-UNriUuweYd$OiO49mx?@O9UKN1WAt))z2Gp<i{jN
z3lV?QMN*LpEBd7l>UNj!kfgX&{MP%4_T&cf&EQ0bDJ$r#1t{w)o_@UF!pys8Yxop^
zFWk9)Hd$C2m!a%)X^)JdLZ;0cb{ncuVgT{kIQMz_TjQTSZv(a<So>Q?!i$!xheME7
z&X&z|Qdh?>xF6L$j;s^A3tA4Qvf73*BECXJhXmvVf1r_z^26j#daZU;%+QRp^?Dl(
zvL9Jsn}KKXAq|+#B}`;10(fnqA%`iVCE^&}G%q*99j_9*gfr{f&1Rl$HLnI!piMx!
zPmH53()FG69r|$CVNgluIu@TN6k{;58LXbctsKq2inFm|$m-xqY<>f`700n26{vxd
zc}gUxL_oABBpmAPn@0UJ1+F(W*G@Q&=kUt5a(HCjd)yy*<zG$z6zhkrm40q&jO%AC
znft;T5Y9EqGuII8sWHmoBIvn?<}71f!3$@ZhJ)vPlzc2n^g;SPDA8I?`atCksH8;G
zYreGpOL-cRJrrye#p@-FGn&rW*hIE_!~3eqp1~rCFQgRb`NGeiSpYiOe2mDZO+AP5
zXx>%MOoVbz?0aJ>kGC|=bSd|Mht8RM%v!>|C9hiM%q3KVs}v4lS+0vL&ylm1K-N4l
z?NSY}Nhb+;H-`}WxlnRT{MXur=2z(@xsAtApuy4s4X&sZ<1NeEG(T&Bc!O6{0`k-N
z^e4eYrkoMwszhm7OR1TU_nx_9?RNiuP&!0Pw#6@l>KhiLw4?ro*XTOZHF2AC3wGfu
z=v^V?yokE?FZ90-Qu0BL5Uj0?Yoj62<Hru}+`c=s4X@y_mvwoCE7ES-&s|_Lf!$x1
z$v@W`XUW`Jp2Xsw#QWi2zEd&2P{ukWk)XuQ29OO1zS0i8Nhxl4iz?uZRqH@RRgIW}
z<{&pPA(-lM&G~MAn%yS0d9}!Adn?xNxH{s3Q6N0$*Yv9;SDE<7c?tlg8T1ld?2~*N
zJF{K=@<P!Y*>Oqkc6n$k_>A-A0lT--%kko};2Cm@Mp3P=B7X7?Q}spHnnR-fU7p7{
zzoXZ`QgqLT1Z;EkA2=cHV13R*@C$mp{`|r0Wb_R(?1xIf=+f;HqGXvRahhx1Tj{u{
zKQLMa_s<`%gfFB_AiuE<2qb7ernA^9TKq!V7%DX0c-1r1kN<>r<ur;K;wR5yCAqKX
z&%6u+JrU4pNxc>9i^c?uUVRbxnfKymC-~{uF?XG;p0tn~4%+L|gqEgfL&M;C15?rp
z=}MK|t(SX4mqVYlD^Gk(?;Sw!R!-?51GjG*+sv0R%Wm!)u<d*f;pC+e*+Pn(Jz|ES
zhu@y;E>_*Lp8=FuRN|C$<@E}TF?waOC(5WIwE!1MnGwNsr@V31obY1-_4@uwWp-^i
zi8w&YGHr>RShb|t6MD0n8Ry+?HxL`gl?OnC4aOMQM#uP(KxNAY!9zK+%!;u9d{#~{
zmp1xX4aufJBR(lT+z^D#!HZHG*@O1+&bGr{*c@JMZ&oTe)^e3mbcW?r_h;<lJLrio
zd_0P+IaK+h_@TBOr+E+MJ#t9D$y8n;Ih<5Wkt30Tf3hjJvyO}wn5~B*fL(Bm0NZ2%
z7KeJkt3zg!`MTx0Z%b)3Zw3tRDh#(8J8LVk#{E!omZ^sXXAV)QOmZ@QY(;V^<2RHA
z$lJ?2UJgGZ`b*{&pRj|1<9Yg7FekM~ZGb5RD&o|DX{(9$Lp;ZLeWdN{a8_XZ#zJ=U
zl)Gr~dHLys5o><xw$UNVAA>cG{=`!xn@mxUEK9t#gt`4Ho5QmasfWZvOtS3{o6#6Z
z^<({6^S*eBS34GA-Rcnb$(EZFr9%V#*tRK{bsQQ3`QNbvLSIvVLQ^Z+AL){nTUV)a
zv@TZG*Tl@<9j)WDr?O_?aOwInh(cDcg8g{HV0TcrxZy>~6XUUe+q!z(`fF1hX;WzG
zj&D427Z1Qnr=7d-w6T4`TukvY9aBwYKZf>S8vCGv|Jz7M5G!s8i~5@lhG0M7%|Jp_
z=v7+uu-I+RiS<b(mFG%Od?-F}5SViE^j=G;imSY>cZqsAiXASBQc*frVCqq(*`DOe
zzn%Va99+5M_i_NJUJe;soux{?vl{vp_ksPcUO+Q498QTIlGKlAxzAL`Jl)X?ohfp&
zJdi=Gtp0=fW6SYG8#o@gpN82k3N6I!8P7Vw9;;GF2hf)IoNG>Jw&D*a@}Bj++eKUD
zajh}w-Kx9QrZ_+qkTKJMft<l0T|@N{8*7|OlLLcce)Nd5mM08W>{_n={HAg6HObSh
z2J8UoIl`IY-SGPAknzdxD&OWb#t-xVIG^}h^$D(3FYf9LHM-!hha30zx23t_F4Q;*
zFmXrXG?;7}V10=23l8~*N_P2J!xh%=KQ0l!gk_WRM`&2yH7_5`mRIm825pQZKskzT
zw>0<Im#sZYd7I7pKsLUyUWywLoTG}@OH6=d${r!9lu@R~`it&S;$lqn1whKE4%6)a
z2JKPMP~iPle?_|2Qa?w0E58TyeIQ*C=3kt=jSf$q5p%}E`jzrjt@@L@Ec!l(_C{dT
z#XR~2F;HAjr7PXqpKFjeh}GvbT)*z>`M%`zi3pyi>>rPM|EoQ!OMQstCFgi2DEsYG
zYXU*Hug#+tn-erstHu7j*xYf}iUiLeg;Ue)kV?h`KFjr}-RS0P+-O7<NGLOg>sjLB
zY^@mdOQP=Mx5T~9z~My$`Ufo5xt14fTvBl|{(U#8)j|7@ubQqh>N@<4jp(-%^Pff8
zPO^WHFhTcAK_f+FweBG(PJK7i2o1f$@bWUZN#4)AwMtM*55$*N-+$sJT6k4z^<EJ9
zE*d~4$4@kciLA1&wV5HpA5%<Ba54!|qT#`5qQg%8n{B8j5yO-oAQ1#_3Ht(^1Q_3@
zuux-96WXG-8BepPgKk*J{j5Ir6Au%2lGD|dN7gR}U_)c~h4;HECV(rE*Z<Ynfs;FN
zWdGni@ZRS6P0;*A^@MBd=T{?7w|sq*Yjp*<5g*qy1P;v|``LC+iu=fqE^Jv_&iQNS
zgz0;n_s1HyVE-DK5S34kzgfOTO~5Mn!@s$Y%qb78c=#1hya2nOD8098{#qd65g}8h
z16z@3{-dSb)&hI<vQa>QL)h)kFSN@ZDU_3ykT3Z`{7a6wqUujg6Ra*ZasRk9!d^G?
z+@{u?P!!N>U;>b`0n;L8$4j!nTiT!fw?%JsNC+%}w8_A0JZXZ_ZVlzD35VZY(D<fA
z8%17X{a3%`+f?Q<ESOLkO-E-;KLgyb-CwESA9+<Sn_C(x)Uy0Y^fW}KlaUH7E>-cY
zUZf|G=u~~Wp=&N7+74D{22H4Vo!Tn$zBf!6!@FLIroO>`k8fJOb#x)R_hB3=$BK1$
z)qNVZCtU%jwNrGfDCp{e1YW)QY^(6AP>i|pGfP?rO}Ih-kEpIOy{Z9?^*yJ8sw8aQ
zT|jv<<UZ8$am;1>FV#(${k`x)%)T+ZGfWg`k=<pyc{SIT!oBrfyX)l461z=^{i1M7
z=B5*d*a*(ke8`_*MG_U8p)5x8l&%S>FLEW{rUVVIS@Ua0HscfE(8IFDgmRhM%xa2U
z>?;NbRVFwkT!p~yWyOR~Jn?qn1<l2+&l_M@kKQJrb&Zg4OK^YR_EEvmE^57mU~aCy
z1<Z-nCz0ZUxD9dGaH2Z#<CL&aInL82!Zi84#c45582DF`R|DTnxOux3<bP&!^WKx{
ze4j7oTtvTP4ch@`0<`WEAk24YxUgJG@ZPMBq`~tRX{tNrUgmI|HuzZR1}7BPS3v$t
z{lJwa()QV0_XhgJ8x602PVqjQmdj$C_jmB~5*O0O%$V=sZ)Lkp99cCIipQ3zxIp)?
z=)Am{Tj9Y@R;T}x$xGA#b)cz71owom(MLIp7^90qH-PnR0v(3<NmF5!R6AaUaj<_(
z1#0&A7$;zVll1Fn4}XpgQ-MaC_#Zq)Xa%0hYaS2%W~5gb1RC7TJGpgoH(17shQ`W{
z38umk{#<Tue3Pq*xV-zt#*SO&oClg3F%^s7M!QHVhBf4Oc-Pv|OI%4CjdnzK^gAqs
zE#Vvd5ZA;_HvG0ee2olX+fz8vVau<<XYprqWe7eJ0AlYsj1Zd=*B`y<2`}gbEb<G7
zMPm|CK=PG7DaDmycD3>z1&&tZ#Dk@CwQ^^^MS!Eo`-j>XEzYp^pNrR)^MWXZTdo&4
zSKbEN0u2@GoE)^m`vrbT;7+rfBHQZ-Ed)<&Vg4!*gwHBL%3S?FCv_%Hi2yNs+0@Jj
zX7f(yWQ=kS%|{w{>Ft;7{Jb*R7=>3&{!|Y;Odf?(=z4yyf9xp{<vz?6Q|<De+4_S7
zp=YhAI0NLbRSqOhq>t!IMmy+@z98US$)m&js!#~0PRM;O?zBjWcsys#SoEENOG@k0
zG`#VyCWfka9m^`}7rlWe$xM^dG;C~>pQqy&_HZzx%%=cC|Hw$?++;<{q|oIBCZEzS
zCTqxo{0E@*#sHTJw*9aDb^*1s=Ueq##kBT}l9KEZ(e*Ph@UcG8p)C}NKaan(0+5sJ
z?aCm>8WgpvRo|aB79eN66@e3_8=YMa8#K&IKQaqGnCxM@<Uc`Z?Y4Jw_e;M<wQMEf
z-y4>p_%S~PbSK-p{2m!9entNUU`y3nm`r&hY3gHDEOtXTg<!iH+V6jpm9AG^)SVaq
ze*?b%9T@OMU>$!N@MKQd{`}K`ua>z1SKQbP3kJfXjP(Wdl)yoVui3>xZ2^k7PxG{W
zn6bkIn}vm<J7$eP!+Dmmez~?tTgHXE@%OlJM*kq!gn+aw53!#uEj-R$>}@OQ#kG9k
z<}6-TR}uiwZ*g130`B-`m(iePoP~Y85n-JcsyTc+Th2O*B?DW_2<70A)j$Bg*lKcQ
zz=?_8l^FuG^D5`OzCvLdboBmJ3SY<@_Bg8Zy8|{E-4kFUpQ4R?>7YHAC5gqCO@m|~
z3#bCw=`aSkaO1vk#`dRejPO=A-D*25dLhAAKQsCW2lcZZrUkj%)6Of=U-`hz9NRke
zowbe0OHJ`6O_G7y?^G=^ml+H%6LtvmPAI=rEc<HmnauYTIqEy}QxtYD>_sn~n!fMF
zEf=t8_Z--=XVgs@8eCmU9MpC}cC%t$ryrun;U7Ujm?QjKa5?MmO?7<Ri}P1z(EDNt
zQ1z62!Hf=?EpaK=T#k)tbR5U(V$Or_@DD<dSfehLm)VK8-NRF!>QSYH1oc5Fdh%C<
zq3xp%IuR|Tl9Td9Tr9lA4=<zWO6@$ALTvCeb}#6}c7+k)8;9K*0~OnzsVW-HBW|bB
zA9POU-uL(cQO6e<AIEIu{^I@&i&f59L3OPQYQ1_t4=_bT>@o#g<`12W++bX&Pe9<j
z97P5vmR)c$nukPO>tb^os(!=}kq0HYW+f+(0$f@h;zO6U_W=250gIzcy|t?%Ddo4A
zb-mc8CNiw|Ir@_Os_XajPum#qW<Eo7jYlBrvj-YArGKw3cPjVx22wx(9@Aoe74s!}
z%v{JnbiSuR3+9r^+f5pP^xo7bXqTHqzg2hd^0dCA2ISTjdnrx&r>aa%YAHk$4zHMe
z;Og&W^-4)p_#>Jy${ca~#&q~FsD&n2>|`l*4o2ZaQGzC6kof0S&f<p|c(1X+W@YRv
z`_G*GtQ&^4{DV{}-{3;8_Y_puds=8|Lrc7(r#JgLc6`?G-f2^fqi(~yh?wtV__QZF
zHzu$+nbNG;37)SA&Y85N!n6)3sQr3S$+MN7?%ZGYck)`<yoo790iJ98zp|bJeyi2u
zd02A(SBl<diM-mIA;FYyKu@fw+?>=F26>FPz0^J(=Z;FU!2j_g4Dc=rYA&n41k1WE
zHUHc(Ixj>=O9}sCjvo;Rie|P~f$n?!h`kbQ{}N854)n5$eh&iO!g^H(Z&xw%TByH&
z$EW|yDNr|680A;9cSOlK+^3LqJ<TY*^a7#1;C+P1o!?p|iCPawmnx3p{>KtZ2a+=v
zSApwfvLc*!`^!w=lc2M?IDBu3`00_Xwi`cmx?IsgHh_~y`@Dm%rT3_}cPkz_@M%8-
zXRQS8O_iUhm{rNZ`xgqDJ1hl;cqNEhas&K1kb&LEDjyem%Ggtwk8h{L*U~xPhy9oH
z-{K*=uPr8|$<Wo52@g0<1`WnuppQ+pkeI@&4OHXR2p{VfJz&xA8EYeXml`a&WJ3DG
zze&UaDFoy{LVI#A;;3+#zz8aX0f|iqlOKdXh2naXANwqsCS5oEnkQW?dOrHQRU#No
z>CB6(`J8_~g5?WHvi=Vp9IzTKmZ|hkT1-bln}wM&UG{sew0xyWF+Je7ki=rr5TT>s
z;>S(3*4(W>!;^OFmy^v_h#WvuiqviBl9~1<!b*ZMF>(AmngwnRF+hvb^M`Z8<uXjh
zbTENNH4rFr3LmOyk~g=Hy=&K|eZL&MFcv1Lgvt6A5}>323#p!tM26cPXbC-eHMtd(
z#Thpj<vB?}T~O?8Y}&69&zVTpU&zGE95VmDs4-)tS(cQNI#Vp};1B5L*6hJ0jjzGb
zrYmHXlIr)0g1)SfFZa6<B<Z%Nkd{`2N6;Zy<D}he4U8CXkEro7SZquADA;&s(`#OU
z|F%1*VO1EV8&)hjw7qAI$O-FM)lcgx4!5)GSj{embWP@Y6Fe>5>tjtjqGW5UtO`%L
zUOE7Kqy?sY`H_|(TR|$cX3W0M#YxQHnqW>72rgS!FA>n6=l}0G2hPy1*)!I=e>%>E
z)bF{BS%H<-H-H9Y0JlAxtEHi@?_mTyMhUjHr6m#NYWX@2eVEPrCI>v`CCTAz`L@sp
z0uFmmD>UA|CAZMQr`9j@h45phZWaeWimb=Mw3H-sfSB_B+LxiXOEy@Y%HMaaCq9hU
z3r2D4L-At!*JcAZaDKjUk_Zi&@`3uRnd60VmasU|u{WKFMkAGBr~-}3B>!Wy=TsD#
zY0)Veh~hV}|KHdlrs!p_l(?%j^q0H7#5@L`g$qIvQ!c9lnpXvDIyJ6Ma6?CUX5e<T
zdc+sW#KN^@;X~hfEFMy}*2Lir9IW~VRHju{Z+HLjwB9ug!YKF6$tvLOgr=gRu7yYS
zv3}_8bTh8o37ElqW1vWXRKg~De(cX5=cCY~sjjg}c?j3oj>J7%@l90Z-I)ARnqB`t
z;Q|vswFUS1oELOP=v^ElT*yYpAZWreF-iPN6X=pa#e(uM9Bf^zPFkE9Z9rzDnA2$+
zk5<Z(Qr$553iUHUuzX;we9_&YuVr@W5m{?)*SE@*8B*P!ch38iu6g8HC_OZ0b}Q=!
z0tG-I{yo$7+=FGPO`}{Leif1^Tw^}t#!@-5n(HZy^XF!+l<#eB{{G)MKX)C&qErf6
z|96J`XzH+(5fZhp55TX<LU6eE(|1HNCwl&!>FtJB*`A@tl>TqR{K?es+Bdd-_}>SC
zU8|zOZV12!0TX7i&c@*^q@OEBRFp}?M>=ll_L<bA;LMsm670v@l-8?hZj3jcm{H2Y
zKkk)?c#-jHgFMI=8It0}9H*vUZ)@{opxbAq`fg9B6hjrfS6CaEKZh#mV`eU<%F}*`
z;&O}FKS`VMphnJ;V}tkhxHhNT^GwdROEpg5Y+<R!$vLGxd>XlwE!o-RFK+GF5M7^7
zKFl;&Pf=cIywbRTH)`w8f_`Nl`_yKBjwcDxVq#QKWd@xthJef&p)M7p_^llCvU(oI
zDH*2Uqn%5;h?xhYKO}lmr}DWnm`M`Cl$yRvPKFbq#)aUwt}0o|iK=uka#2Iz%KQve
zKD@8sOs^RTlu*MGBUdxU5q(lnHNzU{v&M#&2s9<(j;4bF6wH0C_?e}nOhJ+6${~2A
z6hB&->@6+t2vU=r*+V8|T%WMSi?zV3IK=++UEjpRx`QrYcTn_)nlbNxT%)vOI`jNO
zyPQs8buhe|T@La42}BP-5^^e~4HYp$GEX#&1Ae#8UzpcO%=gvrRu94pK&G<$g3-c4
zIz5Al9R-8%<$eaG3?}KwSh{Q~F7P>1A9vrl@}30wD40;A9?w<T89ctX@$VG>(ZoS3
zG~{OHe<yyX@oII~Iws)64|J}s+v+tKGeJN8+wx>nu)TZnZmiEle=zSAVOl5M&@N0~
zdU7afo3{e?Zjxwr$nV8(d{gd8z(T-yS@$V|Zsa!wwT7L}9fBVI0gZXT6y~zDzh#0o
z<t~_>+Hs?P%}Puk-E%4snn<;m?fI=jsIOG<IppiVz89w%ay{?%zdG`Z%&U22H0VAx
z{){@wn7SHoU^N4c{ny|qY`TH=q$0XyoYS;W_o~Xda}rkbh}3z~k-GoKs2Z%dueZgy
zA2jY<6|PYX&<4Jm9EVMio1>@Bu=K+|y?r<I67p|VdEB-Z&v!(GhFax+tbIt-D1H*Q
zJq~(+g7)<jTG&LB)LQJ>9g-9TO3;W!c)IVCExLUapm<;CExF#+|4Y>&hu<DYeQ_%J
z`)YmY+n3@!Kb<K7BprRM`t+-9R=tm2N-FeT>3K(3heaiT6XS+-dg5W<K{w%WgZa%g
z4)VVL7Ns5gnOi?1JS|g?<LX$B`%BT|$N-_MKyYd?rVSkx9a12Q$`@#;`ZPJd)<TfK
z11-Xo>-z@d$L(WXop=KN<!MGz+ZYLOEfvo4E)SlBa|vx0R=Ac>$EW-g8HjJ;_X3pv
zKOky^A5CK0evsm(t2y%SF6)g8jAz;+!i=F0^QQ0)DA4Dw)rnviL_qilpUB^{VjedW
zYh4m0kD^J`K9%CXdXP@&PIj@}V+iW@PV5mdZ29e$JS&V8w@bNjs8jNvBjrg6O0myw
zCei@nYbA`lytbe0S1cfwhDpE}L7(=dhUTFSjr){1)0eGJra`prdyC!>!=GP`EN0b%
z@~N~!fwm)_bf;uK+Mc*VPXAfrlpj>8Vzku856ePxJ&RhJv|LI`F)|96MMHB8FsrT-
z``nfp>E3^K0WjHyBwMoIOaU!7Y0+Y{?io(-vI2G(6ZQ|*#}`vFqbrFd@n3bK;pt&0
z*3SLX>R-!+gDX3$tM_A5FM+Hvkva}(_y-R;(D0H^+WkkO`55TnDlzZ2DMk2Y<0kB{
zPy<Z=@G6aU@#PE@OAkTdBxA9e>x+#iYM+oubE;q?5axxd_PavQl-7JGC+0N5jWjQF
zcTE<h**v5l1!`V&H|eLD{qm@owCi_jd(R({6Dhi3o!7+>Vb|~6#;+RjSSaew0`4r7
zF$P`_LyQQ?7e(d5=`0L0240WQN0-fL0j0bf$c)X)SQ**h<T+C@<E7y)=Oyppz9stF
z=XO~Al$04F8Ryh;WnuNR#kmLu1w+wY6(hjk9yavkno1IFgm_w9`k{qK07D&~Qx9p=
zcE#2D{6Aqn$#|3M$KGe2?10xOI<q&sZ5a>uj?IygE?ZKma}uQfxe#4ZUi9ac?(aM5
zl`nVIX$ejHdwyHpDjwR;JKuI()IVAaWJtgMw2wmVUnVQ_DL|y_&wa$Kt;#q2JHh+_
z<_Gyn<-42vva6Ng$9t`ofrK~emvpwZ-dWrms>FB*$5#mmn^BPiKJ5qn1_k)}^}7TO
zbY6kw>%*%2`D(8@vSpk*AcOQ@wZ&)y`*``AGy=$z?I#LRl4ZX|?*|n=k{SL5&GHz(
zAl9rf9(`^m@pAydFf60z(&(<wga7q^kvh|>_?6^ad$rduEcOZFR4CF{5wNHOkgWVe
zFnl+Lbjwj3h}-EB5cDq)rv8M|(%v(j|N5-^@qCInAr^J?Im81?Dmj^>_NvpD{vG5x
zR5zK!Wc4b;b*$mT{5#Ee>4p!~++mQGAMYJza2kuf5h_ss*8dTj!dh+9G9qu@PC{h6
zGjnw1F>Y1FXbn!6N}y3KKkpme!Z@DTx(wG<U*jntd?Vw6F3aFSWvr4&+((b1wGxpu
zxh3(N)0>I2B45ti#7~KoQpwjaTlQP<ZW7WF%q)D*xblwVRfx9KTN+h%>J)W!*W-+R
z@-Ky6Uk}`Wibi>qV|%gZ)0Xa&7i#rJm<~ftPfI-M7K53C4UwtYBqK1FTAnU)@M@`v
z!MAhR(QlX1kdY}$2BWIJK98;d{QO(>6aVU8&ETjN*z^*&``N;g!&q8tfZm&1i2LJ@
z>=h?QDpWG3YP%i-hn1lLWn+8?t<!fg_A8m5s^VXp3jVlc*?SY-PErKw3qS6GeEO0-
z6OD%|^8e`h*;5c?yrqD3r!^SW)R2lrGC#94uwCMwU%+A-cprqYK=`Ywq-jrl^^HUB
zU+pjcvdUe?l4A1dEE9J&6YAAI1mOn??IhJkwIvy!Bhhh6R~6^E-_2s74Wyt!9DW>m
z5Y05-Ulj1r!1Qjah_8dsogO=#|N4YIfN!p%cP<$Cgjz6fL~UTGzy&r{JG(htu!Rv%
zZpnx8-X2|xVt!b0^i0-C)%SY1Y493!Xtkx;Glcp#Sv4DkGb5s{R?gPWk2iN*6bFXt
ze}DMlz0^!{h7`g>CA$-`xhUqDyiWDCzfkMFTM*{qV<^JTESqGt@r^V|LFs%(r7;0b
z1!Hx0J5t)RaXlu0;WXR{)*>!{Kx5ac!=6%Is^TsWL>1O63l57cTli|sh{`t8he^x<
z;nxI*FcP(Xls(qqV3Z7ACg;cxM17@~YYKqve#{v!q14<>w-W(^Oz--*bVYG$1Wx%r
zNhQr=r$!Z|MPw&h%sC0l^6_cRX9twMH_YLL^b#fU^D@Swh&6BOi;Y4=euu3UlDYIi
zeD;H9sJOy=*O3haOs#pfxgWOpFm~lP1(<aJF(+Oi7ERr|pp0xCJ>;0rNR4-WbuTUy
zo-4+-jX=bYss4|>vx;i#i@$s+6u068cPZ}f?gUy|pitZ$T2df56n6>kF2&u7yB04{
z2m~k&#brW&^IvOT=XKUBo^Eak;oftPe9zvW{e2jL81f#78a(k*|MXKTl`|-;H2D37
zP)-B()NB7y6-)*>TH==#ZrvPchH9qD2>46**8Yg@8dJ1*Y<+SY27V1#Q$YW6MN9_z
zvd_rx=lvpy>dle<;9}oU?Z+cqcjgq*!gYH`_ym+4sZ4_k1{i1VA$J;7Q`b{XU*spo
zdOPW^w@~v8DEE`Arjil7woEB<5JqL!M+pJEw~x*5L#&5RrvzR4=P?&4i7{T|LMZo<
ztEM0bWY2G;>5^S<A@t(Cjc$emL1R~P?N`IqNxzd;(dgO?ZBJd<^+!iGqH(;F2Ji^Y
zMd{ZNB3^d$!;wd1<hR(BA^7=DzIJG@UyG36&R2v`Ab##@NJK?@!1B>~*BgyMwyv)d
z)Hi{=82;1Qth=ZwIp$oxq<4L>vW)viw9kr1K&bnuyod_1sl8#2BvKvw`+3>+Xilc1
zI(!!+2JxW9_J+qg#y|&N&4W%|8Ssmd);Cl#$g5d9`$fIOQbo46wqv2e2aqpIl!p)p
z3e@r!_@RzteeWpy-CuIIpf92%w-eG?&3b7vwbKxShg;KvAfU^iLGs<EvM@-^+{G_b
zw+8-e75yraauT7P5%7}2lmz^Zcpf-N_Sxv{q~Ar^=S|iejz;U~+^!rhI;^rMPfr49
zdhcHxCl4@=&w9mRzLG;Ymi5i%bGM$dYpuaOjlF{J)&bi1HrRi?|K>OKIAu&5^$~Cq
z;wbygulvQcF%?!6;KbGu4r+z^?Q%vBC}4RqHPOgP{Y08JCdG;boG?1($T08v?s7&v
zpF?~;_sMs+IxGZ!^dvA(L+&aurzdBYfZYC-4CC3px4)8GBbndjzA}YC&Leu!Bx7c$
z;QPBV7g4PD_Y2OzMsL!S0SBF1{<2=<CH8U}_;qJ`zV3gr;TN#eb!A3|wO;VzizFEs
z^XqUU{Nma>mQ?#RR**dWT!wRi;~Ef*uIx#;Z$%qwaPe~+5Z2D^ueo+TmXisj{o4@M
zP9nWYF7O;m0)?y{{Jw~iNnm~jHPZBJnLGM5iI}}X?hskglA-4l?7qvuf*%R2#M3gv
z|9W}`-2ST05=5Jh*xpMDk0;cEN9;;ZwWa66A^LECTPk|~dtMw$?60pIT`61k8*blc
zO}a?*zk^vT4sJ60`BY|Z3MU&0&lhu}fGGI}2$d;Cf|Iziz%v^_S^}B8LL@osuUfae
z4DZ}E+y<0w-czdT#fj(tM^L3ZkLA_}mA8y4>s0jATK$LL@tR7FPr!WR?}dtC7bX4=
z7=t8tgkm8qokhJMvp1fqGo>1bi%AanN7MvRv&`bM$!MB<sc_kY>#Lp-zHnE9e`Gc%
zirax%SJa|D)e0|lxxzE2NsbXUiO52dFDg{(FL@%(Gn;wnWmuuPvWIK*3{$|mc~OPq
zob^A{(!)0v4+u}D&#9SRh88nfpokQ&`L_^599Dv~`?I;PPG|0B`TOvd__NJ`PxKl%
z)T1&U*~ZS$&@hknY@`PJ?`<sn4?Q|qWAKnicoDF=S5>BKfL=Ou*vv13@)aU_N!(pu
z5F2(MZMXiJ+P=jMX(lWg{&Xz4ge74|As&%TzRfE|lH2{fIzSnUywF5I%}%2r)3zm$
zCz@E_{wz9qO+ZH3WH_AbegZE*z>`>}PMa-qu^E=(6DoZmW^nW%d)Jqepnvj88RiQy
z$D{<={%3h*5xj^2b17G*C~JcYY~hk^+f<r`uj|rpdNWtiGT{Z8D;L|b@q7@E>r@!k
zgmemjBine8)eFh&E$?u>1vY*`jWiabnH)&XS)7FmF2)U2aBFVRak4B$3~?YV74g}~
z^cweuiXnu}zwH(JXYa_A&@Uyj&yv=mham$_9)z|_z(4?#%0@v9Lb^gf9LOa*uUM42
zVqV6c3H-d7W6~l%aMIhH3x}|5NW<u?ROZZoHC4O4BVr)IdiFuWKV6urV9O#u1O4so
z-!0hrV|<LwAkEL|f4bW%>23LV6laFpWb;}D=4ZnKoU!{|vV>K&?#FJH3_8_?1j0YU
z(aQ<N@TFo<g?(>4PJ_;*9Na=)f{WQgIb6)xPm5J*#%=U%d{TI*RWkpXA0yoxnErRQ
zB*;{a>`nTz!gloDWQmfhHMReWw1e`y3U_R<cVu?YEjAp5!J6Wa?W5CFg4D-}&M9Z@
zvRV}r7}cHWR1^X)n6kNxR7FkZV((y6ypm>T52CHxny;il)rU`X;dpQ)qd|5J5%$L}
zc-A1Q2l=Itqii%{{vJGqwFvihZkG#L55<V~8hnMCn2L57WnlTw?Icse^6Y6_b=3&1
z-TzNp3-`1okBMqkv?s+rNBg9aE#M93;!RPg2>;WqE(4lcXLCnx;qE6LxcA|=3(GD=
z{hQTc?<x2`n2A%uC(4hh>2LG1f#UrN4^CC0g?6NrlWr2@L;-4z1w(_qLXrpQbBJt$
zI|vr6xadn{!66a21u5^0n`cfkkx86LxnDf1V?D_Wfh8nZZ3FB>ZIZjQulK2+Z^fCA
z$_~VaSF1@RJW6d?TUsQD*Bv#K92;;BOh$-3QX_8zFUTPZ{`V|HowatFCqHo*H4323
zVaWu+&4zI28C$gBop;%XAC3Jk_y#G02-KX<PxuQt4U~slj?<v{bb#XNns<y=sB;M1
z&fG+Ieupr?IXSmq=#`v-uSN5WDRdRFj!p8w&|P)35yCJyCmeY(K7|1IE(CmIa}-Lt
zPc)F=U+Lg;poDQi5(RG-Sa)P$rpAyJoC0bc{eg)Vw11lAk|P&-%3EjwA28HqN|1`O
zJtV&u!861;6ShI@VW%Q@pLZe?)H!f?E3}Bdx@WX+Xn@f&wbtAq5&AV%^fS>vxEb8)
zI{BFy{`lV`sOey&cJDR^tDq<#T!q6}u|}z}gvpys26JhCQVb}-Mf|T{uaGsltmew~
zQ{ZF64OKJ*D`X4zL%9S~6gtBHj&I4D#%6P&x9}bTo|rQ9ySeZJ`zIUcv->3|2zjtl
z%QXkr`#%>ApP=J*aUjDbd}R(#^Qn1qVLzmB<-mT<o+G&v+S*=90$n;?)Y&nWC32{R
zcFYfXm562Tx>KTm%hgog-}>9fR|ac#cz=sp$AF6LfP)u8PCqgQVt9omy>|P80sv1i
z!VN#b5qX;^_&D9%yd4*M`OfFZb4)I77+b8&gX@~I%3<H#@(c+yRu9oH1P>t&5y;vv
zOan|f1FjRc8fl?=J`=kTfM;q9XFE;PP|r5Mn+mBfw(eOBNMh!GQ&{%r6jUB|dHE~h
zaKGvv9N9@N#&!iMxB^W;w=)rkO0?l@^)o-5c!OV-m9Lw`F4552HCpH>evpdzAu1>p
zr7|%U3^24Eo+X12ZkYbD*C=prql`oxmUl2V#QsJ*RK0x_9W}w16pQvTw!N!FWSXiq
z(ktm}ac<CaAkGl#ux^~HjY6qfTwTaae)IS4`suLblQ(jqT@?m%GW#ioR;&WjRVl+g
z^BWph1kMid>KPMs9-HF8`Do6`{W(hPQ#jmFffzSNVTMNyfY;a?huFPE_yn3|V;7#S
zO*L;^DdNZhF27uM=iuG8OfLL*mqNw-nNd&>izXgtcMH|}dj0ILKvJ>~TXhA7#vlEc
zmu9L1jo%m59sA!sfIe*#-bjzgDO{+nY9m!c=UT2w!PbZKTy7<a{1u;$vXL|Hf@}7j
zU7%YN-->`3HhnxjS(W*%cu{_drz`aI)9D`E;i{W`B`EFaW4}P6dO^n_s|xeCP<?^%
zm9D|r`L%_kvg_=4%5+(7LOwhZ$Xv#^Al^B|HOon&77UKbve|~GFuhWP#%XOq+NjK1
zQGt0=aER3ydFHc+8$zE%1v{u~TuJpHVh+$P36xSr^Xq1S*AXl_oAY2CwKtA$Kkbz8
zu?6yN#GMqT?&&L87!tKAnwYnBk50RUU~l9o0(Y54)9sma*V|Fuywnqawv+#(H<B_0
ze=#9x)p%{$JZ?}`C{{EP>i+THgg`<$*Hz{RCWD0;r_Flf=C<Vv9mVGpL6pj;;LZ*H
zpSl+4Dt`?L&Hg2K$#E#}P>Ep!&)=Ax&M(F{Nx?lVDoR1vX#7RAs#HMbtziO+C=a5e
zp_yq&(V41RXjioXq3qE@gB6FnVwK)VF7j`UD?%-G_5#yD=sezYBUp5Lu`mZPv`#ei
zYLz`bpzhbz!6=<#Z5hx;2}S>cc_Z@djJZ&8q)U_y{4R=J1V5%_c2{+j?Lusc5@lo&
zc{aoGsaBySA?|G&{4>Ml>ba@{DU^P!|7#&(8Sw@?$65~O$+QIwK}x;!Ey=pr^HC`5
zJIkg+{Y1l+rXJt<B)`!t%$ru3WErX<pnQyhb7CC0cO=GJwAnHh&lSa6K4&Rxh1feK
z`GCZRZ^-#B$M?FxlR!GBce=S}6WkKf!i%&^o8H6<%Z<ySi37=(-p3m13eUS=@)F92
zG!v&Ts><Pvc=a_Y1nzO}1#ny5Zj!FZiuWl?@CnbDxC)2)7qQ(x|Bz}MkU6ozj=Af<
zc=?oAzfSc3jTi3ftglc&&LhettD{lIVbi()>_fC$LD>qU`I&MZ9%?ALk<Co9|Ni~B
zFTlo@B&K5_mIUc=cNOUAi>zFDUy(szyIZRuf|Xi<6~dZnF|14Es;ZJ(FRc&on3K4b
zi-=02&@B^EedRL6nrp4MBa#!lnR>Ggs*cf?moY|>QfCQ}sVgW*gbnZ!m=C;st1`Ul
zZQ*}(@Zy<7x*MOk2s?l1J1-b~m1jRT3MDW<fP30*7>at=|F_GAm-s7v)0=InK<DB+
zba;%YHde&H7U1$f-GFt%YU^_g$mxHt124d{2)_b`B8LTH)2UZR_X!NcT~*eL9)r_5
zzah^M`eBEhFI*6p&<r^XeVITs^>_pH?N52T(P&igjIVFO8pHh39$YA2LJa|2>@4O0
zfnoluFW-L%|GUi`jmlMpNwWM<>4=&lA~UQMsD6jY`y#475_@=9q$smqU^mU(7W{j_
zHv%;4oU^<$naI#GZco|fYTYtvMC3n9XHB?DpdCNai$g-FA$7Hu7h>Jdbc4~LkUoj*
z5_yop&%7=~cxD23uGx$!TJ2+2d@RS!URv*eox(zp6~g3iro<0u95<r>Vh2f?5*c5S
z&X#^CWM|VCgOk>2Df!f|7e*h=UCR5bMa5XB3215S)k_FHmLAxF5L%~210GNJ=MHZp
zYf7=H#mC|=OXZEI2*&6O)h`;268PVgh>O{7MOo3qxX{TMe|asr&?R%+`BekN{(GL(
zRM<^?b!<!U1{N?W|BX_H_^s#;M~Et4rmrkwP^jVAaWcI@VCQ5oz^$sL+Di-$Bm6%B
zH9MwV(66QB_V`Dhb_mZ_mftCc2Kj-%CNf2EUaXj63fL#u#eCsvrugrok}xl%?$1eY
zQTIu)^+|ooHbh}<vi|#m`W<b~@ATCWpC<diyUz=Q5I0x#;?>sKe7G97&lCntt7v^&
ztq3<;_VpDFH()w{pBJ`%{WH;&^|P8Ie{x_y6dror2-l`rxU!p3R4m}=k2UnCMm!{z
z>ulr@yW+}LRR*tywg|@vOeT;OWb27ycr<YMMjju=eh-!*Rm6)B1QsNQU-0Lni%8&b
z83cS968#-T#*mZ3oxV!NSWc6Vf{O+BO>Y%U^W(~<B*dOt{=Tx8+C7K2Z8XS`m<_{(
zfclaRi>cn&P4dt-JhT(-8~j!JbQYVk&TQg@J%N~L_{0vyC!vy`REBxJL3^hoB^Mz^
z5d|QFDz~OwSvf3=dV3;Z#QitT4NIJX@OfJA$;|)vMjv^NlsDXQ!W`w_N4yBdN>qWx
z8cBDFMTr-$t0Kj&=Rfb-n_d+xKm?J(ze;@TY2xgba*UaP&x*qi6IwN^P&3I^gpTck
zG5EaPpIMCu*;7)q!*bSSl2m7d{5Dg^)6b)64M>LFmUU%S@UB4(V?|tKHW3{Be=OYi
z)e`=AxPF&!p7r_pe4()>q02-R2cM7TKrjC7SY;Y|wFlN5!u87V4bMfzmf*LcA<x~X
zI((ex+!nDH=Hlss@A$)K!Yj-R-rc!Du>aO+iwZ3}AFvDK;p;TGYf_$Lgx%kRSr!i2
znt`v;FEt%K{1KBT;aT<1U-64;c{4d18;<EvLqjS?M}nRFAFbcu*ni=D_7$t-h$s|s
zfh4Z#mHj?xRr%NAF%z-i&xdjyGqHk#u9IfJr)Hlej!Hu7hSLcLR<~=@Xswd)yZ!Rh
zl*%5#IsM~lguvN*r^{sy3{uH|llHGHnaISFbtU_~Hh*k)@BT$6nwMy0H67>Z4c6;D
ztsP>KO8x_4yXsmuzfu3jKjL1oAn<kQ?s@t3A~%1Axiov$Sv5Ix-gpI{_V~XMHA`jE
z&FP0!R5|u$=O4N=@V{6a^U^8yv05^=Ox5I}&c@jw$Ao8C(YJ#{kt{9M=$a^7-}NE_
zVM&n*yfUF)c^lmTl^rrOlB!9&b3N-@YbjL}|3#_cj`8Lpe@)BZhw1yKy^0pk!Hmf0
z{4^%W;Jvy<9k&(J-Xm=|ErdJQ3oo!@3@uT6<i*W02_Q|JbqWuRu)Cq>5drMGFFPCK
zJBS};aQ#lxJbO3?Uj><BRYR9wQXJSG&6)k1s`b8U`Rp1hvm_nS(n#Wh)dj_a`{3x;
zWWLoGpxUG|q{I#9=3cSCQqn<<TV!pCzQQi#`|kz^TMn})xH5n6hOZgm0gJzr4c+EW
zIoYv%|8u@Js#GmKH5=*spTprK@V087xQbpr9oBGm3RfLJj|NOFNtM`1FckKJG@w$$
zeL^|sM$YN~%+++<35;RW2s7}xnzbtb7)z4)^wgzy-YiJqmR(0i{A<F8`@6QyoYC_a
zybQR=6bbC@%Qx@7E-LJGb%o#no_jVLf)>V(!TK(qpaJz7^~(iv+CUU)EO-~V6@-#4
zvH~tv5=uOOh#T7cm&-dOY-14NW)PkQxO(vf=4Rpnx#!XJ$w4#uz*K(q?elIVvxY{T
z;_?D;_9MLJc!{>&0~sFFaEM8|BeRH`MT~`)ese?PVc_!4cpj*KV#;5ca(EL_d4WWP
z?y>X1TDR3V-!rRP5_up#B!JcLN2l_Un<|R2{&wb<hdcS1sqJY$I9|WT2Ji9<Imq_f
zq<N=0#oa7M@!5YYKY;eL*B~icy7ZWFe)tc=?i6$y5;F6N_D@iN%D5Z*>xU2X=N)Uj
zF&UId4F%6ONQ^dl?j1OCY)9q~6kJJe`-~iWy+}azsaLF}K`Hch4IW>t-XI-9InuEr
zO7LryTMeNCUQsqLSPd-GQH)H%M#N%xX^OKgq9)9R+yzHVz@K3*tt!MW*`;xVh@2uk
z87!3TWL@Dz(N1`jvJDoSfVQJ@xoqhTd~}76zPS;u)oA3*-fKX$hWglW^+d0pZ87FI
z@ZB>0!qjl~L@)8tY+a12K$1Z98iawPk#Sz<DI#IGuAhi(qc}_?{LeWQ$G=W8`x^(S
z_)bdtaDihEmXI-7)88G<S$fSB79L=ASV=}S6%{Pm*&Sds@~%lMBn^3pvPguUDtzzZ
zQ*G&hxqZ2oK2Lv~Ye{EB>4&Hb{8lMk`*18Sp7&oh{j+iTZ{LG$SR~^-GKR1N-pks3
zs+pXjdpPSez4cx_c7Z+&;QjM7`sM!qG5Mkyy+o34ZPk=`_SF&({B>1(KdfU5RT?Z8
zX8w+PH&qO40_iFSf##v`+}4Qfd17$yAepL%p0!dqBm|E)mq7>PkJvHd_dn=SCt6mx
zH3WDyRQUG_6e2p(E2A9SFc%8d*KlwE<As^4!#EDR)!YhY&WOS|UIfj2Jm7tA;&8h#
zQYn6L8Sv^w|2a)7i{N4-Ts`c@IQae4M~xtc`SRc_(Y7+3rfH+`e$?3t3~KUz8S&(E
z%e(GumsOSB%RZRtDDn6b10GWEXYxy|;Umgjx#*>cTGL-53IpLQ&)=Wy-9vFhr;Apl
z==5Mj$rR*1t6rE0YO3L>i*q27b8^7)FRvhEU0EAoP33v4u28CU$4{b_WV6P-qt$ak
z6yEu!)lccR2~iGN#okLjc)#IB%ObcJGGtQLfAf?44z>lMT)Hhr)W_`NuTwoQ7b(Ku
zV+w8)t)76h_MK3~Lz`9uR$MV0Q)O|ILjxx!q@AW6T9kcLqb|&i#6cDV!_TRgng7?R
zmsGwtgHI<9n3_-8TZK<4C?`LjM70dbeT&)3u2r5Wr`sFJHz&o&em+{Q-}|;^mp)zL
zNIsmV_+DQgT1h?}rAR&kypQy{p6;l8Z+|*HvUJW!Zu@dOWQrufCeGL+pVA-KPkm#I
zE`?A2|IhzRS0H<%ds5=*;c3!W@)1X}^+fjeyzBn>@ofD`@o{kd{`T1SX*T=mkkj{W
zW&Qr>`0+lb>#0}ro&bCeZ#?%n>ysxJ#+8uA^<5v<`!3lxHuvJ!sXR|@+xw~x!hPAN
z)5*S<<4?tRkXzrUlUaBp4Ru-vU(OzbZ?>v?VBo)ZT~DXQ#t%E$n{OU;9*Jk?eUE$>
z1*q(vc6?E7Fxa&Pza0B^MN@8d;}qH(luJH=UF_F6j|#oJnv)(MHq#zo8;d%f-u1H-
z9TSH(`!qEt+}`#7y{p!nl<@5m3OXikYV>*fo2Nz8X?)Oh?3CFMe9W|P>}2Gg()FaD
za?sVqs}pnkXq@48{kWd-^$F~%a(d_MW`A>6{rO(;B3$e7_4w$OuiWC_-*=p!*Ie(8
zCNjL<to!u1UaeDgyWTx|X4`43Q`EZMJf0-E-92)}>pVT4at|KfAzDR0Qo)suO6$KM
zbvS?9x&){mjxgE&o;)lQbxIyEYFu;~WHkBq{Z)DT*3R8e)Y%qQpw%gP%aFbN<x5#}
z@bPh6jYHnyN;0b*ZxllCqjVveML{NZTdy$;mO+l=Uf!5J`c%RXWo^yy#)eQIhO!q-
z`5t=T?2O=C=uJN5W4rp~%aR(4E@W*9y~<4OOpCSCTxq(gQ6KWh`!3KEr!uiBmo!Us
zcU^g5e0OurQ!}7q{7e4vHFxy!kLwu$8<q|Sao()WyvZ#&cK|>aIqT&bQRjG!M~@Ev
zFK=Qo3lblE?}K2DrM@dx&zIYaoh|pWWqfn(CoRWaSt_RUp@2Zct{E@ev#mX+t+nY;
zmDfU<vHC6Dc7<XBSlZDpe_Ve2VLX`^P4ZngeDI(6@B<^O5mNW%7PM8hP<iK&QKGE@
zPm*4UDm|+KAg%9yVh<=51-iu^8v-7p!zL{@5czRCPai@xdI~!Czyl1l9?78!H_=l~
zjTR$5tJh{_9#f@DV~h(c;B{Hl6?>;S<Um8l+nD(59u1nm9ho5;v(_fT0M%rKl0p6V
z_`5|>e-yIw-tlwT?-B$;TXj<61QfgIfgwDP%2&o|HaP5!tme12GDUB+S2T*)oD+;G
zN(@kigG9jmKL_*QOcn2{#JHh2dT#NYF(jyJM14M29x9yV{L`ccTDzYXe<iJ>IlK~G
z1f>u5FDeoqawta}VvM?n0^LXjdCv|34k;3H>b6tN4wLw+vXtTx5^wib&{J$ndZG?a
z4;B?9!&lsXgK4@_B^FjT8rh>Mi2#HZ>fM#mUUdyeU!3<`9!*<~SF8iwy}mBCXn!wF
z21N;(+S^>L;Vm~lt+D!s6Ql=v-$fx8`xkmLKD54#eyh<*@Rzt}fMY$pO5$S-?W%r(
zi?&iO6;Dr`2E(d~q*SxJ_D%UfY5>(k;L+QJdHk*RKNqE~>L&{0I?bzX+vwWs-|8f1
zw{acUFIDB9=yYOZF+SR6ZwPg={{7BsLc@rzxy3ZSzMF>4fkonqXKUhO_p+#MO27s`
zcjEKgc4r%VRj=z@D&vP;2L>olx_f@Ku%mOHC$B!yLnM%?`7N3n`@uT6-nwNbOeWmf
z?qa2VN?6G_&&k+0U%eomw-u;Vnl${^OgEfQEJ`{6j3OA(Grp>boYEO(xSPtHGWr86
z9m(!xajMns<{ekJJH~ou^9&BjZ@Q_LbNbouv|XO6boV;$i#s?+7b~yYgC%^OISdG$
z?Gp=zk}iJ@QiwG}yej2%_uYK@x_+FRJ{kcU@>W0X17&`-_o;UFtbhaIs=&F{t>{83
znl3?Lb@m)bApKkX!ik>ryecZ`%w__?U{$kJcX|Ls;hbJ~1W)(}x#W^Zgv;kofKaAn
zvuZgubQ+Vco;hc8t}RAM6sOhz7iaOPZ$Ap(FDY&?8^j`a)VQ(v=g+xp@99{qtxKs}
zqlE4Yk^(UJCmlkfR|_$S(WPv#R|?Wr>v1AFqn+d_cvUxYxXYCz3cLD+S!Z62xEbb=
zZC!=*qlINaZdFoy5sBx`zUOfgZH*B#*T;O`W@#KV2|L;x3TB>iddV^O-CXy~HM10S
zL;8wmf#2ja{ZU{%<@AfjK{miy&<YtpVAzp)oV10~g=Kjxw>dZtNqbEaAd@%k{DucN
z6lw*K67-_o9T->&ETvc=rEpbpn3Q=h!Gp{p2PK~EzW~K=A?c*XUKA6MVzIQ@%vkR^
zxsg=OkrsevVk&r_lz5s|7!yf(d$jWusea3LXXaVFKB*V++RJ~MRdgl&7(LLyx<#Q#
z5k|p>8Poxp`VA_zL*)$uqE8uQpYn`D;a=g3Gar^HOuETW&MUsIfE&bzc4k2c9(j2G
zIa3PXu=W7<K25_oUpla^9wsw~ebb7=gXJtq73h{1sU4puWlW2asxk#i&>>xD)y5}X
z5J|}@yN4=#s4g(jy)Rq><EJ|z!V}5Ycxm>_e;g(TU^#x8RB5hM63|=~a0tnwSKVY}
z=<zd%Orcs8lBHZV-1$;GwVHRqXe;NQ!qh})qu=rBrlrP$)REbiUwNd27~iwV)5JW9
zAZHo%B(ZP@FnXY7;*N6b>ai1-*b+=yAZ!(L4x4!(0};5us?`bZp_c-;W{J|NN8<v4
zg94`X9zS@h5~}&w3frxc&lhICWG|)y<5vs>CLXPr^Syo|jn1b=j&YA>?isQv#a?<m
z8r~-H<`-5o8EQDdCb#?a1BkGu>)tpRo?&vy1EaCye+@9Bk-mDTd{QDBBraK;3&hh`
zA%-0mCQlC@7P=Uu5x&LuNzhHxS4uo{*g-YKpZ27y2}JK)-AV1Kkv-ykOX2EEMyQLY
zQYz}MEMj@(z|My@-7)Gsa-$2ONmIck1(ax|Yu)Cg#K!|L9!@}Cgz?Z4zs~wywkp5V
zh~gYW5IRP5j?+>o)lFiQPf4=t;HK8jk0WS3CM6PN-H*ptMSPov_%_Krecy`o=EiCc
z0t?aF`F{LojOl!ArA-bSfEq$7P?DY^s#?6BpKHY_FkE?P=r_@xMhl89Qd`fe;S-q+
zCSWUMI7e?1cZylD*47O|-djs_&^k^qk#vY}*ZO*;g3V&KM1g?5$tQ=J@^$l|b&hbr
zQ_jXYX{THGZ7iJgd~@GJ@JYdlIBnHHfK~<1(Ft5c=Fo&_O_KRnh{4b>da^=f5;HBE
z5Q{bV_QQd81DhViu`p;`#UzpQl}`iD?Yy;nIz3szYJtkI1C_V%Xq@P1Qcu=0aGGoz
zaGpf2YkS1wt)0tcCgjT){!xyd8og1uE1x>+O5guXW0+oN2?HBl+sIa+jQvLi^{z}m
zTc*H5oc?r6JXA9AeIdx-EET8YT0prFmtGlrP6OJ>2>2AFEc}O0Y&S-FK!P<;m^e$>
z`|3=!bUj9@XX%Pj+49K3Xk94VLW?inHge>4I_xEk&|@BT7W&)JEE#S+EgM8mY&DJR
zQrI_B2QzQ)=l_|K507`&u6DfJE}T;>;k%3^;0d*fer2f~jQhu41>C4RkvD_+Gh<$j
zxgm6ze)-dxCgqUIm)ygl8`(f}o{aMt$BEE@i+8q+9`(us?8}Z!Ka~sY=+)D}Z7CTM
zh(}U04soWTsdK;|<`bbmgEfcL!c+783b51Zee;n-kxUvzywvu+3y~A6WU|y#@>Jr;
zM$8r_88BAOwTez+jn$h*8`#y6B}YPgzlCHFzH4dJO&F2VW0@NhRl(v`ttc2+w>lzU
zT1+S(wW8E*tffbu%^|YfBizX^1u9?`tX4C)i2f09V*YsJLbxje<d?|h+f=pH@Gy&4
z)#!!P%L6FGQ!NtTG}?q~88sUlNh*?!EQah!HwgvXBmmC|n4_Y%-n~^Zw6fk9{9rmW
zozplzATL=SSsx2_Ss(b6VC^2u6BItkRm~a7l?!|j*mOGN`HXDKVyZ3AS~RO9x(Dm1
zkY;s+{T(-)!DeQlago`BVKQ&0#w#LS&fj9*e&BE_dM8oE`Rim_wIxZ}dSgZvfcGov
z!;O~t_$({M)^QVrx(U*v<H+?AY#O7f@~)NP{1&<M8gWFp&riVR?@LXDI6qB>K$4GQ
zEar^`BM6!S)PmwIKMCZ*`P^Ie%{;d@4e?L`ySJFvCRfY6FfYtPIgoca@+zcQUSxJC
zw^2rU{l2tefc^-<w~h2wX+qe7Okh7F5q06p%-22DkcTrMCAHSA44u%_VBzFkZK#(m
zk*SL|_lNzXCSZ1&d>HJTM6Kz*b$md~$S&-xm>LbKKS<Y-wS7Dz@zqwbW5$R#*&aBN
zAYJA|GE$xvi-0fduX46f*=<M3oJ6F)4=A;g<Gy)S410)J$QDM%lD*X1C^J^OO21}(
zSp=+OV_Q@8?N_2K_CL?wR2n3LRn{v)I)q{)8S3;{^-_@iKpvnz0>)q=iBz${q@LBX
z_l9Bmz2D~Ml>THfYu|60Tg}mg@s3GX+N=2{EK8B&*_wXDLqSggceN5I2C2MuB%2ef
zLiT`?Gr99+Pp7c7YBE~@W=*Un-5%%G`Z5Zq28YM4Dc!aE4DvMQtZqcSFbRFNQw>N!
z?>F4R1zllj0q=bvvX2!+Ejh8qtm8g&WV%-4tltj5BNQ$hoFR{pjb48UR#hMNrNiM{
zN2Z;;NDs`?+Ea<14oq`PbBSHnJxS2N<FhN(jRemlrQZWvJ7y=#>PGUFTE;`+AjHj2
z0xoih3rBS5z|wg0zP#946mO2ya50G`p`_%mRc}Gzz4KR6t`fAlxxg0MA~~xjbLzci
z97}>xR@aj?B$jQ2t2Bv^0*!~3zojz`LKe?#<)UtTzO}hO9u%u8XX<mXr;7wYZ%wF|
zBFV<MTl^q=-Ke~U9r}640L$Qh(q^u^cUBr}rS*WZT?=<w##dr4wECHn3GrQVpS33z
z`qm@dbX7}7a*{!xQiHh^V?OMi&^2jyYnvy~G{phIj34>-STi{S4BxB#p|{9cwLl_6
z*9OzaaDU58sZHThp*#1U7+_FN9#Z<SR4>k2oag%SP0YmB&W`xT3}@Ox!~BvtqNF={
zA3Gy_y5#Q4=@#dn1UUUe^WqLt_an^0Qi1PN@*cm2UW93(Cf-eR%dkgbp2o|UQQU}-
z1j94!10~MfcXX4eEV|=Jv7O$D=8?6<OU7>+{(hKe2+u+s#!*ug$`MM~3ASjmre-ON
zj7+>O)GZQwH|{A#tdvG8*_`3w6d%A+yT{ShetNER6IT<4W3;$T(c?#}lH{ly7%WF^
z>$rst#34`SUvS~E)cUkGz&p;aZI>mcqROyPOzsx)rHpIGt&zx<+=fJwD4x&X>Abzl
zofH-m+3TgmcOOmtx^&t;KUfRE&#u|XdbzH&RQLWYE?~$UNbhuBBb9vG>Z-seBOQK_
zhi$pcw0vVS%;m2>hroUpTqsI=B)w`R$UEC3@uu{E;ojMtoFY}G9QtXl4NCeNC7E7N
z00e21dR0*m(>;%!W>!t{#l4A-+L8Swd=Rr&qIVdh&-@M}PDYBr9ELik^f^O;IcGv|
zr*ONN_s7^wxJ_TgnR%dT(H!I=PJNkH9@gQMJh$aNQ7f5zd_QNu`nimwjcazzoF#hf
z&FFRn^^)F=09cpYI1+fvhhjIv+OPWi%-pwRYP)t8tAzL7`Li&9O5UyYJ>u}VY9y2`
zMh{(*okBVp*+r7o<yN_ltpdUkN^O<D++4Ek02rxbbW4|RY&w8dkJ$)Nm%V_NVtMep
z@CvsobLC)qlHnua`H<Z}2ne@Bw8Ik_x^iPhsPx=|GKvrhQO;eRwuHC*fEW}$bu%5w
z2YytGk-ipHeT8V+7bM~lM?k8pXyj>DI__V1k}7=;Vr!|`Sn0!c&US7YMU-onVXylO
z^Ef#cCSw2+Sd1U%!V;Ov2voN!sF~*`)>)Ey2)`QmihHr)t&Dzi-<mnQeiQXstj>~_
zf&9#y>$H7I{aeGNs;C>GLU?vhVC+R=)aKaZo2I?@-`6EZXC-7slWa`UUh^vFQ~1-M
z*Im!=RAV}<X`Gt(u}63}(C_|bpZp}1U$v^LftqjL9xS4h+0*UhLKJC&he({fZi&UK
zPxDI^kQw~GUq=1j&#+9(7T^Q7t#@mmr=I$~86oxe)M&XFAGs-C9UH?@LUG5>Ps87e
zD{z%nugkW7+sgQ{`1LBNH4-i}TF#>mqbC;72^P9jCZ+r#g{LbPsn1M=P0t`<B%?LS
zKBA<)<dAwQb+5Dk*7YZ-C<0m$Ms=&C$YKJJOSEiUGB?XY6Q3-PYnDFLv6UL3v5ohf
zT45t8S&m&g%P@;BOJBBfFkQZ2v_SpXKeruv)*B8{ynPUsC?;8{04@#!v~0m<B>5RO
z<ulsMKU2^&59Y_a^=?0%(zh|os;q@-*e(OBbiC8_Qc_IDEYn+Rf2khOTW}Ym0}D>@
zab4C+x*RrVaE^^~9tby9oUv&&i6B$-k1zMG6w{J`_NAgM#93jEP!twd4=arsl_Vzn
zFxZPRnqYKdQsF>M6nno2JB_Bi$;5&Qt8hN9iPsSTXa)97z!A=OuQkO9Hr`g|jyPyQ
zyw>NupcboozM$w)ML!V{(zZko%T&ITNj~PW@*z#Y4CYDh1c84?tQggXB4kh=vANGN
zU`Dy%wYD@Zzj&b!UCvqHTW<SB*Z8&gy#Vz3GrG&yuDiCwbRV<Czo(mp%~IqdgSC3*
zD2qO-kJCkMjD!t)rwxL4hC)gf69Z_@>g<QtbmF*Kqm+>XRWh|GceK0yy1mrVIRDKA
z<K#wlPoJbuzkYe4vzY-UFVRu%=*CI!jI!Y?9d9ievv~o@UO&!%mr#srPaUyEkYM;m
zg(o4AIf`m-7_0D4<1p4Xz&n}w3^j8W946=gHJ2bmS0l<#mBzMpiwq`nu6QO3mU#0q
z=~r8^w9BdnxRZ0%zC@!sy)RehX0xJ?{#R}`f#Mjn6q%P3?XH3x{9bs_vX$UY=jD+>
z;P81N{V4RplWPetB^{DyK9SKm=_>KAMd~6S%0h|d*P*s<s-Zc|u2e?32v9n2>C0$L
zK*#9|9C|Rt-P$z_RFa2_NNPFv@^rtZ5+3Z2)uz3S;#0k>FQ`}xYN|nF-<Gkq$f_N6
zbJ}OyME*+vmEQRFjd%AaUvd8#@5XDaUDN2H$)BJsB4c74vp3)gw*pxgjbgNhk*(Ap
z3El-YKs;k4Wx|eCB>?t4+d~@WPl6S}Qf?NPSd^(u)=Hj_@}!z0YMeK}XC?U6ETg93
zBMQ^2*FGu$jiWR7K^+s~z|}tOYivprg^YYg-ED0)LBvxH7$Q?+d_O9>nZ;U(qacV4
zChU}~>GBCchxT*o1Es)u-7U3X9CEqMe2DtYq7nT~4o%Is8|hP(@ViQak@#RG<!%X(
z!U)6X+qJqc1Aa>&j^NdSH2T|G3$8#B%}~PP<k@)X0vQMRx<mqxjn@e)?5yv`Igu*g
zm#lJTQt@pR699`=(py93pba+X8D8nx>p&0U`^E?Qu90G+K?!wc&N9N`(N17J-Yn*p
z88^RI061S+74VOUkyEY~*wqVL<T>LIj((EpEd5}qrY#4VFo&)>eVzVL3+<+HKVv?K
z4(YWp%A8b4FqgR31r`OFmj&+hMRs0cweoFIDuVNPVhe9<E@Bjs%#h6UWn;zm<kT9*
z1wodnv)+mFuc9s#z-#Ou8<<L8Ep4RnmZQI|leypt6e7@AFN|q|V9kA4nyx%|$?l@g
z0&OVU+}$hRgeC3_;Um7hbYT3_aj2<P;!Yy`QKRnHR1yyU?)J^4XEKe{=fGD=k}`gC
zy!%Mu$92JM3G>z&c)Uf<XmLBT&9UYIMoGJqF>=7vfr*NXYmArz2>Nd8;kowy?gd}_
zE#Hbw{GP2C&ycL$#KdfSSR0*coW?SXhc9GaZ97m5kb5LhJgIZZJ{~e67>1cUPU`CK
z(AkkRLckb~vH2228FVFV0RH@_4_*15%YdWHq8xWbG{8oH;8>R{01jb)6fr>9ia*)f
zUn1<!FX+>zocQ|LXSUw=s-aK}#})VH!{l|?J>O^jY_UIPxQgfk-yG7s=HBg?q1Z~e
zCFZqzAqg3^G2r9hC`XTpL0f=#V>3LVpFkpmXy*be;P^0LLpcA?d7#DZMC!cQ5onkP
zA!W;km|PNC60l-k#lO|)Ga#GP@ItJ~MnF`Os%whb7>2J7j)WBzXI>R+fhA;?&muRp
z87b@!U?b{K$cuAE<kB>dguhtwnz^IqMhg+1Ci5_nZ02U>VyBq2DJ66;jmIs!>MTRE
zef(W7X<1~d3*!MM+e!w(ubua)P2VMN*Qwf1pxM&ig@6Osu|Y4BMjil90k@z^K!KS%
zKw_H`$i;RizFI7MwX+Sumz1UKOWcVXsf&3#lAxdoEn-tJ*&u({$%58rwsT<MryDi$
z5vpRfCQo%m`d)sg<>$?}#q;}tn^^JL;}k%V1?ZAMoQyf3Ku9n#6Bgi`aIe0vl!eVe
zM^cT?!kgvjMualym0UwRL3*3vGxjEBmu$lLgLyKcWOPPXydMujd_byDufqfns#t_(
z(I{b-JrCk)MuKR<dUwRW`KRsoqSfRcf5m*wl15d0Ou=LmZRP@<#9z{^zGC_^efL^I
zdT*Nfx?$p*%I`0HiqWn4!n5DwcW5)2>*#L;!hdsRS&j{pxnZ+^v>blXGQW7XAzyke
z-nQp4Fzdr^mGW5~v2~1oW29g#1hBI>fW=RUkSt_XQs1GKI`2w?-&TU99RHS?yX^e3
zzh$?6ayl$KV^{>m(e@6C4<YXR<=m*9<;{RHs6m9-IL@LG1;pza9s@{H?i}HGSuz!D
z&}yO!%cso2XFwLN6ZFb2G&5sc8Eea*&b93cAlKuPdS6-7(E?K#L^n&v<2#5ss9_`D
zsd+_T`Y3<U=*j<_3WHK|`x~{27ZzD)kROZP8Qcd@!~L%$)P0|3d=ijHCb_K~^@~1C
z^6Cv>U7Q)lg1xHTCb(c*b-@!YD;K{ZX*z9bTRLhE^RGNK<e{OXrpzf4>IC2r;RL|G
zYkcz=K?o^=+tSEA%|XeSv?q~(F3GL%-}p{2E(Z6x8Al613}%1t$Lv8c3A3piTJ(Bk
zl*RITVU%UE<DfxUY}Zq|Kz`MK9jVJTN{*$;u2X?D5^9%r{;rYRTFW!_jiU8boIFs>
zqH(ez%0fe>=uxk)w1BNsSz~N8cSpu=<a52$9avPjWxdaE)HUhGb&gpJM9{+<wPQ|@
zWy9@jrM_v+pJhO|Br@rrPzR*sb{klP?qR=`su{DX%#0Z8S+x?<&6*NSUBwIfu=S`F
zLB)<~iNBE3Xj7q8#Fy>yeVX^r=E$Ecq~XbOD6^y^ZeZ7eB(FeAV^73rHx8#xcE9f$
zac9#9E#UpSxeM9bjrf<5Hqdy@DfPIe(0ezSexX`YC%yT2#P-mdJi$&UIQ%ibI3WQv
zz3}Pt4d7mEZB$6*i<Q1bRul_ld<0vS(0cUz4MSEbt)pmzhRvE7sku}>bix~d^k_R#
zn6>UB7kg~`p#~bKef+FzI!RYzE9Culjm{w-ae_01rS3iSH>*zr*Z$kA*(PPFE!h6-
z*y&yCGW*0Jitq&5R^q;sOV!^rlj@U6if$3T)oH=8{LI;Gb82XdRUw*l0@`>IQ~B^O
zHH(RiUpt5{lKN|g-2-3bHB=$r<?4UTBB3PQK4u_ln5o6V_<Kv>5dCECoR)E}w0(h&
z3?Z1wd7?9<SP}9oqgp-eE!G`C0yN(lCH*ngV`sP>=(2Nh-*5Goa-jBQmKo;}dOx1z
zuZ(6*5m*wX8w9IbBX)RMjA7{5j$bwHPiu1)c_lL_OOY*<S27USYhW~ZbCTai!Gj|p
zck%US&bG<FWcS(k16=dm8oUX%RrQ=xnVRW~Tq{8aMsG$vEmpa>Z=4*S7QbPN_1bBH
zeip4R;KIZXYChXckf~T?%k(86nH&9jpDb!nl-<cu-Twx0G`~@-Y_tER2e?d0@et2(
z&$o#Wi!uu;P~(s-u(p#I)VGtGQ9pYB5@66S=C5&&>qbB1?rYJCD49qc8Y;nX*fd$F
zuA4O6D+N}1YHhX9a5VG%YFsqL(UieI7TOM3C`WT0HQoB|kZry;R$q9n^WliO_~?gy
zyrPxDKu5v^iXVA*F%u<dVor$tmwuQ7$S6=Q%6Wn)%4k_jt>z$`boNcJgv8W%PM@p9
zz#BIp>f}Ot43JsiPKZiC3l6ke5g^_6Yz!9*S8A8gvDBJ5rs#Ft?5ECuwJlb}b4o5>
zV_1Sv|9b2!m4p}KqVcX^m-yi^5OlLG<nVjUHiKP-Q@wpvY3J%Eha)TTK|CvzWbg;i
zCD4NJkK2tpCBp%^K0Ptaet6QiXa`oHw>jp)2w`%<s2yiu5(_lL^a~5QSOR-0kq<%B
zBbWK;<y#;GgI1e*RyUJ&{SO(2KPES~(PWD_S@82`BzhT75x;<zM|U<eMCf?Y_jEki
z#?6m`A<9|PxZB|5_86<5lQ0+E<Gz+?MjZ;8WX8gT+MR@tJfMqo*Ixz2S}2!W0!3=S
zG&}VjdQW}>Z8+?6En}e}JFQMhviZl4N=*l|)GDd+o)kKe!6nzk57CJ#N`iR<(}Ui^
zw?y%g_BIEuJm_SgSe_jd#+F>0_2y4r;)=_jqyrf`io*$FImPMJ7_Ul=ziq1$R;D=4
z4e|~-Z9%lt65KY|^q5IkgOmx2SErhT#Rvb^awV1b-jqbAbPk!7G3Tbk^r8nch05{P
z18cKy%-M!*OW31|b9(#2;&TPTMa+V{x8lcUv)&S~P~9xYOLCyg(@E!UGAa%U!z-xc
zw;q_p1i2Pz%vevgCqa%8V@!EnIvz|-u5vT}7Z!jRf4#f$!N7~-y_+u|cG{y1^<(eb
z^?-|F3VOG{<84oR4TeKZQy{om*<uzgNxCN!4W@}*Ll%YQlGzYJa5CEwd(?eAFy?I|
zqB7}XD!qJfz8IqhTcXvRn5Gl;k`|tM%C-@t_~H0YV=hb$WX!aBojZ0>nwLsKW@T~q
zrqnt1nxamqvh>|B`QX;mG&hJkiBG&xqCI;|huCuI!-E{KN79T^^LBF9akqAv{(?(Z
zl;Oy%ltL7pr!We(Gol-<9<s;hX8rOrL~ycjh_4aUpZnf|!0axgj#mx8bQ?)<|EIs5
zX`|Lgvd2KF_ApDGkiK%dH$DWdSCa!us<Bh*<Yr@$XcC*EariMIPa{>h8TziBDQs+B
zWp!-ugBvl7ZumCqv@#&*LN0|5-jjh+3H%?tb*Ea=G2-->y-|hl>!-iMzV(Tk&?C%?
zx#Eh%t**^oCW+2rec2crYf0pA#b}|-w$x8@)clou90Mz{QPquhBgOiwdcz}@UK?es
zIh<}z-QLs7xXwDRn$~Z7+RofM!XD`}(YdYGrQXC_d~;tjEUO+}1zf+avFm;TG?nbc
zYy!a(^vqup_`b2>k-z5xm(kDWyA}Tt)SHLV^H%<7WE#>P3c67jmW$Dm&vF&_ocpV2
zwFQ*h`LKPHH1pn<aDXpKdc{1+>!=+v$md;51G^%8Hy4w3fdV)f;BA;FuX{DXaontE
z$TG^7!<u|OknnX|Q~<;^lq^HhiD2b_zU2DL(jcatAzaMsn>V5Y9kfLWQRzzwDm>$-
z`kJOr&0~Ltv9V^tptCrIC$N_J!}wsj`q*CeJr|#vqT{<Af7lX(&0ikXNbq>1lvsk*
zf$Qs*7nCV(=@G$qCtj}>VZFT*br#66DJ7^}DHKD0au~W#S7F%^>wmV1Z-w#sb!x-_
zoECQ43K+Mn@_q!PgICZc1|IY}7Xe3_;-GV4WHh$+Z}yMfeZ0{q)uTx2S=UUjWOo`Q
zw@?P)S=#aGZ0liqgHangmVv)v)2@iT$1UgQ+PhzEvf_#fhZB<O$62$HkK%AXqvMK3
z4|Zn9+@P8^71w-n_qHB80Zg=d>Sqf2#NG+AZS>>^soH{X8{;>SF4qSID?hg1PkgjL
z^F+AcaB!<-bFyZoGL^JG$vg1eP?U_lQ+(hYw~CXN86-j7^4@q~2y?CJXF7DJqwj>0
zD>6#8K*XMu?RV`12VLZs8xsBOZHN0Tuxs6xEKc3j!tbrEB_8v6EHAzdOiXViak$y=
zPUdaYo#nMtW7VtP&fh@55DI0>KkjRqW~)6TfeB)oRUdhLCvGi?p*$Aub(FAioBMn3
z7gl0hHaBLTs_AO(xpv0%GupTb>^UM%y4;q>+8_DPfgetIoqdjCdWxpr6ZXfD4#;oy
zOW|3RMz0JMNM&(z&2*0$Fh^pH$Y<Sm0-<rFF<<ClIZAcakrQI4AH0K!V8`W&Rao0Z
z7AYKHPfj;$x1|1bF$;NQGR}PRm`&Hao%@yvo4ZsjWyCKK9X9>gZE5catK<A@K}KOW
z7Lls=Fw(G@6%gYuYYuYtffnz?+^n?sMEP`r%0EGfC}BvDLkQYf-AgE*s=n$LC_ga8
zQnkAGEs5CUj3m{9jODwNgw5AVqGW-t{DTulfr`olyS`#i?ivQUS<E(vL$xp|A-gX|
ziEQiQWA5P;@zcYe>)68@iv~+jgB!F1w~v}Ic7?&FO^+To6V23`>{)Dx3aP+auUcC1
zSQ`DO1cE3Tc{Oqa9VORn9?4dUsIrTjj9{!z9{<{}X$vc;aD3Mrv#e=y3=sHX7ff(C
zbHDFO=$Rg+U3gN)7xwl(*7johNA%gZR-+=x$l-=9Qy9<X#q~{zdi!-)SkpV)W6AFp
zJTI3SHRn-<^a^)s1Q%a8)-s?=B9ec=)+DrvR~wE8?QF-zd_U$ww1yhWxAt~=0ip7S
zvO^Tww^UBW^zG`&ue7#*4p?X0_#^p-{4yqe>-lpQ%0TM8M4HhRLo7LV1bgsKi?^)g
zm^})6x2?3JF$hzGm?lpNKv<>FY>24>7gP@=HTUmoMVVZTC5b^CF!GeVF(?M;h-m7@
zC7h3_j7c#db7U+SRJ%rk;hE5&&SA-Fs^pOcm!smpwZ5BczNwFL%D;z)Lj@jXM04-F
zS9U4}LtYJ@S0HnIGguL(9jZ=G7TGE|qbhgZnc-~2LfX9}Pin?as%VHbngg+xu8Ky}
zY^`apF@#KZPIR58g|anCWyznc)^K6ET^_=!;x1x9;w<`O+RCP+{Zzx_tm~|~QH~2c
zboP{e5jmbKD8r`@_cp>K2a96~;LBjG*|*hod68x--+ImrQa=9>CDM3D+DJKxkkU-L
zGZ!*p7h$Pfqr5kW(^j}*aoMuNQ_|rx6}t@U5?YOt2}X8l@qjP7U!EfgKoo~tj=69}
zG$WE#m(24Dj@v04QMtxVnA^F*$9}vO*N_ISziC#oHg82Js@0WT`7K(Utqjz_YXZe<
zf0yZX#<mP52=zb`Gj<M}p7<k;lJiGA*bN*+B$CeOFAso3r<exH4(7BQB{Z|-79iVP
zL(SVlw-30-xzyc!RIg5DtKx>vYZW0G;+J@&?QCs$+uV?MB5Rm$#EeufN%}Z`7w5ao
zaft~!NmTt_W*I{k=EZL`uozeq$Tpjb&3r&Qlikl&6<adj*urW?{;q_(!LN5#@QKWz
z1<l!5bAar(YUq}g`j7m31x5zoYhj&uzQL!lbMxzpIgLhPu6odtY<xg?3gyrMpkm}l
z#5vl););@=uo`bVF^xuqV}dYKW)p529lU15cpm76Km;*a8ML*N6wrzPsPAdyoQym|
zVXdLLZfOjYXP*rz;1ti~<Fq>#trkm_^?HqyQJW^9xGa3$de<^Zq^X{0Wn;FEXj9;j
z9^vY#Hw77uX`dXIVtez^T8qR#=qh0(VF+VgVVoA@YbnY^d?L8d=;fGjCz;duJksK&
z@RNh1@i30pmyP+l7Y`YOvY@)F^RzR>66uOMuJs5>$<GuNvh|oXCiW*R?X)p(2JSI?
zP9xL(^TF)p_{<o|SVJX(Z%<z{i`s1s^Ga4iTJ9MWd_=3C$n@$#AGiUYaWl|<9~ybQ
z^n?f;v<33O4mN_~Te>k3`VmA<K=w?kLTt-goMBe$T{Cif!*p{_Mn`lhwZ!mN*I56E
zA$?QIRJ)vs0wl|vnv9n#Lf4m9vCz0Zsx1)|96s0hHkpXuC<(WqAdT!hLFod|0=7rh
z4@feQoFkM(>7vI)+~x)0g5{hC?@HnS0!u)&ztn5A&@z`wCw_`2JnHOX%j7wejtBk;
z%wjI_m?tZjcv+yIj#Y1)Y#R}Z%&_hweI2z58>l}YKXk5m<%K7C@KT>VYG-5im+vw@
z5--HL%qWF9G_Wf_{hT@%dQc~ky)ink(y6mJl2MnJ2aJG48O|8F=sV_lJ)7+H%A3YW
z#!pwH&Gllua8`IUNKS`^MhV%Hh#yCe`$xHkM7+#9wegpsYu4nc1Pu-&@-_ZegC~nz
z_+h&|Nn??8ht}piXkH#Qg9s&@@^~O{uO3Zri*pWoE_1A-kl|%Vfz8X~bfP4w{dmi<
zIZ<$%0fx8i5MbT|Ox#y!Q@@|{b3M;-3gUF|%F<a)OMa7iS(~_ZT_RZHcp_dG?}0jq
zb3z^wi|mw01J1VR)PC>Pyh26xmE@-uQi^PQeZ(sl#z4ryV)zq%&LwD__cD_zr~0{7
zPo4vP4)QpHOD}o0!#jY?yTo5-f7ncIOonlu{W6g$36i%Nk>5BsWNJL6PmoCxMp*_h
zkZC?y>O9YO)+xMC(KH48zVkI@&S|=6txgj(^PX=%AJ2|ud!WSoagC0_GyBJl<OMn7
zMn*6DV{lB7#}S-D*ZC`{uHHLakzJw3#=KHUj2-yqMek$yEj(d%bbU7V(;#x77{n@j
zkA!`l4JReyqIG`WDL;~Kf^>ZfL_W<ekGCow%eIdc{M>5%LY{gq%RZB=#$q2RO2cV$
zi$yA~;^gtHy1}b++ZLW4P-dx@bD0x9N}Q`pc>5~psJvxD`?>6QJ6yK3Z!6Y#g6tTa
z`00wwtE*B-@(|}IF@-c|(Qdn2)_FrynbP9BG!EV-J<h($)5v~4c2FL3i4rFk0!(v0
z+U8~X#Fz*zqwoKhtM^E<BuSEO=XVvpfgn;0_P?>#Bg|r1)PL|hUqytAo0$Ru49KP;
z;D{E7>i6jz2(2RrTtlM77t*JjuS;3tY}xEB0;Rn}R1@3EjuJfm3Iz57HdRXpsXaFg
ztmYRg7e*(&^G$M*1)#9v^(d`pvisld=ruF9i^$t`=mSeudePx?Dqc`}q9dX-7dl3w
zmUif#6OJ9Pa79_t41J)8ce>+^sq6j@5vLHWQHA<065-yCr0ms!sd|K0`4<TRy#z%h
z0&sPTSGVK6<X&8-y}j{~_tEpcTu#zeLp|mJ`cfaTPxoIATo8qWRAo?`25npx>Ie^%
zh~j-hoY8P+`D`0UwCx(Q0};<iMubVdCy-Dva{l^fq6aNfR)MLm=`@2_?LsQI*!AGg
zW5w*L8A7nK^hQ-@(5_huh@yT3gwW}L=ygTF-bA@AFfND3S8lP>3W;Snla&;T1Mvl^
z57lD4OVTj?N*VtJESh<~bD`?=eusBcxSN>J$m|u5{9W;0dK^3O?Rc?Q84tx4>{}Z9
z4RJ_u3#z1K-`UhOj5yHM+;XKhiij@@G}`KjcyTGXwc`ORDW0=;c)_u2HblwjT!!#n
z#Oum5#w#0CQygkIy--j~`hvmYSG+Keiinw8sb4WSS%|`wqQ@)l<GZ-2v<?)Fd6uFj
zt^i)99&X{oAXIOy5~01!Yt%D^{LmxblD0k^=lEC~0(Z34IUV9!g7&L`h$Kb8m`_K*
zd911Z5`ig?2#5}<i!R(ArT@3ZBplgHA+8{C#g1rvzzDdS_%APAQ@aVok`fvi_=-1t
z)JzC#DSs%a=9QL4B;!}Zr1=hrs}rpX2fiT|==*Jjc^88;AO^tQ_<r;=wjZ#1cr{To
za=>jNy_y;KyViHiIObK=(BW;xJ^!lRq8IuS^!S1Z@jIRwgK+AVkk%0x?1%?xP{?x_
zf)VdMh2H0B>ao6L;3~tX-4Po;WMqDkGE`H#y66w@A}e~K`v#9D0%iq+X`LB!Rq9!n
zq*l)d){IkRp$Qhb(=w)ELq&)eT21?`$m=TJ@i2lhw1;Gz9r1vxnCBf_9z7qg(dFBU
zUI7}HQ{h@1BJbF|k#L|<bj^{gSK)vqDjYhP5sr;J6z+7ZZN;w@@p4v=^hoULRcU`m
zz#~BC1|}FE@a@g24|rrRf^MW(v~Ocn6S{i$NNmw+`veDz172feUJ(@U6Bwu<97odi
zi<?35thP=&NE4X`j7srRy9<)49u;t}B`aUfCv7D7o!Sv=YIFdYOFM9#$aDj^r5C!i
zZ7T{Giq|ce0$Ip2D|D}_;&Bd$OVgF8gBYBCzz`DTZ_!JNcw0l!cM9IAN$=aYBFhXx
zRRcb!2Ye|^OM0wj&JpO&faXqKvVTLWLU*5lSEDUj4l#CGbnNv;&BuJFvN178^Tn0K
zV9{fp#<q-rqgoUOnH$ka@NF<`YzPClfafWmQkIt@ugD6ih0IjlqGyx(NEVNltNO<k
z^zl?YC{>DgQi%b*E_aBu4&SNYrB(6n*Qne<tHp5ZJ>W6nNocIWgd*;EdT_?XNFk7T
z6D=AszC5vh=X6sN%BUiq;^m^(%167z2}azi*|{p0ZDJPf8%OK*Y5~ZslLo&C(F7{g
z1R=MeMk-p5ECpJE;3-S3>&3E(j|W0gyfXlD5pCJOhTrrWlCqrgE-+E1a=!9e%aiw^
zaHT{wyuf^Fc`n(cyni;A0=k(E(M=QBIBFCSn+FAKYONv0dQ;8sECayIN#w4M$9rG@
zI-Jhfx3g=2_R#&6j_F(bYJI<gR*#1cmoSYtRP_|^70kA&>D#EZk>^W?g#C+`F7^Te
zqaH+}SQlWEH1E5JRRmT#JBo*blj6ZTiT`95ne24VGQe$iZ}%1|A;g<9y@+`6J`tDF
zZnz>%hZbW5tVa#X{h!q1g@CK|a%owcQ7ypEZJC~Sj>6ataQk+?(O5C#gIZLH6a@V~
z0wR#4fYsbhxGvQz28l=qJVQ9edA(q8hlmH<?*f}%FmVBLc*XeSZ5>q=JXW^ay<X@8
zINrNwwJ3HJZ2uy+v!Z5OdAb0xh!2QL@$rVx@zMoR2Z>iKGwG4x_HdPf<4G~DkShPD
zi`t^RFXI)Y7FLXB7AgUGrtQ;Hhcn_tG1x<5u}aNgxzE13n)dX9Q*W$wZTC&`mjZew
z{IwXR5{^$Bhv)m1)Zt>7!&4v<)AjkNf+ODPo}eFD!f}3BT5=<H7(a6}ueN-iB}?vi
zS)n!&tpRY*7FFAV*P?25^nhEsN)^G92>8y4u7D7Z6tHD;6jX)foSS4Ek*MsRqVoYG
z-c;9&>qy^^ae9OUEf?XcJ|z4Y5%oZ-TkZ@zVLZayzA5&xOo0alpvLf}#~9)6@NFwv
z+&eRsX|yaG*-b(>*t2r&dW{XAAPf|2d##|OCpoKas9n1_4#hI-)9>=Aj~+^;idIe9
zy=IV7<jCCQoy^AeuNEZae{o^7YYp&aE(X82hp<;L?9JzPb~fUETt!`X*m_6b4*m9s
zC+Pc%lr_S|&f5w{b6!#oMc_QbDf4d8{?;j>c^Z|QJclk8RzEfVi$zGqDd<3U^*&LD
zvQE?o2!T9l;X@>2wEMP4O7Aiej(S7x$$U2o`F9723W(ZWT+zYTRYVT7h!|5hMPx!g
z74h0G<XsEfpKv8xZOcq*^L=!Dn(z-;r0bO~349?ZbQF;PO#$mM1{^^=eI}k}TLEM!
zB`2ci^{*1tqM^qxd9R}NkCJ>GKFHhZ3A?Da+}m+MtR9*Y5pMydQar536z`b8)wT~;
zB<QtfIMCFh5RGS_5+Fp#WFiQoM57ioAZx_~JfV1VT0Qoi4pwuDjqek!xeXmVFXDlj
zjd*UnzEV|KAnq*r8NgLl>vA8t&Mt14)De5-%W=eM-IR4z16-u~kKd>!c$;>in#)z7
zWmclL1v2nK&?|-r_OmS1_ui=U&H`{v2l$5YuTuuqDYZq88|>sfN6%O_%z+RRQ-XKp
zMm@?SN<R%!w_fUZORz;O6o)H}t_dzwN#mR?GBj$v-Dnm_U9n6B^&bq6^c71fS~GWA
zivs^M1(eP78sWpJc-`Ed5PZ}kMNLheUJ6y;5<BuVCVe_1*{!kj!x>SFRD~1YOX9$1
zngzE$tAH_MYWPou#k2^tJduF)p1kGN_*pmRUeU#sAkB=no8lFlU<@@#@HSN+?WL2=
z5`#=4)Lz{@tF*Y@Jt(Ng`M_2|35gqROqD>GdT&KUvOA`zngQXLw=^i3U20?R=D$9?
z>A!f<uy6H<&CMd95^f!gDm{wDs5%l`kiM}@*AagF9V?=-V;i9UCBzt?-`fKv<fOdz
zsV{Ut^*$4ZiO#SpC5Bh=Pe(Vbd`icVBw#Ayl(-QH%x<{2<s=t!!`>Kux?4esVTH3X
z45u0vap@~eL{(79^e`+c6|ngDRt?c=>TMnRhKfgFqIfM>!Mg2Vvh>sAh=O~<TvP3e
zSMfza>MY5v!#9e6OE6CQ=aQi*;sd|3@v8RZwU?xT&8ofjiVRW1JJJ;q53sC<+wW{s
zt!r5e)`R3~m-!KJQKn^Rgv$&6JLiYh5I8u%&TQTxvMsqvCLAMd#s=>AR+U97l2rn|
zYDm(<i^NlRzSL(z{Y<MSOBizbZZh8q`^QL0SFwJZRdJD1_u#CyqY{l0B!vCwpz9kp
z4P7W7EhaeRCj<paz?@xNHzVM8ic??`q=*-DwZA|W6$3U&A);rW`cyMTeYxnj1Ik3}
z?eeBF?lc`WEGt_g;v3?v&tS!}r&7g1KA?FVI|A+Vo=JdBKr+%UTBUp`qU-^hTN&?f
z9u0Zk<=MRrJ52ZP3Z`6($sYNrB5G)?8rUs$waNS<m+69TOq!d{ft#e#V3m8e<}NcG
zwUYX&NbD#gr{FJENLTuRI=XR&BU<8d<61Ks`?UCm@0V~DW36UdO~<da440wB%odDS
zjt@5)f{wU613)k}pHaNJ3B@M@-K#o#atUW0bG~Qvz|u42R~HV`PpKZ&{M=<*Oz{<v
zTU)VI+fTd`Nq#pIgH`9G(uA2Jz#tMbroW;ZH*Cc2!q5dYwn(aIcC{WP^|%JunxXyE
zBvOl}$x(%t$j~QTS@a&S8TxZN*xV(dEVOAvWuD|si0-N4bwLac{uCO#(6?3N-ojPL
z4oHGxhAV3kgCf$z_KmowS1C=~X*q1FPTj!oM|#Zw@Q=$P7)v^6LR~)=r=)(k%!>{H
zj&pTNuGLoDsDu)<To`8Ygl?&gPoQl`vY*+bFq{}@m~6%fDk5I>(=czA+8qjgUCp54
zHDd+E4rs;Y+Wx$e-X9J%C}3nL;FUVyVIa1Bdb^WH;jnbl2&6Je)Z?YLsi|Otov*X>
z)~`P7HY0_sly^P`Wf2kScmqN`9%YYRwePPa)>4WFTX%O3#R+IRQ@_Q!n<)I+Ds*D{
zt2Y{FoWeEXk`KkU!xixb7cOf)L9YWgky{)1QKeB3#Uf(O%VJtqf)Qf(0)h~)`QY&Q
zg+E&6nOaN;D8Dp>rrU=&3}1D(rTc@7K_EUrmS|vy=&0m!q2Rc<n9Cl0R1LZeyDipX
zC<o+$Axf0@lV46N2G7t4x2H{xx75=*jV(Rju<s$A8y%zA#b~{>r7k&0Y-J%GXljI`
z_K%%_Q;&9iDIP9O?H1T;;uFI}cWo&CYYE*^mul-sujN%L;zJzTIm$^fu{o;pBvmlE
zI`kjM<Imb<uLIOWhbYFP%Ab08L&mASP5cbWIX~d>)horp$WoiEvR9gCgG7*9CD5SQ
zf%Q{#GQhgy0i=NK>gI$C-lq$v<-!R|K4mjVj9GG`JDVAHs(c6R)#*K!+p)z>N9qdE
z?IG>y1ERSk-J5kyn1kA<76x<6E~-HIWksp+R+uu<CQi}}7+nOMDz=MN0^XB~#@A8D
zQ_lUq+qK}Z4GqYfHLe@oZhU9DY@#8gX8IN(Vm1Slu;e(3wrulJ1bpn^RP}I>wH0iQ
zyyh=yo1$Sr@Tct8pi2_jI4F9xx!jcECKgwkW#Pi9R>Bnvtz$K$uUCegydmS7jJ#>9
z`(@g;gga%s&^E=J5kdSejAA53!X2jPYa%PPV)^DSH|IF#kEDKR2OVW&8?V;wfKn(q
zAr7Nn0#B_<L}%TkaUGFqqbXpKw(R?kL-PXecExMW+B+4^Dt_cqD^q!(05S)K(4-U&
z4F{R`T6JC^<O!}dKwQ_)4!+OLO8d!%q^CqZfF~`*L+9S{b`?Kkd4|{k>K)ylIzDN|
zNSG+*J`rzer(mRb%@8XhD}^12n3)xYtOzJ~Y-LD-Z?2F*{}&mN24o?tD_*m4;M_-|
z7+&9vEFEznIZpI|cwvioipG@VO=mHEHgh5CDT%sV0lLSKPT{ysBV3n-LiOH5)I@L7
z-X^$+O_L<M+lVKqHHxKg{gNW{qHvT~d3|B;@}t0r>QH0Y9>I!j9)XeRT@GgxGk7!+
z@4X|P)`%FkFW^b|dofOr_JDdMq8z>|PIqlU(SFge*MzQxgP7tiot>mO5-qzNGDq>K
z`ZJzMhcSNt7awNFU5k5n6{+$FWWkF!piy@Um?JOFR|x6bjWa(rUUO~UMLzO$nYw5W
zkN^$15Ag7)2D+JhOXOIT7=&jWI_8i*5Hto=8-2cEH8R>?>U?sK@8)QxUI3r68ta&`
zRNms*f|(<GrPulLX(2>|dl;axA*g*(I**cyP-IZ(9W6wmweft@@&*K-Sq3kK^o61|
z^|2>%*XGX~_zqOODcaH1&L~4q2kb!KZlIy=cw*`ttQI01$G>}`<9-<Wc({6{mjuL3
z60$6w<n@Uh1u#~K1YWtrQC>Kl2x}*lDE<YMrN!Ct7NqFHFT9E}=n+EoZ*5joHg)o#
zd#qChFFXNpyQh99n$13?B`AVhO+rg3CnB6{6}nAvD^z)PqE(?8hz)cH!_=!_MLN*n
zH#IQBA7=Q<(}fu7$wX?L?L->QxCJ;ydXIsmjUo5Yr@7U~*O>yRV4S2^tO?#fUER{<
z0#4fmlpdacpoSNCi4E07K$m&by?lwByQ>Tqs<;pl?@HD3eJY6*Rm6(6;?324Tv}W9
zgq=*p!$pQ43QSY)sbN$S@!ngCRmpfl!$(^I4%kCm@v0aF)X2rpcY4MvswPg1$f9gQ
z)+as?Odb(xz}m<tgFamZ+}3}F#IG|2JJASurcjUMqH6!YEAV#bn|Bxn4!j`(vfX3m
zx6P3yrCh0?HWY8F)PLuIbYupZz2adVDv{Ui9w+p}jCZV>jUA@Vt-5UA-l1LnyDI|;
zy=uMBZZpPXkxjhk1vlV)kKbhVJX99`@J`=Fw1Ak9o-*x7|Cf%$aPDKo5^9m+n2BHW
z?jKDGL*Yxyg=wa6N5^!8^Ag|VWZK>KTWYFinE|mAv)D0F-^wC(BuB4Yl3|9o0$IXQ
ztfeXt5Q#54Xf~PpnG}x;xZWha*XV$39Eo+-TMGh&a>O!~2U51q%UX?8W<AQV6(VML
zIHSVe_Zyb^*xSxTU_1RLo2g~JYlTu?Njt-WvK3d5I8<vp(~qYk6b+PIC&yl;oQ3MP
zP{+81f9fb&mnmrzMy?SLJX6H0;#<~Zk$o7hYI+W?pOv50&v)FnhT<`-Dspm2(KXE6
zV5E{%ZLKnZ-oL<hi3l9vXW>MK-R+PR={^PAPJ#&1bdpV59D=Q%*-oF)PTIgkyz$O|
zQd;po$5bCMa4`Biq-lybR5T$e(7e%amj*BPZ@Loj)NyO{!pn+)Q<H!ZS~Utdwe={u
z6%ciZ_&d}<3fKh5g-)Z=1Up$Lwo~4tK*Q2tcXMt;JS$OBs^~v107Bw*7nYoo<_s@6
zH;-@%`-{YI`1!z&==oMQSkGK3QwMV+7HCXl<7XYQUO0u9bZEpRNA<|4FhsN!&$xSV
zi9*gEMs50j%ksK!3#8g%rw0?;5BKJ&tHB;;RXjw~=62USVj$h2k2l82VXODvmi8vB
zG0(*io>cqw@}Bf$U4Z-sb?h&Sg_9arOPn$!N)!zRB1NmVjW5$}8%VK5so0vDd4uz|
z_#Qd0KOLBK|LWG2TKif!%!s1Yj>hOi?eTX5ZBNVVQZEzPEE)e`Z?BmVI0s8NPPh4^
zf2egJmBMkt%A0swg+c|Dv-G;BFCi$ZN-&1!8wYxtw)!5{1{x{b*afPgO>q-UBgq$G
z&w(jR4xTQFZvEQx*{X(D>YWh^BReP2O=}iCqU@cM1jVv^$C%ZMEbTc0YZ&pS85eIc
z#{wNpsuZu;V-nzy5H+|%Hn*u)Ghqg;B?T<zHXYPz|1?k%h<woi_$g^qstGznOScy<
zO#nk(f3}<<!OE6Zlp#FyD{OCAF$(6~JctVj&Nrm8fGmxuYt3%I?;tk#vmt2|@!s}O
zwmFAAU=G}L%`=fHv#6a3oj}QFtcZgiMzn)d%mbEPYFzpmU<O7!7{H3xYy=MrQhV=m
zC2PJoQ|XYFx#GRg7p3Y!*h^ZIQ?7I|(~-!ShhY%%MX{tH(?uJ4qJME5_%3~kooy@M
z>z6~sdy;MsNpNn2dv8%Al9t!|%YDQMqF5H3{T!o{X^1MEiBh$Na8iT|QB~sgk}9Rk
zBgpq7#7aG(c}cui!D-P0Ad0<*CXe9yNV!D3ZJqdz7KoUT)2=}QW7CkotAmcqvo${J
zI9i0TMb*_n>|gQ})eI|IQG&D2qYNJIT7)~MokGM^M)vkq(Oz$ub;tAJ4PX~gnz8Xd
zchkJ`okYSjl-?|r?9&~5iJlG!m%=ssu3mbYSMg3d25lr<h-WM<p0zztAr$Qz055#g
zV%y7RzA~26$7==;hN5$X!{kJI4%es44G}OQi9Ei;NVI%bz>#^O8!1cOG0gHnuic`|
zq75)k_w4~xEaENCIA8JCy5mjTP$1kQdx9XL{L|n{P0W`UYKRL4e44jr#WsW+MF;Zb
zPMsreKnD|ICC0!5MZjC_X56}Lw=NtcN2EaHBL$05C<RK5IA`wY*4OUJEnj}7)&U*~
zia4jNP-z9&JsqoX+q4$XbI>eIV|kR)VqJicHE?gps}TI3wC>^vjgadkBWOxp8(~(t
zyUu;Qs~O<gV|>fw@SfIkIv09*H6k7fB%ppPDK=UydaZSc1vsXZZYhtwY}oYb;#y_~
zXZz2hMYj#+7}eU>sE|d9f>&kL%~OqxAotfJmSGp9?z9cuM<i#_DpX&b2a9Y86=GYI
zpl%*-70(LW*i-jKof&LRAHaqyQ~OJ9^NMr<nn=BbZe36e=4_D(kybAicB<`5s+y-D
zh@79{MGyz+4ZL@ph{g}2lcsn_1XY@mx<UH80<<-1T5^_<!;W~zB!QRD31fF@3Mw2K
zaJ;x{mj=X&q!0?9Ox6%v6Y9$NEUpR67o(xnX{u^8MUzDbDbDm_9^Rk?M#z~?qBy53
zVc}0DJQKXH_>QRk+K)mAl-f=IeS1U=)`n7HJS3IAdW@I0y2x_xFe+kHzav2NTJQ{0
z$tZ?p8oj=9!0<MvzS6jr@lVg2q!00b8<voo_t9L^c0^~?{8&K4`i@>z1<Zyt?09fV
z)lP<@mc5_KpjfL%m+UboH!G!gWcgDTAcUG3;Raw4eOjr4WZ#>{u&=aj68DJ7S}gTW
z1{Y%uB+leU(U%`o(z7E`MF1e}UkO-IB^Vm|Hu@k{)~<X{niF$|IWg<N)l3pC{5^pr
z;|E5}CToijFLD;*L?07aA7TLGb!gj7H~!c6#kLnNLh%k8)V81hW`qS3p$vl`X|tFr
zkSbT4S)R)RiLW$B({0Qnn&YCK^iu{^y>>0R@&deTH7H7m&={Z}w$kx}!6qxH?Sw-a
zS$9c*$bJC@EW@`h|J1Koo*lI9v~uCcJ7f*Niug-C<>O})HyB{ylu?u<5~AYh>I?&$
zib4Z~PBVt1rw$kPJ+gX4%10L%E*MJZN(n`m5pnO=xjA-^Ihv;NVRR@0X3^W-){|&J
zjC|c6Px<i)mH%p(YiN&V%2PtsD_-s{X`c=3Ha;kcz7(L)e-uxD4D-qZ@cN4}k%?w+
zX-#|Vfh<~5e#W(I=``BvN8`^>1pgsnu*<?b6D8P8_tfu~G{zDS)`ExguCPp0T+Y{2
zd%y6vb&@e#im0P}-U`@Xb-mrsdQ?LZfF!mXL*G#As47ny2*+vhBIf9rkSqL6`3ygQ
z4?SsWF=3J{4V#Nhr`zB~(m0G-BVwz%QE(me)e@?pzZm>__>M`cm8)2FR?cif^k5+7
zlfF{7Yqx9*1#z~@vkG2z$hFXI5-Y4`PI8V|--y&%rF<fcr=xybW9xmpc&#+7ZdP?t
zCcbG2Tw~@F@!lOE`$p(LO8u90KvAoXFUb!$No`n;4PvZFk!EXbgawD|EGojOklj3E
zOnii_C~ElO^i|R&%GwhB+AfBsuVIHMhq~0lD01eXD)D+}l-mx>*0px31<T%>lc8$E
z_(Nju$d78WG{nZ|uZXM#|HpYFV15?}D1iwXQZ#J5D8A*ozS40GcC_V8fCT*MrB$i9
zhm&Z;Y=SEcC^20z<9~{n^e?qwPcc;%YDyfoJIQ0{M$5V&++j2-h5M~h8pTA!ETTA6
zhHO<Ko50+Vu3LIE7we_tVJCV#4JH*PKFOglZUw~WCIX@Xs(xkF){5U=?YJVTwh_1+
z1uWTMK*mmzU0C=<Upu(X@m^QV<|8ES+Nr#xRV!e<Oh&C5B(x$VEj>#;$rcD595FR3
zQ+@4lwwbGw!^(&oJw?!i*RGf+x<bmoMk>SE#_W~V*9PP^R;nSOrkJ*mLZ49M&(a*P
zNu#d82afOfPU+7&z6ud=fhw7vQ?l(07+F_B(?q3)U8UlAT!R^iE(8<~i<b^OyhuT>
zE?K1LT+q&CR}~uN-J+q>&TucClGxr3z4Sk2L~g|Z?}(6e#;uW_N9YR~&(U$<iqn;m
zX<Esb8xMjYxhZ*=>cj@YqejjZ*V1Q<hN?D5H4y+*)J=<K+fluPrU$tIh=~Y|Z-pke
z3_YFLlP~eM)GU+__fu`-5=XB>R&U8_5EQL1ACt_nGoq4nd|H%@pr++7`L3|00xT{_
zBBGdVhP3v_qOTD*W$_Rf>GPw2Gw*?SNUFx-ERCJq_fkXUlGXS-BFCo^GhFBY{ZBCt
zZc^K0v3#{uF=tRn9JeE6Y5-v;(Yzxq^Nq%tcz-oIS`kvF7Raa<D;eD4VVd>R-it4(
z)VD1s*)8u#jb$Yd`Z8WOqf0UJoaEyqHEDX>K;i3eh?a;0TJ;h*>vBN(phINNk61lh
zuhiH+<2d|((LfYU12;Zrl$K_4!&2%qwYmGYto?!s+_HS$3u?7Ds8b4AGh|;n@W2lR
zeVASAY4qsHYjJZa-sHdNRHbYHwN1oh)TixVCE7j^`E$I)qXz`p@6>c<1k*GWgCnjB
z2FcMVgAST*)+&P}sE}d_6m+(VLuyGOfGCbk4Owe%|Kq~_Om*G{BBH5_{@D$=3y)i%
zwaOMc(+a5@0E=pm#)@Ww^j4<>R%`m#nkU>;pBA?iV|Yk46))zvzi3Drp~+-TExNUi
zlo}_SD)+v1Pq*)59Agyk{Vvx5rJ(lSj9?-mZ10)_7jJi5T_rFO(@pqtz-F(dx0xML
zW~O6=?6V?POO{v*_ns*OqR<JJvi3)zgWnh@>S0;O-w(HRy-`LT5wHx4E{3`{>wzw_
z;-PS@c*knT7Z73)8oK+q{PgQo4()aVMrj%WTa2?x=vzq4u#4OO;)%;S!iwARx~<an
zdn%sbwxFhpM2u$=JzI1MegW6=KzBk%(G#LX9|5N)R#-}lUsgT6eGyZq2yq-AZkC<L
zc`r6%Th$y4hEOri2Rm<FBapsU@Q|o4^KqZwP0e6-jv54SpBxL{<3QwP`WAjX;wuld
zOko8%Bkx0LH?Bld;duwYSLu+0RHv<{=6KVu%n0WA34OCwgUC@lknqv9oG4^K5BsTt
zTby5SEgYSNwBmKiuOZ4+L1x9>_$FadW-9p+mlbm;7*@uNW+s+TaZbFSo^1KJ?nD|r
z(}1^^Xb4=gC`TjWoGLZYRFhA`>;|(E(MmTobsSK)5bE$<nvtBViim@SX7EUZNvVdE
zL6>6py$`^7JEY*E^w0KxArmQ7zlT&EypZw;QVz}X0EOcE_wpyrR-r>j%=b_>%62#4
zT_STjq)}B9d`yNse#++L8qwZi5Vw>uR~68k{#otOKO+xS1DMHxyT0wXN5fs_&0%e1
z;E?@WI?hrNOw5QzIu{k4VEiR<Pg5eU>6c)sCBaxt7UHW3_lZ4WtqRyBc{GspuixhI
zd6ODfFW~OxYU*dv`iNNqZQL#_-?l;|wY1I7$vGonH&-HLl(bftWl(E4yeMF-Xa^Kd
z{TOkM--fL7YA8Maf)sDZ1;*mq3gD=0x41PhM5;%sq;JpGo=03B;l(r^B1Sp7@Wcy6
zFi05DMnrb+TG$}Mq359U^c^6QGCj>63UK>W+{|t5>KLC}HwDrET&WVy-9euD3l5vm
zZ3XC^9-p>?>1MAc(~(+)45j1KRHBpl3sM0{)G@<BO)(k3eh(R72FgZhAX#z;kXLI`
zGTHX&1i0*^kzv<Qy;*nd$rZFz;R`rqVhZj#eS9IKeSqFptho?`i?svSYD=tTm`c8d
zYO1J<OO+NQ-Q{ef8<htYE1&ZE#h#J9&qFWZ7xZHd18~|iFQYCw4e@`>jbz^8n6=vt
z_5HV)9Pjv)Hw|+L!QcR2*p3pL!Tv4SDy$;?dV(T#A8$6$mGNf#wvz9rg(u`5L_`He
z+E~pwJbkrfLAg13EW?In`;2eRF5&rh5!o4yqNAW8CK!irPZsE!KG7#Y>7NgNFC98}
zYJN^6G97doNpbi3^0~FDZi*&36ihNA<_N9UxMJX~M@*VcR%4qIfhfQwj65nr7!1@b
zwv+N+GUTZFL8rhz7k!F9$%*LQax`}d?9FC2@3BSe3t0sAr2Q-{z_<>zY?&*5rANNn
zw!i#Co{3ac$0XHhLuAy7LniUvz{k84a3K*h6sVOnTuB5lAF<2H^$f4}@a#~``qhw2
z9gRbUDfNVF`}f)8^97Ati|=@lhqZzOE>sB=P_iVrxU?)F$M=x6f5$<K?&WFbModhM
zf>4B+aOABsB?wQo_Bt*l(;?sS;j(-vxd$vfT_(GZc>%}DFInTfWHc+)jgkJ|6S4M4
ziCB=v|6g&?kax7UF@!Hq_)_qaetUOeUcV3NloC(FAxKACN$rS3_C5QGrq#<^T+bhx
zn8w3YyRg4}THtyV*hMoa?q0uN#SU~KX0|g`j#>~3Kry6U^k6zrRr<X&T7+mF5LzQ*
zpZ2#0PNLGe<g}Su-CHu8OB8ZiY?%UNtBMLUV?n!Zn-1bO$~}r_J>|5}*1IdOrB2&H
zaY8Z0>>y_MYu#=J&^zy6ObH4=r%~C7nnbJ}nx8Qic-i^Zp$x%r7<ggs`#X%A0luM!
z<Cw$Gc}_m(3D+~l6!SsWTKt3E?HCTtPG#myhRE3;92+fg#q3)y^2p>1^tcctQOs)%
zHRzsSrPYM-nCVosrzm%DS>qTWt28!DR#gb$r%(FwA^GB+1cFr;%XA|1BH23+yD1CU
zbD6*YMW<_}ebG?sZs25ZxK`cXA_e8oh=~D;Vv1ZxNVfy4+cP8u?%vY#&`_B^kYW9r
zDVIR)Mt_3UuYh-G@vw8XV38R%-DFu&4d9JKwiH}oxOcwJjxZNxr>l|Xn(uC~>?CQj
z1j=A39ft%c7a^&89nv`U$&^STU&U=p+S0SU8<IIdd)7SBZYOV=kuq7@JI9J}*dpSQ
zvJb-|`5j_QYFnV2<=v}gtMf@Z1`gQbE_~b7nm&j<$I7{h&J9S5kv}p3Lg1n5GvaMl
z+`67NJ_;kjh`5^F)DRTQh#ov*jV&;s>4@~cqJHnBeOlOU3wK%Z{nQ~4h=**JYfn!^
zl@xK?WP!@ZM?e?P>aA1}NjmTbUk9OYA96_s;aCv}ySQSBY;GOLbLP>UN{%G<MEdS%
z!_Dw34dhN~WR{bR%fZ!p^wh81>hQvI-tl&@6rX^vsgD%?j|zCLxfK)4Y$CTPCN830
z0d{nn1#e(^P+*?nMN~+LopFW{6?k;%{lkDzz^$=8I)k}Lrzf^t)=`AtaYeDhB2(i8
z#uzbv+0*6OjsBJ*R!Jq56;9KNXrOLDC_H}1SGszZS?J3AVpMdOpbmzKqxE~G+(bW3
z0jCl8u%0YBjt8Uzc6XA_`@{<9B#^T<TLR5<Mx@kYPW%?KQvTL-QMZxf(!hym&D8BR
zgWIexDz9>|79xBHoYD<})-tJTQZJ&FB4wXBn{5Y<t|`<;-O58p+-m6EvencpUetSK
zWoMvLg|e^1Ez}+rv8q^p36U!OMxiFyh~z#==2R&WP<^o;iZK!J-CsJ>%Qg-6T{@n5
z?rvX%Ftcl3s1)t`jG86`oHWq(r3Rmdnm+nVh_>MlSCD?(v&Dnp;__L8K)*(wWU>)5
zf_pa>akF6Ciz)zyL$_^+&BTj7D*-=3KZ48DW+Vx{ifGm*tcmR*>$T7s?KYDJQRVV(
ze9IzUE9gh}#ANT?p#1A0$;~~(9a6nQq0vgQB|+KK9KVXAZVKgftJu7VLUDnvlNt@U
z*_?%WI|imIBCeH_za_n8SZ)Hf(z<mk33W)L0-A9Y1E{T`59s8?A$J7U=Jr%~8n?^X
zkdWa0kW;fJ>TQ#ikl_|tjx(w{W^IOez}ktJJ$(Hl<dU+%d(rW`0!$O}vI&9QPPR*#
zC=1Q?j+yNghsw}h2pKx#wjzfja2SSdz+2IVe0PRsQ@u#o_Eni0VI!R%h*~P_#HZD5
ztJasS+B;&SL#Ar(Tvv0*<_bJB&6~u~COb>ik{aH&B^Uw8=djE{7`?r;+cThHJ=(BT
zvm3`gP8(oFcZakp0`1<|Q14nA*Gi@!f`%f#wG)>|J?faCycNd)TF7n&jV-mDf<A>0
z^L^KJ6T-84nr1?pzc(koQlY_U^e}DoxITdO2M+nYPMxyv-w%cK3mH?z9Ck{kU;;wu
zKIz^s<bXxDN2pWATWJ$Yfld-!l_Fphw5@mJ7#hw}Ki$#(?a~ebCYfp7B@7rGak&*R
z^Go7cp<V_cN-fsVB#p%JsA<;Wh{i@?z7!$*NOZG@c#Ps(@iS8GJE9qFGpdS+xP=8_
zx>&tE77jKMv0GmA?c3;>ykos|nRC*MSK9G*shR|18EyzQ*^>x610x-&m&$O%)$jXc
z+8^sxG(jP``gR@iqR{NyA90q1-y`4@uP8c{5e`bN$k9bI7{OK(_~|9mLxKgEE*rI1
z<no9bkQDD`m(f+*_M7S07wB(e_7GpON7Ap5NccIVS$h-1A%QW6NSF}%N**IeHt7e5
zRP07XHDWh1L5s|IH<u^OFx{cFEl2c$6mHxcL#SmHcY?C|myfxZgYj&%08Y2W&+0OB
z;h>2cE_~s%aZ~uF0KCbaajQ@O==+Gj$5ALOWGW_-R=RwcA<`Fe1+!QQcL~ML=#4+>
z;h&|5UDlFh>kM!rp9pg-=bFN|LXXjbb6hRea2WQXwXbHyU92RE8iC58fkyI=&45`H
zSKS(hKAhwVNsg}{TkS+KIWC1Aw!3G=c*Kb8wbea>x*89ON}pLXGF%z}YqgJ%lJ~Hw
z;U=aO8R&u;EY&oB#?yMS_XugsTFsbUec`hV%|dDK`s7&(dF=LaW0awg7u1`U4|{Yw
zq!4A3d5Cb}s+(U1lXpQ;zWSDDu{YQjW4S{wj>>o)ANhdt3{ZXRdHJnQ0DTIlW)3Pb
zg1HxKp$D5$zw^s4rsmUzAtS&a|Bmaw+h4LeuL82=IrA&ZY?Sj(5Yu$P2I{V2^d)3{
z@wjUzBKD<bLmewD#H5L%zw;hF(kjw@vp3L^@!0phQa2uN%$yX^Q2wBwDB$o3{}!F^
zp0}eFPes*RPt{81BT8n(fppy9(smO^hjxtOB{3ZBb%$$J<On#WVs{RkKO)wyZ-^tX
zMO7pW)#>HPfU(q;e7if%N^T>)ju7_Kl5w>Hhg8V54#!Y}Pzc#5;`>XQh@T^ax_2~K
zaqk`lw7(##7|VFnx97z+0&~<A&KQ2lPenM$K9NOS4|u{vPozA~%D*B(d%fGHNg)gd
z6`5fgY19sOK;m$era2&xN5j@w=Zd)0GH;`fZIW4+=<UJcK^#?>3-P2?I|jpsV|wj>
zqUDUb#8W|1Qnhs3YW^X{GZfJ|7Uovj1G+Ps8;5g3Bvng>pob86M-Yd{WMwFFig-}l
zRK#IYI)HX#fwo-0Vfahhc7^j%M4Uz4c&HvW=_r;&(1AK|;WFDiUBnAZs`x8T(}HVH
zx4GfwILMT)I~EkH_m<@nE<oN0*zWot#vc(;P*B9?fOy)N-(+tgC^D+W=^bj>yu>b9
z8#clSzQ4vQy-NM(6-X8=nQD8!Pv~5aEobEATS56oj|FHLgDGI|VqQk0wfn+5xwYhA
z^ZwtWCeqW`{&#W-pFlb+4MHp0wKWYeMZB^{=IB<>D9mpZ(fkUWVKr~SSxHkl&>BKz
z7yCI+Y#@jTm%&0Svwf5Aw6FoqpheTghKN@>&HO6nG@Y#?HRO#Y3o)eo2Q7KK32SpL
zoa(JNbbA6AUhV6EmaE3Uvly7WHE-xcj-VYLty%I@#Tx@=b?lfvtCxOGAX6r2P`y&9
zV`_52pwKt8f;RYSy`UT!A@>)*05zWllB~G2njD?5@>JHox9VYNLh9Qi-el|<*O3jR
zx*Bh^vn05MBy)xn+Y^$BpKe9{6?!bq0guKASjXFG4pkooEbiif(x^)T=La7ja(oXD
zLj~-`g6wCe91SH`1hmrw0x6cg=y6HTWhfaE8S2CUmh^`B=%tljW`tW;EruQ|A<krk
zW)yD734WtqWK^r1dM217S+RAe28idV@yg1OmJ<%Bg2z-VQoQf)aeM^)AFYsB;gS)>
z#lZk<--NjIX*)p8(B^sPk-d5bcAJW4kB=8mh<?<h@&me|jy<;;6bA>%m=*Why<LaU
z5iydH^&1K%{B8UN?EW`llPciVo8e1Jb)onF7N}L}TIdVL3SaVa-BhWG_v{urEKwa(
zY8h-mJ4bJHhH!SQom$M}m>w+j_U%9K2nGzErGc!IL&Gs6Y%F1-XUH}Em{w2Q?`@!?
zcI3lUL;=ab6>ubhcJ=jbcvZ#Cz^V5E?-u$cOeb|yOFbFe*N~S(DN;|ks~>QIP*A)s
z7cUMP(d9cJ(mc`h5SZoYP{ej9;=O~d8eY0JEH+javD0q(&`~tj#>=Gng%0VK1$9{T
ze0q95vSk}P5W7gdzA71?QiN;8_CT6eZ?DG`1KqXMv<E~L0TIK~8pS=`OXm7s11acR
zsaGlQ9k&z?6jNEG^y^FPbPIg<ZfmV&uMm#)YdyH&T<f@z&L&cWX#i)<t9S2er*WVd
z5~1%0lh%(Xk#9Uqej(j%dE!y*B8XX+EvvAo(_&dhYhXKbGo`pvHEYIgVv$v(>R;Vn
z8Lp{Nl?nvnJ1VXB+%Y{<y!1P2A(a^6H1$KBeEWj0D%mFz_WJxU=hp{HC-2jwoJ==5
zVjVZU@U+r7ijauyoY0QbN-^jbPYWm6R|F7rm#l`(piCgRD{>1kWc{V9cKE`XSuX+s
zVDVA{V`$#8xrSBvBD}Z1lvmxp`F>=Evr5YQH$GNhwkkn*+B!l`bxY3el6)k(f2yy!
zCWe=ZQGPu8aaMn~gmja4hPr{Q!M5}mM#$6r1%OliL*(~#46X2=iFma7v@8+A(^}c7
zE(SAB@v15(fPi-P36W_n2#Ks9)D-xha1z&&^}&vwwld$=NVXNvdGd>A04z2Z-DR1k
zrwE3BRy)yGL+IQ~bE;p3w7)Q%bZ6wacZz%7pqY;2Ez8%T&LYi>HGEQ|-elB{%~W?>
z<*}Ks+FJuKY9P{pSWCLH+6afvv9eDz_I$hJ#H$5kmMZ4a&1G)U;lW{_+eymu5OsCt
zAUPb+upYuyAze9bN@qvgM*lO-8h1|OELA~eWxo2BVaz+g-8OvxgKz^2@k{MKNp~%H
z1jb8tZE)P}lp!NQplJ7cLUT-%h?`K+y4a2ZqqA81Zd&rq)fhKNk7#Jc#tqy&8U>bQ
zxAM6>j1A9BEtaGHzz8h1`aW0u=S6eJ9%WY&j_-lhhZ^Z+$)rnow04Y?#id7W5wwK#
ze2DC5u^j6SmGFX%c;nb1?xyZ9?g)xkx>jdjf|#OrD#M~a4O(2-;%WC`9;U@Ix=L{P
z$-;4zoT!oi$JYZvU_@yzQt~cV#f^V1@S;tph9S<}G0R>?%`KS9%+&1DWtBj5a?~xH
zN))hbSEmZujA^NPCm1p=l(ewIp+^^gIXDc82jNZerW(mL6oDchZEnRYqH8Qzaa!JC
z0TuDOlKc_9uRlR|^*SeFi~Q{w)Tsyv!P5_zI6{=Qq#%Qizk0q?ZLaWe^L~1<BVB*R
zs?MTjzr6L5{31cGV#>)olu9!C-ht%>bA(W1WGQ|v3M_h~R6T*9FL)zrN6EVs&niu%
z+7t*J#jGi*vSoP;IC;x-zHnfOcyMGDPhI%Spi^D@sk9TX4FjH;0GO>XEt1uBLvt0V
z<^_5oPh?;LR^$#6KxDkdc;)H=Zcha<#=<h0<_BzV;bsR7>ksnA^a@`2Bp82;DgK2R
zys35_MxriTXc;PN@3x26J1RZsv5^h9vEd!uh3J@QLq|Ybf<j4Odq3d~ulGrtOM>d)
zGUQx3v%PdB$<}f8O7Q~K$~&Apw1bCI=ea!U#Q;Y}>F*~65)|d(Wj+m>F%ge8gu)F=
zapDr|*4sPE6|ZTKg~;7B(_zUMb27`e7UlLwz7q9+b*devtLw$^z4q&z7D+?zTO#en
zCW!AtiOz?_fVMm9M#0SWMcHBN3yai8F1u}E&*(qGwb`t>!Whu=d*zXMM`SqLEblN;
z(ur}!P35?^2D$r-8_6=i%`L13JRo)3J94Owx135Gk#R_XJ;Mg9p~ri_)Nwr1p}=uy
z^GsPW^Yug)I8kQB*Q=r^cLXcFSW@S$?oqSN-#y(0p&RkK5gv;KyQy~Vc5aEpHg5E;
z=ZnZ%oy8qK=-A%_CawqQX8Z(romwuqJ;riLc@j(r;tWCIOwNi2%hw2qP_d3Pw|ORv
zV>u|`;IlKJ`&dJAcjyY~0f+O%J<|1a!4f~ZZatveR*}O#Nj(Irq~`seeo!mtR}s$*
z<!;NMu|4&SR#*h=d3*x?iR80e02j&RXfW_)ET?QLI$djh2#y{%dS1Mo2~M?HDB`@|
z-KKo|y{1R?JEOL$Efo)aE)ln(D{Lh&BR%ZjId41SW7I>$GnVAox2xNk47a8tlFat~
z*S6i&kUN&r(^eaQVTKdQSv}3SLkI=`izD*fZ-E-Rw(Vlg_0&8km*68z!(m5k#FteY
zRm<ib0pMSzX-8#@56mrlOF{I~_wN3SCrrmw->jpl=Ifyg9Ke!rhS$3bgeqP4-t1<!
z-lkF66j*az?-0Hs9Dd#X+kl#(x`@SrTCMVTj4F}c!52|Hjx<#W;xPB-&czz;aWPu+
z$9{>WRt^$7-~Kaa-i9!=1#b%KXvDqaVp2Txa@7P8*MZ$&8{8#9%LUfnhdV^-h=)nV
zw_b!gD9sz{^y2q<dR)NVbZWR^9c+I?TcNYI;-&KzyX?2E>iqVO{q{(N*B36rl%V@c
ziE=mVKuy~ua2Ts6@wUOV3+G+2&>A4L$d`a@$@L|qR<*pwwa*nx{fnr<`x1q<qs{6B
zrV2l~>$dpM3h1TM+R}~Y+HveHWar}SIR@8ZOlDuLmv%}Zk9dY6%^a@ncT+lGlZrZ4
zTWZ`u)9ljrZqY<XXVvAj^o~#^c7{#QP-bk=T=?Pzn1p$$$KAB&6mLlAZUc>RiB&8*
zzq*9H5PFd35g??a>%*#z*s<8h3!BF8NNeecAc@s?3KuULECrj=q1&8-w(i*jc#Xdz
zm8KA$M>$vKU_nxK!m58aV6lJCC~W&X&utHm|A6(amZn*o^xhGNfYU6=c;8{T7ZGV`
z#}&Ea>qJhzti?5uqW|`N71I2KgA@_LKq=x@^M1od(U+Oa<p}~65wUr&HA7>Nh+}z1
zw&)OPXWTpIe-}jrTyxu`_`0m7Z5A!9_u7V23y9V+=|n|c0ZW{=*v<rU>=o5h7vTy-
z>c8N3>|8cmYOl~FcS1q10npAD;ctt36)y=4NW?SWkDE~*A(%(TN2DCT8Bitfq-*U5
z+%}PVTSW{4#y18X!d=p`nN?dDjEl%4FMT+|r!C=>CYeFxaX<q{zEb5R_(Qt?2@Xmh
z5kVkDL@inA(-afsJ^amP$I`G5S&VM9*jCH@7E$+cxYIXep=V;+Jw}?o%y>kZNMkR5
z4LNLCCp5=nP^@_3*MY~4H`;+>L}L7%ywQMjxH^2)TqU7=L$zW^MU<^o=y<X7X_PA*
z!rHM$k6=2K);SU=TV>6$E(-~WYLJO~qGcmNl6a8{Aoji=!{J|a)`hX!HE9mqSLzYu
zq1}rOd%}A~sp_`mCEat^g*B{!B4X1F0dUo{Q}|m32^?3maFeX+w?0UX#94Fa7V^&o
zB6Np!oTg{zqNT5ZAf%L!F8gMH;8Zr)@g7Ug^EL%{8Kknnheel%Khic@LSnsRtY+uy
zOjFmpX$KR%Jnf6P0d$-;;XqzQIRc~Wrz`mVqTb5~CAGLOrWRCaT}8jQHQ_B5oCwu0
zJBy|ns%Q#mQwMriwhCM5EfDejBo_>*7H{`}mNV-*Exg+$LoqRPiaSvn)sb{h_nHR+
zSN@9IhEl*grC=IkJp#Vtq$ID|biDU&r`8QG+(4lz$3g6FWQ_#OOLdHawF6f?W%<kN
z6kdwJW)rqt1cWT1E2_4%9xv%DK$;$1zsR;Dpk)U)36cxL;Wpl&OQpn(7HvQ@QH|AF
zpW7n|;2CSXEIMWe<9)iFD+;&CnuxUrvr(;*SJoC^6oGJ#Yw=}Jddgijvjq93b|?Br
zG=Be;5LMQ&_?_arn5=y@_k6ET`*+g%6&ny#Ym_t7gyrzn@Kua9h+;OWeIq0zuVqwC
zwnFw9QizenFKx1oNm%Bg_He|1BcAuj(qMBh=>~q^U3tI=J(P$zOfZL+t%n3J^)q+o
zy$|)+x<3lJsS;5Oev@42-Y62E++i!EL^wUG_~0UsR)FK?<SL)y4DUZ9=ZA#q-$7YC
zU254-Z^MjSG75drC145k#Ou;RN6sMQ)P8)Yr0_ql9#E>mu|I!Ccy>{~Xh^0J@s?W`
zBJ%M^@0gT>7MuLICuBjVw+p8QbB>XC;IhoE-rKK~AMrB)s>k`omFg~ci1Bh*b3}>H
zJxn@9vow|s>a3~`Pcv<mO2EhJsZ#N*u>$|pbI>EwU{Z&Wv)63<b8Q+ss=Mi}+a_X&
z#e!;JYE~^P*ua}`-F*Os{YBk<g{_52)qXk9>+aFppJoqt>&e<wur2pjKvPNI`ei)2
z^4~9Sdv?@@-TK0|S*?>MN@k~h|I4QP(#&JpS7j$Kb|Tgp4fVqo`ST8!Qcf`<AZDoA
zlrMR5>zTji)``7{-$r>iywgd^ysaK1!+&vM)Fv#`l~n!yWIYnKau6|e2hp5Jbm`o>
zwEZix_PUBk2&wqQ^%KIZ(-W?uLzOPE(pQ@D(RO1f9`VMpXcg>^={@<*a|di9VblH+
zs(wI#R>T7kGFJclcv`0~4Uc*sP3A}&*sdPrAE^UyUweQC`AHW?$WbXGHNc<R`TmH*
zPk39Ys>`UaA|73}K=`d{r{!TKdYlC$ShZ5^=w0O&FbBZt!|iT!RGLL|I-21+P63g|
zX^OO-06{>$zt1*g9HawQV+HSJqA}x{nBO1d@H`=0%huLRUmWlXg2yaXEfJtSR{^;K
z;siUX2ZuPP5Pq!)gNJOjmgzfBj%Dp<4tb9gkAaGr9>Qk44EuCpj5ws?4;j(>h(6aU
z2}={Fp5AyQkH&t)eF->U8Ev>)s6P}5gWj1{!4L(C=j&nQ5PulUhj42cO#9Lc6)!JM
z6fyDOr7fa))qX+A%@RVlnu7(<rYqo7eOQ}BEa=;L$%F=`N~G?bbKhke@l<99DN%Dq
z>LY2@A=mY%%hpW#_v+}vMm)rdBHmFerBj*u15yx0DgpX1(NY>Kb=V-`>GCcYbG~2~
zM8xgAM}lV$-}gU?_Xq6#8e*>wE!Vv6Us#edXYbV)4uVmp^r$8E%6Jo6K#7V6)O|)&
zymS@sOeKpA3}JLIabnN|0y9=Tig2Y!*X0)rRED(RI78)(LR;|bCDAR!-&z6;&Avc?
zS#=b%hGNC;t)?QlTd$c7x;^gJ?Ocp@NxZif{-J*XLLCNKwQjC6W}N)(cZ@7sBf(?2
zen=UQRs0+y#{h}ocZ#NFoXW3+F#?p^Qv}Vn^$|gyYCw8q`VF?k0C5~S)i94&uXPIL
zO)~S#oyA^40q~#3eL9!B0jkWM><ZmvXNyLnkb^@)wxAU(E<M8pKmk1%WvU@cB8p5#
zqu!&FO`7mJwdPDs4asaU_S>?JO1qz)+(YV=2#EHHXEULArie|+=R3tTTV-rBha(#2
zw~%&@fOIS5#@Uwj2CWYT2Gq6$vs!_alE-e$m@hXUU&l=6>h|)A&YJ>i(1)&zF5nYH
zf{57dxQt?pY?6*t-Y#j1(8Z|F=^yrJ(I{dn^bSpd**@Lt2CqD`j`niI6deY*uV=i{
zRl;w0iSC$Le&K#9eyh+T6%pZ3N7Qyi`^=l;dg_X7klreOUO{<9$V|_;)wzwqv6KgB
zmTIN0QgrUqNLYTWM?Ph!LYTF){8q!c&q8F0;vbUwCh3wJUPzw)#Vk;A)wt6eKfSFU
z*;8DgNi|8|P%U)e^eZ=iv+Q9Qm;RHWVNi&mddA_7?q)a5NNT&7IvLO0Z%%}mvg;Bm
z);t~(K?s|QJZw;~)}q;lHZz?HmQ?jGdT`B%f4EMMJn;r2R5wOhYA`VN5hjAqb!=#{
zbS1vZtqmXG<9eCKz&;|rFBUiOkOm_uOsuuJHNrR{3!)o1mHipK7C&GUZI*p_^@OwM
z6HXIxX#MImokd2jygqq=fyY$J?pEfp94>m%o{?hwpo0eYD4nI(-yQFDua{{pQMlPA
zwg7q!mP9#9@eX8EakU_}Mh^8KPREv#BlOmtMJSqz?+%RI(Z=d2Rb?XN%Xj5>8jy5d
zhet=zt6qdK;n-0kid4JRO-nHA6;6-!BGxLxZt0m|6mi=@#92dU$e0S6r$k0cXGA|3
z8tLJEsKdHhnhN`R<%bPAlaFncKeX)JQfOd*q)k)3%<wx?3jFS4dDM~6#BwQifIP^H
z={llgr_zwzUfZ1lMIr>p6IpasGC{ls*sm|4K?^D%CNEFW?Ta2@v}<wbiX6CApJ|X9
ztCRe3h39NNk2HpBa<`&uoGGc@rARkdMwFHpGL2C<!BL4O_(35oTDaH3>X0uo&A&cF
zaZFbRwQcu?BUA>g7FAo>8e;4zP``7_jUa?*sPD=a`KQ?Zb_AZ%&5S+$6=7Z}U{e``
zk%$kq&jE3Vu~`JfcPRS5mI>b&%SF@u7_mhAVOY<YLqick&N^Zfp@FMPU$J%Xd77$m
z#++dlngeevKH{>RHB&&1YLGWkLt*DyDdyZVyV<!;B|!mx|2Q7%*$OxX)Wh@CM5uRr
zX=DH#F}@)>GgZe$4B!sad-qJ1<r=~)!4KHC2KgK=`i5K`8L-$MciOa<$(9yP-=6s~
z<5GoCRRfSnIv0Ia$8x~kyl7A|Qa}$A$YHWln=+Td1ll{XA>|PJV(8DP)N~+@z*GcC
z|ATx$9C5_%Z-~#1mgy3av7?}$kGM201Y~3#t5%gkktFFGzGPXJSkue&U8ec~U;vf_
z?u@r2xG0%xZNuVSQ8ko8$F(^J?#iCVl~vmYekue<Z&L@&wOBVUSehkZnKB%1<cblk
zxug7@;f@lqDcit*QO9U_K~gN-5~FdUhRTq}7$&BApXF<M$$?i1Y4__i7Z|F7Hz9?p
zO3`Xd699+e(XJ~t(oV_W!Ic#k(+n-w$b?=3;wJ>3>>sLrK0Vhs5n+|}JW87yTg(UD
zF9~Y>PdTbOH1FnDVh&3uu3nI>b}{Idie-HXZqo21Q?a&m#Jz|?LyL%03=+VHF1Jtd
z<%`*)4x0I~okgS!h@|=#-BLvFcNyyIy@jtaP{qGO`yP~}10F44Qo(L!i)?sCoYdO(
zV!p1ubk*x!U~Y4K$RN?GV0aNI*b#WA;92U+(DG*sCZ0Q9_C=ugsCGZS_vNE+sy!2S
znUOmU*S-|y-BnsDIdKnb)8CebA;fv1tL+cN$W3JLV#)LOn`{0)OOdw$EjJ4~ozYVv
zeqASr?|}r^dk3n<z(w+55%9{v;jL)b&wIF?&p9Qq;(}fuN72iE<O5hd3_|%)<0rf}
zUEdeP8x+y!uMjoy#fLiJEVY)sXEB9o??=VEIa?%{Nb(*5Ej(I7lTPvAXei#OS!+v{
z2MZLx(Q%B9=Vs9ZHkA`Buc2^xwht1G2zM>{O;2lQKC@l;B9N|gdm6I`q2CWUhrAUR
zS{5ExbSa8=vPU-&rGfycKoTF#0uEqOny>wZ^!dMN=}l)Bvs=-n&TL=IE4C&Lz3Cwk
zu=nT)z1OFJL!hAv8$uPu@?Mv?pSy^$h9l(e&Jthdpez^;hf9hhLuGt|zY(Hr@ZL9>
z(~vi{u@H5Y5f*YCQYm0ys+Tj6C~n!Abs9WUx2E;{j$4u>fdcSc7FFM0oViOo1Lc=^
zNLrxk3YBVaAfDfIAY7ZW`RwDnU+3Ln3ZTN*C+!NKFGXz95Pb=kuHRud3GAHYF@{Kw
zU53W7`RTxz$?bJ}G*FQ{Gnu|GI$J9G>&sT}3vh#Vmu~fE)XX1H>~cK2p@meT&$m}k
zdb<8Ljw<b5WtQ1Penk<Xa7M&=XFj5GDEz>M%;e^|Is;enBUZcAxuzK$R`VNJs8xzX
zScIF+9ieswL<2#tkMgS96BEe>b3JaS>B9>6sQf>f6#s?zkLlSjoc*~m_z||P?c)^_
zD4mFhMXltJ>oDTs9nGrj=|xH~eQ9-vTa`McSG0on?iv0%0k6j9(?L>mec5mo4|4?^
zTjrgs*Z&6V@@HsJ5!G9lgW4-r1;d7!ex>|#LmN=(@Ko;tG_3kh4Z3;6L+V2T-wAUy
zAGsDg1(O>u6trKQZKp{z^kwmmSJgGAx>(B90i(+mu_BhD-gA=$_Dk=Y=P?~oHP1(E
zx3I(NEqZ#RTiV}<yZ8NfRQ>!9R%b2MPK5(Sc`cbV=)z1{Wd%wNUNfr;-3FOTN7RPT
z6^@AT5BOCN`qUy8f`5&OV;#X}im~Nj{!Nd0U)n_eD;8?B92{>Klf}v`9>sz<As*`I
z8XuS>G@+J+_+4GfN(!FK#^+xg8*?C|Jy?(1It|5eMSSlla@`O)&~*VZBka;>#76mB
zt^7LQB9hrCELRCoR%>E*91e0IbCd3;f7bySH3#fBCl*N=9HZNi{O$U9rEjxMBfnbF
zvN@KLLixuHHrzvf0Wbd{)8Yt-{;mTG_C{u-5yS?P5M9#53LOpy-N50|8#+NoIlmf0
z_13!==g0|(`(04g)g*mMkiQ`)omdWSn&Y%rmFEQ|d{?s@#Zr|YLsMFG<)&`~_sL#a
zX6zml64MZDzuBQ*-;B5fut=OZegsn%SqPTID;-NROtURHV79tb@bM@^MY4A}OEeR_
z6oaT~usPbUDxBytdP@0H427H4sMZt~O^djBv43=-Vnt)@sl+?SzjqlcAVtj{4P!@Z
zR!F_ejX9W=%MW*j5P{gFRb1pA5W4@m2<Dhsk2b03W#tFLTTo91hAnrX{2|6U*0h0C
zB;&zhPRGGJG@%08fz4(us1Yawey7zLPV%oUT5xNO{qT-X!!MY5h?(+=5|vx~N}U8`
zhSDuACG}8Y9_WqkZBgFtY#&QxSA}&LK~qF|rtMhs&_*VaANBVA&3Rh0eIzVq&0>~C
z1b~7>#~IVxIJd9Z!}?h}JL(p7dDo?-X7Qf5d2l!NT?dkTo^VwgRgqdm$Wtw?5fmYh
ze`G^}+k-b@&~{z>N$Q<$ix?h2{hjCcaWqxJ`@+@z5zz^m+p35w2ct!%dC0*?H*be7
zf+DW&>Cel~g-Y%?szks`imZTr@6<=KU^Lf(4W@fEEYCI67stvt5iT-;5t06?sazAi
zUU%}F@mFPvWd)<Qd>O{DPC#+L_4H~h<Qh-_LV~d7FQJ}k&Eh3IH;s8Mfma1=*M|_Y
zBOf@Yh<@Ff%lIk#tQNnhD?@Ji1z<TU|Ls!M8yI*_DCB#^QtLyS%pt!~WgkLqqhDql
z>Cv-dqxmjgTI-g@IV96@fVZiv^1U7#03zscG+47V<y(6<pE4HnKedF9mKGytjRHbq
zT&W_|#XqHbmRO<t9GBuN(4!W@U`{AJ#5*)uo4WT3iLC<G?IBP<0{UWt?rG)tW)_s0
z+uT(%4d~G77N&I-0b{ztKSV{+7UR?2H!Bw_FG7VUw{I-v<B2xqU-2nWufR(*B0ZE@
zw(4UH7k`GjmRh?}&?(?&rOfEe7x8;HKIu@pjKpVyTi1HsnSj^qP9jgQ{vI}9F_I0H
zuRq;NA|;(^8}&q*lDxTlI%u6K;GC9q>>lOAUd@NB#w>3uE&x4_cM2W6MY!4g^_Ph7
zw;TFF%fNaRK&!6KfVWoU;IiRtYpLGs>_d06kk7SuGJ~#osqdS|US-<Qbq9>=DfhNa
z6r9nS487U>O7#uiEeItrUJb-Y2ON_0d@Ik)=mQZck}2%XW8Gk8?>w_K9Xja#s4NAO
zsDzONta+p**%2hCd(qD?ArKKUtGm;)m@2?Q8hu6Zq6#^rUE9%c%#c>?3Lykt$w)AE
zcP)C=F$gXq-XT-8oI4+LFX8uD9*=rbX?WUPZcVBh{RqeO*<ZwXiICq0nV!Y-A*T_8
z496T2ky~XxJw?2x)cb0bjent$sCijCRw=tETUs$1kyS091Y$FqjL(G->@x7PuYAa+
zjvitp>cCt?Dr3Fgq7vpZV<I5nK5vh-+r7oYHNbT|7NTVu`*9|<i<VIz*<$b@rKS(e
zdrjLBm$Z~G{Q6)ifu7e6S)Zp{{m_GqK^3wqWkg%mEluuczt$rO^B(r^iijQ!C1bI!
zrCn`#U9b4kTU`e8AbaR{3W7!fr`m+5))lFQA@ApQ*im&0j=(Cj%&LW0I1;6}SRKUd
z3#O(H@?n4N=Kd1PVEO^|2qg|06DWJ})Z{cd9RU5aHfCLVrGSo(;@xX^@+Al#`$gy|
z6f+c%QKLWNRh5DPwi3w~F>EIzVo|Boc1z<a`o2O)R83ef9q`bZM$jZ(ZnL3jfuC11
zRo{-g3Vw+<qlIzz$_C>$o;#3P7LGMw0T<}FIcAp<6t+k{#_j(*KG-lF1^vKoJ{$A$
z4@;l(^?lTV;8c=A2|BfL$3xQBF^;Z4WW$%sQcGsoT5UAXcX}&RbT1qQMKGgkH9nd4
zheKXrBpRsK6z(j+Y^g}r^2>tzx4NfV#5cMaS~V7nd^g_oJ;fmvi}WpJ>6`)a*>3b7
z;WWTCSl2$FZE=dX8lAekwy2Bz22I-RKDiP2yP75fRB(~A)2-zldEFe0UbDM+<jnED
znB`X}HFOm-9*srwE^bxTcvD1)`knaiQ9Y69K=S>JM}i@R9+9}~lpPtdn}SqZ>MwT;
zf}#f4cp68{Ws|ilT*k}oOV7K}IymodyXwFsDkAc~=@ECC-_F;}kb}hvvu~Azmm5x1
z@}7Scr?8F)PsYZWD<NQohPHZsXh*8W*aC(gF&PtR7I_lohB8Z3UYKGy=vlVOM4~5_
z&M9h1{P&P9d<%>>t0%!49^T<g45fD>Yg)nqpOa{?ELs;R4JhQ54FQxJQB&VtREEE$
z`+lG>ydtkrV7xNdIx0qq2_Qi1#6~XbQ#^i_!339Co#Fv~?0UrOwbO6fUg$zCjEF43
zbKE9IIA!|<SP6@&qTRfwY?P5=7bJyh0ferTBM!9~F6ImRk`fpQ(o4S8(>$vMg&WsD
znpCRhKzHZ$-@Ob|_lY|}uH$brjhF?XJSFS;mlp^H%6^|-kga>^07cDnCC)ig7a@CK
zj^*_qnhvpCjdX-=E7###B#4ABgC<*)T3W6{@Rb6;PQAt!J{);?x+1|4Ny#@xhM86!
zS)YjisB=fw%6tcH$Rnx>5F{_0CcS}zJd;htOE{P*q6BP9VA!=<nVEjcqnHa|CG4dG
zG*r7X&@~Zs=eqzw@$&^1Sp|MwCN}qyy2z+lsWhi!P*t=51<5Q~w-}h6ys;1viXKuw
zQc1+VK%B*bB}^Q!*NIp_VY)L9Dr`qx8bg&BMYy(kshx{DvKR4Y`^d0##MDbNFXqy)
z)eGKTV8XH8YldLejHY;ZpZN3~JI8jp@9<Xlwuc<5!@Awe?JUe5xsMKnn_O;`AVsn*
zIjeeadU$jMJ<wNXJNb%}b%)B!kn9kUJdXi;H9-O0%bj_M#7VGmI(pcu)&rMXbhR%4
zb|uWcxzIysUxUZ@ARZ|~0PaeI`u(P>?^_7*|4m76$aF?GV(TEeFvW(KoZP;!+_dm?
z%|1H{EY7#yl5h_Hen`^<Is6wL(?ST4_3XBQ#Go4320r22Dc_VD6rDJfuixLm2{kkI
zWoU6KbK>P)Eq^{nj&|M|7rPg!vy7?fW9|0qyfJ@`kV~HI6qeS4o?taySfXX1kU$<3
z^MvAXv;*qblaN#wb&_9ghy+s0N|fp1U8*;G+%>13>6svyGzsO(xJHJjF0QL!uaL*a
z$R>znVo5CRCQyP|5yOw$^);Kskf<D80Rg;F$pul<eGoEt#Vpnb#6>|wT@>G@S5O<`
z0yL(bu1L02<6cVQW0%5jJ6$?Prdxdzi-J<V-lPWvyX0o!kdQGP0BL{DHZ@OWsreLq
zPZhJ>N_DK1R@qcb*;A-W{+ySFoZ9H&vga}(_X>bYfi|&a$(UQ<oF>QMh}pyksoXSr
zP@9D|ltdMDSeykXHGfc&Ki6KzuH|HzvTPan#^%JeMmG;^PQF{zJfip-qEftDpvpyw
z6UMf2Hx0>-Z3#OoXE~%d3Ybq}rCw50vsbv>1E>Zso*TZv+KI7pE=*TFB(GG%C2L*6
z6f`>p64zJod7p$?y(IMB7ta1<lg0d7yh+~xa~~xi5)H9A$5LX{Fly64Ynqo<VR0*a
z2Z5&JU@eOcK-{;E+q*P;#P@EOo5+e4l4%nm`&YR4VP%RY)YlDzdzYEU&%Er^cApJy
zpif15O;XFcw`I&B$B`b6xQh8cW>nH#2X2To-vL8*ZrJIlvK{G)iVC!k_x0T=??_SY
zK4PYp&1QM6)0H<M@I>y<skGJjqb2DpU{w(u%Bou6D9f4LG`Ei+6i$*-^2%MQHn*K4
zZ47tRD@$R#19&?^!gPsqk0z(Y8}_MsOedz?$4TF!$>WYlZW1(*q^=DcJYVb<YOwo6
zLANhDzYv2|zB9m9gW^h|i4t6?N!U6oU<g4dU`?L`2tL;99N#AK5yPg}(SAb9fRL=C
zSg`!o5fU#-LGp2|jgZ?mfrII<51(d?1JIf&)xe5>T!y@+0+RVCWGFn9q-7Ga2}c73
zDX2lPD|D@66ucAcak9CUf*dcsh(SiMT#6~Uom5N>+LOew4ae}OGFh2s4U50H%=a=8
zz{p(WUlNXt{HtSnSx~}hj6?#HE$(hT9`vO(0}8A5pRVxXHop2*+{1EoIVtD%4r1Nz
z(Sr9LDN~)Avg0=Vi$Bc<Fj_Fi!+KD$LbRo0FdO$sx#DxRxKJV-g9nA%r8ypglaAN&
zI&G+-MZDf}9*Zx7s3<Xd`KKm+G}Jhhu0|tM;&4d&2qE~g4nN^B51+B;am4B)eW#@r
z`eQBgkS;3-Fp$<dUkr02A|TI*XyOTJ+B7K9$Ll>-iy+ml8POip8|aW!B%$FYE@@dy
zZ`&~BeIb?2?+dH=L%c&xLk2rqIV(lnxe1aM+waQv`o-+U68R-_9|SganW4iOA>Vl}
z44rYMZ#S481$aeYa$k$8W7cKV-b}XI3QH<Q{2xySw_=%l9cv?Be@S$Z19~}%sCe(0
zjBDyLSUYbc`{23L);PeEG9M@gMWaVC)0QD@D*i>msgq}bP)e@Ms-gn9{rj$bjh>AT
zewFfdz@YN#+!?dy?r3%&dB2T)9A5pDtix*0D(Tn%3o4EzvY}lc4cDgx9y$X_ovy8G
zmA(yW%6NI_Rrb_ZhJ3fyNV9~My}ap*EQBu<(kKCnS@F5ttLRW5^pxHDm^FN%6mp!I
zJ0uIy4dh1}-1MZfMQW2g%)LAzWdIx@VIlklX5k7EhmE>i&!!D#(K)ktM2N!W=%9aD
zbs7qMt%Ggx+#Ti;|6&Z>x7LoYkb@SD6%<#r77xuyKV>zk07_NM9g=>@>|yDk^XvEI
zkuBXTXWD+^AiftT&n(M8kgg#RRlOGMJ+7>1ka<cfinP!3FXq;a1xKW$B!pHx|J$8L
zC}LDw6|+in;9Y2%qP)}8*VaA7()<+M3i%FBzgSFa9MXEF2!R_m2nlIR+9ULyBcyFb
z-?LSRB+<}uv5sJa)eIKKvhH`EYq2qKRj$j>OpqeO93KiBPKfmLF=tTBS7?UA9}aR6
z6KuEzaOG9`-se6Uvzre5ZUgu906irK(-|yQV*Z+4jZ)O#blg!x$9X3UvUt-)pqFkw
z9YZ|t%ab$H;KFCX@dfOf%_D}9bcnm9V8ZBMn*^AGo^jPGCR<xJ>u@gyoNJmMw9L|J
zg*l?t@-Shyflv_F{^LUgxRb81x$=zb6jIRL_uS640V?S!w^93ODtN{2mB}Oy84kJC
zQ6D6j$ujXrV&12;0R>RM*sb3BK|wh}u6gY6cnsjIV4Jjh-nn7y!aFhCFWIPS%427h
zWP6pPsV^Cas?tsOGfuo|?PAzRQisM)Kp@FtZeZ}n&F#kI$uUpH6ic~CUM6D}H6ddz
zWpWG3{)#CXIFec^x*R(`T;#a?YJq1d=E`xxsy0)>XLb32E8V*!?t%c6pH))30x3qt
z)FA-8U1XDM@kr1Co_*mYWwlr=%$zt|-v7k}6%;Ws098zkY~wVbwQPb*&5d#lu77K&
z2mpxubi^Dkf5~r?aE+sdV^;4Ikcs*#BPp2geo?}RhC@0)%&UEJi>Z5pdA!<PzE<xR
zD<cEi)P^Z+&wwoh3bi(9om!m79xe-?Z-Iz6lMX-O6inJ@Gc)C(@_B#p`b@A5#j4_Y
z+{jo#dddR{B)`<<<Bq>()%#bTi;+B!JU6kvmX897$#Iv!uHGj-H6XQS#onwDQ@Ata
zPji4MD(19*GFqZ)ZiU}?E?DW4<&`q0l>=@ou9|tTZa}}oDf0qw6OP$6?HVV^JQPY2
zZ=(2f$fhPf`!a3;u(x7RE&3^HzwDWhIaTRHt^3x_`a%u?@W#O_#4&4IVxNFZjF`v?
zZJ$5VC!|=><{edJkf0(urVYg?#XXLuzVP}vOQkp6G93jK6+yEIT=t?*GnY?Uak4ND
zkRi)3u88(+zS(OC3}md_me~Vl{;a&<CBp_ZRubJHUZ9z*$D}f7d6~otYDKj-#C~1U
zujI+ZV43pL0}tew$)(tV{D@Pe<ZV);lprQ1WD)XZVL@Nu$`k{oHbEy=%n{Wzv=$_d
zaZ5Qj#AMwmC|}5GSDxE4U#}H0<v&T`nGe?R5>#Gb75riKXy92|K*vTd6}LO18H&AU
zXij*{fa{eWa)hG#zd*C9)3Lxw*>EG2^dtMRZ0%jrC4@>W^zAk41yq0P)4yex5$!(k
zB2I&CZytBArtb2A<6bg-Y3;4^u1aA9;)Z-c-o_s4t=BvYPR>dynk$ajhY$6eT1J<F
zqe8yZ$CTs}Sc-okXD6kcm&#i1c;lZM+jl5^zMl;73z{fn-lCUm+NDv2%g-2~i9RL&
z+Y-g4A_JzFO|pxOrzGk87L;O=^{LVAgb>ud&aG%V=5wl4DR3afm_vs1I%LBVFm}Q)
znV+G6dIeHoL9#;s7pG`V5DfAI^K?Byy`H@<00j=%wB+CG>c%s@U|lZOxbRr89^(!<
zRZo!uIeWB?x{)c%ZuAu_lFcc=)j6b3!@#Bp)m~=tU<SB(96q=T)b!7h#KSwdRX43y
zQAGZ`Fi$XQ%VNY8$8wQ1U#^)Ak(>$u7F}0lOMEsJ^W9kzN!TOz*W&C@^<_>s{%+OQ
zATlchiBMP8n8OqQ^_A}3hRP+xX;p%pVHFRA)|67iF)x-Rrfi88#nr3=n;g-$LJdY^
zFAEV@P+TS!*RPfy>2!IDOrKF^H5MPQTJ3n!6sw_*tx+2wH+ij)D8}tsu49fw(%10M
zjF^mD9kS-4twqd5e8Ai>faVpiZ6keR$@MD>7pl#v)72*za&w;9ronW*mP2i{&oX5D
zLfX0xTug>U4swfcj@F-I*5M9UlkM3mMef#{L5>Ety=0eS=@emzl?~ZQ(G-*NE@Hlw
z<28h?nXpsfGPliq<RBQNO<i17brH%;8X=%z=-%O}{bOxA<j@<#p<ZSUjJvJ+h^gK1
z=RB#y`z{SBpaFwl5{3iZtjt6m+4sxT+$`@s+q{Vr?*BFP53La?s_tu9RDA6tBp^Rq
zbS&An0Bswlt7~e6&&Af~TsDvir5^p){J=4b!pR}8#B3*spOEkc1S2mzP9D_>Z)11u
zlxD^DFxZ<~+C!8T=*wC;1=4%`*8maWnA>exV28>~Uya_SsS6TL-7~tj60JQ~Ld6XF
z<#dVEfh7GP(?m>uN5#ye^`)`j;L8v?_!mkSksOqDQ~{L}cj<w{F5&1`Q7?rY7JnTA
zC+=+=^hJ)*PdN?7V8A(Y3EhlnrPCKrn&|Hrg#8`?ub18or-}$zgmIqSpAt|>7!XKV
zM_g_iG-0nJ;w;No3XQio4q7NH5_1geZ}I!sGKuDM+$hENbZE8d%;2^ZMg}_x#q_d!
zZ?I&~a(Xxbh)Z6Ev_UK$JVQr~kkSw(<V0sNLU#X()l`EM(377KGCDinty_Hr0XO*%
zB%AZ<Qfv$QUYQ;f^thC!sDJb=M^tZ~&*%mc>lpC_!vPaV(cm&FIL#qP>|ewf;}G#S
zIcad4DXXSaX?G0p9YG$w({g@y>GnI-_a?%=dbAKQ)_={Gb;3;5uLDs<41S0;(w&}B
z{09}zSRTfYnnBfVc{+(x0J~9kFjEydur_{LL{lAcE}!gN_OaxFJ!@BD@vPr}T3z!k
zc_DFt)ku>ES(>5G-Hmvx1|7ctYhjGHbh4>G&AWLKm-H!Su=64!I$`lv-xsn6557<m
zFYFo&qXsD%GpH3uA@{atV*n|2@HOK)R|w%K<U4jH#z+q$B2qZSD|@%%NXr57Qh}ej
z7cOO+Gk|ABL<2PfP|<vGwrt8yo65b-qXzrLOjHW#MK0~{q<8)HPL$O|Qy+pyV}}`S
ze<W9g=#EKp#G^KJwrBlkCf}ABJTMYsgT2$n8t_<w#=2jL-~phe`Tn|g9PC=L2Lo1v
z4?V1E%{tWxz+|c(+z|!rcJ4$+YDojWNY9k!uuU9xd<<U$5s;HZuf5;@g*!&XV<$!k
zJh^UG{X))<5nHZ9zV9#I-*G>G&?mO)oymKAsdz|KeT`eSGhYk)F@@x!a>$lnaVz(p
zxMAt7Qd?=<gQ!wO<Rp%OCXb9Fry3eJx+34(E%w6f*$G}~Q#hV06o3*UKS6dVaw`D$
zWY(YcEdXpsK&<IC?>m-Eg}SFBZl8>Z(!C<SZ{|yR*{-j!(rgWkP?aKHjYGjnSh)*)
zN-WheB&v)0Q&-4iJktd4tB}VgbQQXOE}i*>bg};u@*y`CJU6sEE()p<@|_)l(SU>!
z56Py~JQ0eRB6^*nP~&WU25wgoQ#FGYl+u7f4=N&JajBp7a{fdG^tkKaM^ZI_fR>aR
z-wqOBVrB-|sFHL5aQJ@cm+gamuBtBF95#Wd>XKfdphiBFs$;yR5G0L5O~1Ko6)?~7
zLEBFOU&ZV?WS#AE{C#m<vF|P^RUuU!-yk#ax0tNxs=_!|9LXzl6!a9lSVNUmS)9K=
zmsa+-*Zm@1sdB@?lsyWaH-Y+4NiqBUO0v6wY!Wl+YK(j<-hB#bgjfsFaD~JiR3Wz|
z{K^SJdW1Y}%gh5I!-#m3pt-J~N|4Xx6vjMN=#V07Y#!1|$<xZ}WTJThY~N(y(TY+4
zcIH*YJ46;Cc`$(P$g+bIP!JWwVMUvRMC6r|3As7J_=snNVB2bo<4AW8<}q42klO_!
z#Ma&Y+pRtsjaNyqkW<If>C8eE(b|ctSg{=6<m`tg>blThQw9K8P7&$-2e#!sv;lkF
zeTRzDeE<mFi-`6>uz<XDs_Puu4_d4h;ZBDf+ei6265pE;P3;16Ph`RuXuLvlPDzJ$
zsQuoKIvH35uRQ1c9oY&7{H=Nu0hjd-efZdqB*_tv+geo0>Tz<wwFIC%@@gd06s(A&
z%5(rbuQlwYO(%O9QwFptI>XStQ!nD$cd?5Pa8q6#S-1GH5D-N?!VFZ9v_1WVuC2-W
zTxHxi$Q*Hh5qm1NjWTOGAsVCPoAu>v^4548Lav_ZAesDBrGCVXtS7^-)l?lyQeRgH
zi8!K-Rv@z;8wE<)Ei{+iHR)nmVJ08(q{nq*R<3ZqF5sy2yzJLEgu#=+@s>D96LSkY
zqq#8=j1jE_@RefA7TY5YTfe;pdNnwl)1yIty&Mbx9`k-YmOOhgk4&eSDJ;969`WFA
z07JC;5ZH>#vrFg(+FlG~u=_ZAt&}>7xjbkO82`?gHDey@AE0t+56$K2^2N8>=Lmg?
z$Vrx1VJ%!+2sw9ENc)N6Uu-NWURF8jMt#l^L+~_|QUbiqYpkL@BQw~t;O!yLSercn
zz{Bg;LPbgIwHs#H&>=Ud8qH_#kkhj`KV3RvGcpIoG#3_Dm)er3s7s8XRlnI%O)TG4
z0`4yZzjgzD>%ADW7##}7^tcR{@}>IxT{%OZWyh#U>_oDDDT2l0c^zsT(4ymuqx^KT
zhBS4p=52v-Y4+~V{6cQ|F}~ZS*$NJz?e@uevQm<`C#`4MaK2BX!w&5lea+fDN-JF3
z@#FFOap8J=%EJ$}pA5z*G6XNv5Kzx_-`(BCaj44ZURo>Q{H6CVX5cZV7&!rlYcs`+
zX~%oLqLZLu9J5!st1l^Tu}4bIIQo*B%qx$i9!Q5VUIY+Tb+EeOc@Rn6;lRv(eqVCt
zfz<6-P>1$q;GlFC^gR=QDcl0!UumD9%Oytpk=@@5Q*tVLU7VL5&N#U*oqm8x+!7sX
zOV<da<*B=Q`>z2rjZaz7#?rSOTQtfWLW93JuIwMz!?|2RQAYX>S=X*{AG-AhmhTri
zm0W>u%><1ry#F*7vZkL!u`ij9=3B*i6dFrfDNIQ|dhm1?lo6Ic=TJWq(H|oub6SkT
za4>>ykIo$ttJ?3Eg{X0U9Vw$+T=x{v%USqrOVz(0awJs^i*d!94X~(c0t7A;vs?$Q
zbcYGry4dg+HC{nqngPl0RhMhbJy&#=1qqhmij{%E3W6m;QAv!TK>rQK?rP%TdsZd#
z6&`^R^a}F){%=YfL%uR^<B&;aE#fzR!P~@1i!7erE)t{D1!MB5my8t1BP8Kmi^=;}
zjk7}|-1bG+8uI|fc49?WuSv6AVl^|9(cvEBf3+jH>XeP*jPz4&zfy-st{})d2EY)*
zQ=3phQ&Y?rKU0Hcv?A(rM@m?<0OH+F{7#~pdLP*(Y2bb$W(taer8~OCAPfiKk12}!
zre(X#F9=*_3Y6>iOo=HmPL7Q-TM<-pOjFZ1(#2$Bz;@+<h|+Sb?%OpkI2bpox%VIF
z1aXPnorYRN2(S#<W^xxXqpTxn&(>?Dfg3Rg&4Ry(epP_IpHKvA?8nUe33|{(x=R(1
z4c}vSNfBufOD8#fzS~R!iS+-R&0L_Fv2Kx_7MpUnYC;?RY=VO0QP6isJN;mwUb2(E
zQ(hAZtO$xfLIe%j=D)zBWn&omu^7!3hW64^ct=z92c6Mn54~c2&tn4!T%JevCWq}L
zYH3pOK>F!Km4M))=9c%^GAQJ&A`b%lo01B*NCZ2qa^#hnG<Q%F#!gm{x#t_NIcj%O
z%My;L3n>k$jZ?8Ial>LxoKuQ-DFZ@8){|ll_~RdZ9*#(gX`Q~EwswyAjhY6Jq^2mC
zp}5Y_+?F)p&bbOkL$aeHmK+y@^`d-;<VO~deOCMM(hpSB`X5N7Cxirb_c(UB2K21s
z$OZ$8)a$6QDPx;r78RWeXi%d20UC`-HBRmxRnZZ%y5<f2m&7v|MT?zVM12=!qziAg
z$Rm>ZvMC^t-eUa@kGTpg?buo`rsy;b+cdp?cZm`MW|bv@am@_z3hzlXvs=|2iJ>+T
z+szTf2#vpAT>niDfv~29d3Z79=)MuJ*V|>(nw<Ohx;|)}yBRUu(SyE!qNw*AJAMso
zCKT*H;z9Y~&5U{Lrhvwi{o<HHysT?e)^|7~bdyioj9tMxPy<Osynp()!iFKfVd(|d
zxXvW_6%u2DD%})RZ$5rm0kGbm_{b|k7fev+wO9p*Z!DyPrf5V(m{sm=iIwHCqWu(T
zZHu8!D<NU5EL-kZm8dp*Kf*9%hOqCs6YiK`NKx?^y{ZMhhxIXV-Sik4E~JDE&=Qeg
z$J-0mZHSc=3(!{*<&WVgeAH4t^s}LJ6^5>qK|y{;*rk$|DWHq-8bD8?7JAJ(mC&=w
zXI1+KaJvoKiu%g5Twki{mGm~KgEsfR-;U{ezd+yu5YjoO{gyaJ;|;%Ge55>Cp~NkI
z-W$0+|48Ru{2WDwXP)ClcnON!Wj6LAAN8XGStk9|DU3DZ2Z*U^UXHEX&R6)#n3J#i
z1}Bz(m5|WWtKJM2H`(sX@!|Vjrbc)ty?arzQv>jwby3p4(-fD7pAXjVl7yD$Da&!?
zU-<rs*6`uClK$9u_hvqEGSg^S$%A{Sar1J`tx5E@wF#+%W8Q85*#d`C<A@h>2j4dS
zfrSHy{JBG(WBW+N`O`s{z`uYiHEKA`B<=v_NfHh>@guy)yK|h!qM#&aj!Rt-P6w;H
z8aecqMfQI+Q4$zuGF9JNwh%ok#gT@DV1V$WaR83+wuwUn`zYUG)xy|Jlp@XG?<c*1
z$B&SQCh>MiCt%0&{^2S0`+3^sq50IQFdApR06aD2^8%sZd^BCBrQi53MwNE9rJ_yQ
zs$;Pr5Vl%L>n;UF!A%Gyo6J(W4wdgL=hK{mG5yu0{{HcfM0U6c0s<L}8z$KDG#CGI
zMQugRuxUf~1M*Q+ka6^&<c(^N77AID9XQ~YFIUUhvlc}-`1UKN$gZUL{>>S6RfFRl
z@A45wX?V*DXG*5_9Sz%<kb(=Q?}YjiilID0KCvTA?jtCyG^viD!R80u*NIwdhRvL4
z)~FzwBEn3s-Iv51uiahS7ZZe{o^(sh^ZkpK6zJJ}NnrTqC*4LyA;+VY%dF)Wm0z_*
zLlfnf>vsygK*F6Ae`w>|Y1)dW6*IOJ6647KQ$}j5Z7~oPbLgaJWkpE%U}lf2i5>-;
z4#M+a3C0C=9a7dmFt036FmzA8-#!W+MJ%bKKLlTk41X%-5oz=l3^%qC=Fz?!3z*bY
zfw&STz4QbE2!?uZDqq#1gY4j-s-V>43W_eRf=<CZZZqA3+d#dW;(Vt@W#ouRVXD5E
zVgZ5(OKGU7Wy}1|f_=;ETdp^Gk;7=$*X&(>!lAY&-CI8-*@n5LIQD4y^lgA9#tjO1
zrCS7mYuSQea-}MwTRE3<O#yG}4WdT>7l-n-+V(q5S5`+|*cT|~Q844=VzHeenbh}2
zFxXK<wuuXDGkM-WQ?1Bbijxn859^1=Ri}?&#v<A?`j_t}yV8IIQ6^;qTyo<}Hp#Xs
zW{QZlyTmtvgQPDBrbEMxGo;J~XkU`sm@WE%r|IH;!;Mdga<6i1uwyDHAtKn#bWZ<M
zTwB!e1Q|LMb9L#bylvo^w|n_~s7J1H@$g?j8FIb9Uo4&$9>@_B0;FRO11>75^HfZo
zwGgG%hoAa)m~RPshnrpICuH?otsM2NU|{HM!sJ-X2a`cxVhP%-V4A&tj*p*rgGaXC
zKz_&i!TeA9_j7ruRq&uRJ)U`ntR$OtaOqO&V`7ZskVb(+OEbI?LbXC3A$04l+Ogru
zuJ?-jNNS!AS<rwJkh3FGXi1fv=+Q-TQI~sU0PZ}61v3yat8gqADqKX`Ma&ImiuP&P
zwWY)l$(ws*Q!|6L4acE;vTWE%J|nD0N1X2KBA25>7L8PW!efhG*i%xaM{7W7RU2KN
z1n9s;7DUZtX|bc`FQfNQN7FrRdTmE*r+yDPtlADFJ|+MsRYu>U5LSVFuT_6ZRQ`T(
z6Iv*mt-7>cX#;1-V)MhD_6aYf*6R*7M|1*4mxk9%`)s(;o29GDlu8uBXh;3~&{2$t
zL$(yJ?i$%go^5AHEBo+XwRqm=P~mrQ$CV&hd@TOq%b?XAtFLBL?|M7AM0HDL845*P
zSz<*W&mmKy5nH~Mi>GExUCry|6Vm4_WDSbBE#X{msy!X$dGG)K?ncMl@~|!PeRRxn
z493v)9ec#9XG!7;IW@I$a4$0BDn$(toY6jbe}AZN)=@#xRYJ>1ua>c~H%XenV^>*5
zo&{b&Q$SKw+IEv_%ctNPzyy6L;QfDEaB99%NE_%)YOPfZRUogEI#f(oG|x{SdCePT
z8Jt0<MnJtruBEVBUK%)(j8xOIy92e;c5VP1T?%_(&b&XX^%h~fsZqu0z7@6_r563?
zDpiwdx0r_5xCHcCQ5KGAx88r?LY3EEjzhiUcU${>FIFG{3f@=VV|n&n52xX)#W4t~
z)?N-s2&p}WjCO3&mw{EM+SHxRt7&-!!!h$VEi;ie>S4x>t=n_a%TZVCPJh`~IJjWP
zayCvQx>tJEwX>3;tLjVpF1Z5~#P4@Ltc4b8>h(u%qF21&q(s;_{3Gn#sV2?fF*emZ
zWR)l|0amK?>Jq<Sk6VFSUe652wN(o<G&zQlfH_e}nY>DZA8QG_$LS1JWj%T#OT#Fb
zc=DH#tAI{HQT*fAXc=@_;^LiGwK~t#`G5e2Pi6kUNK@W+@aV>JPX(2KHRV7D4qxgi
z>xd$M>^*SuKF-E9c7n@)sua8$t;2FNa)f(HF##0jlv4`upib4iK@xlVzVmzw=L2mm
zKm=Y3$GSx1f>#X%K;(*PHo|6!6Y*dx6aVgQVx2WeEvZ{SQ#ll(uc{bmS*mw&Df9~>
z9m+}BaFgmC16o3T+A}VSk$BA8KjmD^f+HyIGqHrgXV_V8Rh@J<<k1!MRQD1-YiuAa
zZc?4*TMauXBXn1_i&{ysD0Zg&C5~j=E*GRtC6Pf@OcTpW59@HpOy!w(FStDgAw)6j
zPQ1dB8CORPLLuYX(EQV=a+dw|e=I1w%$C6eyjpT@?4<1`>yDaU)BMY*)#$Y)a4R*B
zci1(jmULcc?l?(<C2MdJe^S@?lCV3b&%QZ40H*)oN_V;iinf|GUr-s=YbC>%Th<s>
z4x3_y1u|bxIjea8C9H_^DXlm$XEmv1Wi#rXo(4XGfwu0`by}SGQ_wFv@lv{Vu+VXB
zG^7{xB4Wek^U~&Wb$WS3BkHPev29rf^HRQ)c+dGss?AqGm`k0S8Grm4({|UKOHO4-
zG#^VL(FSo$d1ldaYigC?Hfmw;E{O{|r(z9u?wJU=nl&)dFNpmE=FpD`h*{TN{YF}E
z_uBSvZkb9)Z&8o=;i*E4ToUs1lN56+L8x%+g^ZaNne1#Wr6-lsKruf*bPDjC)L*xu
z=p3ozwv)#DF8yi?Yj^c~c%ekjOHvdudzJO-2pc2Cq|d9E?|AZa#_<p_?{OOnMU#m6
zUV^2UU#TU9E6V=}NmnqHa=THCLxazE;~2iqD|SRQq8-snY;{3|QN$)R>Inrc{t(2p
ze5^N(I)&`g?I9@<?&a+zX-T~wI=i*=1^;9^SBxea=|j)4xOA?!<(6%`mNR+@h-7QN
zVJg%(MZ{KD(8FQPqk%D#T8iP>>~yKSwthRuXv)=O3C+wy=lc8c=2Z`H(H4;@!!I_(
zSW2ids!@W>Y&=L@iR$jHTQX)%b4Z*IjT<+lZHCF+FJv;VO?ls9l+gm^j$iB&@bOjB
zOG>6t7UDr5m}yG~U0!dtHJ>7{O6`eMw=e|9yh0w1%?SDSrDTtg0oG2a0oc_7)PN9c
z*7$WWezXG4n7*XZ@XEsg^onB6X*aa%Bp!DtJteP4$o{$2H+><6A8%p09U*%@<qWqR
zLcTP2`^C0&jR8vPkPKTDlDSLFP`4+yGiKPtq#NfKtHK8$?KS4v3}f&pHmq*NomxT~
zT8M6yaY9?oV@9uvIJ&J*-x*k?zDb8}JEU$`Y$S#CEf#b^#G~5|c!`lo#F1ACa-E7u
z<@{&3K+|M!TGVwmK!AU-U3@8afJM?LTN-d*QknRctAw4zzZm~-yZ^nPp5OBAIlov-
z{m+eIuwoinGn?BwgNa&3ylTP~NiyQns&+H%)oYoSBMt#h6K*OuX7)-$(3i2U%f6mP
zTE%Q)L8i7eOb@?TT_upG9kN*-kYC0l4K}u_2{^CbmNoat5sZyzJS`WG5?TD*mtX7g
z;d4|EQRZnbR%{HxR7i?DNTWsO1G3-Z4)2v73pSFj=|lQELTM1`h8kP+o@NV=&iNE?
zm3faI5z3r4NH{cUgV=ZnsJBTCgO~2rsw8D%Fg<+^m@|wsv!oNz)mN%fl?q^ZB^(Cu
zNWInmg&gWTye#*9AiFBvOkvlScGJYYdHS#$`oqB;DTPP`{}i$bbA(*36qM=EC?q1J
z+9B_Z&^5yR(&=44JNM)ohJG9vnla|QiS5cuga7cE&QTsaWcOi83F%;*>E{|NM<pO1
zC8&Y!0Q6Hv;st&3guilJT{Rs%Al&OQA+svvv@gak%`Q^Qu#V7(vP;pKx<+nzfGT8K
zUgD{E42Ec`_F(qe`eh4q16zM*-YCcP7T`RE^sWDn@oI0IbEI%wf%n*zYkf!hkf|S2
z*fEuaa91eVlIUIuUVa2T?u)OX)-h+D=4+r-EmwQwnfcDs;lma9XkJ@_o6YdhQKE%;
z$De+@Y<)u>PXX<i%9wv?xdPCNfTZOfNNtr|72kFROr;{ELXPjrGM!C+wvQ!vZ2YX&
zRC$LdP^=t)S9+%b8H%K=Svc?Aog$&V8avxR{VPURQx9!Ye>!Qd(_#hq(F7R<nSXso
zNcrkkSnK75G~_gV$`$hM&HoH(Go*i?imbLWJ1ox>^4bUrz=Q0pK#%B2Xp<{s>ponA
zF&uxk-N3(LdHWYt(#$Q%sL7d~>KKse)5XaA*lpr6<4B{-1uvu}qQMnn;R0y%IXHc1
zfyYyk^yOH+rAiyFxJK=S^isfHm)Z1a;3{G@j2=pbZb>RAEmqK`s>WIh*}w8nlQZP8
z{fyA8oiK}{`VJeh#>vuLGB9h@i17@yC9nn7TSZDiAM*4B#{l(LSqX9NFN)TrQ+B8k
zSroX(1hh{f4KG|rjA<~7O2Y9u7wHF=axK=AUiV|AOA%sSnnKVvQ^1n#oGa-G;$6>c
zoAG5ao`}Mk(YaEO(KRN4bJ+bEM^B^3ruP>5sT#GMYKjV(pW6dx8OBi!DSnB8ft8iM
zvkW`#_89;G(JIi&Cka_>B~ByOEeRE#bct=1dF_{rY^qQq2SU0VAa2%TP@`%TAwF;P
zv5qCZ0~@Fhsnr1v*$VcEhezK6H!!6F?0mmi+}9jaxyReVmX0l?S}L8Pm^tP-#WLbX
zaFjGOAv>~d*k<Y&F;8(r71tMcwAP0(s~)&PoK`QE=Dm2S_yX&&n<a{@h9k}Lp7hAE
z;S#2h&AudKyK#&IZ$>mTJ^-$6XMIRE_W-2spny#bHuRudo;%Gm@@4G(t7W%YEX@T0
z41?vqi>xA8u)|$D(2NlhCWC~(apckUibkz=Ws9-Dj#tAhPO~Zn8H{2gCg+%zE_^Y|
z@PYnrNyYT;XG|@2B^u=}3FuA7HHpBB?~suYmY0)y$!<X~!qQdS^1Vz$6k)IV=s|{1
zA)O(;wWG_Bc4hI4z4C`R(k0{2nDLDZ%Ay{<qt_NYsg;DI)0%V(t;<h_&2qno)Z}O5
z2pSEonZmWW{o3zi2{IUUk46??rbf?iSwy_rsWbOZtDP~MTd-l@<&SB%*=YwT<Q_Cv
zgv6y<tM=`50OzG&v15(9p{=G}Ny!z9xv4@*eRkrNb8^APM|!KMcB_gvft<n)PxdlC
zX<xv=4^tVe+>)~2X(MR$5w2O~>4ht9EJ0z(EosKf5VY@|aBc)HxDv4n6D3!s)Y}WX
z32tRATgAaD7#T3HrCEpJ%GCaO?nKX{a;hmH^7#>QS5=q6`qfgM<%m{+QIHSUemqa<
zJs+{A()cXGWdzo#`*hWJs@GaC@1J?0=4l%qAFf?z3^2*0)IVj2YEP8h|HUZV7`3XV
z!|c|#M;fxA685L`#+x6t&*rm4kJlvx4G_|8-YM}DbQEq*A6r`5Epr!cF*c+cImP%)
zw_~q9im?mXBEx+LY8Uk%F{GRKe|2rrW|~N+DIskXRdYvFYVuw2Y?o(*G}m3sou-Br
zN<{(^l(?wl8Z>PH3W%(V_A%wRMsG2~ong@C>6zbX7=?(5+*&E6v^o(hk96>M0~>)2
z#Y{g&c+TL8hczuNvX8luV62;}xP5hYAI8&CAurb!nI+pC01`BEXAu6U-!7oLtoD{U
zs?1@r1u^Ij^YaXt@n+A4xgD&nZ9pr|{ppK`U|g;5O(}cRWW7aUsU#fP$%y7_n-kJC
z>f2?SLF^C$Rt|2L%&oVI!IbtL<VfWXFv|a=pAZN%s0ZG5_zP$rG}86+9kvz_9u^ve
zTQRfB(10>zj5X8=*RKe8gpA>9#8-q}Q=}dPvP6Z{`o2aEF>A`J1X4t$+p3ze;A6LK
zMq^wUZlvl-gDO{B{x)l6Fgf@|*>&B%VOl0JfaNj@aWs!xhuZEFIi2NF(K_(<%A{4G
z<}e=G5o`%}{eE%{?n!UQbRUK#QuBra^B=Y$$Jkbf*^KC12!BfDc9j8FQ5Ek9TMg7r
z(n*)>I?#1=$yMxc32FAQ>ry~~1q#^ZQxS>cbgge?;&%@y|D=A>1J)+jHZVn3-w)BZ
zU*vP8x=FpJtjhYx3m)xoqY}Cy7-*=TY-k*7ksd!`aUqP9-W36L9Xp%{C^4ogmZJoS
zE$cbzJa6~p7Gm}*h~&m}Ae%N8xoSSMk&jSc2A@U+L}xVub{T$S<z-(Q%*o>v9J`uF
z46`ahCfa{E)n#AmlTlKpi+8J@kEB<(VyO;?QpPVxk-gghy~qZRB+4!`?}IE~4pr>9
z7qAMuL+edVqp2}3`u#!~jAo;>It?RWa1uyG_>i^~dF#1r)bw74AFm`LY7}L8jG^ZF
zul*jMR9KoutHv`SSSWv*{%!F!uha$K?`Qx)K)%1N{sVDH>GI6GFKw7#E+l(u8s}=)
zqIN3~Pm>V>{<Yo^aV`Dnf_Atgh#62q@zB6Ar|WokrzZI3jwcQibja>*E#k+2^q8l;
zT;LBlp5bTE6P6yY!~r@28X56U)#rFwM?$X<Roxj+blUfr?(<I}uW-wYTo^3ooPM3d
zpU*55q<=zVhkVJzm_1~3)*%!)-a0<cieL;gC_{=j1eYN1aC79isXQcsqS{Y1)GGnQ
zx9fES(D>b|l^H!KT5MW{yC#r9G04Y@&AI>@Or<bYXzEcddkHjhdbdZSJHNboFUy(H
zSV;)ns0p=dl1*k{ED$z5;UX<xtEIlot(`p1uByuS%jj*s|6s2p8X&yQUgM;dranT0
z-I0fx2z?U;c|YD301cBYRXNS}0q^t~d6r2-?VcVgi6kk*?4l-Pn;yoR3Rf+M8mYRD
zvf6TXadf%AJFvMXnakmdGl^ZZFDq-b$)c4IF|-zS00M0IFPa%v>#RA3Lxf9rJH?Zv
z+us|MM`5rUb+^Z*LOi2Zz+weUcOuxLy+97)&Pwm@o}7_)gOy(B-uvvF@5RR6>(r9`
zbd01_;2!@kxG#B#Ag4(*8mk|0Z0|kvE);JUS7C5wb#T!#QM?pn?oAL!5ZBZ3ihvAE
zII{|i#FL`c-wz`Vtrp-giucXh$4RPn<0Ji~mp;V}8-j<BOEgyvLpf4qg6B5H4wA{s
zf$WZqO}pRc(d><xU?Ko*1ODQj=EKvd7;ZPM#bZB~zP2Q2Dn`>04Ht)q_EwA@Z@3OX
z*dSjgzThtUygIvk+~m8GMDAO@B9+PDcIB?=u-&SKuO%2VcnUUT_(?%y92WxYSwZWg
zPt=b5E{Blb7&gc`d)A_9T>pFrF{hOx18<&yj8iQnZ<H_r1+l0I$T*;|mZTBFN$i-8
z5pNg?5XX<(XlfufM4cs;)a4Dz6{4xf?pMIi2q$bD-b@ZRrg^aMO?l+}7IVt&3xv@l
zHHm=L`~<A#A|C3P5f7<0#p4imJmu9j<d(jUmY;8Xv(IVK?nIKpsu8^8y+qmNHhL`5
z2qWzy;OC97fi>l7QEL+2F`q8@hxh?=jL)D@0f&>Y=*dUGhCGYTQ{`+(K!(E0`^C2o
zke9WHvl~83I$h4FK3y1R>9FoMpKvKR1R0<j7O1SY146Vqz?X?nVDaPpT-VsgjiIp5
z&)tnWZyz}8N<4*B*O$?>`(H2+ViXTt%Z+>ffn5KD4hbEQpN<P<f(UrXE(_}sztNhR
z?h2TZ;?0bwFw4YZRFaN2pt*d}k5sr?Lah^LPPIVLpUu-+r+obeIu(hx=5RaTr$pCL
z%v8(nv%~J7cRVF%x{eyM(myp(QvCm|!@Q5CJKb+#=XgmUiGZu+^T``vs;Yo@zf8@#
zz{4Y;bm=M9b;O`XXzBkWeU@(MbqySXqIE-C_9(eLRg1jKP#+d-e996WQz?N$TTchM
zq6oK2lCu#_SGZOEKBvc3=zKYi?ssRz5leQ_z>BUcct1lO4@$%lajL;^0anC<!3<Fg
zw1&u&vL!#^u(mOyWeK0X9eDG7R^^@(H>tmXip-aFL_ox11#3a|S^>qhf9u8KBpVqy
zZNc;nc-z$~vkdL66Y+kZorjDgcHOFQpqCRn{H~O6Pv3wI7F9%CRqYi-t%t7MJrnKw
zVa=qP${{*4-t;RS%EEx3Cn|g)E%_ILyFh&H-QBT9A+_t37Aqih>K=W>byFPz@TH&7
zq*<;BFB?BZFjY;#Ku9J6P8I$*CWO!&a4_w`qHRVt?>)HA@Da1iaK8YIMBakl604f?
zz38hZD?w)j$O{3mP>T+RJ7h3FVG%u(wWHSO`$<OsBY<a7^X^{q4%JnK^m_>D%yJVh
zChcRK>zW@@ep`!4hIHC*X4%N?C?uasA)Dr3<T2NGJ+6fjat|vzpz^pAKGCaX2rbk3
za)i*3BJ0>Tr+_1-kRAcQEtsYoyC1iin&rpd7xGyu%c+0C9xTo(8)7&D3Jo!sE@f%R
zB-Gec|KvH+^pqH*Dr8&knS&K`A>VWVS9PFY$eF545PQEljeI`QMi?2gM#yBdBe5wb
zz}-!B4C#D_T#18dX5+n(0#dGN8FkRyDbrXXu>TbyY`uC;Xf~icqJn9q@brt=i%E6Y
z3YT@;({y5eohiObSv*#)-vt%K?%K5p(+JpgJEVMsRv6tWWcctB62~HiJi|y{5J|2o
zhPUK!lLtp)`+aaE)hw1JmH?VrIvdEw>nW*66%qnjghVDwA(u5G>NcVGg)C}m2Tv`|
zot5J0AgPAuoUj`$N9vPxRlQfTTfJ8}(g}^#IuA(>o5UoQbB6%1D$yd_B4}_n#9@Y*
z`~-QmG0#&q15G^ED`UK)kh`dL$T{POr2VFl6nYBTviO}RiYBzd{znY@OE#<E=vQNB
z4)YM@S`Y^GS~upJe=&qg?uPcAQY*E!qUGS;#mZ+ig%T|~e-9j}B48gWt~vaOT$Fx9
z>s0i&Zq3BOF~R|DH%&oX5-iyBJKj_k<$ChnI*vv^S2*~<%S6Cw%JzFN0<JOB_Y;nL
zKHo1Dr0goMo2JZWE#kyq0zB+f`Bb&q#}KX@MB<TNiAgrnONnr<yj~gFedM52of2o)
ztEM<Zeet}u8ae<zIgW;*XdF1F+Cds!OcLxA(}iW}?-i;23-aePITWK5Epbc1^sD(l
z5!0|7je%U@A{4wkek)>?9uC)O@hhzYdeA@gw;$79@@SN4*7`oRvm6|EhQDDoW%oFp
z#t_53PbqcL0u85nMB~Lr;5as>U|7Ne=#0-Ba^G|-bmo}8cD#|DL!qrCr-n(de%N(o
z16}hM4`vkhd)Tw}h`ko`s5l7YXMqcmY}^!j=2c$8aAEr3!O44m!P{$JI=ra|#lz+9
zijDYw1uYF)_?Fggxk_tGA^mE#q=j><0ye3l@W`18k(?`FnTFU;)0-<&nGx_<5$|R2
zYW}>m+ZK(lWd4Xyy{d_iN2{(4*dE@9wiv5B6Gyy`H8(sdmBeT#-sy%r9}#KQNzD76
z;otOhpEVbmbww<qf`R;3Z)nCBj&I$4jla`SHrdA%zgz98y22Y-0jFq{cwl_r;?CrH
zi9H3Z>N=nyV{0Z@G)CE4sMXzXG$Iu+2pn;0n`f{_6HEnXJl~60xjEpH#2x4v;dH=u
zHs>2o<N}Ql|B!{GcvBV-%%G#5ddq1~KOubb2#ETG0*;bcwY^dZ^mt<cfKwWGdOCd+
zfxG~isxduE2n`WYRBC{%c24r)jR&QL5pV@ixMNcgPEJJ&0!Ac_|JhMg>yBX474uz+
z=c<0<ZMuX{YN;b_&^?MVBcy^AaYTdJ7qSu&5i?0;#@pozMQE|?2&$Gb+N14Y$fcav
zU@7VEztvE@Xb>{c>b|DSysuLPmq8>}uN1P277Z4O@wfW2O)pkWvM3px2ZlkPsQT9p
zrICNia+GPzFVjHj%ORV*r0^>iT4o!p`VOhIzj>Gbw1iBO;@(B3GT@dW)m|<I=ZviM
z<%^{zHT4ch?COb6swJIo)g!|f(hP-$6Ogb*?@4Z4!+64XccSIbilK=T6A=4)ufPu+
z5=AG490GE}D;FSnW51w~&@SR{L7vr9B0eB<!<VO4y9Y?Wa+h?9Yt@PI2!~poQ>Mc+
zGf^sz2%27NS<?}_<!MkQQb1;HGLGh=`io&gjZ_17IO$ETDg;6Qij9_9VmK953xXew
zwGkRRTB}x&g92o@*jqNTRUJrVMz|Mt$3KhoI>IegU43M-$Qah~_K_sU?B)p}5~b6W
zDUsq`!$w1+Cl05V;8oi{bh%AI49kFBxG1dMt@%)4JSpNy3G$|h3s9>{|6=!bHj-Z`
zb3g42rotL+W4;^_$M;4hWXGVn`xrikEdbXQ&SO@;(giys_Tnoz>?Vydk)9Duj$GBJ
zbuCcAx_U<V{t+<*)|FC@<+}!kwnA3vE@22D{yDo?^QUpF=YyP&#+BeBB$$KSX50*T
zc0@Y$4o6E!kus=-)3==+P+IeeQ$sX@KK=F1fRmO@O<!g)Jkf~*XiCTG3JoDbj<9w>
zL@6Kgr4Mo7a0dIm4mZu1XxZBZQIv>?f_{9-5zJ5`_FMubknizc(NokAxNe7BMyW2y
zSHevV+q)p$XKSKB(L~61Z|c1sT|of-Y>Y`EWJ!iHHQvBiCNAT%!}%sU#P%(INrs%N
zLE1Z|Lf+63r`!Z4UfWF(t4Q<<*(tqN2#s1i0PJOVeX5eHvt_5XLv2G5rx<VV_%Ln&
zNqP&gR}JZyGl)67Pz_T17D7e@#3$=VIIhQK|6iuc5s(><vdz={jLk_x3p0_37&3AZ
z@f3UJj3O@yEGON7FD@SdJ4&t<T7*&?EIkB{00f|rdtE!<DTf82@67030IlZjE+!Nj
zgOc^!&GWr&DJYUsseo5h$>OTQt3!@VTQ=>lNO1=P`nr&|ZCm-L0*|yYQn6F{Tk2Y>
zy9z|}G6x?z7|MqlegWAp-b)!$9XsL67<E{+Nl%zKo5nq_-|4W%N}5THaKwptMas4d
zcM%b2Zk1jqs$Zf~%$JhOFYA5a7(ru{tj~l(ovNuGYMl{}|5Utcl3>Tt%n{X~Tr?NO
zXu0=D4JHtivCIOl9T7q3JEBsYfNW}=hVXnu1hD6bnoBW68h)ikbFg?G{?Z8J-3Zt`
z2tza|&R!Z2d*&<EBW~&`-Bf0VaCqAWqnU5=-uh|z5$#xxpMof6^tAMdh?T}GLC`JE
zRNQ;Eis^1CW57qMHTYE(u~^rLh)StQo41##R>mr6s{HDad`1*Bbkp=}C%=}<)ZN5)
zE>;bO8IDya)Wg{Jn4v{V)kAnAB6cm^cQP94^ZuPG3Pi3{GNJ<~!#OMrr^|QcH_V!J
zZ?Kz{irte(10lu11_jj}@>rUyyA3zGwPm?d?lMqJ>+7XOHGZAl)0*PFF8LX}Qg%AU
z4e5(~uWsUYSN_yu`c`KfR52h-NniI?S74m=iiirljvE`)Owt~A|E++5Y<vIDY)<<h
zA1*)S6l4xWyQ$cSWB#I-s{~-)k<N#Gbv@$t?G2JqzCrKU=zhfabx$r<3jj87@(!4-
zz;4#oD~ok(7H(X%lWdfFmwezEkmx*}#uJ~HNjcoGJ{i%32!SK56lc5KpuLbB)1bpg
zhC{P6_RagQp;i6z4X@PcX6Z{Ld@o)M{#=V4BZvs8wN71^A-9$dm^s;=y?Rc|286u;
z6=;g|2>Hr5hqUob%+}4gv!>$vJGT#S4iDRKAR1mbyV>i>u%LmAX<Sp7hpX3uYf!w@
zx0UMh#pwM%s@jG?HmmE~mVV$wwEJm4xonbAJC^b9;hP>S^{r0vB`NUvOQ5B6;`9^)
zn1MF?3qGn1dJ6Tk^Z!o>6u&~Rn<L%F3Cv!v6`^wR4DJyY<C{e838^?jcHg9QbGJz1
zxKJo0m)y*dT07uM9MLroqJTD&<nI23j>9;DrL8LDE?6fW<S&jM1I5>!jBT$SSlQE;
zWAj(TrrEF6jzE*ftafx@;vyuL>+z7gXf(v2S!o>j16{|>JuGm!>ZxFmQ=P}PW?SNY
zGXZ#+Q=DUOtu|W~AjuvPvBgwG2zh@IsH@C@lp=uv_@1gQ&rkw@g_P|Ou_i12`NPWa
z`)*s8-<rSm4mD}?H3b=7$4W>{n^ej5Xf?+xS#pL)KG%o93zzQNtqFJ^cF)?9r<h=Z
zOt^kVIOasilg0Yok*YxxKFU-L3wtG3k%|2*+5REz`QoWdUDKe824-+9Mku>@hfSTT
z1Ga9&DX0SIKZb7(0L)rwTR8`{@%3lKlsUJD()}>*b^+kSdLS#Pqj`ieNYuwORuzYK
z^`quFS1gC|vP_}IS<il_JzW7?P@p1UF_<Ept)jwz8&ml_Af|YwBsY=0zmKPibWzCZ
z5sRI7#&zi!SQAI&BFN35L3ntuJ0b|@h?x3kZ(DYU^s?V{iLREc>}p;_Q`Fwq5K<P#
zgJrkht!>sh5iR7r=>96AJ_4{yClO%sBH#))`N%NbB;115qU&!XSZHi2_4aa84ZvXT
zjHMH&%#wv;l~CWHz2MAj*d5}S-4BGbcp%ZjpYR2=2_d~Ai5cLzpqpcdG-*bZ922SC
zbi^55fkBz+1RHGfFW@6Xo;Vm9x=&a??*i*t(52S)Klv3mR1^o?>fz$?kdGL@!sy$+
z8$4L7MeHFo3_|Hn$TgBmm#I2ZUpmx{#_vPpTg=&dUdL?*cn4@<*%|QY)W3!aPRL$y
zq^<-2^HqhrfWEJ<=o9soK9Q5LUad^eb^Be$;&cq$E3z=wIT8ZG4*0%HteO=iXav04
zA|Pr5G`ZVn%*sir1G49B%)a<;V|5Q-ZX`_-B6dr>cyvboBnOJOU<H5%juwRj=0hr~
z-VbtKJFj3d>^4zT=!UNEHkOmlK#uEX$f^`2Pq-M5Ddb&h!M{V@B|CH_eaK^fi4g{?
zIySo#$4&Pl51e>AgMmWse)D$1Cs`2z&isOUY4R!a6xCN;YyOT^m-issQAGB&A_i|V
zBW}Id)CyvAXzYEMBt^(@wERi+<EYPoFop%Ae5eBCvc;}bjtSqxU$V{X1E&|OxX0nB
zh|)prJKX>l;F37S1K~kHXwyj<xoVDC8hU`8R66>O3BOd~xgAhk9pYs`-Bj<WH>CkF
zTDuI<td|>*%@Jexqku<O<4ZH9>!xNfYuWEZ+9fj2f0Ct@2Y?x?tGK!RipmjS&^S39
z@k+vMBI3Rr(u?&SDy~OE`Tt)mxx|bU(pKgubNi|i7GhQ#Cz6=P>fk)qpyBi-{PcwF
zu^q8HVwGmWL}S`|_Y}D;BPu(1N6yOIcsI9x4QImvDRx~68U0wS3;^UNjx<At99h8I
zJ|P-l5fWE#Z;vi!9+H#(kVO;DjtrC9mQc%MtsZa%@~;w_Z9;Bvy!0%V3gjGVhgG=G
z@-prs_P&p}@-r4|gpvKIF$*wLq*$a@VyV8*=j^Xs9{{u-)f5@ilbUWKDt^>8Z{yy5
zb-tU)$?-j=BMvJ-)9Q<~B2@Y0;0?oEhi7R%Sl>TXgAy@0)k&`;(e((tEHC8l7CUxw
z8PbS}Vri0<w>)MUx=jy>bG#i??tPS7Z5(y-=AoiBo5~8sC`Xi~BQ<Hy<XDRpX#pRs
zY{S@)7ahHLNHRr#e_7jd%;|oBcaY=n>4TL9Kt5w8UGytlb7<xU)$1B{0`Mv#q9Pxi
zzbzd;Y$EfJ^CbP{Pb%|(p$zXw##edh=tgGvf3uM*rpr!~O;)dM2O)OG<~WAh&>yRQ
zL>&Nq&z?yB<=q&nMj1~I@e5e6i&Y(%*s*Hep#Bs$2fi4h@*KOBzf5Qi-&NMU4$WC%
z-<B2Jk)HIFy@}aBP(t|1af#(Isn8oeJkKxMYJxt5b!V)aR}mM-yE-;I$E=$&7HumN
zyl`%fB?X{&L^#O-d>I(Vk(P{r`HqZ0TeTvHL%*!5T^-}s649tJ*zKurr*S|!O0F8`
zP=Kj!Hdf-+WBY3mx-c!$GY+W|le85pK$WJO>ZYGJM?wVL#YZZP=e&#&$yFk}ovGr}
zBL%{QT_8Z#O^TOvXQUvJl`v&hyqv&{VSN3|$(<U{Wx_o1#L;EA=)!ndRY{5m5pT%<
z0s#%dVZq5nf&c<S#YU-~_#Auv+{k?*-n`?xij_T3Q4W8@QALLY*(6Ft(bdo4X>;}K
z>w3!<NM5TE&K=o#zg7c7vF{!hj}vA0?8NtBij-YTnOcunF|}I#xpnas`&u&X-aYjJ
zX)lPHD^L3fILiHQVa=IwVab5b&A|h0M;vnb3v(#Jr;g_(%(fJ<>b~HTy-FsVb-iDq
zS@(AdE1i6gaPoy#HB%}oC?Y7-Q?3F|aa2By5^`c?#f&&C7u%&{_xAeO9&Eo#IPc)0
zTno9$JlR6kG*HMUb7DRk@%Ctnw=@6+G>}EV=?uXki`o?*aDT(v(=-`4OB^(z4V|+M
zO9<7b3kNkxt(mt}q+N#;a7-`j-R_Au*Sv4F%7g4}=95pTLAxVr9Lsx%fa?m>k3_Ry
zX|t0cvqISij%e1#^W5Rq&2i5Q4_2{9^Qz!V>)sSY?`AN9)ElMB4%XhN{+-!ka&xD%
z6bBnx@lAJTZJNKCo7_UpIpSrG0Vm+BjHg!FdyQ)OArvU;QZ<HW!$^y0&YkFl#koNG
z=3qxH4Mc{jMnCUbF;oD~r1yjgbA!Zm`tf86{<fYCAvg2_Ie_D1qJWa?X%JtUTN)>y
zPl^Q~;nU~}&Ri~0H!x^zc*#@=$5bnM(ss6y`w<%<9OJE+KAb_Zz_ehN5ksK?<ancG
z1HQ|QbcCX%Pqi)P3#+eZ#26wndY5|kTcXmxA>}k|!z{=SI7|fDx5oWW`OJB+O<!r%
zE9PCk(Hum&#trol3XO>G_?2u_FY^Cvh+YOl^yZrB3}3|}ZB{#bsVd{-%=VSDwPu<R
z?LPZU)zE<PvI$G5M)O;TsYeCxwMsH$?SLFBXVVmBg)V1?tRqWP4NXVD8x(SyV^N@j
z*l?UAP<A)hPJ)*<wR9ziF`Jyn%D>$W!y(3f+X1~SM{rHbpJjXI2lvB<P-Lq&&$sBZ
z;jJdAvnt0)4)UO4ztY(Ta|0BrM-gM?;^}S(w2)_xh|@v=VT$L7?lSB+W)$!mA-0_u
z7<fycTrGx*>m~6(blq=r6i?r`=79t>MKk;y6_Bxn2|P9}W$nxSus98Wzqy|g7`(bg
zaN$G}{QSEpVbT$PUZv5vl^FErG#Yr0=bsDodsRqtr%ID*>?<dBWQz;kEInqoN9}vl
zd-)6ye<nf>m*706uuTY6o0KBnvQpww^(B|=+m7rmIu?}Trc_hi-T_~Wh94yxsR$S(
z1V`dj@gWT`wv<9ap26O(IJAaPMgiIt@shm@35<YPKx)!6Bszt_Rz4vbhFYpsBOlnU
zyCt{4?2w8HiV|W8!#bcqVne_Ml<a<_q9Jk>@s=CqG&=L1`fyF<D0PAcYS{qhppHm8
zL$%_h@9S6Eq<_LOt=nI^GH4k2GvWgiXTWBG`7VY~rkHD4{1=#1#00P;qR;!6hALq+
z;*df%0G$?EvR~6fw-fe34?8~NN!|szR@H@6G4tX@tmYW)mJW)qa5x5lQW7d+zlqs$
z^JA%#G~rmdnOe=Kdl$UjHsA4RYzIZcl1Qy<#eLvtMo4THo11WCl|BQOWG%!q>oXva
zC9JRAFlOu@4|(xUcSO|h6|qP$U?6?(kocD?BseiQH&Lwr-*Ya^K|}?4S$1&nfOM#}
zu~At3i?gHEOdN+b|2UOWaX1n9cR3|SUD#b?l*gyuZ2Yj`#+oZ36i&2pJYil_qgGl_
zey=@EUvUnq3fS!+`97|F#M;X?H6NjzywV<m!5SegNZR2D%d_%Y>0*%VM3<KVs2`FJ
zsKD;Pu+@{kc76a&YSBYx-WqQlGKC0fmp-s_)%r}jnQ5&XV{)dp&&%WMat$}?PE354
zfCZz|;h6WDCC2*kM5V3}%;}hr>ctjG1oseU{Y8V+2|V54__Kfmx{P}pL+_xXajWHX
zq<MHkOj#kDefRL5^Ln*zAFiN6h6j%S7i})vvX5)AD{k}RQk*WR6jBc6qKaq~_d&=_
zdjuwt;e3F^^ev0Ev)&3R5)Ov-^oz~trpXX}RGGTpE4*My>R@*j5otC>#8J&q2G?~w
zQ1yh5#h{kaYF8bOmqJKWXT;?9UraXSpz@9w>mL``#8wFl6B~sbcDHz+q^HgGHWHjJ
z_mPd^)<hVSov9Dfh4F%EAt5)8wzx$QoN``A564{9Gu%?ETL-~`y{3cUeWaniG;459
zm14!wGexE1T#g<trlF$u&MLz&cpv$U`(wm4D^=5;mk`>^sZHD@UohN_`LyB<eIn$f
zrgDfSLu!(IL)D;&YGOzJ=r+#B%sK%qj+jDKAs(U+QkW|0KL<UA&^)7sWKf(=7jS(s
zap~c*rEgGFMQyTruN}l|lijG3Zf*^ZjvVoP)wr}B7|%zt%*iNJ+?9~uz?~!_<}9rZ
z`8gqH?Fxjl$X3s23YkFA>=%L_sm`6?aNGQ$M60UF&6R*#?B@{x>t7ss7JfmHMtBRx
zKR#SBX4a0}reVG}zon6M5FvKR72+sy+hU3QQ_UtZCS4!{Pc#C)v(^p@uyqx1?u77T
z@n)~5CacMTbz8&>mbBtAj@C;ZJ8&Zq@r^W;BnfSI*|^SP66&O9S|i{weV5crcME)V
zck#N}O`!SB5(Q=8G?bb!DxNKH{JWHm@mX`mz!hM+S8BjMiMWeBMqb2oQvv;|FEMC;
z*s93LA)v*!4SYMG#J5soH=vEuodh)(ADE?_aENw1>n+{+6{euc#238_vFPf6q2nGW
z&T97jWw$mNih@0ekV|lm5xyW1(zvOh@W)bJ=HT)bJ-Vo=XA|o9sha7R+G0?wDh+Xx
zC|!#H5%0K{cqxXy(Fo~WZu*YcP{lK@ydFb<*#XsYtj&DbAf4HA91%|=obgwWm)g4g
zpAHpf^lE|e>#bH#3ukVOoeAXGEoJlHSIq9OZM-msl*Rydd5-sv``G-jMq;5-$;Ak#
zNfD|e8lLz@k!&|{l54V^%P=99RDJmDMnp8<)ed+`zH%%q0Ap+5^sT!QD4i#9BU;Kx
zu^WK3`rJO?W}c~t_<r6iW-Qg2US;pC#zRg<oNCYRIF4d72_1YeYt_7QU;+^xV`FJ&
zK+klHznkZ~k54|ObnHfys|vZLP|mes!GZTfx12rUg2jbgrGFCX_|<moPW^UMSL2nc
zd-_xjT)QH=)<$Tt_`T|CK&3^eYoC#j1ZmJ$V<;T|>3Osp$1rSU?j?={8m##tL1Fq4
zr}V<0o~4a*5tpn&kTk{NiUCt`u#A<1K(9tauU1pUXh21(S>{rXvvU8>kSlORK`z6E
z+5x2i^p2pe^0kj5z~TE#LkTh_be<}#c-uX)w}>~i;b<s(Z_qKaPQRs12d#aH*aFg%
zm>n+G5l@E7CD3LvcH6j1s|yaiJOU0&q2l5m>E&AtJww*|S@sMG;SRo;A5ruMhy~qU
zee5NEG2gaw5=|;$xPtc_5l>?OSOx)SX|-mdgRH6_a!3MAQ**sj_m98nIgM6BxX93B
z4el#X?S+88uEu7B)4XDOZ8D1N1hlgA5r+T{?}ha=4xE-OUv7EhA4a@)y05s`_O{3u
zwQNl30L{AAEJc%{jnzPRt0R9KFpaw5!g<ge!_&>Sas<jUjgY8!HY1$2c~B%Yk#1l?
zsE}hB7szIG3#osOD+blG7SmE)!dorc77_7G-5LRwm$o?K3I=h7h6y2;Z#c%iaZ{~e
zrDkU?IqL71RRVy}rzP{P_4ihqCAw&I`XZ+wj1!94z3KXhHbfei_AvOsi<5l=a;3a?
zm@kPX$<zjcx22dhg<7haS#2d%ktUsBsPDa+@3ld6M9h`#kvfHAr19ai91*aR&nbiW
z0Rl)nq*`Mfhe^*0(Id)#+Qm~q*F)GUil+FSw>i1x9uXRvCE{ioz#Ts)K8T9hu8kh%
zm~wxF*by;7&*X)^g;HP##6rM7Ry`m5_6!<og4uET=iH+)OLa^M;4@J2HHiklHJ_86
z)agSRmvsbn*wN;T{{V*li!QRILQ#~o6vW=HltHoBUvpuxr<lbi2(XDw9UcjZI+mKl
z%YFFq(3Snuv@jCoQA4LZVxBIglo((sCTjPe;Y&n(4`t!*E+gsAIyb}GzVncl1R+0W
z(`-DeR>b49j(EMQ_CoN<Yc@D7e#UnXX`cXObfPRm7xPySi7@6!a^{rm!j-oT)pztn
z8D}IKi*ZC86x+Z&W-MuiR8MojBC(^xHKO&@)7j&KD~Ny$J9Pw{;_DuMctpI$esrO7
z(3&b{f+FQrGoZ2^62?y~T!>D#^CvMeEXpv|Bf^NU>$<-xE(a1S$&z2XU=ZZf20<Zj
z=faUa{J^)u9y(3ZF@p-m)q64e^z90%L#>$T#=(a<XtW>tHHEy(ZE%t7e-S;|uGn?x
zt-^*-)jGxSqd2tAR7euVe-$ZCEg*zSzR_3t#os<&H<s-MNW8zd+G^S_X=Xq`%W6}P
z2*t8L1H5jRa%3H<hNuwi;|440H1nDbap{IGfs*tsLI*e<(T0+t5u+7_w9_@Xhct}c
zrV&$)1#s*}zlVq~;g9dQ`3Z`6l$WBAVIJuF@#er(#6@&B+tB8~g%QNNAKOx**KSE}
zCNO^iND=;a;{YnD<b*X~D5>QYP7^+Idd<su>vU#!xG<-~Bzz=3pYgX4Wr~Ohfr-(D
zu6yKKYCXUJ>Zz|V{TdRp`rbl1pa2xs)@#l_u%#1?wcnJP0CZ~^ur1Qv3|M6ZG|Xa_
zVnP=}uOb*?l<FB)_soW3LfsCod9@##e$>Q5STFwV%W9>wE0drZld(u&-%pobviqIy
zUtOEoBIxdG?pC{YA$8_}!&ar$%3>&;x|Q}eYPVt?!U6HVw<hE4(<xEmYD00XNYl5j
zyS*}2LNzP?hlw=SiNk^uI_lb<;_ZV|)Ad?KBpbDeB{#?sqPA<PtzhB}7LJ);rR?CI
z*K+-!ur(35R`~^IrVbr2?qVxwi#swP5}*6MaZe$d8yc(G5)w_C_5l%UbBARMea?k!
zZ8iA6K2<U%v_iY#U3^>r)P#?a@1+)vTKbpk>=cPWiP)*~u4x#4n~HOWOqyY>Ksm>O
zd{n}7^ADRAqxcmE(o|FDpbHf5b%k3=gzWYmqATc*XStqJ2KGh~dkXN5uA>tmk5$J=
zX42eJ-x=hV{0fk)lq4skPGzpwtPQRjS6S7Np?5nvhfH$>Fjh)}!9ThWiFlx$^lbY&
zf<65gEv&7n*;!4e;)*gZ_B1D$>qume6w>ZH=+KWGw@OwLzOFlwV^8a|fXwuuWUA!}
zBe+Sna%V;0U4*W`+X09PTjXaNnpvU&_lwj}9YTD*mq!C9MejSLsmOvZMg~L-%+F82
zqmtx&Vd|hFel3WdhuAR$Gm<S2>zmF-BsPr`K)$@EiPkkuR2~CoP9XvpHBnOK1r=ow
zI&&s)i*ub5WU&Zox$lLUp3?8(US$EzW;0)Ij&!+F|KmMWm4saJod2D2W)9Pq*<Zul
z(;b`k0B20%Gjyj&)u_ZHBo}DfJz0B*nW%>@7}5PAow6G%R+%EzcgsPQz;SAiz;|%S
zgv)|H6Q!}3=!$kr>2?d-H3|RkIFu>?Mp69B0IRvZv#(e))QSmUHBcN$Zn>@&tP&z9
zqO@uVcX3hQjf5Pb*6h3e1^%v8Do<x4j1<3Z&zStDxJb086|?S=Ls0g)VjAGd39SAs
zUdw+mO25Nm<MbdUCTT9pOQVW_5VCdn7tKL8ad2gFM3_T41$EyP?uK41lfZbj2u;UR
zHZBK6JhCDHIipVRzL8@wGf^q{j=5n*8g3*CNXtq`>;>qkfL3-~rHW+=B0Y|Gx)5GG
zw~6scbHPd^i240ubZsj_w!Puh6bp(--6bSMDYB_2q6!eylf?RmY$?gyf!nD<F4<53
zf7J<lLR5h5oc1&Cq*Y2WFq|^Hdl|Uhz@=nFsdNDm7NY{ghWL&X#Ia7;dzE)W43ADd
za2yeJvGw?9vx1TFe!W_wYp;+)c##pF_7QU0qwl>`HFOKwN8K(o)|796=H%LdEqk2I
z0Ue5vu(0E<q1IE#_nL~|tE~n`Fk2$zaIJUH_>!1(HCdZUZg#muFlWlN1ic(q#RJ%>
zfZaxwCG_t6jLYD6&{ulKSLo_Pj-eSDwjbSQ3f1;~HB6)QjC78Pcx{ICR?aqHbvWlO
z{~gvyE|r?wLm`dGI*3^D4*_9a8_UuFif-kGPWC5tplKlstGnW_qha;?FSA(b6s~;8
z;Zk**IGgIOVVM)+z+sRgvyXTA%RD6wq?z&$1@tX9ZjOJ^hIhbTW^Rw^F(&Ms$X)^1
zc*JR2Qr3YTE>X*rfh{Uq@q1B>3AB4nsU9Fb<A*|fGv(@~Zn-}!oj^#@%8}6(Xa$yB
zH0@u4o{lZpj%<Y#+8Iq5y;fxTG=$m~`$rDXhXD7|GNi?xJ)Guo%t1`|bbN`a0f=LX
z%*fFt%UonjtA8&m64Y*{{kq4z%F&Y^$VgWK>)d&LXp{}{bqWKpgnOo$AbIF<Y$aC%
z0T%B*nsK_vrvq-iBo=LcNQ!5Jp%|p)<<a$4+cp13MHLs5ZB(x52=DwevW*2T>8wCw
z>j`yR%_vkIFcC+<k=&(2(^V^ncA-{IxjQ4u(;kKDcxqH@H44RQBF<F^UHXcnnX3o4
zK@m6eGe>k=rEHVRU~x;m3FgSuOP%^%QRvYbxAcp`YE}|(1LYDg-t@nThULd(?KN+!
z?b41SQb*2|8tTEvwrkzIUAPo+O8K}^dc>Q57gA*B3saiJvWT?#&QF&v5whoXCBaEN
zSBp>bt7`wWKra!J@%T{4?x#$%;)7bD#ZOD~xmvRXv2a#Na9j&_T@66QeVR0O;&m|z
zKM@WVgtq^cCS2S4zVBBW)&s`2J#VUMt&c2tHsqp{m!tI)En-uL#9lWoK%J-?`2>Y)
zn$y2`qJr|!E85CaTv|_Z5s|z0N7O~s)LUQ52aM@tb8o|64Bz5LrO#i|;(dxK57^-7
z!lqplg$H-Nk~oZ4iT724@1OV7%qSkWAaH9yJ3{$?aVAS@f+3m(3}HY<z|rQ)oFqD|
z;W%UMqn%#Mh}AeCgcP6PIZ<xLm(!YvW=%cn7Z+Rt^sBN=q@o7-ObRwb@=gddTKM2v
zF#ubFj5v>{=4>cEVoL)o0Hx8(yV8wd<lY4J9n&T}^k^ktflROZ9oxDesA?5cb#}hf
zxq2?rlVFRP;<ZOqQ0N{SECY8C?)L2~Nt)rarnQ9~UOXbcWgbCnadj5mYHveS_q=Lu
z({)l2V^J%h>cV@ay@2H4{-;`{gDIJK6GK3cfJ`p6=8UdhTtd>;sflQ3Hf?NaE#0uo
zv6WCUy@}3xJ=b0tfS>L2RYeqF`$#mWt3*b(`ewgVBYb+|E;rr<RT2eVr=Rg1w`!H~
zD~Q0<y!WH?XLl-tCH9u%CUorRl)WQh9Aj<IS!&VDd_q}7MZjjt9Lfjkl(lZb*P*<p
zfQ&DnucnZ%_v+l+kVxa5asryry9KwPDR|7aj-M3)`|%Sl1B4MBkYQCE_<zv=LQqjP
z+`N`axw@mc?gDLb68FYtw!PKu#(ATQR&6Ig5<9#0G@h)8#{~{W1r>}7`vl|aY;m?(
zRa}OnWk8>rJFM6Q3bViLen&dhOn2eFR!CSLYR%&krcX7ZaR+PJCM$^hO7UVIPb8-}
z%5>b-A6=w-ZbG$B7GSv}jS`s(oVqRW#BNlh9HOv_xI63&*h7LY4$LhoKgh&5#ozkg
z!*ti~ju7Kzzt@mDQ%H+B4y?mGDifp<<wFI`K6$6@A^-x!^*DKlG*QA&Q=9Q@DW`y*
z&v$CNFuuBeK;-0&nX!4mvHl^=29KiQ8Eb}w9;NUUr$=M{{l9&)hpj^_oZa1gCdZ%C
zM5ruN=_A=idkS&P%sG-Z{CK+kT$jZ#Ddtbg5Ot%X3`xfgRAyf9b9$!p*0VdTE&O~V
zBy#Q%l1ePjYK*?)t+r_JsyBa>(*md$ih~hvyjDiGHm|TdGXl&r%bT%Mi?A0z<?S|^
zo>B&ZnHzT_GBhhKWYtn(P%bDgJ&d4ZhOm|b4z&-MiRR6Ls>?^8Gf?;Cj)DeY%`GM}
z(9pktAS5;fdtf2sclQ<A%{P5VS8e%-QEP2r#4Z`HWf2+%2@dFSIeu?{MFM{DgfD7}
zm#-t)hWEAvncC_Z#F)?}8n6rP(~<;z#AZ|ZWC`X2BS9^|dz!NSv&Hp%=RMwp8a{d{
zQM^QDvqK7%fDC*5fW>zhpap-!Iy{;LJeC}YF2c^GrVozi>>2VcxaEoN7J-43Q8(@#
zf<BhZaHn}Y3O%&pA^0=aW{DBJ{_-iOdaGa$l<*@`9x>TYd!=rgT^4u3>lVM{FH+xx
zgVDi^cknW;ydE_^jF?WlhdappvawvSJr>XlQP1vsE<~pF(-4x5h%BC8bcs{;ZtcW)
z_B0_W;wMB*q(L0>7_4(Gr2;ls#J)mzs2h>ik6Ur*4~l5H5ez46f47BT9OyRc3hm!?
zcf-F>)THZwI&a_|b>uK>zHYF>FEW}1O=+L3D$W-a9c!}Q%<43#jlX46Z_qOKodQ3q
zb|<M%Miut5X1%~G4jN<pDqGsHTpu<P2>-MAd&pbcn1~s0)8Fgu>mzwO0&Kl!SZ~p{
zM3%9_z1r)qX#It*#Q@?V@Zr<}#@F^~6a6)-eRQ!zNnI^c2;S2=6WDw@a5cW|E+gZh
z8kg!v#?CXI7&{(eqdd=`Q@uP6yvY(oDJ>zV&Gj9JuZ7XyV$J8R#(dmnO(A$`+pj#F
zt$qRIE3S~<MiK6z<f1|S%=joe`$F=94sq0O#s)~4?_p)i`<}{8-~b;e=zCw$1E|n!
z^wYY?lFWaNoqr|YNS*s#JZm3cI~!>&9ftkZ|30lYEd`vr2XE1uj)p;9TqCH>NsX}^
zi-5Xr99y7@mMev#Uu}QK3r5J6)}u(Cxr&cZ{A&DHo7Tj|@V-PR;2lgVz{s77(|b1%
zDqq9;+F7Q)q|5X^NL$9s;E-sB#Wms$DvN?nOb->bF-VFF`UsE#{!0)dnw$ot6vJ@1
zX2k~KUF8SII8s5|Op2f71jt_e8g7{9Mo?f-fd@y4NBeNkX-vYgAsTv33JRoL%2>+;
zSj348xPq$Um|KR7mv+A;%Taq$Oe8~t_3}=4r9;@JMwR|bKqGHLg;EuDwRkI+vYYA0
zHB4g|;F$8exoks)MA}&&6ux;AgNYn3PPr{Fj<;Fwu%Xd04~dDhx+*(+X@K!exdWq;
z>`4_W!HTprb4kKhn?~=wSGJ8+vRpPi9?ii~jJ3YvRH1%Asd}>j1=Kk>{HDkp1R}b!
z(fC)w<lLj+5QP)~)C!v&%<o^I8;qi9bi5Uldco4aZF@4ZYuYc2V-d*rTWbm7hP_M%
zdAF&Kg}zHV#`o@2GwmJXbXPvgyHbDaD9^>DJx_&qQd#AH81+LADD;8}b^oH{<2KSO
zSY93+Ot+{uB6l#a2BQbVMM%LTCanBeL$9(jv0w$aA+}&y`J6*=^uq%1Z##`@1(>7#
ziR6jVgk5e8Gt6}&CPEwjW$!WHp(j)m?<Q;R;JEFeRSg948za5P_ne~-X_->U8{t|~
zJm24};hUL_b%9i9jrj0ei0vz6yME61aH>5~_3%)4*nJ2LYgdbj^i4_1mI3d?%tN3N
znrLo37fJ7-cVq!I%<VkvnxptR@o<ht3CX<)qHXTv#0-f~Lts#4DS8>2agu`pu%h#s
z)uoOmVxc)igv+gvGuxJQnFK}|mNh`OJwv{?A+L4LV1xX&_1l4WM^IFb%+<MS1%u4a
zF(TwmgKFQW6~n;Y?me49M{9m;Zh?BDaXWRHQHu#P0F3Ql5J|h)qR^u>O$u2AMWmWg
z#H}lxR>CkB|F{Y{R^NsopjilZV}ev5Wh8wuutpIQR)pogjx;?%ix`-UtGe0$P&gFw
zo%;Hi#Zuw#s&7t-CY{!3YQM`U1;{;ona5td7*s{X(}bdieR)%0?9*+X_xK@^e-?rv
zIdHFtp1xAT_g7*KZfed@zvW*7VQ_1sd&JbSDTu>%C%PEp30pF)a{ZLkXvR=wR?L}+
zD?47sJ}5$3>QAy+KrHkv(N9*yY3E&RB$B+vVXoD)LS-*Pc3U^RZ>pX#N=eRgC){OE
zVU`$1-R=NPxU@!kPyL(D4H!odPBW>bcBhfUAr<<k9;S4LG2XI@%S-Ql9&mshi~ETV
z2DvjrVo9!$+i-A16osw=Rp#5eC*QS!Y&O-fiKH6oWjyDh8?WbNQ*4<S9CawLgx7z}
zZdX{yKU(EIWS1l8ZAOX#HnkGSnn{g=6Q#k>v2Nh$*N}5oz?L_}y1w9175$6zW*7T_
z_nYQD0b<r@eCC6;oPV#i{h+-RPijM^?q6)@(H#@xx)|iW^GUI2><Jr;On`!hadn)!
zT^(D%<(cGD_UqtVsc}~kXaD)uh(CM#>G&R_OB#EH(=i9FnV~Y_P|WSm!hE?%3=MH#
z$K3XgS}72Wkh6xhL6(e|w^{F*KqZ>NrwPN-8CY2<p<X}c&W1i#9-+k&1Sf|a*TYj>
zL>#k->PXvPPj?xYYkvZf53$cP1i%JjtBM1oisqO%mBp{ruyF9nYpgXt3ZCPB&eHUp
z@8Gg7>%~IH2A~YC;yEcQV{+3*P1vwiYVbJgX@nz>xLZS`ML|n-sn5ACM8lo>o<VMi
zS9*K$*65(=j1T*knE0XbB!padZHtzLJHnteLIws4V87kE4Q6ey%M|qZjK{b_nI>a3
z9UdVc`wIwz8X1l5bHKO|;PnT^ZX(LL!&UGXW{)-1Ib)EakjA7zLQ(?OPBWSNJ^A##
z0-re;>L)}N|DsBlqYT4<>V^A}sdn48?F}6Y1#Rh<vGY<YOfVzpObu3m5GLy)F&M3=
zw*@tQWtP)~%X`&|zi1v^^!H=s!YfK?$8N(9JU0|_S=sgF^-bCKmlVCdf(A-Nw3$xh
z`$#w=DN3Y;%LRJ#W_c-Yt|6Y?kGb8)pg3%L%+Py}nA25$fsGey2+2d?oBEPq56&e%
zZ%tdKB_}^U^qO+n(!Wv2qX_~8FLmPpU2ChbrJUJbx-#)KLEFdItW~-z2o-t-dB{<R
zO>`Oi`LK;yngWiItU2|K-&Z!E5{_|oMRsURY5*eg8d$}nh~2)A;kBd}3-3ljaU;&m
zq^YCA%hu@s#?^^bguqtJF@~i{PRJw$$z;SEi!p=*l9yWrR5xbg_g&MaJd@hv<b8Xr
z7H5}sr44m1at&5s+To}X7rxw8S?*Dj0rzwogkG&)>RUy2wtpYW+cFTM4%sbc^D?P;
z$XBI%Dc=z`-24j`)(o!d36YgJf9TT1VSvDyqTWPqTT=Oky`^rX<IWm7&=vxpYFD%B
zu1~!8oG~DWZXtrofg>!*C5t|FurZ3bx{DAty?jwQ<+D|i;;5*HnE?$UH-gS|oZ*;_
z-BsxEN7n+EC@s_OoP=siqrU#Rw7dsc+Le%x-TS)TZN5{!)N3dYdTU-4@Y_=(=D@Ew
zY8ny))0Ty8!elT7T86ULW-XTn-%f|@H$W=aLJlwF%z3WCY8}l8$81Kdc4qpqf*>DB
z9%yU4*e}|rikbA$RwO}&!>y+sh-O(#upEn^fK!c#ue|Wl1Gp(V<zsnld$^+X3A?4B
z-&XQfa$puk$a*xGxOn*Gw6mt1J<Q4!K@lS7KXDOmcFmBY84_={f!ByomZd>`LiiFc
zG8K1Ffa3P5961V!pVx87X~4riB9|iTpu8cBF=GH3!=uPX@LIE`h$Li?;dCL!$s|Z~
z1rYWp+gYFLs2W<GG`yPPXCN0HG2fZ4la+Q>5tsh0%W$hE{kQZcGBFVody0s8hgEVR
zre`)%asiQEnv&a6U*_6EZ_JeKc$=xl4tt+mYK-6vKgHHzvgRI!?OrR=!rEC1`94?T
ztGfBuFXTukf~rCCTmC-v-&>IrK?O}7!lx)I$nK)sw&uNdrK~7<<eM#;!MyABx`#=H
z<$i4FAN{#+s*wDtLsn@9*O2pz#=;T?BfF<C#nq&I``T>6m%T+dj1xRDWB|ClOS+U3
zq4cOhGA_Pe5pdaH7|TpqWvtaCqxPAw(mfX-D#nlsX)DfPB-kjVOqY?3zMckG4Et4_
zbhq=)?8=MaTE-sP)U~3y859YYNNrJ6$4ql9M@^KAaG##?)F4eN<g(7?`)Ji@z@gbT
z-Gb=#yrS?J5Zhf+;|GyA8+|N9OU<ZYM@W?pZxMxTE9VQR>-530UD&*qSetiYi4cw~
zzWs+pEbGT$402<`b{RrCUYn}ER`CcDwQ0XpdqoXAXAM70jez%CHObr#NfB~N$^rqA
zGaZueFX;inQ~RB|>r0J!{7$vf6meQ`64Z{+hsC4)!`xa*z9YKOjAE*_EQCI$t?REi
z0urH!U5uKG@`@tDG4bXY!XUJn)w@S=r&5Rh1+}xw?w}N1oT#5l>K}nj!P-K^S@Doa
z_=^MN<SRv3Cga@<coSb)ZEJ!Yn^w&Ulu3kin-avCEK}Z5C_K~*t=$O8?HeIy(%I2Q
zP2qvim5Vd{Ha81WlZ+16cF4I>=GDd$=yk=vOI4?kDT)l~0w^^hV!NJ2na(2m$PDSX
z#qmLVW9YCtq1^r_l9VC;X}L+)J&yF|kxACT1?wq+Xiu~o9j}|C4vbd6>XrB-Iw?Ah
zBGb?lc6otsdU&x?D|#Ria5+~V)GRKO;6(^UUrf#*<h<S-HeefwMk^+g`TCFxTZ@QU
z>|D96)^eBB4&XmUKrE+R3<7sh3-4WgU%<SQZFfcGr89M;O*;Ofk)+n(>BIqdg^{BP
zz1;8_AG&<1i%SPWsGper=3C9yE(WL)r$?|!F{_oVj)tDG8Ml_|uH9NzRh&hz`bxnW
z;WW1xIl4?1n)3_UGH*54Z`pncSXy(cgYsiU40XbNn${`MGGz`_3fdYcm>~RY>|UDU
z0nyHQqmC@>bZ?*rlv%603b;Z=ukj_~MZ)Jm0<8=&tQEidN({Yie%}REq?#J0!(Ysm
zj@(;rD?_HAQ4tK^ITuY?#auFWMs)cKzgn%`w2H?hBUH^)msu?=z{}rjJ=u0ya$p}Y
zXjN)m8-$}Q7bQ9E=ooq(5|>C;=aGEGz~5KP_2sD79J_gKenaclW?}o->i}VST~=HJ
z>I@(T>H5y<$=KOC=GM>v?xkFeLc&=whe?-M2~3q*2M_6+L7V4ZJGEcvXAIZrLw|T@
zSr+r5a#gBq$;YaCfRSV(zqf2c!EJ0o@6Jkj8?>;T1?=ty`8%J)3VM~YMWS!${6)l&
zsp9afJB>Yx*ngXQTOqF$77_j#HWOyPogtSSl)LE~8Z>hw@n|^^<8+ar|E%&vrpX+y
zy1j};$o~EIl)?K=^TopFaKt2&AZ==`>vu3oX#tbA$O9O+xrBZ9MGPe>Qwfz>kjMW5
zgHffS@OJ+-Lt&^6LSfl_cRH{6TGLVt+>rG2c%FDhe2+v@!YEI<2iRkU+)~&;+F$+9
zSd<F6`bV<cwoI;d<ehb!`=RTK{>M3~dGy==RkO`|45EGcoct{ye8lh1{aK~`Mh>iy
zQnf4C?|oFJ_C*}Nn3qi&XP7(wlpVQ8c!qMl8tCvyV$~C?OY$mAp3H2yQ@AWd$V?vI
zS-c)*lYYQ$dfW6@<cjN}DcopuM7*Uu;H47kA-vTn_4Wa>FLsCbAS@2)EWX^K_3tA(
z30O-kw3n#ZF0jC>@e94ekG=v;7NrL|Lwr^2uaunEvmMVo$#Zlvy|XrDnBM<nqAvYf
zGtI)F{TIh#UrMb}`0er$DDqlEUQosJTj^@GOk`d4R;!Jm%DpbY&ur;5b-rV64I30q
z#&f^;Q#8_j<{+dOkJ+-jJdgVl0GOni@QQe8b4(gZuEwmCfY0U0m?K9qT`Vndj8ic&
z^L4l7YL-y(Hqe(eK(XV<q{OGWZpG;>ehJDk@ih^<9T{=CiM5(2T#*4fBm{o-X<kTa
z*HjTJSPol9nVg7cUFJrUjd`J2WeEwuyd>$bcw$*c^S~-LNBnW9DS7#bSyFLL08c=$
zztuwyLk$3wS`FasUbDYYAc?;}4D^4MaGAM+s(JhEotdg!R~YB<$FMQKJyM5)4*8#k
zT*}TnUx-8|_0_AkiH=nPxLaMc*P225hnLb-GZ0Mb3fggv^g$pNLWR(yv(EkgP&0^k
zIa_$(dZ!#QGPgt+LSnRM%=wMIC9E=#^6`VNX-xA)gXAv?;1SGYbPC)W<vx+PLnu<`
zY0#B^#$g)cseQiZ-0lztIWbxpy!i+T6ir#ko`TWy@gl!NSz~6+s2T;5;@WxUDZ!@8
zVtmL4*L#VQQDJjw7=<4O)fWF-&6ec_>=IWObF4Vj0a~dL@6{p%J$rH-_^}7tS8jFC
zy^h)33nmd$YKS@LRZP^N^MY<>?Y$B#))0be>I3pGrJF&O?8{5jAZ~bZ2xtE`OG~wV
zgf{eQ-|3>S8Iv|8AzQsyS~lv|-Q^k94lYhm0c(;LaY`p(Giwa|U1oPLVe*u3evV$@
zz7-MCsne+kO;1EY%s68O)tr94w<iUVN$;#FDEgF<F`OaI*qUtUL-)$S37f$V{K_LF
z221LaUN}8wCtu0T;*6ds{3(F(483V3TSr<N4Z&UEsBX$Yo#P1>Izp<}*9oPYf6=gB
zn#RFSH3xexo1)&42AyNu+X`(KCwMkEg0>)48cM7@YkP|P^U<|8Z@7v6i_wZD9Nrr}
z@#YcNlCb_pnc4Ldu=fbMt<u1BRqvL8xKvIl>@%p9(NV&ex+feQ1qG%h?#R0V<Jv7D
zyQ41Q$gANtvmZlk^IudYo(vs<E9iNCw%6|GHPS`385u|_Agw{AKe%8h#o%0s+H29H
z=MOvf88Yyrv8RxscN2?HCCfLZA?7y81xbEU$m;O%j?(jW!}qOQHJNb+jnDb^qYzjC
zm;_Oi(0{}%O8rsn6odh4d2Y^bYk@X|u>yUt{G5Aw035}(vVm7o$HyFY)MgfFOVMI>
z2=-f1m$l}M1hqOBdkDZ=m@skPxbwB2Ym1?*4Cs)~119Cij+07eP@KqalX6QwPL)%I
zaC4`w{}QiZ>^3498d2;pNr^q(x>07JX5tJh^m(l-(XWktt}*p9q>j{rnOZ*5&?n~j
z&o=#Cl^>u&%;7DD<iB9zHst`Z%;E%^@PMSAQS>P#luyLF-PO9X;zU%~@0H{=BihU0
zEn;JVVUg*~LkmX<Kzw^C41>uC;1=DuPlsDDBhZ@qmKd{X0Dh%_K*RB5dO3Vw0JRXy
ze^1=GBIpG&9YM=Taz;J!^;pm<Y+f?WEoZ!U-KC7YG3+4)K*r_BF{d}eOZCKidND&<
z_+Q9KnUwx2i>@ixp+E2oF2YR-_pa;;1hO=3uou#35tZmT+)=g2gLWED(HK&x1P{1$
z#6&1qem^8$k*NnZIym&54HH4p=#Gs7X4(DbAtUfnG)BjX_2$lWy=Re>{ocQ}<w8tJ
zPEkO}<7CI=Cgx2G?GDTTAMqENQoDbT8Ye%D5n!Bn1$;opJMO3Tuw^eniyV$AH;;eO
zm6WP29#A)0Kge2H@cLcxYCS{e(2H%wTsE$HLA%RJrOq^p2=+y?W~<iEyZy~X*qGv}
zG#HUu@#WAqh?sBbb;%kRAMCH}cE8jhgPo4%2YP4HOr%Us)6e%b{A}}O@0M{I*7hq}
zKa>B>Qt4Z*D9H2IBc~yeA&d-)1^MQGPdVIE>lW|`z?H7A-L3ME(zV{Kx;5&#cN>py
zQzjuMXeuc<VH5$nh+)uV>kz#TKd09Sc&nx3;N2IVz^`d+Gjq^wFPdh<T6EIoorDd7
zVg}IZyP6_s`=0W+*bF@>g`C~5c1Ot)+hvOYhVW<!jb^I5lq;)ZeZcBfQT>*goAh*#
z6|&@*>jdW{VpbytceK{y1c0X;KebMAnCl8=Fq^UObmvj=L&r|FKo4urNJ%WwOV*t6
z>=w}=;>6#2d#LCxdB116i`*e!U-E+yzG^rkb@SUT2}83}$9Lxdi_MD6tZ3@1d_{b^
zF2S|4N)>v13K}dVtq_a*z)lm6iI&Ev=_#l^LT~2(z7t6V1zx{(GViy5_DT!6b8Y=i
zWBR9S%P0FgQk9>ULc<`AAQbRStfkBgcy~jpE`s)G*Tu!#CHnTVgOS%}8g;j3N8N)y
zqk_KsSqJ~*))O41p+FF9ekyF+EH||*7sa`r6cmbd_qxc%aFlW!gf)_l>z2J^m~bg0
zVe4un0LV&f28!P+!Ncj}7AvSDI3RsrD7yNpVEiRv(!|=`JE|#%O%NVGOGw)qig-%6
zTmr`)QtggnOOuQ`U1f!ZQ!N4V>M|v8=b~e@Hl$KMlY@_$@G@DHk)^^yw2rW#Cd@LK
z=8_d=bS37|KvR=4U9`m)JbCdFfPag6QpE{=r&#$OHd(PlQvCR~EPYs%1gG<l>c_(E
z=tddXsi(xGdpW(1-M*Z{Gf<Nd1MZJO4B4TW;-KgAJlFQZ5a;UFh61Opf%swaDOVBu
zwU=%~olU<aHqOfo)QQ1`QI6*u!R^1`_MMiGdhHfP_Pf1^@Ab37H2<uxM>?Xx^7zFh
z%cu^-^rS=%ctY}|5M!iW%0MxquJs*EH}TJK`m|kJ?pL5x`m8-%Fd}N}f{VPLYn?<=
zTrqOd0g%w_OI4d>Yp1lT_R5i9l&~jh`NE=dMtAKT<erudhD+L^v>k3&as77Xz$_`9
zOs`-TWQ2DAO(LAwj_>Ht)9@x<7JD#j_R({SpcD0@2nw4f4ZMQ5|FzxY(zVhY%@6UY
zsa3S3Yn`?wLR>qeCVlAL64p9?QT<itO}RG?Fn8LRMg@Bk%B{^rhXhdHS6&t<KqN+&
z0ffhh`cggDy|*MovTh}cr@6~`*#oAdynDgiEL?1YocgMiWy{oUsc_D0(dlouc4|v$
zZFYOln8`V*;mD?-#ZS8JXF+qsGxmXOMUYeRxYqI=McQa!hRoUAclg9;5=Yu7w|)<r
zG~D;@)ib72@kiYN2L9qVzuojn8m>iNzSy-YYLlfJwmRxp)F2>h_jW5`rZhbp)%~~N
zM0lr8oxm4$zK9vBLJ{(=-DNe8ZjWPje?Mf0^`v5gK?95nfuy@-#3XEDPULei^g$!y
zJ_h%pL1#u!=f}hlWTeC&0*z89K#xJ6lyQi@GSsDr`iY>Nm&&H!WwV_hcx!)Bx+ZF1
zvQkZ63SHC~g}@k}4y*EkwWW<(Ta|lK{4a6n5Aban_5<5jtLYwQ?hXqmID$nzWco=h
zku3#Nb^2+$s&?{TYl?%^mUe%ue#bRwHfRa<lnN5JHKdOHk}sY=iiM<c{^yyJASh9Q
zEH5WZX6z3-f2-A5=_eNH3EY0a$lJZcn>TB9{)>^e!Svz5?Z<_fqAh?5b<52oA~h*R
zOC2kF94^_SY(T5IjB7II->p=f9$rV?)`miAb~}&QG!w1r{F2P1bZt46AuN?(cG}~L
zIyG0^kpeg_Dn5$4H7j~?*Z3YcP8|S(2Kew0BRRd@knJ5zsR)5ut$ryQ0<me|nNd=-
z<vS``Pd3F$EyI!(+y!(V&9M;{7!eo6fSjR(iecP3SAtkLDcdTs-6{dCCHg3K;VnOH
zvlncDY;`J@0DovL%b&UIlDr#a+EjGbVkG(7Q<4=1k!n6QMwpSote_hHiR(4LXWj13
zm1tr`IvA=~+PIp%q7Q!kj*VEQEvYH=JE^wVhX=|)tnrSRQ@mjCN>Yq@CH(hYZ;H_M
zY(CuX<^vig0-I1UcJE&(EIRtIk5SkrN6oiWPn2B9`fRB)+*HK?6rQV?Ub>>DW%b)>
zJEL|H12M`nf$MU$n6N%<FTKl@;4$>7xO~xG(f2|hMy1vJgf*YF_f#^gLyhHq0w59h
z&J}@(=kvix3r_zSZTu91Vc4kGxuw{GCs?xuiS7q{M-wA~@Q0tZ40o6D&dn=UdyUs`
z`Exp}N>bpUT9oCkw8LG2`$OU3N_prGi@MC6b39(Y?N#3|s}|M{PrgVdwmSXqgBbe~
zc*GPm>ShfeBL;YvG6_OKyej6DDHj9N?>XJ@e+T?<N2$5HgMV!_78~dTT|d>jyCKb>
zvK6qI)(j3sfjwwa?#8=D?EsE8w|7EJOA)iz1>iB0Lz~xtRk!)ayR3)R|F4M$+~i&{
z!6Yi7og<pEAq+q|#}`t--@D{bHGmg-hmuD}>zxIkmI_6)L3DF$oG^>o-uL}tkuu`b
zn?ivS4S$ERSxwB8ElYBvU*(RwW4><{ALP~arUjvRsQVfvY&V<wEmk<XGIxHrrmr@T
z@Fv;M?~<`BC$_KdF3*xlHyOMe(?xa0%Qti)^uUSzi>`+)RHF++z+EKQht8<PeyAdH
zy-p9}kjat#5BjNIJnxs)OyjM`Zf*<43Tmb-yXR8>m+B{pDdsy2wc$byMW6JH^F5@Q
z1r=i~?U8=6O0}Zt!0SZsH6S7Xg2PnYPb;lkgzB9lAt_P}B!3&WD<{5R58!_8IM-Gf
z5ET1$F>Yt5kZDoC1k-e$!#-*rTf8+H{739biVt_YM=_tvwe#7y+{8hmQs)*6JqZI%
z>vSrbRYSii>41EPj+ZKgb2LtL*jwNYOyAd6zWY;_QIWV?9<c#05N0ck(IX<o7JmqC
z)ZUG2eNq#$&<$HRJ(~>@dd;%*v!kuI`b>{(R*jXpju9eD2tiB^-H(4uQi(F?>aAy_
zF&=QaE&}yi*iv%ZNhv@Nx#c5D5gD*)&4{j|R^BxgJe<`jo0a?Cwbd06v*>uK!+r<v
zr!U>$J8h(oa1mOm<G;`7mesYZ{aS8up#5jSASIIeSxP82C2LgV)9^XofeP|9zodHL
zu;T4Fa%;5dfE1Y#aHsL>x;f(rMa2l%j*Z44v&G(+Ej7>1$ja>|<gHf|HL5{0FJdsA
zBjmI{Ao?ZxjI`FYZhG~01X-iE3X(jWNyGg@D@ptyMBDSVq732#U|P}`w)e<Zpc~Q4
zl1HSAN-PmT>6R@)wdzmhLwMTGc;nGt+3q<2{87a6*@2_br-1W&ugy~KNb1`?V-3rU
z0(a2T;mlF(g?Dg-^iUs(Ybl#{=-(<On2p=@{0JZi`@UqqvuIR@|KiGBbX3ES9yIrV
z(LWzc^>h_nqp8LIPQqg+n413e$ZU?R-(8VmYU-y%vBbNyrvp4hiHL}=l|@~K%V~t3
zV@J}mkF%D;K>du7Cd;6hGqWpRugKFl<nB&^dNnDT)|5Uan^KKI{)Gg?imc{Av@L5C
zPdAIWKopXSAl0ImU*hCwQB0)DeWjQf_!eBo9H}Lano5Lxc|`QA*3_8{k|F*GLDrp8
zoWtA-et#DTE5|%cEk8?RD=0y<)cSdMsV%etJn1p7=o}3NIjKW6tACbezB<~HS>+<_
zs*t1Qn{7gNkREt413~c<#aG41X|$zJ)&<3TH;4uQrqQ@KuH>7gFOWL?vMn3T;d22Q
z^g2>=jZ;;5#F)hgEGp_M*k8=>=6WAoXmj-7M6?KgfeKWl1^h9Wx{T1dy-8r;`hUw$
z-f~1XK-TFgF~-vX35afl?7ljw<D+p6{6`TP|5-RXMIo4)`60)ajuJ1se8a?HiVbIt
zLPk%Ekesa%(n7p%d1#-ZB<h9~68k0B;?hOT-}8Yt<}zMlnXUdxGlO#YGYjs&G(hu5
zS}%G`KL8{>Dc;~Tk_ttorHDH>n__-R58uiEn}uH*7zD@M7W=}NO+$to;@XkFPmOkt
zc^xzC{M>F>*0Uy+%0ct@YFo>K$k<e{O@d{QdDCn9rG%P3uBAka>p~N(C3fqaueSaK
zEWG+#5h02p%yPhDg*e_*qVdkL@OW+3ZF@JMbjixweTq0Fsr@n>vFO4c#q@C*v1*e`
z2%VUDVInJ@zelR=RHt@>nU&ByG?p}^hqfLujgbY8AN7`7lEi%HdiOL5>3grA)pJa^
zo43ifD12M1nWPC`O5=fLosLsNPN{_auqVBDrWRFN%CTdv53@N<0o}`OTM#wh`@YEw
z7(F37IUSfb$_@HlkUoltYuw23Ex%(60I}cLJ6V?(&&o+%cYz-t*vuK)p$ZsE&i|~Z
zAY>9kb)uQb0Dz)eeuYeKZ0j_`B|2hmHxoCagpO&u$gxu%@GZub)G%835wlPGzJQ;I
zO%j?O@xL_jt(XDYyQ&8qE<)aNbN#r*70fk1X6i6N7fkq-MK3x~)>uC{7{r>r@3YDx
zV3}!i(_aOTo)lRw=5B!4^S(qe!2etEEsc?v`DoQTj)+akO{0-l#_%q%Me$3B7>0vt
znp&4nO4^7YPM_(gY}<(Sy^QIh8J6s@c69UMXs2g_T{=B4EOvUxJNKA2%iLh5No~_1
z#anDSz@OW9$*2}pN>2Z~xXqnIs_O_AdCS#P&MCn#lt!A<MCX-*-^_!WfEDU3W)bxA
zB!A46ij7E?CVJ2E7ViU3JA#DuD1YlH9{>fayMOV(iiw?o2kA`Jd}m(YnK9(mC2e6Y
zzyV%AtNVD~R-HZ_ifu5!iV&YT$;y+Hk<MrOY-m42bSb>-7!E7sTgE0Y8RXa5!G6r0
zr0liS_5~*$a$CKIA7z}HZm^7b%mN(9)+9(F&$nf0A2u;QA%+EVJHS?d&Ev+z+a>aN
z16TNy&QF}4ltH5U_igqQRt(9?ZO3%Jy_zR-Z*M0etzYYXu9-kgx_-JtUwIKvgdsxA
z)vKZPhlE9BW(GD2S)03s<TY+gu+1DYKvXILZH<l>yHT|<S&jT;U7`2FCOc;Nwc3d4
z*wUGNMR#<E1d-U9ooi(oCl0tW>)h$7@^U%Mn8nk>mqyAU32kS=2fBb|??ZZ@F$2?z
z?b&kxJ=7AuXq@<g<f5-z{W8Eh81Ds;Ag82qMkOhX+biC`*i>WL{QPCRw(i}<Eb8~t
zEn-djogee<OILjQ@jbG0g={HF8WJjcrV@E2YIpKsnOhC;e!m*?6^hr22U4!m>NF$g
zV^M}1ug;&BG^f!^H>>>}-AC$jVHx*Re{qNzXGe|>=*)847@+F?^f^8NY;Me=2{6cU
z=N+77j%ZTED>_x;zt?!9VF=$Ueg*vg;vq@by?R>C=b<aP&f3envKTOotBYPmN8Zrn
z)M0W*6>GYLtCY^zzE?6FceIUQg?l>lHf>4m=$+_S#2g$`t>U3tN_mcbchI%BPx4DG
zq!ajl>F9}2(RH!^j(BO{RBXK1QC&Bzk7=X!!^zyIwCv3mv&uW%Cx6Oeh8bB?^M_k8
z^$h*Dp_s!E<KA3J(;ajo9_ohPf`;|oZ3{D)e9a+kXn~5Y+nZymB?Zzxcu?=5y5%mX
z44J?VSkb-(RlxOz-Cl4<aLAXo#>d1VOIgRtb~6)5_h!2(<L?dVj0N4MSFL6xo5AT;
z2;2FfEX&K4tJ*+9Pnls5O>Yr=-F$Z$c>T^5{bF!B<Ge#CK)7CrK!FtpFs3bnB3`OD
z7rUULiC>MEw7NJlqTNTqO-U67XNp;iP!(VVg}!Ukq>WL;R_TbkX#F&i7Zo$-UEPVu
zTk7H@pk<-o43ilf6TatF4g=Bfm{1LvpO`R+Oiocp2|%F<x=h`iK4WgL#X^7CP}EXH
z9{~Tpe6ZJ*mUc#a98@)|tIz_?&AK=2-q3$WSK67Rm6mPf6LjB>Mjp_A5q$vd9BXGL
z@_aH6iICK00!ahK49w`V+-@04NuV<N{AtWnyfeS1OY?=fk#AKSC5w{YQiE#%zf66|
zB4{if@W`HD_E9u(x~3?C3^ua?zwY+!OgEh9co@vwWMH#edJ}Z;&4#<9Vi7^P9jc{H
zW|-a2VOKujic-Hrr$8}b#wHYg<y>Z)zwut4s9}KPEz1plS~2^z`TDzFsu=CS?_*3d
zK?KOyr%UV)4`=&$v{n*~+KnRO(%i=U9|LU`GXaCYs`&zdQ7t{dbr1<8y6<*op5g(}
zx|3=n(r!iraA;-Fo-M?hK{v|xe=!raNgg+zvxBy3s=Ob0L*5ep7=hpRgLVr=08ewz
z8w7_F;hyC>W(mgqFB!Pfe$EVidohqVrb7XGT9#Q_aaAuyrg9At-ynP~Gi0;3dFweh
z2>S-b49D&GmmiUernlZLC!XP&Xo7_7Q4Rbh|8h(Ij?qy3+LSdu6Y6K^0KLKR^bp$o
z7hT-h^oEkQ+5-F(G2eM-*dzk(!na-u{CH5#;%LjBs^13<EsMZmb>iJ}w$*|sfUXD%
zN<>Z_p&0W|T~Pk$<>-R4l-M-!HIX2bq3@QC`wD%b2uLs20dWy=#602W@ih9Cgc5Mw
zD*-JF+u{gGk6xZTRh85Q%ozerp)C<xOfq*3RdQV^h&H4{%E{v$+@=CT-4F`-mSkl1
zW|30Ri~;1X$2#y3=B~Xp-Ckd64q?#dcJMoVXU~v%y1$CSA*Z|9cjWhmR%<D{A!$IG
zTWS&979^LLod_JT%2xLqHAS<I>Ov^XA@g*XO3^=!wWOX<;6dm9RR#9`k6b7)Yx9C-
zHXg*icQWhxd-cBD6d}?o<h%wxGm&vQJ&(uy^r>}hV+Y_P1C!eb`9AoTlmt>Rv0PuW
z8h15aq)4~$k&o*QITABU(WB0^eV>x6$K<M)AE{x2yw^=g=CG64`%{^<zI~x28Y7%Y
zya1mGrVWofFdrN7PsL=kl`&Tmy0&4&Z%13A9EpW&?$2c*R`u`8h<rUlViyw(*CV}$
z*@m_!3&{-`IAU%GcUwSl6nJW)_G^s7vTajsn8d_QMo|;iW5_R}`5Y17`;X%jK1G+T
z2zU!cL`cS8X<Pb%ri3Yon4?G(2gZ!*EsN*1p`5!wfr`H5E2{4nC3~-gkgA@-Lo`nw
zxUd;9k97o0bc!B92HtX-iR)lU5g}jNqiwm64~*9eds@;S)x!7h{~hnX(GKxz4NEVF
z{EqeJ1`urr^#N~APq9afKPt8@gm|f=XM`+s3_zz^kv-kWP{mZdunu$q_MPad6VS~F
zz2z8W^B&rqSoWX%{uY$I5Jg25Cg|7<0i>AL^oig3QSWE2l>2+-c|MLmBk=NVeN2np
zRmK6r`doX{VH_^4(08&&?t^D^krd{Yrx5SaRQ9yILe$u*RSCQ4q$@f#_noG#7qivh
z;bod9s13;j0@#t%u+^*H4;96fhMnoTh4Lz|kd^b{?)}(9FFSVH%8~A(D*x%q6#KY@
zfK~izGsOBr@=^BcZ_`R0ti9jgP<P;bE$M2jnXVQr4?W9LS@8}m<B=;4q<T;q-?1kt
zw&Hf<rVqa)EOu1SzM?m3Ix<-gg$lkOzLWa0yjnol6?AopfZy4jX4jVoXucfwHX=mh
z2o>v$OQuKAmkdc4w`mN_Y|ve<@Rv>c7z76e9nQDfaB1=$!Lq`LedxY?M}Ziv2Y0qu
zLW?5r7w4YEqn8!5kl!=nFubbl58G!R>pi55<8)gBDFW{o#j0YP-2DqBr@qqVjK7AP
z*)L878OOiJlQRlPdY78?50=~6edf6y1Mgq#{iX&oFcz;}MA7wj@duKq4U^o^e_gU{
zz37g|JFQD5b08_wXzcwyIVk8e5BAnm#N()7c?&#6!&^1mq9OOz6|!0X^(~a>biK=0
zrgGqyl#G-VATRh|xC;Tl#7BEQsT=}?FrM?Y?Nx+=?Dd;J`J6>=gL)mm__V@)RYZrR
z3tmloeD~e{I$h>~Zsar-5?|%`PykXby!aV6zQjLTlJ9$By&55-ev1dTfjk(>(AuHg
zYL59*#hpP*_I#4MP_X5Uw$+UZN(8M#y^a=g%38Tb0V7m(6m;x3`<duQ*@8leA%O1^
z!HvRw#N$p-Nro_p3t32C)K!e^$MoHtlNo8#I~d#wx-l<{sN0T@<YH3mquy842Fo?)
z-BVKw;Lh4F_!kMR1fRgI0ve@?32au!?ohULsSo1Vg&!_ar8chxG<P<J-&?apBJ^27
zSJ%g7#lLOF+Izolt?p1DndT?8aMEcqfVxbrtAa`{33Rx+7XUIdXf3Pc4PzBuI=87R
zgqwz+)bbN=4ItpI&nlHceuVGZm!kx8<T5OXFMik1kEpnT22i=6B4|laRNyuJS|=45
z3fv}TkY9nxwh+wx{amf3iT?Ri)E4^ScUwOebneswe%F5hmC;f0=fW=53O_HT-Y+A1
z{jj(CEIPT!(3CImX~gX3QaD<`Yba=yKPXdo-7%nyg?dL!$a9<H@fVhSJ_CWEc5N9C
z1rSJG3A>&W)@L`XFZa^Et9xyk(F)roj@A}3J3`vSMoyOJ^2BWWZ0N4%Z_uCAjKPRX
z`;`4In)IrY#=Gcz#Nu5`=!ZJ&L>Ha`fwC{*PVQ;QtQMjfC6B<Xp=SuGr85$rRtIkv
zfc%wp_~Gb48rr4Y@e&DyEbyn?f9f$YRCGb`-kC5XucXNb#nC7p;Dp@8KMf13eY?;M
z6>s^VQ=ykje_qGEkZg6?^d<BS0(u_1I!m8sudDE#R#Z;4c!amnO)o+ovf33b03@;R
zn9iv4$%!9EV;BFlSV-@e>rPgh>_Q8}0Bh9&k22J<m>~g)YU&lIWD7^<t)@0k_s^hd
zSKZn0kfQE|To8-o?L#5$NzA&!Vye<TbGp_P#qh;>S+U&!DPz(B-;(t0)^8dW90Nab
znO#a9t_n6Xq^oRjOWA=O`}lCE+cO&|7@4dHlXSP;`&g@2_eG1brT#}uz^)R9?QCVP
zt2MM_%Zw!I5KW}@k}lz^cmac+P|SB;=xTdOlQ|hJbj1~vYTMmDH@NRQDkiX)i?!e0
z`4u??LOWNUsqgOo56E&YWqwnn3OhSLfK6*?2?&XRThz=&JtTw7nHHXE*gUJq4&5*Q
z1C0zlXrK=jv)vCP+_h;MQiaO4mh~9maG5dLfL;2?m=dwNbT=bg;aH5A)52k7$XBMb
zAThI!*5nB>n&yo6-ErD~pZ0vg+5Y;pr~Red?(H&r0lbwR2hXLaAv>C?3$Xnkdw&9E
z*?FFafu|Y^fdW8+APJBZDPBSp_Xf`Y|L6SYKj4O?v60vaK!8X=f*Rcgpv3N~R#i0#
z%1a=Ljx^RTTS{hZM|K`htZ|gFWlM?eJn=|Y9Q%=-u|4*TGamb~Jh2}~$;6V^MBX&t
z`@QdXtGdvQZg3UFd&rCGTld!e?m6dQzUBSi*SSd6nIx)#-xJ^OKA#)r6_-KyapF(y
zo%(Xpg^<+P6a&@PqRLGs59H0aQy@(fG7D^6L|<hziZwQeL*+otQ|4AMj}t8vK#5KY
zN3c_9LAHO8W*%UC$I#5c22<bzbj)rXS$elQg9eZ`>nwIGq_CFpn$J+X$Ry+fd|0wF
zXvLLHkVnY72PnyH4hos(fjcgQq}Yp^NrcVaSW3YaTP$s6(U>7^K;j=)Y?6Fo=np^=
zYT`W@{9|n$rmu`yHmYfc<giG`tE8FH<3=<+^kEbU3w4C}j6@$O9<vw?R#Mgg5|S4T
zz0pPQCQ(OPF!Rq83b?m?t^nn>1iDHg4EYaQ1e(;peNmmahq@0ND{}>JBLj?5m$A1O
z9gt;hD&&wRKF?UQ-6FbO1pqbYjx?4oHo`<=B8MmFiG4Q&j;bmkMM;y_6&x2F+bCeV
z$wIc80we$<(~(RE$b;4rJz9kb3sh%h68TbQ7%F8bU2~ME6#Pn&+n|60^!5~_X;gtO
zgL+?zoe(vs?HVm%{qQAeahbJ20@Y8_7K@RbKXWKI<QhE>3bep<$TU&QqGcw!6F{Yz
z1IL18S<}ujI7fwYQnTl6L8&m1)CdVjo!(T{KUJlw3J@73sV4E0VomT11e)YVgLANZ
zna3;s)1e5tH>7a+f~66pDvikjl(`0_aSECDW`MSsl@j5OjXL&L!ttBfZU_-4CGiSN
z10Z2h=@IDz3S&Xwh=M3cu(mKM4QBILvT`iVT`Z*DJeyO%%R)9c#7b_`zTqT5f0_i5
z%2B}?fa6?vrjPI`2sWoVPBMD$X0Vton9!u65X$mi`-3O%XNx8pTFkR}l5F84hbegN
z1QkRC%VPhG9T6r$0x-p}QBlq5$GJ?*gYud5^#-)jx@mBV_-sUWSu$VX8RF1E>5>*}
zCb=^bh~&nrNZM#&t-=4Mjwf$Rbg4Mt$K0t&l^b8N3r}|o1eS#3rAA1#txlt$i9@i4
z1LMc-19&f`hM*J{ydwmo0)|C#x@Ea5OM<4L$ikr$oc+kDv$8tCS))Z1_zBvWS&>8b
zs`RnO6)_o<!a6zf{gnMHnffrGRqP40u<OCAI=SoZCLzJ(Ce2qHqr^b4qH|_3*)^2q
zNn+h%MW<*QL5-10gQFA~2JtF5nLbU<krjgK23rNddOE9;k|;<9;^dJjAPCoSR|X$s
z(0Wd)q@c(RlR&eH#F?P}f`9l1iH5yi-7}$108t8#))DuJC^b;gE`0y(#qozOSE02)
zTcvstbt4-bs7by|3SK@2xX^<cgeg*95&ZH|p&G^ZR-g^(7QvMuZ)Y0ih<cB|)_W%W
z5%Drf2@wWg@<7Ak7VS;JmfA#i1MmiK<%ld8sbG8NVG@EKSsW#L0Eeb>y|+IlPw1pn
z>`b~8&$RQZg2+h(8I_{xI7M|x0M71TzU3@NV?=lKI>sC^#jId)hP(&GIA`TV(bnao
z)#jHozJV5Cj!v&WbL8|@GZO5RzGF7emoD7FP}R@Y!W5)1h0CaSM0(W^fL)@JN1~em
z6L7Y6Tf9mtDjlHJ(<c$QwP>*=@=}1^&{s;Zf3qx#1f~c%@hxZ(J?UQb8%QvSu3t}c
zV4>+bZl+~UU3`-R<P<bg(U?y*I}*R4ub0~+WMqW>EaZ?gk1<nGbz%$hn6f1PK=RHp
zgC^3fQpHkXWLD}DJx^-uFn5DY-6$_dCYlM<;%l@UR9i3dA|#On>yd9&v+b9>qH{>#
zCbWuDv;*E4ErL143;)wZ7s5OWwSJ&f7nr0>rc$S%@{;BVcrq+nq}g-N8WnojCrTzL
zL1Dq~v@L*&0;;PVFZ?o*j1)qEEWkQHnZRC|ToE8?<2l;MlWNgON2Wk_&trfQ@B&T@
zz`i+ZP==sIbawkq1VcI10aA<fi<Z;^O^rl1fx5V*a;QMKsSn1;$}=od-%e^-E?zuy
zV~8;Qf}#)FFX&J;LJ`anA_!;)&(3C(TQgUmJj8?Upsmk+B^?ZyW8{ftZDlsp<)hYd
zBG}y4u33^2DG{LpVk&Mn1#Y0wKU8M(rZV;H@I;{)%rJSZKC|5-e(9Sh1yW(La-9Kd
zhIFMyNk-bjQ)X#vORBkfJN>%1F0*UH)+C9?q~^F4r@je&&zU^WgG;jt_cM^;azbC2
zpCLLXIYv>W<cOK4S@l(r&N^%ZYqlGl#4qmcD{c`8e(s4Q{TQe&1@WeOu%^@~f??B4
zpjYHL+1u8O)(-96g@Q~BbpR}2xd+KzQd59{Ky|w*bhGLb)x?gb+_NT&$X(v47h`BG
zx*yui`Un^p$YfttWgC2Ha%)vIXK9>-(6^bT%%DrE(V)_*$>x68lNhh>#zMu_M0+z4
ztQI|p!w#5e4i_7-g1J^fsBGkE>#Yi-ry>oL<jr5Ym}<|4qAc;-b1&v$z!}LOI7#m#
zRau)u>C#S*HIa<HRm%&or#{(7>ZPHxMhW|r#KAduM$zr5O>lztDw!D@3FaX6JIdmu
zj#z;77+@e2&~)fES^z<%K~M+LV42xX?_|d3j?OCaT=0!EHQtY-W;|qAG&p++M+1ea
zO>p4&0%DgDw7DWpiTav^mYoZccV6ru7kHWkN@&dK;Es@<2I{~H6UW8?VlW>=R4~{r
zyiatN^8{`((Z;19M7Ie~HgT|X%oIhe8tmglt{$i_hQXwcU-05;`Ke2WXq4vYS!5C`
zK%Gyu2v2};O{*-qVO#U9$NWRmM}fbpGIndRW;X}Sa*Zj$$?N*_?gh_6D(8XfRRD|1
zV3wi}vM25ZK$4kC1dx*D)f(xmq7d!-71-F6UGhbZL)i9r#fWp2cUY_70DWu|gJK!T
zhI5ckbbsv&WZpP&^O)n*lB|t`5=*tG`+>x$d_zES=^GC0yFsH!T+ccTYDApaPY4d6
zEF~M_S>cFNITQ;DR~c^?lEH}`6p+qc2Bd7g23ZYB<_C1`sroQ52@BmC!s4N6=y%X!
z92y#CN~R-^9~U&~dV;Ce?IGE!D1RbFU?U6w{L6AFdbLa1IZ*Xto=Gv|d>(!|v*WoO
zI5t;$6hM?{i%+3r?J^SUT>R;s0FKSOXERs1Q}~1Qn!LB07Ux7^<dJ)BajHVMm}ds~
zAU_cILNKg>Y+Dr$(8F+dYZL34Xf{*s%Te{TSfv~dQZ-Lv%p$*UA~-96D^(f<#fJ>i
z+XOAAZXoajIVKm=pU#{{gH<5ZQYBq!24{C<=6+x;6glL?*cY5@v{=-}1*IaX!2;=|
zBxYYE<C*D-fje7SlY#~)`DxUF1mTE}M08O3#)&Imh=d<>6K!kLoG8Qu4~RyTYBM*7
z)e5ABDN2xnC<r~*V(&z^GwsoFLYKOK1LqQ8mZoKKP}RAG>sy#xL))}+Cg2(sKuQf5
zh{}Zd81mBML@<ua=_cm+873#J7POd{zZ}7(His*!ZKMw#6bOz~1$)`gA04o5hybPr
zK`F=SjHumn{C4-L#5$6lv?Pob8XQCEwF;Vt)J~|Gl%8^%AgdyH%x0ThZO?(zVBuiI
z{GbjyqIWk~24Z5t_1tqav@0o^8k9ij`GY?|HMo(X4_5bHKx<(NAhbcp8M?3>rT~Y#
z!CL*cCSZyDk^)mM?>En4;;A|dC~YZ)nV@p+*VL|L;>7{?2@THTCxe_F>*-*Z_EQ|C
z6$S1ZRZ!-t!U=X*X#}Hprf{ze*13d~2u+S`TQ1OA&^gX3j23TkqDfL`%%J)ABob0>
zEM|Z&Kxe7Cu*(4r+*OMD^O5zT)U^#bc9-~wqd~=51rSc&M!@IXU}K>Z-1;0-E())y
z5&KiC>X!q92JNLu<|g(PpqE8XsZ)T`UZu+6jQkP{<PfV~c<Er|c9Drk^w|$a3R;{=
zFK(OQq<*;GQBa9CXO#zX00D-el`Ml`R%j;hRmC<VVJCaY+0H_p)jVpCl0;^jBGZ5}
zmhd{12S93)xg=*Kro|@eT%4t(g^?L>i{l{hiOsV@)R%4YRr_#jkx>BOmz*9g<Dd)3
zOr@8JIP8L5FUS0tbtjW@<insVTg6(2NU(4@b|9c4j1XV~3n)_@QwdlSaGflhl&U@i
z6l_(xokTlZ263RcQC?cfAs}f%C{{*GvfG6ImX-ksztFj>fh9pfIx|^lw}&Hkgw(if
zrldJC&0}0#p9g@pjl#P$2V41WQ#dc-Xb9yAmTQ7khX7eX%`J_pNev|F_Z)Bx+&;xE
zC8iT++5})3RKACnIQIfztNoT@{})y+^a-40m_m7e$vKRi-rjAF@*T%A#nnxd_DKj0
zx=nNd`KO|_$0uj;&<G}rgMDdI1r~2|UuR+-1bsYBb`zs{ROpHd;&$ex212MHoK0*{
zb&-2~YL?;%P~yHG+S5^~#YU#~f^%&W14M?DcXN~%0SJ~GoB;Pw=8a9!=mXOT0ynFF
z>L3+rWU&Y$ahCeX*Jh0%&~f;SK}KO?mVkLX8)^E1%6{2DpNR-Zg_%np%7F6n<;f3#
zs`-b4PE%J^>fL~OP*1*Z<3yrGM8QnFmeAPDXy9Q^dKQbw?4+u0GOKIYyJ!6*;Ujaz
zf{j%tS*bpWypS{`Gixt%5%(8bjR{z_9l7;V+O9>rbL09mOloFx7Hgs#Fyvrwg2IYs
zh~ThjotUWwnr78c3;lAGlxZ%B>KQ$YN-YA$O<zFZLjV`J*eO*FB0V+prHQ3=NN7;i
zJ(Zf4##nVp5#$u_+hb9oFD1ObM(jovMN&q^fiMb4&bmS5C3LL^Qo^A>x%Xj;@KM#R
z#@M$cWU%SYis2bF07OgL<@dP5cK_g}7`(r{Cvx0_oT<9Rr5h|nITwKX-5y$IRog06
zafEUk1<{`1#)ZlYpy?y_+<ZMj#h`iQ5q#5^>7i?+WdZDR4Dtrwn7s~{Rpzfk%Foll
z+7MhEu_7UOo@lYrfpqF|-rr$t0W9Dp#h+>B=eUVzBz3u3sVq9z8B6t`Gh{?EiA@;}
znEYsSYurOl@E|x{L_lr#dvI7Ublv7DGW=R<z&hdAG(+5y7Bl-2Y{W`b%dW9vN92%*
zpfz95-3#;&Dz$2!hPuL#ka3F^fJZGVv0Vz-9ZIVrSIv#8C-%aw@FeC=bgf2TJnMNd
z=%M2rd{705Z#MUducL3y5W~OgsiBFY>_mI?tkB@C)+6b$7PN>(KwV2%qc$)I%tbSy
zJUCcExLLUWM!%}6L%#v^w(irJh`3DNfDDBJb-RsH=uD1N)Nt`nY=G^FB*+u2K6i;*
zLm#rRgeYJzd<HEe<&9DAR)j-gWN5RhhcHd5(U-W#fctu4V^WvAbGZAg&ZxAwy}3o+
zriz;rW#Wkv;LyKf?PU^WFf`41J;Btk7V*mFY|MGTd*~cgN{5gD^rJCzV=hEqmP<yS
z9y-L`oLxp;szU0JJPZ=BL5)>gHnN#q(%M8I0jN`$m2;h9-<-Xm37l_=;zgx6r+I1c
z2-khj>ltbERIAGFc+i|XwC=K?07K6WjTh@)$dxp~fayjzvnPQ~55)@g8=$Ji#+&Sn
zd5o{Q)Aw-K+$8ih-K0$&;h&*|rUu*An7t{WQg)M>pi`taxN6U6*NS=&d47v|2GWh6
z#9@x46XA2&g+<*Wx{ckUH#Ksj0K1td`<mp_P=R8>J2!GNqrD+3nKE#RMSDv>P^n(p
z8c0DBk(jW_(qfZ72Gqn!q;Af|keJVeT(g@rzft~WqdV6loh~;35wc!HO?#cGvBu{8
z%3cPrqH(K04pxw0q*WCd!;@I|#=)uzN7al1<W4-$(b9sRCq}6tWpF1E1skRqk+o!6
z+Cmy$R`fYb*~X=6c$T1r^*k{^$Zj$kr~uS*#c(@~QX(tHc5x_Wx<Tm2v1_mp8-)I2
z5h~@8XAQ+)W-ez4;(4YYU@6|mR+)Z;aIO302`m!2rinRQfKq(w5AZF?5+XMtx#FhM
zj{{pVbEWhL`nn6{Fd_2g=IkbM`NCjvI_6$&08lV5$_Eaa*Aqlw%Am5qhrvK&DC;jA
z5FqRZGB<uHYZcp?NVhx~<gyI`9VNi4lzXt+YP_IZm?)5*jY$b=Y_c~ibAh@9S6lSr
zu!GmZ#4sr3hB8Y%BXL=xXFLg$GQ&?_=hvgQ>X125-5JpMB*$fsre^kq&csGT8;@lQ
z^q&&6;2=^rmqd<_iUR8!U`X*fKiX~S$u3oDv=z;4n;O9GMMwxT)3n#dqAHY1*$~+y
zTN+{|A1i2TRerzaSb+*1Cp0e+i!m_B^`gU|+eb_kL<%O=WQiM`a>&Yz80D-{WHt&p
zZMy0g6Vb2*$RS_1M<He#xSDA$OO6FGnU6?>U_@-qbPFdrFk>C*71?wr8EFEsT~zei
z$Y=<#3bzG56LJTR?CAu$RfI_vMY2_F(Bc6GZofZu4p9?xm&87cTc6w>NK9pqliE8D
z)}3pc9TgK=<h{IRZgGoch0I@|nIg#*5}i(k0Kgz`TpNj&z#Z|BA9*+>hAd81>c@OH
zzmf<K$lDMMlgahdV&U{z4nI<72NA+`XQuA?nRcIRpe%ZK-IDVO(%zsr2z)3$&28d~
zkJ$#O4|cHcm(Xz}HC_U|ll{u_8Zgf_(VcC<?agG}LCzxXo}kNiou<-gFNfM4ylA&q
zC7nH>e8`oi67dNgyq+u%ZE3F(dj|5!#_Jgvb+b2d87pWD<n`1l4bq~4=7Ju{arthp
zkemvggzkRUAXY=wu8IxLJYrfKq8KaeHKdhBznU&l8Kp`e8Gv<jqb-SKw5TK!L}Y`{
z?_C?jB8iDbY&BZ@W?GXJTtXA4&pHe`t}3AFV3~4cLOT`6VAEVvf*C?pyq1_k>tt+U
zSTWkZM{OWy?V~*j)u8knX~~(+HB?YU4p<VW0tofo96HoB@kn`(UOU!(-OuBqi4;7|
z5qaT?k3o<wwk`OaTvWhSOU|>NVucBi23}1t9&z;KDx?5tleuPwXkbdq%gM&AgdQO6
zL5T=9$OCffp%;L1w^bYs3Fuc*my#+ZAs6K{4<vjJU$fCbCvkwXGEt)z0#K(40AD#Q
zM1Cgk<n{~3&0N*~1nxH8IbfTKg9ODd&#k8i1fEq+^Pz?)1GH8+FhiUN$kvhhoL(8N
zAt|YXMUZO<+Hph~*aw0Zz3p^qW>#PU%@BQa&yGTPf+JUzx^&|iVuFIl7fqW^Sw2={
zSq0SkV$?(m)SU;g+tFBKzuts84n3p9zHz8e6|O0vhfv$7RL(qd8ldl=K2N5!8EP0J
z*#_Fx{V)tFmR~2}bllS{>YxWem7CqrVqC&cR6xtdL<CGsN0zK5b1w3l64KW}g~(nd
za|^0>=sRFo<yZ94F=n?b%}oI;?6TM|)9AfA6k1|XixfWL=#oFSah=7TmrLa4$I8+b
z63Pk~YRG37g&JtLpktfnQDN9r6o#R8!Kijrqrwb9RNuTo8!sBfBBrn&NatW8o4ik?
zdCi%b%3Q+YFw&y=2uk#fL>ZS1vRtM?28J}qXL2cPOM2ubr(6%=al#gW&QjzT@~mxS
zsbp|$11%1LSEW8S=yy3GpcBDh$1d$a@4c@<ftZ#52C#rF=V%o6aI&GTV^T7!X>R~F
z$qj<Diw0*7JfyVx%4}UDyTt5iS+_V2qMSzAhEW*uTdcHOyxYjZ0onkj))I-N&>29d
zb1EuIG-*GBg@(&DTx4}XBdNYXL<BM~O$;$hCcS133yXmmDdLeeH+>fFo@E(0W(T0$
zEX-j=TxTXh2s>|Sr$P9GG&qWT74pVa%!7@62h-T6$QiTMANY-#XIP8=4x;W%U7*gy
zJiY5-y2Z*R4+P^y%UY5UE+BTYh?vF`KE3FLU3x?oN$UdC)f{w`;$L$Xt94&SJkjR{
zDS(4umIW6l@{f{&xD_i~3v48(U|E2QmD@|q;F~=Ol$krz=uiNerpA6i)0vW*Ly-+C
zn9FTxj;;)0qs(<8g%gk(qCtbcIZ2boG}6I_Bmr&COl+9VUdRN%x#-VAn2Izrh@iz?
zH!NwYF-6@ZU?l5A2dZ(;Q%D>;iSpfvii`eTlW5S;M3;k0AghOL>e+l|u9Hln01y<I
zOar4op%7q#xQok?ZF_1HS;j1-PEk2vsvOCkY1wl=5XX#8Fm>JvUJXhhbyTC$z_aWp
z&yhE0OJO#lWo>6@zu^*4mI@}b%Jb9G;*gm|LE)Y0<r2+RK<=yJVuPAt=Qw9ItqBF&
zV+NC<7N~LFN)gznxiV$#EPBxpJ+h-`2J0R3cUkGXjMH&@kTLL!iUpL(-d@`#_Gorl
z1FFUo%>BN?S0=m57()m0x9s~KDnAr$d6SY`y}AyHOPs?XKtvp?v)FPfMMmJ===_q9
zP+6)+kk2bix|SSu`@|Y?Qr9(5A*wEyM8Z;#^Uj?9HtT&K?FTW(+9gOly`+5@Jt##4
zflZWgUi)K9$i!AAke@Gg(nWMs0FV@MZel-P&l(K;a}5_{QJAF|Lyn<T^+KkQF9S|R
znPcVSp)n+d>j}({^d>6VG(dPvq~27SPC=@Ldz78KBWM6P2{DgxP+u8vJOV)tq@qP&
zsY<^E+yl!IN&3(Q?e!!;o*NUeQ(u-e9?|AUnth*UGU)TTcW_PMylSCVg@?`rGk`x)
z6`ny*OIvOm8BQVX=etxP35cz~l+zmt<pEQyN-=PniREb_76~*2Vd0?Q=lKCy#dDuW
z3D2Mf$=@}={qtSFlDEZHpsKFIMwSFPMzY6_ZYXD~LO&pwrcc&$YXmxTRDrH>xBz%c
z?s_!wPVUqwjLfx{-&RG(o_fgHa`_dauCGlfJ@g7`b!3^;?!E->^PCvhA;YeFho&5N
z+FDhKECr7PBU5lj)v(oMY?LB_O&Rt9nn#c|_l6?Yw5F|Rkoata-{vC|kTW(JFC~C7
zy)__amL21y&b4i%4+Lpa)(0xVgl6>0!xU!FXs+tyhCwY`XlUYIlS5;2oM;d#qB5wK
zj^4GF+#notew6E{VMCf5cZUMzOWr$xEjdyOlmEcjiT77<8&944To2^%QhCMg5diG`
zF!-QCN7xA;G%i7VA#38t9^hAc$RvoB4R8wT4PsnL&^A@Maw5XnX@#Q&ZXi~tWky<v
zIp}VK<a<(KL*4G6Q}g&4tTya|Ez&ukfxvWgNuG#H!|Gy+3>PgkY7I+t?q{zsaKUM5
zh=EBkE|ka_e2$E9k*4!mJA$T%ldhj))=hCKvrvF&MdY>2glA#>r{7yjEJkL(h&O(4
z=r07>SsV(Pyb&QU3p#UFK?mlTmj}u*>=lV7<cVVp@fqjcP{mUZYUWY1e0Jv@!f6C7
zpr}OZLT|nBC;&i58D!-RRr{&L-5Vt)pqwi3c$1_M%b+#0Cjtk=+KJqg1J$!YhFWz!
z=@9lHI0)th0gZYw)CcDv{BMs1N65i&@s=w995`cn=dN~JC|9|yOn2Y5ibSF38QnlS
zxz>W6R>YcpW*1Q#l_<ofL!E&F5nXOTU><DrAZ%gvk(rqbE1=O%9GX2vQfIiCqDz<s
zgF$^QdR`N8lr|@`__u~3R30(Fxu-WWsY1JqWt<=}pR%yT=BX1hI)h_Lv@Jc^dVsE%
z#+wrl6D!_G7MGk#n)_1{>18Pb&RG!B5-rZ`^ng#!mJ|@=umazD3DhA`66N_|bi#;Z
z05l;8UAUX7asbc(Iz<T5DTEki5{DMDEP$Sy0Yp=54T|SEG`Ewe1$%H!X>*vE%5ARc
zxA66-$&Z+$Th1;Dv8*;fdv;0&OC{DbUtk&l9P7-6wK)WqieT(c?8g{kj9N`kGFUIC
z2wdbE(e!nDuJq`sCObplv#|*6p3EP3SGt=-fgt+GnGpd_DTqo7f<ZSa@P9AW9iQ&N
z5Yn9=$x1)zW`RqbsZMyEJW0qOxkYT)As5dfjs{ls+PONps(Vuwou#c>S?)Fe5YS9U
z^eBP5K^I|DnZXB6>nS||ZZ@&Xr9s1{Bw?HJiM^mhBH2J>Awv2zg#3az66}4zJ!joG
zGuMql91_bU{qDi)Ao6Jd59kWysSid7QAp3Ak8#F}0rXr!cwK^Pw`V@q1}{TB6d`zy
zxrG4CM1TY6odr!o6-;1jbEM@Fj`Rr8kj$Db<j6wFvM3XT(u=6!!H?q>XZobbM=*;H
z`D9{@a$r=l%RRVBV3O2K0f`bfIT767<NYP-WsxWWM;GT%V%5dQBb|f-GDXsn_9Uo)
zIG7}YAsEf{Z*QYk%?7n+3*zjMj)mhm=UIx2w%@7_+@#ly>^-SOKozVYVHPW%GpG@>
zxV$>%_Hdb7BAl_Yi=l<kXb@q-qmQ{0#o(rO4!~Bwm8Dlgxu>2uD6iOo4tbCz3-QD(
zDF7{V(9nz`3JD!#be%w1o;IhzEsj|Uq2?YDY>J2mo*n&CpzsN4bPi)0o%xLbqYz~R
zfjbLEykfsXiLgo}bPfp)+r38Bv})yfHj&58(r&Zmo!l1y;RSJB&zQ+f_VbbimK4bV
zcu-6Z$jYpV333gAUQ@3kLu<;GA~Crj8cu=lL~po9bSH~KY(OSiWUS~wB;!k<BYWh0
zB!4)7qQouQa^BP@s=&~d{M=$M*2)p}+jW-nBe98Mg1>7<bD+9a2DTy1ql@9fCb*$h
zyz`IoU$&V{oefACpC;x5GdNen;fO+}@`b^gk)t6607F2$zaf1D_Z+a*n=_AkzPV~~
z1yh7XBB&#3-aZ3P)H;Iul_a7VN{JmuNcf93uJpRuHRKuq6(j7u0@TU8nUgKJMU<oX
zEzoVkGt4C`9Hr<6B0SPY+UQeb1++$ki-g*BPN*potYKtz!6glOmJ@(@I?Yx%zrdSE
z0MDFBNM()>p=tnmE74vE$V1X4Sowy5X#)f%N}3cTC*7pS&VJ93+X|Dlmv928`B_Gn
zWK4q^JJVKmRyhG>V>b%lRRn}!18}3@1`|=8lJhgGTSw`|7gEvy%C8JRlvPQ7-@vI%
zt7!Cbt9^=oP7z_b@RVle*aS%hY9_jYSb&}<fzp8xm0SY^q}aFtmcm}>1iI$-U1!20
z!6?b{{XnuK01U;SlbO%YD9VU=5OUch94!GkLnC+OO$U<A=A5GZH?ZD>WR(Z5St5Mk
zGom>(_Y05gfWqE2_%undiLu2G9m@f4Ov_oq>=D4+^l@O2q%;#-$Fh?p!lL_wo^6H>
z7!9^wvoZybiS3_R<eN<`O6Wh3pzSCp0gjY9ISc!5Si*FJQi}l-6CuE^D4|Q*Cgx?(
zETLu~z^YYLDAAP+sK3@a&VL(Kjc#vqaPm5R-6~c^X$qnb-Ny|mIQo!RBZ*8#<FQV1
z=zE<dsQ<VxN}gs&>|+F8KWUs2ZH3*7(H~eA)fV0-F$+~KV&GQf`h-nDcQMnMfw^Ex
zFG7wZkwKt~T@j&7GPx>k5HRZr!3csrysG5}QPUTHZcnOUyS9;U0QFndB~<~w**VMo
zsF?=6gNOzby$|o>bAzd=E1tTjQ2&w$Q+7E>Zfb*;R$#wGPOB#2c@V?;P$U!p?lL;c
z=$i8}3Ys_%R#1c^ylZBj7M;FRka%a&P^0HLsCp~XqcoV8`CRRfxrtd6xehMmb{fpI
zGipgSWZL>s4Qm<KSa&d!g&XiNb;y~&hw7^)VvuL1Uh13(6qx^2+pfKZJhITlSrBi)
zA>(B9Zm>>E$(=%GoeX4*431?K3+JFB5BRgCtSHb&nn-?SLo`*w)DaZ;#a6Q(ddG=b
z%|P&o=DCbydIjNy?4g~409a73gqzUD2(P%bfuCFxe-P<B(iP;c$&wYaw=fd`Z%P7O
zh-`UHA%shlFv#@&RD$6f^$!J++S&S~Sy9O|V3$^dv=2(L)^oS8iJ7tnX`wP=21WE7
z{aaIF8qRsgV>CBP0~KV7Snn%z=)si4#-?1zQx7`vBFJh9Hq{9tIs7c@M*v8m=B*Kc
zJ~x=81rG5B<=epx6o6z#bP#u<!HJQl=e8O4RIr5lhYr(HlxkqZ9q44*#O5t<tI*>>
zQ#>Qa;J+!$G(Nrsp`B1`Uibb4=F@vLjW8epI*z2Kke<<49Y~1*_T0i|D!@G1WK)+~
zm`z<HW2UG=9@IUJJZ~k5|3Kg{S}h0CH`t&j@$fvuF_S^=@#tYu<r{mHd`AmGc<n*t
z!8j;!$FQYLPBeUHQN?oP^hosgf^f2z73?@Qhrpr4RWquE>fS2)3ji3}Qesr;X^rhV
zM-LvE;lOD?tSJPYk^oRnCF0m<Y<(IzBUxG?h%?e6E&<onkW@C;L4k5{h#|fFf$dbF
zOK_7;)aS!}LK2910d*z!=$0uVMm4IDenKvs4P2F|9b1@1=m%CoCgDMnKzArMPqa|7
zg$wP^^eJuMVZIiv-r_$m2(Ok>m2~1Dze3nV$xO@6PAA6{PKx$XK<Vl9&5~n4#gkma
z(5t5J3`!mq9R}&_pl%y#af%lp_0BdY1S|yj%<{jT?3Jx}ttSn00sfmNf$ejXP5s`W
zZy?nU<jf>u4Tx1p0t2^CPJ>Dqt&<rmZdG5VO<E>efv;eFzK&_xj=@HGtagl4T5w39
ztQV>itt?fO;`Z33V{?_=%&g+@AYQ19rCC&e(A)GIm9rr1jYJCObO=lfMkOt=$kIp}
z0fBKJQWqr}+Ug|O&7{ta!PiW`iD<BwQ6<-HbTBLe(?69idgVoXTjv?rAyFlX%!HzF
zta-#7J9{68tvPs^M3*J9a_9{x%P^BC+N2+&MIH4s#hqx?W?sCgQKJX3cj&^X`vDZl
zy0j3>5}9WuV<NIAVv_)w2<O1e6%H&%Tx7js%y_;Z=+j|gnI-i#qKu|(Y4UIFaBjA9
zCM61HxQx<TMh1YRwh>HOKs_stmD%I|8B2>2CB6DB%(+b=Xf{M4$u2jWxNJU-+)OZL
zXI)uQJr`8VIfQ0$FF|jm32IKYWxJcKT=huEH}#XvQgQ?kE4b{Npi(H(_-O)}GW#Hz
zQFT)fT#?|Z7ZM1Q6?hc-Goz*ow@ef_SjWQJBKcA1i^;=KqYp}#+D}HTDx4_}qvN8U
zxds(5TI<phPut)|a(b%G7u^k7_tIGV5Ui|97iGw(svIp~c8}~T*S#SiHN}}SxTO@8
zy+9o!taPJN3Vc$}@1YZxC6R<$1#ONs$^>*NK$Y5xz*K6K1u>(D{!;Wl7Kx#v)|v$<
zCjB+iJ?=$=Tbs?D_U4fM%P!)n6i<}+hs;hWWGAuCyUj^?0qp0Kc4`tHp`bhoB`{L5
z32w6ccqy?n+?FZHUxNmEmUIZ}1k433WnHm8C6aG}*JMdSqQ3?^WhAcI!jErAmi|(y
z2a$@TPzwrw)MkO3ID|AnqqpwdG~y$$OUg_H+WI*;N7p3re@#s%5y%lF$!Sy24*OE<
zx`Ezz<`PuwDkxzG>bxL=2nbh!2n=lkBI`C$Frdw<*7XvE$hICfvJn7UM69}y2ySy!
z7%(g)5GoO3hzV6^>b*+F9_XyWZ833Fd#ef<pk=0X9*U{#y3SdhDl?nX;ipa#3CDgH
zX@7P%0PHFDdS@n<++9g=Kc~5mYfGS6&g8wf04T?$WiJ5$h8o-O`}{M_Bc9a%Zs7&t
z7!WVnH<<^S)V@;yN#R_955r5F0^`hPQdh&_Syt5q(7epE1ZH0w3Tg*zUY&w_95;Jn
zrU!K@oh6ndxzThUJ=NhR=gja6in2ts4^732CUkTUI`Vy#0P&L$DwvlhsVImK2_8;q
z=AxT`V*>~;&dte_1W3OqrY%`+7jm17T6^a}b&Ep9!%ZIJB+EQ%IY1*QO@f<dT?>O+
zk0)jy01q#;IcdZuA~I}I&de?1`p%L!M6ppQu^i`UgP!9R1bke704}D%VG0P}D7vje
z&>?E(40r+k<#oU$qeb)|sd{f`$+qDAQ*7L1=d$FnX_H#$a~4y<C_Tb4RZfq&kCX+=
zW42xPM8AORZ4^NfL?Ma&8T%H2dr?&j%r;F+EL0h}uFqoMNoCgNRhd3RVt{!dbidH!
zon|TjRg&tu&5;Sj3{K@5Hme#*p-3<7>_UDrr`_j0$|Kv<;G7Ix*43wjMkUtF#zvYr
zKyy+kB^HS-qC6HBmztMzAT9>r`)G2YC^Ax`1V-4W&Z3vl`a1MPPeL(>2J5m>c}@ej
zuF<hDvN%L}t5=sO;4F&yAW9(OD#nTpj27IWqj^SJ3z%fQlNAB7@Z1s>%pkKZVR1<j
z--~LxK;0ywOwuUBd7G3cECVlVVQgw=K>|PL`Jfj9Y1vtVkhLi?PGEkO&CC=6ls#*>
zApt=IeLo$>DF?lzxSwn=%<9i0=`XxCso_oIJ|FnNFPi}tUfN934MO2iB*y?o(B_ck
zi;o0!IjJ4bQypNa)f0a@3%lsN7OJUc`c>eh4urK6pU`)<JwbpEs7}x#J6U_l(ts3@
zfe?s%{9d93OtlBKj`sjG3JVT&JL?ySbi!g&z&gZCLR*ETfUyB<Fh+I@{NHpbxttgE
z4k9<NNohM#TMBJXqtYrvUHStP^GS&J#8r*90a~o1u4-aB#d#5_6oeAHn*_c5!h?yK
z!`$<%C1{wK0tBYIU!LVi73CQfJC4{~OOvu{nI*s7hbDuwiM!3FZcB6nx=kBuvS}X~
zeI$k8BKQh<X>%Bu^8h50_Y!3`oo6DcCBTEqjAZJL+JeBn16BGg>JMm99d*}s&SMaD
z&x~oIbhO+>hAhPu_c!RGr{L0QlWNA(q>O=GNyS0z-A!2-OAw^V2bqT@t#pgKIkd1i
zHl;;^=N`HMqPM|FWudV#a{yWlQL;hyl^3>`ZjVABC@YEH1eC=Dix*)eK;lJb922|5
zoy;u!n4L)=wVpR*?n6zB`5fSzh_Ig^_C<q8oT%S@9Gl?qb8M7g=}LkRghfE3C0QG>
z4XQ`Hk5eBscl00=C_m&BOK=o*h+)agz@-qx?K(;Gm+Q=JYmO-bPADaQvXF-2YDE@;
zdPH{5+0{MhMh~GL3@P^L=^q$%xP~b0f#8gM9witmiVq;B35q;n8%HcEx;&d3oChhv
z*<@m?gfq3d#WDsFYaztJHRW`Q6QJHgo}}=wN+_<NiobA2SPGE{mdH>h-3F`^lw8U#
zGk=u8-C@bAnMIivl=4W4H&HUS98{>i2#W2i7B$xm?5XQ#c5Z;Rnr<Z8;F#&RD^qFF
z{EuJ`O(d|LVrt-PQJMnXK|<tv#{H<@83~)9D`1wviIRS$_GF}%PneLO9r&4(w44Eq
z&_%7NLHeuM8Htjb)hLf_h=}@28#p(>VjLHBrl_gZ-oT5c*5_Uv8Bl%emrNH_^8#&U
zh?<T<o+WhNx<xkJ!XmIKB+YFSvGEUci(}&Q=Zau{Kcn1$P6SnuYt}{eE)0K>7`7R7
zN9sA4RrLjB5@D=>2Wy-rN~l(mZbLCrZLVI4@{5*oP?bV%#qDMFJtV->#R}5c{Z%4+
z21No^AME}zoemx_nj=U89a-A4=7Hs+ggmUSXQ-o<6!k)MWsBqt%8_^*s9~j+VLm+h
zfUD$Kph7_PvpUkV0_rG>R-w*1!9Xj5&V%lO?Wm#n8wADXcd(G*{Wv~IlY=B+5N+Tz
zIL7^Bm<)}_NPuv>Kp#_=v)AR^=jaE(LFRfHtGb@>G#S9OArucPO9fRTz~Bp;nBno{
zH|^EH#nqn9HE?%T_1;;0T@dChYCVA35G}$Fg~eH$ku5SaX|!r#%z=uRdvM-$O@q@U
zHJ~cqGhik9;C-!3xT1Smy$AEmFb?8Oq=}vBp+N9EYmFfQ5x5<8SWSqRbVWsCFjMjw
zn#dttXE8%j&O{oPsG2jRa)bn_L8csZ)<j{0JfC%$N{S5t_KMEW+>jtLnB#($q5%qF
z3iZOz(g1+R!M{X^<kj&sM$&T>IdMfb&9_}{H2shr2;>HxI++IJf<kFYz$Eb_G+Pv<
z0suzYkrvY=kpWgafe<25DE2Y>Yt*a*!>(Fv5?Tmpuf-*W0E@s^S$V~A&_G6OBmZy^
z*c0jd&;<y8rdIiLQnY}$o)R(1PC}%%Ai(lVnvf6<xEDdxZA4cmEdr6v^-hX11DYMk
zW2F2lI?U)?C8m2(v9F^}aTM(y_G~u&K)yNnmj|Lg&7!E*2IT8B+9t})ICN|wU?S@+
zGg}^WOIezb2~Bt03*m(YB?Up=+2!2>Uly%zT(^f1<w|`L9lu32LSIfp<1ihPq#TDb
zNmdj*7fl9dF<g#RBS7+8=zYXiB8h03xyb=x8eL3u|3|x|qKpOxR<}7%a;uYCAMi<1
z^GR4*G#!gDNzN{!>6pkk52XB{u>+=CrAG>PdW@&YHxPe0L(*7XYg(&8qNltg_9x8`
zHFIZ7uqD!qgx<&#Y6*ZCyPWeH4Zb6hM}X?E3}G&x?@Yk?M;Cn)$Ph)W;42L>vb0=N
zf!n1;C%kow<_<GhfPN{pV9fmuGMdEOX(1rJi;ygLCelH}r^POX{3C}C<R!E(if|4Y
znk?oCFj%n&j}{$X*l}7;OP=M#?BFs@)T0D3YFf_0qB}?`5$O7*r!lIH*}hk=g~tXO
zQ9sZ<7lxGKFVZT$@PIVJV{s&k)MwoT=OvTD1~mwZ13x0%x2nbg@Js0=a~2Ojm158b
zBWzM?w3nzNgl;Y=mD`j`<U_F#Qsm}<k}-7zVjb=MxG@5AN=d}CPbA=ULL8r$trz8f
zqVx}F4Sd-Ji5aILDkNDJt7b?*dqD9P?AErz$3h(qP-PB!O2oqAfk~1<fdmN8a;9XV
zjRVPEKsALCDq={%DhuLEw`pG_9RFEBd=whxb_^PmC@@Nl+t!>&$&qypDkSb7plYW1
z3>0P3iF)%j{}nRWeNpZR?WSDtfRhkcUZU`)EkCoADLmPvm4Il0SzP>RsgU?Fx+a);
zPF{KE?<^AcNdgAY7(deCz!st9$98o`IDvUUP4Fd%cqT!=nz}y_xDItGkQ!$x!filn
z7^p+wUf%!Ilye84CJh4g;}*vuWJJdnsCskl+@ktuLAp9=p+O{}yP1P{()Cu|<OIS5
zzB;K>2Z0(#&>-0pdsnLJqi#i02?``!3H(+9S}Ra`1~5YwL)a#XN&$gggaB3eN^lHl
z9he%SF%>-+ev)XU;H4Ny-`gtJL8KRYIgF^rhs7q2(-d;WxZhe~$4WGoedihjmhgif
zr0WFe*-5ht6OFpOtRoR55ZDu6t4%2;f1pO8-+AK7Eg}~pG_CM14ZOv%rjxa^2gNQ?
zj|ihUz_LyfjD`yzdPyl1R6LR_mL>dODTm(n>>9fWM;#iuh`onwCi@)VC9x?0Iug8(
zDehyY&t`*9`!fKWEl#p(PWIwNLj_o&$3%K|^DJv@&ZKtkM|423yJKd*dUJMO?vpIJ
zL)JqORdjC-^3Fne9JO91&Rj%Z!N9=o?&jRxZZVO3)W-`A66}G7M{jch7>*<a;H1$t
z1rl~W*0+#`7VHWN!6m%&sTaeD(gYw9qBt}Z6WDj`U>x4X$tgkRsnG8R_*R5>7JSJ2
zKy^<*`J^6DP&|YySwt2%&iYe0j#R6G6RO^zF^J-ZNfA$-rP-v)AFj6y)>1@54~w2(
z0?d2a|Dhf)P-|!lX#|y-_feVR1_KK3HUt2e;%t-9`*o0Sj23%c*GY>x$PWqsMIV>4
zRe)AZY6@;l%LARprY;m+5^pBjFK85<!OZ1yQ^_En)<z7}9*u^Vh3$niKA}5R9Ypp!
z_DTXr&QNkv%Nww!DHw6)Xab=^?pzvM-B1Y>gUkRuAKFBri8fJ&<Nz9roF1S>8Ex6B
z6s`J5khoF6sJNsL5@rVQo5}e+g}&=Bgwd&2Gy+(zh?C5xC(-3RM869(>*#5jC$BpS
zh&dffTrI|2vl^vmY-O-%PRJ;p)FO2J02OQ61WOxjg1(yV<;7u=ynUIS4}B4(7ckxO
zn+No?&}bRe1TuRIqpjui;n5uvPWiwJuUFD|ZNdIVFVMz;g7tx_gaA%z`RTnc@Tj}q
zbztLso^q4}ioo?Fk*VmWlKL9ti)qpGoJUzcYs%r_G}Tc&6GJjVDO&o6lW4Z#rjZ~V
zig_vrpb)?AZ6}rDXU@{=HcLdLAp-_?fwC{iaz#sj5_RBI(d|Z)DJK=b>MWVM(v;Vo
z*r)Bxa6Yu=kf+%1Cr1@_889&4JTGfz7>RzVA=;&~@)9-HYP8bYUoykpbK15dT_VK$
zHR4tqTiWxr?;^Y}N{P-%^f@e*KpRt)bFg};mH^Uq=9Feuj-iH13S-ElJAVKOhDE#y
zv1MAE0#%3>DPR9VnIeH%*Xdq3H)_vhC8!p%lF);=!XW|0zTCp*cl0v*Ikq8W=*L;w
zRfz1!Jq1^jH3-+Ymb#_wCGIg*kcCU*s?Lhp0cT<t|3JFL*%kiQolJm@-4(8~^8dCk
z>$=WLG6Dw7wpy@h4NH+y;v*{%!IBPh>V9`+5?4GVBMBD;SkXJ+N5xVoGz8ZnB6T`b
zz4QQphakZk1mt8ALRYxj6;)W_p@tfHo2CRd(w}SwhA=No0(OVbf<myEF#!x{k(Me!
z*DYmV-&(n_S5$`lG~o{llz`@P?S5J8=lx88Dmu#i(t^0!FD+7~vI&qKZ6fnan|ASt
zC1_{~bDNVQJ>2ThoB@1Xt4QMA9F_jJt%RJk&a6;<;FTO#wnpj|um@gQ^jL_VFEynK
zktS$9_`sv$CczglXdsZurhp}lB#o6MOz<&%A;XS5hBQ;3YUBZgOC73O+|Xkzq8nRu
zNT7oCLUk-4vX!13XW=8O)Ep4IV~wroW%M;<Y*WxzLi$>N*Mz3_C76vs^Ptqk1XX67
z`sh${+AJ~nssQjHZ6v(M)?L4{ePWBxWal<4MG{mVv=yT2%A%j1+#!&(bd&gtnM@=#
zxSrB9$|tqKOAMByaNMTHfa8Q^*SEZ0%PBxgO&4~OdJX6=dvZ2SfK}5Xx?8Y}LOggW
zIioz>Bu!-0v`J%zu4(Mh;4vf&EIX|a-#zsu(#2d@dKXUc;e&2I?j)^<FDgeVs~-h~
zNTKZvP6C!mt4BwU7x7))7N$_oF5wZ3jw7N^fqmWW4WnekA#}x5@(@H(AnWCN*Wmrb
zjhlx_l4l6~)^SBD!HpJ`%%RBydNke(Ft*TS68RUf0$SF=bXe$3pn;S&6T9Eg3B%?!
z5zC+k==X6@#ic=ZCG>W(Rvri#aDjE*IkAw=f+#kQwVv!N0q!3Ny|9s5mEP^8OMwnG
z4AueNSpwHZwZ*Oj8(2|non^C0?F!s>^6rq@AX;wf<zrhA*pw|oT(52b^^Xo1r|W(n
zMsk(62uTyzOlHNad6LZvF7AcTSn08YH<mg|)w$DPa;!r0VoDNJFfo3falf&?!eb=g
zGZa7q7L;pDE43B(phn_oh0yCHlL!FaWKvgpMo)6mYBx?Sx6EX*$5_A)4Gu?TEVH2I
zXi(NFP}>w;{6Z2ye1rxqtP{`II7gc-#QJi0`DBaYHHX1m-BEWf%>bm!BA{xzHgkBe
z*c=8GW+OU)W*14NX7z}Jqbo<ENXj@<A&m_vb==@UUoU2RCRtOMqqV%eiB4EVYao`U
zxgn`XcDaGrcEP^kN%>}I08Bi?k?qOYyoW%QPV&*C{S^b18bYX<)a42448f15Go0iT
zqC1Vq7$iv+4DM*K^@2%OtuWcEk{UNXv&Ud}Cs!G;3v$tCs-<`pSxv=QP2(h0&o35a
zs@1^O>(R$*=DrE8RCR-a#8#ERp^9%a_u@Z+uz*Si4Z@hLT#qHxpv;|C9)6gkDM1=?
z=rs1hnr2=dWKt%zoK)#{LaRrsEA|SVXB`#%pzJ^vJkW&D<h(48X+=Ya6%nc6y7o1o
zvKEI<4_+MPcVqjga(L1#T^n5N5+~V{%fsBoERvrQ_*7k3BFG9RAos|`xB!JFF0VE8
zeaz9zW4I74h0TGqy{?X<m5vY+WPG{I*+$EY<GGxLpb72=fGE<JR`WK+DLAWs<60fF
zJgi>+vR`|0W&@i+gJ70q!L=8)zIU@t3JZFww?Sr-v@*rp3qi`vBv)}w0N(}raM8zJ
z6eB&dJencF7zNsG@^I$pl&`v`5DX%m7If!6BW-bX?z_Q(iZBRXV*c3-Ha|r^l6wRI
zj$wr>Drw6aGuKXVGYFPmo9>4>r$fk+PU^Ex0|`liSmtO2=eBsIO6#>Ek0Rd144DYG
zsY~`rP>d+aItgxPLvs#vEP#dVa_=W~hoPejMx$pP&YGm0&@7deA5fYZ=Sc`8G(hF<
z^o(IZLD59`>cyy|UVs={QK5TK7u+y9{TIe`V#Ga&e-`s7_JI}+kEnJL#$<+M6R-z&
zUH4V?&=to}wnTw>C<2$*!ZCQga<nzx=g$PpE*((tOvvaYu8^FVu}Prr)c`_kl2go~
zSSuo|S+zqT55$x|u_>fMC(1p$Sv8gk`@Ilqw&yDCJB&?hk1ak`HbZ56vfa(YxDiux
zl-Hvs9gOxY=H(W&`i<lT6(uRy1O!_IbE%BW!pNWzl<BI1<f}$d(9_??)*^SH!JqLY
zWtyoK4Z!`N9wzcO)+_>ebkHk+!5K&KuqZ153XWOMofd-$db!RP2o#cL^;Ep71Vjh9
zRz&daiGC94R`V-+MzW*Ip%B+<``fI15J&pcq<MF=2`y7UP4H`QUW0x`8EytHNXfDG
zJi((;i08p561PfAjY4DYt9HNzA+P}+><}>}xkxKWYGWmtlEgx(Xo2O1=UCzOt-CA<
z8@JJE+AH}621X?o$`npdBLf$hoW(bU<RKFpIZ5ap*Ozn}Em4hp#B3yn1KAsooHO&5
zXo?mR$j(Cr%haMLIJ?poO%_2F(J<$Oy@F^nVv*$j8-(zDP>xBUr4|&-5F_(_cbuU2
z?IuxX5{jrQ3U^UrX1Fa<oFgaESOEtMkvi396x(4kDUCQHcq8{ILL8<f=nFy6y9j^;
z5`JZg)XLJMxW`=c1T_Jg1hbcCZNTUt%IPXX`7$Y2mVs$@lOndBkO-=r&0~w=SP~!;
z(rg+%HIq!o_8j@lKwtKeUz%dPl20C8Nm`dgC0>NbM3^w~yG#n22B@!dBLQWxF6%T&
zZ3W7%gVIZl3>Fn)iqa#%HniUF1GoV%P}B<bCz_<|Ykq)q99(``h|H-bt#;@*ph>4@
z43oZyRw{z~3M=Oy_{NcUvWYsP3~UL*(9}yK(NP0fT?Nr`(mmf4fGXoQGL}dcw!|W6
z#Z78*eW=(p&kXGGJz3H$g#?QeeC@`UX2D2Ms|hHt0yi{&k**oahU)97O=)>(cF%Gr
zDVvJ6E)I{BIhPx>U0l6qR?TDt0EOo`gFu-UOIc<khDo9N6e$<9hIux$wcw6`kTX6O
zL5Z)$W6x#}U>v0_m8MY!v!r!;bjs6UlAOC!M~;!>5tQFn%I38;C;*F*BTLrLn>d;O
z8L3HzdaN(I@YI+AOVPz=3)8qnoomJb?nW9(*Ha6VGuIEh^vgH~9RllK=OYq(v~kWG
zX=mhD90M-Pq`c!1xNSOx$Vo@?%*Kb3XY+E|(Y9W(0f^pkB6T4su?Yu(>b7qnz~B2e
z3Dyyg9qcJ?5&(SV;LR%x#s%AingGpBtwaDWa=3yXK%Ft>jN^_W*z0K%)TVCJZZ7u_
zQTmTaQt>p=R7MBQF{+UZg*uAc^pY-Z7It5Ou1r;A6k>e**wwDI2|^ZklSy@gSlDw?
zBa*5#iDpz?+A&Zsz^5p&or7W=<y9Z-Q{OLTw`MM(pa9^`Jd2kHypgonCoTfBK(0tt
zCpq}Vr4-#D)H-=xQAp#i1@@K1>l%z)ja=^qH4x?x)r#MM4))ZmikxG1@RM5v2_Y@!
zqOLvj+j?f~_Nj+_5%-G<4go;{rtAw3RJD9855b?Epe6!?r6(>8gm{v>n$?`;gr>4r
z1@DHwh~P`8vH4Pj_6(Jfv7HTmO~*0uqS`DTIC6@Ic;*4J`aO<ORJDJpxdz1Zk+-ii
z8F9QBO&1mASHGx`@#a-cAQ<z3Q<$)`fk|;wIIxb;0=QDH04kRpIdhKwEEN8AniJ@N
zX|pPq1tDqQRq$=q`2)>npC1xwu^3WBzGzOxjf9{bi!e6Rxo4sF7QIp^3pSnRL^dUu
z)TV{a(X%+XR^qF(9mKl^Z6hby9yoLpT>%9J5Q=q^=rrJPbxa>kjx`0aktA9$sJx5W
zV=pQEwIT?|0I|DuCK(9Ms7maBH^xuW{^7H#65Zs>YZI>ucE4V?aumrsZl$V*&2h1Q
zPtrUJ;7~~>n#rpLP%PPGM{q`ZKq(C>ASI<7=){b)n4Nf(7E2N(8aVDFrey6BLsOB%
zgfq#$QBKT7dfAki?ty8S5%L5h*N$;mZj@QKG9iybqXWxguql`gnoPLKLSrSUF`b;p
zVO5M`AvQ^B;5@oBgzB3wD3CB@^fCY}6+Mi?mh|Xm36rBdbi1o;Ujdv)i*R)*ANN2i
z^%<S!MdS^$zk~#*4<EE6syU#xVB(nIA?a>{Wm4BRfG?1^@R=|IdLD!@=stBntFaXY
z`f6kx0UN2OL%AVhW=C!sJjs<O3f?_s3w?lbH2^EWk|9OWGxks^>hzG=b)%BQ8$8pv
zaHK@_X*+<6(Cfz-z;t0DizA~@sMB&VGzK*A6opTBpOG7%ygM|)kMdzbTev{TIFZW^
z5%#3Q2<2!e&pa|3F&CE0p84bgQezOQ!euK+q|<F*@-zozUzO;`RdV{YR0%$@wVqqt
z>?lRISxA90O<t8b>gngCgob(5DFnj;NsY-X_$~f5Gnj*(g7)%4ka5DQMd~l+`DfDc
z*-avp-j;>FsR3$I0OWntO2pa}WHN!PHw{)z2Y}Ayuz=0n$L&DoFms5NW6B_%cau`9
zo`?#7$q7LVO-^7CkjYF0W^%D**_?^HvX572=`EGThb@#=$$2r6A<j0&<m(VdHc8-n
ze1aQA>6t4Z@cwg)b%^A$jwP5PPbm?KHnyM%cEwK*^#+a{bQq89B<-1+@Y%?`VGYHX
z0)T<iaDYI{C<Ca}Tt9*~E6Wgw>y%J%Rtjn&;u<bI;OxbZWTVulN*#JReq&X8sRLf!
z<T3&@lVg?7<)VAEIX5wW4*__>PMc}77q<?I*?vdINXSCGl#zp{5soTVDV$C}M`_k<
zvg+Y1*XLxN2Sg}JDU_K)8Q3pbL<9k*-_LR4Mg|!kN_fB>Vq97)JKHU&$igi9WG3|`
zPEH0TRF1CmWu|x>sT@5qqlL~>R=Pl-<w@XC-ORQ$hBO~4cA~17#uTF#%Ya*K>d8UV
z!bq^2^Iy2hF~l_cB%PUp8kC!yMwTr>GVRxuu=Atd-XoBPvt!J$UAy$D+YF$wvzspX
zy*0Mc`bBEPdB5dkV7Q67$mt0<8w&`vF6j>^aV;Tc%t0dEkJ`%2iEdFQnUlJ2gmbVf
zTG_=2Uy+%7^yv7)H%ZF^qP{GYcn<8SZ|`b50V`?vv`Jmis5{4L&Yt~7-6OQn%S6iP
zwxq#;%p=cors616i&^$Ym04xPS?VTe5|pzF-;2s!sktx`UY}jy-Hj&h5d=~8P1*w!
zDKHY`eto7u>TzIEn1lo<3QMUEXnLB(K9<9mE&)hs!?-Lc60?I6zh{?_OY12V0RC=a
z0vrVFRx2nuv5U7sh2avaY9MA6Sa9l<Z*?8YK84jmRz>Oza!d7T0SYz?Kt3{QU}vLl
z?nYHmRQS}jfXol$DWC*tbSz5KU^6BS35*J2G=p-Bm7zppydLP~NRv|bJS7(i^+t#4
zw2MH=^=v6027$N0o-3QB#!BjHoSHC2l^WYnbfUN<exiU}RI+l<%#rsfV{y|4R}PK#
zV&X$cD;Rz+(wxCvsfZhjScaEK7)b6>-o^ZKHckT1CHnC(c|-=i8@f&4Ht@Wqx8t&J
zdC0xc&E^JcmfB4m0;h%!NzEC^f4Ef?8QcRwhq0fQ_kD}>yyqs+!|m}^1sPx;NX0+H
z&8p2F&X=OH0$QiIr8B+$gz2S9aW15@ge)t`L4j8CQDnPwW7i01_{ndMHooRI6J-;C
zZe0!;^d-|O9Hkbqpinq%3V#7S;^eKe{nSfhz0+loFB`oWeuV*EAlIhTntR_l=TNS_
zWEfG7S7m8XwE(0ONt>uk#vdgp%X3=h9v9v}Fbpply4kkYdv_JLZVX>+KBY#Tb5>_a
zkG3X_B=D%nPq!0cU!j>Dg&COvRi9~=Ogu0~GEykhgqkiWw+2~t&k$ZbS=>;bk^bX=
zTuBhJ)g*5cvZT7cd5Y^hFx?C&oi80dgvi)s20UTtH~<k=d4ZcF=%EnF(sdSfKh_nn
zY|(5FzD$}053!ux;543*@aDv6SuMcuFG*%UIz@zkOvrAUU3!9c^C#NH8t8)`qOYQ5
zL;XicU0>5_HK^cRgC}tXCdv^D;6&925Hx6?f>sMB&J^o@Wx~%ErrvkD9#n8uq>0lU
z{tCc7ieILP)ST_n_tcp^I&j45$j%Q;H4&HA!e)K!W1e|{e_PbT$bM-MgQ?pYB)_xf
zlbv7;s4?|XoF4~@RZjymrhbCGBrc{=z6Z+Fyq;i!YK$q=5KP#%j|7V@#40$3dNCA8
zB<9|hlvfSRdLGu#GvR*d^5e$pstHZG4h&>2!=y4C`)~=XNT!@GnFLEc^i2DZq7d)_
z$rm|jF512D#4nxV1bR=mIr^-`q7L084&lUJTaZ{W-7yH++PlKEhLTO8F{1g2r9JQm
zXkTp*0`U;h;s>GzvWI&9702Lo$W%0QR5>m^GH=S2wW=YACLC3ubHGzTq+T>zU0s7I
zoW!|~lOn{nNOq!nf4XvzlxjfxjxQ0TE#hqQNj)h;(UGsSbfhvZ+Qs8EO#w<od%yo~
zbfi4J6P6vIawtR^nk9O9ENoB(e94y!^KgmDMB+zG{tkIiQhvf_Efnpfw$N!B`+*Q{
zk%y&mV!RI~<v|U5s25i{X95c&eeDtd1gaPqg}4=~R;YH!d4SlM3T3lm3Mha3R%tP~
z(C?Md!=BJkI(pm>X50p^JYa)oT0>ws8`tLKiWs*Ifk=X4AWKL~48Miw%v{(cDysR;
z)2tr56d7#r&Ct_sgM*;ZGngW2lwy8OOOo0oZ^G_e8dzjSU#k+<mAh9Z%Q`+ET)A!&
zOd2A3?1>3PS9n%omkG=%_3~=LaY~cb;dZ`~q<#{L7HMN8<sC%m`9qd368LthCX_uY
zJnH-hqB*u*%WpIqjeLJV3Q*o+De64}L6!7cz=}wdXnB{(nS`Y_3lmvSfhEzEod%ID
zXQ7eNkm9oz-iJrQQy<dn36*Nv1fQAumMXX^7A!%Eb`N8uXDt~Us@rr{te#Dw!Qu;S
zKW+AjReH4?Pe}nC9OosKb5$-5V9ThpCY7#ij29N@2607Zv?@?q45EPhWV61yPih0H
zHW=AHQn?o<baD%f0uMs_Cs_2NWInfLHGsq#00xLK01R#n)@D&kp=F%3;ZvesPOZu&
zP0)08$1?S!Y@$C-<O)EiGGjEQDAU_gI?lvD6v_={h*bCzgdHYolTM56Hp$dfN7d<}
zh}>(?<|;yP+&T3VfHHu$vtMHBZ7G@9t}v4<6vPN@w?luV@YybH?KXQ#XI1b7d2)3b
z>Dok$6Gg{^#CL{SL<DmdOc{BR#DaiDIc$_?<_`%(X|^?zJfTL&W!Aa-eZ^yB31wV@
zb-)W;gG8YZp%2gE3n7#zL1*$XiY$m7U&)EAXwjk%W>MzZ+w#GGON*@#l8#!9#0YR&
zrA1pY+oZ8fE8jRF0;t@*L>-bT#{t|@s0WV>&1axV@UdtZ;@EMGAh$S>2cQoqi5ryI
zMTLS$v?)-hbp(M5?G?&@p;8zIOOf{Z%$EGI$(d^4koC*fljX?4TIwoGNvfB~uxI%`
z5UlnLuD&Ts^Ujb6=+qQqD8$bom*Podk3qOQL(QBk`aq8f%D9F8A%bP*-fW49lyRC#
z7&xLuhiqhxIfI0@!q9&vr7iq*&&!P?<fGjO8Awlxx+8aWTT+869|R{XBqK>F4<rNL
zv2gg0gqlDw9@$&Lr2C1A_qKw}jdiQ6CibF~3X+OkI9w4}jm<svW5N6rINDNKfVAL%
z%;AXiXm1iNY3`*+f)&fdKQz@zyP7mCSXwxqY`SM56F}<CB@iA`)Kvsqg)A01If{=c
zybH9UG??jN%s}P4TbG1qK^>U}QF)OLi5IKsngye@P17iEBnlFm$22cF-25!iOcYG7
zBDw>WybD$jv$zleykLd}pni^1fT3qK!NPZPi(@Z%7c|bucr!|Y9>jPKGDx*bF%4_m
zAdA%F_F9C{(9#u!s1=6|`lOX38pS^XY<KjTAXmQdqED4>8iHXKaH2<eE(GwS3&g+7
z0CbH<1e3Ujuz)A3Wq_JN-6un%;F&EQvm|VQOje+0!2}b+sQJ0Yrb0=Y#cDF6OH=U{
z;gFTMZ)`ArK|#=@jyK5ak#ew)z65A`v3=kC>?9ses-(gFRC=<ZT;$eJ3HPMwM3S!-
z*&whC(w)!9N{Q&Fl2R58lkGqXoYAw?`|KJJ@YF&M%GvukDWDqTL2NGKPt5G;=>auu
zG>962nnGv(p|d!qNJdNH(}HyRRPe2Qp_#$vM2kURii#lHODb^}Af;k}g}MlZWHQuw
zmUM|?SRPCCvoz7XkF&Nz+#D8hld^PEWj+IFq;+P)nD4@xOlxR^;Q1jfr*=?=!w}k5
zdl}TH$c8vjMF7pfp2UN{6TGhS3e6g0OI!=)Vvzdx@d@-3*$z@rK_Z~^@dD3HNte`%
zPQHw~nAN>r*Mw7aBkDV}7C4v-9Q}muqcehBB4}oy>R4$(4go52@<kw1CVO)x*Uzlm
zfK~+0rZ@^Z&^b}QpqLTV2AWuwC%-*NHcFJMn0G5w4>}zgibAt4l366^$re*`CxrMp
zPZ30aG}u$G%*pONwbS=3gFrx(scKu|OQFT7NuC1@myAMywxL0brbrHhOn~^J6X6@#
zn@YJBW}V?c{!j?$s1!D5&Umz{Ggbg4M-W0I(YWBIs`e+>L0r&Fn>jvJ+(WypP%9<(
zDngC!?&m>H7xxXfH;$BZ_4K@&zA8lnLGK}Ne-4^?Kvj8ZfmWnFG;u50K<0%Rnl%Jj
z6kf>L0|z&Vme-l-(<a@Jgq9o<M(05eBASE=U9*5z<ifTd_@pR^!|4STHoQW%lY15x
zJk}BVqHLGBSoEC%ac^4eS*HLeurh*<8S>wiUIeit1t;M7hz0<{vRp&~Fyp42IZDw0
z>C?iz7OkRykZM{WkoL1NXJ76b=-qftfq(U_-Z6r1amZ@gwz0^T6F3)z&ZFo`=SJ!?
zq@>7YWFBxUMf;gV+d!2h#28evBv%H;>^XKqnnWiKBg|2Xtux$W7W@VQok6xTD{V9n
z)UHN)x`tz-U<RyyvN;nPjzkNiNU%@|_EUq`ZUPRUr`bp;Xa>ef2{Vb9qX0c~{~gh0
zBX0j-8_!YvM$)!2F^?dhoTezNyUj`9S7elm!V3uV`t{S>XT*-=p#qS)FjqRMi8rHy
z<!cV~a!c40mn6smv)r12Yd~@8?xQ|9W-7MA|7K1pi}-U!hHBKM?Wra0DiDf=daZMS
z@b8}|^FBRVj2MN3nnNgA=>tOJni(zJ&`fTcN!<cCQ<9lYy+aFO)#<osH50RH3zdR!
zfHnLKFfN<6|5ALL16gPmr3=XMG&Ls=33}+ra`pgrtgKwG77g^kg`9NZSW5_EV-$(c
z5}S&6>>(FFa#f4vKyqQ|8epDzOiJv`14(K@Mn{lR4;YC~61*R7F!xc-L*oY}gDjBc
z?KGFeA(VEy<18%VoU|UmKk(cKh~#-Y6SFNq^0A;{o|JUQl9J=ei`vV{nUr@18Ka*f
zDh6)RGsQ<4$;tJ{I_;Scb4ZwDnML}D*eH5JO5YT{kCcr{eGU0hA3v<$W#%8zOzE=^
z{jU<}?pa>7Z8B$01l#UsWwJThVUSaHP+lM8g-r4FOY(B;rGk6|f=2keS?2l!rqZla
zoOFr+Zuw{hABIY`BO7JW7SEJgRofR<U7aCzUzr3!kDIj7NHinz7?mcI#Ai``W(~Gt
z)GGfqsJkAyXG$oH6e#q5D7Dst$eyW>zDD(V8UtGdrC{;YP3#A@`ye?{)Ci=G811>e
zQ#tt;!4#z1ovTXaKz3^>V4q;`eDCrIrXjX{ux^kg#&$)ztaDJ<V>oD;oda`Mq!9wW
z3cA6F5!|NvWWrPQ>eaH3irU?>(aI()tAc>d`AI^&Bgn}p>oy~ky6#_3X#crIf81Cr
z7lElCL!=w2d7dNSy*b8fUxN~ZYQfM&%LF<$iAVuaMK1?SvO47EIS?b1D+RWKp(EP4
zlB8*gya5w=q~iP%3g5wsM;(|ParG0$@lDnADFtapotdddu1x7YTi1A!pgn0y9B|RL
z=}=QRuV@EiPI1(@8>J`?jcA2|LzyDSnbq_@BZ0_?I;t9%C_+4yS$TPIUJ-}@+Pnxq
zY_rtTJ5p&p0e+*788LAr@lef37kN@T=MY{Q$EL!$xgW%^c=?SMB_Dt!U{Eze>yC4F
z5)utf8WFLI#t6$NoxA0I%s|kIv>=HI31OU@B<7f|4-MkJ=r%%vTWwwDiP2r~+IUX{
zjY0wknY+b2g#IGQx4|36gcHP*Xb>GzG}x*Flrh!-urrFcqfuT1+l`Q_Ss7;w6zRgv
zpaPH%A_Lr+o#H;*XGf5M@>>ze>;jj*+aNh6i@oyvB`FP%a*>zn9El3-%F@s3C8#iR
z+kl8x6Tj}rI1=thDPfaib%G#rjk7F5Lnc+bv&IbsjWkoGc2d2B#8WI1L=(3c7Dd*c
z(0C|zYK$d13D8>63V=eZnh<+2=L5{hk(0zC;*IxQS?5Hocy`4#zmLe(^SV~1ap9BY
zu*uFM$OqRzo{S;vj4~kU>=Qc!r#kiu>NAPaFjhs7kET-*L5#etwt8{s01uvG=rp-P
z5RIK;(Gf#U4$u^OeBH%LlNhiZPR}(B5Lqq(Dfh8g3!W6t^jLznoh>-N+SU|!2vp1%
zPPaHms8o4QZj=-c5`C;UfZW&(x{Lt7LuRxlvTPLFBPC!%C@V4o^o#}@`i8Z7(g{gH
zw2<JLDYrJ#i$Ht3n0gYit|(R#SXZO5xFQgWb0ka#O@QIiwa{@vC;QCmz%VFJHcqlw
z<~SpabMBD9Wi#L!3pat$mIr#6sENdB(rrc3sg7ZEDuFGZni#(j2o=SSQ8O<RBb(qD
z5y3Lan?(~i6GnYezy)Ykoajtf!0(c5w&*pnz=EyTU;(QHa@&rXBfZYG6t}{+`yMSj
zbkGyCyKtYGA3!WD?gD?`g6>`~#5y<@2>Z&&I`ASDL4VOJ5cI(+lObQLyhEWjg`Eev
z>QG8a!jggOKsE=3fB<o5F=%Schetc)r7J=FcoR9dvoiTSX%Hl#$2`i*niG=*p#Sju
z3C_UC>f@UFrzaOYp~*yP8I;8ubN6%MJQ<=%4IU1|t>&dmj}s<AB1r0k%x+d1q%K9A
zdsV(6VI9n6PVAtu$|@4p8dW^t64GLB^5M{P?Dx5`&I(92=fVVHXI}Fmvfj2kQ%?rk
zs{I%yCCrJQG5Q0*aH;4aW;zsTrSxVKi({)z0)7ai1l4bzBN~reoFlcpM-YvKlLgG8
z@8;43NdV)~pgLL{c<&!xsag+aTR{^@c>sw&EH9Wlvy}KUSik+d0FfJ5w<>C%Sxvdg
z8z<K3$qAZQ!Lv^{wUvQhbY{?I7JYz&M{ADkU=}STwh$lUfd1yX4Afbyv&k$ytyv2X
zgn$*GjPtB~2QX1|qX$*b8%tp*bd2urI*L%mnTZfhfbz?bmZ2Sa{86N&how=Im)I-Y
z`Bj|<ZHULx0KU>7E711k=3ZbiNQS8xIFEW6gmkfMLHJ(S1485=#W)fCZ?Tq$V-oyx
z&i6srRjN}n_8#F32Xs2PQJAI8VPIB$M2aI$GZ9#u!M4E4er88I5H!q<*sYujk!>Y0
z2tzbQli(wDlYogk2}SRu0Yl^o8;6gr&^a<aAP#U30?=zN2GlNt3@)Q2P${rcW`<to
zI+I3n+3OswCsl1)7O^e?-E$(U4RG!K>=F<gZc|V*BnFG)GgDtFriit)2(4I#i6=S_
z3Vg;XI7CY?oJK}-dDNnaChgHu+{eYuq_@u44SbgYz^bb4fZ^GQNI2`_@_wdX7~E+P
zEYaN5Sxg)*Z^Wc;Bj**`cc&Z~iA>Qr5LJxyQa~!@+un>-n`wCmfM^g^^}Vy>6Q7`-
zK&YN^^8%u`L>Y{JAlUR$T3%i0o<WV7+v(Jlw3z{r^A!u_Mml+*-evhheL_<ox>O1J
z4Q>-XJ5337LP5~{o+B6Q0t0Syp!6ry1O{~;0Qtm>R1!R3cAZgol?9KgO>8ch(F4n%
z>|k=61Gz+PC4qMxHpwuR!8SSZ8@Wo0FR%kMyJ&N(TKL#+4}}tzo<<1>fS`eiSm*N4
zX_i7jEb!QA|1`;ApG5@$TrpAT;K-+l2(Ti|#KQmPm8Ay<EUJPYG^t4N0z0N^F^SCz
z;5a%kSxANi6%=|Z1+)lCF(_40OYByKjxGeWxG0RX*kX~$aZdzt5dEa`NYBy<<bV79
zVavjDN!r2@WsoEVy|O_LnzSd|*YPz0l+vs?fwo4|pCPn^bVR6V<BgYYfWl#zlsY10
z?}<Z3#6jn~560&<27WJRo}@x9z!8fg^eM4p04>Lp#%w580&&;x=eVi4HV}pd6~DsP
z)*eK)5`;;;HZAj0eaJ#l(?`@WMbbV&esz6Ba5oMcNBhvOq_Q{qQu<{+WFlQ#9tXiH
zy^2c+7DS$;>(MG93bxiW>yFlAnsulmW3r-NHh4^g*Lr0&Yh;$_aR4W(I1A-uBAOmF
zZhKbpAbYH6ArY^c(L5#+w@KHxj6ny{gLzDBr=Y>57XeI~#?jcwYlL2mUP<=eV@+f;
zC?=UFA<a~*&-nf#aZAi+qN<~oS}1HN@~^DIA`c&WT{9TF9Dfgdm>NjTqVM-}(87Y?
zUGR@q+%3zks_cbjSJZUyQItB3X6=O5bk4vr?H3c(;#Q!W$X*U;Npmxk<Y5Lbn~4ha
zWy2;~H_34}i!v6vg@HYVFniKM!8i=d(GVsJD}Km_^Rh$!V%Db3-cB$OD%B0b_;sgI
z;3_&J5E9{A!0thUTY@=TtpEiJqkKNJYQiG2SUzkEP^OMqKv`eaH?r+{{lLrYNcs`7
zQ1g;5bWpDq61iH1Eb?Y~GlTX>8+Ith1GLl&uy2mDyI>$#W8t<kRRiS(k50f{MjaC{
z#PTfB)G5Gyfk3EIfb1IX?d4?(2+0k%ISDCc&Tt`a1)2uZqHPRQF~EJlw&5UxkvaBj
zFaxQvKNI5PHY=HD;2{la$wpF#jNcZwaT@~%Wnrv2NG4v&ir6)LXn_q?Dh$Dto`HXr
zxIOy*l<6!)fdYarf(G1wYJgyu)>@3Q;h`3KcC<h-n>Rv$dfnTA2=Je#rV1%4#|rQZ
zlD@RqlL3;foYAdEZyHlMM*%gnQ5jf4;wY+=B|-h`_Y!3T5}ctci3!LOZF8U#=jwyi
ziR+8)f6>2-woZ0mW|mvLp6m-Pl=kR=qHmM13?v%XaY-h=1oE#MInNpmRsamB-cd-n
zkC_ww*sZ7DF(`+M{IX$CuDcM}pxqpl(|*ALl9|*u!S&7-KGE~r?(Wmg?Lp3lYiPK%
zXsmCf4w`1x_fW=GLVspLErYh1IbZWx9D7#94cxeWy2-3|f&q|1rBoUzwtL8!he`Cz
zI7reiSXPTuCNTl{9vfHKv5iV>6T37f-S*ad(}m75Y}RN|N?Dt-*PW$Igan5pUFV*V
zt9}@jMb3Z~(gz%uG_K^@K(OzacL0l;vbs$w>;q)*l*Abc?FU4>7kLsCm3zXZ=TT)$
zuxPk%4&RHef!taIB_529NKiU|0LTq!vqy)O+eDRM2tg(_Ou_k!wPzX%cfKli0&pNz
z`5a@RP3-B!*g)WY-BHVI&YR!^YKou$Lz`gTQ&CXb#?Tz-m+UZJ=)+(4%#~sPrbwA>
zgvxxOPnOfNr_YK47h4}tr5ZFxf>H#us`7x6>yvoYYR-jH`(QbzszjOCcZzgXD|9&e
zEMkS!0=+boO%cl5ZglL`En7UzOrs6*3p6^7Y#s%T->9Gn&|g2B2?c-d;n>{#OaY-5
z&16n;CyOsYHniEaRneBiack$Ic8%&u8X6sy3hVQJi^v!W_=e?}M&Ts;FoH@bp`GyJ
zXms+b`-FyEXI%k<SkR?s*#rPfslY;?qDS;v)ntV1gIc0yIbF6_W{<>xEO3*9h)wOv
zQnM7Yk{&IL=)ILmAna*#TrvlNXU4<P9tE6GoEp8s#~019s-q9s4ENE2ks{tJM54#c
zOd48$08>D$zY_T?Y$4M)Dq=rJ-`AjIbU$mu>G7dWnZ03Bzy&7sO!ooU8aFyg>K)i(
zooe$;TPvgJTt?{b(P$QNoQ?P<9JDtZ$mp<-#<N+$unILb+JsJp$3IQ#efE8Og(Z**
zSa%8_l7yPy%5|rBNuC*b)E<S%s#1RKy`d)*i|p>u;XtTcxV26!PP%W+fW8je%ghaS
zw*(t?BDqQtFO`!|^ZJ7BRW)YMThpxF6IB_Jtz%9SJe>o#S6i`s-EE?D1QA=2n}D5T
z-8bGMHS9i;?6|5bKh#N0#L00QOpt-rOsZEH3A%P9gy}(mUU-42X4-rEGM6M3l0e$a
zveX<RiFuyXpkkwY3LdK1-Fjb~B=rfugHGhYegb66dupKIR4F=(mOd@MBhwe=q)WFP
z#gC}S=AfuSxm~?DU?Y~@G6xVCbfIjlo}6Za13X}AXg;8W>U~@s#3Ne(P^%>pyEucW
z8wQZY4O{Fwi5MNV9#u~ue8GuhBbE(T$c>8x&VhBAQ-^>r78YoB8a#zN`!c^^nn&m{
z&@_lL%N0On7BZQt+SJ;X`eMpb)Sz7Jy#YZCfr9hRd1kCMqOsM_c5VvYrXYcDOICsA
zYoadmJS=I%OE{lk#9|d1gehu;78MY7f7V)DpUl5oBC86TE#3LVH&YAGgkWuXjfF7n
zld>I%Xdn;mvj-R1=fyCJBoLeny?bClM6wK$3E%*F(iN$^!)M`3Qm^P2AbpW_+29G;
zzY=sO$bksBi)x9=?fo2dX=Py68r?y}GQ)#YGXk6S015I$VJXuRI}vJXHjKf(POD=J
zqU|9?CsKhn1(D)o=v7o`=@HOA6?LIx)+s#d);iH7NS>Aa$EW5RlSj<c$rG-$YBx|Z
z@K8dy7F9;|+}bL~<`P@@xVhTaC7=h>03g_*T4&$X+z!0CSQrrl#|55ekw!Ru5?vQ4
zXi>JzzLFY!8#y&?o2i6|O(Mlclc2{<4T3`+Zn1IasAuOQ@P^W>E^o?xuuy|&L>qcf
zhyyhFQgjmnVecVnZA!+mVGAfGA7S7TCMyf_^TN!*W6**)$Hh&921)_jk5sroT}uih
z(Mcrlw_B&9!v>03(0G8My+{Wd*O>&Vy_Q=P<Wj7`Q(Riq-*{<Dc1)bxL<bkiBnJ@<
zgE*P>1Y{pV08&7tkrg#;xul!~FpqxGjGk2)9hcX(WtFb&OmYh;u9+Od7()AEsZ3E#
zDO4#y{UxiO9t2qfsbD8pdOPZQ)S!4mGoUW6nw@(fER(1_U5LgVQRr4hC`q`bxJGfO
zbUSPID}Xjr-zl8MJbEFf9PD;|Tw5FMl0HO#k*+PcU47lPTQJIDb!?v3Fe;G;=<VU+
z0YHqm4TCt;1Crw5GXAXgHQ4&67T4C>foK$zN3_{$q6!lbKT0eOtOWKT;V6R2lz_60
z9(I6I+Ebv&ECi4Vcv=}9m)EwccO5D4tO<&^+b2F$1qAtYPB`BZnq*xee;q&!rp6{@
zCdroDqN8Gv;2|UjCne*u%?K5{3P?g})a#`lnUrY`^`|1bL!_fvy95yqhY<q2bw)yd
z!%;mc0i%>`6g;KCKw`|u?3fSq)iREPx?7Eub0lX+kO2^<BT6;^Iz07gP7c@P2|RWh
zsCfziW%R3JFA-tM0ERzZVVA65FxZWzl_l92d_h7qKn6yu@F-ywLe@UlP+<?ZKKL2O
z6#B?mjdiXwbb-{HITCIH8lV{e=ArS%+R8E1AO=<$eP&b2I7!F?{h%uKW4oJ{Uv~(l
z+a(<?pvX$-3?!5rQ>c?7M3aOJ>IKA5R#t7%-AuI#q=HGv1^_#^30r?gS<S8A7n=^2
zAc#Sz!H-ot<W+=^biucEZV^l$CE>r&spRc_*c{lw2ytC*hZBnaG>P4OnMcY&9OSMl
zGgl)$v!OV*yN0j?0&Rz6>n=L12wOmEc-^%f#8oz<k%)VL1&J2T_RHqb)Q5;3`op4A
zY|JEo^voq^D}<%pYC&Js!k2E={4FqGbq~!IVqPk_4@zNZ2q=bw=xhvO?WhodiDIP-
zF2Jlq@o3guJ&D=%6dgw^J1c773HBs!Q_mV|bE3f>#?ZT{UYV5DaFeid2A}|4WuE5^
zZtPmqQZI5~dAJp6u{sBzQxQAJ+5JdiP~i_qG87Q8syuH2-)P)`JS?H9WFbaiENtJ<
zLVhpLjNxo^V0RKIN4(yPbb@?D3ztKUqoy1QfhCu4=`~0}VNwFVZMz)1Z&LtCDhOC<
zc49}86N}ONh2nT&os?{ZsI~=7pLrE@xm{6G3ExNod9`ne$j>RnUsUp}KrYbgOyP$<
zL(xW7h3Ep62W!O8nPC_P%2tiyN*x%j&I(xp=w8ANXI4TJ+KyD7vcVIgfh0OZS4(1p
z3jnr6vgQ(ne^LeaP}j~f3);oF$b%-=gh4X~1h5x|bsDQSC^R{Tgj10o7o>0#OF^xw
zmjpR7!E>rc0c!D)1%V28T<M|}${f`cIPzB6)ZqMK0`AyMC?S;BE6hR`sOnl11(%^B
z6--|&6O;_rd1cg)_>*A?$D>hlls+tcCjpGm)h|~7dxK=8rr->O&^t>{txB>7Rc!U_
zLO`DR^5Qhnu`tDE5G?DxC*_y;JdxajMn=7U<0MigNFqe=gB?WZu0A$%q{#_pslBi!
zC^3rG(RS6?5&DP$5V;50A+w>r>r5gbL;N*`=u#6YB>Lrgtsg^^R*0NG?0Xz9wPJ0f
z<r*SRAYjv~Wvg)u_$53p)vkts2Rl18*XX$g!wF=DHHkvs93*6%X#=(F(W$rO>x@QH
zFyToB-PYwANQ)Zq@Uf1%HmJMtK9^GDQ}z(FquC;5ovGJvNMHnyIV7gW!4pT?k(wL=
z(8C9&1c`OIf8omw$iuAb66sYi0}_Tg&T;=|x*pBxVtwqOo=>}_4|F~9n*rQKb5+dc
zQPT)Y%v#YgX=t~p(`c@voH^(I<^7!rrkaCT70hu-(&FR({46E%Za}vOxOP_F$&m*^
z<S_Q3QPe9^L!nbvnp|=3r}c5A&Iwx+p<8j3u3JpbqK<E%|FkK2{ZW%xp&)kZsmSQm
zFL#s_y`d?J#--<8InM#(vi+_F*CUjwm-RWN4^V?%8fJyQpb#rwj!D9~8R#qdV(`K_
zWhm{44nyu}pkibJb8OghX?6rjnanEeKn*umjyA>i9`GL|cR5L*G^4;2Z&W8*&mM_M
zB!hOZ*{=bh*W6S#Lrp`2dC-_i`_5HUBdHCz9A18v%4Z&fnJAA43Td>F>?Dg68y)Lh
zBvZ(Nfx9k(R&hV2v=jkyhH@hH`!S122I+s=ObW4)dKDvJrhE+WIdY-PK$`_vZ;8hH
zB$H8HKihBv3{m$XSsLl^;Uv{pMd^v{g6g$E_A$|kWDMi6G77i>VNG6K<k$K*Q^`XB
z(Gy)1LP2H3OF?tGbkZfEgTiT1pE322fmS7)s7A3L<!|xwS;*LwQ!L>)XZz~WEh1ho
zFgNAc4eBTzp&<${wGA3GYI`zwm3am8g?lbdJ+S|ArT_|Q7zweOz%CjLo?;`mGw9WI
z<Ak;Tw@4s2&L}Kala>Q<TKWo$k7#Np@0}h>YcW(u<YSCMPYWe!g$A~Wl4y4*L*!Y5
z^A7WbAcDCK8ms`Uue&Z+rccGryrX`$rI(N*ieWXjS}*d(8V~}vg#dMEa}JTr9s;rg
z{weih^g*{fvX2(ZkCN4`V+`~Pwpy-REiZR~8uH12Y1Am?Gx0m3W}@v7aAa|n&y`#n
zJp@SAk&A-zy6Z-h>JpV(^@Ly`E85J&e$lYnjR4n|M+FX{tOQ!nxkC+I5wbbolt)C)
zP?a=PN1ba4>V`}cj>`m4fnE;{gU4FqDsnX#*Gt{&%7XOR21#v0_$Dcc!%EJT0N9Td
zmzwOB*y-Fb5OebPa#>=0@}RzL07K$mV5(7ZzgEv&LZnsuDmeA!se#?DiGEN3B#?Ph
zkO?(J*V35Ah_)ctLuFtmf+>MWnaA)W21P}X^&&4KWCXRZ4oO9-EHTcdCLC%R-uqtB
zbM6K6rBEk?VA~jJtx=vn$STz{X6uglbRe`s0hoCyGttmR!awd4J1fApHEaH|KXd9?
z_9qnp_v1deHC=&LJNKj%ve^k*`8r8)34~i}u`nNZ=*j$LQ->V{{Vb;us>SP0<jBTc
zFvQBypAe=6Sz)x20Z1%o-7kb2E#e-S_64Ou4MCC>Z;Tc9q58@!UUi<Isj5E!Z4z-~
zkjvA#df6vNQFz}T;JI00yFv6SHyp?YB0AA=%r<T~i0TY#Ec4IoJ0DRSlqWhkYaVY5
z@~iR#Q(yr>WTbSts6JbcG%_liVvq*eDNi+82f_P;*ILk!nSa)V-Gp-^nmaUG#i=$W
zIiQv?tIXf1V$uQ-0BM$*+1`XknI@wIje=3oD+6{rh%UgUC-6cFY0@5Icrvx0pC0E?
zW66Cw7G0`h1`zX!Mjs446I&(5LBSn*4ZQqa$%YL2)bM~%)OD+at9;3-ifLej6X<Bb
z_T-4A*`Zr*bpV=R-8Y~{Di{!His+pXa!^M3#%}MG(gPsqa@l~I447P*du{eMToqW`
zE~?~&_xdQ>oC8f-Bvp<zLe4m$2WazaV)jnq?@z(w+<TXLSd|7YT%)?I^b-o{IVzFD
z2jw_mS`-O%u_w1WIdXU|nN|3*Y@N3aTI7B`$de;$GK&lY-56r10Vst5F^I<YMHJY?
zoM(3NBUw8tb5U899oR7mH1D8jloE_6ox8jWSKVNVGsj)+7%teZ5^ro9W3QZT3QGIF
zSJz2^_wDu*&j{*Fb@P%Kpocp=1#ueia<o_jECN;!@gar~lKlx7<6sdrV8%^t5|Ruu
z6Ul8#b10*dFPjr*Qx9(EvRvn-DV-3xMtMK8hYSg^5MD%@PAzC^S;H*lijVv0H?*p=
z5AL5_lrbh6vIcUfkV;pS1)3!~iXZ~yphUeiIyMK2a3$vmXZ!+g7mZzyH^A-3#+(dv
z2CV`C?N-e*Yk@0mO3?%KCn^;%)(Aqe)a--jF^uYfV+(xm1$PF{_D(OgThz#w128P=
zyliO}aU&!*l<i1W!Bv}ru?pQ4oTt+$kcMaGrGdkR9n#EY(vnnXp6jSWW{%8%0$rPo
z&MMv|XmLd`GmDqo?qy@+3W|Y*^um>4;~kuG1v-H+1>fH2MkSt&G@v?OvJ_~YYiA7R
zX;4_wDkN%UwM9AGR!lY)WWZGzDJB72fToTnRQ6DS;Ynv2xhpiPv74v|D<fAS8)52*
zLoQ7=YmK2aN`Ao{rh(C^t@rA2Lsz#tm>OX*V6>*uEc^*}d-7!^$h)eFxol=a{1BH{
zbvhsxCINm#bAk?1ZS9c4QMf$$G@c<DAd^WODhPvVa>?X~KvZ-~DH6vv>1#~XSs4N}
zs;JQ32O&LL$#tHjT|~D;&xx9X$$f@ipl|;c-IrKy1C73f9Dze!&>zaqVEfNvs-1%~
zs~;vMSp@lXb<M0Xq<4YVi4GlVHBlcMT99)@ULIX?MbsBWuQ~yf?`UAM=7&`<+G;1|
zx;t?d!&I4rp*j<I1y?S*<56H#H?FxLGTBRn3B*+7e6p`dip4&MkKr{FE=75w$t>d6
zzJ<izXoE$}qcwynoACTVaj3=)S=vz@9!)LIQj^5333|;uD{Mr#Op^rOX4kF>H(SYa
zID9RZyeVwD+$3#ILEsi5x4@pT-KBtcL96x1fWp34<IQB<#nn(l;9;0Z8ivw^eC!rI
zc{YVdb!ug=OSsL<mDlFG<3A7w%|Tg_L_N~5M7c@Tobgeix&>Znbr-gPU!aIUSdKTa
z$>u1+q;VEa#vC#TV0=~01%L<cXF%K1s9JuIxlx>m6b~oo<od~ORMycb&}P{jlvoBj
zn2o@d_<1mc=in|;@@$eA1PWIZkqvc_6eTp&nmRYL1aQFgB5o-pALO8b@{@o&gf|-d
zV&bZxLX2TP#FnR-QdvrI!sn_D9|YuX6b;zwA9t2>cM%|06|+-9ZAy@3loyGB0gs6;
z%-9EFa7engb>xDOOAAogP_)1!77A9Ntk1CF5-WoG%q(zZ=NXn>^4@^!LONS>QVDXR
z()<jv5IRLo0}bMcBfl)Dd5TW6HffT1myEE7fB?CV+k4p_xEJ!#HfV%!%#8uaG~ch$
zH{nbH5rZruykeJgKP+j1nwC!g)&V;lNPGrX8{$sPTN>!ei*gN8D<sYb_qbozQ4n7s
zq2-H%b(2^f+!BGgdd0s0k!o(1q)iyUvDbXS4C1><c5u&8hcGg$J0r_YH-7enlDSBs
z?wkiTB!Zl)1b3e5aTzotv=?|zh`V|2tDrI?hfktN=sy>Xc;-!>!3^o|27*XwXh28B
zjwT*WFihzTK{7>))4&t6{hOsz<QIC8o|Gnwl}HmnFL_a&D|+D#Pbn@cuC%(itG+5K
zOj4FZubE6rZvu*{>_;o!xgtLzTCcSBK;hA^Y7*_l04;Vo;YC^(F6X0J0R{x#8Q|%4
zVXIW<fWcs+pIx9#lPWQ12!@CQs1PQb2y-p7$M{@&KxXR}0XtB)>Y(QNJSwm+02Gp}
zxlmWNWH_U|tfSh?0C{Au6ufD_k+X=5k)qQ23WZZ%RvU8Tk^`}i@gDtIc~+kWXtt;s
ziM>m7C;cc;vsMV)N;)El_ZKA84VTQ;Eq2D+ZIkF2s2(K}SZlD4WJj<0j1(&Y?xch(
zn^crDkTh&wQn4K57WB5}pviWDBk?O#(4o^N934%vag4A?T4r<3Ocen0LsplP72244
zpknpV$cke-Ixz`o6bzZRR^3Z6hYd9E+6zX}J|g3$T_kgk%z&%29d=SbA!<Pyu)`z<
zDPX6#x>7pD6RDyN8PS^HCL2UPX>wBVY`+W5AX|di%`yWb#O2F{c03hY_g8``nwKWp
zELqBn0L;nZ0w*VJI&PK@fKUinRmAm<es)r}0M4$}Zssf*YHV~^Fl2M+>4}IR8~L3U
zdFSQC1nfB2UzZSfNX^kEf?&?`Bq~<>iXvUAk{i#U^31X+lVt8jH*m1(pb^M3glJO=
zl3TS?1DGS^TZ(k_40b)=xLm->*Mb0R1IMjqDWZ|*NuAJ8OfFF}3-afLUMzVbI$0zL
zIee0X{oLThoDvd+i9nfAXd`E3X7&czTv`l;r8%HR=wKj&O*Av(yrR!1)XT6oGp-%g
zjFtg87hzvrN_|prbw+8KPAq%2p~PDw1v8Kz3?o=+Ob-od5g501)zgXWb$}tuc%yh1
z$GD~dPV-JTW{5x_A|9bxq5C)xDT}LK<>6bH)Qh;TWPxGR(ocjd?!yLv5OUPWGX<S>
zR?}oZ(#1+e(wQx)u7HfXK}azu7^!3QH@3cnL8h$G@jx%FVjQjee#0C~E>jaD`P3H<
z)1LWKxbJDnLQguf;w~D0XY-BCL>XdjG}v?6&$VaT6bus{Z^3PqLsybUGFnj>u5*C`
zC!{Lbv&2DB4AlbfJn0h++GfOg0Z{QMvRZlq=nNwfd8t}VvbzGDJcIXpK<Jb?)M3)c
zL#W7KgM6Y?cM?FV><vTpl;?;#i2CM0o5|JLTS{^Fs^CAUJ`v`NmQmUqCH{k*S-uU{
z6t@W>FXatKHP?ZgU*5SZnX*`3<!=uo^%L{BbXx=|hd(`!a$CiFhblL(eqxhq53wF4
zmnN+PPSCCEic{k_ba^nh*iYn1sNQaHG)9s8j@+`{-zQ7bpu!FOMBPecx|JS)<|9qk
zS&e3{_&kYuh8mQ%HZt#kZY0Hn&Vl4MkuCLodCnX@PI@7aMhdV%CZ!;WoS49a^rRYJ
zK~$Ecf}4UDq9?OD!qVUp5u=nvE}r=Jc3qasqJsj&b4hxZW0Y(v^g(E{%5_B;sC0uZ
z&TP%L;X|GcKnO#9g}PZY99y52Ap57utg@zg!%79CZ!ci(HVwE8pt`6lo6)z(?A^#B
z3Y51B^#NLmoemIjIShU?$DRyk{mj9@ElCP22onSugUkijI`jXuE%#tZl+8MF$bv`0
zMIKTMoD3Rr=%m;x$HcxGXnH`H`)KejBJ|HL<jD<D9h&f2<uIdzQ1~44Z6)9}kCcba
zEiXy8L}iEOX1|{ZC&VWQeNHW-GeMHBk-NXr^DBWm+!k4+PC)=IhSkPZ#nuw~Xtvc(
zp*Azh8$e3gFR!`SO2I=5h|3JfG<=~Q26XGvD9Duj)s`Iv;vry_QYviHsqiu8%opJm
zO7Q{I65K3pBPMAR&;ne%0Wl#>JUk0w?J%rqaRM<NFTGUf(B<Bg38`LTGmArbg-y(|
z5OU+C1=?fb9?n!_VVlKDh8Qx+i%u7TS8XhyN4$3kcaxx;NPKZSJ*V&ATbYy48U{%U
z`xBL-#%&P85yDz#nINkv)bcP34v)4>#Ou8`56ZW55@n9t-nU!3J30f<-_X@EAG6A)
zvVn+}i#m#j+=87jMN({-1*II|{J2q|<D_9BfQQY`*`tF3E-3Zl3G2=dnHeI$Qrrb4
zW}IbaHUmO9QIE$N(coNt_<-b|;2>NvrmYcR_<AsB<rd&F^16Do*1IBz3T6%4n@lDV
zT@M%sQMk$c*8svyp5u(_KE178qEl$f@O96zO1`8GtZmK+qC7UR`yR+DhvT_PyGw)C
zgK1eS8d(qkF%kf?9>OU9XgggF87QvpRjR3IG|rOKX+9BVr+DC%E6iS@$uJC#(FBCp
zZ>GUIgA>u+t6rqT$}SCs#Qb?0#3%+}5r+<?(PvQoYa13HK04%eNp0bY3S98V+DA?^
z%{fII*A#X=53a|IFOq~6MPDta5HRw-2&5JZzGUmoUW^*}_F+#L3;T1Zg>(Ef2Qv3;
z;>^yJ=zdR#g1{rCIzdknV8m34;_Wr@7!=X`4?w4fJ&jjTf@WWHY*QmSlBblJfa^yh
z=*l2CV;Q4X?xO(~`@mpBZC!WJW(&*11E^MI5@D^Igf<RO5n9K}WswFCc{utYa7wvC
zfgV8J|BX$LNccqmwYX@(3=<AP37j}`EwosjQwcLfY_|=d7REi9ia;5oZqmxH(lE+K
z4lromc<FaIT1kNVmgI*Mr^uwTljZ?H;c(qWlNo-1?tvmk)6~RN9tmjxhI<hxP3+VK
z?XNtjtghKoLf8jing&bem$smY7uDQ4%3?OiEcq!mdIDaW8n`wM98<{Y`q@LXSX(iA
zyLC;gL?F<M7>f;rll(I#+yz*)#ef2b4Gp#=ACrrUJzV#|`KH{Y^oh{pQ?yhz#Q=!u
zM8MkSWntP@dybq2EQgycOkYiNG`&FknMtKOYsJq4d)jThkf*(sK@)XYCP)g=ac(h`
z9zd(i1Q5RBz>^#ifGk|8l4O~s?}-%y8k|1pP`n`)CQI*GXE+gDQ6W1Vx6#5-Ue^}w
zer9sy^&e)cBf5?wxmu94V@|0SQX4rBIOi`~NZg{d^O~1i_({$NOpBDnf<xS5%^BqX
z4(P%0ZKIO&Ys!)|x1DvKNqC%GQN%3*vfz_;R?jN9K>Qr-V{*}D#WF{Wd5TqMRGJw%
znnH^RgS;KnhGZY<K}jX&z|~*^GjG{!n!DERgqoOt7J%bgSqnQ$p*Ip3#Bo$84D@yL
z>srT&;T?*8p0z73(8O)ESHTh3Quj#Er|0WDs>F={;runtk&+lwRzx>4De@z9-Ej0&
z2(04-Dwukd>}BMPoZVQoXiQYcZmqB~IDvuAUmG#fweaMLoRS4BjnSAQh>?9q>^$o(
zJnT8u>a-^d9|eQ>FAH>Md74uid1Vt7pdfa|iC3K^OeP2JSq1!xVN(5IBl2;+_INXx
zx5uJeklb|+w>|2$zpSkLfEpnw#^y$zp<KCj*d)numPtx<C`5)yE|+LKnf<~#9gV}>
zCelDb)od1Vn5~3Np9~<EqQQws33LPVHDH{ywu3@YnVuGyIlK3x#+k*gzKP(o2(23$
zJ!ZJaCBVC*dU<W(V<7<$77viCbA!9lHmF^(z(rvu#6p5te<o2`Vap$j8=XW9;trjk
z>FB_vqh7%q)ER(805`Y^O@!-|*kxvB0(p|w17yc&6d+g`ow@F#tF!v-1PKI%Ho?K*
zMG-`2P1&a*7RjDvmo_CrN^2jRJ;<CmpCF3HC8z)jMw3m>-w5(gzqk!~b0>?anY}Kh
zPQq1#ScvIfT-(Hbd`|2+4wNVwV!|gt%tVvGFvukRBjD<)J3fHlIVKG7!%@^dBGv-1
zM~>h`&6$QCc?U!T%t?!Ni0HV0sN5~03ok6HGjhZ&@$IW2Y$O?ABC5XF$dd#^1&A=F
zNzap1+%sk|%S_ZCpvk1`x`b8(?Z)Y3_f%0x10uoK^ojDY1)=PyLPBE~&H&9apC`y{
z_;u}rNuVLL3@?|C4{D!nA3DmxgNin<D`=^Fc0h=bCTHT*bF`8|GL{=AXd%42c|zFi
z1|fnu%OFdtJ%X4N7A3g>^2E_yEi~OZ(yMsa5B>oZ<f!tuh-uN9pUE~j5uP$gg1G_a
z6c#J7TA<8}e&s$4&R(eWNmi*rHB~Cj4A3FY#34?xtdB(BHL%G#8DMg0CRnslp7uir
z6(^>k=!66A@54er@EiezAjhCo#lV@sz9tL6lDq=);6TjRZx#5D7=GA=7ON}@e_HOa
zlZ3^Yo_<Y$LDHfKG*RE<Y5?LMUR7{+E0E|(JZoMQ2c%8&ks+3C#-)$56vz;rk4i?=
zBoPbf7BSBQZ${(-MCcD-(n$odHf2+W{g(fUULz96oReUlRz53B0u9w?F%<y;#}po@
z{A6*UvL!0D{;BY+*pUGiSWOVL<NA0V)E7}yfNE&L;f#d$%L3jE=&ua&Qh*pEaiK%W
zEl}!-Je_r7=d?M9GgoTxyf`8Qv<8$soE+GF)MGFq<lsyQk<p?XH@SEKZ8~_^Z8pZR
zP<tem>40irWdVGWrV_NSJg0-U?OD2?%0IfB8Rt1w(cPCNz&VezHuAB|I#Kj$FM1Ml
zy0c-<L?*j1L{%rn9g~0!-o)fFU=p+#<sJE3IRu;GRkkoXb0|qV-7oG)rZ^NbdJzG!
zMHU<#3ZIcDV5l^(WRG?{UOrn~=H<oJHj<}EgMr|Li5uXPWD;S_!aW@*a69$f0Ln`@
z3V0jOp!U>fLIs|M(^*oxz^O?L3AaZwi>Z(Ghk++(0%ooS<}s^%2>d;cPsJ#tD*|#J
zWr|sv#a1T*)Py$YLYsAN%k!km?%eKSQ+#z5jCs7Dph-~A#WZti^DY#ho^aK}Pwi*1
zB8ou`?bSl~qU&NgU8*Fb(GM%L0bnx6xo2zwW^!G82!*r901#aEE96MACUVj>b8Gyj
zK?s>c5{g=}*xHsV)#%n@8H!9LhypZ65zYwE*OQDHaW<Ry;QXn8fLY?>2)gQ=hbp<a
zYUJ{k3KlXBQ>;USd^32!MVr{r2a=SViw#mS#f;w2>n5FS-(&76i<AvzeDzm*;kv|x
z5p)Vs<g)pJiSmjbKCXWVK$TX`?EQlHEIa8&XFl{7ZB<dMkK`f!Y>V_b8L)-5I9rw?
zd&ny+doBcpHcwP1I}9q?fS%Pi&<5H>H;T<(6lFv`g1b__{R9vq*M>pO`B(%6g2`hn
zM?t}XvaW`2ag`uHmqfV~+(~wX!SjtWW+Ba2vw6$zNwjclB$WuP0Yait^QU4ts;d7%
zazox%3caNaAw8#>L4u2Sb*#!fLG@6Sy>`jzoGtUbVEU+IY-!X!vh8k&6{*%<E;p78
z`qJYZc~CJEgO0hc>}CSPrT=LIGQh3oXyUafPis=1r|=e%;?+L7Lv5X4fR4uWDJf)#
zO=%E!HCTa*FTDscRM4)8WQyp>N^GZ{<GP{$HTD?r%D7cDngnl*I?X2Fypp0Lh33#S
zA7~Y<W^NUn57DC1Gi`))so&*E?Iknx9K&IdNGJL%VnGT9O<=9*7a<HxN~a|vKSn23
zaGU6=4sKl5b|Ev!s3L=ifvc~5$tXt6RTIXxtXPsJ@vDI~Dvb(wMZGsT{Aj`1NolhR
zLAoGVNNj0@@DDqou=p1_D@t;dtd$vMmspcpW^UgWDd#1{kjlFF*j_5bP}jqN(KJNY
zU>3Oyq))go1AfrUBWnV&L$GKTesrE=Noth|e$X#7FhgNF;u7(Jq7XzD4ant*RTNsi
zj&_`yL&JUSfu7dQ+Mh;jRy2V7agG%U5s6!!s!Asnq)`kJd-aQt$ok4EddS@>#Kb+k
z2jv?lvVDS*)(y1@CBneFL9<aN09Ovz4=k(6<9l$-43WVhNCfTTbnNRs(GW;-GRb^w
z(2Kvpg&TRg7!0xf3IJ`vX{=0h<)R5X>WOyCtlT~}fQennN!&0<H?~kCnjLEZIv}nQ
zXj$c)13{aFBhh<Fq_-`+u`&h33ewx75{*?^dJw#LlxV*Bpiyj#phP^HqycPDBr=`?
z^T99-ZBSgm%&NrK&@35}C%uXU&HJA`p=vXM1Io^n`rDXSGCGs?9wZx7XF?Yk`+Wx_
zczLS5h!T;24x0`?r%k<TeufiL`!cIM6Nsrur#3dm74{3sA%IE6QJt7`?8Y8bAWA3r
zd6A(~!$3pTPd2rAwB(9l>uf7`lh}KG+Ei4OWs+4ogm;OAbcm<8`4t7DlkFga8<p^*
z0A*RWxTxOIylm+vq1{7AaRBhjjiRrfMr~NSQLxGQX^vx0wv-Wlz|3ikSw#jQZ%6eD
z1c@@dA*ShUVWoEl-QHP#e`Dji?W7|^D3@w*U=_YLPc(_G47(!3zsV_MX|qs)3*->`
zShG1Z#RcKf>Ip}5L-Qip1R{;?h-Pe^Xkq^hlmI5Sk57%;TSZgXKwl(9?uOt%XH1pF
ztb8x}MzYUPlmzAZLp{n*bMg-0qwJ1nZ)Q|GCi4jR(hyBxX!eb4BV?6nGo>+XR;74G
zdMjuVkT22qEXxD`M1mUd*Rh>$?AfIT)<cr!fQC*nN=qu=A;Hg{2#67fMRn@q%vjMW
z2#2^fxzdu`v|&P<&`)%9z(iqU^sLh<gYpe`P(a1QWF;ILeX2_iLGj--0C`z{93$^F
zp=rTy<&4#mCIbeJ=2Ra)*tgs!&O-rbP9@f$u~!4yfC8nAs*MramXpf5Raiyr6&{SE
ztDjL~h2kj-5+m0qyHc48-vo%1-zL}Y45MtjMv<w-A{1#rNJTQ=n4#OnGaWKBD-{xM
zg|k8GKemfaoGC7p<VNiZaZZk){f`>m%<Vh5XbO!EncEHs>6lSLHi~gJx)|B(kEK{X
zS!NEs2pb6LdR}>Czc><XN17)sd{up2t~(Moxio+vePWFsnGVh|WR$)70U}%ao{5d2
zsQ3G@MH7_|+X>5)3Rv@)b!oxjON+V28Z@Zs8gK$$S>y}2N~2@mX%w&-4Rq{h5g((0
z&zA%ASNN4hdYHLf6#R5yCxQ3C)f7t*`qbs1!s$owKFtwFK^crv3E&7_*ERD3z%W27
z4mQCI?&sNTkyh#qd#%>mrdI9*na40%BMVZhP&25natJ{=ec=?Si4;&4sWryq6Cscj
z0uLY2*cFt?vKyx)V38<F5Ax+$ghnx;&CUwyCbRl~ChX<eO@b9%yW`{_1#HbeW_y6X
z+~fd3dN+xV!T>=@g%*k~u?kh*YU~Ch;Yb#maXL@fR!L6*-B<?SAhmaYI}uz1b`Rc6
zPy}<J0^qB=X$!MV<`Sz=Rn>Ba;%Ou9st2XLj1D|cRIw_P421xek<c6%E#gCWUOujP
zgA!oC&Ja|efEo&;Gphke)(}QlQgG*khr?Hz3giiGR)HqR5#9n`Ycm}}7Y3#~4S<H?
zJfC82GjK}iN9F*Y!KO@58{GYrG+89|RMFT>cM_R@5<Cw?g;Y<_yIJ$n1&PGv)j2yG
zdQT;TScWD!he)o9Hws!%VoO061@GJd^&%$b9JcOG0f~XZ(Lj|5kP`~MGeTg5W-TV9
zydGv@XkJhBCqUgNI5;$xm1O~evQ$(iZrel8Y7*Ez-Fk&&j;~W-Xyl)PGF8qdR#&x-
zBTSajprwZQC>0%a#Hs|3WTis`yegt>E0MGnf_%<Tg93A<*~oE2zOCxcTGU1QgN86N
z%vRnDuzCqH4MMV}wO&-8s1DQf!E)#&CwK?GvsbwDK3RbZ6_JjsaMLWQ5x^nU^3tkz
z`z1s`lGH-TD%Y`$?4<%mlCD^R&V%1-J7rI2**|8wFes&q(I(F^hzH>nEPjC}N}~?l
zaidKbcr=wWc1LNGf<=&=D2jH;17?9co8KzhpLl`GGP{WtK~~4gMtL+D1`pZfy%ou+
ztaN#yQ$x=jeT}r>sm7xYebM)@MTJ*k^yXJLI*M!=xxao8@*HZ{w2I<OScR}K%tB`(
z7#Hd+KX4#pIiUP9i#}D~xqI&}X7-&owS=dKe3sPaLHw)R3Y8gIwQUgdDxrKi27$+<
zz7G4!#QIiH)iH-L46OH0;8n;RR1>|#c^QWGj?z>D)EqCCxqzOTmUe65a2opP8Ur$)
z)p_(qRxSmj&Ne{>n_l4LIiw0T1lbLt;EdF<&K4rhZWW3eORKJGm^`wLjy#bGK$FTd
zp!ONMvuRFj6NMDW$cZ~M={iFVG30Y2_=YkhnP5h27qXc+n8r|)FId1-qnWwR+QAGb
z^3g@{8P{hF77e9L;%IOXRIR~duO4DoT3=f9{WqbnA=GpLJyrpX3}h85mm)NsNR|b5
zDGnqkad0urjr~vw&709s&^Ix`SbVm$>0Q$aNhpEh?XHOA6b0XjGX!0#%;nDP<OH0{
zQyjK(ke_QtD%vB*aR@0W^9xy{K!<w7YK>LRL=_g=qzdv;PXLmKup$&B0;ZWqGb&@m
z69rA=%;lFl(9QXN++?1Dx4$2k7CjP7&c-J}CWLX!X&}AA30bnV^8mOaQ5Lwh{Ofp9
zk-Hn@_YhPe4JLReSmS6FT65~I@)U3aUxXw%z(vbk6}o=>^ZO;G8YOTiT!}$joGxsi
zSd`04@>~nS)Y#oaJ|zq~=aN~pkh7Qc2xP^0nuE|L;2Ngr?C2R1H;PEyz5Yo|mdO43
zf|23nbDoSOaB|(BVQJIBh{?%Iib$|}?LJVtCEgGOhOC)O`5n3x9yEbqkZjw4QjuaE
z4D=ebwS>()O-q~58HG)BYtUwEA}R!?gz9Ow2y?kM|A9)`lMOCMr~;|Wq#4?ly+^^k
z>q*-;aBJLM5(xc5*0~_IhtWCo%lu>gjK{H29H9?Ri(%%KZ7qn?Ncm@XkWHsJe>$J$
zB$1WEStFPByw@su&mqm(HX&S=1vgB4K|+HpRLe8uS}-D@lwVI}dHB^;!*x!amEg%*
z+H?G8LPKhjR9YFuS3xpA-@6@c0ubcH;aUkO0y82VF*_|)aUpBLNm+X;l$#S$;V@`g
zj!yHN2zRAP6k2$WU~{1m2%4O|$UG904@vQ!C)xLm@*$Z(dA2bsV?g0DodK4moI{3u
zbTWd3@^@TVbIdqk3-qCtv?z^o*dyUoaCd!;H|M&rSb>Y}n+ecnN)%yflKwB~&6R$J
z=FP;>GdYgI*PUUC?Ld%xP)b)RDEAWuD9WVN6=VSzbxRrqolh!))Fp{BW_6lsv|D=9
zTyn-O8l}F}Q6_(RdC|$X?&yDQVhBP!$%`U=V{Rc6Aq0sgfdJ~DQk#30&T>kdj{HiF
z(xy!`s`7jGV`JtEby#F|Ts_?PFi>l`O$hBVhl1MKLi~Y@63tagy1L-sljKBWmsNrb
zF2@?)UQ@IAOesI;7F6{+C1uBZ0<1<XGfdoMP%!z>8VB9cr64clQ*+pyynQC2K|wsQ
zwqmQ<XDlQjn$VByXqQTq!GwF}=QM%>kV&!3UUu~63t?2fmCQ||$7X4=4nBs!eWBCD
zFU5K?QO#r;MKD#6=54yeZWF<ql7Bs!QmdzoY15{<E-knRmNub<3!52@r%YrHg~2!^
zleh{XBj_l!Eb65xQ;!VjPf}CbSn3&7MejLyM@dx+rrQ!0TcPI#FF~3>xoM^(^XRC@
ziT=}dM^*PTcbI`Q2Gt*ip>SJ?<Tb}Z6J?690y{P60c5id6K#fn0KkzrCx=NHe=kMA
zD8S&AJ_^a=v8h#6_4+CN7j2tU3PN9?ai*nB@3l(U)k_F}qO9+)0>kO&SqovVV=oPM
z^YLeI2p@rH8a1hzZ$RE%?W52s(-4AMOBkKKA0wdwSzKb(+gIKDw?A%<bws+wx9bt$
zQwD*!qi!{W_ntnC7v!e`CJq`Mddd2^POijRP+Q^{0=OxRR%!iJpO;($de1eDs1$f8
zJP5Edq8P#aCvv|N2Y>=#L@&}O15&Cjt-2^$LVO~+08DbJ+x3m?>eJ*6sGe9=C=8`m
zUjfh_Ecl2#3f9QoCR&eW(|mN<oO?&MBuM_XxV%}ZItXi1)y_VL9RSD|Ik2mO_0pF=
z3up<vMAL@0Sa<*2s^j%&73iO^>InJ-&W}+OhIb8#!d~wB#12Z^Dd_W!pjz_t1h9sw
zq%l(gHd>UCm5WPTbDft4(dgs`=e%4L=27I@p!=b>&O}~CEbSW>LUkq|ZN=bO+G<Pc
zQY>`bf_rJ1pfR$BNvD-Flck?T%v6zZA-{ED&T(p)4fz&`rjbbVQOG$9o0w{Vj;w<=
zyeCVWzVJGz+JtJBne<i{Gno{nKx%|?y+A$sm~BHV6y-t!#ODWSTHGgat}O0aED$%(
zO44K=V@&{Bd1=xyWeIf*@zgubC?Xu^6Lymmc{9+<L>;7=BX?+-7Zpfx!eIa>P**PK
zYGn|zu`-w$&7;~Bo3$u4TzZk`h@6Z=D1@mTpzA@T6Zi+$xwETj2rDc{E8+&-Nsyi_
zO+w-WHbGh@r(~i|7jn#GkG8$bna{B1`Xxv6GYN75ik+Bv7{$s10FJI}9hUsSs2A>2
zM0%8qfK-mAO+rdcwn_OIa6LH1vb%Z<#~V}P2Ms1k=;UEi7f-9I>om+~+MI2Yg-vD>
z5}e<V@B`SH&AI|JO`ty-9R5?Yqg_x=7mPm%5DjcOnX>GYG)Lx$8=*KoE=@ZBDooB(
zNGyXW0w&SU=!@9wl`*fikF3;HD22N3Tvf$$1wt~@=P1<K7ZY#|60vz{bLPC9mIBKI
z*A?j1lVrYEs|Ghe)v4Vc_&MC(NI5@S4}~=J-fXu9D&bkAGxR(XuDRHJu=b0H1^Ie6
z=UH`Uhn76)<PH|v;+wP<=1g{7&@l+RTZCwEr>2HM@2^SVsTzY=I<d(a%CADYjg&2I
zAo(FhOO{yl5Q#9b8jGAXMK%pHY!)#((9B`eu|3HF>Pj3yu-HcjNFju->pg}uN2IYK
z6Od<Lc;IX*jWMbzWOe~B+8l$mJB^`k3`n^T9F*(DDGiUFbY93N!zA*r-t&lR0lWEU
z%9>y%hvZ2k)*bZb(YEfCXf!$3DNHh>Hvj`ki&e`DlG2$NP0$dmd;1zIWe%o@*is3Q
z*7uZb0H>HLf{>iy`~Y5K2$N33oV+<%X@fyLFDM~4NqQ#st^yU}HgS{u!seb@h#>4>
znHlXpv%*zynabqUf+eYX{Uu=_C=ot@(S+1zIVYN|iL_QotPt9ssfTXEXCO)SltyxO
z&ycxd)}aUC5>5KRkjct~zlD(6DS<O!(XR(Q!cDfGB)`ryge}ePHyINK;5EG^w3ljX
zKeHM*z)zoLa1_iN2u&vYhl-uscY~&kI^gdzs6G|Q;1Qz)`A7C)AoBow1$ApTI7FXI
zj|?s?qD4d&Jx+qbS+X?+P#GT=7_EeCBZJ}wD+41JF?XlWmMntd!Ado-xwcJ776B`e
z#i5UdXR1u{BV-rv-Qd)<zKYGGpwpGiD*%wt=L2Pd&q^0E_OpZ_E0^;mU;^rPW1MA6
zvGyQvb(<|pa&SLL)MuXbMC9~1koEwJV`wE#<fbav$GrC;M;{-W1Xw*sD~c8Z`1G<#
zB7L(NIZIpR3bQ#V0@5T}A9<Q8Z3CHKs0EG1!kZ9~n;{eaprywK)<F0u25u-kIgdC@
zg6%`xchksv7pRYgN^fll-oVfR8##T@0>(~s@9}ZB2NX&)2?v-aD;gVV(swLG;3_7J
z%5FgO!p9{16<-C=iJ~wNG8VK)JS5d8vFZaEO>5B9lePE?pqOD=e}qV$3Pg=s65s&j
zeGIl>7l#jesTz%Z&Bv96anxh8y{%UtGj`69xoG?3Y?WF4u>_a08S={M=#04zFsNh<
z44DIG|5LBx==n%n6q&2U#;peMv}~TVrCG!z;Qwbve{?+#dJsttahk~t2FT__9)hai
z4*;s6Y039+z8|O{*-{9y4DO4_Vy(f0<x11AIA)cEp#9JYcC{PDPLb+W7L;j3$v2Nw
zkHmNJ%nUXFB^9GL87wGL_D<{?qs8j3IUpW7MM3XJaB=V^HqvFlpY4}GcX!+Ex(q%s
zY>lITG%4pe<b)|qb3-sYqB_q}GlilzROH>?#crL{XEf0BsFSqdkbq><Af}sVD^O-+
zfIW!b#aTGDki(G;lSo9tWDDI!IPM&vNc_!g8tXa3n_YS#zh~``pds*jJ4)zOR2~AO
zKRBq8Hs>fG1L)6G{s_e;0RUQ7Fl?SF9enUOk^3M8MkR|=5BNjpMX+}_=G@Uks`CT^
zk!(((p$@rv4__-1?jpPbfdbP<HM9F>a1l6yHT}aNBuY)Iq4|D|1hv;{P_|`lAKVT^
zgY=#q3yX!h{0i>yb;T#x0C<`sOKCt7$Tjap1BTN3OiBUJ<a(k4C%O=-F|zYjg)7YS
z=!wXc3H^#{pCd`o_s1-2xZt*%QS|^|Y$k>QC-v-s#esCC5x}t42bjG0U6PVdK&Rv&
z1S>rg`qf23Jki3@2tXkzO9lXOJjxmv%%Hoo&{1#I*B#p%NOxnw+#C!Mc@B{%aFK?+
z!d!lZgpHSaz=P#;Bv-=B8xkpghER|uS`GYJq@pOKV6*MI2%Kem8Sf-!>@14_O2}em
z9>2O;1WaO2r5sj9>x7#WLGo0B|D<BUX4HTa_Z&rGY6d*vnwCIQN|4GI1)3xsa=OL!
z7#!f0a#D)QLN@L}J;UWCU1lw!X|=_vIGJemeqa0*@`hYnL0S?*R4D1lU||NoRulu>
zGgA{ZsuEnEM~h(n%ApN~m`?1S&eP(W)V<?%2@x75ajya7GRGOtV=O#FW&YlNko*Ph
z<`XkTO~f;Z+^H~S@sZ%UiIjJsruELp2~rTs!l*$E5ts~?Qe)NeDm@IgN_Z*657--r
z{!(^1L&?%dqw-#pqpBC~pOC~Cs~aQdc~lqCfZ!rZx*?YcPFSYyD?AJWAPZqzw&HWT
z`MmZsT&nm@Lt-l+pjb?Y6l%;stVMiT=I1Ni1Km}uIAlLf-ZJL)Afq_)FB4sI6x}?@
z+p5$gL4xPI6*!_CAd40VMwLTS$dBA*uV@eKm_bb0Gi?u~jU&E6GwEB$0Af_$L*TVN
z!z%&qsi|C<M^UCtvz>)s(p1z5gb<*GPTRaBA4GcJ4MOXNz**r*h9PUrjLfcp`cAFt
zkO8E@fpfGu;LKfDHId?iPO=9ftgu&^ug6;8vjXGXqlY02_tH=?qr~|v4)f&(icP}@
zX+sd}JGAW|s#%X&HE=XmF1bFZp2_+N&7ls0hKtOL1OMGEPHb&Jf2I062G@o4_CNAI
zfilItEC_0;9SLM|G>D327%WWG13yl5Ib12Gr5bsq8wxM(R)9!bV03ir!XVP(c&$md
zCp)(<4UVB*Y_}=JN<+j_azL&x;1*T+36>^3J9M(lat+mAWT61L^jtiMZoxE*I(8a(
zzbrngQpw9uhm%2MP2Au#7J=DkGDv}l#%~Kiw(e9FvN{}fq%_4qAV|Vg)(Bxgp0n_r
z<{u0(Y>=f0i-pN~AW3+N;Eqgm38`WL(6T3U?2jg41T7G3QdJ<&lIQ!yXsB^o9dbc~
z(5sWd%H%wVhd63%o%B@%?XZ~>W3Jwvf|f*KA#-CP4S4dNnWe^HC@uAkfoY1F2rfcd
zoO|Zx!39k2u3m8zh>V#d8=X+Y(d`rKVjx`<bz#pIN$<h;+_MdMd2qH6jiE{j)V3@Z
zrsjbuWP3?gw?THPCJzF8a^^$Jfsye{`aR!q7>P`kRFfd>RV<F)Oi3ipeT~Hi+AMA`
zkK~g8F%%m}>O_c#85|klPZQzAATIR1!~!x3`!w7AC{fu^b<jm^YIOnfr)s%L)Fn>{
zo48|uagIU>wp~g@v!96ms7c(@z)TG!(=Md1L{QvQmk6LR`Zg1!xn(liBfuLp`pAJg
z3_FGFHcY|(>bn)X4ZRT_C^VwL(Z%CQs|J`AEzVT4Mh-@P@dS!9y4n~!VX-nVk5(|U
zu+=IGO^_qFL4`4{_s2ou477xOWtM@#q$PgzeukEt+8;v;wLqU)HdD{MybUK3Er4*O
ziZvr=8KrC}ylHNYhz@;00z|uUv^JH=fFKg{Js35rXq2E)6gCSJ^T?^PRR~lzJ~YN@
z-zFsy(IGCIW1l$#6Y&yABGYT`!5JEiaux^9vWdM*HY+D3veaz*>gk^)hdRk*z|YWG
zG|Olsp$BdS2W^tNM{@Nfx7koXm(5uM%^95s9<+i-qSC13A^fsWGODo$Ab{2a)QbFa
zc(KIO+I<LxCasA>0~alAIz_Z>7N+QJwl<R7LCcEb;y8m@qex5T4ChToZ7BMgqDta(
z1)@MAFHagUgAL&rMR^iypo=N_D4G-dw@26ag;DUIRn3*AdIMmslZGxyj=^5xUa~ov
zp+61UU|rp+?j`7O1X}`{q<s|4nQc2>m-Z8d0`#O+j|H3wGf4B3)Yu8o3BR^TMl&4(
zdSp80Lb4(dF0lkD#WJHmm-c3AI3fL8vKGC8o(r}CLdhVH<p$vecsgVW8UmMs1`w3s
zrJ0QsTbQg&(SumN$)@`F`xNHQXySm+Aka|1M9;=0xQ*^+<zeUp0Tk3?*k?6UhBC$~
zH1tf;gUGYWsM<ViNgSxziLpU&c#dFy_G&$BBIDq$9nk^3>#n;&yVOYr(RM6@g(><O
zlBBwmqt+5L!vq~-4E6zF6;;R0%qt62FP+z33qQKc6cB)CP&O^JjwQ%K72eHh&bqRL
z*pz@tVnxS{3h0aTZt7)1HQlH1l-z582Bb(xA{%4NBQfmQL#9}QM#52{W2gbtFV(=C
zzy=n5kVdD4^5(4k1LRaHNeiO|05I;VCUcND$l}~$0rHjnXm-pW*Pk)Sy-H?H0xTs=
zL_z40p&f$EM&fc$?>W9C7|fEoB}R}bXvo%JvVg=H()8KuhFsd`HcO<i4hlq&Ja>~L
zK#cTarK6XC9PrC(({mCjl%UD|pjtQb4ncN-Om=pQ5IUmC9CDYfCnOO#KSE|O=u>pp
zvug$*?&^Td2^@j)v?k>qN3e_p6=3dT^{MU*XDs;a_{a7t(HzWS#*|gy{t@~%Y^Mws
z9f((X65nFdp=lLRZ!d6h8nZy<g~`bc0>GpmVs-B1EI=I`2X<qQp>x(E^W!}|zEzu3
zH7%(ng)@OxsA8@{*(WzSIeIk1Tbj9Tj>9b8lcBMMZbpSs8Cw(6a)Wd>jGAwfecSY2
zUK#}%kjOOAA}XUpjs=Lo+<Xf!y!(2B>VjpQxn*#xl1sr{J8^1271wQo{={v9u~qy4
zNiNBVny%(%YdO}S$-4?OREar;KnCD10V>0ZQUs<z2avcBNAF?4HiuG?+q6kBD6a<6
z6<y}3*Lk8BQa0IEm~m&g?%5g>)QUieGg8Q6^s8uIVY8k0^>TBahnYFajJ;<-Q_I&c
zd=wEYs3;tzL`CH&?I=nSLhM*UMFph<ML?xQYJiZ$j))Ku6_FA<DkV|_ge0IqKuV-0
zlq5ia0BM9k3Mu=I&;LHpd+(R~z9079vuBbuvu9?l`OTU&vkvBZOm<RhYOF3vt9473
zRs1-ou~k@Ve$+R((&HJSt`;-U^WOLn;>)}Ec9Y%row5v)tp_u80#82^>p#<3cfMrR
zzWhzCq@2^C-Qgu?F%Q#CPA)kDp-+9?Zdh`}oqu@=Dld1@*%bc1-=$l>-b^dEJI)H&
z^2S$f8IUW`H*2?CVZQRb;@sC0pTiEOv?Twf(jl|JM?UVliar>iC5N}4eGE@JH@cm1
zBP;RmcZChMCU?WeujM{&IVO2+w#M342W)M<DB#ZVD(Id=*E~{>yt}&M*@w5<#}71K
z*-Kav{&|^nzgh5n-zrs`-TGjB01ys6Wn)JtJ!7r<rH?B1GaWf_=+OBKTcg%0zTwp6
zPu_R)E^XO7e#xUPWs9BR_x@7p9#{7a!P}%QsRQ7DUV85PyuD~%dl)^?P_aDw3+cxW
zgME^Zu7<V)Du?HfN;Ja%><U_4A#bOhp`lsY7H*q~!A@J>HL}(FJ<8WSxae*j^u(Xg
zyK`AfSZ(sFwHm)meZMD+gKj$BZ7+$FrH;n7jb3(3Lo%L4xC&06I)4mQ=&ijy$@`)4
z!%<4J&cUKPhJT-&eD9c-Jae~PIGlEFQEu5K%Mwo70o$$}f4lws{8P2(-)lb4c_C3T
ze?NN`sJ*2mH@0#)v*EMe#K6O(?6aM>OLU@bA3q6RQ!?*xL>_;@ZfEHJB@m~u4IZCb
z_JyhzyM<bWYrT#f+V$%1V$b0%b7Ed+jf02as^!5(+Z(92z{xMmKZaHOGtT?9B&*MP
zD)qCMu2%V0#mAlRj~w!ZmFLG*J$8@!6#ZWBVCwG|KeeNl@)P8lv99Ol4@5=H){l8D
z!>_asQ)|CI%UHc+3)p7%``BYQkM#4P;pvt#i+F6pvajpiJWtnH5~4Q#u)baUJw!pR
z^HXkq_H&7$2m7Bj`{|0q3q}7PcyQAE=tl9K19ud)MFaZ>KcCUsm3{x!=hK(?tGw`g
zx9{n3-n;nnyQP#36iA)zLhBYv;L@2Mld#Z5S7X;5&X=2>saw75MdQGcKE>0WKmVai
z2$MTZbS|hE#r-q5r&o8}HC;XsY{1cf_H}Poq~*F7MevN@b-Ed*wZYNl=a*|AX{o{4
zoqp_5rvHxWe1H4VS;)mha|YCo&{ZctSnR3lKS5h};>OYX*!zbid$roff=<+No=3kw
z=L%Y#rO!D@H@W_0L#LUdk?Z~JWla5XpXjb8|L0Q+Z;*^j-phluf8Af17!>EaEpIv_
zYVB{@wDyttB^La&bmLo-YoD!<J*ckB?$*Jrc(E-etMi~+tKDpfSKf2If9govUiO%^
zd_3p%DUh}~zdqd=QTNFHp7+B%^PC%<X??rbKe9SzkPG?Ce%JKdn}_oJO~K1E&aE)G
zv{co!bzOaLal@7V$Zg$L4PVmRM^#IwgM+v?4_f4DHda+XS#QdV+{<`Q54KIXkr@4s
z9KXu{&S-5(+Q-#P^J-geo4$@(HIsl@H}l0>^nAgeyaJCX+($`0hPXtZKe|`zh{=NY
z+tWQYSM&Z&&bzDKlUvMNsdY2<%Tf0O;3IsmBSmX^Ub?19P9#v?j{JRnBdgD9FmPGI
zU-NJ87{5>({qro)FxAWyl6Gy|y|T+2x;KA#E8lBz9CQM7qU`X=s|Jzif4M_ur#;Vf
zKZoYbJ095-3Vt1?Et<Qu$#{?xYo3#XF15{$^fzyL{PcIw)9$d=9*>yEhb4K&{n{m&
zpMN+|?*-UR0KvDNP9BL^#&q5msI=)c8@f@UhYI<JL}_f^dK!<=TYmHP!-fZ5ixa|z
z0#;3qJ>N-koA}h0Fn)gM{vKqI{oW_XzFDLZANM~iTB9^*pS{{wc59;pduz|eFI6d$
zGrK5uFw;@eU-y!<eK#-Nc85{!=fh!si+Ex6*rR+m=5l`an!j3#+1X_Q2YPXOnU@sj
zKHV#h-|)-m%J-~otIm(VdvE(GvTE`1AL85zzviVWW=D25Ua#hzPXn7Fw!T0wwM-ZN
zJEJ2Qo4cmG`@mq)k?nDdJAZVX3lN}8#&2yKe{6Xvr+Of(*RCm{H%IQQ_2`3}Ss`tc
zUW@iu@C9nkuZ@0vKfF789<n|lUw3%K3Lbr6Zu|JrqaY%Ax9`s{((S=-clP+)NlOp3
zei*iLc!8s=N6zhvf!wla9B5eda_x$)qdIYUpw7R#(t9@z_)X4>yf&2{IQsa4uTxui
z(!)F1_d0Jz747oUUh37NJn=*?K5zWSJM9-&cg=W}6~00}*>@{w$=<&_wvF-Mrd1xa
zYFSeh2$8;MSrs7oeBHp3zL9?VW@`d<(Gs^kx~@0&nrAK1y|kl#*RpK=BR;Qp<phmm
zcF8H99Y?Qx)LT;IBe}KpL7<yQEo5?b?A6n41zo=%Ki5E7W|rxm=Rnkq_S{90UXBhv
z%k|Ln;juM~mQ*;u^C**Dc;#0eA5iuH64aA)GrD;c7I{1`sq4VI6;-~Glf5st6r5^|
z_eqQFdJf*O5hZts33}@H>P}E*en!8eao<|-!qvW*m@<8GQ2NsKix4Fjw#At2bX#I(
zRDZed^~_?!+qi!}yxE@gcx-j%if!CpzkP=~eS%cTjcX71i}J6oa^CXg!O%3l+X?>0
z;#=v{CkyL-_l<4cbYbRj#$lVj<}HUdkD1;2Tbt%mXfT;p7*+gu>v9uIGo!rq@n?$B
zCAV*QoJYkxe&e*FaVWMka_@=ox5xCY4s73En6Su#b!Y>EYIF$UN0c@1va0nh-W_*H
z_sMOix#}o~)fWSA-?okdeVf>t97k|n;#OAiCGPbi1F2|9%lUm*Uamhfb<`x)W1Z0K
zczNQkEm=k@QuK8kE{s)i-fO>#`m#T_>Z#lIZ8~K_XSsnP=py9o%9zI=-`#(-vs3%t
z$HC0hEnn1YXJ@u<MGRgWc{y7s9lq)N=DkBU(Lk@jBSo;VU$UjurR3`dnbi&h6RD6q
zoxLPX<8aS2B}1&gIc8<T(hVnF>y`zU&so|%4Z8$8yV9@H=i%|JHMl1=u+1S;WAERT
z@1L~DD%wrI{?g*n-f#ZR^ud6ev!@9g9|rgJl;SOM+AZ!yx8A!hdpTD3HN+@#wuTh;
z?Cj3<Z}vWXUfs2&#p71tnZRo;^(8lNoen(_Hhkbl8J2k|CJ68_^S!0@X{}*$%gZ9A
z4We^V+On8<@2I|yhixzZgUoyv+`cFPyy=W$@?!JWGfOj9&=&c}KK!}PL3^}$)3E<T
zPwSoM-8ML{e1rRk^ynhFpyG5ZX=Lvs7vVpV2ZFuXqqZ4FtJgoNm;80lQ8iwxcjw7i
z#D)WFe%&qEvs$04d%U869CJK!c3td_^CgE;?+&IPzYrE6%$RJhCpVH;ecBvtO!;~!
z;%pGd@zv*&;PFM%#e1A2M@PLLSUG&Et9$$5PX68Z_g(`vdSK%D;hhb!sU`IXSDiT(
z9#a7~h<Ib-mG~tin349}^v<bJOy817ecj>07((EV-|L(|T*a?oT=l-7?|Di8>~fRa
zyRIJGa`S7_{u1>auVX*IKAQH1)LbECo7k4D-d?pah<Cf|vf$#<V~eh@SZtWQ)ANfm
zqT|}qrs)e=XDUL>O9GzRyQeSSQeF4#Q_C}pZCedB=bU}}M*REt-CW%j-S4AUBn0hy
zdwVb-;+xi~HItd?onN2ny%Qe1DQNw%<nxN>1!i4ubrI{f@Ah}kx$FUL=v@`d+p>-F
zWRtCCA1>D;*X!Zy@29&%1Ha;R?)M!zw!)k6>D}J>9xZs^6>IariSVVPw#z&4&U5ci
zbfkYj_IN#4e?zp`%FWZFEOlnjovL!m+m1sAmd15_N;AE-{B_00n1hg&u*xE{H|2l5
zyLDjPfcI##^UR`sS2rvxyZPC4-;UMr9>*ige``;d4orqTM`w>eG%M`$T=e@syCqie
zaY`#a<6kFHUs}c?FCO#I(vL@)E_@VKm0x_8cW%9-_V2|{LoDN7)-I{uki26{3J%h!
zyZJ*A$8@DzM2W*|826<wr+Ev($8^BudtrWgtm(DIpZ&CPC%$FX{a9+a@5t>NF_R&d
zXB+kfJwRRdm3eH9`D)LRZFV~w>Jx0|B3(E4YUX>vX0gWd;@U8=R`6u3vZFWgxfgbz
z;pCE<t>u;{zx+yBzjwOrcH78PKgH3?v+G~nkbcl}e1Kkl(<iyiVaD^=;CjQPy?<@2
zUQ+Rc{$&6Bk-m=lnUQ6$n1i~zUSdYtE`$LA`oQg%Jw=qVu9F)(b6m>;{;gqWmu~9(
z?)l5oiF-hD<XXVs&)l^u|GvGe^Jo3U)<vS*d#rwD>N{A~$G<zpq&ax5TnLCcv}Ej<
zRZrKRyTo55kD~M`nlr4I!LGm1IZzNe7qD(h^zRA1T08^pANY3v)m32wZtq_%-}Bz(
z#U{~`p&iFRuktsXqUXHQ$+)^XeYN02bVB{L^`7>7*Ps3N{Llte{?{jaqyIMXdhl27
z+3)=yOG>8NV>Ti<Kdn9@cUd0Svf2Dsor8VJnMH9z?mw}f5A~Su-;J*sdwVtJ+S(r%
zrF}F4D~*yRbiUuD^ajagX71=sfJ1de0z%psjKS`&sGj#x){eJ*<+z}YZiMbNe5a*@
z3%eVq>$eyH+bsujSL^(9WZ>8Dk=}@D1C^n0uT5eOgW*If^NJ>TQ>dY}Z3?$gtV<c<
znz&W;l9WT~6dS|CU|@oLs6UsD$R6~@TkTzH;A-d|9^QXUJ=yd%l}#|>C|bFF!lAhE
zsFgz01aIPNMhZ1l046(>m8ndO%q0f)te8O$cP8-L*(HW2ptwk6KQYdq&Sk<*xXY^$
zCo4xeR_1W(kW$?!A~tqNBupz>5i8;vOx$gx5$EKQYf+vo9>b=5A@3nl#o&7wr8sru
zI99~pgT+g2C8_S#Jg8wj2T|-z4p*&3jllWVl1jWg-#SegIuy%T==Fpmqgq_C{X^bE
zF<f6E0;`fw*=Fb4#Trn<g_c)fpm<w%S-%GbJLo%<$nBGS<#Q?xHHSCVjrN(hj`ktQ
z@e$mgnoE_E4XYmCsQ@PWl0Aam!-s0C=INtBguUCvSUnShq61cw37{5=lRyc)5gkEa
znU1iQyIa8l2Z#3|>DUkEd3ZyYt9F8ZKhk4-o-?Pvq_N1{z+N0Z`bZFt)i{+caej9=
zKjKy=`3|4om!V*t2Hoa#NP=VeD~z2;aO2E4(Xhy!I3{H831ua=&bIz(Dft#SIFSlY
z(Xqq3#EhJh4}C2|Y-dH@5@$6^vQmpUZd1vsmcC=ojv=fgK%!vmvwA+Oy@+8OYp6;-
zGn$c~*KI*@M=i**;sym`qx{jR(BnLSE9;u+FUvNU4`xtv9^2C)?m3<M-ltTY*#~f{
zOPQjdK}_w&=l(uU=oQF1nx;~Vi0u6E!BTvVqr5Fl$2tXEfrws^C3EcYcHsmvy%@oj
z^b_yH`r{U{8+kd7B&jlN({V{O5IOL?5}6QTzGJxB^BhdJSs<3YLM|tiP$0_ZQXf2u
z*72x)X?CN8LAA`Q*d5_N>w=Qr$2iYV24G&B^|5AU_c4<~{(33T3~mVWVHBRKx~%Ct
zvoAi6d*owa;fzvM8$3r$;Aa@+&$Q}+s!U=}xPe&vtG`n#ovs0@^_G_5=qyAOV}FnV
zsnrTU+&7BWA>|fLtF8qE2O~HPf-s(}QrJ@9-%*2QTofX~xqv+!u?V07h*n7!(dJQV
z<~;Dc(F;kQ15UQ&+Rl!>1f=5*>IEo*k5i^&kz$C0QlSUWi~-d4I6<-V3}GKwSw$+N
zp~dzhsw|mp?@96O6$yDI-xaZ0U~4>OgQO0OehDrvrSwYbTyCcd#4!?auOx1D(gEoe
z#E?IR*3X`o#NB7YGgOHmz|89y`$0CBCo(|P_L@Rr82l7cI!Mjti&jhGlE9=+Q(-xU
zz!QZdYAL3|UIYsU!3?ks5JR{03iVn{`%N27?=wC5oa>k%Ous3<pRFa4y#>3B1!M~e
z3>5P!#)%)12~O*0ha-jpFbIAGmYGDM@K}0u_CbX6bxaap^cd_Cj&bFSUNaSEB;w@=
z=bIQ<CB>X4I)O+`0q2!c@Y6{5K`IPSi9k39VDu#pH}xzJQU}<MM7@<Aa5~#V;t+`G
zme5NnmEaCK+i9LemB#hB+$0Qg4Pqy}B~kf`Q0d7uqp*gCVBd&zsrpBZje4L7ryd=s
zpC3I@MhXbVhXh9r75{jI%%Esao5E9Cttb(eHD)1y7yL~i#}7wA1rGOs+B|^NT?m6?
zcPoq}I8T%hOtKqZ9Iq|Gf&GDS0yjIhco3Tz)7EGf;u)jh3O*^@Q+0T_e$`JY`eot|
zk@!hxiG@!EA}DHQF*{m>d5pIP)`B9(1)}cYwh!b7m>K(NS7mi-iM>lX@!{F)QJQ86
zZc8RB9_kwfuj!`<0t;GgY6a>dcMzl^J~AS-do-2Nejf+CC8{4e#m1(gV<R|{{-O+m
zdaaSUy<3wLs+k$V2Ip5|gjQ)`p<%)t7t}4$OjfFixQ%TE35CTInWgfn_6(zxU>AaH
ztf?cmcEnY}x()O-t)#f~wyc66ZrLzrK1d#AkFHjhhO>t~Rl5<?0(o8%gjgcxedSXd
zPC>$Lh_7tGm2hQ4z5yIeju`b2O$*CBp+7yzH@RcgXt^RHR_bjjH6C3MqvY7{cpnhV
zF;s3Yl45vtP+lp`eE`p53_2o4hox$`jH$em1SI&B1&-3S^ejyWnBGJ8xggxoO<e7A
z+z>fX+G^bl-(3+!jj%0Gq$M-D$&uanv&~~G;dm^=d-ECb^R;)hxQ#E}O<7K&#3$%6
znQJnd{%E#9LPE3A6(vzY!QGnu&lG+w6rPV%l?59tqnI)rO2RmzehZg4=}!zw)=S+w
zjRZ!gs4|E(OVyDJCPfZoJ;6jmNz&gK_xV-???N7ZNVW>=7deD3`3|gmub#iy27JQE
zsrs{6`%&QDVzrh?U1O4Iz{TMNb%u#L=b<q=uU&h=x1G#8axQc7*-#z9Z!IZgu0%VM
z7h73tpQ2;B;C0f9QRxto7}9#_U|W9UL|;}J;?2vN$M!fDUx>#=jTWM5vRF>FXzGx?
zy304Uw`Bh%%CwhBK|qYs&JiWi!7cox#Zuu2d?@-8`PZKmc59+fCA701a!F3UsD`}+
zyvG4e5Le0T-UUcslC%nxtp89bOw*7f?Ml=9DyA?E$6$XGlnUx~TvpuR?gH??fEdj$
z|0{sp5QP0hV$Q@%L+gL#ulcv=VnpFAT2q!pzA1-GMwJfoDr+*BhR723grIqo!(zV^
zfM`$zng_91;A@zCLU8-SP6f!4yzX1I{Tt+56fP!{iB^%sbk;saK7UhA&BtP~irpk=
zcFZx%oV91i^Rc2RR>DKi;r3WHu1D>vOD7i+uJtRB^S=3MLXAThY%zw%8(rc@r-NS?
z)YPRI%I4p-^$q3?G37miEVj9wfpAvi(>mPy#c*=jmlwhs>(`t$5`mu#o+-KM$so`3
zBx=v95qeX;z1!tbVp-hvV8vL!K7zn?4;AE9{HrXM5`{$yprMt@H-;b+0yw^e6a+Oq
zZ>XyCvOsAGDM7}XGew^RyM`T}7bCLG4fH}?%AyiEWw`y7CGbRXk08m}2_F|4pa&~+
zAEX~T31^Ruws5SP@p|5};841G?VM4qytB;P6~uBTt_2a|qS^haxv53^Mld3~CyRrD
zlr74Z<}hYMx#|Mi5Rr~R1uJ+_R2#u%#A#lPo-r#yz!P!oobOMOXY?3DbR-ceFUp|6
zb=3=Hp6E5J9P;h_WHYOENc{nMC>C*|Bmk6xCNBk0vbzMf+{x52CQ;bW&+QgM=@vqG
z6oqF+sdUeox6~tXD?~eLIbo;l9BZZZsSF02I`Yk>vP3-9u5UyT_EUu}5|NIQX5_?S
zex~5@?#NqFLMwL{wDDe)URYvKNp;K&WB!#W7h}xoFS}dnWgKTH;|Lt$6QV+*;8a1I
zq(hJ@D<I${m*lLAYAOD<B;qBYI?1|wQLWj8^{03KS7(E6pzHz&nlMcuN`_t&%za+@
z#n~rH_m}va!1|_{&!oz5fylW5eQ;FCMU$?b0T%2%muwZTP6B4>O}4>Uf{f)G-^&Fd
zcpa{M%i<|Pf>PEIWrUD=JIBAXiM;Be<H9S=Fp90j2?hHruh!FAG_{W<h72w~pRx!(
z_sXI;K~;iriEn{9%QWTuAC|hP7UFyVFD#J`5Ykh7lF9<PI*I~m8QL&Ts*OUvYh!Tr
zh{&uNC)tGTz2R}OZ{65kvaI%e^nbHk(JUGY?$6hdw?OJ>`0l^!;SZx-H2x3!LJ6*8
z0JDlW2!3&bAn|$9q%t1X21f7M`23?6$3CSVuFa}T`AcnmLlSt}SXO0YHTJ(1TN709
z5&sv`GkPczWr0(VmYq|&D(}N%@@v?PVwEsCylimNMf^){4lPkp^yrWvJM2_PEVUo7
ztI0hj7e}QTx#%fav1uy4;6XnmtPfuUCg|dLaY*>})w_pYGCql+F6cVc7~00W^uR#I
zzLuHc)u%3Fe_|JV7bu0AR{jMP&yqDkPiIBdF97vPSofc%|8I$fdlK*x@YP7U5UCfp
zc+#5ttX&*E;F}*Sbc~rT@ff5UAJ>Tuu`xZqte6<*cJlUri@*PFHd5suiunJLq8hpP
zhobj?C`x&tH2VSelW@MIAiaH{-z8?wT4`_sU%<oD8ezinx=9bwuk>PsXmxWR4=HJD
z8m(_<u=DM(gNJyPpW!~8G347S6LYsvp1@i&Ubu|+=f#OmB1AO`ya8tO>hb#1wUHUb
z$oa#ADLVFUFkzw{N^wcS=L#S(x7dy=UkO+P{}~rK$PYwyQ&J`V*(>_ceuQ#k$}0hC
zq@gM6J}e<0-Q1VYFUa#T9vlLf5ee}#^PqAX>o%pMLqxR}47m_uB59Co?6IbnIEr4s
zQ+O?>N1~Z3m82GFxLguu>QYt`aP?a4coN?VNAtFW5aS~QL~X%_*dcm<n!U1FZKNqj
z+=wih*!aPS5bSPcGlUs13V&ih(^`{yA39IrfpHTEQ}tX^M_GO)MBheLMVz}rnxivC
z`q(Q&^U9`V_r?M;)epHEs`^}%p*a~-Na<&gEAXPBrVeeA(tY@Ileez7`h-$t<|Ijq
z#oD>$30+i9i7-^rPc*o=|CxiNPAetJa+at=gZNc<`^D?~Rij%4nZD12vmqr_oT`mi
zNZba&6twy#1oGH;{M50((pq;b^PEZWQTckHS%g^!{9PmP<RgJ5;MRY20@TXj|Ib0p
zGa+0n3jKfd8O66Ymp=?S<@Eg*Q1m}CseoND`k%p2HUPGK<?tqaC*EaN<eI16tB#0d
z&q=I-m5rGiz|Ty(qNB)Cke<fneJ+s+Mdw?px%uxT0lAN^18xB(`Qe@D-A|!B2Lb_}
z7+f+Li%-M$$7M<1DPp7z6Pauaq$39A#WQbB3rkF3zc`xhltPho<P8n^9iIxmTmGW)
znVt!RD0-KTyfGB&4st||dK@2eQDzmT=ISAD%VuJ@Hj0~y_Kv&{v+f#zV>;$8HE<8*
z@wR5$GrOd+94QGN!5e8jtOp@gDd;N9U^ll<#H9%1=9m<SsF{(H-QTDZ7+yhAN3B2U
z3LK&)dM1{;uVmIvLMJ_-Gr@31lrTx@jU7}X84H7;T15#(P$d;KvZ*kEH4j*Z$Jo3M
z10$6lMvw8Z%g!WXToYMj%8Wf`IL@;^BuFx?We32?K%HwYgYjLuMVJ_b2!@H?x&&sq
z)&+2QeRs(YGwwinV-eLl?j@{5cw216L0cp=x*M~u@bdZ{O60s?eh8M%Oo$a%mz`c~
z<8uE|q-}YH@|BKSmPNI88=%e7W&+(octYiOZuxg|gN<$wIJ_QwCA4;!KZN&PFr;v9
zR^=c@U@kzgb19KPNPeM8=HNRg_(VD<uSb--5_$J<?2FFocv1LVI=11aZ*)T~=Ld*_
zQ^`?(Ckb+msA1uaFMimV#?Oto8enoAM0-(5)fH9pi6|6MCrM`Kn`&mTwdC70Gfd)S
z!_JRU#op+-5`s&4)IGrNu#{EiHKa^~56+{g?J0W5$wP+sSwA7_4kuFrLUe{;<PM3W
z`lhHqktO=5gqCHuWmbAvhEr6ma4JC48?vPk)v(i96S^ZYBC>mjvXzKYu1=(=PuZw~
zY=BRG5{1tX&-fO66`Q^r1tCl;T7LZ>T8iC98ccd&wp~q4N@E~7_Ka3E1WEg;2bRoe
z!MXkS;mrBhDzUx<E;aTZO4#b6J|%5YH-<g73<n1m4F9I4c)MFe{$WOs(1eM+;^&aL
zHo@}3JH`PzE;MMW4JmPa2&!2j2d$lIj#B60RDIu8*812j_`i2_8!J#4ht^jq?otG#
z=J#tY<~hXcA6MFJ6!qJX{d0uA(B{bW4uX$yX=Eo(bn?}c?wlU%P<b+PcBTQfkWz9z
zvBW9|Jr%dG^%SMM;1fHsTd?g|$H@8KtPJX3mJx%3rYs_^Z+>i@+p3hd!<5ie$4TXF
z!Hj)$ob}k39AIAcH4ZQTEV`Lk8C^)~THEVM6Frxqqqq%U%gpV=Ra*xRJcFEJKO99H
zKLPT0u6_(8?U@MQjap0osg1#jWWaVQOC8bLmmExbZRckVWGuYNl(LQ;II%%W1~pw&
zb6O*e@0@hB7}{9+#ma4|wzuR#TQ(#C#(Dd-LU2YiLQU0#pjC=KHw|uA{ugdv>Fk#Z
z3^7#;IC6#JAx)`Z`TW88|1S>u|MTL>D0#5RhiQcp+k4If{~L1n|3!vfAd+z)eK-{n
z^4<2X_Ha!BLC{yk&bN={Q<8(j8BzB>wHF2B<;popOIg01E`&UvH<*_Y9-x@>`1maT
z7M#=Iff0t94h}I0<MI?@XO_RsNSONp`|)+mnB~|x8O26jjIfuOYM^d}$lfI`QJ9>n
zZ-{37gfr#kzUe|bbExJ)!D8LKQx4Et{&^Sf&FM~`A5+8Fjyw1mWltkZHQAI5CbwtK
z_+|=;llcSm>W}um-vV_@#*G}m9E^&#E~0BgH|*R91@_*20^Oq{Abw$_5JmD768}@w
zuu@p_z&)YG*nvvufar9Ho5US=#kIn~iMn_ulH_>%F5dT7u&=+a&v3ipYb{Q^RJ&<D
zo+<B&K&tI?;XdRxZ>s8a^ZBswcD4t_E*4UOM;=2*oFa{n9~=Lq>a{4J>k=g_N6(%N
ztG&Jr%5(346xv8UIVNmF#fQv|Glq(8ajN>1JlivLe6e`+yn1$V#@ID<!rhHgB@o2a
zT=fI8gV3j@hm0U)x9wc8L-+(?$Yco&_yHsFX}}cOOOXp&>^BPqP1V?I;CFRb&JKlq
zz@kRrD~YOPk(nrUwr7lQ1r`d!fhw?|+FEXSB{nSe#VLSpN*iFKOZ1?0DyWnNg+b75
zOsTFy&X>dsORy{$79PNP^5yp_zWOl{;PN@3Qk^Pm5S{}o!D6D<+~U^&{c3?qB8ClS
z4DvWwmmg$Rydq%D^oY}dCl^)6l=>;;CP6|Y9;YlwbC`h`DT#*$L(rYfC5xM|rPM5b
za0Rx?6ojW%H=^>sQ<3*o$~(vo0-uAYD^gTSkPSTf;?<K8j2gkxoP3pUDHc{qMcd|_
zQ7CBrR8R?7LwH_7;_^6LK86_%L3g-FkrJ_czYrP%0a{yqS-oTeu}8%)dr|01w<%RQ
zhp})Yh(Y!ygz{*a*iIqeh<FVhRHe20Kw@KZ5Vhl}s6j&zPcU;;O=dK3KCCufg-^!A
zL@1*Raca1e3mVHXb_SeWWlDzKvKggS0)Pme8I_ykM#a(r|DWP)*5ko=#pq9ls}Dkk
zOi-r_ViBm1Msvzog^TBaeF87FxW6Xuqf<B)$5UUWaA>CSoOFw@I&8c?7Dx&KFclVI
ze<7C%0cLmvTzZG7*v9}o&;Wx$?HAJ&IgMgSx5^BmZW82+7C1GH!8NQvD!CYu?+4%+
zT%MTO2mZpbF9zSBlHVyb*+U9_!z8S3Vr(uIU7?6kD7<Tczp+yEq=7f180@YwepAwF
z8jnd$B#Dy-2>^tP`k6;%kjcp$r~YALSF!x!ejo_v+mC!pI7kg9gFrmH>p)8dP)DMg
z#5Vc`VhVT>6=3EKjD0`5o#7Fi>o!2FrkbLEtA|mF9F3|DHz)*-;sG&ykfSn1D7yyK
ziWxCz!2S1C)PO1ZGs_nyRM>_ngeoy?2o31y5hY|ON+A9|-z||@NMsig!%ifB91;g+
z`qRd_%m%5tLkpXN27Vh+0p@+qV~w5=MtmZ?Y+?w}?Fcr01GRfz(hRzsmhpj<+;6a0
z_xE5;V^WQiDpx(Ec993cKZZz*F>u9a{{UTfP^VS+{LzFW#nter6eohT`05t48&wBT
zSP*C?BOFGhBz>Rd7#f*M#S~veoA3QXBZ-<vwJK5mTJ_SO4sx>)g%m{oNtXe1GN4hq
zmQibu1&qxIb<+y|C{X&+P+@3v(^>_xP)Cm&-v&78$+R4pG5%!AS_R-J22ztIfHKX+
z@f%S>6<uvW2wxmXRs<<n6%)h1P|_-u@XDYkCUJ>^w@(rm1HaDSCy8R1(qdh^G`ieK
zgbz+dugw}Pb`VMtCs}&9tHS;9!*^LoNwb=pnPB>7TIfP?P5aFvR}d&aI|CT%M2dK-
z`Op2e&<iv(#DVL;RJw>_xhe#&*$e>`SIAXSuCj&QniANVE34%c5Z@)73hh;K;?zXE
zjbK_(%JGbWo4zAww|SEK5(hv{;)+2-e3ngOQF{ffmwR73pElsETn+{fNUtJLVN#v6
zBZ+r~QNH*T4y=|jnsti`<&VsTK;Vk^Zy?B`TzS-j8a@D6I{*;4zxpRteWD$36QkQF
z(C|Dt3%QY_(VK@!#2n{BKe2EVW!@$Vfc8*@P3Uk8>yhn)2R~A5`~(|UD5NGS1vLeJ
zg6<A*-XJ4u<{a6dHPvEoR&=|ese@L3X2@PtfFAw8noG@8rbB;6yhN#sv5a})Jj`lX
z)jWRMeC8DLE@j@8q*y5zL)DqVN(5L#LFa|rR1H7}5OPOh?eumu!P&r285v?{hl3(S
z3W6a{$n5lOSIDy80H9L&6Io)_Q>u_p>g~4Ep=mi|;y_{$HGoW6xWhRv^j9;kil>%3
zW#PH<TstzXF0|TmR58ex2QpS?@+k^?`enb^ew54bQi83pPfXw`82+poPwSt7B*sLe
zheWx{g<R`xEJWplp~6@jvAi~}O0nZlB?ly^uS-9I$;AqbI8rP^Y9%2Xh3bmq@o^;@
z4YhI~12oF9`4@nFCoA<6fl+;iIZqx!0FF^1{m8C7)^G3x3x}XkYIJ!0+?wDy<z2xR
zgnB{nIuBj0cnwA$w&%)K3|GE9l_BhuBHkl@<gv!Y4@5owR9275R(^PO^<UV7o}kBa
z-0%Hbps^i@p&J<5Aba%{4D(CObcKsJjV@)siD{2y)L&W0JzaPa7~9jx%M`)M-jLmw
zP~zXL!~$aMLaB<?$OiJIs;2nQy>Qb6HEtis5LYRZEEPNQYXxQVm4hHT9vWB2jT6x?
zGFG$7Wa^c*%2a!$ObSdoF;Ts%;XW~{Tu-8ko=XD}#0oO-%?Sqx6vbpE#jjR9k&UZi
zEA-A3kd?s@Hj6uFG$|!@tr5+pkjKUQUF5#CepDts1`=cD@jj0}D+GS619<`eqG96e
z5i~|2=PAJVuz}D3OdN1c1SrC%oyl;=;vcP+p3njI(d(rI7=jHSn6E*e<2iv7^t<JG
ziDVN9c@I?g5+H_9MDuW-(-xe}0NW0i8A1_7%((i4hWgwmHoTOaev+I)Lx+nHy2@!H
z`M#pEUC?ppZ!#I+2=e)IJlwqasglDg1DO-Bzs2Z~gIRnT12ZYt4E-z~1s;utve}{1
zdn(nGVBbP5h=*#((=1SQDFAW^aAUQ_PsO~_y-<~-au`IqQPDAcTHmua;k=SssIr%^
z;nDZ=fYAXoekp7M)XEg{)LIIqa0+#hicjp7`$&`K)D~%lgHn}Rz)w(r2+?S2lxL;Z
zVBl*7BpiaOC0wE6X(-wz$+g0i#vMZexY14WOHNow?06%f(#jNSR=G?eaoSk47Zv!N
z2f!uv01TmwK&Yo$seqI+ue49&p_}SCkZ=}1m?v7P`G4Y!qaTowDMT~tRVEbi8{vJ!
zz>axoM1vY60y;fK3poz6MAv`I)Gvx@MwnXFvP*X$A2_VIu~%mQG$_|PlS$q_QDgIG
z*G?ZxO@h!>>AHCo8?Ic@C-A;+t}sxk;5gOrrWKdbepGRKfa~x%6la{&VZ9)z*R`EI
zv!GycP~C$y=JQGp0YZECUGg{&I4vzRDSZKXD+C_3<`GvtEQ?boVSJ)Ct_Xq@iNq(2
z6f@20<UBMiDL06xF3iK0m!vK3mrgq>_11Tg4r8TAR}>k^(u;+&70`YwR6HLxfP-|Y
z-jk?6kMC88U|Rh?4~HB1#To?TIB2GAnO-#d3>D;sh+KV?3>>9muPAgCqB9I~*L=0G
z*}RQuULz$vp>d|nD15m&A$v~w)$H*{(kDbx9-5mD6Mtd*CaA+)^IT?6P5`h%m7?Ol
z7{C^(T0QpyK>Yxuc1DTL^~F}8BS+*wji(EMF^=zr$>nHPHhE4AplMW)!<>Gs#IFL#
z(<ycar08l6TDh1LHzSAi3b*E|q(Pi^+<xg=v^dj-1;CY7iND1vrw&{7Qfw*>j!T>h
z9+p2up=ab_3GRs#^}_pTR_w5CF?seAC$WSjcPyMiL#<?xx4W1-T`g6Ewt&E{+WqeL
zWgic3-n>|}=6KQpyCu)JuGxNfZrPD#x)0XfmB|{@mi>uc_b2w><sXl1KCt-2y5oAT
z-;6t?Nsu)P1*~?LQbisCCC!ihDsaG_4JK;OtE2*&o=biLP{b(W$X1@yTjqSAXC-QG
z7i4*(p0AXOdq*s=R(x$8-VV&}D?$5>q|a(4FhTuut@G~1L8|Y?Cf+~QK>oZkH3ZgZ
z&&#8U=lA(Ya6<K~JTkIqIG_g9B{u3~eqTD=a*;MG2D)3-4;5Mf`(mOB9s@}l98zru
zqiYq`Qk^$yHF?&;Hd=2|4iQ>Iwf>san^qMOSgQNjUNI&HL@Am^VR$M+E2tC^6D+me
zPcCzH3Fg4j(vTl3mC_K64E}Jcw%(OyS^{#n6fMEvkddnu3a2@xH?4z?39jj0P^Pv5
z^W$`kP$MOf{kD?Ce8pNK&>cb!g}89JU99RLG?>()R=FXJD=0d+DeHwA&T^hDxnGT(
z*hEr;B{Ikq7(QiN{9Wo()`50qjtDgq2gse&mB=O|o-y+#X6gz_3ca?fKL%X@?&?)C
z>ZuEo0&4pi=UDzjh(bCQr8nUVJXNU;as8CT!-P>|o9NZI(~?9hlCW$|rdZH-ib@jK
zWojg$S5V;GnqdTK2pLyR6UotaE*#(*2KZ%)?leVrn*zgU6a3lVqBua`MNS7`SiIjJ
zw1#`MVdY(r>{>hENt6%Akr#d^%nTgn)@N6lhBhVK7QdSxHqtB75jvNf)^aszd73nY
zCW5U=sMLgYG-1&Ga?`}I-wC%Bn#eRwB&7zfA*MtY5=8Af93eg$lpwB`E85=82Z(<s
zL}>C5<@(qZKb;>f%iLS(8L|W-J>}>M4Ohtz(O%tm<w<t~0F0LB1dzw~H{B->sb1=u
zxhh~%G#u>@o^XY?4}|y=35SK~D#f_2pvitx4rcr`8G1%WT4C+8EpB_OtMkym#eT5q
z;y#6NQZO~_lG`OFcd4W%qbhQ-R8Louc&aT^@S3xdIVHNs(fE{^Q7IsP6sc0#T5H}!
zWmO42iJI#vpPp_=Y)WCk;hE$cG@wziIHr;c$bx$NFU^xPA%AXtfH6RbS_UX=lV->e
z^$HO=C1n^5x48$Xpn4-{n%@>RoWEfd4O`gCM$>dh(738)YH8_V8LPtc4!}TNgpWO#
zA!iaxoFd0p00<YQ@S7U0W*6bE5`ln9NPxDoDi1xBcyQawN3>bFa9aJ{+)j|V4@;&h
zJ>z)eF^OtyEV`P28>Hx8Q?upK{>VD9l=z4(uh*asQXkTb3fiNP_S?S&Pzd-BH5^;i
zhMr33qfldm`SO>u9GE?I-ia?SaK3+!2I)pN<v|(54OD0?Qgldq4@~|%*uz36wUZU0
zp30;I^-ZIGX@7!9GZp$O&_Jl(Cwk%d67p3lv|AONpt=D6l?P?1wkNVI!l8*NsU$_4
zjMb&UmH>=kCn2kmo5>=@eN))|K|@ROpqhzYw&f+whkP)?apW!xBmqn=QRK&|n)xX(
zZeAtFK8B^()B%{+nDgaEg!fW30j<uifqbK3_p$(&Yz}0bf;s?bkPH`Hb(aGq)j+OO
zSzXA9r6_>KQlSv)K7nS)F|WaX=V*#`%9%VZX+(Fa%q7Y&hPNMuhW@75i6Bj?PZ0qP
z4k+iqglb$Y5~_&7+mLVy6ap0`WszR7gbD&H<j)MyGeNDz(CZh&qwVP|vLqM=)r{Le
zB}yX#VtxS*X9ZBLOuNOxDH1J@TtJv#>H>@iTzPT=0Wqg^tpQbVG)Wh!=pHJE$Po6j
z&@j#9TBFcqb&6SosykqfMp2{b9TYdS*5G1Ud(csY_-rX%^E$+2ga8DaS$jN_iKMIH
zQ2Q8&>K2oA3m{SZcshP(5Xelvd`Ok;DNaEC?weMGs??MOl^t4LFQAg%NR7BEqyb3X
z>*-3Sgh`Y?87mX~c!Z%~#F$22)=`*A@$YD5NU4Hn?2PguGnn$V2vk1X+#j%sLAT_w
zdQ}B9vD_w>e1nRKffRGlm5MTnQXp`jl4H5*956W_K~$@4qS5tvtU)4_ivFtDjzB@B
z_Va3>MuFq^s~A*L8jBNL1N``dfm;*Q&}g(KSg24WsLg92H>sdWrZ~X`@L*soIeM|u
z>3N_~5g<{%3-_P`Uea!fazx-q1l$MJNT~F<v^)>+k%}csHbaB1IjTfcKI$wQ=w?vq
zVoFU6QEg6ujK6+v7V@K`kfCv5hts#7Sl!U-gUS$M8#;Z?@Y?1KMs5_Fr%k|px=rG5
z5uIkGeusIufG}nt20qAEG1ARg{t(tx%!eS35ufA47nvezX?_|LHDv;#w%ybo?uud;
zG1BdAcq~|wwA(}uh4@2)5v(vt89iX}w;!gxrXRqiV3!*hZ+=7yI03N@;Xhx?GSwSk
znU-NSS(yGY(n0V==Maf)rW&IiGf5T06yDGNDLDY@%$3M~?@>206;_oJ=O~prN?AKq
z!BIQQ{t}oeS2y(Oh>nWlh7(A_%@fNoAyA5IVpEG5XLOs$;c<F{VzffsD4~%iK9#7b
z<OIN+#1a%h7gV}x!8Mj}2GJo^k=9cTqW}n<mBjwnbojOkh_dejjEOtvW(7fDAcrQz
z%?ktWK5ECKM~@GI5)SuJA$-=_0JbY13<)6vFjig21^`7?sZj`Jn38Gg$!ZRfbxXvC
zd=Z`}!i0~>7BIYd$igEP87#B6P-8BtU>5;G`2s7XM~LW=ylEvwiSNd#N!b!rYHQdI
zvKtjvfz-Jn#SwNYu}kK{rK|0=Q4lAI@UbebD$f5RCa26TPr3D@&ws5`V}Z2_v~X-q
z1LYc7eOv0}WVz+QRkmCYZWQ9>_g(4|D0B?Nu);9d?-VMXof$srr%J<dYdTG(boK+V
zpAxO=t$<asfG;ZLIqy{UcU8kCu{qy-*DbO?1dFFCxf1bFg$hTf!d(3rsD)7}9+)0r
zm4awM7>V>9%L<1e6v+>Tv5MrQvTwHNb~LFIb&ZjLS0(1kX)OQUKdnqISri@z;g^l<
zcFM=U(NWu_gzJbC*E%7aYlrpX9>n70ZTKu4I2%Z8Q?fgiqqs7M1wNEHSgKhs%^Y{|
z0lE{V{eMXpMeU!hV+CU%PiSQM8a2?8ISP>9D?tp4HUJJCQ=;Mj04!v(9AXL;p?xd?
z^8OCA&n`em<UAoHzhT=rW_6D<&Lp@2BPTJ=GdXDVMfgK7xyjUUp?VbXX#@&nfQ2D|
z09X<W9-xrDQvsD?Az)Yt6q$SjeAP#bff(rM0u-LExxT1re<I^GPvVdNiNiZw01yjj
zRXD<N6-=yoA|B3@1snPRfqE+q@QeAPhRfeAum=9uwIOL5&CrAqdcFUX_=h|zT0_?N
zqZ;1GfdY!s86X;ZU5yi*`U$Yr;(_>SbT(`%Efn+x0HaeA1XK@T5P^n|v01-Osud<0
zW_9Jm|3ewu-eQI~`2xgz17dWh(S#zW$ms(rVRLH_V2b>WGW`bR)@U5Um3;$Lv0nk?
zZp^7sAj@wH;0}Kba2_32LKs`rSix4!^Qa8nXZ-`{HW>w`G|#A?tuyEt9U1vw0J{O8
z4LkujGZAYvs;x|uI>1kf@U2OY!nERq)@aeURvWUid0^hP7%xn$28YJ@(vz)kuW%@X
z?9Ab>02D_@0Y_2b1Tdv50-|xxfPANh|77#$JxPYH@od&)r^!D&PFo2<WYz)V22H8V
zG)dM#Q6nI3y<(0k5CO_AbX8dcu$Xg*`P%D^fuZUow3gi{*t{SUP9`AxW$0-O4j@02
z2C?!p-nL(T)zCuRT1=&(Nk&Z;j_MCUGFQA7QRiOOhgQ^_l6P}GRgeNTHpK)86}ysn
z3Shek=+V@OIq86=O4a~W9a6Ir0&-{o#CJ8(pty%h2rE)kZLe(p^9^OFwQ8(h;zK#w
zWk!1zNMvgY?X9U>D%|%0knb%53T0>%Vg^uN8U+wL;Bc3_rQ=MI#{P!!a96QCqEQfp
zz-fBmpecXmk*kozzT1em{59$=hoYxMxrcFbn7fHGu+IiA(-~B=KLXPJ_FM)r-`$xU
z|AY#nJE#i*HZzq-u_JRALw~mtK|>6u>S|=G7$h)_Td)T1v=<Q@vjpjECnIl!dh7wR
zhaLAjM-{hYDtLnGDnAU{UsfFx$<|gX*lO%x_+TS^7=rJ}V-C_8gT39sF2p1>5e`gk
zM4M{Nf9f;oDr?mQ93&eexMTYjh3c^Uh2Q<%7?6zT5buJx9ktS?2}=5ok5V=;tI4(O
zv6i^XICFqNcVblx+T26mrlL{wVs<bb)|e4Ia~d}37LG+u^fakc;`rmY#_iFWCV%hN
zb5S*`7|Hx12JxW_yWZ9*)+DdnCX+o{AN8o~K6QamgAkyH1&s(p>NKv#yaS-PPg3*Z
zB*TL>I`-}ZL{|AJ#3EaFOV-SAvW{NuP0o;wxQZxiNH&+SW*XdTqpvAm5QiZ%ptQ1F
zLA{}=v$)}u+wNR(NfNZ(Mmo*DI`dFR6gNbA0dTh;%RAl*cM)~rW*$6^CM3qoe}w-q
zcezUDp!pgz<Vwm$bnOiNE<9FGfV#!DwUJM{Q}%&NG-eYa=-68U+-f3+kjeb`$1;NA
ze)R|>A`(Gm#&`8$%_DVe^;~L*(iRoDUkptw1El(l`|i9jNTN_{Q)&vI<Ca@VJw5*^
zliL|p{7Kc$l-zgEvDKx@xfpbr-_I{{nRyKcU8;~}gwL@RtnrU$b{Y*kW!vP4M-+xZ
zoCXTjlvM`Rt5UM6tF`~BZ&Dk%VV%C&X>3X81L*ng!C+|zP;Z`z;{gJhBTNO9Nv(cI
ztoIzidz+m?weCR;#udsQDqlRj`_IzB(j|7yUe5!Kp0>yB-P9VecT;@O^)@r!-$!`9
z!;}N29qV+zZ%NJ=Uvj*;I0HQL*X4D(aw$ffq>S*I)mn)-Zs)jE`D@1v8(@CBb;kV+
z_3$f8Ot2uo`&)HyFQd0NhTF$xdS~^XJ5*GZXLqzoc%G{~fHUoUv*7q@>&i-Ua}>Yl
z-wVw<su!b=GeFAT!LAF-u5O(_a`tVgSNB=YWmakFCqL(~urKYba~|D_ZqxY8fY2f`
z`1j6$Wa)lB=ZncIow=HGQ-W`ikG)6Ncv=ZI-Y8?0lgg}i>W8T6SFeQ;pxgA04IKP7
z79H)c=;C3b;YY@uwjXiaUSm;k!81vvK4$al*HX)4`AfE0pZ&f+r+(|&thpyZ(V96y
zGCByfL@W3A23`J~;(g}bqHVmdN95aI`CQBD|KhuRCw%+Ip^K}%0-e34&%N-M*rqP`
z+_%H0_w{Yy^Me;>mha5|CQ5mdDSe<Kg{N%LU$G?Pp(<ULe`NoK?J1vk?T$@;`m$c4
z3;SW82C1z6mG$Y$x4G97+jpM7a;E&6e&_C=tk=mmUd{(B_sV}0hBLsF5wkb+_wa?W
zr%lk&bk>L{DGclY3psM+x07&PF80QkpP<hL>wc9tJ~<N?>CCrIs1$FgtR&g*`n1*O
z=zGbPhgETmn5|!6;gUjMPfynHW&FFwGQlnCz(NK04U7lo7!yVonkHfjrfE1FF2hrr
zmwqOr<`xp!{b+&f*&7nfrP);u-5`VqYQ?(Hd|9QD7gJum_Qc)vV_iG?=^LtH{8CXQ
zbSkzsy*t06SRcC7#^?F_;m}`q(|t$&2^B7j??p>Z$I_P_dB(@HDQ+=Z*+1R}m<^re
z*Xl(5JwNy%ooIF;z=EGnkB~gp*NrfRxw<xU+;70VOSH11@AolI&;nj`kDK@zpBpCf
zBS=iq-FbgYqQ!y4O<k%FmHX1aeO+FDal5P43H3*})Z(^0*EGZPIr*Re4O~2ioe49Y
zjzerkVFR8A<sVPlWsdDT+GX~x>iqV|{X5;ay*T#i#fwt@Du)-R&a6(m^*!L(^oE;l
z`nn&T8ArAs06(7J$%H<qYn_M?H(jtP`+O#7!GM!-%9u{w@@vG*Y5Q^IuY?u()WZCm
zu}{Myo>t&F3yuXh;rnSpnX48~Y*%Ky&t0(sdgA!%eA_EAw;giNg67068xFaj%M@5`
znz#1<6ji$2ZMJ=9$GgQ2pN|(VI&mWB+kx}%gE*508q-AAe@68X@11IM^KRUupE>zv
zB>E8X`2K=j$0BP3HVzaV>)Kfq?vU&L#rVYX=OM1=pVySzbiW=A%&}Nv2YLU@`}<Sx
zu9$#zb5k_Mpy$IwBbCQ%^^S=5+P(J%WwbS=A<kb2iR?M4msSX_`07@^4g2Myd0%w+
zs)vVj-+jEQ?{`W|`odlS?td<6gx7sbJK%ZhOaEZM08i$I!*sm9h7zyCLY{<|#{B5>
zzL=3hTwAnj>!;<5Q*}jaVmu$6y5MDX*mxoE-!pX>`tkd>23>0pQt7E3QTtOnIxTWP
zWaoSc@z863dHKNy00w6%(K;cwwhnV=5I;?ERGP^W5%hwqs8xTJ_RTjJm%evfs-iPP
z^^y{(^Ff!}>l^iT!ji}N$af6p?E_CuLQ9BnuTN)QY7=Tcs6RT>gXVsuoiMvJa1t?K
zcSGt5c6q9ov^cECUnoi9vuOF@JDxY%4rKq^)w}lbFPCE8-`-lF-S>DekjUNLXH;Ep
zr3R4LiW{#s>Bs(YbEYzD?QS3NcG`Axc|O?ad@ywP!K!mxyBkkY8Zxz;E1qay3HtQu
z;CY?>siN{#CqJ(qE6zDBIe+(+1@wEac}(oR@fG*lES6ojJMekcC$n`p^D;<e*~wie
zQg4laI5eKZ3qM|w>C^W73gj#0S%SG$#Pc^6)eYNY_U&<e7kKdesm=2?d#<_@4(-{g
zieGts#evq|hOO5p4irZoM?QM>pr!5pt93W!8D39&UMwG5!FheZW>s}(#s9<ETYyFR
zbPvNK5=yBcAt@js9fGu!2uPQdw16Th9ZMtKjV#@vfHW+jbf<K8ckS+ctH0-Y{{R2`
zeed<X*SpuX=bkuc;>?_TX3m*==1@}ORZdU!TU~rNwT6fU$?l(l2^x1z>t#dKR~drF
z<otRlx#|$~YLM=Oh4EboRM7?$C(zu@nSaIbh)|s>vFP&R%@);5tYk!V$o$R<;YzXm
zGECttVpa3vrYOyA?B)%-Tw{bDdbInTUy<S`wI_wAvCpQI)Tzoo7sRf-qVL3`j;Bbx
zyV|4O$y>+DF*awQY8~43IcRLFTm3wJ_^8TM^~6~ASj68ld}N)r(vmxz)=|bDcK@3t
z<(6(DWL(qPVk%Mnw$tzJ-@tb0^Amn6h>d&X)ym3;UQ=I5_JaH(b1D|O=Jb~uCM8Zb
zs?P6BZYEZ#B7R~e%YLd{OC6J<tF9>jw&wi3gPQTjhL<2cGIf>>Olcmx{<`#h??&0N
zd4^bqL6vb_DB6uN*?U-(wXQzLOq+Y@$q!6!IvT=Ts)aN)0;WZZ+xsx)=)7UmiZ|>~
z1nQH`ynR{r^Vg*T>iV72^GB)pX9qmnGj$q*_8)WUa(cq`9AmHf3r%sgiVUhelyrro
zK8!v)ivS<yOyYPCw%Ewwp6hxyfGJ)V`?vVBidDY2dV(B$`Dfp9@+9+=$L2_lR`67x
z{N}=pdHI276}6Y+h+1s{s&2x>vT7XFm)>OsFO43FYr6Ov^g8iQ&U=r<XFG0=B8A_}
z)YdBH#|5~x7#~gQ=+;FG-YI+)_3U9C1zqCJD#IL9Jk+M9luEa3s+%Hm>}hvj)NIwv
zTx)FM^JIf4dCh4}A9Wwuxg@>8Slu5V&d5GT$>9{@A>LSSQ>vVWi4qhJMg>1kj*otJ
zKiMxD=Z-3bW^%s@A(<Qw?V^Z$b7w*0;MEL9l-s>zm6%=!)k#!inI_1TWp+^#)p-|v
zpY!WOPR>m8b07UK|3R3;AYHVP!`G;JL{P|dAUjGGyG>R25hB}=_~X;9!uF_Z>}2n#
zI;EiNdHSB${U3cx-+iq{FvKd@3(1x-bW<|awOElp7PEQYw5k(x$TrgubK|Uh;Wm^P
zOkQ<#B&<M8sca^nmq7e_EGAS)^}!QDvXOle<6=LX-_1AK_<MD^zLG`$IWPG5rBm4u
zfSBMLFwnvTFe}h|jsmHK=P>jN5ZM5|0jzK4!3L$tSIY%pE-~y(cn+>ATva>(bxvyk
zO`k&@7<7=9E^D0y=2Ax!{s>4`S>~^E1SGJ&AT-7eK*7^fhss%i<pQ7*)1dR)6&ON5
z1olCt<_s_ouLhC2GoZ6{53CG)`^OD60#J-;q}bBz0tjmDlE(c4Ac^Z>A@>SUkH`S<
z3vmhzO0ED$^%c0#t*&H-gGxYf4$uNtfaLFsfMtYh4^RL2kV_D!=GBRi77{Q}#Umjb
zDBxNC;u!*zb$r9wB9D**Frl$45t&@DfcOLa{s75m!eLMPE1N==%mbv6w^M<^V~uFW
zsJgE3_^x2owbpiTA`mgbzlq-vr+cw2wD9;}EGBosDx+&Q2$uPcI5BaufWg;RBnj`0
z0jc3X|Dj!ocqIrhy)m#n5HhI5(maP{Oo6srGe83K#^A-^Ic!Mj#sGzt8F>zCIfqS6
z1Hq}A3dBKx2`D}QUu&Vxm3+_|mDItRlKzb!_W}sA){sj=zm_?N?ZM%<w>h*r1JuWG
z1A}!iutqUgm!?}q#{vxE$>0z&^j*-~w+ecXFLL3KN4m(Cic_#w3HJ;if%|;T1?6if
zBymh&5Y-A2jZOdtA24|T7#Oh8werS+@)Rz^z;CDF-#_4+Na+9r#?WQ27R)w4ast^u
zMlF)Rs3^hPJv*3%Yj7n)AV;;hk%n&r^g#_5y-0u(XPO}1DD=1a5O!<$lhR$b4%<8L
zzTa-w;<EY~wLQs)YYCw2e*kIVSRO@7)b<o1>BuF}#x*(B!?lD%?nsUpxROgg29Sb*
z_HIvOxIy5Pa4<(Ykh4*2ixJ3+v{B!v`5Je%BglM0BE)>+yqMFsK*(r@Oc!B3xmcD>
zhS8xs^P(uvlI$5=jT>T?Z`wSYZwg;l<2GPX?6$WQ&P|8NiGVma)MfH;we73?u@j}j
z4XEm%*xv{P5iG^x4XEazSZR8sQCvDiM})earkZz*LHZL94ZktejsHCR;+Cae)vc|k
zR&CYRJk^k+xv2G=DZD~78692KzSI)5o5t?XNpnJ@+|(990y<~siv`mA?Vl-U`{0oD
zD=`)T%eVs1c>yfZ^bp`Azzlj(O+w(}4M%ki0Aou53wgLm2&&=>YkUCKVe!;m##=l0
z21t|X^SB@(DA9vM_~0C;XZ6nkh))6FH8ldrplp`=Xy>RMO0$<hDIc5=NYjU7DS@C)
z&<FflLBtKjHRb}y6$6x!&EVxIC>}cn?4zfEMjIR~gkjvhhU7{|GH!xBo>0P5K%DC1
zPy{;RgK%ghTq)3d3@{>uDjv|R6b>_$Cx##xR^W=qUSB5O;eNlIVY_n2{&@kG5Mr)i
z@C2oLKY_eQGD>y~OQdVzP_H<78fI-Me3>Dy{k9&i!Q0O`Y~dV|W$Dx%0KZPYJ8|iG
zcO)sR`E^8SHm}wvhE3VwXw+E?9M{zhK!%_Q4yoT96^{o`fAQlMzzOQ~emPwo*gJlM
zn<JH?4sLbdplx1@t&Vwb_o~Jz<uI#eZlX5d@JQ^+NSs#MzUliJomsR*hah_vFH5_y
zdg@K_Fv^H~ZS-2<)rKjn;;TW^xAORm1+!gU(6CJdt-#aI1l$qy?P@zZH_!V}jOzna
zN3iEm^YB5+J#d?B7rZ0~9OE4z(Q*a!G)Dq$BoE*L1gH&f(*T3_Mr;U$Q3=pdn}Wx7
z!Mgc3aAI)|QTRhw3H)YjfRHY-X4ms6tZZ`HuV2UAwsL~1>cd{EVyTEB@_+!CFSnjd
ziJJBT<j7A%lVH5Zek=mU4#Z;tngWtz?Fv|J0Ja;50ED^*B%WLp?g6u#mUCbQptDZD
zmo|Ze0%{uheih_C23WNyQ#QQj(x7MOOb4>a5Wb-M+-sri=tePoK^qBGLW(5{r=t+o
zFEGcD7sco%Ak-r|9>KANpi<48LpqlX@qenagvm9HCcFzD+vR;H8}#FG5=aIoks!G9
zA=}*E<Cz$TFwU(VPu;`HL#%1ceTWZ-iQ=meXAf7m1rOf}Bv{-8HuA*)#@BtDrePwA
z^{e%E5E5uKU4uQ6S|m!V1ltD}oX7S8#}^MX%ZuS?ohS)EpazUrC^ey2FJv90#RI?a
z1F)(29h{<Og3$^OKIS##lvv$AK8s&)4)z$v#4riCc-ZzESL<%vFGG%6<I7KnFRQgU
z)!$B+d(7RBzHwCI&n3M4{yM5u^`L!Jk6dl(-Rt=Bw_y{yKM&&fRhjymb7nM}Ewb?{
zKBm()<|{-)N8El=r`I{Pmz3B{alFliUv1FR8m!Vo)4q^|{;oP>5sFK8zj3(wm~V=p
z&7WHh%G3EtMFa>hUcOc{m}TZMPwHZLWhM5rCu%CF=b#G?75T%p(JUw&B7C@*aU$l4
zS=2gKp7>Om0!I6(UjVhM>wr87RHC0ixWOo^=-y5%97^`5>si{N9RuDU3rcNBF<3up
zoD^zDie;e2%!zX#P_ze58gNi8@659c9Nx@;jfEcw$V=2y{}X^3y#Eb0zKZSxbkvYK
z)QNx?MqL0Ow0VG4^%v>i5ANN+7=fq(IoSwMCsqRjiyJ^>_8VXgcmXKd5g<qbkRdpb
zM7?4p#Sp-69Z*{#0p6O>VCfZzjA*Y79*KN+X38na2SArh+X4X-08t%4Y(jwWs^w?B
zjqf^uRX%(Jggp}eA^k`J2PXPl;#Yt_!EkdCz}{T}tTg~p5=jzY1JtnW;DwIUcUbQo
z(32>8xd?UvgcA-LCi7<!>z*#<jCS-&=AV9AS))6$hQ3rDF64VB%6Ja3?ne?}P9kl-
z@xN<!J=V5rEP1)(S=Axyh4oIuE5WiqVwYxroG;xgH;MmUb@mYdyYy_A8|J7L6&>B0
zsJ)I}?J1Co_y(}d0KvdHKyNzY-Xe&KG&=s8K1$B<ap&9WMtif@M}zXGP?}Y&Uom!f
zVq8x@b$Nwc8?N5?Uh6=gHD`Mjd#<e6C=MKiC(3dxCo$Zx9(MFTR3ztspx>mMu}lzU
z(+8yst{7!>2aMon1mCHVb9mdIcps)B63xnj5y2pF!yi4)AJ>#UA)mOS){Xx@@Jn+z
z@|PQ9Q<!=puyDeN8{A}mbg&diRWl4@&iGAIYQTu!b)4lCxJzQ@m_HYcX&BM{pyKzI
zZqoN(X6z=pE6$g{L<Oj28f6_lULXA6N?z16Q)*`qM-~?ujGe147*S4?j%Qs+-G6Q+
z-I3a{Etd(mzCaS?o5zbaf|fqA+%*>Y-VgHTW8(?q<NFH+I=a=)j>$WjZ?&bRw|Wpd
zg-zFz0t5=F&T2w&70+_LB`@q>e!FtgemA4itOn7oxTM#>3(ReDGJJskES@YRCHGi*
z<zbA%>O$!CEx+k!^y^BeU#!z>aZY};DeUo`HJRN!ml!WPi4}0$7AtbZpYHp*%G}S5
z`@m`FJ`d|uYQ>0lpHA8{ai`6D8hva#b_*Xviy9@X3Dw=|63eHYh54S6Oa`2{E-}~D
zv7f^7SC{LDlC#0{KcV=(A3s=^;q)g7y6i}JZj!w7TpQEdC1HQNo1Bu0Xq(AL-KcyR
zU065H0spZ0k=9^PslVTA3H*sHk5zN{4g$_Rb*#@}>q@-}h{Wfk_Ql}&u3uu}umjy6
zx7pgxuw~sis5m}5uA1G3XkWQObga){B_84RFKVt0G@Hw6|9Li&Ks`ZmF^+F$28^f3
zHzg&$3Fg}bqg_0^s`on<d#WPlX7Vo;fG+CJ-Wo0BF}*O_itdxm3n#bgAjzf;w?wJQ
zqF+PvKgD&8UEK{VYWOJ*ovz{MzvqQYMl|*O^ygF{s#Fsl9N0n(;cqQj_AF;I=BUpu
zIYlY%Rk>y@wOB()N6#4!3sZwlkHXFw!ah6R$&z}N@k3~6c>V5;=iJg4>f4tE6N(S4
z2>j`2@$NL$T#D$=bBYrDqYLnSpq*~5STn#HTjf8Rj#pS&EI~=>!w0GCLFq<NIymRo
zAr{-`&YdRhJ{p+=1(PJ>)&zLPPK)jmx&;kC+7Ft=MWmzo8BArR`2?lQK8IM@hm<II
zNSV-Xxde|sLk)SguNHJI!ri1|9hT0G5FjOmZ4aqzi}Q6}|HspZ=bs95pH&P6>7^X6
z;&-Z%tG%n@S_&D%o6yeg`;dsQm!`YI!D0}^F;IGx7+((D?X1IL3=Lki$Ip%3P|lL$
z>)F%U$EXIH78R-KKsC%hlzs2UY~iKggq~d))mOVCI!pugvz^IN)D@3r@rf+~SzY4f
zY%*4I_>ZdL>=U9LvTO&?Y2xtiTEt-WuRVcFWVvMspJ|RF<`IvEsBE_j=OY1&w&<5Q
zB{fP4edNscL;k}rQP9+uip73thW-jzjKCqEKcL>@5TqDIJ!hz(XKAQ!X7xTk$SPKI
zGUv|kSyp6INLJHdiLAcki|o5Q>6T57XztsZ7@u(4z8(Gb$?m+lVz^kPtASiXf0J;r
zts&uN*Rtd0M#?~e*zDF`SK8wSq>4wO1)uAlLh4c3i>R(=D%DC6&Y99}1^i)>mC{Kq
zO)X8#L)uM0^*3zxtd(4=ry}WeDHgw+ya)`vBk|Q|U@y~uBX6(XJl<BO!?asCs>mJ6
zrI3bI@f|RFDJ=rsn@-Rzyci|RNcB3JHPt<L(T6Bl?a*6to9Jx%iJ5(qlj7>z@=<z)
z#*LyBwzr?e8a~T^6|<M;9m_3yTWe}muai8d;pw4j@7cc`(=19?_<Znlu)}Ej*0WA0
z(NSs3$A~wHg5yZ5vaJ&}|K@|9S})k*fiw*qrectGIe9EwMPN#z@$qJacQE-ES1%+1
zu!2D-%CLo+G`j<sc8x~&IBh5k#m?*M$vy90pX#wF92OfgXrssb>mcf{y!(wY_twkv
zlI(pOj=mOJbP&nQ+=Kpdp(tzXd>dj)<H?ntpQXP}d*Odei!>{2(K8As9>N;)QIdev
zUi|RM8<~hVHIMvkqhH^f;e|tKLP^qpo|2ecl6DoACD7{7bcjFda?Jy6J6&-*{JE>?
z_ZM&S8qcv@xID82w$T@~aNEpo6g}q63sm_1pJ4Z~WMPO?P$xt+NP2f#h6OK~k*d1#
z;-MW`dNO>v@b$fYAc?PNql#m4P`?`Y%sUO;O<t4pa^?P(l`n3vMZHN5bD{<H&z&wK
z%j74FrX2R&cULx!n(1Sj&9TXCE*VMc9O7K_nQ86I<jygy!!j~I+&_`gZEL(!^+`CQ
z;Yi>&M}V&QizI)csC3kJ5}jYhO=TK=n%@cUwF2sJu*H+J1GJW$U2ZN#{fZ_TNfm$D
zQ`kvdCp$u;ke^8Y0If6>AXj>gGV>{-fIedmWajtXt%U>xNJq8Bq;cugJ*snnvkQ10
zp%(1W-Bu*zH&D{i^F}?9k$YgECLL`CoZ(r4L`URrBnRPdWch;OjaW61$EgM;H)4i2
zus5iGGcBeSaCSnua8a?S$Di5RH^jnKB@n_gyn(*^h9H;$X#hzw15WWYUF`sD;c5j5
zv<*3L0JBXy0<wsNOw{a>)B*_d8Zc7nSi$#)57%;H1nrqxvJ`EGsK2vF?$i&+)(@6|
z!D~<gAU@k5UvaGu9se$+Ys(Y;$5emIWpV>MF#?Ic92Irk7_p}HycnH-^Ttg;5bS`n
zWe1m^7Jcv~(G{Y1_5WEScb$uo<RJz%z7bmcL=c^e&9vZ@F8c8uwmVq_QEE>EJsjO9
zLj*U}O67<_$KSOTaPzCdW9qj^f;`kh=b*`V4I<hLoUkR#?_HJag88^yxQ+LZZ)Pp4
zD76gOI1{_O4&ZCxBgRFL>LH}@0ET{Z!mHX90W4>SxKM(l@wv<e5qSo74G}QCVNiMe
z>l#vcAAJJI`>>t@KB%ie{u$_k^lJPX33y&tnb#E0ysx2U{MvG}#xdPuy0=bEKlRhB
z41#yckn{T9!*(YCSzS-xl>e3Srv3#-dBhEtXM5bnMyM=<H^$SE1%rmV!5pfti@?`z
zMFPD!#E0LqIJgp%c<;Nb4rlk>l~A*>{GJ2DRJyJ3vMF!Vwc~>y!<W3GQ}^&2yp%3C
z@!`beVuh4~EX1-bfi+izoMjHLtUma%2~{Am9u7vL!LcojOI3!I+8tgJYF!k<m7Yy&
zOA(qABjN<=zcBRS*U>kT-87Az2<2_Md(%&=US?*^e8W;8G`(PQql_rAT(-)uU+`QP
z?>pfBz9BMPP6lf;tg~%bJUz%H_0u>E$qFJ<Kc4)8SPk|Px6tEj;UJnbw8~N;hN}$g
zhJ7Wqy081_%gMT?$9#C(xM+Oj;3-{`_O6K1Dc@-5sRF0k@Vm-!dJZ)QqPY(vcNR1Y
zR4xD}McalAVcBu8=m$8yAKzt6mKfJJa-6-kez9T3a50l_g!8Iv!{K!J6glk{j<B00
z@f=CpP&q)|0eL)zo?O0Z9=5@?8Av4!S}$8NTH(gh)O=oHt(3NfSq9u*sFP-03`7nT
zFUcFh++kLhkn}+w7M0poXuna?0)kU=7%NPM%jMQO)3x1-5UDV(<ReOMQ5$6_bb9Xt
zYxddG3Os1w!Aa?pWXQrs2*^7}dZpri>-C2&KZjA$&Yd4P2^bt`oEr39itL`YKee9;
zA(79a<`h!cfI9v<xY)vis<yT%^J90yQ&i((Y1MT+VIls{1MVrCyVb~s93+nA+GJGq
zx<=-_uE&eZy307qM5_5^YWUud4NcCm^#dBQ)#a^^!S-79ei8gpA6R>7hpQuA?zB;A
zwN_;C*ZX;?54mYzsK1SEzvOAI^^sbJ+hB}YmlPJxG5I!d>g~)`TD$j_X1d&USrOBf
zt|&$yPEf|#dsHn%WDyG0PduDXy5+!8O_V*?F4*8_5BWYFp6=LySi-l_g7>`Nm@653
zrS5WfzVL@!fcz%$sbJNNR!CcG)+2eIQ#abd{-cIzYUzBPwrPO}Ge(hmS+woPzERlI
zKOuE2DN0rhuRi-NH0Z-?JE--kYel3nf8BoK+4S;Dv$mhi{;O9Q0l#RSL<#)~Y{n&m
zJSZ@;NSX9#+uxHFNa_0w@BympIeO&ym=qJiF{77nf!M=vrV2;rI4_NkZgz3q2g?j`
z!CiaL*4bw~cl`8+XU1$i#&;V0*s9%iIXDV`_$Ufm>en$oKEKWij%JyeX6+FnKaG(q
z#!gba;;3vhc>EL=7vf14f5pvmn5#7{Us#YRF2GSL@$OvCW$M|yS)o;8ysv&j==Kyx
zj(L;IL?=e26-jr6F6qvUu?sax%gwjVuX7U42E;XqpHK$O?6LYYz8vx$E$s$@_f6A#
z;Z>iUaRg58InnP^<Jk5}dCPac#*&cSBIO8&V2=&w4J?tV3Bt1?4qYh9A)L62ijDhS
zrj}n`g_4?DJWON7`&`g|-6kbaD0NuqnKC^_KRGxyFTM7n=S7Ij)|a1Xy>YT5%scwO
zMQqg3*YEuhBQE^}ZXH~ZH?D_ds)`p;y7P~9>s!kO6{;1s`wwPBJQ2u)yGGA`^G|ya
zExrJ^jPfs&ox;m|d^p8xn5j7V{H?XfC0zEB;xUnj|6tAly`#6KFEnjv#J>;ijYFSN
zh3Q(?<pFgOx7(LM`strrsWkkCPiDi+-cT;PUY6*NrN5(o6Bo-e7>-_xx4>UOF{1dD
zDg20aHuQ+GOMH)BAbFV6|J9Qu^S;ie*j3Zi04;UKIOQPMYi(w1nM42FXGjq>Ys_pv
z3Yg4c%48>FhgRZGNUWcReV+7y1FZbKdt2pzM|(zS@BaKoVp69c;nOCCfK}E+1~y36
zvF+N=)y6RLXbOH0b^A0*UfE)ksl(M;OZyCTye>ixBPu``nSa<&McahidqOosrN2N)
zC$!<uQ*Dpb3Zu?m=V9SQY2aDs*<(`o?pU3Fy0CCuE=HX<v~x4rRC2kecVMvb!;@c3
z@A77HSjyVqygXZWLU<OY$QmV<*DR(GG1Q@!Xy^*<Sn&xSnc8wE%ynQn8c1^D5v{?7
zx+X5ix;c8@UzsR8p32>xebNXfXbW#yEy0fTh)!f<Rj7@pM8nrS2<LkvFDN4qoLQ|`
zlD+4u-K+%mk=zqaES$(xvytGMIZJ*vO#O(3s=K|}SO=aIkaCWgfllg{4b5VOnpYpV
zLm8f1EN_~BK*GO#*ysv=p^)JbcF{ylkb>(*+Pif>LFvv4`JsrQ{94Yb(JzirPDuWt
zi<W15a{KC?U+!ij;(`jlg#%otLM%Is-{mbHCEvB@_GtLfyPrbO_y)hgeIiA*ydOV>
zsex!=Pl*(!*{z$hJQJHIk|({~`PwUWBx>Au?L|6+6vK)qUEb$&#ZWH-g#`Qw%PgBV
z(mF1(rK-}1t8b0vt@cNYb`P3oJcJ(yb`0t&9DEBky=2q9kyM-)pW6{9x54=2A*>WD
zjio+?RC5)M;M2YCc_C1D5~;5FmO%!$F8HxeT42Z6fsBSWGPD%8M3%vxK|w9ZAv6bF
z9LGjrY*;coXVl}i!sESm8#rcjFE4B4%jC~hyDAr#0_)}}rG4q`4g>|<Zju7^O0_jb
zH&rxm)M9bCL=^BxZqF;2*)Q)5bldwTA6_fl-eJZX%HdHEj-eY$R2NoY9sNnH@NzVV
zN1(gB;|A%LrB|yIWU%Dyf!Vv^8Q&?k*npsHo+%}f-GHwqLDPys+x>cJ^fe&%H4^Di
z$L~#<fZ!N^S&h<18vJ*_hKqny1EU+LZzbrCM!@VdfzmZ7C$~d@D>(pYbAg!J7JyxS
z9|Jb(s0c6Cv%ZE1dBpi|yTS#p#o93&$nqa>jslGCw@3bf6eI%**xwwY!mx4|4DwFF
zoE(6B9{~oL1F`z8d{Isq>KI*R-oKybNmQ_8e7Nuz1SJ(pE-F)u6e{O;ZCGyn3F19(
zGa&$XE;!J<2BGmta4#1qp>!-_C;|`1!po!zd76gX&k`Bq5Ur`y-5X$w?h39X8Z&rs
zB_#?%p<NqdXTct#QwBpPV1w)m&Og|N!U^*jh=^P}x$t0x!hi`G<j|xLKwf($wv$E#
z%q%+9(gh%4Rd@-+xAni_v}tdH*dH%VQTkhxGy^^MRPzhH;V->UpNu#c5nrSBW{BD5
z*gPW4rjtsomR1lNImT!EIvmHsR{3J@(SRYRJ&7;C3kP_NNE>6MIp;C1b~oVZ1Guk5
zX>X8XCt`llHioG1dn8jAAT=3~g$eu70h^IanC}M4<Ke#ohZP>dTH%9+t8^|1Xe*N*
zC*UCsz-a{vkHO?$_br*Lh0G&}_Z76YOU4%b!NEozj9f0{A3?tS4g80s6A6s>{}A7j
zK|r}4gVevp@I_(#JJHS~7|ITT`|3#x>S(98DEl7Moxh}^C8yy0kLwCs21#H6Uyz1F
zME;cB{673({1T?S0<Qko#6ouwkiR6DomVi}_$7q(4?$$t2gG3i-`Z4Mfc8HQlv0%}
ztPKMdt5W+9EB++4^iR34kr34t!1#wT65iSH$urRLPdWZp1jPlyKhzRZnh0?JZ~CaI
zKW4V=5);_@OLJ=waG|)h4nYOBuKYK+13~2>aR^E50HS|l@3)-%3Hfi_2;IGcu>Gy1
zE$Z88qz(E%<@Z8B|L~Om#W95BPnod~6KR0~=DsVZ($H5aEnj!hK9bXP)hSU{{{Y|W
z=}?SsFNbV=b67G}heVzsXy4Lr^1sPJKRP$#`D$=)Uw-kSIQ2_6ro3|B-aGo-+SUBv
zJuBx{U+_{4JDXc0wjpj~-lpe!u94Ub@!`<^TY2T)CN7oSIUGFOoNmM(2E&Bmmahi`
zDMP5<$2}3jdZ%@YoBeo8ei2PNk$fep%zxy;F%l?$eh950nrDmO5F;2gvHrMd9%79;
zrTQJFR>2M+6P3D_vrs<0YrFI*p?y;Qn#B+=-2iQn`C8CI!tLp7ary<&n<PQk!*Wn}
zz0`*|qLl<4g&;qwu#E7x#)r&*Y77)-5iae?p4n|Z#%@V6ifNv(_(}7HgMEwGga@<1
zFfXg-u|DZ6!}J9Y>BRvlRj0}Ac^f_|oWr+)ozH}s`pMhX^1DB$%LS&}p(FPnvkxwW
zcP<q3PVj_q^&c7?^Xp449muWO2yT)U?sMVy+VN2(Mn+jGsfe`OaN$K3WpWRAm4A|4
zfo;7NqdjY)RzVq4mFqvRMePfVY^Zp^Y*vm2T^fBm%MV@5lj3qG9D}&_<l9#&;s^Fx
zFWnDG`B{_mZrEE69b8IUO$e#HglS!NDHBjTfqA|1+~XJR9w8reM8up)9#`H~`%*^h
zRVp!!LHMQP+?b2?l^gc0VFgWhm3zNl6LivPbQy9EP@~pwD0w=(rbcz=t`J~O2>Ac>
zSXWFLB((n+C2RkP6pjoMCFNp0|A@jd;PU$`sn~zS3t)r;Sj)eKr2DUs{5RPT-Ms*2
zf8Hf{5yu8laDp;z{S{2`qXWR+|A}}obpy=*V*C}Qw(r2;7b+E^+jl^a3ldcZsTb#9
z?oZqkni~Y<kED1=YF<N7wzNMlCKiNP0?P4D;t-a31SX#&f#Bc1Z+i+B;#vVD7iBAu
zI{_%2KeV;>e$+UUTI4bC>i`!Y;0u35S`XWH6-c9OTPU+dWyG48pWTz?l5<crc}dNS
zB>2M(lH1#dOyv<L06)=+fIUDS<I@j<31o(`n9`R6g8B@pV@N|C!5~rVzgMQ`i+@+9
zUl77j^;0GXU)hsj`Ov3`=PnNq_#VGgI~6v0j%i|4BnO+Ug*qwwlMs0(*F7$W-fqwv
zyQgwfNn8%S7dv(q*&?2k-_9TnZh85izOhh09X+HNaaa<K2eQ&ap|=*gv!L8EbWNmx
z7pB!l*B@S>7N&+`LtYtT>YvGXrLOI3WrlYQ(MO;GU$?z3lCcz~sjJ?tf#)k)n0r{)
zF+GF-V`18YFAckOu!MNLND^Yr$!9c#4N*TOHetjhU#zN!_|-jvI@75qbR8chd*$%A
z-;uWAX=2!;7W}&|&6$8iWa%nUkLYH;ngisv*iaar$2L+Xe8Ff4(?Io<G0<mgW=UKc
z%8LwZRdkV$m*L+<n}&R@s$W1H(u_Q*mCgkOE2w+2B0o20LAla9GsxYD5LhedxYhx`
zLPV|Lq<%t+s?so1IFTP|V|ltWBOGrYSi7hUe>E0u`2Ss$Mz)G`0sU~Zs%EME0|C5+
z4P8lY)F)Aoz+7-A;#W+w+%Qb_ROu*XVflzMM@z}6dA@iPmUQI)dn<^`Mrq~9ICvIk
zOmXzeT>t0>QFHHLRKg9ltuH;#=!*k#ba+AbD8lKQ?veSP<2AFWxxMVNk^V^$3v#AD
z;hIGeR(erYmgzov)fKhse*f#UdBw>B-U*SttIUPx)$Vb4vR)f+>`rkpO*o&dikU`%
zaaNT1xAL!|2D&Cj2W?sTtBL$q7?befB`UZV%*KHR{ej89h=#a#T;PMpf5QLbk_BK<
zf&V1Y3wgEV(}_}M{wG-#m&K!hq5cgcqWXs%V%-Co04NoaVVe9u+59VOo_hqs$Umy1
ze`OKYhW^J${hutd5C7Lv;*MQH8m<EFT#5ZkOQr!EDH?Z=Avprg2FH*>*M9FF5G?I;
z=L$GFjG^2x9vFAQF%Wc+_l4U$pLw_n>zqxX0cH>y_CLV=3VcVqdkp;T>XnWG<w{f4
zF}UdXjusEt9hm-AV~lX0$N#;`2_Osy3;j9LhR6NkDxj~V6-N&8kv#1JOY72z7%=`G
zfy(ztdJmPXtiw-~8?l~<sevr#;%DpvpCr;dQ3tD@tlznURBp*efeJ`e6C8vd6&fXi
z&TusWHlR@H{|~prd^=u-1J894RQ<99=up{kli(M?4U8x73gFaQRU+a@F(Z6x<tx}A
zd^w{BjIW2^Jzk*exUjo|NpE8PT!ZZr`~|432mdgb&VWn#f3*2A)NaZ9|EK}~)BZs`
z46^#R26xYxO3~P*3;CyST|EDNo}HG6@ROSoqnVBYW7ITm&&~*Nr%+GscVd{DwOSHv
zBba?O(|Su~(o>rF47h3=S}pf-LNgi@-vw9Ugb+39rE#Ec>UkG%#nMU99R8Usea08E
zrd(uU>%OFz6C^H`PI6pBaYI7D>_%uM;YJTn+gxK&KA!VGWs+Sv<GOr0lD)(gkHoA+
z+v0Y4HO!yI%GQ|%e><G2l8~^n;1(^G<VxAIZogYz^{gJPOy-)lK<)I0E#=6{Vr9rX
z^hsI~s{P!XN9DFQ{^75cycJ?|8w=ZzS^{r;SKiJC63l9~Y(%B|K7BzH`A}HyhzWC)
zR3i6Yp8M^<m7`khHx3j@!_h8pq}+&-$UD8YC3D4y2g5sTUqoHdS76g$z3e1@q}uSg
z<aHopsOhZ!vz&VSR}Jr3(s77?t(2@NJ)`WVf3@Eh4UD|6sIR-gdrTz9KI5N3q}l5j
z9D5y$nJz-;FhFV-$hf4og2NtM!7#2Cl;H+`aO$=Z{wUyc1$_|oyt$?WoGQrAcQ!Ns
zGfvw*V3p|cXU;CU*2dsfP0QH)^+Gf6Nc28Jw3ehzB1b-xbZf~a=N=hu#}#@xID%6T
z{s*9hZU^!|q`FqG`=X8s=WajYx29q==N}dv@);O_+{<?1-bcKcNp+hV!xS1S=cS{k
z!s#6=jD+-%tE1oHoub0&f;Kk43^^-&HWz}bt{|HmaIr)9pK;JI>{4kUH8d(UG}=!-
z>SItFCuzip7k$Nvg^qzaC#fs;-<hh9rz5F*GfyjOK7sQZIoRsAew9=7-s55YuCOe!
zNTw}Ot^M>N(yN@`!19r7FD6~S!IfuXSE4LStnpb)l*W!Wv0u|-2-@y1bj`QJf%oKZ
z;>*ctD;o1m($o2wWiZ!2*~6DC%fbt7IdXcmSYPe<EMLeuGsnF*7}<Mfz+s&Jx;(im
zQ8q~1LvH5*#ASUNud<@q3}%S>Xc-#%#lute&bL{!@k=yib#|VM^Nr(4#qR6zmpcwm
ztES()U_v%LRLv{o*pEx*d1FdQS50kf#z`31b8v~*m|^uR#h66>rP9}<Z?&$LLABA2
z#qC9nUVg6E@^?#*2}3B4#|J}Z|5(?1J_?AQ$(0!JNS%H<<(Saj3jcpw*Pq?L$vWHl
ziKhK-;U{L63H>5d2q!saPK1C2v5+SYPjzjdS;=QOKI}K+)e&3Y{r(mFttLJOLfn`#
z<Ui(h>pr!)7v7F<Ycz3!|L^VVh*g}5M&G1-9XbUKIW(<xdh>w(n%?7SQL4qGBl~75
z!<Zt>_JLuwulN6LV0V0c!fSJToCCeL<#}zXgfTL22&6LZw|SJ>YAHqSq*fpvXMPyJ
z>ZTAmt0|g?`MA27KD6YBem*D{ZD$fDm-NTRKCP7NQ>OfDwu0)Ssk)#?$h66PRqT=n
zwY&>e61zM_|A20tw`6RhmhJB2u9i{h7ThqfFg=%ke{>i1Eh?Q?ZT)-s1~H;p-wol0
z;%ce3W;V8^m-;jh5nxx}(~6?g5lY7vToZT3rd?6`-mQX7<zb`@l^D@0%{NrC$$ZSJ
z!YOedu}<gbXXjGf8}jEwyhsD0`4q{C?6&h>?@TBR-x4p%l15{+-9e7FeZwO!^(p$I
zM*hl|p#WzR(QdcIfH6J2?aou_+`Dr0y3kiI^@J{gN9g4JdVlKFRC3M9`ZC7D_Mtd6
z)@0&P5@V?j!&eS!?dT?t2-t>$EMmMeAKR*6l1A)ZRXyAdUc8P*hI9$0;Uy@ruv|%a
zal43Vp>D*b&11WK+$rRiM!fT$laOETsr~dxWkPZ=$w1Vo^c+V9Bc@%HnU&s!c~WbW
zTHj#+{o;FLTU&f<D#r{OT++0y1M0M;ftAIG9eKjKE$RGcXieMwwiORXp-wOTskCkT
zte!g=OaJh>ReKSQE0^U|_oCAV(|nzQIO*e7?uVYjN6aj(quhqJnD#xN<!W#$Tedf=
zRchu`ZqZ||g>KuW=NHulhPD-0)-Xf_=`6LdlWm6F!FR5JLk2#JKn9pzq95OI<!#h%
zu%3*rn|$Pa;Ys!O=L8R>Rps|OqQP4j7{<f;m|t(%;C6j@%%MW@LJxP->8`Wfi<kn_
zY3*u%<O$pW0t*tx=HT@i6kdp}Nyeb|>@2Q%>P3C$@J-a+11_>-7p8?J<8FfluY&D5
zdpp56XJuDAe(PycvK+l*{kcOeOnlSIR?4Q(my_&*(nP+tG|kH_njTccc-eYHAX>`p
z*%K-*LtEPo3DZ;d&B0mznyfq6gHg1jdv$3$>dVjc4fW2$?%8oku~zV>Vaz@Mt`sQA
zB9QX|Gt9Vfw^BnmOpCDAQMSqZ+$D)m{uo#AiGRbP)UpGn66ug8Hf}N*V==eRlT*2b
zt<Vj%Fllz49(LT~-$=4lp{#s#Jm&2atFoW&%=dNb3F^iod}!T@hB=vE=gkFvj|fu`
zNHBXp6}S3v`g>BS<J(8J&3!%N%9C#dstM*w8Qi%U(rXiqT93z@{QIcsbKITJ@Q6f|
z&$7=jbto2@(Q8Abc0$k_u&<a|KR~V)r){{Zd@pyD8=p8Qn61%n#eZ#^s|<?bU-~fB
z%#HZ;?fTh|kXU?%HQ#3pR}y=d4p9r_QS0jJCG{tVJyN~FgObR-louE)xN$xcm<4-3
z)t=g#ThYbgKaU{b#5Bu(guA~ghGXx3yGQKKT1IX+OfuOb(_8bAMfWJ#Bg^#LDHq!X
z)R@*~*FdfZTdC{y7%RHh+gSWkR>havClY2-UT(@BTrN&xPkNOXmYu%)fpb6O0LsPQ
z`$)8|vocBJAYq*c%28TGmzVYm2!n(KJZ$0TE05mNF3`H}Mlad$2kUqKXqoeOIquxS
z(hOv*(Lg9vL|86vxvMHFbzRR+H*(KC?b@LB?#wrXx=Gc`Kgi5<Q#rPE{wi7rx!L~q
zacaw@-qG>5k&%dG$6~SznhTtywi$0P#^+{~W{_jAWCVF-ZFHm(nn>eOqyF%hH@J97
z>=JTsf16K|nx|QPl+lZ0%y}r~4qN!WOwscng46AlQ40q_+jhs^-#jjf_2>>ML<#I_
zdbt;hE&Z~O(J}XF7j$DULZiHR$0o`psB|-7@cY}~^%omq&kme!QQ~EOl@kxR4Bi3t
zr_yT(`ShunBm%!Q2U(rxX}fV#9@s{F@r6+RzRQO<PoA*~V>)AhjC5|1{#YnO;~{hy
znV=(-8D?z}TQ2+QhTURRrPe0MgY2@#=gr|A$|~IJebKhkwZl7Kn=%Ex@)dy)?M#GR
zJ^y)mo?Xr?5_5##uW@*!Si?(2qBz56Z#h&}ZsI7HCX%u(B!iax(4bI7V&6xQ6Z>TG
z`cdt>z?~ag#GNwYFY@h=Fa#(P2G<64{4tNvnNGA(M}8Olz`UTF!i3y9l7Ai|B<#v~
zmpAAMh0;`OtmDx2!4Jyi;$P=Ol|Biw0duC0h8`c(r3UcrqsEQlWqdY@>6i0jK|9@k
z5`IXh%_*7U?*_j1N2ghxxg|knZo-u25<MGPyAFx?!LbgQlJ=4;ELF7<IGq>b)eua3
zFYIIEr~{wv&PI*5*k>z)KEg6f*OZ&?`804LPWHYw1dlD^t{$ZDZa;*&YRfgMlQ4=u
zozp*`^vtIO>Te%AQlCw1!5lR4rM!!SCDBZ*opQw@{$e5OKx;_?r@h=Sjh&K6Q^Q1=
zph5brAjak`q!;F-STA3rB%!8_jpRIuH&y8^7+#|Xn#K8Tj+$1-RbnHfM~g?2ZTC1@
zXr@ob!w4-rgBf*}ETvYCJ^dJ|*`AX|9);4R-#){;8s}~yUi_{>sOe-8zwUFBO?(s(
zRD=G&V9)yQSur#Sj@fm?+GU1c=BZp0Ya1?IeAGHryhpfC9klI+BkI6izJM#D`)kO-
zBWqp%G%jw>V7D+ZQ)A#@pCrK?5>jzHSr7lLwMJqO`R419@VDJ|j<`!R<lB=EDLQ($
zwHKb=+|!{&3RWHIDkrwn5I7`Wx{)j%cthKtB#YqKDanyF1)O|I;kt;~y}3Li*wbEl
z8A+Ufsj-@=-<A@SAMfZYA~$hIhZ`a}0;6dk(jhCw9xftdOTO^ijg2}Wc-$wA?m<2M
zK#9Oz=J=9*Y>z*~I`qc>`7%!FawvlO*`t!S&Oib$mIqhEJnRr3sQ3J|(T?=GkBO<E
z$6SC$iRA``ox$e{v(WK*XWlWaGD*^cjR`tJx!SWrz9>R1>{3a`gsai_(WOeH1;~kP
z-NJi%k&hkY$qP8NEUmo@iX!K*j|%p9CMQbI3R!vv@D6n}!mKk6tiD)eKMiHqd_wfK
z-sDG-d+G0&d;KdUNju3A{ZKRyEzDFwL6CoH1oOyIHu64ssHeURUxNAvv(?qfHm*8L
z|4fKFc=c0g&fC@_5@-=Zs82kOL{3d}>K$<wo-EKWuZT9M9g5VxK75Jy_VlHo2X&L=
z&x9(q2cnD{!i)7+?h3R@X%tH-%p^-P9x;P$A_LDEx;rle-ieDZt)N>+3E-o*tx-1;
zPu<P#yIC~8Eadlh=ct7_F_!eS{1P|5J3C`UbbYVZMPg`lak(2Uv1JaQIUValLzo<0
zZ>+ib?mosBpk)hf8{VWg2+hc=SnHppEua*@wnp2G^tq8{C7G2mT&*Y3qkyw}-w4)X
zkiq<q7QHa^C@#}6NwAjWM?9(YC|C_JYM{FjyJ%(0Iezr78MkQpWt^m(UO7ouOY6`M
ze<7a2LtpeFB@**T<9%ouGW#l>E~r}}dhov7br-X}Kd;O_y)LaTUFnB}vW)+a-{D<}
zE#tx_p7h=O)Nfi%l9MBL^j_T_nw&(p)}oD;;vb%xj9p!NNIyI|m%6#Nv$MNT8$4jj
zA2pi3(<h@JCt~2t{4~8Z@h!R_Fa9C!$*XUl>An{sI?r4acuHSo)#@0cUz|IYk0Zb8
zd(KrL+;8fIz9Sl9J@sAkcJW#mY=C;myut~iqJ_=}Q>#TQ!N*Oh)k>d-&xdRCevJ}@
zg@wH%RlFE=30bDPr;tk8X!GKE|CVh*iwG0G=iAU%%rNRSZP#9Y1Aj^1ujKe~FZhIQ
z@p<Z3lKOsx$F>AaZI4yq6{nd|cCKJ3_$g~SC*DYo=~U5~OjBA%S8r(MjAaewS-TpU
zIW76W3U(`No#IgMxr?R6-#->vW*w_d8A%?k8FU=ZHg3pvUkeh2xklc!^7h#{W=Y7p
zMfTn+rj%--N6a4|9bIS@jWA)6QJc1^eaPgCvAWY>HnC2hQNT$z@{vWSMy$a8n}T^i
zT!L3TB2(1&y_pjT2@It8wo*0M<;O1i<Lz_giI>W8xj7kLCm1j_SVIulc$;e7MtS@n
z0~>61fY_&o>`duGRLQ*pd1E8Xq+~4!1#5(hto(jU(;#~uono>thqN)?qi&N9enE(J
z(Z5JcY2`30{N={e*6#^^RcXanyA@h%_F3loTMI2;QpxR1=&TuLIks%upIFQN#0#&z
z`|yHn4u8_9*2`y+!{Khdimiz)<&(=DJ^w`&+uBGhewF3sEWX+Zc^&vKE_nQHxEY#W
z_Tr^COkzm-r?%x>Oj+V0hus7FkVOvL2fpMyVls!5HQ05j7oWtP32I%Y2WVOi<{uKr
zwcCc@hp(|o?8kq0nN#|M1LD6s+!-u*NX|Ie{v1O~XJonDtH0$r4#~c|ThwB?^%BRY
z?uFij&%l6Fn&R^0Za~V+V*N6_3UB4sX%bEOSp>n&^7q7fvxDaQcOywEmFwl#gJtBT
z7%`1nWFKD+Elqbl_CGd|Ao0AAV_JB%=po0FD$X?bBve@xePP^$#4=>DlCUo1xF)EF
znnBxGLjUW>XOz%id0m>Sl+OGy>n{u7*j3cW^SFdQbcM(ubD2TU>W!t$rBlQxVXQs5
zV<XFaH-9QYE@Sir|Ghc!cP<do2%*c@RTUqp4s?7=k6bEE){xG)(+nHgn+t9EOPdX@
zzxq-c^#!InXiDpo)AH8|Kc4;wT#rf14xyCT+ZQ2HpC1pEUZ*<SoT^AR!@|^_ulh7P
zFpBlHLY`3{iy1#xFYku5Xtatz)Gs19zN`Al`cB^3Tt8zAZ@&k<-)vI9-kiC%pspd`
z`&X`1xb{h0O%>L|W5I;t$Qs4?JtrdFD7LT00_)r}hCx^*s^Wv3tPVL=<jq^Z$A3>4
zZIkHbr*RBLzfQ>$<Q(Oi8%R78CNeX3Wu{e&b-nR+6)J96T3p+-Oq+OXwbhq?-`tY2
zy>a4n2;l=^yk_hO^t%yaV4E8hus)&>NQ!N&eL_QKAI43Ul0jEKgHD@s)fctDLpDcP
z63#O?dcri$>p=3x&-K$v-jZN??1|+yoRr{w{Hy!@yn8Pu8n+fib%#7_MLLO%o<GXl
z55JgwUf3Y2peiS+-hxiqMXW%6eY+}b#SM#dob$XW=HqRpm3ll?hYS4e4v)H@+Wv~`
zFY|hJ6$zBye4UDRkn0nb-5{>pU^vLy2~9%pO6ZJz!;@_&ln{&M8rmf!{@$(oV55SZ
z3C#xn`mWt_-)FRXX<~mGi(eq&!R9p&gDz3cSzDQ9hBE4hz0_$?(>0;LiZ~a1E#NfJ
zm#8lqbulW4sdA=j38xHc7ZjTbWKZ$(NzmI+aWNYGjhRQn<r056=13t{hDYi$jrY7Q
zO?fm{k3v^)d`9!+RbJ;IMr`iO8a|cOJcWA^i+hWq-)GDaI=qj=pEgYM<Z&$I+CN@C
zp6o2VWBQ2jQIED@<GKl@M}f0N=OyW0lEO$tC5c6+KY><Ws1xomsXE`(qm_9F$#y@2
zv`0t*Z0eLGh4#7E%*30^a<9;CQ~9&LqM-URJQZT|#fg-+Bbnm!S80OZMUBcTW(Q@h
zscOtLD`Z^Bk~HjB6S^#xQwN=6jh|ZZRP%e%4~UqdXC-f*Eh}X&Qjjk=1V2T*VGGtw
zR=z5En{`?GWbAofP$wgGx}1`ev!iooekY^Zhs`^p>D^LF3oeBp@r3s85w`!vv@qv;
z&9u=;o`Ku%W-^^z<Y8p3_0uxgY?{WnJ*4vKs{>1#?H@61z%{*=@{T0==lhQ#qzAdL
zUYuCiiV@Z?-RtPlmmW`bCF<RXq~N?C+4-aBna*|xI-c{}V!freUQ{jq<hzFX506@X
zwlpYrsgiyQjCHTYd1)`H5md**hu7Rc9jgyt*J`UME7!JKlz9z{M~(ny1oSWP^=-?i
zkVDNoApZsKr4ph%8Q)xoB~rRCe|y&c(AWZTNTt6(T-=E8<$rnqx{Mqowg3?kAIJ8T
z!QjK#-}JqES(B1sywZmy-o@X=kkW9*y-1mEdOe3jAY79V)7hm}U>QjJ{W^uvu?MDU
zF{$jOQ~)RX{&JrR-tRp|_8MNa1{p`~4^{W#nUY8`GJd3>UB98>_+|-|)?V{)iYk9B
z#V=G*p-gw2buG^!52M1E&PG)6yv3qAna)b0*f4unn>0Pt;o4;^vzMmE<}`R;*Dyit
zVM@Ez)S*ae(Qn~KotvUlm>eiRh26V%FBSi<>%YKX4iuv}aI_d|Ot3L8$OHcrOCo<%
zq7@QF924WP?)Let?J!IM>DLdh>W9ocv}&29%%e0;w)bM|DP_AE*=l88EQ`;{bL1a{
ztGHxNvam`u=b9}Hc~&mN{>^+QCZ>|We|!Gb9Bu3Vs1PQrcXzH~a~>o#mvqBD?un_E
zp+eR#n=~4OhTRE~KQnPtHP09R-Ch|PhuuE^+hkzCW9{C8d16K51D4e4v@m6?hgtvC
z)+pLS-~Syg?t@p{Id6^+JHNP(Z(T&?brIWUOQoUJMe|-P!92yU@VPSJv~kviP!}z2
zWb?-tz*bNldDb$X0BJgcFdNYIXX*_#-7PDvthXT&L|4*Ul*ObvyAk_0mr;4&4HyB>
z5as^`{#O4Ps`^%IkA*$X<Nwv?{&X%PKJ<Tg!GHBWB0fe`h`7;7*5~hI^JGd+UCh!I
zCLdf3Ej(WAb6ic9hTX}isUe>&lcJsSyZGuUB1?rozu(OMWd}V!zqqERGV!Idv$OBe
zPsf!EG(+y<hPa1=6Y?c!l+SvE+Z!LS&b=Pf{iRRGtB@V;{jn?HMS!9v)b{r;>6Cr9
z0(1Er*8G{%l9iium7&rrH(9C|iM|?^MYq_@husx=mp@il5QJt|8D+&(J&<u-CpzG2
zbeZB?X4Rdj+F`~q>>1!GHy9OMxyw{Sxt>{uC9nJ4CGg6O(<JxhFf((4;Zafhv_NEt
zf@Dot#nbl{B)zyyo|RpV+uPLz<QPd%_aiyBGpmG+C^P9Gs{SqFf!xTEU%r+tL?o-h
z5BRivx$k}N3N$dRl``NC%_Hc$quu>5Q9eqn;`cA@F}C~cL_WbDlm3EjtAaSOc9i~j
zJLeUVIDuAV#*_mx=`8KxW~{U(-;IBGORGmzT2XzxqsJ;3k1O(lXYNOWIJR;M7R%WS
z&Zt$~-vhL4e(*Og@AgbSy$u_DSyuZ>EFUU#*HRd|rQN62Y4%3eS%E-mo#Zo=eLJ1_
zER8lchSlezXdtcbSmMg$4|I!Zi?oR8=1VfS(eIg~?S!_fe3){qJ9gEKENx<gW}=1U
zC*N4bg6r{{M&zSLIBIe0d2NVF41Y|0`|$>wm5b!jz66#pW!lxH`XiNvT|2uMdg3vo
zMI-wgkt=pz0``|PW1jYUFf{X3$%|DJSJm~-$gT%Y+sSj-twFLkaC3Km56vX_^=Ogn
zoQp-9w7-!uvg`hs+e-%bnS5Hg9C0MfLQl5N!M*uWV?t>pkS?AqpVceI+?Y#<pjfgy
zPs>(ser6G^LL@YCnv-#UE96>utV*XpgT3Nevq>wVZ<xflWF9<E{q7xh^;vu6yQ{U~
zSo$fW`q31a^qY#ABcF@=l+*osmDLqFbel^mckK?7TzUE86+10Dm}f3Cec4}Vl0hkU
z!yloYoR`06y~(;{;yr@xQCd1ozdk=v{RP?NR69}$!M&XR*{=Seg=*3;6>WKJe;`4g
zX37HnOTm-hsXdSd=g&3t_kW^w78Xi(;|_I>?o1x+)7dQ8@9^$VC!{kzWbqQp=q*a$
z4HV@HH;NLtbH92Nh9iMJkM+>bQN=vMoraf=m?p`TmPqOx-{NVBxu$`&1*@G8N70S4
zw)EL_yRh~xM`EXeuYxVNWRs=4vsooRZijbdJ-_YizMP`c&s8%#egBO$^_!OeCzlIo
z^a$8Uw41MAzseW>4sY?y!VnC1)`W3)G<9)9M+0fuNxW@Qu@P}zj<b_^!%VztgZ_9U
z$^Zi9Dg^6+__W3$Xs8KbjPulVM!qX(!Bs6Z0)A@3a@L}e9KlHTzdn+8Lm!x20^JZ0
zG`R$noiG41<yi6Ykx2t0cWrD{u3U(ge|Hx;qu$o*BVgKdP_A|70qhOd<MNnf{mM=(
z_QtFz<$j_EUVl&GNabKUI7^L=iDG(s?H>)>l~eUO!j2a$ag8bAL$Kx3Ap9VK#dsl8
zC$|xzQs;j(XmVuO-DBBA_%fJ;;ErGcCKnST%B`Rn-{_cP=N4&4ICn`tV){m9+{8>{
z_6y>zvAI9&_9w0vVPp3a>W-^fb~I(s#v<O`z9XfQw_CLatsRc!%Dfp!LZGo=_kFo}
zd474eD`3J<iB9@xpTNL_KJ#xMW_tK)jI^wu)TSO%6%<bhBo9KcC&OSYP}nTc@?8g!
zhDPvznhpkoH&rFb%}Qb9gGL}Zy$yo_!6lCbQB+oxTrpsfbPbE8=uSyR*ExPmavQQn
zCjcEmeYgvKC0<icI-ilU<zC!RId%~jF?Y=~BsZ6|W*_6ZT=bFCMXKqDw?OPIZ3^NC
z@<;huO0)KuSJbis@Z9;3J;Y!H7W5OybZpATM0E0Ph(Z?$3eCXGn7l6V1Gqh63kkY~
z9NN`;Dz>!bY_SC(3l_Z*n6=&Wlu&?-z?-|15H#Bu7*Kj+gmnirCk6iMs;Dqlz9C7G
zEqF|^JrX!WfN#&ggW*^L_XHTlVH8Wunv$W_g9Fp&`DB$xdWS^ML4rsh<j}jl#R&wx
z23-1}iJ_!4qcqLX^U&2tnt_|!_fh3KqfuYG59k+1z4l_{0M5;vU(ZZmmDtNn9C2IJ
zCuO#HKCru*kttdwBRCmdtY&13d2owZbW3yDmU)GbQHD5$(IEc=aWklaLTRO<qfEL~
zkq(Ox@sNsiRDDKEgPajRb|V=l`r1a_M^O_F)pbU=eTNhSDIIF4$*gFqRyUjF#(5Q~
z0qz+>!ojeLA^vnNEtNB#IyOmo>+qrhE`Aae2|O4At0fjcC1b6Kr||YnL4?0JtG{c<
z*}(!00dCQ_CpBYGi<jaG`1Y)>tP*b&B7D^tr5H@W+v#{DC@_~sKWIL%Pzux}BN$R&
zS_etBCCcWVP~ij+L7h4rKClCa)S5_b5&&U{`;`7SNKXBs8%!;xw!<q@Zs<&hkz?QU
z{E!`DKz4+C%%pN4JSlnW)(7u_gV!NU3JU%h92Fj`1T`g@{CarIA4<)pFi2kp=~V6o
zQ+{6uIfX_SgJd>r;o!O+nof>WKMaFT=YiV;FV!Hh*PbuMd_>wL52@IkqWX>(5A0pQ
z9^^Z=Zw-}mg_*Y;p$p^6ku#8s1d5{+pd#-J8>0q67G<RZf4lS+jA(I{kYHxwG(hx!
zGYVc#1_KNwbo?~-fYSaDocK?KrYK;HtlbZ`A|Ov-mmSv&ZDsF%(jJOJ7y1=#y{8Vt
zB8>Sl^q_D7oeA1s#giEQ7K4H%2E`L7-nYR?_qynN#4{Px-$UZh0=Wz*ss!;w6e%)N
z_}(;Y<vPs;D`U`tKI)r(z|<#p<Z)2M1q32qQuC(dDwlA9a;!9<Rn842oxTSVm`cs4
zNR6@D+XE1H(0x$gf<eKi9T<fA_RfiEri>+~KBCb^^r10~3jf;ww<ShJ{@90)6XnyH
zHXpgoM{e_x+9X?q+#=)_A-B+I_(Ol}JAMDZJl!m+?0G1k(iZwtm|l+S#-@l9IcRM<
zUOzyg3UK^F6QJz6;5lxO3OE!Thb8hmCo{Dl3pfZIfh7uawP67VfY@82h_xCM4`v0q
zh|LTc`B-Fc=AbroV>57&WHvN*YJ()3h5+Irk}k!2gBahniAqrehij2FB*8>4mRyH@
z@rkUXxbr_Lt4<K&y@@eHXW(g#4L)WcEEH(KkmF}3nn;*9TSQodfx?+xj)iF4?}N_^
zvvrSD0*#D;|70-aSw^F0$i=8^Nzrj60AloI9Gfth0<ixCnC5UjZ5d{ej2J8uQjjgS
zY~tYlK;c6!79*p8;)|R+%7Gl(qM?14;X_jQ&e?7|5-Xk5h(xJ^MXuNMB#0@>ojjSX
z+kT0~R<mHW3)V~Er)JS=7vWnmCb2rZ5<#x25(U~dpjk&?YWc<sLs1fWI}aM9Bcq=u
zb5OQlx(kr76d+4Mh#_T?Jef!@v~`)nYdnirlo=|4zK@||dTzfQFT%xi)>yPWV+T}T
zY2Hxb1RdF;+y#@s@)<I2(xf^@7}mO44%nb}oxYYk)Y&w-<RO=69_@-Q*xpGD&?Lf2
zG%2<rv1&%ZI9*pF^4Jyn)$TdNhz5%WI99=n8YJdrFen7AN7`a`WH5klS^t?^|5HKC
zQ?4;BU;oP&^2GwK{~hHIkB$!tMO^>OA0Kbl|DNNCcHLJo?1eZs6s_^Z^#k$VBp^=7
z(LW{e64#i(13LggT0WckNvPz`8&SOymsf33tDd*TRZ~=J^;)|o+P|H*#QUq}@2y6;
zQWK}=_1cSU20A|NgCNzm&Nn1Jxst6nm5Nt-O+{QyhhA9v<=|Ip&xNI54&mqL&!4lI
zFJHbSDh_5Uz5~){{h;IY-#iYV{qK*@k7mft^Q=#*{s)<P%6EK4{~v?4XZ?Sa&mSD-
zLI3X`?;mXR|8qP)i6s_5DOA$`phPdhT`!StP1mSPVMV9n__*9so3gu`uqL~^r0hhy
z+&pXlqfryN#oPOHB7YAq#R2xHoSv29Cl{(-XL6U#ytt^fTII7E2jcJ-R}mZx&wbY<
z>>*5#(zv*&sAw^vgwo|j`S+R?1ErQ8MD3oI#7t6KZ=}Zm!pSh!BleY`iM?C)``|~;
zPH%{32{CaXRXpj;oQ{~PG~3YN80*}jbzVN6K|z=UlO=#gD*Kq&^leiz*1M<7=bOi(
zjnIfgk|fWi_iqGJ`shG+djTE+RQ`N?KzK4Ey>sF%>PSj1b^v4<i|j0d!`Q9>h53_m
zFIsA_pwYZ)h*r0IgJmc_B9}{)*8>PT8qT;!6_rM##M|@{-iz~7A#y)&15I~wqEt#B
zGQXJszAd+E;+^zvE>0^VKVM9vyD=w1XPaD2#-qs?0>n_{BIxlJwAeTBTp#3kS-Z9q
z-gydAR5g#;a-`z;;OPQWF^@)~dhYGzYL)Q<`bMW0%-NC09vh)kB6uQ1!%PSFO-E5;
zFyFQ+`^8d6c2NT{55!QXTKzUtlPs*CzXb@1!x{+~R6h%2u8^6SGFDDsDQi69n$5JX
z-Zd+=($CxHLzo!kS`Yyc;xRS4sSI3M!X+y~i{F3hg=Uq#{admsxpJ)9{F%+@W~N<y
zDLDm{UL{Vc!j)fuXzFluHPCNqV*_!k)myctBByoP$^utdEN~k3a&b#*wT`eAo?F=d
zc?{Cw&I-rPIs&&U$c?=HXnDJ=g1E&kCo>b5u(eFLcxknfXefg6mI!n+5ul=_ojk8+
zFpM{TJcQor{jb-1{q<V!#(%MG<?iN|kCh?ln?Y6vki1P~WiaYI;adIIdV3^mYe9)5
zdu1@ujVddHAjPmwZ+)h7Z5WHNz#^?;_?L0je{>lB!=BXqPosYJl<)XT{%5~<bfEJ;
zhlOL6|0!(pKhN=`on2V%?uYDCUjC5%Znr<g777ygKV<(B7eHj!zX2k<-W3qpuiXKW
zeZ(aYl$`sET?3K*mU|!`)A;(aE%i+hk7ydd3L=~NHM_=T5DWW0*KH8l#B~taOw4Q7
z?z8dW67ECFoe+;^x366ak<BcQxMu58LoU;3S-_QmG!t<p>eS|TQ?+=;my8vqQK+Xt
zq}i4`YK#2y)$kvEu;G=+3oi_V5Sm!<ed>g0THx3Jv9q>$HqYkSJez0pJkj$%_}Zu+
H0DvF>hQTNu

diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/Makefile b/trunk/PQP/build/pqp-tar/PQP_v1.3/Makefile
deleted file mode 100644
index 5f1f4397..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/Makefile
+++ /dev/null
@@ -1,33 +0,0 @@
-CC = g++
-
-CFLAGS		= -O2 -fPIC -I.
-
-.SUFFIXES: .C .cpp
-
-OBJECTS		= lib/PQP.o \
-		  lib/BV.o \
-		  lib/Build.o \
-		  lib/TriDist.o
-
-CLEAN		= $(OBJECTS) lib/libPQP.a include/*.h
-
-library: $(OBJECTS)
-	/bin/rm -f lib/libPQP.a
-	ar ruv lib/libPQP.a $(OBJECTS)
-	cp src/PQP.h include/
-	cp src/PQP_Compile.h include/
-	cp src/PQP_Internal.h include/
-	cp src/BV.h include/
-	cp src/Tri.h include/
-
-lib/BV.o: src/BV.cpp
-	$(CC) $(CFLAGS) -c src/BV.cpp -o lib/BV.o
-lib/PQP.o: src/PQP.cpp
-	$(CC) $(CFLAGS) -c src/PQP.cpp -o lib/PQP.o
-lib/Build.o: src/Build.cpp
-	$(CC) $(CFLAGS) -c src/Build.cpp -o lib/Build.o
-lib/TriDist.o: src/TriDist.cpp
-	$(CC) $(CFLAGS) -c src/TriDist.cpp -o lib/TriDist.o
-
-clean:
-	/bin/rm -f $(CLEAN)
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.DSP b/trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.DSP
deleted file mode 100644
index ddd11ad2..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.DSP
+++ /dev/null
@@ -1,154 +0,0 @@
-# Microsoft Developer Studio Project File - Name="PQP" - Package Owner=<4>
-# Microsoft Developer Studio Generated Build File, Format Version 5.00
-# ** DO NOT EDIT **
-
-# TARGTYPE "Win32 (x86) Static Library" 0x0104
-
-CFG=PQP - Win32 Debug
-!MESSAGE This is not a valid makefile. To build this project using NMAKE,
-!MESSAGE use the Export Makefile command and run
-!MESSAGE 
-!MESSAGE NMAKE /f "PQP.MAK".
-!MESSAGE 
-!MESSAGE You can specify a configuration when running NMAKE
-!MESSAGE by defining the macro CFG on the command line. For example:
-!MESSAGE 
-!MESSAGE NMAKE /f "PQP.MAK" CFG="PQP - Win32 Debug"
-!MESSAGE 
-!MESSAGE Possible choices for configuration are:
-!MESSAGE 
-!MESSAGE "PQP - Win32 Release" (based on "Win32 (x86) Static Library")
-!MESSAGE "PQP - Win32 Debug" (based on "Win32 (x86) Static Library")
-!MESSAGE 
-
-# Begin Project
-# PROP Scc_ProjName ""
-# PROP Scc_LocalPath ""
-CPP=cl.exe
-
-!IF  "$(CFG)" == "PQP - Win32 Release"
-
-# PROP BASE Use_MFC 0
-# PROP BASE Use_Debug_Libraries 0
-# PROP BASE Output_Dir "Release"
-# PROP BASE Intermediate_Dir "Release"
-# PROP BASE Target_Dir ""
-# PROP Use_MFC 0
-# PROP Use_Debug_Libraries 0
-# PROP Output_Dir "lib"
-# PROP Intermediate_Dir "lib"
-# PROP Target_Dir ""
-# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /FD /c
-# ADD CPP /nologo /W3 /GX /Ot /Ob2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /FD /c
-BSC32=bscmake.exe
-# ADD BASE BSC32 /nologo
-# ADD BSC32 /nologo
-LIB32=link.exe -lib
-# ADD BASE LIB32 /nologo
-# ADD LIB32 /nologo
-# Begin Special Build Tool
-SOURCE=$(InputPath)
-PostBuild_Cmds=copy   src\PQP.h   include	copy   src\PQP_Internal.h   include\
-	copy    src\PQP_Compile.h   include	copy   src\Tri.h   include	copy   src\BV.h\
-  include
-# End Special Build Tool
-
-!ELSEIF  "$(CFG)" == "PQP - Win32 Debug"
-
-# PROP BASE Use_MFC 0
-# PROP BASE Use_Debug_Libraries 1
-# PROP BASE Output_Dir "Debug"
-# PROP BASE Intermediate_Dir "Debug"
-# PROP BASE Target_Dir ""
-# PROP Use_MFC 0
-# PROP Use_Debug_Libraries 1
-# PROP Output_Dir "lib"
-# PROP Intermediate_Dir "lib"
-# PROP Target_Dir ""
-# ADD BASE CPP /nologo /W3 /GX /Z7 /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /FD /c
-# ADD CPP /nologo /W3 /GX /Z7 /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /FD /c
-BSC32=bscmake.exe
-# ADD BASE BSC32 /nologo
-# ADD BSC32 /nologo
-LIB32=link.exe -lib
-# ADD BASE LIB32 /nologo
-# ADD LIB32 /nologo
-# Begin Special Build Tool
-SOURCE=$(InputPath)
-PostBuild_Cmds=copy   src\PQP.h   include	copy   src\PQP_Internal.h   include\
-	copy    src\PQP_Compile.h   include	copy   src\Tri.h   include	copy   src\BV.h\
-  include
-# End Special Build Tool
-
-!ENDIF 
-
-# Begin Target
-
-# Name "PQP - Win32 Release"
-# Name "PQP - Win32 Debug"
-# Begin Source File
-
-SOURCE=.\src\Build.cpp
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\Build.h
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\BV.cpp
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\BV.h
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\BVTQ.h
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\GetTime.h
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\MatVec.h
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\OBB_Disjoint.h
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\PQP.cpp
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\PQP.h
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\PQP_Compile.h
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\PQP_Internal.h
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\RectDist.h
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\Tri.h
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\TriDist.cpp
-# End Source File
-# Begin Source File
-
-SOURCE=.\src\TriDist.h
-# End Source File
-# End Target
-# End Project
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.PLG b/trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.PLG
deleted file mode 100644
index f2175cfe..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.PLG
+++ /dev/null
@@ -1,43 +0,0 @@
---------------------Configuration: PQP - Win32 Release--------------------
-Begining build with project "C:\WIN95\DESKTOP\PQP_v1.2.1\PQP.DSP", at root.
-Active configuration is Win32 (x86) Static Library (based on Win32 (x86) Static Library)
-
-Project's tools are:
-			"32-bit C/C++ Compiler for 80x86" with flags "/nologo /ML /W3 /GX /Ot /Ob2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /Fp"lib/PQP.pch" /YX /Fo"lib/" /Fd"lib/" /FD /c "
-			"Browser Database Maker" with flags "/nologo /o"lib/PQP.bsc" "
-			"Library Manager" with flags "/nologo /out:"lib\PQP.lib" "
-			"Custom Build" with flags ""
-			"<Component 0xa>" with flags ""
-
-Creating temp file "C:\WIN95\TEMP\RSP4244.TMP" with contents </nologo /ML /W3 /GX /Ot /Ob2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /Fp"lib/PQP.pch" /YX /Fo"lib/" /Fd"lib/" /FD /c 
-"C:\WIN95\DESKTOP\PQP_v1.2.1\src\Build.cpp"
-"C:\WIN95\DESKTOP\PQP_v1.2.1\src\BV.cpp"
-"C:\WIN95\DESKTOP\PQP_v1.2.1\src\PQP.cpp"
-"C:\WIN95\DESKTOP\PQP_v1.2.1\src\TriDist.cpp"
->
-Creating command line "cl.exe @C:\WIN95\TEMP\RSP4244.TMP" 
-Creating command line "link.exe -lib /nologo /out:"lib\PQP.lib"  .\lib\Build.obj .\lib\BV.obj .\lib\PQP.obj .\lib\TriDist.obj" 
-Compiling...
-Build.cpp
-BV.cpp
-PQP.cpp
-TriDist.cpp
-Creating library...
-Creating temp file "C:\WIN95\TEMP\RSP4280.BAT" with contents <@echo off
-copy   src\PQP.h   include
-copy   src\PQP_Internal.h   include
-copy    src\PQP_Compile.h   include
-copy   src\Tri.h   include
-copy   src\BV.h   include
->
-Creating command line "C:\WIN95\TEMP\RSP4280.BAT" 
-
-        1 file(s) copied
-        1 file(s) copied
-        1 file(s) copied
-        1 file(s) copied
-        1 file(s) copied
-
-
-
-PQP.lib - 0 error(s), 0 warning(s)
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.dsw b/trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.dsw
deleted file mode 100644
index a1af0d1b..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.dsw
+++ /dev/null
@@ -1,29 +0,0 @@
-Microsoft Developer Studio Workspace File, Format Version 5.00
-# WARNING: DO NOT EDIT OR DELETE THIS WORKSPACE FILE!
-
-###############################################################################
-
-Project: "PQP"=.\PQP.DSP - Package Owner=<4>
-
-Package=<5>
-{{{
-}}}
-
-Package=<4>
-{{{
-}}}
-
-###############################################################################
-
-Global:
-
-Package=<5>
-{{{
-}}}
-
-Package=<3>
-{{{
-}}}
-
-###############################################################################
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.ncb b/trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.ncb
deleted file mode 100644
index f74bfd3b1d5d6f97792d2e80eafd5033771bdd8a..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 287744
zcmeEv3w&I~dGB}DvXLL)wG7yR9gc-x_-)HJMi?x~GL}KYFCl{;$a<{pHIi1=u8bjp
ziePHr0KtKf(3?=8mnJmjHjqaP$uGG$l)#U)H>9LDDJ7SrA-^O|FF3r?BoyxdKWAq5
z?9o~63d^!=&q%X#zL{?x=R5Pwd%mwO-qMvwCU&IUmGf85p6zyaC3bc-wY#lNsix+p
zWXxSOZ^44oN1c1cY7r?CapWAQCn7TD$N{GvUe;I&SPGoT6gY#0uaF~0Cd<=f-~YfG
zO94v(O94v(O94v(O94v(O94v(O94v(O94v(O94v(O94v(O94v(O94v(O94v(O94v(
zO94v(O94xP6OIDulM6-Se(-_a|3BeApe?YafTe(?fTe(?fTe(?fTe(?fTe(?fTe(?
zfTe(?fTe(?fTe(?fTe(?fTe(?fTe(?fTe(?fTe(?04VU*rxrLr`CQjUlmc-2NRjy+
zP3^HHoR;SKsiv--u~fWcN5X^K6Rq8Cu^>GE^75@aV~O^y>(;Mp+`DjVva4lleOJ6X
zo=nZ#<&PMKSk)bGYb^k+VO~pTXWqmb3Q4JceSWOfu~dD$J(eG_t|`?JYsrtdwyLTT
z6xp4KcN9PsP_mHsC0bqz^Q){(w0Fka3V0nNujxp|x;mQL@+Z9^){;`6xqxqz#?4z`
z)SdiUn+jGy&R!KuBYKs3KHk)w>u!p7lr3_rW6j+={Z&3IbVIBy20=Jp_}*AoGM?z@
z#RIE*^FSb9k9p?jM9ij37+P;02*)ZQrCvM`l2SMigdm3UKnPwRJP?A-%ANjbxrs-#
zyf4gZ9nJ&c8Rz1G5bPZFIs~(Ky$(kT<)}VTv)_JY`Bqfwi<fMzjwP>8B|3GhJa5rF
zuVoIem4(IXXHLEAYu;>v4S4<ty=rp4DB;yQU#!qNo-a}#6+U0ou-acpoc?{H+<Z|$
zUb&bgU(_5NlP_9t_9-AnC@&QnZ<kzzLD6-v!(d-^-uuo6=O6j)+s?->1t@=j5VUjP
zetZN5O>oBz7nuR~V)&m4_m8KEEQR|KgwKV$9KzE|;VyGTIN16n>=@YJAaNJ&UGR^>
z{S@$~!rhMaE`)m!>75OC0xXh}hk^eQxDUXNf~^NU3GO=BV%UF2yg6`x1fU%5R}r6a
zzmCWY;IfP;n%n`rS#WnFzYE~*K>lOl&PICY!95J5C2$`^Iv2xT3YYX)k96k2Z9%$c
z!Mz0O%!IoI_+@Z^j`XI(rNJZUCQ<_TH;A_o?zu?+T)3wr{&=`|Bi>@TQQ(~p_e?~Z
z0{3f3cQ)Lwz<(UvzlHxaxGXz@<Q2r92-k(jBDn1+-!iy|VMoJ0i+s+9djl-SwenHG
zli^yEMS)46AwIjiTq;#H{~hWI;U%a%_+oMq$dAwG&OxOj{0c1L+4wkwU&d!3JQJ0G
z@Fb0YAu2E7&G;+~pM}asxD@$~lM44TSpnFQ*&1FU6@VkMSi==4&j^%gBVZ)yu9GIf
zBjh!tL3m7LdSnDDd?$F2@Si&W<cvTCx|I00iMvW_fjw6KS;xOsz6KbKsqvqbUjUvc
zk1~9}xHrhnfX|cZI{ZBukMz!$It`!g)B(Og?$z**osr1@LKz1hWd6UFBZxmw?q_=c
zP23Ji0$wQB6MjS7nCu3;SX_<&ru-i8#qvJrO?q5}$~yuyF9ts0We6J~mq>|*FIL}U
zxx{q-o18yEc`8A%(_o8XN5W2oJqPw&*$O(f;@i}~ejWu}gLJmT9)bVcu*SUw>D><d
z3~&q{-PeE{1KwWPH}FiqDDa+yYjD2}f2PZ@<$<vO1iSiinJ4pl6!v?tzlLQQ_aW|W
zuxEiT=fRI@eax3GpYMVV!}Y%--^b)P8Fh~7S(BdvuK>mHGqE*)p(eADkEH9#T-Ax8
z3&D4F%Ei4@su1pYFzWw8)!9X48NzAV9?)#Z_l&yY&R31JBcCJ;{3@A+r{S_w!;4k?
z5i%b26<%(+vjWa&c@e*a=Q>N_L?uCZTEx8s?FTy$es|WHhhfe4ryuLazrycL*kMR>
zG%Wpte*SueU~4P|PALj30DqYNnJ;eod-m@%YjwEc|0)f0JU}x;!|d;ACTTc}|0f3c
ze@B4-(f{^~|D9vQ|6|a;==Mjh!QU7RaCQ45_4pfuel@a!{p@JiGbG}Sg*ys%j6@cm
z4z~z43d{Z&qnYyIq3sjf99p(V?4Q|B8%w_%0h@5T!8R+b9Rr#*mID2zzzWngj`!!w
z<!U-wjTG1(kl#5yy$Ioi$?t>>zq5THydC@=6^_;`0qg$#jS5+XzcJ|FzlQh>ug2dP
z@PvXfKE6WM13pdun&G!qxGQBP;9{u)%<=C+jFrb=O#4Z~PK8^JvG5r1+BO}&7?aa6
z;KTbge2H8Jc#M2b!<VV@oGwYi6Du&ES&Gmz)O32>{t9;~#?xc)=HB?D0;8EKz&ZGT
zKc?A+|2fY7jOKsDSN!jQ|1tOI#s7GJ@@jB=a!mLi-{E|`E9pBP-+^tFF;Vjn;`V62
zTj^G40P#J8fwc7WU^wTh#f3_@Sc>~fO-Iwt&Scj`OzLTrX%mWb9w=18#Rb6WEPnmv
zE3W3eeh>`bhUVrclB!(qVM$;GUXIHNUZK>(hyRI26d6Bk0x!JNsmfK0GTot<Q$+4p
z$-&EK%$xYU%%f`_f^O77-xPIv4oXiHD@-H3@Av_}1^NF{@GIx%i$N2@t7RMc9$cGg
z4+xw2KKY-p>F?P-5a#j@`L`1MRDzE@MZ;C#?-G3YQ5vp5Wh=q_z9bD-0xpta8s>UH
z3BJrs4X;G`N>IX|0**#1&_8YkT<pQPyWAun13XHS3`hQJ<!ZoV<Wm~nB%1)AF5e^U
zRLB<mm7qQFU~zlo2Y|=Q0}PK;xa|K+kkXeueD_+p7VtRvmWDUWX22z~5ipjgre2Bl
zh7xdIvxaNsD!^w-wT7>dD*>M+7i)NpTmkrOxg9Xe+aL{qCn!Dv%c%CR1atW}@qGv{
z<63~?AdWxGoPRi;xoW~O$OPE4Vb6p;3zqE>*8?z4K?%uu5tJ{Y+N{y(amNvSGg>p=
zU|aP%%0%~VxD2~RyR0j;{y5tZ)~>^iKi&V(c)y1mG<yObf6)BsVqLTvYl>^}-D}X^
zdPdd!ia?a!U{7_ilziMh*gHh|Oe?wP;GwBgic2bsqgBOIs;i>aRR<3iS4D5Fi57jT
zCt6xsTzN3SR?k0mgW|__l&K2zz<<9?HqZ7eYM;oPZ}Qr&9atBB5SB}#YGF&2zkdrK
zZ2!Qw=wG>5jP*GUd-H#!s$nz!SMz`1=bQh}#<~{Q_locbHa$+Jhb!4~-NZfkjumbh
z%CrF%)fEP#mkPSar*O>mufO5dua{9Kt}9LgcXCY+rpMu$H%-n;XBf-ty*%U(@!Odw
zof+Nl-tLP!>!V)3E$9O<g<%ogzm!LTv0YlwNf7?A^Ak9&a-W9ZbI`rWPPtpdZ#%z3
z_-=U>pP%^MvJdgwWvou`PPrR!Lax{N|K|JxXnSOihQI854RE*Y*YK~MHvr!t3pD(s
z^DV$1mBku9?0gq+kNi^S_c8esr2lbwTEiVkTV%gHpz()CMxne1Wr~ImIiExPyJUuj
zA9TJ1_#PRl;e>ND;QLj(SO$jM2+KBdGT!Hlz{&S~2g+e^IuPehSi+aVCH#_xzl*f~
z1@=pT_xj@a<2NCUFxys>h9ABMWqS<vX;`+!ewg@=Bd$rW8sX%B!{56QMtCvC-!%U5
zK4H`UoB97-<bfpJmdI@=%`o|jrq{&C6u=|oNexen%mX}99wr<WcXZ@Tz++?y-i7f$
zFApR2vGRh3XFE0U9xs!0{9Bzn0Z))`Yj{zl8u8DQJt!~!-33yI_><%u9sgc6ZaQB!
zY542%4TMjXbsBz5o&Y>kjkB2lS;KaqS(uZCABv0yyg(jB;tb!6y3Y-+*EM__>JB%^
zp3-nD>N+>bZqqQwAKW<Gt?6?h@@bTJxvXOOM~M4^^AeI>A%}H&ekH>JuasvsJjx;E
zSIaI9e_O50*2?!aT<dH?_&WKGhPOJq0beceYWmbfu0?*=$}HrMBDsx`Ccv9zf`+$7
zIFs5UQ#HITavk8UGDE}HMH&GY&i}u6-bel!{(sYX2XNv1|1;+`;OF4~@#6l<c^%<7
z_#ff@<^M?JG`!!?=KmVZnM|8u_?7L=K=MELX_$ve-?+>tg}T5n;?$yEnX>rXFXH8b
z*@iJru#NM>ztuQqjq82nb1w4rTa(7~x~z=P_L6ZqZVh{89JX^N4)+0wo7C^&PlLF*
z{QY?4I<866xWwVJ2`3x{uD@L`#815sk57i3{s=i`Nwn+(AK^$j&OYTpw&(v+g`NMy
zs7<EBq8*Wi?{)r{H-OHZurMbb%n1l{;vtIa#*+@_WP>?LVNR4VUDTfRi4Z)p2~VH+
zIE-hWaJT`MCmYO3h+pEFOLEJQK2Ml{i`3GFIRRo$lI%b@rug1TmEd}RH3HcGoBsXx
zNCo&9@Bct0$MM7n3|`4k+-IE!TQbYr-$#(_Ck*`gGM`|2ykPbN%y|H_UvLQccnQ6K
zDDoEGjQJH0dl3C^vAm$+1Cil?qf)Ek1(7)DevZ73$Wh=gb*d3<l6+Oe6P?K{q3qJ|
zD2HVKi2P8)Q=BqpBX?=I#5oJ_6e$J;8SodwIQyL=KS%kP{>?Z)zymDLX}Df)0$e7`
zbo{?lBdx_!tKqk#2+1s!&ujc;vIh7U$rBpB66>EluyVW3@4t$!LaR|FkLma8j_k+#
zt&uk{onv|a(U}W)L;AeI70x<%H>A%K)H|C2Z<eVVf1A?@xLMkD`mv%vpbqVpN)7*E
zSTo=*xm)A!bzT7ejjFwV8D%i-@dP|ihn)+%9F}cmU*W7DA0W+ZfZGYn_#cP;@32f`
zB`nhz4xG`jd}bWFKLKs{Ov^lSrEwPCVLI$Zu*7`_@kWB~lVKOa($AmPcI{`<-iUa)
z(!N)x%f7<U;7OF_Fl-EdJP*OL@*PchkVbq*#@`1#bG9J}vn+Fw#wD<8U^l_WV3V-7
z!ZHt*Gglt@!kPZ(kj`Jh{vGVIurI;>4AyUApdI<u?DutO*zo^84V(1<(_WbQ!YfFO
z@p-<7=4ko<G>m!h>bky<473O10`0*$UV9M7_+PaLrGfTfTA)3c9%v6{1lofO1MR`A
zKzpzx&>oZr+JohR_TbV$d$1zV9#jO{gUUdAaHY)9^zit1qnxc_kAJtwr5g75w>i*$
z!~^X`d!W78<Fyx<k9h5c$N%~2HtSwrZ9u+o*3FZljmXD?`NI3+(Z1TBU|SM|^R+FC
zQT31M?+yR|FSI%S{(lQbD(EQO7vy`0;h6qc{<j(rj57Qoqn)v+6=zAM#$PKh0RL>c
zK*N_~RhRSkA0d6Fw+wS(9^iaS!#sb;{(Pjyuf%>NW&zTs;qS>m0zOY()cA|hce20N
z{ijr`^@8bY-oW?21@UsV@qdOe;(Wai9Mi}A066}+Nbs5I<m*qEMvvSoMLlTSVWk3A
z8IVjFG_prwuF?B!=VOFm_y2Me(oos%|7G_7)cN18!1>?D0_T74>F4=hSKL0&|0eUC
z|NVazZr1r<r=RD4f#0w5zY_-d{4es)I{!O7&-veBf%CuEt0?&VZvuOPE&BZLFzok@
zu;+in&i~r|zwmZ(GFAfc?_P=i8Qq7h*YJAG1+ld#i^qB4H_Jon>PQt<7KlF^bJL{=
zFT))U!ha#pW6u^V=IGKmejxu7Hs^;p|0g^f$UGlVhyC#yapW=$UxoZ@Py%m0Um-2{
ztHJWcb5YK}E3kjm4S0ke&sSijcn@GKPM~}YzX8i3HCRcQOt`1Q-G}|A8Z48<b^P6!
z`_^E2<TVZN#Z0aS%P<Ete7#%`_zXQisK8t=26(J|L5H_V8{nus$MO!ZaJOKFSA)#G
z^@Iw{w3`8smsc2GRN-#L#i1JP#kUY1QQ=;Vxq1!8M`t5FzJDY36KX)=-!eQ>;a(?=
zfG5apgu(v}IImEH@llz^->%X>M;_7Po3M6YgYl8Keo-Mi@K=NJ(T_oVzW)PQE~>%!
z=mx^b@6+;Wz?0=O8op2N1N;$rhj4L)`{(lKfX|mn_@2anP#y&A%HL}I&&X#0Pm#X?
zeaD?w;U2)+d5x6H-xCJ@LHPvW3*=o5-+{ff8gw%yh(GR$3imGgB;aYXT8H0?y}24J
zpY77{$K^J_Gh{yTk=`e<KUjl0bGe4^mP3Fqlx-S5q~2$id_u>+O%5P@w!Ez2PskmB
z&H4?`pREFH)^EJ?YBlNgn+l9JFGsjpzp22^%WA-S{bqgzPM2K<_#$}}^`GB&DV}RE
z2CXHG@-D#n_8RQ>{1Gtew;bc!8l2hqr4BDw@N#*IFuphMd(_CK@(((E8TQ|6kjFj^
zm!T{**dMx6<MVuM4F--aI(!kzUL%#>{BcwTFjoMsQs*a_|8w#j;Fa?3nO=Dg%VEIP
za*u|elBWQ#lCNm^8`vMK0S(T?SqH}dj(i93YMG<qXXF{cHS&_i|E7Es&>DFH^@Z>M
znEX$`SIF}k{-5$?z*owv8ve384!Bk>M110ZMZOBSPFCyiFUS`GUnOx3e-Zo5HE0u7
zYy7Wb{jCQ3U5y(4ntUDbdbvTvUsvz5LGIM?AC<=tzEMW$@W<sVfa`H)SD&46cvgme
zB~PXCTnx|5p#Lo5IU1bvRp)4U)&^&1F5=ES&(ZK~FV4|?6zBi8;>^uYc>d3v{hNX3
znXq#t61f2GRM@%5ZyMa`uouG4LfCA$AAvm|wp1d&pDdAcT|7^LT`ZCRcM05!fmaT<
z4E7?}Ww1+Om%uK9T@E`Rb{^~k*oClcJ=eh2A#OF?Rj`-CUIn`v_6pc5VQXPmz*fMn
zguM)w_lT-sFIDrRBWR~Ncin=vry173bSHqn{4Sr3<-HGc--zpPt>{opm~m^P-u)25
zoVObPG5Bt@CJn}AxF3gpCQag*u(0*NF=!`E+GhRl>);*w(PjCP8a8-z{eC8W`iGT|
z{(hXW@&RSQ%|M?2G3$9|y{{UjMH8Do4-nk{-;Y57ss_%}UJT44Db?_PwSPZGokwya
z;yx~~<7<tRyU>0Rf3sRSJxA56Lx}SP{Qn-7G&Ik1;J*g;NA!msiD%OHQMiX;e+c^v
zSk}$YBK#3p6W1T7dA^nx5VFHn)zIt4cnDVbCGil%(0kz_cx$cv4=pPs?}laXi{2sh
z918M3PKy1%v3LtKmEiX>uFGMB;PF4#0}1mSANy;LH;TZ?<25`V{SI%toTuRh=!0;2
zS1!=-LiAHS`xk+qcP^f1RlWO!rk$i~jirF4!11Gi>HimipJ{kLmi_f*I8V<b1oikO
z{7H$y8Ke5%t-xuAy#@9@*vDX>fn{Gk6(??&z+Mj90^9R{{=vBh{)gZm!VdRCaM{K@
z4wpOZPs81XlwX9~1OK1G-HvJf5x7yn@}qxneh4QDw+F5ZcRSn#aCz{d0xl0>6nB1K
zxf9{C-I@t^JjT}-V9qcPV`a8ai!fi<fH^@u=D{Dq_}j&JyHYrJx)h_}OVkW)HO9>4
z7;9gQ@pCoC$4f9SJ`eNgDM-^AOM#P(0{;G<@22@(aRZMJk*8y@dtnd2J^~Ad#(AJB
zK6&^5H<|N0nfw2JuK!~^aZKfZpqc2``akdoRQ?Cj%Ub^jd`#tk)a&(sb>GLX|A(#r
zqq15PLV;J{$N9e5|9=fIy5nB*KfLpN81G}v1mW&N^rxKvPtdS8e!#Is4SVN>ie)(9
z(XhE(EB`ZOc5Bc7<`ea5=l=tA{#V`qOZ4;p-}*rR4|zaA`9FQ`|6zYCYyS`XDFeFy
zhw;TR-Ty=SeeVAuJZt|CaMu1G_5-u_{}A4<{XgLMx&Mdoto=VXu>aRs;b!gs0l&}v
zzj%e4wf_hFe(nDOzhC=*s|I-g@3g@FUr}KH&k5}R0nXb08y?vI!~10I|IG^Q|D6`t
z|3m%G+W$lRKKK7F!d+GW{vYuB-2X%QKJ5OV*{?U}cg=c$84s*QXYbz+sM4_6FEIN9
z<ae4$I^3N1-wqh_c-#kAgitLX1n^PG|B_=P|3~frIU)OhaqRykeEWa9DF1_Z?nCzf
zQrQ1nkNv+@*#C=Q{||fKS^IxjSIyf0!&*e7+_(RSnU~uC!zx62|1XLCzc%0gU!;%y
zzYW;`!^%b0{$CsR|GMn{-^sH7rx<O3epX-&jqCq?%Ky2jpYngOrj{lDr-bdVPyP?`
z%aZ?t_N`C(KM3zr{tw0zeainq{4DuDfcupHg9b0B{4bm_O3VKu|L<TsfHMHj>2SH<
z;gkP`^^+s`PTa4281_lnXJEOeLd&oLlmCTuhw}N~pJJ^yE&m7aO@n?Rm+2!YR}|%6
z6qTZ$;-aFWh!c%Oaeu4`7Okr*J#et+4>HN)TF#D@|KrJXA^#th{GS%DeE{1Gj{G0A
zFIn<`Q2u_&|3UmL`9FxCCI1KQLzes>z*+Kt0QXD&Pl-(JQ~pm$Kji<U*#77<OlV(1
z<^MDU<o`qh@_&kkmi(U=^!)`F>qON!(=k-!|2*@jo*Wd)|KT|oG+{8NX>t`bI6pne
zhAo$8Ue@#)H2FVEGv|Q{mH%VP`eEF!YPmRv5t-|e7^0+q)no6UsQD_rg9gs$v%m7>
zvqkVJC?^zGkzjCWEx(D{`#-+^pC8mzXDk0NU3=b)-#zH^|EiI@e}2EK$b+-w|A7C^
zdVrGuqx*Xn{6oqAL4TVi|L2kcmj8qFvgH2&&XWHFxL@*rwglw=%oF#h<p1FPv*iDb
zf_$64<o}?&$5s9h^3Ny#t55kq(*p9pK);~;uRi7f+>}TD59n#-|77HW`Q?2b0gw7&
z&PDz5zbM;>en#$(ajpCxk1m5P|7R%4|7%_(RSi^Im}=^1iAl&tWfc{6m8uiFrNG61
zdHDvRTB!}IDr?;>ZkfBy`&B{pU4by=+vfLN<Ze@*U0#HQa$42zj(Arx)!4EN8Y2~4
z8*AF39&lQFWBjHZ1yskqmnT!L@x;7cmq~5oN|gZgFuI+xuBj{5krDzeNUEN;yqw9y
zX<n#Zk^%4r&(TPo@s8HmK6<TJKjq~~mVt12c}I79Dwa$oHQ2m2#iv;ruv5XtLnXpO
zByZ9vxA@Xs)!v!9QTyXnuj+2E_oZ!K-pjZy-oZePy=q^otEnZG?OEB{YEaziM0BUS
zsj!cmIRw8vrIcY_Cd-pICg&4qCM`9Bv?jWn+hUnOhJ{p?^jZ1Rn_%YcDwVp%b!((0
z(UDBKI*q!{F3@48_Dol#x~!^Hw?kpc<!fqJxwG6I;>D7N@W>6i1~%wu9-7p}Tk-AV
zAZ?Cp8qx@LEp<MmuI$3pBe0>RA%oDM5u~mq(S`u!@W-oXT~fENuCt-nD=y4R)}u<M
zWQ+O=t=Dgegqe7~)YYq}UYRuLOn}wUy9f<B6G?i(>D-eGnPLO{y<a>ww8J6^*nJx_
z@1B&p<n^%|dS$#<m$0FwE0IhhT3f7RXKGg_V)`R>B)Zz0+Q>=`t%(#cThabBED~l@
zw;_?*oQacC9@nVfYo)Fsl~}vFR@X*1v9qlmnJ!$41|>ku4Oz5AoK&LDl-R3>S+Un&
zqZ2^Ql=auj`pvR_lge~`rYx=CI#lqk_`a;fGbHS4S>N51Lf~Q)sBTZZgQ`ShnFLta
zOlw&ei|>qeWJ32Qx*0cvkWLr{)*%_}rYzJDRt#K6Ni;V%g3L-gZ6=kftW?q&>clg6
z%^qGD%OjFf;)(Vbe7%zmLn#|7GJmPo{fnn`OM_=~vI7`ZSFfq9ZroU3S-(o<R+ngv
zwUw8%B<j)cc}u8oRcvRx!^36s>Jd~Y!*;MM9;_R)+|Gp|ev3l<$`n7xTm8jY)zR9k
zXmzpntCLMTV+y@Jxl`e<OtiJ3ec2F8cDJRxcgpe#LsIXU7wht_SZrMr`pQ}`PFOPR
zE9(<sAs~q=WRv=Z@UW(R3Qcw9Ez%zEkj}2eZm9iTn(?3I`mq%K(sc#UB0pwlnIGD-
zFbm4U+*2l~GL7Ke6nZc}-ny(<>#}04%SwNJ7Uuda%=KmXqUsYgcEwt{4J&3*7kx_?
zbYZ7!7U0A}k2GG&>QmEqk>~3<JKCDEzHz4T8?xK@G@0s6vz+$Xklo&={p(E=t=U8k
z%<zmtq!x;PSR`i523?!!SIhXZ%ISAAp6k0~-KdPcu``A5inTSyy1FtRP0dN=LC)Hv
z20y7pTda#k%A#q#@%1XZ&N+j-hk1v`$YhpA&(+Le97-y!No%hzRgu?Tshm|CHZ<0)
ztzK2zxc2J$#<iC>)~%{ryW!e&Sh(-iSFPKycIB##8&_3(vD5fo)1+f<T($n{RadR_
z8Y$-Fg|4bwSAVT9US%x?pKGtGuUuL0^_Z8h*|4$Rc&VgAsvo|Us$8s9?xil@u~$Oo
zEBXm+;;Ao#h>LO%&L<o+xu+{7JK7RW`WJ_&S`tY~g6((UW9LdBLvr;Fz1qKKp7CtN
zBqHT?ce?!rdnZ|AXJulkfpen@;CpIB45pP|V^dpOq9vBq-Zo<Z+be<Qy*{S((u7x7
z^tL9<D3G7O2;Kxkbr(8gP;Z&2Pea|`Y+JLT^744=!roq9dz1A^RX$lhrg)9se1WeW
z5{@F~MgaeG-Pp)cd1Erx;=OtxjSXQL*N1tM*q!V>vd9%kE{znHf{L9@jajM&$Gx^Q
z9zvJ$a?ENlFi`WF5E>v9H6>>-TCc7f>p_5xIo{tZKSm&71xDhkzYGgogAdE9aD8~7
z_bS=!r!cd<LOyaBLiSe<VuXF>AddH)gTCH}4*L4r^I({1+W9GhVXbC8AS@7rr%>-O
zLY0?$y+&AsKy?U~Ay^-R;k_$F5W~Qs#l;XKd&=N7F(yuW(B{2Wpnp>-2K+)QKqy9b
z4d{guRt0(?d3B(dw^s>zdAGDBlCiGF)UKwE#+2!(!(Sm!aI3#w^vXw9jNbmCH1t=E
zUQq&dBP=|tvFL@+yLR+KF`qh|5_$;QE0!LN_VQn;h+GdEr-Q;e)3j#vmd;Mu7~8or
zk?3mm+H*Am=Q<6UMFZV|N{V%yrruu7y}c?MF|%&0$`w%GJD^I%sFyVz4T-KqN21rX
zX}Vj<iF?k3(}DGUzW6R#*%t4tPi$!Fz<kN~u6vu>#E>WBzoALbJ@pJU9iiR?WN<lc
z<>F!*hf(PfGCfB1!MY}XY0Jw|cRhEJcFQ~$Q@`-YtUYSpi;uW2f&Rny5w8iB^;+$b
z-Qu|G!o4fQz1N3(>nVI#F}>M$OYpp}+7ER5C;z)0YoF567HjHiY-(xgZWr~ds-t>p
zY)`avnbmXPkC|l*?ahv^M7s$~e-^#emqBj#A$!TUB=$CS#nn7RCE@v|Q&{QIB2AI@
z&hAvq<dZIgZ$+;w6g6pzFbkIz(uudq&KMS<@j6|Jcq_+_SjX{y-xi&iLdz61jhO6g
zi>onbQoMn2m!5TTn9<zfjrG+^H=<w$etit%F|JZ$hSb)SLUuv+^n$Y&wE~sNL#fZa
zD3@H*@1#Q$y5!Gdd;U(GYM|<JihnbP;#iEKniZ-B`T)4^!k=nTDB6tT%BiwDm!Y~6
zstq@W;;d+lC<uyIqoLR^iZY`(cE6#DaEcYDN;0Z)q2bXSni;S>;!6>;6wA)zF*~uf
zHT5(oT0uD}Zkxx`DRS;<l=o@)QT-dQu=i!CV!jYVQD9V8!!0+8Iisi?s?VZI7>aqL
zDj}*rsz&%il#hm@aHvuyXeuEx))<NmqoFE09@qC9Uf=T@szaiPJ*rirq3U*C>7|$)
zs+FZU_<uzj6#L1m{;Dt~f0NnYSNDG(gIsdlhR=2X7w<q7Bs5fSN0Iov21rA7J~Xc(
zFNy~U8eRjWiav_+@f)gCGKR-%Xed^f;{0i-28xC{75s*xfhb=0eqE=wYnP(ed6bM|
z31}|W{vPE0Qp9i2@Ty{e4aMRI4YyDE8WeYR7-gi`B8u*#IIZQVPZaZK3`Oca?R$UY
zuSDyi&eD{k{1lDIW3&{%Krv~?+@|SeV2U?3hH9Xw5{Sn-jG;=^prIHxis(0nqL|FF
zWs2aV2z-hLq@jAiF!KmJc`V9ro<Z3t(#aT#hokxkib>q=D>v0dQuLNFrM~j=$eG`~
z?FaBol`+QLi*NcnU%jI`BdU<_n-~D9Brt{|5-Ey;hUy)uGJ>jDs!$%PmZ1ngsx_k+
zF^U1BN+pWTS&VP;NxZ|407vmn*8rx9gP3kFsOpl2BKD}(imEQh``+;jA@z^qvT1k}
zl7?cff+nHqMp50vKyRvKqk4Oae&+T)RXp%$Gu05#{Jlv7X|lUFhF5n!F#Z3rlK+8k
zO%(!u(~PoFY$&g3QynH%U{XyNMIln%2t~IULlr_45g9ax;ZO11RGUYYZZuSlMNuRa
zF-Wn8cj0@y3Y^#A8bkGNR6#Nfc~V3;4OMc{P>m(8JJC?B7|o+dpDHe^e01ZH393e-
zDl&>Gqsk77NvA4>z6{m58DrEwP#h;k*-^|WRY3SvHt?!7#ivpvE7dAc6)4q>QticE
z$hQpdN--=!GX>?M+OX%4CJjZV)9}gx)#p(}CB;fo6&S@qJ_`C!{Sj5GQ2hf{7a2ow
zoD>mCH7GPxFGBTn6r)P<>QvYF2+BgSoD>a3aZnTiMO8?~+yWX>U7j&jcn|8L@f)g1
zTa0(3+R!@9KfD@2ahSObudY6TI8*`cH%7Gx)#FiIJ5@ka+#f~B)9i(%dR>Y#G=^eJ
zjiJa^ik+mWNs7ay2u!MVF-A9oO0*>XsQ%9wsse$$EM=%##h7-aVa#k_eWV{%;LuRi
zsxb%fKoNI5enJ)5kW{Hu(VK9pj5LNSuY<;@<f1C!*APfGx}iqN{~bQS@_&o+$p3Zh
z{a<_kw-5Qh_Wtjn-TxgB{XbYQF!zT)l>Q%_2leC!K;oFzXY(^>Et<8A{+|iM{sv80
zM*q)eB4+~D`hPH9+7P(|_{UEF&lAIjp(!0a{Xb)dZ$s0c(f^Yw8VNX~|7T<ohbX!A
z|NL*IpSM8$KcJu0|Km;EkD!;N&8O3agD_5zh{p*v_2C8efaMEkKK=opUq=@QYbM>G
z{xOCfjczd%l|$@{!7yi5;{oFi*PQPU)&El$(EqbWvi1MCn1J~8|DZj{(*FavPyIg#
z&(i-B6Sq(OKXa*{co|Br_5XBXvOmQ2|DdqeSPBd|3Ji$+f5<n<lK&4lOa4FP-SkWT
z|L_X;sO0}6ewO@yz-jsaF>`k|hx~sl|3meE?7OV||IC<RD9QgH$VOxazH<rWe;IwA
z99v**1oCh%Q`vCA5-5-lG9U23%m17BV^99?Ot?MBVHw=*C_oL|PQcf|{UO|4I(#3)
z0Uv}*`M>wWoeua>?LG+?17mp}?!_3{jF-7S`M;E^L`fhsA+2bZ%*K4;OzPx;-kph<
zOPs4D{TkW8Q<U`JsgU0@9a~Ftkft@30w)^<)cC(F!~dc8f5HD|exUCE0ygr$2IT%P
z()+wT4APEO8zpRSW~=f1c(tKQ_*UmmI1|*OJK;r<YH<H~YM~zd?k<4d8_ox~G0pI-
z`@ev*?*9S~-v50lG8*d%bJW5x<DWHb2jB(rC=w^US+*nnGPPMtctG#}BE3HE|04Xj
z-v34ZM|J-f@w;Uo=+~|`z)8P;-TwvtubkHr?FO}h!T3))--7c|;f6P1d;izF|I0On
z;C<g9Z14Yi8!O!0<wh^Zy4(Px>%Z?Cgt@6jzvs~=_+7@Kp9v?-O*C%8Fb|VXK0lV_
zcC06{KL1zIRe-Jx==0tX(C6I{(C59`)8~!&-g+JmTIuvW{o%XS<}lOu^oMr|H>n7F
z`opdMZ}JaqA?ts~a*d94=2)#Q;`P#o2e_~p*th(zS>E`7`;(^s=XikdB$Ttn8DRNe
zkqUQ(R3QD~YU7gnhgL$OV2O-S2VkNouP5)T*n@`~d0?Z|;UelUTq{=te~dabMR*hR
zX_i3WCl7o@Ta3J~Gdvi1dGf%<stsl0_e=iQ3YmH(^y+c8!NU#M|D9S3y?Z5?UGRVu
z;XdVmAwOJn1^xutr1w7-Vy04pISDuY9ng0fPGprR33@*HUy(lKf7L@Cp#yz})LU2%
z`Ckd>Ep({okn#z~q~#8p`p&w{XVyC&hM~)YKJ?>ZJG!hZwEj3e9KnMV#?QFi$mcUR
z;e+eq^#1_uPA>iIJh;OA%|<?-8HX-6@=YEu120z^Mt?ik>4_hvBha6g(Gh6UK2`Yt
z640gx-)PK{1I|16Cd=W%OP+qyb6<qJa5fH}!R0xH_ux*N4E(naIEw+haA(3@0Cx;x
zR=|B8?mD<U)VUq*H3;v7OZ`7RaH|0yg3EgL5M1j2c^qyJ{GW!)`TvV>qkw-3m-GK4
zI$YjHIN&H;&i`GwQvol~ZUtO)#j;L^Z->kBb;4!&df>8rhv2e&55Z;m9*4{FJq?%T
zdl4?n_fxnm-x0Vy@RxVI@<rjYTrOPtFQ7l%3b>@pI=C#~cDO2kxGI0RDu1{tf4C}t
zxGI0RDu1{tf4C}txIIW$-qrcTRr$lE{{pxvxD{|!{&3sT@~}-x`Bp%#g&yU-7)S3z
z`?MBELn)VhlUyU4(E?_)A<a<dKdJw<w>G3&%(S+mWeZz3StG7w)=kdG%86NNnS*th
zGUzg020h2?v>v7_p(B}xdD%YjKpqbu@&KLXf3K|@jQ)QG>L~mFKIQ)+ob!D&rJ~jg
z(I2t@C%hfJ5xuZND)Bc)jC}8a{9nZP<o%9NhZNDj;@mOi0iUK0H?hAxD*3;N->3ZF
z`hfi3^?Bs~;=OXp|6Spe|Laixx0e6AFev{Q`wTcC&;Eq{*2A#JQvPqfvl%(q@xN(9
zZ2zD8Yyqld+9>(|-I?<{>O3&U`)0jQ$^TDg)(5Ll%XnVEtpBO@0C1N4f8b}y|91yi
z{{OUNBmW;qhvhCD^u)NsEpg7mo6b@fQ1IaX#W429gLnSN&j0QBe=z$0SI`oWpAEmi
z2H0urt^do@=jB}>AimizH1V^}|HaLIp<XXQdt%xH9=<PuJW<nL@bEKOuGjg$e{|+z
zWRf}mS3K-N@L%Tq-+{<*z?t)Z3nFpgAG`B^mj5v~^o`9q_crI#g7bThclrwFn8?om
zy$gxvA_y;k#9))Kx5AQ!gTep22*~k2&)<Qe)a9wMuDDB}e+Em~>cWue?+F`zXL~_d
ztp@_1{7rZg%1wOoH(|x^fZ09}=0!HH=UM%qzXv@omiKXygY@9ccm!x(tm(51VI#Qa
zr{Rm$_gJnjmvKC@$@vq9vO<+E0IUB~&9lt>iWkey0uN2c1l6wpiToXC;XhjpHcT5{
zWF-G{b%yI^TzfL(0m8F&{amEN9d*fz^_3d6sqKarz6evlb`e?-Uj8CXZQDh}STzh-
za8q2Xj;Qa%buVKJ?f*-L{Z*j<A3Lc1|6{}6M}C7h{y%N_HNyvT|1VKgg!D4|e?>)Y
z_`G)ik7E(qQ+55{-2XN6dBgu^d~fFWW`01S2JC;9pnszNUkYC!ykDK)86yvB_;Gn1
zTs}@+RCTc5wpm@fJV%XdDD;2=33xG?v^USZbk57-y!6bAwG=qPeJNh@=Ouay4d6w3
zj*WOZk{3@+Tz{M>%Cpp|2G%qsK!ET>XENaF>T);XQBD-_4Edp+?@w{c0Oy|nTmHA>
zf3voDuO3&hZkjpJK;O|Btnq&pYCZdVGe74Aa5LV=>#588C793mYyQ6^F#pGV-=weR
z16U8}@BH8P|NGINe)#i0w*N<eg0_A#EQRl|-?97u+2eikySo1eemCO*3bw#N(S1R_
zhfqfei9nN)eg6+|*8RUo;Qrs7Joo<^1NZ-+U%b!ze<)AZ{XgVC)bIbjB}E|H3i&+R
zSB^iH$r_ZpLY~m@mDm%9=$7>PKQsP6Tb~E=#_Jmc=K(hd&I4W-I1ktyI1jixeIC$j
z5A67#?EvkE8UN?&qmSqKfbW#+ZZU$=M&18M|7^zhs{cp-Z1|tTdpI8GSN{)u@4k>;
zA4GeS)&FCB(BJ<5R9*j{q50oCzni)L@15VxegD5Z!tsK=|9>pk|MKyFzVN<y^jNkX
zY39d+ng1L9SM&ch8UCk0E_7TtAN&Jgd*@jwz>V?_xXwCHw+~tSe?k5Szi073+JpY`
z|EW6uH~jDQ*BSoz#sgad<ALVDcwk3hJg_@39<crYvF!iz@&B>p@xIy?KmVKcJ+t1&
zGJ)lf?*8wenejrgP~azpYUXk$;+`(gx6XvygM634-Hrm(z>NaF1}@LJ?$Y7=7!LR#
zTyy_-D&R)}(|r;y<}2#{?|60Ibe-??>w3(fH{#SQ@BZ>cYGEf{d4{!2j?enP<$rIz
zm-U(a<e#(ijKT3d|DTV)^Mwxu{wI%RPHgk0yZ^-YJmEf{(<N?|{1q^Zl`vtaRorjN
zXYe&nSKs72=X*kFDU6are<@Izf;gXn<vUJ24?AbDm&3Nea*Scm{~!DF|J$+ulKcFB
zU9TGeg|&vf>9pl2&i`MQKL5Y-1V8_ukH7PU4+Z`=<9{Rn_et<_3HW;v_U~yZBpe-c
zHvjKDI{xQ+f*t=Cw*F`Pf7}1_EEC%bzsx_5hp5mX*ZDz)7qb3WNdJ$d2GxA^8#i1e
z7+oAjuCKvjAuIi>9((^p`5wpGeD+tJs$3D2je_oZ{|QfpWE<^~TcxN6XFFk~0#+F$
zqzo2Oj>24%>{8`AA7!Et`0*g#7)UcRrZ3v`Xrx=|R%n34SBB;4>A`%;<=9Uu-C`;3
zD>W~c`Q53@^)$-Fd(G$JOY#mg9JQ#V@P7T}E3TeqVjNr7Q2FL3l8Rmwl20Mx!&SB{
z)KQvfM3M2srt-o&Uj3rbZVD(bQwiO#e&OXa=1qKF=Fv3|K{x8)?swGbIVe3*nJOc_
z@5tYL<Nshv#~QZ$-#-dl{x6JPhHHi@|Gyc(TeVAr$^UHW*@M-?dM%*W8j_+>?o=NK
zWBI>-M7R837`-h2_wN4}f^;)rE&u1QLw5Xc$NzoSlA|2|ACLZD>Hop}?n+35VgFBM
zQ)B-{-1TxJ<l=e?AbCINW_d`p6I6=E`+>7@er+kjsmP1re<9CH4PYft05I402vdPo
z3Gli9PngOH$Ne~<|K}$aE~U}bpafKMNBJNv_^ZLp>^TfUC?BL7a%*aEBaR9I8NLU9
zHQcF$a4m-40GT#5xGy|e!}}oNrbb3fT*u#yyDv4E6;p8)@%Q3BLJjsW4rus#xgPKt
z`hGx##PC;xH=|-M;<rf~;HXeR<+z_$xLdFyQ-jRC`vVoyjK3O;q^Q_#-0KzYR;+E;
zV3nN8q{jVgg-ba*HI$iy^msoiOaBkjyAE=3Y9RlMiUG&{fbzgL0iGyj8h^V={~V=6
zaNN%*&uk0A&(-n@Dr5)#YB0B^(oB~30eJxMB%yLU!k?B;1D-5YI7awBxexG1lyWb^
ze=dIx_<W`0kMM)?AYfN1r6T+p`3&GGLS=<4{{cA&xKxyqLcj;*6M!!eD$-*39dZ}o
zsY;P2;k)FMfTt<Nn1pYYKJ@<}{F8Dw@Mj8@4-)@wIRyAZrD%-sA@x49<P$o-+vEVk
zXUoeP{)F5Cc#cwBhVo<2X%*mwN?9dg%B!it44aBV315!C8teyC(HG&>_^Uw;_s(lp
zsQvI7>?c2p`p^8A;<*NQHmUTJ@B*xt*WgYJm8(Ua3f!k%4)_wKJaAm3!Yx<ua-lL$
z;`6>|ja;gf-i?F2{AIY`S%X}t@QmS<R9%DfqEys2Zde7*yDkL`zR=;kk5?m=`uu1G
zFjoMsQc5pTe)l<f4)98)2#@e#tftj~3RL(;_$he`@G7O8knlI;8-OoY3eO0CN4^7i
zwNidY_!)TyaE-jA<9}1W322Qx0sd!sv*iB+&XWHRxL@-Bfqzu;{}De+{y*Tf{C`Kw
z|91oO|5Im4#HGBv2@)wg7xMDX#4~06Kz1JZNXgLy<+y?sLA&C~{h|DyF|d^VGXr)e
z>>St&V5h>)g`EaF9ri+rbj*@SY&PyfegyFOu%)n*VO`iMu!|ux=n}XW!<NIA!CnNr
z40b8(5{WpA;4X)q4?7Qb0qjEDvt;YJ2DT2iS|a;aNu>R9JYNO78uki_G+il?4Yd+!
zTY)lEz;7k&Ww5+QTm^fnItzOQ?KJnUto(oPY%uBZVdek38{I8#nY+#V4XSRg&k77v
zygU-irTtO7{9<O=7o~=5Mh)juylnRW%z58x#6gprmhWNC2buGM1>OHcf1h>#59tl&
z{Xdp*FcmLf2O9TV@v{0lp1j|;aE@g<6g*Ofa4m!+xY*YjiF+5fYekqERi4GtOp{)o
zv5J?y`-p}%#yyo3FLQ60<`G!#NAYZpG0&j=E=2KiLHGY76*vz-`2Zi{{y$^_sQdpI
z%ZJ_nr&KMPfl|DD8fZer%QbL^wBlv(xZhCDhhP4SUtR-cf^38}_tzMY@@y%a;Vo=J
zatub<7q7ylJP{g>Tm6cczW{nPgDxkl;$_~GdL1^*SjEd8RjSZN1Qjp;CB~l7iZ#P=
zlVA2%JNEz+d%SIMT>N?FNxff6Md!Q^;IXXN5oPa7a+7$_O!Q}ZzjOt1y%gVmipu&%
z{`O#~?iokBy_|1MFO`xh`-|0kxU%1M&_Er9>G`yY{MI3Ff0+v2sdO6uFw<d=Dg%{D
z_>V_+ev3%Yf@qOb8TuW*f51B@K&9wZE>3w&YF{7ZQs!6{&r3c1yC?nRJ^Vq}FDkvS
zhD?XG=qqZ}iZsJj4Xf}l`}pmtE|!vyV;v&gOe?wP;GwBgic2bsqgBOIs;i>aRR<3i
zS4D5Fi57jTCt6xsTzN1+wdbGm&Y@6wcNOYU&Z-oirC0JCVMpV=`6jP^?Z7yf@;1Pd
zFc>VV@&`JWqsb_5+#X;!n(rWOLznAal!<-Q2!v4v(4e*oS!M1~Bckgj?!mq))>Kd?
zo@eyhFED2Xkpmw+EB>(qnCoBbb52y|elI>BR~abN3#P}xI+ijyE1h9hJt5HO{dPJN
zr8A@Z-P?T;XMNObCrG`aSFY(FeE{Wp4dwMHVCdj`fz0C|o(nr5Poi8y@m$zHp<F}n
zT-XOc{&$pX=$#9@Uy3FTt#e^!UuX)-HCX4u`Y|rN{8E%_=#2~KE@(u#hT^#JCX{O^
zjtlQaxrWlX@Xz9(SLdO=hH?$XapC_#xrXBS>ur>4=#9TH4}#v9p*a4UgK`bU^Dk>q
zuAwyk8ui9^mU9x6M7f62_{)^*b12tP8h@E`eFx<lO5-n6u3w^DLuveF%5}y^hSvDY
zlxrEvHI&9*rd&-Z*M}W{b#_X7qCM7;(oT7KW%{W-{gjlZmX_{z@0TbFEH6*{B&DS-
z*3{MLLvyFQO&(rjRu1roTFO{cN8^sJM7s%Fw|-sYhE<idZk^sK_2K{-rAQ-t$+sl-
zHg(0DI$C005}t25g_T*Gsx683&hAvq<daUePSO#&be7quN&WWjEZ2wIDm!DT#ugB)
zD-myPOm)Tg#=26;OkyoMF@=^XXc{ru*%nVRUQ(L7<87^tU9pz#u4GK&9VxfDLpeL*
zT}g!_?M>Im8atc1kRK4+no`IvxQXlqZwS0~M>6H6-_S#;&%9_@XhN5KWumPu-WuDW
z%T=Ffi*=FMy*$=;$GS7VUGbHPj#N`iDo{SDUAYVIDXod_=C+u7jm|}b*J`jO!6IqT
zbzz>BVV>*5Jgc;4AT<q!MhV-c*ZA3c^l6fsGNwJU(@lGarJN4TPJ4Cv)}66L`&I_;
zUAQ&b)v~pURb*ZZxHM<ruF#-{oRJ#l`D0|3N(SsHYTBhkXqSf4{L7T<NtA0S&A&{!
z{x8Zkl;&UO7CocJdt-1Xd??Mo481NvxrWmG%am&e$~BbcU#47lqFlV+uXa?pD}{%O
z0b~0>LS7~TPe0frpVsy3pHZfvH2*U6Ql)(iyDRTvr)-z+g+3Xw=DZr4?-USi427BV
z5Z%MDJj6-?(UX8fL&ds&GY|(krXbBEHqeYI^_6#l@0sCm8zk+%@9hLCh{COZhYbm1
zX5jr_@VyuPW3W`%Nx?2OJY+nW2RXRlNW%?QE~fd-1*q3tFydw+4F$soO+s&~P}uD-
ze9IQR|7f_Jq}>5pRl=W_gQ<v=i@|?y(m<L#FlP)8$5D}y-<)6vIrug_@0TV21M+vX
z<bQMo<bMGFXypI&8sF@a`5i6I^V<`x-EFb?mxm04yx~lKtO8Q1UylJ$o|IO{QuXon
zSboI1rc^_$B|qNUs;b87cyf0Fqx}5XAdniq<tZi6^1cd*y%KYvcv}IlL*z9bsaRJ>
zQ(OL|F(F9drBa2IHI19M!1Z16{8<C3(3~?vXhqIcQx~RY^YNzcTz6Bvqim5|9c%91
z=~ao4&<!!nY%xDmu`$_8#uFX!jva}tI+SyC&Y`>iGv-9hrb`%FZypH8Dj=l{5Ac{w
zzWe`ZBeLcH+;DXK-<t<QUWApq0OAoX?+de9hx0&q#<_SP1UpB)4#DhQufvf->vbQf
z*>AtHd@CyT#Y?tU$CB5l5}kT7Id9Rt;Dpj&D+`O&&zySK*Sy(qZrZPMHDqeC?mhD5
z5#F@tixt|==Zn-wqn|HoSnV$)PXEY<T&mgsS7zjYa~$r>hg>1tF`;CXt@!0|Z!hct
z*hgRkZC^-#ZJOuo;)Ec2jdOmq-gPM~v0(KH#pzXJLa@RsNeE(Sy$HeUqbh`8hkgAV
zXn9GOyX^~4F<09cf}L*rg6(u)xOofQyPXV4&Q!1ha<=_{uSG>)t7-1{45<8Hj2Aq8
z0r}<srbqqxTDRWSqJS8oeQBZbcH!!s;2N)YVDMGvz3+T*{*m9l?R@M~c*!3ySLFSi
zk7MqL_EN^-9NrAL7sLNdxPQdFc`4kFAbc*|<(OBN!d-^Z6sM-YgvB&deuH_Y3->Pg
zb1?QP;7x_Q9qC;Nmj|}7lz?lA-hthRfsb`UT<^t22iSVRn4&_crgxO_-w|&Po_~ZB
zhUIX-iujECb(CWPT$T|<lRJPn3+`^@cLCfT$RBr)Wj4~|wEi%VmcV@w>0AtVDO}QH
zJ<^#6w*~2PT6_u8nF)6b@XO%-9O+GmOM^#w73pGvDZfFyg>cVB`aGw9I^uIV<Zi@U
z443NIFm;zR5orqCuOZ#paK8e7o`w8d_)mk&vLi?+{26y5#D&Kqxa}z4GPs9fxm@uq
z^1-?iu7%^`1nfrvW53fFLl*P8hRlZS#LFdH*y#VtC*Lz)IQ!OPr9bQl(k?{)AE>K7
z!v&~x)9~TK<o_<jclha>2OLmX-h(>{bR6^60f(Q>h0D*s0PYwhRsr{Uxa;6j$LDsq
z*C4zT?jd})9=O$jt^D6(FaP%njNZ0Eu0RS5OF7Qe$$Bm1DC`AO?87}_%3P=yN+#GO
z*T`nDVWsdU`K71@9RKnD_vL6rmZAYzg*(M7(I8ZbmH&G(@jsj78L%ApgI!_RxO&FQ
z|1y;DTr2;_weml+t3)<*0?PmC$2o7Y_y4j#cQ$12|7Fu7H?$`ZWbgk42$Bc1_y6(`
zC>?C?|D{Qh>%rdt%SD-j{k?Iaz5iDz!92O}_Woa?^s@K=3Z<07({dr~{XcWJoy)L=
z$c3=?|N18v!ruSO$Cv)`m%aa&k6I?&$iKJu{|rU?cFlQRd;hO*I+;*IFMI#bP^53y
z(CcKp|JV1Mf2dG<|0hj0?wESp;C+q1O#QO=e+nCa8G70KKk15=<G~w$8G70KKRL)0
z@HX_yCl}6+{{w{U1={g{FOn4CF_`0jp8p9oA?w11FRc8JP>S{PH1x9aKYEcS%flNb
z;W(p~FJt9@h!nCfZ|HS2@;~1C)B@)xpX<7aM^aD6Im!7QP3^IycL~G03>CcV6okX>
z>zU)(c@KNr^Z#Mwv*-V_ZUNcz|4I}{?>jIdx5BD|cVI$sdfkBu!3w_v6M`6e2POos
zk2^3S*kL@711-Ci2}iQ`|LpxgB~d55TIahH5?aUeMe3u%=ZhLv`wNMa%?bs?$iWwd
z#LRI~JYUrGt+D=<)!zTH_kRZJ{*RUapPqkRf~OuF{2z1Vfb$OSlP!nKz^8G~hwh7T
z?foC<fqVOa(?f#1bHLe-D`!!-KLqH)rT+r@!>xeJdr|A)@`~DaxV#_L377Yydf@VY
z)FHUMAN3Gi-j8}5F7HP@4VU+$UW7}LIzNTG3;0Li_P}4>)%n9!`NO6E0=Ox-6>wGl
za4&<-)9azPH2nV0c4>l6(H3dN{q7yIQ+5@2|K|$aDT?EYBXpVKV&Ozwf;?Bw!xhBI
zxR$s^T%R<F^KqYSCN43~!bQG0xCB{-3xvyXA8DPemkqKJH;JwjO1jGkCkPH+^YtZF
zzMHJ}{(mn~82QMT`)+t4F>U{E@Bf~d_kVkfcFI@ZPulUn?f-TEi~e2pzi?Im3s?2O
za8>^cm;J1uA3kyV|DDn<9Xa~{;O*Zn1@`~7xH-Ia!218=b^o7x4o3gdsVx8B^8d-p
z|5qsPPvqeL%-DYy#`Byh6n6ig^M<wo;s0$)xQaQYZukFsq7cF{l0skxZ~sqaHn2bT
z{9l@$C-(V2v%hTRf2Tia;GqX_M*pRumzDnwvhdPTpQcAPf8gm88mjWYDZlA5tjWCu
z`&-y@h_IsH^LRJEOC0){aKcgGcEDv^lTJQA=3$Mcz+h4U)mh2^HuC={=AQDv7h^O?
zqvQjYW#ogtj5TY9&rw3=AleRV;Yh>X899KEVe%E!d%}|<(*Tc<CpCOwWD($z^00=_
zh)e)HMwXz?6aVw_Fmf9!FKBqSQv>huGD+j#>f8x<f_z)UOCvRif1d0?dGQbV<#mWZ
zNzT#n@0I%jpD&v<{B`*T;Hk1s!;i@mfM+UwPR#$DVY{)~J|_)75*Z74fjo-D8NOMz
z1HVjO*YIs}5bzRtO2e%fK~q59Z5mz+xmpyQw_DTaj>!Ee?{ZnC%m0G&5|UjZhjn>=
zCBp%)lxH<O$|2=f%PtLnTWMUYmG5h~*4c#cb@CexZ*_J9zFMg&z=K;G*@pbCm08Fi
zMRHprF~FN;f`+$8ngDN+sTyvIGy~o$6!%a3<_HD+ZIg1H{$I+Yc%SV`R6f)HvGWr+
zt#Y4!pZ6RG_&eop4ZrRD4&l4yRZWj>NF0NZJ{haiyHoB4oRI4^{=YfD0RA4Cqv0<*
zUjy7N`!)P)=MBI&$N~*N>3j?DM`f{w4?Eul+#|o#`F%|O1nGZVp4M;&(iYh-4`}@1
zkx?k`L7AfAL(b<A|1O!K;Rl^B0lr5@YB=HC4ETQ4mY0D>8)4b5PsaOv5jgptsaC+?
zuwS?n*7OVhe&V}G>tA5Mgz&w-IR5xe2qXM^yn#u>58s2bQEkQ3u#^Mnhl&3<;+pi{
zf8%`;Rz|w`!G3_7Efn4FV+5i1aU5%xlxFQIl!`tHnAVS#esDXrmL^8nK+Ru!w1=k(
zD(#*0yu$-iS%D!XGY1S=u6eskwazW<6~)@9YD*QTju6y*wM$q6-m$CY$y94wym{WP
z%Vc?bQ)(9<N_p6-R7%a_Fdj398vtaV|0tEJhVt^N2IbrWx2|d5+8y;bBr+sv$~-nJ
zw9DhE`UFUrl)cb4mI+;(_1Zu{=~G0*E4dxr?Vf(Is)ok35Ln;V)R~EyttKo@WUYt_
znIfg;h1y*Nmud@ARR5KOIQZnqpLEc#wjq<*7PrjZrav5CzP>9EhB)QrZGO*1?l$Gw
zrGD!Z%4t=<o>sILrA&<RYGX}1Q~-|jY>eNOqk!tD8^2yW!EaXE=xHM(p+FX;Sxr%`
z1xeM@mX|X-IEoB(Nd~wZJVzsS#yeVL`{=b^{gjs{Sq8%8<@f}tSQ2XCJg|9hichmL
zV5fqOhf0JcO5UVVP(RY?u4?a0-KhQXs#kTl*Za~oFYo147w=%8#$L5A)dhuY*`AfH
ztp>%NuJ&I&O=I3xYRKui%!#RxKvVa_l#pfD|1b<PB}F)gB&_%~M}Y6pQg}?i5bF?(
z43~ywpsI6@fV4p2kW>**1@Dr4yGa?5)P-RdkfPU0<xP$o?D>%t&*VePREvC=={k}R
zF;HRhp_|%M2wwizW?Pt15>Y^!{z{e)-B;uCp?cM?0IYOfT)v|%(FC<Jmt`8#hE-Y%
zX5O!zskKeX)*Y_uXP(8t;!X%>zJ4NPGmjJbCkTWdNee;Ly!=DMfi?$+9{~4V_;Vn9
zHr6iRz#*cKA>NA+@=Qh46k@=O=IwxaL7xNGZzG(GN;ECJc>u%1Ff`9m2sKOzW*I+*
zEvArcpE(bk?wt_ud<%x>9L&>{Qb0D$4A`$Dy&oaYGF)cZ0soyC-Efe*0_o31*(L$L
z40&*1_%!^!hji|Pfb4(A`|&~_H-mzvlN<d7m|En`2@3~Zt3kK@$p0MV!%4w!ktYX}
z8~|4%d?Cum3z>(2!%0QZR8knWHcx39eF|k=z|oq|yn^TNXj)ze8goEA8+mbHP4fn5
zT@UvO2<yHP@7oUAQ0Vj|_){6TF}K72Ezos3-j$0PwTSP6UL#SC+u_H{w#IOh!a*oa
zHOllH);TBWGIByk^BVHH#h1S43-PkROCrt>^*1yA98?<<LHVA<_t=OseU-wyVK@<>
zq5N>ac@*jV0A;)%??ba)yZev^l@>mu%W$do_prR*vygt!jMncF^fxdsX$Q@63LFm@
zP7L^|YQYnSQN~}uK7#Mk40t){c^jUM`5V*~4%TTt@X`72;Xe-FfTk4Xe;u^=Dc*l8
z-YKqi$uaCUX5=$}=BqnHU4I=f$I%>X{dK$~WlRhYC%XPRDst?P{yHwQQt`k^roT?^
z1ut<@Ps7EL$G{sGo{2sQ_Ac<utKfy#;8M614JY`U(OwM$AKjw)go`pX?eJTxd5H^4
zG>;<vZSb%1@z{SNECqh$V$>0|F^_@&w;-(;(mfk(@awQ)h7)>YE&*S!f&C2nxMlGF
z0@{U5fc--IsSNfaw4>|MR_sUGZ{m3)%5o9ft-FwK8Q!%W_VhrX#YGJ+96g6LX<pRr
z+*Uku0p*WK_fA+Y2HgWXJqr3H;a`jQ=s-SPsHT!!n)xW-JFq{8Kh0E>kqZ>BA#Ey1
z;DXH~D9bkBj7M3{gS`Nji{ab|p}7S#<bnwm0@GCCJ*aTOZ@5sl81MEU@UH_t4VU=#
zp`5wQ3efEV#JLZ6RAg_=aFlU0EEh=5MY>72KSBAa^!HQ1+Y3Z0a-V?qbqV?zns@PR
zObh6}8gyxdJrnOX2ewxCL&Pyn?<j=RZ~@4e3G54WT6d!i#<U|1V`hWiesf6E_HRK$
zV-DcqvxvjZguh1lschs$)WOSjd0z&Nz3cU;GYp6MrjG_@k*O9mdJSPSL8mF22Z;Ns
z50@~_qoDP4U01khbO7J@WxUH|&?AoL6)0z;PUCwh&txCXo<P`Lnno{!2GdCgpW#9(
z4HZIjX>uO$xj0A#zFUws7rs7*FfK6D{Ln{l&&T`a<zOy4bK&s;(BiNT<iau+wzvSz
zMd!0X`!b~a&!9C0_w;36!gu^K=)=WBnqTAHK7n_;0se1-=7;ev=c8QT$1@%WO8);5
zWaVe~XHn#rV1EWnRy|g_LHLTsnESu1f%g8dQM;a*+xoT9g{%&yr?z?U0yEn@*k)o|
z09y7Xs*n<9Piyn1=%3Z*!A?(V3(&%q#?4z`Z~mJnYcp#tAm_|ti%K&@!{@22|5M+Z
z2wBbw=YbH!P#y@u>w^bEu)}yD2U>QO3P<uS?f9!!4&*iAI&ed<bJXh)%-;1n94Wo5
zlc$`91+w2h-?~wN8w$KMV|G#eMar8~@B8WnMCs?-c#GEkDOPy3&R4R~I-W059~C}d
z)UeuLNSywWFL&QiKwh~zihNOXa7?~vz1gRL7@@pWXgsU`ZwUs4C!_v9Of5L}=9G{w
z?RM>FU@ko#YyE%B>v)g<FF_f8h-r<v|2s$D|2<RR|DCGu|Gx4^PygRKz|{ZuJmAHM
z+X;9k+#a~R-+Blx@3%e#mrMGO!@UOKyid&gH7~-g2K-aFykBz!F7MX}^aA$4iNf8E
z>75HV3U~qBAHuEB;p-R<cspF)ukD086>yJs55eUu?jariI9!(RX}B!ki*Q-KpTcGN
zj=*L41owMbz9?Ll&xOnKEr84NRlx0m|2nuV-*&hxSEu&xp+De5a7mYk;Ie$L{MO6=
zKj1R|_uw-B{qK4Ce;O|He*`Y`=lyHu{|_H{`M&~}`Tqyp9{BG9-I@PBxXk|`T>9S+
zHwE`mxXk}axZ~wUxd~@v!teijcY}F9C?TCV9n)3d`G4LPNFK%cf9z7}`@cK&`F|AG
zn&U(PE(c@P$(@O_a5UT!f|px{8bM{N_4p-xgIX9Jqs|*~`+>`j+}`2V8JAqS&B8T{
z7%Z394!}MFYmKFVrNGdofZ~5A!2f`I^Z$A@1D5}X?w7PBvlQq*1q$l_KVbiF`M>|v
zwJ|IOhBgHX;(s;%xBNe}zoadlr9l5FVEMoQG_x@*1x^+U6vY2({J+7@|4){WZr{UF
zKvN);|2GBJ|4QxpzpXHq0w*H{6#oa;|04nZN4VYpI~l*eeWz2M0-^oC-Tyz;tA&04
zQ-lJR|4)$*ZC}$;AcO*n|JMi3|C9&D|MvV}2<5DorND_#fzbZHEx`YAJO4lNzqEY=
zOM%`L2<3k}|L;vG>tiW!5>i0%e`jF)-xBEm6Sn_92|vAkB})M%4z9%VzpV+D0;ePe
zLdX9L0{y>T|2rk?hJERip8|^igXe$71^6H5f$aI8lfN$5H$3$yVEO;l`{wqIEd>k(
zEdLuySl3eE)T2P?{J$|U{<ri0Q?Fv!H$EjO5X%4956F`LWzYYd5_Q48<f%si%m1g|
zH@9zWDPSlN%KyRhfBWqEzoD0PEd@>{3WV}M#`{_0f6NDNkgKfxpOfjs+jp@P00k8P
zHwDiBb_e)>j^%$_Su6!kMhaN|KN-KOeJ4wS!YE+*zc4ykEK7ltkphbU3zGj~=l>_;
z_qXqKYEwY*Ki2!R^#A?0!2Ex_o&TTOwZy*t$x4Ax{txc|xt9M=*6(lM>(r(|LHv*Q
z!0!K@+V#Y~{mDrI%l{|mceQV2DNqOnEdLimC5vMzaB@<>^8d;CUF}<03KT*C%m0N?
z$>LZFoSYP}{C{$OSNm3$0)<dO@&Cht{eQq&_kZmAe<7r_IF<q@90fxA|DgUa$OE<e
ze<$3hwFR~m$V-7x{tur2vHgEuI$8uvffJDeivK4B#{ZW8PsC4Y%WNsoZwiF=|H1LU
z(*I@e|MZ)<HiD(V5T}6Re|!ILh<_zpJWGLNLxIr#f0bSTKQ`31sagsQEeeG4zn%XN
zt&e0&V<~WqC}8>j7!lScYbkI7P{7XrPk@hPi)bluj3^M=|J(WhF`~9j)>2?-Q6QB6
z?f&1;`bf4kmIB9!0*e2k-y=)@UrS*9-|qh(BkJ2^Ed`D*1w#9OyZ(QCKZ?!WQecoM
zVEKQL2yL^m6c~aOu>3y+KZ-4qrNAIjpm6@Lv-&>=>6_SWECmLO0-^jLT>rb8_x~;b
z57sxa`B(}J76n52KXm`!^8a9c6Pu5vz+h1zl>f0G*jxUW<^RF@CN>{Sfx)6ctXQOE
zskpOcw#u@D@GNoX$Q%XlBaHpPc`{GIroEUea~1pwei=SXW+`~T#-A_q75s7p;qlD*
zg3SzHBJPE9p$b0)cqHO4l%)zj?OYKoG`Roh%tg$R^44e%E*|#aFp+Wcf`$)7h66rF
zYBjtd5(j>%ypF`8h`-dSMl#dns~Vo@Oa?q%c4>H&69qg&eyHIoP8r|}<t`1EIA;N#
zCB<XB{QqLu+sJQ;{2b+F`ZvqhP~LKRPQ&$b6X4~tOvnE_IRf}nsnzgXQiSwY$mccw
zGFgN03VA}qSIT<8m2$hz@4t$!8ZL6B%+U0R75$+|WTTv|;Xe#(2E0Ws)$m^D1*G3B
zk7;^zNA`mraTzztEB_VFI)t~2tKoWQGvGZkRm0nyPQW+H=kfai{Qed0o3Im*-gMZx
zu*+dr!V>3YxVdohg_APO;~J#V3Clb_4*TC>nUBe1IB-V8GCjtj`xDTM&$KK<t~Aa9
z9jC)y1WVj^5N{;D#bnrpu=Mk%wO#v}v^OGNuC(vf>9Rb;>x&M3g)^_u;r;#!_U~Yy
zg?$P3XRuolX3~8U?|B$D2EV<q4BLmiZ-YHc<N9HyI~V?!z^;Ma1RH}*!rlt&H#3k1
z`Pc9>(>@LMGW^kuKf|j(9zRFqJi-gfuL}`cBohduy;vX%0FMwM40!@xdr>UI0gr~w
z<uVUzECnnDjt>P)f1Y*z5A8wk@xPV-b9}y#&DB!i*ioQx{<ri0WA_zo%9aAhhXMuh
z|8(yE)ncYFM$N&tPQXkO_7>RtU>}2h29|RNGe<dq=SPmuE7@Ev1uO*$q(CVDgWr3P
z|84(YAW1EnrN9Y80n7g<%%`#iwG<d|3WV}M*6*|W|CBxdH{gV~30eva0Sbije^CC%
z6wCiZ;8WQmSPBd{1r-1L&gX2vI-c{Vf&L$`J^w%8q_+uL3LJL|DE==<|A$@wJMJIL
z7Qj+qfGH3<{trF>WBGr8NpF+06gch_u>61AKY=ZPrND8cfa3oNnfp0v{%`yL<Musl
z#+CwuNrBM*Ke+xEv+I9@`AuwImI8xCfl&Vc=fL_uV7vZ5SYO2EV<|9r6j1yRc^_H#
z|AO+rl>C3Y{x^7E#pYxwFgO&j{69E!wz*ge3`Girj{hOwBkTOH?f-}3r?X|U6gX-M
zDE<e3XN~{u`u|bW)h1vma3WA3bo}oI`hT<scKz=}_?otimID2wK<M~Cc>l+a|NBQ&
zi)|@zf>0oo|AXUyv<J5TKS4gIEvBVFKPaI1e?p%5zwQ6~K~alpDRAOYK=Hp5;Q#*-
znEwN|{r`#cO>Idn1q!7=sQiDZqUclpKji&q$^XZGVV3-V%pa`$|3bfj#j_MReiR7h
ze-tN+|M!cVrT+u`oyGsR2lyZOmj936H?=ui3KU9#Q2vMNt}OnCe4s4;M}MEi|7!#M
zZ~Om3$#3y21&%8PLiryh%Hn_Ua~A(YKX4ZRBRp&TkM_d$|Ht*S+RQBl3Zg(Yuu94@
z`u}!8t0eUSE|$eAzG)wfeo&>)6X8Zb=v*iZgklhPXXF6%O%9W<Km{P-Ns(!QN63>J
zzA&-~@JM-B!)HV$03IVtpyiVIpO=S`-&lD;!?T?lc#oG!8vj=3PQVl7+ZtXPsX_en
zWDm-Vf3!b!h(Afr(edw<`vIRXn>74&`3B&rvQEQ~$rFHQ${o7==M38o{ho8u@FS72
zfEUQ4NSx){EZc!!Ca-JwHaQ4*i9Ds@R@n{sBDqb&YvpRd7t3y){vDC~QQqaUN|*ly
z=OrY&LJsTl{7QxcUMbINc$7oRua;dJ{<ge^^lIh%8m@IVA$*<uM#Ed3-GHx_cXj%;
zk!{HDTA79XQ6#q|5(B(hCTMtjqzUjAnX2KYNHgHAGDE}7kru$)q+F-}m+~m`-!3gW
z{U19&L4K`rpN8La9N_PiyEXi_^E-s^mRB`Bx@8~Yx64?a-kowc;DlVS@&C>F1@QOC
z91VZj`5NGE*{|VWJ8uBKK^AEEN#|RDKPrngeAxLe;2!y<&hKOLCrJO}^0bCKkhaKv
zc|hY2kBmZj56Tn`A96m2_;<++4L|673Gh8KQo{-7X2AC={WoQx(MDM6|D25X`66)g
zJ>P+H7@Q8oxf7P~WpD|<q~Y%(t$%_265tx>b~SPQ@tY7v`1g1NlZGF@2W5K<_Gwt^
z0`<ehe;jd5djF}*Wnkm-y;AxeiBs!)M}PT=mkZ`QnDY7G(f`iB)i_4i>HEm%T;%Jw
zCXMHHSs9=7VqEGR3VSy1Y2r|qEpe0jJ^X19H<!O3uUyA9X&RR}d^X{PqreTmb3Q-5
zk2RJ8gGqsEWaiiZy9@QWSO1Ukf$jgdgHpEtxBWkA0s1G~|7XS~w*R;N|6ul6Hm`xB
zfa?G4{NJ_ne>?xT^Z(4cfSvzm)-KHYf|=i&dB1V({D0v3Bb(CTQozptz4d+D|J(k5
zsP+GQu@=X*Y4*kbb$Pq~AHL@A-wUwo|AX6)*xXJ`3fTF-?f=ouxOV@4=<Wa8{@*(X
zz`oqfvCXrYll%L8|FiA?Pt5+vmU?h0VCVm~|F`|WxI^*$pY8u`|3A3Bfz9nyqkx_N
z+y3A7|F-`(`wPak`~P<T|5WP>PsR7O^MBj_+y3A7|EAwJuI>MA|9>j>ho{;*+xfrk
z|84(2H2Z&h|KG0vpKAS)ec!>QfSv!_{@?chw*NQte&gEtzn%XNZck)$J029U^MBj_
z+y3A7|EAwJuI>MA|9?FCBb(>oQozptZU1lkf7}0?e&4vZ|F`}B;Pyl|x8p$pJO8)+
zzwQ5R|8M$z<J$h;_W#GDKeBlaE(Hc^{=Xygr_e@{(f@N^WGdi{{-2qVg@7~qe@>5_
z4fw<B|5*}Qjraqn|7YT`c$WU3{}DN3K=uE8BJx?3ckuN8Tp8Jl{4)A~nj@`%Gx~oT
zBijLI^#6GJfHL}jJb6Hc>;L(qBS<f!|K}~|T}W*yT>sC{oY#P#TmR3moYxUPaQc6W
zA|p{=tN+L9|MB{HtN&+k`yHFx(4fFT&Hrux-?#oh+yD2i|IhaSUO!~@|7Gj`qaHvb
z^Up7D-^%|R8vTbY#feRUftvrfM)qSqm6`va6Db9png36Z%m<vA|BsHG3HZa$|H~q)
z5P#t2|7Q=|nKl1^I5K8H=l=&I_o2LlH~(J~*^K-$^Z)Hizi(##zb$ed!ZY*#>mrSS
zGxL9MeW399|L>jmF+b1D|KD`p8PfCrNaQrUubuzf`M;h2pV&Q^E&b6@V4&vzEs@*M
zo@V<0iIFLQGyVUx$UMLU*Z(hyR3p8C>;KOhwj-<me<(6~K>Pm#kx!$%gV+DpM6N}C
znf|{q(gZlu|8I?K1Dxsqz41V%|M$iNw*MaqJ?<FDxC!TGIQOf$sMY@~awl{WabC`I
z0#^U8)&F}meUOcN{3tL`^MBj__r3ma`~RV}{%`01UjJ?9|91X={CXdo^YNyDo&S6D
zJ3Ig9et@0-&(QPz2c0irc6*Q5`M(Iq2(_R~zWIJI{7ZU`fV%s*M!-FLvzKq+-)g^q
z1-0LVeINO7&);uN9J~L2yn73q|H(!HJO8)+Kbm*fuKy1`{l8ZJua*CMvh_FieTEhV
z?EK&M|F-|P_y5hkf8*Nw|CzN4bJw6;uYs6#2;*{ngU=?Ma1^*^jl-;8<n!ZNh&7f1
zgGqr8u<AP&^S?`F6;A7kEXJv~v5vT_Wt)@$R^x+N;?9-13Vs>*@ONj+Yz0rknq3L-
z=g1rdpNsh8q{6L~D!`6RAsnf2t7IkMh>X(V6;c6sn3Sa9O29=jOv5Ww_;8u2;gu*~
z2}<}=z)^&4#b1dOYgpVS`553)lJvsewQ@D!G4d%5Z<0-bPnYizUQvOQZ(9JL;lX&H
z9{B;_vGRb%zecVB9F;F?_*$H$E5Vz6OT(LSmaYVU8v&0KnR=zv0va#P8m^VA0G}z<
z8oolV1bmiUtl>3s1>m#gcEHi$6>ftx0G=S5&h^G43uQ6jbL36X+i4MZnOp++JWy~X
z>}jyYu)`(djDR~zBJKpZXTzQ;k;qvRNu3Tm5%3ujX&5Jwa#DXh!p6cKEj37&5&@3j
z8`EypF59ZtQ6{=?!)4el+GSm#^~c$Uuy!48{OSIO#``^7YlbcbLir#3FrfU8_Ml(<
zkM^QZ{vUpn{4W9i2Y($E|F1Yo{s(>f<bSlUq5K~K|D#P*{ExOH&HoMH|9bGhqxrua
z{GR~-JK%q`ahCswE<X--$!4(s2EVg^r(r*E+Al>e!ynD~Graz2zRU*{k@GaXP!<9%
zk_j4KAPWFv1VQ+h;?9$KfQw}~;L)(TTp(FvDPSpZoG75i_dfpLRphk?i!uJBQSC#S
zH{K^~#{V4e)6B(QJ(>{Lp8vJyf9?HWkuT~sBCenLpZ)7<{`)e)voTiwNA}qtEB`|^
zv-ZbQ;FwTA_5bMK&G<jG|40AM^*$Qg|9j(|+aNnaWQjb5@e;>Bt&nvoa*^DoVXi-l
zTr9iw_{iS>vG;$trW(92Yx{q1t=XRc6|wt&XfmxCR0>?A*Z*e9OqK733Fyzt#Vvy@
zW~>BCJ${{-xHm{0FvqBUp{>AahrI>%KG?@#pMmAtVGMRJ>;c$EV6CwfuoM`&6j1AX
ziOl$4t^cFAN45Ts@vvS0AG+V%mdsMXPylCFV5q!d7<Ti9V+Zdv?AndQiIUOi?N7&c
z-dLQ1vBpxsQs88yfaU*_@vGW*vJ@zc0+`g}RH!wU0+s@&A_dt0&w%ARpLbL{a|tDS
zoJRf&@9nyXn`(zqrq|Nt>hmCZbTH;9pZ!&*Dpv$$8;|0QLD>pyJ)=Exs}%K!+zN~1
z$J(&<r78BD5BYmd(xcb;DAU(q$Afrd1Q!Xk>5Dc!8s}EJ6&fJ%m0`Jhda$MGsxnr(
z#Zuf?YF;e!yHl6zX_Sfg8hCqwcNpNPO;d&U>n~q%^)wUX*t&+wH$Rb7-|;=%TUddY
z^J+W`b(AI=QDpqEsl4!xSHEgeraQ22T&5DbU;V<%XUv=Uyv(C(9)fPviAXf+^c<9)
zs7#fS-go><eA;Nmn&CxKD*LOQdk_oXxDAfWkFLy<nqEIbnSKuovcY&%%P!YZR%DfK
z!9UTTX?m>yIW9&0nxdlK$lsoH)8*t!?;F!grDV$fV)Y)b?01z0%Usy`{d+!baNauP
z)vqt0foMBju!=%69d-cfm`W@7<JAX#i%8FcXpvJHT0y>lz-uR7MS*yZoA<rEwx>ru
z9kb$jsi%Lrv*b5_(DlnjnX1ncS&O<=qk1G_sTx+{#}9q(sV<h1kGls$14X8l+;i~I
z)G5U!mBrDj;wjZt(dw#$2aBtsx7I|9KGhQ~EiJA*7@*oSf9lbz9c8LQJ<3^?a^xA{
zjT~70_uhPySHE_gE%G2NSQ6$O?^9ysZtzSGvcerdo#8ZHu6I$U+1L*pfv_TezW`ka
zv3%%kM6R2-2km`@TZS@mf75Hfz?>BfJwAnFuK%Lz{mUrRz4&~Sz<?v9l7;GVyoH%Q
zDxGOdympw8K9uQ9l+KLqcW?Jap7l|$-ut}l<4H<^{<di+DH-f*Sqhwz6nOuQ_upU}
za2=<M>(;Mx=enEX9c7E$>R5C4&Mcn|v9?%KGA5UoZ`~P7v~LA=<KBf^lU*%a>$~FB
z@nmY=E-9t&%0zo-ye&3wSE=X_Ce*lLRb_4Z!R>UnxMl9PjK?1B(URy$rd$)jO?uwp
zfvK#(kdjq($J<(UxmccN!j0{T)>xawJ5nn5IzsL&w>|9Dsv73Cbau+}WU93--aK#D
zWwN}zDYc6ar3gckrFBiIhFFVw+z@L?d6a<v+N!EX0J{^&h@n*t<>gfk%DDw@UDLj`
zJL+#pWGK*-d2Ci_m&a4}36L-;dlT{2Oz7II*9HPgpCTG^ayz=)8x>I1(71MQtgEf5
zGZS+|R?IY!>os|+8jw=+LS#;N5nR4Os;Q$T^t+P)Qi}Y&*HdNQkjYGa;B?C6<@H^G
zFcqQA@3{yyf^_Oqzx4^_w5s17@vda5v1J!Npn_{-O*_=X>R4)H{H7cQtY42J^6SMD
z{ARU{D^&s{6v)!l6+<N;(1N7uY0Jx*JRC&^x+DYK4W6TsI^!L!v3>MfuYStQlPm+_
z@^XBFR4kcFYOr~4ichmLV5fqOhf0KnNZzDTP(RY?u4?a0-KhQXs#kTl*Za~oFYjes
z7w=%8#$L5A)z#FJ%J!^mZ8a$FbV1c_PqdQ=o>N|4nSN?dKP9E9rKP*w`z4A3%gfU~
zNohgj(ADTebEiWnhl0Uwz8v7+EbXzTj>a8biFOl~u8DQJzIbtfj8deLz2sXGdz-rA
ztdm|6o^LvZm04B11#MAxDrWLYCtH`PbzM5kY}BNFdoY3zw^eq=Pzgb>E^s9I3>=0J
zozA^QC#KLc1x+I+JKN$Zk3YS(s4Lde-GyeA-@my-IbKai6lrg|KGxW&YH4FvtgR`9
z>?F`YdcoO@9g0$)dC{yE)=Qv1p-a9p(bg7kjiD)1<*HA##kxrBULNbaW8E3wuK3DC
zM+(&~P(G>kIPO_YSnkAD)AbV}WyZ{I(CLiCY|)r=FqtWbrBn*eB6+*wY%Em0fl2Mh
z5HFYc4dQ&;7v6%E1R6>>p?MA>ZfHvWe|zU2npG9X@q06MbK2DWQMi%$V>732rr|Ox
zG)o7I3<D(zH^*xmxw)L_`bR1?C7PO%t;|4>cq55ato2WAq&RAjp{9vq(Zc%240Azc
z_4&T{ob7a3UHd19&I8Z;+<SgJ=Q-bd?mhQD=icY#Q}<JFR^+;k68Rm)(^q{?6zOCE
zx<q4)U4?8PMBhp3lx7Ekp1L1p${fdI_uc59jBSd7a~Ey2Vs9&HiZY`&WB-ooY4d8R
zoVN3D)m)_TJaF4U`!~{#zBKuPHWi^f7n|pjKNb5#+bDB^{5Z{yTv3_i_YFphkW&(S
z3^)_3IGr|%XzQ`aWfXi5)><*xhiBwT`dbS&dV@cYbUk5P+DQ5(a4n#(ijbu!;-kSU
z8#^|}`hS={R2u9RHRlMA$cio?y3M3_(w5#jj+3GbDDuy7bIfeM{;AE9y!N7n*mS_)
zw88X8QHxwkqvtbhY&K)6!pKH+$U~*Koke$=^k^^o9ghAuDFVVjrCHz>Cw)DlZj^IQ
zv|-~n@E(rKGWKVI=X$m+z0Fu@b^34950O5^IElt!{{^u4lK$(h?iyz)c)h{P)_cVn
zJA2XF1$O#c%+eN)O`PVT?^UNCldxA`!R&_b<2-C3FVD28s6#FlngxtKBx<$ArH`mz
zhAvC(=;+6IIYa*|9J>{Ls=>j2jAL(!vn@S8T4hEm61}AtIi^23<F1hYf9&*2<x=o7
zPTE@frwB?SMUAQkXMN!@2YVDz?mTiUZB&px5c?;hGnY1|b4<3-2YK5Eb4<(FpN!rV
z+x@{r5wsK;c>geLK#wA5DN2VWd7a}l)*L%|SVbop!*N<^aQl$@eZad4+j5XvQPS7T
zvq{&A$vvizhpY~C>MH_EdZYMvGrnxvQ2LM}tpR=-J`5j&zk;*KTL@=^Lq06J%(0XQ
z@e*zB1Dh6fo<sg-j=^i>H^MF{^42uU<dd!_TZ*i;2z)xQPpcLKopVF~Oi=C2K~_&2
z=?B3|-nd=n_<u^8zHqn&yu08gY?TMS6KP5R8u2jgDtg&EgY~_pzM^A2VDNd|jJY)W
z6*)^@WlQ>(h1J;k0rf6|?Ot$Rg02*LN0@WLmUZPCXB^)Fo@MY3#$GAuZ*W~$#QskB
zP53=np8pvf(+9z01G*JqOi|2cfOQk?%1f%RJK}URc2$GL5p;@<QeLDt#!JZi1-;M1
zBk99-a7u$u1L@`TqmFhI{m@b|_Faa*CS5cRyS^a56Wxm`KZ)%<*zyQvuE&;9@K{(8
z7A>s<!-ceEX%79^47;SSFBQ>F(a7$nyhxGH8nN@QNGpQ7sH6XD*Q%wZzSx)pE25dc
zN^d}(#eS{uh}OVbwHxV-t1f4|3cTlm%Tjn4eVYWAoAIvt4BZS3AYY{D0hUJUoHM$%
zVuPhxbXY2K#-q}<8EoGLLra_3c$qr->hLY>*P_8uXAH^{ZE2_SV`L*2Xoa$qJVobA
zqBK|+n6a`Qd^T~6Pt%ut@Tg&1t9O<@!Jd2vvwh?>8H`SYL4j~^D2*K=t^Vo%Y^PBE
z9BEn=S%PjwQxNH^Wzlg5?<l3`SCLF!GUeM$@^1FuLEnC43p^a`r=j;m4C@{(JzK{(
zj*1?5-q`pZeS40+ttDOmbkas&v||6dgMUwLzvU75HxRh=LP>ab=c>#EUc_iEuB)s~
zH6W^%6|b&b#Zzoe-SU;uK3=mYR;1$l#l3jl@CX@yU`A0?vA2TOJ(pB0a>6B-s&*~y
zwL$zUID`^3;Z%93rWOZgQbFtbODgwgS71_UoCz7HV}g|`mS~|I6W#vUt7v#>S>5W?
zs=CS*$*Q}ZopO*S*xFq-(O||-a?^HzT}8{$5bG`&4eDZGiMhHn9q1+3y1g^`IC~mu
zR@P<C0nL>Ku;!Mjzt&%wY0lR|By&lihf3W)oZ|woId~8SHOUWVU-u0Ak(%qONY_06
zGg9{`(#u>EG?C9-lOfF^yI{@zZLsFSwXo*1Gt|?3bRO0`TS`6M-^d2$`QQNg(y5yx
zJu@vQU-!bdv#)!N1+X&*v**bp;1T#=AfOjyCUQYIdZHuD<tlR#sg9SPjO2Xev*URx
zL+T>Yh|J?Ev>7>_{bu9@WEwe;nk~q7WIIyc*Hg&F<bR9YrmNBC9pPL=)~SwA-jN%S
z)s&xre2Vl^WCd5Q`AA*-79)=%t4)5R^4Z^v)P=7Zsf%#h$QGn7mhH%y!H{q$R!t#x
zX$kR4Zw&^8*M+&^;IMy~6=sJ6c*$lMm);S<6)vD*cuhDeI2hyy*M>I*qlx8H8jKD4
zgyVz0VZSg38$EdhJOUm8kAO$OBj6G62zUfM0v-X6fJeY1;1Tc$cmzBG9s!SlN8rDL
Fz#j?vfhzz2

diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.opt b/trunk/PQP/build/pqp-tar/PQP_v1.3/PQP.opt
deleted file mode 100644
index 3c0d0a739a15af438cfb023f06a35fed161d9c35..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 48640
zcmeHQ>sH&?6&4{}Y-Y%f(oQ<*obg-&O)%k-G(#C0Yy(4rgTWp=Y3X9g^1)V+B}bAW
z`8SWy)hB2lp^wnj{_i}(^yl<fU!X(3t&8m#hZxdyfwRT>tfQl&v$sAS>xj>1AAR?a
zE8qY5FW3L6v@8osukzzzMCotJ??Ia2EteJSKRl##xTZ9+csWN5{0F`YT(@4}BG3oW
zH6H*5fd~)<h5)+G?_)g-TmsMplq<kh;2JOj`~;wKKgIfIzz4u};OD@HzzyIRz()X;
zTg5sCd;)w5d<J|D+yuseap0E#mA#Gi1P})%fjhtyFb&KAvjCO5hxM<3`@k2#9Pn#k
z9{3Vi0I1vptQUa<kOWe|60i)c0AB%Aj_?TSH6RT<2G)TLumNlWS%AuYjrA6g2fhKG
z0KWx(2W$hs2dLaxSvD05f36~M<|fv*@&X=qzKo*9gy(YMHHUpW_V*v;4}a~U^AC&W
zVck~t6i2Bls-h_po@C*N3dpd~F>9e*@Y*T0UGn3YqV-*#pVU~fBw*cA4q#s*b@Ju1
za-oO5J9J;{)c$*9Ca}Mx6crukN-Uga8HRoOzLITPI;mrn3I+CiaQ(>l-s-dJC&{_(
z{OaQ`?rx`+vX64>neEI*W@mpYJ{_N;WIUD4P+3<i(^t(~XnP}Grd4D`x;ecf{jI^Y
z>TXHR-xyv`Bz97|^VHH!*UuWD3bksLj_jkfSI7HgF=<t*x)IbfOgXEjD{WIX{6f)9
zskx{vsHrb!>;8@*q`dr~-blFZ)$REkd=OD3Tdh>2ebW&uHN7ZD6SAb6rf!zR6RT#6
zjBQbg50bW2UCLEO)<sGaYkI*}?H2<n>8iTne3_`}Mp0y?OT|!|G^MS&vMBOpX;Njv
zt3#rOE#0Z9hDhGJ71n=!vt~{ZZDF-yQ|?Mznwq?^XjIE;L6XhonyI<EWj6K>EeW@5
zTeVVIEcawZa*`@tQ_WIMEy0vo^sM;4>e3m3^JY=Co3md;<~49_$ma`Jn>@>^l;;d(
zQ;$TDzC`KuwWV<T(~P0IyOv$KEwJadXD)>zDNCzWq)9wk=6hiwD)UiFb=89E_^zd;
z<EWs!1lsI<U6amuTGwpLv36aN-B|OoW&I-fmnmmi#-8qem@lg?uG(XHAat|2^u74q
z&oip+iWwn5e!UbN6^q4+ZlcZL%2>8DN;a0LRaI>rKBZL?tl8HRs<v0FdZ&X%X6;M+
zMc@3=`sTv$u2q%hZLxFUB`!M8Y}em2N^UvcAvvj)P0O%K;M?E%88}m`?wrTnVimp-
zJ0firr6F=<G_4{?@XPw2gUe|8Te>{(H$CGmdCd)()64)fzzm#*f$#rlDE*g}e^0bo
zl9suvmuk3M;zm9v&<TqPk=M<cY4kvb#C^QYK@(B052f3B!Rr$bbhj+3w)GSpwup7`
zco9Qa;tJcc+<0^m9p1haTC*oYcLFcQp5MPW-qItBG3sE70^OwVYP&+?(I~oh@(6v1
z>)*R=ITwvYBC(n2iGuD1eQEF*Vhid%?%#pEnD9<$*HF>T$0og7y(K2oYhp4#BPLhA
z5tHjKP?#2zDG|f7)Xa3uOFm95CB9zq(>usdt>?4YTCT<ny)a3SKUJ-aj3=mK+43@J
zcd?#IiAhbwJSP*jb>N_Htaqqsbx+!_@XfD_3=|wK7Ss?tz=XZts}8NXb7bFp^uszl
zI$3jEt0KIoo|g~x{hKG^ER*`VJI~dH)*{jR1C=W)Rk4fiuBmC{meQH+&1`0NdUiIR
zOJ{<k(Fj~r=!p6MKkLzB8?Iw(+a4A4FdOTj>{f>b>6&#`W%!iqm0oD@i)XtEJqH@P
z35qo%E}u*Bp#Cj9O7*J_MFo4_!4qf(qJ9OeBMn5vx2eJSd{~92;r3R%u|en6*b03|
zPE17ouN>|l@pwF1XEmDeIEx01M8jinz73CImmbRLzz!SO{X6l*V(v%-dw_>HOIW+R
zBzy3}40JUE@{;nW@4hmXKU9paK2JV5W`G$u%0O@97adaKSpTDcUReKQ{SW`<vi^7U
ze!)4+05i}X46y#k`XBx3^|C^DjJ)IPd#wL8|1Qq@Uz0!_>U|{sH;H`E?;469>wn$R
zd+=Fw0|Tu8b;DKUb6^He$G{*){-)O+($H4c|9JeLH)fE>|Ix4JtpA<vj>1PV1I)mA
zV1V^M*8f=ld+n&p4#xC(dRJ$I_587H9SjuY@qZz!JpS)I^d{`%d1Qd~zw>z2*k@+o
zf5Sk#`0G3(l1;=VQ(W}xmKfrXX|4c2`na?B<BzG*ApUq2QS__I4n8-$c>34bYu%6d
z>$>eu<DYM}vEN#6r`yp}*uUFkKdBgqb$9T$1=b}P7nnQXMEsxl{D0GAzZdb}y?E4&
zBn{PZ8gZx1A*n;yFErX8hP58eX$euik+<wUr>bgF+{Dp0=fqSP2R7!6N2o#y{0X9D
zePgY;$JY@=%dVQcR>SM7DY-8VMCy8x!^N8BI?+a8^NmI_jK1dhZ;t=w`0q|{c3h4b
zU<SH|0oH$6|7HD`_1}7^eIs)E<<N1C|L&T5KA#9P(98hqzs+oLni+Vv7<lqGf8gge
zlH^)ucpAt&tHz5Crf3{glEIuw?aH;wqd7Kvz9lXx^{+k}TuRH8W;-casFhw-vVU+S
zn@wzDSn80H%&B%sx~rHmsGTvYI4IsXIFfpp_di+x!-SCDv^YHfBhUXxUlLxJ0cL<1
z@EKtJkM%#+|5*QH{jW^3%mx#T^8An7KfXH*u>SY%Tx&j4W}uaUQ2)E)jRJ&b*AuDF
zyG)whfWPIvK&9W0U7_rYNQQYie*X)<{{;cl{Qehy|4Zxbg}0djX5fr6!1^ESf2{wp
z{>S<s>wjmoi(<FlG6Ssty=8*AdS>7ZGZ4Q2`S8#iXO}dbWuuritO5lEli#fW@%x{p
z!|#9Q_dlQEyBNF13@`&HWq|cR*8f=lWBrfyKi2<F+IMjI?qGoRzwWq>d=|{WX&6Xh
z&cT9GQ%d-gihbfLu44YjJ{%PRI-P&<Az2CLe@tPPNe%WZux=_Y=0QB!GIEOf7jsSa
zPiC!s>2U7LPS3x6EvL_Y6Z=uT|HofK?=NDrKd-u4c`8gyhl!amF&lbIgF$)xCy)Q+
z@t<IT$A5;m1zs})%)l9Efc0P2e_8)!{g?G$)_>1<SH<qVB?egkeM`i0wamadV4&Z7
z?Y99>S^ty#{%?N&x3*WS3V#3hIk<JPi_8Es@CFR9{>S<s>wm2OvHr*U-y3uzeCRo5
Rfc3v~eDT<IX5bAO_%A+qXFC7@

diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/README.txt b/trunk/PQP/build/pqp-tar/PQP_v1.3/README.txt
deleted file mode 100644
index aeca6bbf..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/README.txt
+++ /dev/null
@@ -1,206 +0,0 @@
----------------------------------------------------------------------------
-
-
-                             PQP v. 1.3
-
-                    Eric Larsen, Stefan Gottschalk
-                   UNC - Chapel Hill Computer Science
-                           geom@cs.unc.edu
-
----------------------------------------------------------------------------
-Changes:
-
-1.0   - first release of library 
-1.1   - fixed a bug in calculating query times on Win32 machines.
-        added a demo 'falling' which can demonstrate all of the proximity 
-        query types. 
-1.2   - altered the triangle distance routine due to a degeneracy problem 
-        when edges of two triangles nearly intersect.
-1.3   - now use isnan() to test for NaN, instead of a comparison that was
-	sometimes optimized away.
----------------------------------------------------------------------------
-
-
-I. Introduction
-
- PQP, which stands for Proximity Query Package, is a library for three
- types of proximity queries performed on geometric models composed of
- triangles:
-
-   * collision detection - detect whether two models overlap, and
-                           optionally, which triangles of the models
-                           overlap.
-
-   * distance computation - compute the distance between two models, 
-                            i. e., the length of the shortest translation
-                            that makes the models overlap
-
-   * tolerance verification - detect whether two models are closer or
-                              farther than a tolerance value.
-
- By default, the library uses "RSS" bounding volumes for distance and
- tolerance queries, and OBBs for collision detection (see PQP_Compile.h).
- Descriptions of the bounding volumes and algorithms used in this package 
- are contained in:
-
-   Eric Larsen, Stefan Gottschalk, Ming Lin, Dinesh Manocha,
-   "Fast Proximity Queries with Swept Sphere Volumes", 
-   Technical report TR99-018, Department of Computer Science, 
-   UNC Chapel Hill 
-
-   S. Gottschalk, M. C. Lin and D. Manocha,
-   "OBB-Tree: A Hierarchical Structure for Rapid Interference Detection",
-   Technical report TR96-013, Department of Computer Science, University
-   of N. Carolina, Chapel Hill.
-   Proc. of ACM Siggraph'96.
-
-II. Layout of Files
-
- PQP_v1.3/
-   Makefile           Unix makefile to build PQP library
-   PQP.dsw PQP.dsp    MS VC++ 5.0 workspace and project files for PQP
-
-   src/
-     PQP source
-
-   lib/             
-     libPQP.a         after Unix compilation
-     PQP.lib          after Win32 compilation
-
-   include/
-     PQP.h            include this file to use PQP classes and functions.
-     PQP_Internal.h   
-     PQP_Compile.h    *WARNING* you should only modify PQP_Compile.h in
-     Tri.h            the src directory, not here, because these files
-     BV.h             are copied here from src when you perform a build
-                     
-   demos/
-     Makefile         Unix makefile for both demos
-     demos.dsw        MS VC++ 5.0 workspace for demos
- 
-     falling/         source and project files
-     sample/          "      "   "       "
-     spinning/        "      "   "       "
-
-III. Building the PQP Library
-
- In the top level directory, there is a Unix Makefile for building the PQP
- library.  Type 'make' to create a 'libPQP.a' in the lib directory.
- The compiler is currently set to g++ with -O2 level optimization. 
-
- In Visual C++ 5.0 or higher, open PQP.dsw to build the library.
-
- Building on either platform has a side effect of copying the include
- files needed for a client application to the include/ directory.  
-
-IV. Building the Demos
-
- In the demos directory is a Unix Makefile.  Typing 'make' will perform a
- 'make' in the 'sample' and 'spinning' directories.  For VC++5.0
- users, the demos directory contains a demos.dsw file which contains
- projects for both demos.
-
-   sample
-
-   This demo is adapted from the sample client included with RAPID.  Two 
-   tori are created, and proximity queries are performed on them at  
-   several configurations
-
-   spinning
-
-   The spinning demo is a GLUT application, so paths to the GLUT & OpenGL
-   libraries and includes must be set in spinning/Makefile, or in the 
-   VC++ project settings. When run, a bunny and a torus should appear in
-   the GLUT window, with a line drawn between their closest points.
-   Pressing a key alternately starts and stops them spinning.
-
-   falling
-
-   This demo is also a GLUT application, showing a bent torus
-   falling through the center of a knobby torus.  Each of the three 
-   proximity query types can be demonstrated.
-
-V. Creating a PQP Client Application
-
- "PQP.h" contains the most complete information on constructing client
- applications.  Here is a summary of the steps involved.
-
- 1. Include the PQP API header.
- 
-    #include "PQP.h"
-
- 2. Create two instances of PQP_Model.
-
-    PQP_Model m1, m2;
-
- 3. Specify the triangles of each PQP_Model.
-
-    Note that PQP uses the PQP_REAL type for all its floating point 
-    values. This can be set in "PQP_Compile.h", and is "double" by 
-    default
-
-    // begin m1
-
-    m1.BeginModel();
-
-    // create some triangles
-
-    PQP_REAL p1[3], p2[3], p3[3];  
-    PQP_REAL q1[3], q2[3], q3[3];
-    PQP_REAL r1[3], r2[3], r3[3];
-
-    // initialize the points
-     .
-     . 
-     .  
-
-    // add triangles that will belong to m1
- 
-    m1.AddTri(p1, p2, p3, 0);
-    m1.AddTri(q1, q2, q3, 1);
-    m1.AddTri(r1, r2, r3, 2);
- 
-    // end m1, which builds the model
-
-    m1.EndModel();
-
- 4. Specify the orientation and position of each model.
-
-    The position of a model is specified as a 3 vector giving the
-    position of its frame in the world, stored in a PQP_REAL [3]. 
-
-    The rotation for a model is specified as a 3x3 matrix, whose columns
-    are the model frame's basis vectors, stored in row major order in
-    a PQP_REAL [3][3];
-
-    Note that an OpenGL 4x4 matrix has column major storage.
-
- 5. Perform any of the three proximity queries.
-
-    // collision
-
-    PQP_CollideResult cres;
-    PQP_Collide(&cres,R1,T1,&m1,R2,T2,&m2);
-
-    // distance
-
-    PQP_DistanceResult dres;
-    double rel_err = 0.0, abs_err = 0.0;
-    PQP_Distance(&dres,R1,T1,&m1,R2,T2,&m2,rel_err,abs_err);
-
-    // tolerance
- 
-    PQP_ToleranceResult tres;
-    double tolerance = 1.0;
-    PQP_Tolerance(&tres,R1,T1,&m1,R2,T2,&m2,tolerance);
-
-    See "PQP.h" for complete information.
-
- 6. Access the result structure passed in the query call.
-
-    int colliding = cres.Colliding();
-    double distance = dres.Distance();
-    int closer = tres.CloserThanTolerance();
-
-    See "PQP.h" for the complete interface to each result structure.
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/Makefile b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/Makefile
deleted file mode 100644
index 15bdeebb..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/Makefile
+++ /dev/null
@@ -1,16 +0,0 @@
-all: 
-	cd sample; \
-	make
-	cd spinning; \
-	make
-	cd falling; \
-	make
-
-clean: 
-	cd sample; \
-	make clean
-	cd spinning; \
-	make clean
-	cd falling; \
-	make clean
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.dsp b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.dsp
deleted file mode 100644
index 34512688..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.dsp
+++ /dev/null
@@ -1,83 +0,0 @@
-# Microsoft Developer Studio Project File - Name="demos" - Package Owner=<4>
-# Microsoft Developer Studio Generated Build File, Format Version 5.00
-# ** DO NOT EDIT **
-
-# TARGTYPE "Win32 (x86) Console Application" 0x0103
-
-CFG=demos - Win32 Debug
-!MESSAGE This is not a valid makefile. To build this project using NMAKE,
-!MESSAGE use the Export Makefile command and run
-!MESSAGE 
-!MESSAGE NMAKE /f "demos.mak".
-!MESSAGE 
-!MESSAGE You can specify a configuration when running NMAKE
-!MESSAGE by defining the macro CFG on the command line. For example:
-!MESSAGE 
-!MESSAGE NMAKE /f "demos.mak" CFG="demos - Win32 Debug"
-!MESSAGE 
-!MESSAGE Possible choices for configuration are:
-!MESSAGE 
-!MESSAGE "demos - Win32 Release" (based on "Win32 (x86) Console Application")
-!MESSAGE "demos - Win32 Debug" (based on "Win32 (x86) Console Application")
-!MESSAGE 
-
-# Begin Project
-# PROP Scc_ProjName ""
-# PROP Scc_LocalPath ""
-CPP=cl.exe
-RSC=rc.exe
-
-!IF  "$(CFG)" == "demos - Win32 Release"
-
-# PROP BASE Use_MFC 0
-# PROP BASE Use_Debug_Libraries 0
-# PROP BASE Output_Dir "Release"
-# PROP BASE Intermediate_Dir "Release"
-# PROP BASE Target_Dir ""
-# PROP Use_MFC 0
-# PROP Use_Debug_Libraries 0
-# PROP Output_Dir "Release"
-# PROP Intermediate_Dir "Release"
-# PROP Target_Dir ""
-# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD BASE RSC /l 0x409 /d "NDEBUG"
-# ADD RSC /l 0x409 /d "NDEBUG"
-BSC32=bscmake.exe
-# ADD BASE BSC32 /nologo
-# ADD BSC32 /nologo
-LINK32=link.exe
-# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
-# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
-
-!ELSEIF  "$(CFG)" == "demos - Win32 Debug"
-
-# PROP BASE Use_MFC 0
-# PROP BASE Use_Debug_Libraries 1
-# PROP BASE Output_Dir "Debug"
-# PROP BASE Intermediate_Dir "Debug"
-# PROP BASE Target_Dir ""
-# PROP Use_MFC 0
-# PROP Use_Debug_Libraries 1
-# PROP Output_Dir "Debug"
-# PROP Intermediate_Dir "Debug"
-# PROP Target_Dir ""
-# ADD BASE CPP /nologo /W3 /Gm /GX /Zi /Od /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD CPP /nologo /W3 /Gm /GX /Zi /Od /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD BASE RSC /l 0x409 /d "_DEBUG"
-# ADD RSC /l 0x409 /d "_DEBUG"
-BSC32=bscmake.exe
-# ADD BASE BSC32 /nologo
-# ADD BSC32 /nologo
-LINK32=link.exe
-# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /debug /machine:I386 /pdbtype:sept
-# ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /debug /machine:I386 /pdbtype:sept
-
-!ENDIF 
-
-# Begin Target
-
-# Name "demos - Win32 Release"
-# Name "demos - Win32 Debug"
-# End Target
-# End Project
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.dsw b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.dsw
deleted file mode 100644
index 9aad33f8..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.dsw
+++ /dev/null
@@ -1,53 +0,0 @@
-Microsoft Developer Studio Workspace File, Format Version 5.00
-# WARNING: DO NOT EDIT OR DELETE THIS WORKSPACE FILE!
-
-###############################################################################
-
-Project: "falling"=.\falling\falling.dsp - Package Owner=<4>
-
-Package=<5>
-{{{
-}}}
-
-Package=<4>
-{{{
-}}}
-
-###############################################################################
-
-Project: "sample"=.\sample\sample.dsp - Package Owner=<4>
-
-Package=<5>
-{{{
-}}}
-
-Package=<4>
-{{{
-}}}
-
-###############################################################################
-
-Project: "spinning"=.\spinning\spinning.dsp - Package Owner=<4>
-
-Package=<5>
-{{{
-}}}
-
-Package=<4>
-{{{
-}}}
-
-###############################################################################
-
-Global:
-
-Package=<5>
-{{{
-}}}
-
-Package=<3>
-{{{
-}}}
-
-###############################################################################
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.ncb b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.ncb
deleted file mode 100644
index 40973a4585e91f24a69abe9182fb8287ab8bc0e0..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 377856
zcmeFa3z!{8dFTC}k!0Pk9^Y+zY|CKzB3bf9wy@=~EMpr>Am0QS@d#Z;^4O9_mPWo|
zz!44(i+R?BI3X7ZHV&J>Cgg%w5CWSE&&QGt3tyIeu=x^TvrfYIJR7_~c7c$@-|wyN
zKBxb!IW^OBW;A2FT2HIyJ$32os`}OYR&{mt#(^CN1`iJI8fsp*;<^hiXzo8Sxck7i
zz0IB5hPG|rcCf#>YWc+%&!2PZYi}^K>1GYPw=vW(oA<vSYh24u=}0AzO5nv@0<Sdt
z(X@yE`G367;rJK-{Xf3&!jFIaPX8+%sRU99q!LIakV+txKq`S$0;vR238WH8C6G!W
zl|U+iR0634QVFCINF|U;AeBHWfm8yi1X2m45=bSGN+6ZMlq&&NE;R19p~Ekv=l@f#
zZc>I)38WH8C6G!Wl|U+iR0634QVFCINF|U;AeBHWfm8yi1X2m45=bSGN+6X$DuGl2
zsRU99q!LIakV+txz-UY02k*bQvHBecSI=c3z+*GaR_xohxBno{j_oUkwjJ2rKQyp!
z*I*{^9o%_nPk&Wj@tQSTcJ~kN-LmPHO<V6<xn*bn-ob-g4sP4Ke^39Gz1s%%E#I+!
ze>s5;5%v%4+c&Up_gJEA+%~kif5-B>>Re@TXaAnMISX;}t7L_<BD>G#Ma?%1?7L)D
z^Va@7{p^}jF28D!_5Irq?bZPKt+!GcMG(2ref<Xx4h&LyT2m`-s9Q6`M~K!;Jj$>&
z6OTeG8>VJP6G!WR*ciLE?b#C=S-C2+c0GJ)6%j^%BSnlF_tA<XwB#);_iQx|sre3J
zN)0H#x$D+!dBaVwyYjLv>#x7<=G$MtDW`S$s^tZ-!)Ky?^kJ*7#^r~pnUQ11x|>nN
zj<)bR@yB@c2U{7)@BU1><4ZYvI2Zr(!GHR_s}}H=*;3zn3HRO8%udC<9rqO6?{j(=
z{x}g%!1aUOn(QvZd(0bf=i`1J{}XYa$2|%6xA}b$?iUH%#Jv#}a5nCrk?!fZXW^cV
z`(DB=#C;FpJa2C#elPClIp=Wx5&nyDU&T2yKS|1NCj2XKKTbNQ;l7b`7U%Z~zXW$K
z{%7ENUXJ6ONu;xI-^)3h^IWcTJZ?HBs05xQT`Hn^zMUVg@OUmSvt>a(?DD<VJkQPx
z@`w1Jx@)em3vn9uH1gM|q&NQ2mm5z|d3WLdPkws<*8~0xu2<{_bNAPAy#aqZcmESE
zZNR>PyNaA#WXo-ZT}*B+ph2BWV?L3_ak9OVrga{9x{$ExNF|U;V0=noRQ$uc@IR>h
zm-~;<UzEasnQXd$(Vv`1U*Y}7$LzQ8Y1oQf{=A*U&pp=6<=?Sq@t<bj4ZVytKWZOE
zp3#z@4n5CIJ1-CaY5Oexv+Qsl{?&FD@@)HHF5hEA$n))QbNK`I5#&Wdaq(00etQD>
z1bYa9{-}9{twBD~Hs$hVb{X<XwmO$D4eI%1yS^p6|0(uk{-1u8H7}+Qa}~WX_g`r%
zkx#R&xqP`@j(ob^De@WC-;!73{|eiX%h~nMv^!d|$8TEEAD_~=2cL6nmHTu3OG5sZ
zn*Zwev)Vkpb8WxKue3ug`3n4BWwTwr%k%H~Jues>9)G1>g1pQ=fPeX%N%_0{<I3+J
zMShm^v-$5|$Ngsh_m^<L%31vOG%2q|F3uN_&nU^o@9z4wuH>5QI6K87dOAi~0_PB}
z*w6D5DC!H@*VChZ>U){{1>7HC*?kSy4Z-JdA4Y-yBkp?S>EC~>;rhQ9*Y*EWT-X1X
z;u<Nf$94UGd+zSUb%SvzcOS*2ec8|9dV0^`dU~J2_4K}g>*;(A_hQ`Va`zu||LH%-
z{CjcVh>^Jz*VDf=ch~2?-;V3)?8NnShH(9QkK+3EelGWaCinjo?zLDTOYF6_yK#x#
zY#ShAjlJ5gva2zDPl4^z;P(vdlnaB^vKB*iZNsgVTN<}E?rgZdvbgc4MrO^t0<(D;
z3|;}F+;8*pz~iYI-wkVKe4kd~`*eFN)->78`@dJT<gEY8`CnyC;h*qb@lSl=pZs;=
zzvv4llJ{yKGZOz^UJu(lsolf&E$X&G{`c9vUfcFp6u$e<=$V7h&)6Gs`H99a^Yi=c
zExG)wjgKS$tX-4KgN?T%e=zhv@1b4(2B+WqM%vup5oV;nKhD*PFwYR@k2zi5hwJj}
zJdGKodot&@`R&P4oO1kMz|ZB!aEmm`@^^^e19T^HKFwX1We@)q;uh)M&)=?}FQN_m
z@mMZr`i%i4zq$Vfv~xcW=kkTQCH^k1MUu_kJsxwKeJ?Ms(|gWEKF)ra%gcIJA<wpN
z=kkJ{laS|GKlkAAf5o06Wrmo!{{@X3`T2OeHJ5*?@i_8H_Aj}7dC!f+Kh2)t|LK?w
z7u!bSpKdqh>3x8@@}cVca`{>NedML~NG|_-`yJ%-?7!#vKV{n8_*~eMpXphMe6f9z
z^gVxf+FJ>KiOtXBzl*kG*aY9m{dd~k$gAyXm#16v^>zpHmG*~u`tR-eAU;>w+w%PX
zY2&|=>^1hoJiYJO4CL$VC%HVQ@hapS?8CYId3%oZHrR|j{)WaI@ZV%-<?@!s-N<*?
zW%>0s^t^@Zy~!RyCP;HfPe1aVwl|mG+OrM$&Gt|(Z|m8Pyv5$0%iDW)Aiu@DR7kk_
zYxe70|E>0m`Srfh_-lUNX<y6be{M7gzuW#xF8^cWhxp%Z|H`i(|ByXE{Jpk3Pw#R2
zx5$I`R383s8h=Z$du@9zf3oo@<U{r+x%~e%o=3jlcIEP?8=pgdo86tuf7JNDkRP$*
z^7Ms&uAlhN`hzO}CsAJhThSjBuJ>zyN?UM04|AAu_P_o2a{m>Ry$|y^)jqB)zba4n
zYOZw!;cv&?Upb33{+_l}{O$dv$Nde?;r{k;-p>_rJZ%sAyPVZDT<-L{=e0<Ge;&6;
zvv56(|6TaI{2IcR`}NWM=J%71R07Ac1Zes`aod#nzb)<Y`eFQ+%&d(63BSTt5;dFu
zTXKFoeh80$F<%hI|2x|0h4KGBYktwbO3D~!a6>}P|7u@H?y*yu#di6p8qeSyXCK0t
zpFY=`YtfZHwfq&A@$a*1k!RUwa`_tTL!NDap3B#wOMPnk>Ri48UF=ijn@Dx~vcle;
zR~gUGuZ-sx*up$Ne{Jt1=0cm9%b&9^klrHu3F+g}{BW3m=(X?V^1roT!T%)tj>}x{
zK(M4v&&L1A+4%pA%J}~k+4z6G`}=tO%*yz`Ss5Rkm5m1|&%d<4B>Xw8@xgzy|Au_7
z{Y9Ri_2^n-7B$Ql5dLEguZd;Zd;$5-#tY}$2Eu#!`bfvH`R?I<UG{O0+ebI#{#S<i
zk&EnM_n&3Wt86X)%k5pce>UH-!nWjcHXm}aJ<;;_`Gl2rsO7&Bc~$6}y+8Kz9MWFL
z`DV_K5YEp($j_$<U7Z&w;?)_8l+!5w_H<@aI_{R|HOk`-zkYFgJfE+)o4ge+-Y<&d
zyX4aC`{mS~A5Z3TVc$QO%f<NM8@XJJ2a54Q(SIDy{e^$*;pqGy^G%)R|8#zDdS!lZ
zMrD3)c4dBVUS)o7ab<pQNo9WT_)34!Tj>u@$maJbudF?vn9c7o-<GxalPdFjCs+7B
zr82*lkN-)ptMNbApV09?`Fk;q|7n8h7-b2JYW#ow6d(U%Msz#=&&K=h@qacSkdObF
zUx<$XxxS45k<<8p3XT7%kC)5%-))lWd|y>A&;O<Ie`e>U@&70lMhf<lDuKejFYNs>
z+4tCog?;}yo;k3fthtxDSs%~8KbK!?{m9eplexS*%$Lt-%_m<O#*edG^S>8|=k4=b
z^S|rtM&d6FV={k6;{Du*^XD5rPP>D@`#ImnIh^d{xpbrwNF|^pa0Sno7rw>q=PM1Y
z?0NX%DICxHmNT1X7I@y#$86LU$OX@R=JQvx;dw3bnLk{*if3c9N#SOfFR`VU!0&A4
z?*i|K`gk(78hNH&7{d4QywTI2Wk2G2i&wgQ5%O%GYb3owo?~Z<JlA@rPq&`N401A!
z^EgiaHD>X@=WdSm49*<3kJwB)-e=6fEuUH%NlGQ~@+yJ90rK+m{i;1Ms`<TP^#5V|
zX$lg>O!|v<TJvYZ^WJHhJ-~SEwe}GHGg|gQ_PqAE%pPF8o!J9(GJD{F_fNjQZb4=b
z;Gfw8ivsJe?-z2NiM9!zd;fveeoLFMC4Ak0&tUtSkm6WZ{4u;cYZi~lXFXw$+-Q$r
zBQ3RS9|-}^n_-Pd?6v1NZBfGxuW#JMuhY%?-pXS{F2@B&IL>-B%hyHprQTmNUCu!-
zo*$mCzC|QCrh}WspyU6}N8^#c;XJR)^Ytb2<a&YLo92+^Zn*H{{#(e`Ba7^C-xJMJ
z;uq!lD*g1b{WIwQrqAzQg?29M{}rL8g8tv%$J3rQ$T`o}$J3!#Bj-F1WcI;acz$YD
zW)ED3zMqSJF6;w;zBHFB1p5Gc;Zk^>i~bMxL9-9*<4WY&nSIdg<9UQ%e@<o}AiI4q
zmw#pZU@q&2+V;V6eCN}`unE@8#C011TY+l?8zI;W*aw8_IWW(9dS-X*JD#Q-lD+V<
zMdD?3<E~wfdj4<i@%&-@-99Lu=N0SC%kTeWufAsQ92Re~HLGvLj_NJps}2tB92i`F
z*IK)3@3x`4{ExGFt$6ueXPduCYy<m-Z1{v)FVGdQP<m2(2DXQ^ZrHG5_nt#TA-U|e
zOcFf1c%}1f+kR-@z6Z_UU*72N-`UXMfkOwgU$+hoZryoc+x-@N&d<DBKYC)ey?^(>
zz6WgQ;Gyk%a_K?aIdIUnJv6Y_cp>;c+v(!YAd@~n92gv0>Hn?r|1Pm@`v$n*e!FSk
zz|iJ_{`>n6P^LQv@3;E~2X@-c{SR&*+;(8+b?fZVzJmk1_x0~=?zn5)f#yB^4|<U_
z9|-?HNFEOz>?f4}wsm{v9L$_7$W{+C#H+#tx?#iS{sTk(4_tDe?b<WAZK%1q`R3*&
z&9~$?(h}GC?XCABxPITx;NG-zk6&f|z`^}{wmq0%k9Wm)Sjg4+&GVZ`_l;0fMe&Ck
z-g@2O-u(l6`n{&leu%^W*tm7mO}1lj-@&0~Ubq|gAK>10=RbOd-Fp4C8=4!loag!9
zxGRLR*W9$>da|<1vRJlx_{ha=Z_cA-!EEEe&i;Kv14CK680IpYj}CBqk%Ju@Lu<-n
z9njp}j_2kbo7(|4=K*Zvj=?>6c<t@T1pg(I57@>BHtyei)Sa)C#IwR`m&>Y{Z^*6N
zm`hk^+shkwe*D8cWY(XoK>zv??EeQw?hjVkrF13vdZ1E&G3@(4tbaNB{U2XBfnnbh
zMh(s4{hwp<{J*sxD1ZLnZ_RA|^C+MHbHDQZzqP*S7(M@IJ<pkqdnv#C{hzao^*m#I
z|A+gL_5b1ihJXLZ$6kKcS##s|Rk7B_-I3n+sjkH-ufrKGoe?^oTmxi1`t1h>T7Rrr
zv;X3v_shD%(CHHdpOxict4hMY?C<RVHEZ?_9iXod5!bBY?^ek3?f>@s#>n<I?T44!
z7x}wb_vtI}eXXglnf^9l`daa~@SDHG<?nT!%-{Y#na_Xw`hGwBJ%sYH+<~qfKBre4
z{!W0esrPm4ehkb1!3zJ?^?)V5gFP^0%~iIBoMrs`{J)I<k!Adk93B5NKOp1(W@Y@3
z|9Fl6{TV{>o|?a#_a#nWbKdFjcP_mB`QdAPef@oL_`3i;a(^1f*Y*3mBmS)QIb`R<
z-`(@|`@R;~*U9@lg1>*~>xO;xyRW79_fx*f-`~ddcPadR6z>`RJ&OF@2lIC>{2dgZ
zgYYrG^Wptwu`c_&g#UYFU$gDcHT@mPkC6v|HsW)iK4$XcedNR6zwmct{5=YP7tz<(
z`+Fz;4vMeC_Ws}3g!{U%;_!DY{JF8e8{lii{rJP&_4gHg&77|*@wJxzKIDE}e=ow{
z9q{KtKIZeopVu75eT2B)2l#VpKl~j9=i0}5#o>BnHNW}cD=X76J|z&w|1=*N{}1^5
z|0It8tup>ct~LH=o*|6?2O0nO<m3Mb{doc7|C@Xkit+!pF^>OfgK7S+()QB)U!_1^
zJR;pSv+4_(;w{<#^ao=9Z>re;*vB#-fLzx9<@thP?SIlg+WtQYvU2;M^{mI#{wF`#
z`r9$C{|)`;N=kB)*8g(-ab5pgeg8kKZ+;Qk|1Tc=COxO4;{TZn{|{C8r~Q@rXFgG%
z|9@eG=l_l3dH*P$|A#sK{Q3VEhI#&v?)Pz3b&XJ``FyugF-yDSKkzY${B!+r<)89+
zQIG#8ovIg425A0aUcu)c)^lFS^Skw&#d<y;pOy7_81KV>dH#P9_W3F7h|$aQyOsXD
zANgcb?Zw{yGHJPd0(<N9^6U+>+humoI2CzbzCN&z8AzXlTwveI!=K3BJH3P~o+rA6
z(#w;IpT~dk9$V@*OD{Qlugml|3y9lG8pZR*c{~g3<zMl<aenYW!JhT-(`@M?;`VZl
z@cfbdc-UU__d7#+ea#s>N9^SuiuFn}d5-A2euVW(+|O~r|J3Yx<gP+Kt@S+eIQpSp
z_9N&C&m<RE&j4c%fA+YWG02{U{O#kCMV#J;v36+><CEpZGfT!V4W3%AS&ZNDoV}bU
za4rdb+r5<GyE(m|^K}oWaGu4vjB{OnK25#(7}{N*<M6OQ;@(^?)<5~*MZZ}7z3_K8
z9WU(?7}fhf=!4>Yzrz%V_Xov#;c?mjgZD?f+W#ZytBvF=-~WU3Wd9Fj+5ZE1Lihh5
zKegWfS!B)V{vYIbQuqJh`f2}<x6^~Z^!EQr@Bd`FF}?ru($;h7?uIXc;(h<({r&K~
ze??`yk3N(6zWr+dyFE~(9_IV@TC-TUTD%XmFFdtjwgLOppAY`3{X3$}%Ekk`t=Vt)
zAkS{SFElee`JCHYAH3DJ<3Ddi`?qZKx=ovoR0634I+sA${{vpD`+pSseLP3hvb{g-
z`+?Q{e|EI{i(%*gSsxSK|A+m4Wd9%fi(|U~59?`seR6m*!gBQnvh4pu{%h_3L;hv|
zALQu%Kf(VBu0P8Ce+VDl{|EbB_WvP#SNs1^9<u)r>DAi*hxKLIej+d3{eOJThVKXD
zYbd7jK{lB`^Vzj*QAS}8%wYYzAAx`L^K_pj=Lr1ovgWj~awuOPc#AJT=?VT}et`ZY
z2>ciL=lNh^4}|@{rdjhD`}g>=kcVgu<WJh~A?N#l@$<5V?|hx_|HXO)-)XnJ|CjHl
zTi*ZcjPRL>eE%=<ccz_%e|!HgpIvP2|3!OU<W>mwgs&;#&YBA;1K%I~`j+he%rZLv
zr1u}p_v6g>{~~|CWKZFr@Bh_f&9{a3fb#vnrdxB5J&1q4{}<t3Zv)8r{$E^gvCmp^
zPrl~Hub;{J{$D{p9{-$w;%E8I_y3yVvd2Hmmea;OzP}6MpYFIKm*<gpUk`XzF3+Yc
zm?q8k10#QDvzMsv4;JQgiT}FB7s<(at^L4!e${7z&&lJ@VeZm+MqKO<=HF##?GHwJ
zzVET`4|X5HJU=HfSIX+7)_!5V%wLxG2lM$~zBbj`AI#^EeZSRWf3Q<2tMdL}zTdL%
z4|ZmrpIL55@&=aAYZm8Z?HA_jrTlc(i@cQAD7xR%<kru^J}vr(!kw&sg5nD;=_1_q
zoW=aV@DJZn{^=itf9jv4!cpjd;U9nDA6fWE7XFc={L}t~f5Hp@_(%DN?<oJIC;TG|
z|Hx7P@fZH#S@`Gr!ax1VV&?r@{1adJ4|0ir`o}2$^smA{@oVu<exv-8UX*|0NBPG;
z%0K;`@X!4u{&T>(bo}{$w*Ei#+eqFc=rMg!v#GyKtTgv$v-ep)#%12hGpKXI<(9QB
zx{i*jZ_%TRp0Me2*8kelb9+$L4c9ue-rou{et)#f<4gbMV0!;|xPomw(l^}CQ~mwl
zduUs3|Il(c+Vvbn{+q0J{{;CuR_(sbe{tWL+b)kc_Ww#~_eaRrRDAFKo8-&)F>nhw
z%r3ffBY(LGKjP6x)pH(oG#)+br~HRj$?!aVxMRz%th|nMfAZyTCHuR{<8zR&N2dSG
zqU$v^&r>U3>eZ6A=J~pFiskDcc4y`FBxN;~+SgOB%kuSE@->y(*ZDiMeEpbw`Tonx
zLJhCV>iNbcwg@%&hnqf;*Za~|{SWtt^PjE%t@<{rKd8KY(W0|^W}UwDX&O^s2HO9~
z>+#*>soQ+%#mZ8%EFAs!F!`GE{2yQCaD0Y*O{ID)^7RkoYbx~<MZV6YL!C<cvB=jg
z<m*`J$D<oq@k_h6E%No#<ZCLnuitmYNMA9W9_q}0ai5*svFo9tygH?veorNkO5oU(
zfcIklUU78(ukQSRzcq{8hxxzKdVu2lpECc){Ey84G2bKef6Vtp=l`tc{2%je(fNPo
z3;l^mYyO|~W&V%+M(6(sFZ2J%GXIAx^M5V5!~8$~(fL38qw|0G%lsetm-#=+SLXk@
z|LFWb@n!y>@|5{M<}ai3|IAmW`G5Uh$Yjm``%{^>a84yVFU|k?lvLXPuh1c5cEh~n
zBOUkuOY?s`vmDsBZ(!f<E!n0hJNECl8`f;u-9NZ@i|-<I-^wjJ`}YnW+)`}om4~~_
zc5U0Uhj>SA^Hu#l+ZAlsH1nXXB-@*<u=|nk!?kA3UiSPd{@nIJ@h6*U`NmUQ_Y52y
zDt=?*tF6QRenbDz>kjQ@3zycOEVuO!-Epu#-@IyrC*d0|5x+>v_qZZL_?ca}`X9*m
z$2yR^yK{GY5rJ#08+>3Rc`a{Nb$-RWoqxjLwqqN6g=M>1HE)$&n(`luy`-W=*V;oX
z8me8lXSa4jW1B5@9J{Z7$8t8>ipMT?RJ)%~s_*OHc3>-ozptMb(E4lez6bLy%xDsJ
zaHxO3?K`x0d;fv0gS)o6cre>HZROUXe#D*at=94l)m9ZAVdu4#VaK(7S)5h5aO=v}
zj#=lO-&`g|cKdLCcIzs;eHFDhFtqi)u&3JA`?F2ec5L6e*LO;@@P}`Q=6|u7TG(aH
z{~ln6Gk5bAWg7;!?cBtMbge8j&tqq?S5kADk=D*znfL95cd;?rF19$^w{35~-FvA2
zz=K<d9^Bt=2SZaB8r;)=VB5YO{dV1&EpNE#byr@tW&QQH-F*A&H{~EMU$wk|u?0?1
zGc}?(SIZsqJWl7nwLQO)=Kr;nS|yX_|4Rik_W7VR|6eLb{v4@&jpzKoUb!qa%fiur
z4>Qj`Rp<YIf7+j<`Tx8Iy=}GH*U_~aektZ>r`r7g$MSldYV-d+Jz4vDG0y*YXab}7
zdF=gt(Z0MTHdz}<dyIeocYV$E|Ey1+)bIatefj<`_jgR!|Fhmd`u$(>6J7t$`wjB_
zU*zcbe@QR8{-5%Y@Bi|C$4h<ve|bc`V&9JKD;R_w+S9*cbVIEWV~9<Z`-fIkN7T2n
zf%G;8FR?J$sJndKPD6w-egAh`dq053=_!^pNBI8t!S?%v#r*%#`+xaLXeN&H{$NV)
z{{;{7{a@O@?Ej0Lz2B4X|I71`OdjR;e@Xu`yPT3eJ^P;b+1C81eH8f>nG8=)ht=fG
z*7|+f|Cj4$-}COU|1atL_n7>9;J*JTla0v!zR{~}b}qk|_x~x@;J=vO2k`d-igy7D
z_gFj=@bwD*eqXV_$8)rT^80>)Z=S~$?*|`te|Rq52QJq47yAVj@B6-3_W%9bj~{D%
zjXvi&T%!*D5%*$e;GZ6AoB)HXdFNzz!)dyVw_E(HWh;0~#diWa)lP%YGkB-wTsT^0
zD_OC>w&BmgZfV@wxU=ypJI@w3-qbkXF5n5PzpvD^vv@=29ODya`uwjYkMj8+-DLFr
zp8;#i`#(INljncb_c^wanry%Sb8F*2bJt^h|A+MC`5*F0`BUW^{CyqFykh;ouM6}3
z=H&eSpLgZ&^PEO$`ujgyayffGxU%&=&}rfQuT^%a<?rDy$=(Md{p@{!OIz>Xcps4X
zr-(*4C??}glBVxx<;S?Z|2K-~|G#Fx$<?U1T;Kn;eF`~$|Bw7!)bO48^7sFcv-f*u
z+E?=WcbdxY|7Gt3=I{Rzz6oh#e*cebRiFPKu?xsg{{A27|8mg3`TKu_f7pJJ>*eqN
z;lDS0-z<Os4|!Ag-f8~+AN{F3{~w8ep3g_0|HF5!=l|qK_$U9uKi8Az|M<)MKjc@Q
z|075F=Xz28>92%;`ZwX9`-}2V`iXy<-x!Yc{C}iE1N;0)@Bb7fQE|g__R4RF>HVLh
z%Ov(ovF_zqzW>uXKkas(p8shnwMr&E|0@;D*yn@O^S@Ft^5;nHD?R_y@)Bv7=aT99
zU%Q07ZME80`)B#9cs`S!|4Fe_gmx*W=YQ>@snfp7`+xiQgv<MXueG(v`TpPR_wDo3
zt^L2*$i`>p%KLx&{Cau+Z=bI#@Bi)d={^Px`+pPv3chDt-v9e5zJJ`>|N9pI9>H?t
z_Ws|+tY5MJx9^wM%N$nmJ>pDm@Bi)dgtGrPZzuQcW&iKJ?Ek%s{l6QP{l9G*vmd4X
zzma;FnMwP9x7$|wYy3;VdClJcUC-=R`TO5K%bk5s-uLUjj(@$hQGbtc(Jg&;4gY%C
zzjKqz*4Mn&u0?L||KCTP^8Wu<+ttYJ{r}h5I^_2L|55(oRrseri1NQH`@Z;?`R9Jd
zmH&^i|38aX!v6p4!_`AcC;rF3EvFRgm%tC+e{o~=I}Wb)SI{40|FRXnJo#XGalyd8
zU4xmNEn%q2D~A6d_qM(J_w;Y^uXcy!#^tpL!$)YniBLaEYZ-ivtF#tE*Nt;mxo}n-
z4EK4|YY-vPd;v!#NNH_G5g@<yRw|<iBC9~|>pyUiRqRLA%&?11vg{0BGs8!S)=WIg
zur(8p(tcZ^Tr;DIlh@3sR@#K>uMuJNH_}?2KWqyd_C8usr0E}%^*@of3d+UbY5CAF
z(TBb5y79GUMvfh8)T4+UZQ*s|kMZV@dcDdwH@%dTr=zy`pAY`i?_K5Fd141)ula5c
z@5U1I4KZ)W^^G&X&*@$G<3#XBI)3n&-R>g1$Gib|KJMr7_l-NB$Mp?6f1BU^MdvU2
zGkM$_Q2}S;{u$}|2ApT%`s?BEC7hdw?;)J$?Ty5D^YHVWJdw3O!rwO}d=)3VF@=+)
z>}JBh0{7#j;}7iL$mz4D-zPlFOl&UxXW)8X`~mb#BAtc%UQR4aJD2PDMu=lO!gGm7
z())jr(mMygAu40u|9Y(P32NX%To3-K?`7^6aDPC}eht?f!gII}(*pkycRlj-?`P|0
zdU2ni@|NQMPkz4?*C(3R<9fy3p1V77y}=CS?xVQ00sA>zPwyFAUyt)CTu<){xSr0}
zaD83QbGiGEx&QPZWd6OlZ={he#r5<r&E56+@3-T6Iy-SaogrMm-lMpFy`RhdpUM3{
zg?j>HoIZPPSpRb~`{llpwLm_v;4=yB^*<+Dwyx*O4(oq>ebD(~{m(MyEUsYvPj|=I
z=h@T#U-jOremU&_)wwM;JA1j$F!StF_5Gi3Hq!e)MP<_Uc{dn6rt18Ek+1arPgZ@c
zdhGBVx+t&M{$J6C5cM3p9xC!R>iNHs=Kq=Ri_ZVwVoPhy|BvVV-)+9@TK@gd9_IhC
zPSX5ev|%OBV^{*-hcK|?``z*R|7^Y<13R1V&z}dh=l}b#l*{w~+4F(+_kXMN|Jn0`
z37Y@s`@YfVfAkmf{Ez1u^89Z+`S)EH8}RSX{}`h8%*y#^7~J~)?{vQZTRi(~@a^C5
zkLQ86^8D{szW;k`{{7#<^!?vsh{ns}Qfd9~NY&i3vMjCt?NC-}{cneYsrPeQ|66Z<
z=B!7v?}ViN|FbcDyQdny-KF`zdhILC{|(=c!mlr)`M<ROw_T6kM~u`@6!SA_{cpS6
zj{d7%ifR3CyL9TbFMkxg&F2$#Tl0PP0TO9{|9ge~G;;g<-;de9K~CTQZkKfWE0sX^
zCE&c4_x~vN1G<piF8p{d_b<K&{&+6Sejv;rj<g@h&)XM>S<D~$_rJe_obylo#6QK6
zj#L82xCH+7`G0-h`+y&^rpGEPRf{#Im7lZKsl}4D%A(byel8Lje$j7bmGD&uhjtDO
zF28H7UB&LycljS@v#0WM_Nexi#J(lB4WH0aEBHLAJp<cATCH8LNiJJnN`hw>OFGZC
z?T7a5d$7GJb+++z_UqQ6!LR{!wwZUnU3Ke6Pt3OW?;hCqK)#uGCOv5E9Btbk8rW;>
z)^?xmba7{p*?*ZI4h#;h^#4}*f0yK&XZPDpY*xKF>{b1SY^&<~1_yT9&H2vM*R8Wd
z`wkB5-q*jgx#O;F2byeI9d;>yApHLzd1O~>LivW~TeoM<!OY2mZ1pg{;WdG7*s!_(
zz)=4Km)w`{XTCYxQ@hxeyb#y<?fIVQcKyDc!M%yyu}L7`LOs78o7L?owz)pPiFDrx
zHB}UUsNt>G4es5~=Gb1-XFtT@e{9^k=_c7y-8Sw&z`gCxe{Aixy-{`p-?%G;ve(?S
z;d*xI-j&C)&BI47?sIb<EemEF2X^-F8yXnO+QqHcU%R2Hm)U%DfMU<~jXO5BcM9Kl
zKy!CHo||`UZU@+$2e6Gh2KV6MwZ{(lF8F_$e84t7uyOz9qwajAB%bX*-!7L`G2f8e
z(QGpw7Pa10>=+)2QC)>wXXR|M^tn!))@s|@k?yjqcI_G5HssyIn)XP}R+awVKRx@T
z`wR4pr}$!2PX83-t^EEWUt?H0eEsVktaJQ2?$iA4pO)~?s(g#3g(vd+`#HbNGL379
zdlqS|$L~4LFY&u?_vW7pUB>S#IX95DPibC+-$LXs;r|(ay8`RUU$=TQ3w^&ry8hX~
zv-th*`TH>G{ufT)H0fz%-%jpZq`8aV{Ii-@5N-y`DgD!*z6F<m3h_)&lk51FjN1wK
z4f5mWoo@;EUcx<r|9SYGOuX;$w{LIzWBjYfFOaY5;jcyd(C%JNKl;g!e`01U?m47Y
z9IxWKzNWd!b!PLoZ$J1OxDVmp&ULTH{Vu0}?(Yr!{<r-759GtQ74zdegc<Je*ED@=
z!{XRT9>2&n%EyQK?O*xLx2*dK>3x*&zMb7O{Qk$B{hViV-CyLo{z=Q3oPI3l_v$f|
zbpDQT>j-n0bmkN0V+4AF-}fW?mL6dl4!?bkaDKci&-?09KEIv&eGm7CoEz}_B>Afz
zGf1yEt|pzEk=JppD>?s#csFtVyZz+vx8r{y{y!$Ii->d~b$dVI*5m#>=VScsuf;w>
zIRB(*alDh?isL@+%eQK)9#`kTy}K0e9<H-5FC$+v?1yjbRvf><b)F^6XE`4s+_yP@
z$oUh_8RYk`IN!qgaq{&C#OvYyAH(l?+)e!EpCMjIetde$kKZNiL!{|PKVdeP%I3qR
zvRh7CALN>T_!6?q@;EO4sC2I``!L9ZzK`pEmwWq8p8r4LTD}F@S-2<R_ot+B9PT#>
z{D=JQ+tc02-ygyKbIw!AXV`|WR6d@5aokN9KYY8or^v&T+~3<s`y04^_~&rn!}%A4
zdmHz%m%rEg{SjsbVP1plTecnMyoYP~@m12ggVT?v@b_b3F8^&NrvFn3WF=6%|L2^f
z_y0y1TjYjN<mJ9%v=a$3ikJIF5kxMO-v2AtOnU#XS!zIeX^d<k5C0Nk{pc;Dyqot2
z)BAtv{XaLEx_kdGDftmg;2c7v_y0P*|F_XzS9<?%rCo2Yu^a40dH?SMo|O1*Avbk+
z|Ic?0()a(Sv%jwF|I7F{lSjG#H{oUfZ}#8qYX4vM-`&*kX@(B_f3yFt?ElO4W&dCN
zqx=7ozv%wIl!xs9OZu|^Z%^9)cSMlK7@&CGcTD&HroKno|NDZ*>u8Uo-2a>QEBk-b
z9%cXUhBc3eSzk}!6J(5u;m2QlpJzV#;_|}qdi(q^;grdx?|;+&j@U9ncG&-$_8r~-
zoBYWB-&`-sKj|$Fuf3lcCV-}s|LFeT>?bb#6JGZJM;>Ya|4ohm#Qk;PpZp5{)SvK=
zf0Tdxqx|C^<v;lQHUatm|CEn^eWA7gKmKX|Z;E3KN8o>NW&i(vYtArcnmC^0Tyl#w
zr#mGaK1sZU_B_p)_2PKkW!CTbJ1c(pM3k>5@W1`=300TF%lG_UeE%oPKlNLSf6^EJ
zk%fQcDF57#@DDFX@Bbg+pY)^r;~(Xp{zdeEm4D(#`Nv=QM;88(g@5>!{r~Y7{^?JB
zPdFY)gvomE4~2i^DF5VNzW+h_3jdU^eE$PE%75@L@lSsz{Bu8vf2wN?$AsvA`ja9n
zfq(iF;h*}9@=yH=|J1L1|AY3~)%QPWkG1qa`4#<-EZ_eiJ>j4BAN~FZ{6zJC@b_(R
za{Z4i{BwP=|M9QIKjDRc%2)WuU-;*KqWsf;iT<zhPkO>Xvha@_<v;kB_(vB0krV#~
zarNB5KYWV)55JSD|EW*mA6fWE7XE3!qW@`sqW_Vj`k(Yf{|C8b|04_k$ihEzlz;dT
z{SUvwe@o8C|MVwf|F`<9W_YmY`dIkq{)K<~$Ef}%zVMG6<)8jI%0Kaie`L}B$hG*V
zJY@V&{OI?82%q?`$9)lcLi9iVNs)fg|MVxK|EW*W|I}ag`(L&ACq3bx_F9X7`Ul}Z
z$X)PHekN4^lfLkeEc_$a;-B&t{^?Id|C65ZPk6Eak%fQyE8(C1Px!}Q^gsPoE&Wga
zlKw9U>&~5&@jvw~{L{XKf9f~NKmMZsX@9~$=?VYHqW|Gr?0@=;TKv;~MgP;jMgQY3
z{F6V?|KvyXe@h<a{C~*5Z?}1t`JyJb2crCQeHs5F*V6x_FZ?45|H#5Wvha^A{38qh
z$hG(<eB!@5?u*zHqW?!4|5JZa{_z+7X|GZHpYT!s;ZgX9cj2G-!het_Q2&#kDF5^)
zV*j`LtK9w{iGTXXTKb>+75z_ni~c9QuJ|XtTKsc=V*e9AYX758lKo#0UC*5o<A3T~
z^gr!U_(vB0X%C|R@fZGSuTlL^_$dGIDf9naFFO9mU-Uoei~dLMO8>X|s}AFTt{>I^
zTwnA*vgm*K5&rQP{*i@$$|tJ->A#}-pZXU4Pko90ukz3Jqx|Ea_^-!(5qd)OfBy*M
zf9hNGe_j5mZ{eTzEBxbMi+}P{OaGH!vH!WA@K5`%#XtOJ_CRj`2RSnT4}a0|Kk-HX
zlV9PV_`*N=uf;#%qx|C^<)8jc_$R#Zk1YB>_?PDYxxZxp7X)|bPRjV7`V{_=MgLR3
zqW@{HqW=jm{3A#Chexsh;XSJVNl)}Yvgm)>Z<K$+NBM`xsQpiTvHy{?{C3d)_(%1B
zm4CuV`KLdP>VM)3|J0X^|B<8o6JPizyzozb3;*Ols{g6ar2og(4@`*uA8GtgeGC88
zxA0H<5dM*cf7)j){)sRABS-nCzYzXuf5JcUqx^G!!auUu|MVZV_;2-B9r&mGqWqIz
z(f`Q8Kj}yHKlvB?pYjm?Nl*AkuEjs$g@5E){1ZO$-v$5J>o2M2|Fl=J|B-9)PkZW$
zf8q=O$ihFe@DER7{|Enw{ZIcCwg2fK#r~&%5dOKI@bCGnv;LR<s}}#1zs&#9--!O_
z`ceLaf64w2_Caa=FX<=#yWpSl75<TB{SWJVqw9ZJA1v#C=}(H>jOzJ6*Ax9u{fhpl
zy^8)P{J83W+K-I?gB+Rvr~QilC%laR$=`(XPx?{*@fZG)g@5=J{>lHQ#upo{_5a*o
zE&HGP=}Q08UkU&8Z=(Nc4^jJ{`%C;6#MN^rW&BTli~Uc13;)!o@K1Xc{%N1WKkYX<
z{wF=r|Add)|AZI)Py4H7{}W&MhY!*J<X`kZ;YI(Gzv%cs<iGU%pY*%3|GB>Kk1YIi
z|6>2+FZ#b*{z*^xM;88re@Xub|C0VkPW;#7z6k9bKu!4fe{Sh(*82X>w7%wATWh_x
zC~S&DOJC|=&g`|tVZ)-ud=Kn$zNOjAn?=4+mHS7(|Al|8?|<#;Yx*0#y>@cgIBBu<
zHT^AK|LUi2Eamd@;D4(5Mpte5w6I}RCa)m;>DIF^|NfWp{h$4O|Hp>;{?8!a|G8y`
z^{kw3J$p;v|Jld)e~j<{yukN=_MgDt>H9xLyG`!+ltADg`+Z!${{=te`u(qwzW>Mf
zzQ&b*_#QX@{rg|W_rI3I|1&xNJqxX8PwD$#2LC<q&q}@?KAj!D|Mmay{jW9fzZd?O
z!~YBL|3cz_d|G`<r6_@6^*{Z=1wr3sn<Fl=K6_Dp{||j1{r(^Qg?#^y`-^`6kN#}T
z`oG}c^}m($f1||zZTa{AUMTU;`_(;I7D4}GN%R=}uSxtD?KZjNQv$>C&v>d9|M1ZV
zLmj{Wi9KJ-{zw0c{XdfaA8-4g@yfXCf9K!7|6ADqJth8sA?JT4{Qolge-I1cmJ0tp
z@ZU)Mk58*lsT3s;_-8(9T<w4O8CUxszK`knzgzpC{&2bF<Nvb$zYP9g7-sz6$oY5s
z-@pI+diZ|`{#Tdu|84O9`NV(GZj(DcB`_)Lf3PoP{vWwI|9?@#cj_AD{$IqG`G4lC
z<@rDUGXIZUYyO|`N9+Rf(_#NF{G-qRrdQ_w2`}^i<X7hZgMaDyf0*z0=aC)O|L}Z7
z=Ktx><@sMv<@p~8$@4$tTg&_ZaXp#;$6x0ENnhsw@t5a+#FzCy+`l~kCw%nzKk=jU
z|D-4De|esi=Ksgm9|Zn+UN6u8kM;f^)VJ_Y{YLpGygdJ-JqiEFwfKiWdHzp)dH#nS
z<)8ct|Kv}e{}ErF{~-(iEqRph{}R5d=l}34{KJp%Px?{*@fZFnKj9z$DF2j?@K1iC
z&;RJZ<oQ4So$$}~68~NBPx%S|$P>E$hx(4{f9iL6;}-O7uKx)y&;QAv@K5`V@=tpc
z{ZD(XrT=MvN9@A3{wF<I|5N3k{0aYDuNMEL7k&Ou`ceMLpXh&NS^q<P;UD?7#-DP3
z9rphuKcfE$FZ?4%`NzMO{wI7?{|Eo{{C{l3Yph9G|3m#n`Nv=QM~?E3zwl3ct)>5o
zFZv%|j@JJr{s}MqBa8k=7XFcif6^EIPyZtJf0h4Mf7QYMr+*atpX&+#$hG*VKNbB?
ze_V@y@-O<I{73nxJfiwP_(#_NaQ{jFE7zlyCT09jeRjn^?NjtW?OXV#z1HHN_A307
zp72k8MgQY3{L{XLf6|NcPkiCOC6ChnCqGgBPkOcZho7kaCq3bx>x=%U{}TOQ<)8S%
zKjkI%KmJkvgMW#C@|*1c(GngH=O24K>igeIttsFCK9}*hT@(@u`+ZX%^8N2?NB;iz
zllGg$$He4%%w#d%|1|P(;UkfYSa0yS{Vej#@S#liUty0T&ki3yTm<j$w)Y^<2_MSy
zkLCG?G5w>Q{xMDeaHfCo@@Yc&2mjnnM=F6-0wb5el$ieu{lTZmY)|-LW`q8HMdMb8
z9_9Q$;YI(Gp6Gw{k&OS5W&Dr55Y_*rcf>C8UMGA6wt@Z<{f~cC|Dzwp{wKWXfAp!?
z|D@m5_@DkVs{grOb^L#O<3DqM9mfCUSM)!!=znC<|HxwhBa8k=j_QB%S8M!F_+<Z&
z%=&O4CdB^lw`OszQN901{mJ}4?c?IcZM4UnfBb8W|A`;vAKrz3!VCZO4`To0f5euP
zpD{lFBfjt-`1bdA&Ilh1_We7B{~(v1|F!z74&#5qcQyW}eD7%d8TXg-Pk$=of8;3t
z#25a#KjEMLFUmjtRW19U`%U(LL0EV0q|E<O-y@Cxg@5W>_@_O}_@DMC`X7JcpZKEx
zk;j#P+PCO`+P{qd$)E7g^+o@;<PPKiR)3ZAANqsR`+uY#<sbi%=Kq9$@+15s3;*0-
zSNfm)NA*9~tEK-5pY;FO`hf}2|0C`HLw$|J|H{Vg=%Z2E|D-4UBMbku*C_w=7oz`(
zf3*HzL4I=mPy3D9|HK#mk!$f!e-gF-tNfF`@X!53?SIOnYX5I;e3|>p^*{YZlz*;Q
zi+|D+{ZD@u<)8Z#{)sQo|B*%iqfZk5UGR^+F3<mu_4*&`TkL=8_wvS@+WgaAMgQY3
z`k(d~<sX0HA3mb`pX&+#T<?fo+UB43EBxax`k(7X`R9IX>3`D8@;gEHKm5G8@#k&+
zxn5WN(|?KmPkO>XvhYuRi2YyXpYXyzvha_b`0s*$%1`)5KBnt`s{C_(;U8J}M;88R
zzqR-$ew2Uwg@0t>A6fWE7XE4fQU2*agn#-E8UF{lH2!b(S2_RmPxAZ^S@b{gMgLR2
zBia8^{z*^lf6}X^|0$m+|M(04$fEy)f9d&O@K5W1#zwrxnw0TB^*56JUyFaz6aHzh
zV*kUV=zqdbDF37%<sX0Hza@7V|F`lxM*UyqAGvD(3;*<|QT<Q<CHzy~GXIAh)&KNo
zqW=jm{L`Na|KwNnfABByPkKrJE7zlyCT09jeGC88r`Z3<!awyd`k(eG`X4@oe`Mhw
zIm$ozk?}wMh3J2-FZ!SM7S;cxC;TJV8vm2u==dLh(f`Pz|B*%iBa8lrU*Vto5&j7u
z<sX0HA6fWEj`EMc@Q*C~BS-lU{w4mA6aS+nUc&|c`z!YUu^#_Zf5Jbq@K1Xc{_z+7
zX}?ka;ZOKSuBHF0{B!*%|M(04$ihGQ75z{8V*e99%0K;+@K1c<pZ-z!r#}_`NniL!
zj`B}@vHuBQi+{>{LhXOjPy8#_qm?E^|I?oo*B{mMf7(-(|Fw;6%twuJ{-5?*OaF6y
z(f_n3(f{}#v8%{Whv)x<m+?R0qx|Dvi+|FO&i~Or3jd@p{3A#CC;c6bzvTWpJpU)Y
z@K66G{L}w*rT^)#ME}#jiT<ZP#s24dY5uPutUGs7#{bl}*#FeG@K60-)7ajbf7+ku
zf7)+U|I>a&|09e3r+o?k_zVB|AF-=D^H2CF|J;x0f5Hp@Ejb_mb3al2ANqsR^MB&k
z;-B)X>i?aM|F_LQ>D99T>+(<jYuW$gNBF0|OZ<1oeGz*?^nbU{|Eb@;#*Q}swAZNp
zPy49FKRgTn#E<fi|B>*9L9YL4zqRcDk@zP+wd{ZLBlbVC@K1S({-=M9>VM+*H~y;4
zKldm6lYi0wgctpfEc&1LGX5uiE&HGNqW?)>_(vB0(I?6NFNm(^PKoh9^)33J`d!!P
zZ}X2V{1aaEKmNi$?X4^OpY%lkBOkFo^3%co=X#?5$zRm|$3Lq7xt{3%R)5uD{vY0j
zf8q=O$Wi{`XLsY9ZT<-_{L>#t`6qwEKk;kvPyWUJC%*7c{}tt*@QMF=+!vuIMF00&
zvq*o~@jvw~_CNJk<^TG|U9`thj{j-D!awa*_=mTs{SUuU{ZIQlV%L$MQS#6I2><X=
z%l;=n!awOn$N%^X|J<+ej~wNn_;)w{JNGxr_kTz)s{ct(_(vA~PkD4@|I>a%|C4^=
zzaXxjJ1OIT>MP1W^?PIEp3(D9dcr@l@Q*C~!<X3q^cTWE?fYo`|C%=cwBK6xKi7})
zPyZtJf4BT|J>ef&_~-tr<Nv*l=i2<!pNjq`epLVCFZ!SS3;&dt@K1Q*pZrAifAEj2
z|DnAk{_AmHgq{%nKhpT0`i$~V`?#*LtIa>*#r~&#M(uy%NBM_$;h*rre~?Sx|Ks{c
z?AkW}_zVBEZ?XSr|Dyj1FZ>g}mi<q9qW{THbo|ftqWt48{KL;(jc>L2$6xrzKgvJ-
zSCoI!i}H_ul>gu#;UE9Re?fFTcS?-^slTfIe{ExDn}7U;e`MjG_9^-wS@?$^(f`D+
z#XsSX*fpK`$3MzHd<g%97yjW{^nd6dO6z}H{Z)tYKk>!>r+=))Kl$0!`0LL6<1hS^
zzpm_m>O=HD=?nkdkBt9=e}sR+C;sbkUxc0z{oilRBK={<|J0}Gf9kI*{z*^xN3O*`
z{e|d%+UL>se~EwmMgMa>;U77w|M3_8Tk-_0|0R8~|KV5kKjkm{Qy!xKi7)&k3;)Cy
z{ZIO0|I`18{--|^{^_rTf6|Zg&-K#yzaXqTcT&dx)VJ_YeGC88ujqf;ljwiir|5se
zNBJjx(f`Dc>i?1Wr~L~5v~S^`{0jf%PxL?Ocf~*PYuW!?U-+jygnwk=AGsF)gctsi
zg@0t>A6fWEuEjs$6aU?DU&Nje{Xf$9pZbgPkN;~Md$C7HIsZ@iDF5&%{1ZOPKmJGS
z{~O6qhxvcP3;)Q%KeF&o{}JV%{zT^gTm4mT|5y3v{>1(#d|ms0u<>`?Ux)Yq=|4pO
zbA8eO++UP`;@9Gz^hN&@Kl=O+eUj||g6Mkglo<b0-=hC%Pf`A952F7GFZ|;#_CNl$
z_=hLqpY)Dcgn#^N@lSrD{0INi_#av3|AO4b`ajBB^gsLv|D+$)|MXu`{^`G>`k($u
z^gpub|0@6FNBF0HlK!v9d8g15qW}A?SzK?}@jvw~`oGFQ^(*}2FZMs}LHMWr3jg@m
z;varx{7-!0A6fV(|6>2+FZ|Q~qxzrl!avu~<Wa8wrF^3HKk147r~JhJhhO2J{M6!~
z@KOHpkMfVd@Q*C~Ba8kI{*n1V{FDAKh^yyL%J`r968@2+`k(e1<)8Rb{^3#dKYUE8
z{ZIcP{F8s-Kgc!oKYWY*Py8tV_(%DtKNbB?e<Suk@r8fNQ|y1_TKp4U_z(L1R2uS1
zdt#2+bnZ{|Ki3!iPkAQ(>v3O%o)G;%()geH7XGR4DF4*A@K5^`{g1!!PkOcVKk-HX
z(_e`Gr~QfkCwx@@bAO`$k!Ac({961IKWhKeKSufIdZPc4g@5>|rT+;p{F9#Wk6ep?
z!VCY%qW`P>BMbk8Py81|*K?=D_@DX{{;6NF|M3_8k%fQSqwtTv@DD$t|M3_7Pk$l&
z<KGqk#25aNqx^Hfwe&yzQ`G*ae-!=C{R#h+m+(*iYVl9_TKrS~GXIC%mHkhDC;XFM
z;=dmEMd)F_|8s5S`#;pTeE;X%%J+ZpKaaU%Kf-u_sWq3`vLJts@A3Hee4eylM{Z=_
z|Dk<;!hR2Vl;8g$e)|4TD9-d>DuHn=feEqy`>k1Ia@hGlcozE~S@b{syXb%PRaE~I
zKdS%n7yXYu6#b9C=zsKy=zsjh{>NYJe`J~eBm9Kwf6|ZYfBZ%NBa8k=7X45DMgLRY
zGXBRtiH`sA@5=s1ABg>reIxci^%Wieb3aM{7sS<bCuRPR`WF7FZ{eT%6#kKgf7++m
z|FmD>pY|yBKk<cs<S7663;(n~;U9nDA34fD`4Rh{{6@$B!M`;B*XpnG=l}Q%|CC2p
z<A3rm{38qh^v4s*Ki3ofk%j-@pXUGTkv+Q56Qch|n*XCdg@5E){1aaIM;88RueJDx
zPtpIRC;TIiEB~Y?{KI#x@jvl}e`MjG{y_9U{cBYJ6JPkJe-Zxi7yj{&j{otO`9I26
z#{b-Jbo@{JDF57_jQ`OmN&k<I_iCsqG5<$>3;)z_RR0q`%0KNj%0KN<^gsPYE&gf0
zqW?)x^gsElW&e}kapj-%gnwk=pZtma4?n^`;iLTHFZ@#;QTxBjKk<cs>N~3c>A#Zw
zUnO^Z<O$LL{UeP3sqb3)pY|&DKkY~Or~Qil$6xp-zS#fpF8mWd%0KNds{gC}lb-Mo
zA7cL_i~c9P@K1WO{uepRZ-@8)h%fq|`xX9?g@3{e|Hx7PsV~w0gctsiqx|D9`X5>N
zM~?Cz{FD7ZKE!J(lQRCNK1bsJw#I#pF|Yrpy$b(aPxwcU@((XZ+yA$apK)6M&-I0W
z`j;sGt^TS5|KwNrCw<``c_jWHXgtsT<?H|HPow&u{wvBq{gv4Ngcttt7yikAl>gu#
z;h*|W_P=sHT4_S`|48G1>a#2UX`iD1Y2Q)(kAIYZ+D}yfliwp&;-B^__CM`g?0@`4
z|8srO|H#6BOCII>zvL%6{wKXC|KwNnKld;E6F<s7{=z@~m+1d0|AZI*>Cc3J{G<E_
z{}TV)zl{I!PyCOTcnx>OOxJ4GTxILswdZ+WzmWEDfn999$l3GzK3m7XUPDF9=6U|E
zKD&;8y*$6)<g)cO`>YRnrmf87YwQ~2S@z{wng7*xHS%oRmigPY{Oh$j_WrOwpwC{-
zzh0YX-^#<UwYA6#>?!2Mdu-`yy8?Nk{k+R&OE0(8$cyZ~E%|cf#kQ9FasNy0GUO$8
zb1q+I?ti>Jn}@%`)*$!VC-duHWmh4cVDAk6eXMs_j(nnB=<#pqYpw|8agzOr@Qb<M
z<-z}CTN2VQ<Wua-mb`-ar&`b6`PRdI^l)!IHkWe_=R(d|oQpV*<DAVo!+Lg2$DPUP
z|E6&+<~*LWm-7V9CH4WTz|V!0<0+hHaW3Orm!D5lXKV3y_rv7X!~TeSa(M=M^V9#{
zoV(@U3x9Xh@$x8vDKY;?|0DB%^zUN-qpzalfBLJa{zo5){wI9Y{wF_C`yc%!`k(Mo
z{ohm3|KvyXKldy4Kldx+f6}it{>MIw>VMJ`{g2$0{wKcZe`K-$kwyO_NA-Wu@1^zs
zgpbbu5kBevvGrFIV*mGBv&hY;*8fm{!awyb{3A#C$G;Z;gpcwMpHcpaALSqasQpj>
zA^a0w_z!aF`G2dw>M;JNzvycGPx%Y~Tu<zO{AK=+@)7$Vf8n3}2><kdQU2+#YT5sk
zPqP0D!n$)OW&V%)9%=l4d*gmA*ADxC&^~4SPx}-8k-M7z8<ziD$xny*KiaqGf7-wB
zPkzRA{7?RBjsLm6%>NO;s{bEs{4efrl>2|ve+mEaDEuP}|H#5W^%vFuf$xa^r+gFt
z-Em*Uo)G;%()=Iw8|9z+y`%9!n}6DCSNfmy#Qx{{qW|F|I{!!bBX(Pxf7)+X`k(Zo
z`k($JYX6VKKlzK=|L|Mo|DneB+Wb=<qW{US=zru|{F9#WPy8tV+@GxfA%4{UN1r77
zzaYAvJ0-^d)OXeXe?#M;HvhC&;h**(`k(eB`X4!}|A{aB6JGeIzYzPM@JH;9Hvfbd
z{_z+6kH6@DWYPcd8RehwQU384{ZILIW&gv^!;K%b`6qqhpYo{1KmAu!|C7G(PkD&_
zU*(_hQU38y{MX~Y2t6VCzu%fg`ooU@sc+H$Bk@oD3jfH$KkZler@cn`Cw`QF{Dpty
zDF65i|Fr)o|AZI*=|5!rALP>bA34i!KK|$agn#-+;h*rL|0!Rw|G9ou|3~>Jyzo!`
z)zbgOuciM9FZv%@_z(TVX*97*>`dPu1pmZ;L0mm|QpW$(m++4)`k(q0{f~c?fBc1i
zWZ@qkqxOH$_x|*AzFm(N^!C&h|HQAwKjDS{AeZ<@7XE`=WB<P@|L_~-pZ-+zKi3of
zk%fQy8yWv2NA*AcqW_Ua|5G2rKlvB_>F;Fx&;2C+>v3O%o)G;%()geH7XGPk;h*|_
zbK@P5n9u)FzrsK5Q}jRWG0H#w!hg`8{(YZ$wz|c8iGTVF;h*+*#NI^6eEyI8i~Udf
zqW|$1{*lH0C%owYmORS!KZF<kk1YBhS@b`0RR2@Hk2HSB{dJiC<Nl-klfLke9OWN>
z;U8J}M~?Cz{FDAK81BZM661gBQ}{>T+Bn?iA6fWE7XE3!!awa*^gsLw|HQ9l{|Elx
z(&nG|QU384{*i@$@+16{epLUr`m5ajr+*UuxqsoG{!#cRew2Um_h{oMo%yFf?uviz
zcU<j%@+<nE^ppM{TQ4vn`oG_rMQ(;2|5JaW|B<`mpZLN*?N#{4KgvJ+$^0MfN%TMQ
zk646%!i)YVe3XCuYw=I`uIzu}NBJlJ!aw~<)cz;D*#DGYE&We_B>JEJO7uVdo9KVS
zi~Udjgn#ZY@m~;E&z+R<KlLsAQ{Tcr^&8dy_>2ChJqrJ{hbaHFSJD6U7s5aBg@4+g
z@Q++e|8qUj|D-Scx8zao|IPi1{wKcZe`L}B$ihGItK)y+pYT!s@$ZU%;tT)C!auU`
zAN)(}|AT+B|Lc)HeCP?$|09k6sXyT#S@=iZ)_4?qG#~%dUZeIu;cM{^@4`Rvqx|E4
z#I};34(osLkLv#_|MVZie@pH#{%`eH9oGMGec_+}QTV5S75)id<^SD{f8qW*eE)~^
zYT5tPmyG|(e=Yl;__g>)pCtW1Jl`YzIwi*c)OVDB+N<zSc+vm(3;(p&sQxGXxbjc?
z7XHa!E&HGRM92TF{;C82Tu=BXJ>efY%0K)F|Add~fBGxY|Hx7Mzsf(d=zr=fs{iS~
z#QrCL$^IXS?9us8i2m=lW^wgl$N$v#Nc#Uxjfc@k9oGL+|H41*SNO+Y_=k_^_@Del
z^*`<Jh`oXQ<ociXEB1etf37e5!$&RqpY&?2|KWPVKldyABMblJr>g(o(fHroUx)dB
z(yyie2`~B|S@b{snedN)l>gvgvj4fC#D76pckZN&|EbR?|J1MWPkR;pPkiAYIm$o&
z!aux6^*`5_@jvl}f7-9`kH6@DWZ@rK_z!&h^ZPUGPN<ts|04RoTmHG8@Q*C~BS-nC
zKaJ{t;*0)A7X45Dg@5W#_$R#ZPkBfA5B??oi7)(9pUM6oTR$)%`hTSHKlK^qpZXR4
zk%fQSXIK1_UX*|Qg@5uZ{NpeD)4qj&+JBUP`VSfZlb-M&<kI?|R)3Y-|KvyJ|G2*B
zf8y8TpY)^ppX-VK=l+C$`mZSe<R{8M{!#vee}sSh6aQWCkG*~zwzeNnaxQ`28SF>l
z$8#><V$JEkDvskDF4Nwou|I_$kGs6vn!aO&ABSD0KKyS#g8h%&Fcclfi3H=X?)WFZ
z@K5^{{ZD%p`=9nI`k(l<_$PdnfBd8T!-wd9!VCZ8SNNxVyR!f3AEW$J9#Q>I{-XMy
z{!92Lyzq}K`X5>Nr@lo0<1hSE9?|(f%187+;S>J>uiF1ji2kQPDKawb_@DX~{ZIYL
z{2%oz`k(eH`k(m1KeF(TT#J9MFXMl%C;FfCgn!zv=zsi$f8?nC$6xqw$sOkZ@z46J
z4)cHb*V6y+EBtf+qW`(SDF0kf_$R*bPyGr1^nb!X@r8f-E8!piDF4AfJ^w2h>&Bgw
z@jvw~{8OL8KeF&odlmj^pTa-wFUmjZiT)>iRR52}Kj{hov~S^`_AmT%J<<Q<zbpR9
zpV<G%QU1Apt?@tiC;W3iV*leW{38qh$ihEzlz;pa|I7wq7~jqNOoh8YGr_yTd&IaC
zqW?!4|5M+!_$R#Zk1YHn3;(oN(f`Q8KjEYN;~&-k_zVBY!auU`k1YHnNBO5e5&OT@
zU*-D0%0K<1@K65|wg0)k=znC<|6EV_$6xp-{aXB!UM>E)Khgihm*;=Mzoh@sC&~UF
z5%pmM1pcwtCw2T!eTx1^7X45A6aHxrQT_=p{3A#Cr+*OpKgj-m5ERU1zJlwC{ZD$r
zKmOy&Kj{nq$m44N!>{lUKf*uPi}H_ulz;lKsQ#zC#QrBgqW`P>b3Ngo{!YgK_$U5{
z#e2jbCq)0#pA;7!cKlC$i~g_jPyGu2gcts)Z{eTzEBYV*DF5)?mHwyw3jbVB_^18X
z(*L9<^M64u&Ht0W@E`IYdH<LAqW>x1uIzu}i~c7+QU39d@{hmpk1YHni~bM(Y5u=p
zYCPRZ8UItC!auU;e`MhwIm$o&!awa*_=m@+{wKcZ{~(w2KXO$6<1hRpNBM8@o<IL5
zyzn376929Ks>A#r{iE3b#P5oK`cu*W^v6;DxgQz-BiG`e@WMa$EBsTRqW`%+(f{0k
z(*I-Y6(&Ugk2L<LzJ-74yB7bnPtpIh2jQRgD*WRg<)8K?{L^2^_#gjT{BwW8KXR?{
zKlz<d`=9j1{)eAh_CNR2mHwx`Yw7<g|KwNr=YA6ZUGR^+KB?n>>QDHmerxG}!VCYT
zC;Zc1g@4+U*#Gnw!awn&{L_A;_CN83f8;3t<R_~Ci7)m){gcf9<1hN3{!#Ql`4#)0
z@(})sUyFaj*W#b+)tdh!ebN8OQT<Q)iT^J6r+kHfWLf{i`kv_eAJzxS`XBm}A~(a1
z|4Co;KeF(TEc{cywd{Z53;)Q%KfDY7_zVABPx!|_s{aXJ%l?N)ng1V&|5kt1!Tu+I
z!auU`k1YHn3;*O__@_S=`yV-K|C2wl|4F}={ZD@-_CNib@K1R~`R96x|AM%B?xc+W
zsc+$*`i}BX{R;oIN3s8DzoP%~kMd7?QU384{%L<v{s|xDA3mb`pZKExxgW9rTm4ne
zKmMZsk-Orb>kI$L!auU`PkD&`uggE-YuW!?Kk;9W>(PcT#{d33J3qquU&{MJyD-RM
z{V(!Gc2SVS`d{P=?1CVN^}opH+xbB**8iTzyJUU@{g3}LTNdPE{qM)@w~!mQB3}>u
z`LODNjv$wR$DYN1nw^)+pSI5;Pq)L3?0MX)?JndQ_Cc3P{~jAco^5}d%O9|hAkVWu
z%H{j*3FO7*yNdh%p8owmU#Yw)moMXcfo8|I_5-}sE=BHb?FZ`L6Er))e$4;V>Ax=K
zdw{HFwuK&_`Hq#g68WUCOMs_;Io}&JJ2`v5rzM|a{rUC$`-Ntw+6KA)X<?UfkMG|r
zG&|ki%D4Ck()_4>6!{gIyvmwShp+fG?L++9fd4Za_Y&+JTa~AGNyz_FyT@gUb#=Jj
zxwb#|&*WFyp_Y6FDZR>O=kmqje$KO{xxA9ScKOm^>-&TLUBUACQRHViKb!ylb=+^}
ze}4)0tDMDePm_{=qp&z%K=w5+g<N+18Z&7F?*5q5-7AsTadt|F<kB(95||YJX^&m;
z4-ZlP;bTJi=la4waxMPpKf2-{-i3dzFZ|;#{L?=r{znPK%PiQW@K1Z3Q2uHEQU2kt
zmj0(d5&cj9)fNBnT8n?~NAy4Oqx|D9{39p+UuIyB@^=4*??x{<*tX}3{-BfnAME`X
zD)v6}e`4=1Y1{kR_rtCEr2RTM!g%9)JXvpk!hR3=xcqzI)_mN47I|j=J#gcD+m9m8
z&cDyi{xtR;<T)*yv-<sOw;A0Y^lx6fn~qchsRTwYfh!naE<_)$vi0UW;6D#PxQy>F
zX7p>8@!MzX_}AOwx6iKQUoZS_3Ox5U`>YRnrmf87YwQ~2S@vbVJ-=vLU-N3a8hLik
zd!Jp)zg~ELKi6B-=(AVzub1)qw>-S{HP_l&<OTK=^5W^XbhTZ9ywHB$<vq64^=B_3
z-|Moud^z%BTg&~p?E1Qw@%_y%-(pLBJl)Iq{#g${&6c|U@8#bo^Xp$_S0SBX?+oen
zG2gKq`9!-gq}NA(<mGXa{fO|3SM)V~zNDA&{Sx=zRmi8<nc;daufYFQ-in^jxqx#X
z=UmP?*3(#sJBxD>=W*84GaGjX=XCsL;`+a7oQpY+=j`P?fpba6{%;-S?x**C<-X9z
z%Rl0t{P!8;%}@V(bMBUZFZ|t2$IGJx3Vr{gn*XDJijM#B7yBRkIXeGG{}-MABfi-G
zj9;SmKjVey{2$|oTJ}HplkERA|2Gjm(&X{~Np7b-|NkHD6=*8J=*i~0f7kv4{_Xky
z&)6Rz=kxz{`6s;a&t+<j|A{aBBS-nCzlicr{~`PnKI?z-`Tx)#Mdtsxes%ocY#gBc
zI?VqQUdI3QPig*tB4~Q?r8y<}r+r5GhZoWR@KWpfAN&db^aoM>UzdNvNBIx_T|ECI
zepmcceu@7VAFC6Q<0;8M?K8?h?O*suuEjs$g@5`3;h+8_`uv~xqW|fyYCZoWzUY5s
z(f^@8>O%iherf)HB4~N(r8y<}hlg7H!%J8ExA+_7`X9mz|L_*&pZ+AX2S&O6C-g@p
z{z-qN@qg6*Z`u24{m)B};O_2dQuwDme$2*k{0}ct{^3W)|L`mNzsf)TNiF?P{3!qU
z*Wy3qr^G*USNwDTGX5t$vH$6x{P{{+|JNN$FUHuD!awb?7XP%*ah?C8{YUwyKZ){B
z|0VjL^rHOJpG5hmJjDJdz3BR1{JR?e6JPiba^nBR$ZxlKo)rFRZ?*U*yzmb%<2wE)
zeHs5FNBQUawfLt$5&r2vqT~ONpK;Xxq!-oy^iNU!Pyd_N|94B;)Qtb4;Ggy>{L`Mh
z;vfE^`hO(;@vp@{;e~(tk8$N6K4tt*`nBf&=%1qelmEp3)a19@T)imxr+tnq|L`IF
z(;w8*|K0K*`hyzJ|H!Y5|Ka_Z+W+*wiT`d%o0{=o6#T<WE&k!7*7`sAno|6S{-}oi
z51*p{DX&`kpYT!rPyd_vpPKx3o2$v=|F_6`d;MRn_y1|HV*kTSbpD_4wdVf`FXMmu
zlUnQlh@aW}qkR9r)&Jz{|AHLhAKpd(!>7Fe%k{^Vf6`0*cT3vTj9>6SuKRz{9*esT
z`+xKg_x-<&|6;vww%<pOo$CAT)86iEyd7th-~T4O?EiyYYyThi3zGf6h%fv9Ab;B4
zNPaqe{~Q0V_Wx<^2R2UM|KfgR|1bIr+5d~{$^KvD|DBEh!~Nyo|EB+m?*Bu0+5ZPw
z_WvTj?El4nKeGQH`x!;|{~^BY|3&(;|4;Bw-~T8W>&6ZI!>8~Mzq0?|gna+A#6R^Z
z{38qhv{%{x3xC=Fi}q2AfB2}i{}<^C|FmD(|C9DD{FA@v{-1=G{r^Z`_WufUY5#9z
z+5a=hk^TSi7yglje`Mhw`$qW3zZU=0kMK|YDF65i|I~-<|A)WuPyZ$S2mccP$Z7w-
zvGoEIqW|enirfsl|0nhRYx(|P<D&m*zfu0-QTG3&z0~5L_9y%kKgvJ;!asb-{(tlz
zQT{{!P~yMUUv=33lk{c(KkirfM~?DOexv*oU-thae^LEUdcr@l=znD4A34f@@K4|W
zD3}^gH}H?X7yS>v$5j7QzoP$<MgJp<{zs1Lf7)v;`=9j0{wIFa{wKWfk1YBhS@=g5
z{*i@$`WMmvRsIP-uKJ(!MgNn&@K1jl)&KNgQT|C^_@{po{^`$zf66<`fABByPkOTd
zKj|g?Kek?BLiGPg<A3Tis{g59;h**-{L?<8{L`Lm@lSq)f8q=O_>2Chy$S#1SNJEt
zwfN_H!heuU`X5>NCqJ_PFaDzckwyO_i~fgS;h*~v{s|xDAAjMW{!8rtD*uER{*i@$
z<S75azr;VX@Q<AM?~eZ$)&3u}f0_SBmid3$qdfnkebk!&=Xrw6{}aE~{6GCut@(e_
zueJV{{#EAxiJ#{G&5C`5$40`-Ggi?5*!yDtAM5!)+HchUM_-Bl_x2v97-rdL_+I*S
z^jCEJk3N#|f6$-)eZP6F{l266pX-VKM;85$9M%8yM`HhzU$OtmkLZ8w3EBUj^hN&%
zxitUB{fYjk|B32<;*0)Aj_QB%BjbO<i~dIz{f{j6KXNVoPkG4vAMvB}e}qr^e{B8N
zgxLS|Cq-_Co&Tdg#r~)MqWlv+%0K?XKkZfQ|0@54kIw%QUhIFu*W#b><7)p?K2iSZ
zABBIeUyFaz7yjv=qV_-j!awnaf68C@r~ixcPk&X*{-=JD{a+B)ojWP>f7G||PkR;q
zsb3lY<1hTv{zU)N{)B(R3;)QX|B;1%+N<dQy8P3=MgNnY@K63k|8srO|1Eix&;Q9^
zt?@tCm+?R4S4;nszj4+7<fp6gKmA?ezdP=W*b}1vN1FemJw^GaeuaP9tME^J;U785
zKRgQm$ihGIh5sP?_y8@KuSXL7Py3D9|HK#mk!$f!e-gF-N8+FIs-^$QpXh(?PxL?6
z>xzHUi|T)_FZ!SBiTzLfsQr&VN%nt1bUk-UjQ^=`(f_mu;U8J}r#(dZC%szwpY(<Q
zU=Nh|=X%0F;e~(vMgQX;<)84i^na_r>hSy@-n+8@;Yau<|H420aV`Gozr_A0y(s_W
zKgvJxqx|Ea_^-!(5qd)OfBy*Mf9hNGe_j5mZ{eTzEBc@IT8n?KFZ`2!SL1)$f0TdH
z7yeuQL2myCIr983^arK+KhhKai7)z}`xE=0@Lk#eq%Y%t(v$H&a+H7a-<ADO`$_hH
zL2!5Oq>TS*AHqMf=zr=rs{aWu{38qh$ihE7iv14{V*k@$)Z(A^EBc@7)zbfj7yeuF
zD98VVuQmR!@(;gJ{^?Ie|8u>l{wF=*A34fD=?VXY7yVE9iv3UiqxzrrlJx)B`hf}2
z|09k6sc+$*`WF6aAHqN3#r~&#*5aS^gnxJ!{_z+7=`Te8)Bd9NKk<cs@+<luS;qg|
zZ!P{?{Z$A1pX-bMM;85$9M%8u6Se>GkMd9Y!as5?{s}MqBiG`e@QME}_{UzK($D{?
zU*R8F_@{k}{zn%54}Zcx@uU3X-xdGF7yglje`MhwzB9Rl{%`eHIsf!eqW`%+;h+9d
z_@}>#@=t!E{NpeDlU^<RpZv-ApZgX4Px?{*gMVcGAL%FlyWpSl75<TB{r_%jPUqV@
zetd&-3H3jXZ}a#Oz6Z+tf&RrhKMr#)p+E7z{TTN7KlT5N{U*LtT>ibE-?mR7x8MJL
zQ{&-A>-}G@ce;7~&$O@jdLQza@t&{$LC*Sz+4kqT|Cx3c;pf=Zxg6!6{zCLW*%JOq
z|A@VT{N(Td;{Qwb6zMOrpO8Kt&9~VHk$dfXxxB|7L_W#B<1+bwy$v9rZd(cL`LD%4
z;j{i~{Ph3Xwt@VdYail&&;L6b{~ITN|CjQpW&cy3h5o-GFYk=^i|k>ZpZNWrWT$YY
z<@PT3r~ESgzQVS+O#gOD@W0reaGCz=RLaV1r5$pa{_Yez6?v7N=`!hMykFA#9-@Ee
z@EoqSj`Pi&A0eEde~_O~6WhOwSezcdI6unY&vJe?|LyCz-^~C167E+yi{Fa)W%o(i
zu%G*9w9~v2c^&7|T-W{FEl!Vn2It-6t#Cc=WE_(+{-^$hf9hZOr@n=M>bn;IwBIQI
z_}9|^v`68e{6zVO2jQRa!aw&f{No?h|M(04#25Wf|04RI@S^{btNQ<F{=Z9$%=ssL
zSNxNoDF37{{38qh!N0_R@GtRC`6m9yr?;4t@jvw`{38qh$X)SIeBqz=QcM36KdS%n
z7yfDQqW?$YpZLN*{Y#YpR(~}{{ZIcI<)8e%qY>es{#fjP`kzkr|ETmo<yDJ+t|$5*
zIq^S^{P$Pv|A}7zPyI*vr+$Th+OOz;+G{QQzsi4$rw;4?315qUcozPVMgMa@qW`P>
zx8!{MPx(aG{}5jEKXNVo56`0i$zPOz(ii@bg@5|5TJ}Hjg@5X!mi{Mx;(r|Zr#z48
z_@C<u|I~ji{ZD%p{%Ox$jsMAyjQ_jkA0C8%(yzro;f4QJf0gTh@+bV$KMMc&*SG)w
zp|kx@c}MvtzrsJ^#r~&1lkq>{g@5E){F7ede;oNo-wXfP12X?N0sDUm|I~ji{s}Mq
zBS-m%$Ef{JeBnRHrS*TvGXAIiiTzJ|kLrKocf~*PW&B^|AAjMW{0RT_A7cOGFZ!SR
zc}JtfKmBQ~@jurW{*i@$WZ|FwO8Bqpf9_A_|B%K0C%we~IPy<<3jfH$f8F_i`jaAe
zVg8@~q+zHRjuV*+ZBYNhe^vie-(vscFZMs}Rrsep3;(oV8UJ%XwfLvM5c{9}2>+xf
z{3F-mpZv@CpZGHV=YB;0<1hRNIkNr_f8ifl_(vB0k%fQc3FV*kg@0tx|J;A#zaVI0
z-7x<LpTa-<3jfDi|5y2^eF*=^!auU`k6ep?`irRkr#+4<|Kv~j=YEC%;2&B4OaCPH
zKmDWVfBF~UAOBkXbHBnr`4jt}^kw`{exv%I^hEy?KFWXakIet0Ka&0*pMGIN=KtwW
zirfwR{Ga+2{f`{A|Ev0+@KOG0Z&Ci?z1H(Tt|$DHel7hEFH!rS^lI@>euRHy;U8J}
zM;89!S@b_VMfHD`f6^2F@sILPc;TP=jPg%;iT<a*OZI<3)cCrS^8BCrkMd7_i~Udg
z5&chl75-^|UFm=Li|T*cqwr6DqWqJe==@)c_cQEHhDGi5Kpocqwfd_L&;KaTuK4GE
zqWt48`X5>N=YE8L$}2klCw`Rw;2+Wd_$U28KK;Oi=>L(%|I}ZUfBd8T<6nz^c$D!!
z?X@fY&-I0W+PjSZNk7Uz@x}fp{<!LY`p2mL=lY`mk%fQCOYDF8W8t6s6aI-W{3A#C
zuj+sLHyQsEU-Un+=zroT{>PDj?Db<h{;%qP>OX4#Q~#p>k%fO`(f_nxvHxkW!aw1o
z{1ad1{|H}8{}W#L=lW6mpYXze=nqQcf8vkp{2x3E|I|m6fAS~%BMblJw-*1zkLrK=
zuPFb-PyCM$|9>-^_4?;p^8&jdBv{x37utnEevbc_EVbrEc2SVSdVk9Qd^<nLhut6f
zJl2l-5yt!1T638#3-afVW0gGfhmYH@B4g}wJ)W$wf9=PSkF)o?Kk^ED6nU0?(q-D`
zyX`&5vs-Jl7ZUFj&a*g|ar#>74-?kibfgkUB`~%UxMHTi)#BfGTxau1;(3^I`2t&E
z{)8#;YklG0V$1oxrO&SA-(vXP1dEHTuesLNBG0syxqP)<jXcY~JS+2mwY?g7wr$J&
z?Hc|qwmBL9d;083{w=n7_N_epRdyBf0(%OXd@Q}pF2`MHYss(6{(Z~ET>0i)_WikC
zhd!H!zuc}sT9WlA<bDnR{F&N?A$(tRdAPq``w{oMcv@fR-xk{mwj}rW{%*0IXlJ^-
z%l(%lpTrwVbFHUmp7jjO;qUpJvp5%U9>+PGbB6USoz6Lvzy04d&PAMyIhSxQ?AWKR
zqip>2KF!||ao77ee^2E{+?UIKZYEE~-!u5TeBzysR05+efidyFt4sc;^(p^00{?p^
zn1A}OjQ0-w-%{a!HT=_eb>x3H{P)BEF8CjS|JCrnI_H05;(yeQGX<RR5@_>(4J}&r
z{{rMf|GPe4Q0RYnb$!18ombZH3()_;p3n990`y^7pD#dnmi74p^nF>MFF>CLeLl^W
zx;|gPzp_5}IjJx{;QFr57ob<m`g{R8Ht6%5=LP87vOZsc{x9qE1=b70uD{XS_rhzB
zGmZXkpyQd9@A<Lo^g@TD>jz!WFXWupQHK|LIqB^QZ@TFM<4^*D|2=O1uZ05T-^T+5
z|89@ZFY)jF!TbvU^9%lSeLkNQ%e>F0hbi+upZ=h1zt4xOz&rfA{XU<6W!~pQe3|$8
zuvq4OKK((N_xbb(f%niKEGIR$zuhi}`Q;^hJ?L_H5C7a=cm3|RJ-lBucT}tw+$Y<7
z92#Xx;+T~{TmP?xikyG?10Vm-LoV|_ufqR4_|N9=GW&fVDU^Ai2mfW>=fPQ-_j&MN
z=6xPlEb~4O2FtwrGp#c3^WeYC`#ktB^FA+(xt(*EXVG!b3vfRK=ePMdz0m8f>*2lO
zyw8cUUd%T->xuJY)<n~VCa?tB{9n`N-;U<r^?jLtxBtuhyFK3GKj`n($T9ve$3N$v
z`MlN4|CRao`NEF;@5#pNwfJ|tewW+&uIF?9A8=g{|NVu&PyA0{Q%gxt!4e4k^ZeKC
z|CatAhJUyJ%lv2k!8qxE_;-81#Xs{0S${GP`oEFuf9Jmk{=ZY=Kg`YN`ajtFiT^3s
zL{pX~umr;M|G~=hf7S!Z^MBU!$@72wqtE~8Kjis8^1JO9xr_YyA@Z--Gst=WvC^Oa
zzXLgc{*V77_Acb~{GUQdM=F5{D}lg2yhYdl;4l2os__4RD(inXRrqH;-445td&v36
z-gwY{3OVPW`GyttX5=>iZ?U%`C;lmfbfglPuo4LT!?W-Y&!Yd~S@@?vsHOkmTlgow
z@K66B{L?=q{wJ);Q^KhPS|t$pzp%nT>&=CK<gWOK_bC6QFZ>fe@!zVV^hYXz2`hmy
z+5hk=`k($o*8k%#<A3BR|L~sppRg)U38xb1SOS56-ro}YpZ9e{|HG%~f9!eTpYXyz
z;e~(vh5vu5*#9dk{F9%g|2tM$@<=5xZY3}#{SV(!{x?+kC%o{FEaQLVr2ogQN>f6q
z1V&u~!}4F%|L`pOzsf&yRR80@!*-FU_Vd31yBE1wKaltzb%mvXsRYKc1cv1wUd8@@
zp(g)?7yF<0`J?>LPW+E!m8PUp35>b~#>78-i~T>6{)g`<|MU;Z{vUOfrGTjf#;pWK
z#Xo$HtNqV<!esxCTNS2+QVEQ?1SW-l`jY|MPoAfh_W$zre>1Z8|L7mG`TyhOeLR2f
zu6PG;%r~4OrV>ac&?<q%f2%0cAE^Xhb|o+_{PX@$bpF3O|F?1k{f~W+^#9AQDW)5q
zgc3;nPeP%mOQsT-A|)^^|LAjh{x{z9f7S7SYyLkU|6?B{{Xaz-NXo`bx&)5mpG^RL
zKmV@yr~imP|4;V+OS(;^n|tw;K$ZXJ$a<OoQGM@&{z7<%@9ox4O6~Q2ciA9vKHpFO
zu-xuM&h<U|e~WEJPV@Z~LON0j9J3M#{PVo6c>iZu{(CCxeR!Ww=KJs${^<{nUhflm
z-beUk?;o=&PZvrh&?<qzKRgTn@LbscLH}3zr@s*XtNK6j-zwkqM=F7-Tmnh|PvzQ4
zc}pcQu_ci7|HPJWN<EdpR4##u(*O6^K5n}`|97uFfZSg1yV`aj=ktGz7y9ik<l}7n
z^bo6gG2j2P%J(?R>wo>5n0N4P%zn<dai$}cKq`UyCD8u<M`{0m_TL=c_kRkWi|_x;
zsC@tDxXSl`W>&ucGb{W458wC9_Wz$<`TozG%J+ZfR=)o;uk!t$`IYbg6yN3L`#%Hu
z{{K&oe*gb+f0MrXQ@?Gc7*oFlhUFi9+!g=%_j>*NK>Gc!4*a*i|1nDbr}c&R5&e51
z`u(qA`1kLBOo#vV@X!9@^8KHg`S*XO=imR?rQiQZ{7?P%n{wD)2?YDUwEy3*&;J%x
zp8wH5$oxP1`Bk6)CHud-dP%WU2^@<O2>b_qe?hq1u>9j+YrhY|?+x$ww#WYm?IF@H
z#tYWGGOQ13kN<bu-T0^R|FNj^bd6L3MF~t4|A)eSUz`88*<mi(=KosTi`?da&<-FU
zXTO-w|6R%V2z~xf=K~jX+z+5SA6S)1EFGx?QVCQ_V50aRvirGGoBxNx_rBWv_t_r&
z+x+j#_XAD*S1KrpsRSml1Oor;=P&F3u-|3<-&qy=pYL_a_@DLu)$zaZ&w9bc{{&WI
zN;;Lm7)v1V56{9sJV*JbzYzZEFRJ{%GuZoW{r}VED~a3s|K?yHwDtdk_Avgr{ZD_<
z$^QS7e0;FZZY2DoF^>m)d@!?TjD?n>r4o3Fl)yyk|91p?zs>)n_FhV?&Hrn|_keT$
z;r#)78~!7Y{}cZ&k%pIUV@j03sK)=>D)#@uivI6ETL0JL|CYr6lxPeo6EC|G2>ipd
z*#Gb>_J5Us?ER7K|0w_PF8ZJJlKy|$HNAAhQ=kOG`aj0=EA48VNq(MZE&W1x^!0yp
zkw1sLXj-4WntyYxu;=^iD*nxF+4FsN1^?zUpa0Y>v&F3EyUbQ2>-xXBT;XOe;{KPi
zzJD(3@jmJ4Teg09uFaP9zH@p0_apolTejYBE-}jM{pPa%@63>%`!C0LKI{8f@5gm|
z$V*QTYkd!}=C8j8+1L8b;qSSetoPeByW`w}ulw6fy6(=vEuZ|9j#L6KnG$HP|Glcs
ze|R2H;vYWO@UP5&)*lq(`D4s~zW#Su{(Zf#^WX6GzP{Gq*ZlHtAm^XE=xO+R-^Bk*
zrV*zb8FLAImzcia*Kz1gKc39x8R$<x!g|2n)|?JYetd&-3G0QYp-=q?`-5Q5J7azv
z=3K(~!T<K-%bZJ?-)p$-z;PnM_^bJh{U%bwBL?}m?Ni7-b}B}P``_7kJI-<Tp*iMP
zZk}#u;6Ky8;xg|iy~55!o@JkLnf=4guvZ|@wm)~7=NV_(S;%wj>OB7O){8vXHj%2Q
zw+O4lupd^tO!$Rv^<Y0-?=sn182lI5LeI|(YaX#T;<M0Z=K1?2dy4Rj>?fp;NAqp=
zLF8Whp39Wa9(xe^B>PV8|9TrhKHau@`h;KXRuK1er^v6c{+4_^{%6{TT+Z^_v^!iT
zzl%crvut^Of8H0Goo!d-@;qCBe2$&vGW)m8rYtbK>@RRgqItG$Kt9(##Q!e8v+-S=
z^K6x;kIbFpv&_!P)0;!tnVoMNa`^;15%~hUho3$CiQKE%g?5AcQ+~a60`f)nu=`UU
zC)p{;%k5ox{8Q~z<Q29h4}VJVzu2B=`JayeN;{Oxr-bmU>`a%b|5?<v*(EI-&Y$O;
z!?o6NzM1nQg!A(c^7CmzuO&=zdidh}D1Sf8`Puxpuj76*|NBe0U*#-*E8>^kCuzfe
z?gyD7%`1`DaX!s;-Ot_P^tfkm-c8;L*W*sc5%`Bs;lJOS!asaR`KNyn{%H@zy#)S|
zqx{oeqWsf-g@4i${*i@$WZ|FoC;SI~BK#9y_(vB0Nl*AE|H41vYw=J2lJy6p<e%$B
z`G*hTpZrAmC%o`af7%uQTu=B%j`ELxlz-|=_$PegzaXqTcS7_({YjClz(4&-lz-||
z_@};W>3`x2|FmD>AO9%-_>2CB?<oI-7yglJ@lX0u{SV)Zt)%~3{Z+32xt{P({}|Q(
zq!;C%^n`!pTKv<0iT)>kSNzi-or<m0(*NW?@m~-%zHZ<jK1Kh-?=jW?v=`x@`hIic
z9au=Y{g2$0{wICmA6e{w`U~M7f8n3@c*NdBenx5k!$U3o&-J4Ezsf)Thwx8);lHl_
zC;lUi=efTQ_CMDb`=9Ga?SIk}{;5CF|MXX4|C4@H|C3(ge|)(wQkxL{Pk&ORKkWFQ
z`j_!P^)LKW-@-p~SNy}H@DK08Kj}yL$6xrTJ=fCz@Dd&W!)ug(t}o;NAp875KK>^^
z!ax2|`=9czj{l?llfLjz`nC8cyzq}4<-e-`DZj*jLDcxVQ)2vI<)8Yl#Xs@I{-=FK
z?SK5E{L^1_rT<Aks{i3BYX1{o?EhAO)xrKJe3XC6N9=#DUyFazkMa+%V*gWrqW_66
z{BwQbAOBkVAN`TW|KrmSOo;v;Y5Y(9i~gtnqxzrr8`b}$H?I7XAK@Qa^gpubf7-i@
z|KTCZKk<eCy855~DQf?dzUcod|M(04@Fe=5@G}1A{)B(ZdtCKD{aY>m$$#R19Qnsy
zpVaX`^<RsB+G}+FpY|*IAHKx?r~O3rKmN7&C%o{FEd0Yu)cz;D*#Gb*`XB$O{m=bI
z^*`}N|C7G(kH7FweuaPhg@0t>zpDT7kLrK?Yw3UbJF)-CU*dlp`KLaFe`J~eJJ!$t
zsqb3$KkZrcKkY;K=YFF6!;g&rY0q8pPkiB@>(}C+@Llmw|0w#O{#E!Vec_+-68`b8
z#XsT2{wF=*pZXE|pYpE7Kj{nq$cg{);eS-`|4`nt{}<~4Wc~ljF5mwl{j~mneCji$
zl1iXX2@Jdb7rtfvzfJP`-%r$B|9@M){(o0#{co}U-&p@^Y5i}VHj=`=bW31Z{?W(B
zl>bkR@cz#&HTiGAKMN{l{eQuKBdz~`>9*!{XLU;;*#8SE@Bbpp`@i!m_CNiD*#C@o
zW&a=M6Cbg6krkGduuOZ=a%;ZZ-iMsOFGTvU4f})U`+sck{lVUjf4=|6w#xoLq?dgU
zXo02uKkC+S3ZF`#a|sMP{)gu%|Nnn`=N@FoRp0q@$9l__W#jmTh_7wgmW8dCu`L7`
zA!LLTO(F>~7+Yi*X|6_N%|p!GktIVwF_gnDNkxQW*Qo#jJE2IZ+5}foOA11f-L1+J
zl0apX3Q27Uy9*mvWjBP~KZ1*0$me&u`_BDd&HOa2d++GVK0Vdb_t)pyr+=UGJCE+u
z@GJZyyZlpM2><Xd{KLEOPkkZlf3@;YdTITy`R{3RNhPq*5?B=b53j;MybJ&EF8otp
zxcpOpB>oqAhm*fl0`r%^oc167#Qr18`2Uw$>_6^e|B<Erk1YHn3;)P2|G202|NQqb
zxug=f&=QFJ!?Uda1#d3@xJ&yVIq`p?cOZpJC2;XdAld(mSN198R00>f1S0=DZ|B;7
z+@<~B`uq>>uKi!0+W!~(KBx3k3CvXjk$;}obos|!_(zuZKeF(@BK800D(iGEl|ZkR
zz(slgm*>Arz5mDa>+=2|^^N=f591N?{6F)V^87#P%lkjXC(r*A-hKX`=h@}`Kf=53
z{}5kCpa182O1=L_`tI}pxXbhZT%SDuPy5b&|A+AM{6Dfh|Bqbi`G4MDkoA8EpPv8k
zPR(&q-v2GjKlfkwM|Sx~e}#Yi3;*yc{NpbC!<X=nKDzJ!6227w<WJuJCA_@<NB-pf
zpGJK(&-?$>kMjN>;pP1w;urqmS>FG_UHC^9{*gP%Kk=1%|A+e_{8Jw3{h!X%2L=C|
zSew<hV*TG@{Qo<gv-N@RW-V9S;`+bHMSmf#|BEdB17ztRAQ%0EV*TGwhkr+Gm9Uw$
zQF%(R`sKJ1Dxl@^=fdZ4zbtIX<u8OUA}<L~;@SMaCLBXv8lKMO<DrhcGJMx$)*tvt
z_$2b>;SY27$HQ6VtHKk=wqEUa)-$&&E7k+Pm+ujT@Um<@VEB1ecop(B*?Pca%f43-
z!cT-3_;2C2gf0BKHe8v<x0SVOZN1-Oec$`SeaP2m>-%mC)l9yjvA*wpd><i%8yoBU
zX6e5?Ti=)X?~UQtg?IA(0g|Xb8=l4gPd4Od;%c(h#`?WCRo;cSTeJ0h$^Shu|Leo?
zJb(Ac^ll3$Os2lb<lDnc!+ksP-w{^k@|Ji#8^Zcr-pX3LwjOY?zHRIAS^O<@4c%vm
zsd@d}A0yj3xXtH^-<FPjr_qitu-mbDZQa739gBE~E^P}efu7_a{cMYWcxj7&!VCY@
zC#CqOz7YQ5u`T`yUy6V7@A8kk@K618Ki_Xj{4Wri7m>G~<RASM{?X4;_Mh;=Km3%k
z|AZI*qwLs!>MODT)EB}(;oIV$@Ezr!`bqewd=mdJBB)DTO60%Rvi=A9E9-wS-`Cak
z|Iu$*|A+owsr5hT&&v8A#OL<^ahLu-{c-94<1YPw<c{|LiBJ0f@F@NN=-#ycH+;(a
zKa@{L$N%V0pQ-#4E$DgH|0O@t|EIiU{U6-j@jvn}<A2nb(*GxYS^o?F?)YEo|Cb=#
z_gdKhMP2`g`!D1F+)v>jeRBE7zdQa%c$a_lSNO-j%Rl-k{3FZwKjGc+Kho>y_&@1&
zm4E6}8ULfc5&lVE_^1AI`NzNTk1YICp2B~0Z(9GK^kw`H_cZ?JbG=a4$UpX8_@_Ov
zsP>=xFZ`d+{-2M3^w;Gd{VByi{)K;Jmw$M0*Z<;r#r`+sdA|SCsITT3|0h2({!jVH
z_&>6Y|5Lu_j{ldi|D-4UBMblJ*PZ{vzwnRj@*mypdtv$azpx*P|Ai9n`|FDRr#>lC
zy`b;^aKFX=qrdL_ANuUJ|KU;Q|A=4sr@nCQKmJ|*(RbJW6Mj+ce=GmgFTy|h5&q%H
zZU0lgV*iOx_(vB0iN6&8l%McV{@wOJ@hAQZ!rD9bME{@rFZQ4NEBvEh!aw@jR{I~`
zg@4i${;4md|BpVp{1aaIC%<C<kxTJUdC2@f@n`v+$NrN)vH$oN`;RRApU?i|F71E9
z3;)Q%KXP0A6F%|Z9>*6Nx-0gd{zH+UIluqI{g(bevdcg2!auU`-)jGnrTq_ouKg!I
z;XlgueNZUiTe6k1{1aaIM|Sxqes}z@QD5c!Q$I=npX(F;sUL-Z>J#Cg{D}QWcI`jz
zrT8a5V*g2B`u|*STkU`Hlk9&%SbN8d(*NiFm*OA&ars9d-1a~2F8|aQ!aw>e_Mh-#
z|H+T^|M4&OAO9WYpZHw+kGt@XEc_#v;=io@=YE#5|CE>TPyHtLpZZJM|I~MB{I5OE
z=L_8x`+vUvKlfkw=l+ZR=YC83AN?)Gf2;i`yzq~^+y2MD@Q*$U|F{eP$ihE7xcpOp
z$oL=O#r{)1Zu=j1vH!%^QU1wKsrG+a{)u1sM;890d(-%TbZ;8}BfVt*=Oen@`JU+i
zbAN?@<hJ-HytMz(7vUdw;lI`X<1YLoca(qP6aJ}Rg#YN?H2>eIujc9h<KN|<`qj1n
zl#ko~r#_bUKlM$i{y+7VwEqcTihsh3{YOsxm*ads--Z3}sptREH+lY#``y;_fAG=O
z=l_Ubp8rEG_52^#*U{(yNnf7-rGAm;|7oAe^MCkvpa0|e%k=#Jd<0$E=L`O2{vUmi
z`TtIT|BL$nxAOOY^nIVcaHEa4!NZ}-`*<F0S@`%W-dDkXN&6prCF6hO*X{qe+W&?<
zy*zv0hw#$>$A7E+|3Z9|=gP1=&)=`d_ixsQACf;ZT76IWH5B2R@cmpK4^JRp7oInn
z>)jU~LtfW-KS=C9;a&TWdq?~K)UUUMe)4l$_Wls%{R@@va~TVK{*U~K{il8@)&D2F
z*njRvsrEnNll|xRbzm#_UsU^#zPRuIVV}hQbHBy@qp$A!fB2W@|B<_D|KX`E`%nJb
zvj5m;dH;|2#Qr0T{cp$%eE*N~PWHb8u=QXRk$-p-`(JCZ|6O?gU+h2if5v-m|Itse
z|Hxwh(MPfW@aNip!n^%{+)LSi{JZv_`c3RV{>A>2|5En9(O${>|FlnJ{EzmL^#5@`
z|M-8C{U?8}{U^WD|Hr@Be`K-$w0C6w4|nPRBa8h<E@l6TKiU7zR3?S}7yh{)ZMFZ;
zH~vrj!as5;{_!vTBfI>=V=4ZL&u#zXF8rg9Zu=kq!as5;{_!vE|5pBS7yjW@_^1Am
z@ju+9{ZIadf9g|r{GaeH|K!KzpZZGpZ*Bi`eKP-tEaQK~pZM<}|JZxsAAW`ZPTPO(
zzwqB`|GD2{|8W=lkG=~3=%etD{>u12`cjI2>I>nY{7C<w_=JCCmw)nCihr)po&O^}
zvH!@zKeF(TEc_!2|H#5Wvdcg2ZShZd;U8J-KjoG9?+oAPi=`{}pZcUocfRNUgn#b8
z*#B1kaTorPg@0t>AGs9&)ECnJC%o{FKDNa_@wxnSy`{$gsGo#?>PO+9`a}4~y%hgk
zukcU)O11w9FZQ4ObhQ1C{Ydt|AgsM(PxSxcL-<E_?LY1=|LC8~KfKHQKk>Qz<1YN8
z&tm^c&$a)AcljrLDgKF1_(vB0k%fO`;UAvG{=<`N|If!i?$ZA!J>ef&_@_Q{?LXx!
z_MiGLwg21We7?|y{a@7afAql}|HnP64=!;1Kf-r){2zUk_5bKEE$a9`<NdP!pVfEX
z`hV1SZH@m^o@xAlK7uao^B0AG^s%e_!$(*7hX>(5^5LxiiMy=-Mg37~{ZIIo^}mpX
zf8rPZk!Ajm`YG{$X>;1G++P&_(Z{ax4<EumvdsU(pS%7q{K)!$)F-n3C-qlb{KxvB
zi|hZk@{gSO?-oIqcDx1uGX9Ug$oPNR=l|flD3v(=$9P~R@OT+pT>qQ?pF92spVI#)
zKQjJDe^vVb^gr7g|D%3z`~UPurT<TUr2mgB{eSY~&i@miJO4+1Wc<G|UNO(}|E=SH
z<fl~sAOCLuA9r{BkNlSE{}Z3v|Bvp@`#-p+@xOww_KuN%_!R!(SNQMr{2%wv<sWyK
zf80y)505hchrYHo{zv*Q|HSX|Pk7<KQ6J2+{ulmb{y)lBapP|en|Qw1zDFSAf7FjI
z|M-{jKV;#b@{;j?>SN)b{Fa*kqdeU4Kk7G`|06##{)a5%f7Ex0|Ms{qLU+afQ=b&^
z&pH2xKK(}c3|>$S`@RSI^x5#c$g|J?4OC9kV91~U=l*B*WqJ5|uJ6}}8}Pp({C+N9
z$G0}@`yYRv%Qu9VBd-dt%jGM=8sycD?|rPo&AtzEKdBf$D+wFI71{SbqHOL^V9)y_
zKNk*i$e;g*kB^3r;XeEP|H<$X<k{!{N8<NL^5_2v|5ITY_jTFx|Ab#nUij)o_I(iC
zGdbs<Vp&aILb$2%eUL1_v(Nu!Jl-7sl5AGseO=gt|63Z*^S`_D59If@?0X=@pYd{g
z*qfI}HotjCI8HX~`m_0j4Pj62Uhw~(+&ycLYz*(u-LK(VLwIF4WHR}ES+MsN?+Ry4
z=6+riu0_5(%;f&F`gfCjKjc>8-o^eX`zP^d`<L>)^&270-y3<BD_iKdMw-75Qv5FB
zYW|LhrC03c&%Q_U7<nm<IKL>jg8!HF_&@cLeE$a?r2mh8OaGttk=y@gyuf|`4|^x$
zf5hL`^Z(@69sk2U_5WX#__lpfk$?1A+W*+^Znyu%{-d8_|FIup|KUUIKlanL|JcJ;
z`=8mjS^IxQw6C-F|8m*_&G!HD=$_ku(ii(re%rGDgkKZeBeV8DlXLse^{t_8(QN;-
z{Lc3Ov-V7G|H+@&f8uYo|5^WF*8X1|?R9SdNiVa{v-bZg`|2Ct`zq{zX3uBsf7V{g
z?LYPB3ff`~`%n5SWBVqz|J={4{gLcHh1649VgH4H?w|1A>G40}clpO%_(wm5f81UE
z;h`=5sXv5&^xNg1{FQ3|lRuY#uCEmT_!s`+P538&F8_ot#Xs>2|AZI*xjx}Px?BG$
z@!wPMlbOgr_Fnj3gz-P&AAJ)0kNyb%=uavB@h|+N|E26d=?nkF=kkxc%RlK$|DXCq
z_@}-R`%iqO_^14Yf5Hp@$S(g}Zz=wX&*h)%P5k#7>2v3&EB2rIq)2Vf@jvuO_(vB0
z(Vw>XhX>)G_)GDR|5E(JkIO&t3IE8#KjB^eDG#^(Pkg2LCq8NaQy;nfQ$I=jpZvP~
zlON%q`;prJ1rfb<yeR#D^hx+fpM-z(rxgF_vpfDz{H6FuUrX^1Kf*uxamW8#`ESUx
z^M9r6KjDRc@?XmS6W-;Y@)Q2KzEb=Xf8xKlxG!?k75h*Bp@@IZ=YP;A;U9f!i+}XX
z<sUv>{z=~*|0Djk+W&-i?LWM__Mh@{?LXm#f6{A<f6AlO_#gGT^#4g;>_7QW{1-&@
z*0Cr0|L99w{G(sOKRk4_{f~YN|M1b(@qfxg>_7FF@K5?O{*Qm*pYmvnf8rDVDNnKg
zxQqRdd^_X+<Tvr(Tih49>5BcYwb*~!1M>VY`Xu%reJaI2`XuB3@FDyYUn&04U$Ot>
zPul;u3;)F57XQ>I(*GwuvHx73@Q=IjALTXN!g=QZ2;WiuNzdgUch~+$_cZ=rFxN}R
z$bYZR|D!L`|3{xojsL@IDgLQHgn!Z({*gP%Klu~>sc(dT(sTJIyx4!rN9;f0g@4@L
z@qg+gxBpLkF8|~|@!v~SFFY?@vH$1m|D#WB*?;t3>_72|{YT$R@lSZ+pZJA;^xNeh
zeq{WQ_+<Q#{J8yp{FmZC_6M5mKjB^ead-LWdR_jxewTmZ7yh|k>HkOfWd9dV<>L8_
z{L@}v)cJq($>ksY5&Mt+i2X<ZUH<Ve{KKa^{)d0zpY(-)++F_R$K{{!!avt9_Mh;j
z_$NNG|Hv-?#4r4FeKP+?c$a_NOYx8Y#Q)+k+)heevH#R3MV>Bb{vZ8u`NzE!|LA`y
z{)xX7|M(aF;Y;j4=?nk(7yj|@@=yKc_Wy~`<)8Xe_{YESPkrR_PyU5}@+;$igctiy
z{E7d9fZjev{ujIdk3Nb0N1sZK|Dj*PKYU30A9u0;$ZheDe!KP`cj2G(gn#&R`NzM@
zKjqaH|HLo+6QA&pyYSEbknw+H;UE9PKXT%~w>h6LcU`gn=j;EYPr^U?(-!~ev&%nx
zy8KgrNc*4sxb~m?yW{`lNBAc`;h+47{m0$qANP*(PkrR_PkO>Xvdcf$>+(-|rTM@4
z2)wxG3;r*u_kYp1w!Z(x`?sam|3d%e{a<AF{a^CuzW+=8DDVFgpS=GIpZA9QP>glq
zoy)WJ2W0&}{Fhq)5C8K1FYhO3@&dpAMfkM-=f&l;TdDUX|LA9_^?%{zcwBE|W%zC-
z<3-m0Lw{xcKll^=sSn)u{|R4;fBd`rNB1tS|402J>wl7-@Q-`qzgt9ITJc8yYl}So
zk3M#^{ZD*u`yY3={SOar`yY3=|4;nV|EE53+yD4?+yAteW&WT3g0%nXuejs?gqQh$
z(v$u_vb6t+U;6)CZ>jcwY~MT2|B+s5|MzCSP}qN&|KonO_5MHgNpZCu8UIJWWd0BR
zm+?RJw=Mp;UYCE;7yjWx`v0Ua{1czcKjB^e2`~I33;%={{>h&^{!e(9f82$C>aSA#
z6W;CrNB1=UUog>2$H@O;kN=|&ZP|bHU-&0J;U6Ak{2xAD`;WWJKk*Cy@FD!;UW$M6
z=kg!xhZ5`mkiN@5^`*-{=?VYD*B1X=Uz-2xCCcZ|OIPgw`NsdzFPDGxN9O<0PqF`m
zclpO%_(yj6$6fd*eRupH|H41{bNPoq8UH7|%Rlvt*njFLvHwwC!%fYf|0h0|fAZ(@
z&-HecfAW*~pP#v2a*6!YUYGVi{7U=33+sQo{G&g@KRgKk=)drfEcT!9!aw?7ihshF
z;varo{z>2EpYU0I(4qJL$-mqGr#_PYKmJScPk!C`f37$2-%FIwpO>!Kf9jJW#Rc{M
z(I=VzM}LHW^i%jp7XFc4{)yk^pZY`WKk=2~AOFHXe7XI9{JZu)x;M4|DG#y#xJ&;Z
z*|q;%pV)umE5$$M=g$9=zV!d8uM__T0lj^U{4aL@AANG|Kl)ROfArbqAN_Rs$GxNc
zlON$9{#^S{`mX(_yo7(^E5$$Y3;)P2|I}Y@|DWq~?LYAg|KvZ7|MzA+&=vb%w*QYl
ziTy`^T>jC2vH$2-Tl|xLDgNO@`v2rt>_4*bkK7jjgcts!yat7ur~glRxb1(+&*h);
zaQTn+-Ny6t^}i$EY5uP_3HNgq`KP^pQTzYsQz`z@f8igwE&kD8mw()4{2xAC{^6@F
z{;6MN{I8XN(ii(r{z|p~iO=O9cb9+MOWA+&o9w^O;l*<8iv6cPDXwQh{eSey<sTlT
z|BpVo{KJEc{}KP9w*N^__@_P)`%nJd{y*2}@=ti-pY()(!n^h#|1SUJx1;=1zbF0+
zB6{l>`Csh*Kl<nP|8bZ0Kl&{EqyH}dgl~&~;&;dY;KQ~5q%Zs<3;)P2|Ixi^{14e}
z|5HA~KfDS5xJ&<^{0skFZ>jNr^5fcn>TBu$<3I7=Tih49>5Ba?+y6&D#Qvi{!awf9
zKeEd|`ra1*#P9NtyYLS`(*K7q;h+4t{1aZr{|N8ef6^EG5AVW1?!rIu3;(za|HvKX
zpX*Kh7lifpu_yZf=%4V9{s{l@P>O$e5dP8sQtf}zFU3Fk7ygljf6{mP$G`9&<r4NE
z|1STy3;$f7%Rl8U?SJww^MBF4H;w-hzs&z3C;oez`yzK;vH!L6^#9Q(Y5${7!aw>W
z{3Dm*AOFHXaw-0)KV1IdL+n5C3;*yX{NwKOkAIhc%FAv46MrfGiO=Pq_=JCC;h+4v
z?SINA@m~<u+sB^h|D#XBKl)ROfAqPn@qhH&9skE&#{ZFB{>e`%{;6+-f3Ck&`=9)j
z;vfGm|J)DZA6fV(yztNUy7r&?J@x;4vmWS*{Xbv-AAJ)0k3I?i$ihE7bk+W&zb^l{
z3;*Qb<)8eQ;vfIQf0Wy3|HGT~|A|l9|Hv-?T(9s?{UrQH`(C2`PkAN&dzgRP>x(-7
zk3I?i=#$Go`r1|giQnZPci|sC+Tx$^8Sk$Mk5ocfLj1x%ytwwC@G|}f?_&Q6-xmMm
zNBBn;{*lH0N4}e$|B3a(Y83wNFtaMVzQlhI^UwVh{*mSVpOH{qVp_`fP4=s~zn6u}
zqWnuH^L|iY=!^1`CR3k8fqxe?|4;m4|IshuAN_a7|KXvn{y*0*{eRLI{&8=Mf5N-`
z$NHg!{U?9IKk=91pY+-q|EE58+yC6p#D76VZyo<T&A6-4msj#Er)}S1H~Fq`SCk{)
z$Q#4PC`Z1Z3)Kx_LzE-mxZfG>jPf5W3t{b#L-kB}KQhLR_|fF*Q{k79FAE<w_f0k)
zb_#iE_+67<9;#1-pGRI6evN8|P}Nt52as2V!zQCYTf)7_Yr=mt`75EiE4&$bZTJYD
zZNHLqp5e?Vh|i98?ydZ;vA>&rE_rz$9@Cae;3ZrF+gV@oN_g8EUK{usz6UE;QlGyv
zY!23fi#(6*3_JK+ZDdBCcZS#Sx4Pgt><ruaTMf^jq8WHqC9J<U+>g90JV2yZT^82c
zdUUHv;ipXwVZE)Vw>qrI_+PR!yqdq&M1EIv-&x%h(_a;SKz^<YJF9oomR!x>)wz2n
zUmk91$eVDzf>y|~(06os=<8b=`o6pbc?G-uT^9PDS{3?^uMT}bzC84OedWA$ht(eg
z#B0Z;9GiDer7e}fi>3s6V*H=_$L;^qK9%-A{@wOJ?cuiC|MVZE{ZD=9w*SeW%>R);
zcl?k1x$S?#yZwLMrT>pC?SI-!(*7rZrN;k=&+Y#czx4m{FYSM>FU|j58dbza8UIIL
z-0?s3NBaNxFU3Fpg@5$F)cil`3;)FD@{haAKk3W-KlO?5Pkkfff5cace|QxB2`~I3
zyZm##ZT0_&U-;*G6aSYG|BTnk_#g9kGXA&N>;IrXZ?C+E&c?Fv@qGNa6#wub{G*?x
z_{V=M|DO+Uvr&eyoK6uxbo>u~T>kMd{38qhgm?L;Jm!1;Cw?CQ_vgZMDBP`$?*)7=
zd=B}x@RyXI<u|JzZVw;ltjX`K{3C}u!#4giq>|SU8^c~JZ{o}52VWWJE`=r3S6TgV
zSJ;!^kF0%gcX*GvQ-5Xi1DnG8&7JGX+6SA%q1=B~KWqtSb2+OYwr2AK+^=kWa9g8K
zX5%%t68A3lN7+9~INQIJ@76ba06)cU{)_!tet(|*i}|^~;`pun_g6W7gS|Lcgl|4t
zJT^9D#~0X(cwf!AUF?>2^KM~Z!TuO|D~@=%B(|>Df9jLs;^!RyN1w$0qkpaK|5E&;
zuk!p4vha^Smf|0MbonR#u8#jx9t*Yqk$<jF_=iWAf3DBvpY(-)WS4)^7yc=qQv4Ht
z;=dqfagRm+U%vkXzc#*R+jrP)ey^AhDCYl)`GPn<!2F=h4{$%{n;*EA`je`%`bXg#
z#EjzP@_z|`h1?fzq^>vjU#R>hhgtjoKzKdw%fr{HW6fUe3~xYQ5q>|HUmtcNuMB@~
zGSR*vyb*a-cwO$ko$<xM2;n|rweZ>ZJ}wXUn~c7`it)+7_~C;MIh${|GSAQ7hWFtz
zYybZs{3rac4L>A)9IBrPUqrqpeBWgF`jzl8<m<xox%*VGl3EuAEq?rG-v`O(|M8#6
z`TBq4=RU?$L%1pIHUC^smfvc4YaTxPKG4mXy~qFGgulUmZvXNB*Ws^`bNf$yuscj5
z&)WY_SL{yA+W+i(A-Vl0e>)i8we>xs{YQQc<HLbDp~C*Zn(<(p-;eem_t(bxn%w>)
zZw*^<&+R|;efGViS^J-TPbjzl_}>!!C;LyKE$UX-f8n3|A^gL)%Rlvl@K66i_@_Q8
z<_9l`fArhsAAJ}8@n4F6u2=XczU+HHYeM87{Vl~m@d^L%=kiZ}g@3{e|H#5W{)K<s
zg@0t>pX=!;|I}B)KeEd|`APgQD%J~5Eb<SZ!aw{9|J}C#=uav8kN&&%AAKvuf8@P`
z_Mh~Hf8rPZsZYfI<6eq?;&=I{JcWP!m*SuLs+9fbew5-L|H=L@7}2hJoOAvkeUbTp
z+SaA!|3BL@|Id8CJO97G!}I@r%>VN&LLV*d#{B<s=Ktvr^w9_C3(Ws7P4oX<Rjd^G
zB~b!&Cm|(msRU99ycA0y@&8i1>*<<P31lT;Z}BW+9G%B{)0RpgmB34^1QP!*u^XN)
zH<dtB2^jyY7!SLm>0J7mN+6ZMOQQr5|1XXEoUSsJz+5F@<A2w)+tYr#+3({0-QDbI
zOC^v>;Kg48Yq-RBu-khfJeSI5HG*zS)>f-}rn}PWU!A(&vhit>vFF=wjmh2FNOTt!
z)y}maSbH`sS+)DO*5B600wWd6{fZAa{B-WeY<Yb3Ur)z;?c>SW|Hh>0Ju#7|8%gbI
z{F?K}iWL=}MmQVJyg8iV$>H_k4QHai4NF7iO!%pd)v&e_p4?q|h_hVG&UaedtTM;_
zh@qPP-TZ;9yzXYL1Y56xN0!-G)gj+3Upv<l<pphAEal7p`M1iMopU+9G0)dm$&;=7
zU{79T@BPf>y9?)HzRs)-PwqThZHoTxJYUDjQ!ncMS@P9OdjD|kV^Qz_J^AWIz5f>Z
zvUQ9ukM|g5wT<P0*5*I66Z8Gw31sZ&Y?Tk3b1Fa4s1fFACmlMPmDe(JCttQIiLFi2
znT>p%S@OZP4{B_dr$)ZisUZ#K`Ff<s^7X$*vhw;UWz|di^{Jo9^7TdX)l2%daX8D@
z3*^h*zqm8r;ceM{e)H8~EoSg5`#ziB_w|kYU+zcM_kMWo+FSZotXuyK%Cs{B?SJI=
z(GQqhQwgLJ=#>&UpUvo%e5QP)5=bS``4afi_kQ#}s{@|0PUG~@_=&Mv_3rB1Mknss
zRy|M~s|`)pT2Jq;9iABp(<eqJCPpVl8ouW_T}1Mx9fwA0ljDc>?cX<ea_gbt+W6%3
zp)A2e<3pnpn~t0~5nel8A0D0DbnJof+VP?KG5c`~0X7}GC77QuI#CaEN0jGAqZ%7M
z9OK%vck{^DOg%<7J~><)vj}hLAF2=3j@Zw`GZPc1gXOH>Ttj_wYGyh+J6N9_9G)6_
zJVcj`nN#DWMHUX%Mn)%2h2hDW!(+L0It-6ahoL7%#{*?}G7OtI9A)C?#MESctNq(%
z|LzGx6Qf*jEj%<aS|1p#JzksQ4h&B|9!^e<4u_wvojyD{G&TIjU14TodURx>He5Y&
zY-p-_yms1(q<Sj;KTRHIrfc}JbAyMo!*q7YybPM3`sm~Yp7!h=s7=*tr|vl!j*d+Z
z)vE*5N2~W#-;rNPL)>MTx7&)~!HMB`d}w&gQrSH^ePV3rbe`VO)X0$#bG5O$v5Iu^
zJa?)n{&<H6-#9sbVsxw)Z_E>H_M?Ar-$UWZ<ivEnnip>Wi7BpaBtL04?7)L>*jw$-
za-QeE|7i3T-t^Gk2g%COkcA2Za|bRidms;%c?<oc!?lU}Xg$-5Ig%MT*Tcag2S@s&
zHf5ovG<OGa95^yC>tP`G5c-cyj^SW;??@)tnM|Gv{ipg*44iZ2TP5<Wux86;o9Eid
z?Wul?{9x!m7=N9U$UvS5z6Q?C!a$x#n9iIVsZVdU7za3?{paVvI6G0WpL)w|2~3Cn
z>EpG>&q?@XUY-L-rY5JS2{u-n7^xp?1Z@0hDC@w)<ka}k*yt0rFfcq>CkW)#2et)E
zum8Yg{gK%)^?2gp`2X#pf1p13vwQXy+CMomHcskW?*oXIQavDrN|^d&f79($=VtY-
zHb=Vu;XGb$ci8{-u>X;;|7|fZ`)9K_T$`@L$<*j6NprS{r;hBO0o_NduOgrQ?;4#r
zS(~E9Zg{Y3fa&ai=&y~A)Fx(KPfpHQ*jW#aaPXG9%=#V@uji?TV=Ze{dPZ)wq2y8^
z4b9TCg+|3XcgK#bQqJoZ3S)ZkC{;yPBk$Pp-po1o8!M=V<n34%{@~PT<HwF2C$<#%
z&8or}DPC|vneCb~VOx_hk^Rp8@7OV687u^TH+*gkBV&ykch5qs;oP3iv2?z-Mm6hu
z8*kjOh4?!bjt-5DHCz9}%(tG;S_N~)nR`8yB|UpTcI=?`v+V5HF^<hIeh!@~euA_a
zp20EDF3w^22Io4zr&j-&nQ`t~<DR^wR)6bsEjM0!Eefk}3138IDnx*I8Y^5omD|Uu
z{5X;y4;KMQW7p)Ve)8I^#v5ClXY-H$w;UNlgL5{t#>h_=wX<7v{>{|_HW+Vdw1jB?
zj1SdMX6+w0jYi|_@o+3m)P|-8Dg22V8qoMPdGd7Lgh3_3biH;WOw5cQu1yV29vw7s
zI%_v=9jsHK)rMo867Or?pxRbA#Fp3A*y5VV!feZh16vz4(T0uHJEbl<IG0;Euq_<i
z#$6n(51x!|s=>#zM%9tSgX7jx3h{?EhwK-Pso2W0-=nl}?3im**gH8iypINHBMa3H
zv@C9~9%#u(qyEgC4;Icv!^rBbiJ|dYc-KsA>hxg!^a)zmQ5EWwW3{QFi6gbJqp3@7
ztFsl`2_|q(FzfVVPTauApN%Zr$m9Xe+bVg@+aD6nR=>AZ&Yr=+W;$$^@9&t#xt8;`
z3jd!naQAw`-b@_3ar+Lt&D7WmW;SwtC+D}a+lp{D!fvxmw#xojako`>wlh7o57|~{
z`+7b-bTjAwp5IRr@1L>TYCF#$+X`uaN1R7FXQRB^@wb#~v5{yS!L;ori<5M0g^<Je
zvz3Ny%^Vwf{Sf|a<+u&FT~9b$WyiJ`vV;8pw>E9ove~NPL&WngcH3&?$7X(PHJ)4Z
zxa|BLq`RJTRnl3>@0I-iZH`ZHJV?3^a<p~xY<A{toc}JrZL?KzY<nI*b8WVY`AqKD
z-22JnACX4$_6g4Yh;ufBXR8X?Dt3R0hu`G<e_*e%+iK_bg#_DdB|_UaalUo4)$9Hz
z{%rNUCyD0@{CpZuXE}cY*=CrE?Jx59-k;~)RzxbcZ|82`=lIX;wi=Orv7vRd71E3C
zb;M({eYR4bt(f=!3HK1`KW00>e;#*R<=s}+v!_n%iId0iXHT8{8}?u1_vbmD!JmzA
z7u)+dS8OM_E?a4^b+gr;Y<sFH+;P&G$jiu{bg|7=B`mhzCY@rnz%%&!Hv2!b|B!tt
z`Tei#?_mEO@@1<J_Hq5ch?}jHZ!^I*D`u<26x(z7eS$b`v#(FsO7g{KU#BRxO~mzd
zQ(51ehcWjbG+nF7wn~S2{bkbqN3P9Qm9ovghG8pW-OTYi-2Rw2mT~+Rp1;Cx`}&f7
zVaircw3V@Jb*;FnVpI8KF=hX41w-3x#lugLhmUf7?<VeVa<t86XZ{ttttx3>)fnfu
zt?+O2)tmA2CXOFPe3IQ(j<W3=#AT~i+4d>iZM!m;|27lT|5O601TIPm{NE36soekG
z>HDcP!k_SOvo%kqIUG5>xy~p~tv)(&bTX4^sLzbmTIJ1i_qO6t;_Pr-j4+E}o&e|c
zYZe})(F|UA5VFEBptXt1hB?+;IGg7gGL4aD<=5&Z>k)~Exrb6+FGYVVda_PGt=Mz!
z%$)7|)-l%@Lw;xG4&dGyKggVS#t$<0omohj{LXmSqFtgA0TzBCnnbIH&3PS-AjLR%
z^R3Sv8{_P9=W`Wn^^@tCwRUc2H{*TJ@BP2uurF%ab~But+wX9EImh3_8ruy1hdA0(
zV_zn~wHy!Pegntr*sbC6A$Dsx+=lzhI6ll?G*ry6{~yBh?Xd6^;chgU-5LSEg#Vx5
z_%O$7IDVPk8XDGcpaBu~5YC>CImXeRN3<5WJ<DUgn5#J6!ES!PM|jIi+ENLm66j0`
ztRos*IsSu7zgGDI5I?=_Yfu-$sr>jsj!#lKJiq2^6{|BogM1L^zrb-f@_**|7jXGa
zj%R`Sd5-^!^FQEdU6vKgzgDrj<NEx#fupg%JwLvgqtzV`bF}#WiF{amA&>7f$QI8A
z(%-^ydwzVH^OoMXugu&7$A_tR)^fD?tNHPp_`5nBuZ&fWRz@nvDx;OhDnpgSl_Qnm
z$~Dw(H&O$x3$F-|Rt{C(QTe$_t@1KPE9`3n`zr@3k5ujm8~C2t+be^WcgAud>a?X2
iNF|U;AeBHWfm8yi1X2m45=bSGN+6X$DuGL`1pWo1y8=f5

diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.opt b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/demos.opt
deleted file mode 100644
index 237033d492a5833edc67a26a5e6693866af97436..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 58880
zcmeHQ>w4728J1&k?Bxu`1{%uLO+wPZ8e<^DB^11CryJIX*bZ(|w^S>QcNJ?#LI)r6
ziwns4^t-);+yQ-h0qrHEKhr<GfIKOEKS^T?!-h44JSKcYUTdWJG&6c<w7bun`M&wr
zKM#EKx37==+t`#Y8=c1g?(`U4x$7Os6Oy#wK>3|Jl-Ebf;}WMQh=K3XSAlWs1a<&B
z0UGmXfo`A&C;+<v8s|MY?gjP%m;%ND;2>}a=mib~WY>@55#T6r4EP1`9B>@?C2#^D
zy9$m2z^{Slffs-mfs?>Xz{|jI0J1%W<7uD>3<76>A>b@944ebV?gEal0vCbTfDz!g
zz$M^y;4(mVS8%)vi~=Q~42%Kez#G8t0kR`pL%s@30F%HJFb%u~%mA|h*}aY9bzmO&
z1Mm*;F7QWS0r(R@b~kYR3t$2@zyfSQ0*gQ$AUg-g_kbn91)6{YJirHT0%Z5FX$CcU
zMq~&)xxz6p)=*>nsSh(ow@q{BhtlmmxBe@?{d))XSKG~_^#D&7;%Q8<AkmXq^uq**
ziw7lPJkvpQmF6z><3aXR{tW%0$%-_J);(hd?Mvjgp7x{tPTWTCN4xFsre?DC$1v&+
zo|Ra5n6ww|(|by7Q);J<J~GPM@4)y`|DRnnUDr|d^QDo6`O4&L=NHOjv)AUPrWdB)
zn!d3-R6JW8TCio)3l}m=eJt9c-+>ysL*G#fRlNG(Dzxc>&ge?ILbK_+a=48u62pbm
zUf*sQw~tJE%JNj?sMxHzQjD!y(vKWZQ6CBTbh&+~qLxk9u|?SleJ^zK<sYE@@YNtN
z*Tkq7D?3c8khZjS4IjdyZ`}3FNR*}Wf~M(;DPIPrS~vL!CcT-7v+USX)YiniGVpXA
zA8!~`lw38fNX*DEb|Y=@2@Lwv8gyrqHu7El6gGQPo2g|PEV|x`zWp;49Y~92Bhy+E
zrG~VYbm`|P-ItcWt?aw+`~qct6&1<448YI*I{zh1_G^>PEq_J#PY1ZsMHRNFs4xm*
zE8p+$VX`;v*5<p<cNn+#l&e)S=|y6k_}6_NMafYrsVIyWM(=%->J;N98d|rq!sa*q
z6OI*lp|==`(krjrI|DEYlFy5-c{8#a_y$QcXLSbOCFzxOhVd<Izf0zg4E(?erI;|4
z32F|Fg4Ng;7<7!B<$?dTotMU@W-jkt^n9sKi5n|PW=D84h|-c=w);jXqo!xev?Tr8
zJ&s4Y?#Pw&G>%3Fii6qfR+Ou9Kn%K0%{QY43W^K(52piSpwQFPGf;}d$ZLwx*m3Ov
zvEoDxvFMuhPz<Eymr7pK_motTIJ0VA-fU7R1rmg+x`<@c7mMhL7+8M|=f)<c7iMOs
z&kbKVQ=FTa&hDlc4HbssQr(TC;j=~bN6^#P-RxvZ21@FaIFvzly>2^MZpBe}2R%2r
z*YcXSThB^Nd)f50S=f-SuE)bCMAnuo&Gm-k*s;?d*fmQVAZz*AiGR~i$_JI_dUa0>
zhH))i3-Q1sc#;s+ia|$Nfo$TTOm{@V#J6ktQNSrip=nwTN6C@O@Wl&a&}(;~3dMyP
zi5`b?p=mm*=+)lKU&3r~>DuLuu>c=Unql~8#&F>863qi~<p&0)P=yu7u~;k?kaE*U
zoEB$<3<58BDSY`9@+)RQAJ{l6@CeYLJkkgZow<;{8U=dO9Qrn;F-S(*^8G?uJLPgC
zRIN;26C+~L#C%J~MpP%S4Gmo!8WEPM6g~y%eG-oH<0yM8vuQj~7^ATim=IQ+yt#UQ
z+-Km2S`9pX7;<6;m;q*h8DIvOfv1XruRrMi>u#fAL`71RI57jvz|+J)=f?lhA)$r!
zKZEr@*8f=lWBrfyznWkLR<y6cvi|op{cz%EWd@i5W`G%B2A*IBSpR#12amhX3_KzO
z-B|rMQGK(DYFPhEC}91M^*`4CSpQ@FkM%#ShGqTl5r1Lu?aTl(zzi@0%m6d6-56l~
zZ@Y~M_lFty=@_`5|MfgPk`?@t$uIgrX#oDmJuphWkK6M<{uNc4`5#x{MPD&)z~|kB
zf4iHsOup~!rXy&d{JBZIY}fz!6{>tw`ytwI!Ux@L%j=vfNK+rY$@R0h+x~gF^`7?q
z<k{60890XL-)j56%eCJL|8MR4-BWVSFx>Dz-LJi~g+&E2%=@agC~R?glV|IRc`sNB
zebbWSWa3nQazqRZKk(j@Rs?s%w4ptj?_%QimNkCAYwgw6T~UkP#={*f%Vp`pw=NLV
zfoH=(IV@av!WeFNa2h_ok)`5#U^bgFI2npJ;A1NLMrA$qbr<h=aZ&+U99?&zH3htz
zBgYa|rxuvO+OuUD!A&`QJ@L*Jvoa!oJ=7)@+{Pn#NzXUn<cG>cQil|#xVHz#W@2@E
z&S^?rEgX**WgwL$k6(5DhFO!;=6I|UZ|jZHU1K6@1YTTki1ChDQ5qz-=&GseF+7<Q
z59Z`T(pN`@z39BM&A?9Fr?W@sxdbHyuKBB%59WF{n|R@eyJpMRM3&!2`KjudK7W4N
zHKRp%$)6G^Ih8b5hDq78;>6FEytsF3BeFSBhBsslUb2bpgbYIybk{*!u<Teee0jsa
zd-knraycEvjbWODL-CRmJvZMlBaGUlT!9Cr$XQ<~o_}%L3?fWB0rJ<a&{1*KZaT_=
z*SZ;bLD)xkjls{E{lD4&yU70EsfRs#;OjUk>!A^N{b%}<i2pJJ%m6dM3@`)Cz&2-q
z_1|qiK-@iM;4w1r&OcJ^v|np&r^URZhR;GgN&=Pb((%KRD39Gn32GRLbgk@LT~9RH
zTl655`_E3&Ybp0#l0(KgytxNuS&QorzOSphcXoDk1`6;lqcmp*bs1F<(XCZSS~o={
zS!JEJL`=(Gqg0j%zGXvUTPq>d9b&f0AT!z7-CKThzHP(QJpIf1AM1Y{|4|2a<oJ&|
zB;+GSA6yU2nU5~W@gFyZO3jDc{IMf&vi?Wkpq!WiW`G%B2ABb6VB0gm`ro!6BJLnF
z@Yop8`d?qVkqWj5xJ&*k<o8$EQ2$z3x47I&@$22x=DOgQmk0Hew~+Z-G)Z@DRm;mu
zbgcjJ`afR($NRtV{x7@(PrEztu>PmNtNF+bFayj0Gr$Zm1KXMb*8jHk@Nnmtfyc^#
z*8h&I`}%HD0C($xbdTi?4Y1`MEel%dfPK1&b@lPSN+2y6q|`zQY}qW`)1rx7b#1TY
zYuhldC(h?jc>N!*|Ks(4y#9~(fBsqRz|Hy}eVuY*2ABb6fEi#0n1OB20PBC-eu%h(
z%)nz~K*wKv*aiv@5&!T_YAlO?SVF`_(+KhJIwBuRM4S}H7UNHDIsW2YuKhCFtQoOU
z$3JNVTc+XQLp=YV?`q#OEVSQ5>&l40!`4zS;y)H}OBc{?{K*D2k@2tf-_G?YkSOcu
zN>^r*UAGoz=_H>h)~8Ywmv56|+){{T{g?f}IsRiB+m!WR)_+<5W&O8WnY<=O#3CZz
zx<Up4!p~MGuMG`d92yapsgxH9#3)vXUhBtE5(rrg_&0qD!Z}bFOYG&Uv|@@UEL=w|
z6>(aG-+w^|ZoxUep@-7S5nK6`I3rfffWEnLM!y|6F$2s1Gr$Zm1I)nF#Q^KSPuF<!
z(=r2j20F0+OD8Vexs$|CEV<#hYtOn~O>YWA#vQkEf?&t3yCgx@|60X{%rE)m^`E@|
z%gp5+;msgo{SVrOsN1anvHr*UAM1blUn87n2ABb6fEi#0n1P>y0oMP13YNJIW?*|V
zP)O82>e~@ur_phxhjuy%Joj{ou9DMrH?Ho{S4RVBF6k1i=(}~8cI%DSd?_ZJ&~%-;
zqFsIIKEh7JxV`_Xg<X3?>}c#^D`4#Qs|&Gc@%EmI64SH|ak7{}m-M5gXVMcBvgrkD
z`s#69JydaBS;u0Dioy=P*tR)W-wP-|GU+J`PvEH7thuOm)slYR=*6TGwT!OXqU?me
z7drX!4^V#iY7m%fV$_S39VS&sTiUuCAHt$<-1W>zl%>MX#^}uyHj>7s$=c*2nDk~Q
z&N8-)7PU3;t_(bF@bQL0Mafmuim>BO7`yAleFB62w1!I7*`$qpS3iZ#-qdDlSq6))
zx1#I+3`GahBJAdDEs0V?T1&e0bCm8&OW(%!Hh10m1<Lv=*zdTGO_j^{?fjQ8*{@AD
zxBL~|KONvkj1zXYzRx&)50kxVw>IB>z5`RDT&;>ptb7?K{&k;6QF4?@DhlI;(R)9c
zOJW=wYj2E=6*j-=-`F3T_O-re2GH!?0d&oqk<}Q|nX@`GtTX2f<6GE$m&|0||9OV@
zf9Cz4&+`7yw4&}xiT8h|&rwdy05iZ0Fayj0Gw|dw!1~{lH)h;pX5hzSpexZfJXFW}
zU#eKL{>S=XCJnOwcaO-izRmE86Ey@0?GXDzajEXc(Qu{>!C$fNW+zKBP*R`7p$xL?
uy#CKoy#9~Z|MB|2AM2M4*TW1j1Iz$3zzi@0?J~gnU%O1P9W(IrW8nYKJx%xk

diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/Makefile b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/Makefile
deleted file mode 100644
index 89b45db8..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/Makefile
+++ /dev/null
@@ -1,33 +0,0 @@
-# Must set these gl and glut locations to build 'falling'
-
-GL_INCPATH = -I/usr/local/include/
-GL_LIBPATH = -L/usr/local/lib/ -L/usr/X11R6/lib/
-GL_LIBS  =  -lglut -lGLU -lGL -lXext -lXmu -lXi -lX11
-
-.SUFFIXES: .cpp
-
-CC = g++
-CFLAGS  = -O2 -I. -I../../include $(GL_INCPATH)
-LDFLAGS	= -L. -L../../lib $(GL_LIBPATH)
-LDLIBS  = -lPQP -lm       $(GL_LIBS) 
-
-SRCS    = main.cpp model.cpp 
-
-OBJECTS	= main.o model.o
-
-TARGET = falling
-
-CLEAN   = $(OBJECTS) $(TARGET)
-
-.cpp.o:
-	$(CC) ${CFLAGS} -c $<
-
-$(TARGET): $(OBJECTS)
-	$(CC) $(CFLAGS) -o $(TARGET) $(OBJECTS) -L. $(LDFLAGS) $(LDLIBS)
-
-run: $(TARGET)
-	$(TARGET)
-
-clean:
-	/bin/rm -f $(CLEAN)
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/MatVec.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/MatVec.h
deleted file mode 100644
index 3d90522f..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/MatVec.h
+++ /dev/null
@@ -1,881 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_MATVEC_H
-#define PQP_MATVEC_H
-
-#include <math.h>
-#include <stdio.h>
-#include "PQP_Compile.h"
-
-#ifndef M_PI
-const double M_PI =  3.14159265359;
-#endif
-
-#ifdef gnu
-#include "zzzz.h"
-
-#ifdef hppa
-#define myfabs(x) \
- ({double __value, __arg = (x); \
-   asm("fabs,dbl %1, %0": "=f" (__value): "f" (__arg)); \
-   __value; \
-});
-#endif
-
-#ifdef mips
-#define myfabs(x) \
- ({double __value, __arg = (x); \
-   asm("abs.d %0, %1": "=f" (__value): "f" (__arg)); \
-   __value; \
-});
-#endif
-
-#else  
-
-#define myfabs(x) ((x < 0) ? -x : x)
-
-#endif
-
-
-inline
-void
-Mprintg(const PQP_REAL M[3][3])
-{
-  printf("%g %g %g\n%g %g %g\n%g %g %g\n",
-	 M[0][0], M[0][1], M[0][2],
-	 M[1][0], M[1][1], M[1][2],
-	 M[2][0], M[2][1], M[2][2]);
-}
-
-
-inline
-void
-Mfprint(FILE *f, const PQP_REAL M[3][3])
-{
-  fprintf(f, "%g %g %g\n%g %g %g\n%g %g %g\n",
-	 M[0][0], M[0][1], M[0][2],
-	 M[1][0], M[1][1], M[1][2],
-	 M[2][0], M[2][1], M[2][2]);
-}
-
-inline
-void
-Mprint(const PQP_REAL M[3][3])
-{
-  printf("%g %g %g\n%g %g %g\n%g %g %g\n",
-	 M[0][0], M[0][1], M[0][2],
-	 M[1][0], M[1][1], M[1][2],
-	 M[2][0], M[2][1], M[2][2]);
-}
-
-inline
-void
-Vprintg(const PQP_REAL V[3])
-{
-  printf("%g %g %g\n", V[0], V[1], V[2]);
-}
-
-inline
-void
-Vfprint(FILE *f, const PQP_REAL V[3])
-{
-  fprintf(f, "%g %g %g\n", V[0], V[1], V[2]);
-}
-
-inline
-void
-Vprint(const PQP_REAL V[3])
-{
-  printf("%g %g %g\n", V[0], V[1], V[2]);
-}
-
-inline
-void
-Midentity(PQP_REAL M[3][3])
-{
-  M[0][0] = M[1][1] = M[2][2] = 1.0;
-  M[0][1] = M[1][2] = M[2][0] = 0.0;
-  M[0][2] = M[1][0] = M[2][1] = 0.0;
-}
-
-inline
-void
-Videntity(PQP_REAL T[3])
-{
-  T[0] = T[1] = T[2] = 0.0;
-}
-
-inline
-void
-McM(PQP_REAL Mr[3][3], const PQP_REAL M[3][3])
-{
-  Mr[0][0] = M[0][0];  Mr[0][1] = M[0][1];  Mr[0][2] = M[0][2];
-  Mr[1][0] = M[1][0];  Mr[1][1] = M[1][1];  Mr[1][2] = M[1][2];
-  Mr[2][0] = M[2][0];  Mr[2][1] = M[2][1];  Mr[2][2] = M[2][2];
-}
-
-inline
-void
-MTcM(PQP_REAL Mr[3][3], const PQP_REAL M[3][3])
-{
-  Mr[0][0] = M[0][0];  Mr[1][0] = M[0][1];  Mr[2][0] = M[0][2];
-  Mr[0][1] = M[1][0];  Mr[1][1] = M[1][1];  Mr[2][1] = M[1][2];
-  Mr[0][2] = M[2][0];  Mr[1][2] = M[2][1];  Mr[2][2] = M[2][2];
-}
-
-inline
-void
-VcV(PQP_REAL Vr[3], const PQP_REAL V[3])
-{
-  Vr[0] = V[0];  Vr[1] = V[1];  Vr[2] = V[2];
-}
-
-inline
-void
-McolcV(PQP_REAL Vr[3], const PQP_REAL M[3][3], int c)
-{
-  Vr[0] = M[0][c];
-  Vr[1] = M[1][c];
-  Vr[2] = M[2][c];
-}
-
-inline
-void
-McolcMcol(PQP_REAL Mr[3][3], int cr, const PQP_REAL M[3][3], int c)
-{
-  Mr[0][cr] = M[0][c];
-  Mr[1][cr] = M[1][c];
-  Mr[2][cr] = M[2][c];
-}
-
-inline
-void
-MxMpV(PQP_REAL Mr[3][3], const PQP_REAL M1[3][3], const PQP_REAL M2[3][3], const PQP_REAL T[3])
-{
-  Mr[0][0] = (M1[0][0] * M2[0][0] +
-	      M1[0][1] * M2[1][0] +
-	      M1[0][2] * M2[2][0] +
-	      T[0]);
-  Mr[1][0] = (M1[1][0] * M2[0][0] +
-	      M1[1][1] * M2[1][0] +
-	      M1[1][2] * M2[2][0] +
-	      T[1]);
-  Mr[2][0] = (M1[2][0] * M2[0][0] +
-	      M1[2][1] * M2[1][0] +
-	      M1[2][2] * M2[2][0] +
-	      T[2]);
-  Mr[0][1] = (M1[0][0] * M2[0][1] +
-	      M1[0][1] * M2[1][1] +
-	      M1[0][2] * M2[2][1] +
-	      T[0]);
-  Mr[1][1] = (M1[1][0] * M2[0][1] +
-	      M1[1][1] * M2[1][1] +
- 	      M1[1][2] * M2[2][1] +
-	      T[1]);
-  Mr[2][1] = (M1[2][0] * M2[0][1] +
-	      M1[2][1] * M2[1][1] +
-	      M1[2][2] * M2[2][1] +
-	      T[2]);
-  Mr[0][2] = (M1[0][0] * M2[0][2] +
-	      M1[0][1] * M2[1][2] +
-	      M1[0][2] * M2[2][2] +
-	      T[0]);
-  Mr[1][2] = (M1[1][0] * M2[0][2] +
-	      M1[1][1] * M2[1][2] +
-	      M1[1][2] * M2[2][2] +
-	      T[1]);
-  Mr[2][2] = (M1[2][0] * M2[0][2] +
-	      M1[2][1] * M2[1][2] +
-	      M1[2][2] * M2[2][2] +
-	      T[2]);
-}
-
-inline
-void
-MxM(PQP_REAL Mr[3][3], const PQP_REAL M1[3][3], const PQP_REAL M2[3][3])
-{
-  Mr[0][0] = (M1[0][0] * M2[0][0] +
-	      M1[0][1] * M2[1][0] +
-	      M1[0][2] * M2[2][0]);
-  Mr[1][0] = (M1[1][0] * M2[0][0] +
-	      M1[1][1] * M2[1][0] +
-	      M1[1][2] * M2[2][0]);
-  Mr[2][0] = (M1[2][0] * M2[0][0] +
-	      M1[2][1] * M2[1][0] +
-	      M1[2][2] * M2[2][0]);
-  Mr[0][1] = (M1[0][0] * M2[0][1] +
-	      M1[0][1] * M2[1][1] +
-	      M1[0][2] * M2[2][1]);
-  Mr[1][1] = (M1[1][0] * M2[0][1] +
-	      M1[1][1] * M2[1][1] +
- 	      M1[1][2] * M2[2][1]);
-  Mr[2][1] = (M1[2][0] * M2[0][1] +
-	      M1[2][1] * M2[1][1] +
-	      M1[2][2] * M2[2][1]);
-  Mr[0][2] = (M1[0][0] * M2[0][2] +
-	      M1[0][1] * M2[1][2] +
-	      M1[0][2] * M2[2][2]);
-  Mr[1][2] = (M1[1][0] * M2[0][2] +
-	      M1[1][1] * M2[1][2] +
-	      M1[1][2] * M2[2][2]);
-  Mr[2][2] = (M1[2][0] * M2[0][2] +
-	      M1[2][1] * M2[1][2] +
-	      M1[2][2] * M2[2][2]);
-}
-
-
-inline
-void
-MxMT(PQP_REAL Mr[3][3], const PQP_REAL M1[3][3], const PQP_REAL M2[3][3])
-{
-  Mr[0][0] = (M1[0][0] * M2[0][0] +
-	      M1[0][1] * M2[0][1] +
-	      M1[0][2] * M2[0][2]);
-  Mr[1][0] = (M1[1][0] * M2[0][0] +
-	      M1[1][1] * M2[0][1] +
-	      M1[1][2] * M2[0][2]);
-  Mr[2][0] = (M1[2][0] * M2[0][0] +
-	      M1[2][1] * M2[0][1] +
-	      M1[2][2] * M2[0][2]);
-  Mr[0][1] = (M1[0][0] * M2[1][0] +
-	      M1[0][1] * M2[1][1] +
-	      M1[0][2] * M2[1][2]);
-  Mr[1][1] = (M1[1][0] * M2[1][0] +
-	      M1[1][1] * M2[1][1] +
- 	      M1[1][2] * M2[1][2]);
-  Mr[2][1] = (M1[2][0] * M2[1][0] +
-	      M1[2][1] * M2[1][1] +
-	      M1[2][2] * M2[1][2]);
-  Mr[0][2] = (M1[0][0] * M2[2][0] +
-	      M1[0][1] * M2[2][1] +
-	      M1[0][2] * M2[2][2]);
-  Mr[1][2] = (M1[1][0] * M2[2][0] +
-	      M1[1][1] * M2[2][1] +
-	      M1[1][2] * M2[2][2]);
-  Mr[2][2] = (M1[2][0] * M2[2][0] +
-	      M1[2][1] * M2[2][1] +
-	      M1[2][2] * M2[2][2]);
-}
-
-inline
-void
-MTxM(PQP_REAL Mr[3][3], const PQP_REAL M1[3][3], const PQP_REAL M2[3][3])
-{
-  Mr[0][0] = (M1[0][0] * M2[0][0] +
-	      M1[1][0] * M2[1][0] +
-	      M1[2][0] * M2[2][0]);
-  Mr[1][0] = (M1[0][1] * M2[0][0] +
-	      M1[1][1] * M2[1][0] +
-	      M1[2][1] * M2[2][0]);
-  Mr[2][0] = (M1[0][2] * M2[0][0] +
-	      M1[1][2] * M2[1][0] +
-	      M1[2][2] * M2[2][0]);
-  Mr[0][1] = (M1[0][0] * M2[0][1] +
-	      M1[1][0] * M2[1][1] +
-	      M1[2][0] * M2[2][1]);
-  Mr[1][1] = (M1[0][1] * M2[0][1] +
-	      M1[1][1] * M2[1][1] +
- 	      M1[2][1] * M2[2][1]);
-  Mr[2][1] = (M1[0][2] * M2[0][1] +
-	      M1[1][2] * M2[1][1] +
-	      M1[2][2] * M2[2][1]);
-  Mr[0][2] = (M1[0][0] * M2[0][2] +
-	      M1[1][0] * M2[1][2] +
-	      M1[2][0] * M2[2][2]);
-  Mr[1][2] = (M1[0][1] * M2[0][2] +
-	      M1[1][1] * M2[1][2] +
-	      M1[2][1] * M2[2][2]);
-  Mr[2][2] = (M1[0][2] * M2[0][2] +
-	      M1[1][2] * M2[1][2] +
-	      M1[2][2] * M2[2][2]);
-}
-
-inline
-void
-MxV(PQP_REAL Vr[3], const PQP_REAL M1[3][3], const PQP_REAL V1[3])
-{
-  Vr[0] = (M1[0][0] * V1[0] +
-	   M1[0][1] * V1[1] + 
-	   M1[0][2] * V1[2]);
-  Vr[1] = (M1[1][0] * V1[0] +
-	   M1[1][1] * V1[1] + 
-	   M1[1][2] * V1[2]);
-  Vr[2] = (M1[2][0] * V1[0] +
-	   M1[2][1] * V1[1] + 
-	   M1[2][2] * V1[2]);
-}
-
-
-inline
-void
-MxVpV(PQP_REAL Vr[3], const PQP_REAL M1[3][3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = (M1[0][0] * V1[0] +
-	   M1[0][1] * V1[1] + 
-	   M1[0][2] * V1[2] + 
-	   V2[0]);
-  Vr[1] = (M1[1][0] * V1[0] +
-	   M1[1][1] * V1[1] + 
-	   M1[1][2] * V1[2] + 
-	   V2[1]);
-  Vr[2] = (M1[2][0] * V1[0] +
-	   M1[2][1] * V1[1] + 
-	   M1[2][2] * V1[2] + 
-	   V2[2]);
-}
-
-
-inline
-void
-sMxVpV(PQP_REAL Vr[3], PQP_REAL s1, const PQP_REAL M1[3][3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = s1 * (M1[0][0] * V1[0] +
-		M1[0][1] * V1[1] + 
-		M1[0][2] * V1[2]) +
-		V2[0];
-  Vr[1] = s1 * (M1[1][0] * V1[0] +
-		M1[1][1] * V1[1] + 
-		M1[1][2] * V1[2]) + 
-		V2[1];
-  Vr[2] = s1 * (M1[2][0] * V1[0] +
-		M1[2][1] * V1[1] + 
-		M1[2][2] * V1[2]) + 
-		V2[2];
-}
-
-inline
-void
-MTxV(PQP_REAL Vr[3], const PQP_REAL M1[3][3], const PQP_REAL V1[3])
-{
-  Vr[0] = (M1[0][0] * V1[0] +
-	   M1[1][0] * V1[1] + 
-	   M1[2][0] * V1[2]); 
-  Vr[1] = (M1[0][1] * V1[0] +
-	   M1[1][1] * V1[1] + 
-	   M1[2][1] * V1[2]);
-  Vr[2] = (M1[0][2] * V1[0] +
-	   M1[1][2] * V1[1] + 
-	   M1[2][2] * V1[2]); 
-}
-
-inline
-void
-sMTxV(PQP_REAL Vr[3], PQP_REAL s1, const PQP_REAL M1[3][3], const PQP_REAL V1[3])
-{
-  Vr[0] = s1*(M1[0][0] * V1[0] +
-	      M1[1][0] * V1[1] + 
-	      M1[2][0] * V1[2]); 
-  Vr[1] = s1*(M1[0][1] * V1[0] +
-	      M1[1][1] * V1[1] + 
-	      M1[2][1] * V1[2]);
-  Vr[2] = s1*(M1[0][2] * V1[0] +
-	      M1[1][2] * V1[1] + 
-	      M1[2][2] * V1[2]); 
-}
-
-inline
-void
-sMxV(PQP_REAL Vr[3], PQP_REAL s1, const PQP_REAL M1[3][3], const PQP_REAL V1[3])
-{
-  Vr[0] = s1*(M1[0][0] * V1[0] +
-	      M1[0][1] * V1[1] + 
-	      M1[0][2] * V1[2]); 
-  Vr[1] = s1*(M1[1][0] * V1[0] +
-	      M1[1][1] * V1[1] + 
-	      M1[1][2] * V1[2]);
-  Vr[2] = s1*(M1[2][0] * V1[0] +
-	      M1[2][1] * V1[1] + 
-	      M1[2][2] * V1[2]); 
-}
-
-
-inline
-void
-VmV(PQP_REAL Vr[3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = V1[0] - V2[0];
-  Vr[1] = V1[1] - V2[1];
-  Vr[2] = V1[2] - V2[2];
-}
-
-inline
-void
-VpV(PQP_REAL Vr[3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = V1[0] + V2[0];
-  Vr[1] = V1[1] + V2[1];
-  Vr[2] = V1[2] + V2[2];
-}
-
-inline
-void
-VpVxS(PQP_REAL Vr[3], const PQP_REAL V1[3], const PQP_REAL V2[3], PQP_REAL s)
-{
-  Vr[0] = V1[0] + V2[0] * s;
-  Vr[1] = V1[1] + V2[1] * s;
-  Vr[2] = V1[2] + V2[2] * s;
-}
-
-inline 
-void
-MskewV(PQP_REAL M[3][3], const PQP_REAL v[3])
-{
-  M[0][0] = M[1][1] = M[2][2] = 0.0;
-  M[1][0] = v[2];
-  M[0][1] = -v[2];
-  M[0][2] = v[1];
-  M[2][0] = -v[1];
-  M[1][2] = -v[0];
-  M[2][1] = v[0];
-}
-
-
-inline
-void
-VcrossV(PQP_REAL Vr[3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = V1[1]*V2[2] - V1[2]*V2[1];
-  Vr[1] = V1[2]*V2[0] - V1[0]*V2[2];
-  Vr[2] = V1[0]*V2[1] - V1[1]*V2[0];
-}
-
-
-inline
-PQP_REAL
-Vlength(PQP_REAL V[3])
-{
-  return sqrt(V[0]*V[0] + V[1]*V[1] + V[2]*V[2]);
-}
-
-inline
-void
-Vnormalize(PQP_REAL V[3])
-{
-  PQP_REAL d = (PQP_REAL)1.0 / sqrt(V[0]*V[0] + V[1]*V[1] + V[2]*V[2]);
-  V[0] *= d;
-  V[1] *= d;
-  V[2] *= d;
-}
-
-
-inline
-PQP_REAL
-VdotV(const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  return (V1[0]*V2[0] + V1[1]*V2[1] + V1[2]*V2[2]);
-}
-
-
-inline
-PQP_REAL
-VdistV2(const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  return ( (V1[0]-V2[0]) * (V1[0]-V2[0]) + 
-	   (V1[1]-V2[1]) * (V1[1]-V2[1]) + 
-	   (V1[2]-V2[2]) * (V1[2]-V2[2]));
-}
-
-inline
-void
-VxS(PQP_REAL Vr[3], const PQP_REAL V[3], PQP_REAL s)
-{
-  Vr[0] = V[0] * s;
-  Vr[1] = V[1] * s;
-  Vr[2] = V[2] * s;
-}
-
-inline
-void
-MRotZ(PQP_REAL Mr[3][3], PQP_REAL t)
-{
-  Mr[0][0] = cos(t);
-  Mr[1][0] = sin(t);
-  Mr[0][1] = -Mr[1][0];
-  Mr[1][1] = Mr[0][0];
-  Mr[2][0] = Mr[2][1] = 0.0;
-  Mr[0][2] = Mr[1][2] = 0.0;
-  Mr[2][2] = 1.0;
-}
-
-
-inline
-void
-MRotX(PQP_REAL Mr[3][3], PQP_REAL t)
-{
-  Mr[1][1] = cos(t);
-  Mr[2][1] = sin(t);
-  Mr[1][2] = -Mr[2][1];
-  Mr[2][2] = Mr[1][1];
-  Mr[0][1] = Mr[0][2] = 0.0;
-  Mr[1][0] = Mr[2][0] = 0.0;
-  Mr[0][0] = 1.0;
-}
-
-inline
-void
-MRotY(PQP_REAL Mr[3][3], PQP_REAL t)
-{
-  Mr[2][2] = cos(t);
-  Mr[0][2] = sin(t);
-  Mr[2][0] = -Mr[0][2];
-  Mr[0][0] = Mr[2][2];
-  Mr[1][2] = Mr[1][0] = 0.0;
-  Mr[2][1] = Mr[0][1] = 0.0;
-  Mr[1][1] = 1.0;
-}
-
-inline
-void
-MVtoOGL(double oglm[16], const PQP_REAL R[3][3], const PQP_REAL T[3])
-{
-  oglm[0] = (double)R[0][0]; 
-  oglm[1] = (double)R[1][0]; 
-  oglm[2] = (double)R[2][0]; 
-  oglm[3] = 0.0;
-  oglm[4] = (double)R[0][1]; 
-  oglm[5] = (double)R[1][1];
-  oglm[6] = (double)R[2][1];
-  oglm[7] = 0.0;
-  oglm[8] = (double)R[0][2];
-  oglm[9] = (double)R[1][2];
-  oglm[10] = (double)R[2][2];
-  oglm[11] = 0.0;
-  oglm[12] = (double)T[0];
-  oglm[13] = (double)T[1];
-  oglm[14] = (double)T[2];
-  oglm[15] = 1.0;
-}
-
-inline 
-void
-OGLtoMV(PQP_REAL R[3][3], PQP_REAL T[3], const double oglm[16])
-{
-  R[0][0] = (PQP_REAL)oglm[0];
-  R[1][0] = (PQP_REAL)oglm[1];
-  R[2][0] = (PQP_REAL)oglm[2];
-
-  R[0][1] = (PQP_REAL)oglm[4];
-  R[1][1] = (PQP_REAL)oglm[5];
-  R[2][1] = (PQP_REAL)oglm[6];
-
-  R[0][2] = (PQP_REAL)oglm[8];
-  R[1][2] = (PQP_REAL)oglm[9];
-  R[2][2] = (PQP_REAL)oglm[10];
-
-  T[0] = (PQP_REAL)oglm[12];
-  T[1] = (PQP_REAL)oglm[13];
-  T[2] = (PQP_REAL)oglm[14];
-}
-
-// taken from quatlib, written by Richard Holloway
-const int QX = 0;
-const int QY = 1;
-const int QZ = 2;
-const int QW = 3;
-
-inline
-void 
-MRotQ(PQP_REAL destMatrix[3][3], PQP_REAL srcQuat[4])
-{
-  PQP_REAL  s;
-  PQP_REAL  xs, ys, zs,
-    	    wx, wy, wz,
-	        xx, xy, xz,
-	        yy, yz, zz;
-
-  /* 
-   * For unit srcQuat, just set s = 2.0; or set xs = srcQuat[QX] + 
-   *   srcQuat[QX], etc. 
-   */
-
-  s = (PQP_REAL)2.0 / (srcQuat[QX]*srcQuat[QX] + srcQuat[QY]*srcQuat[QY] + 
-    	     srcQuat[QZ]*srcQuat[QZ] + srcQuat[QW]*srcQuat[QW]);
-
-  xs = srcQuat[QX] * s;   ys = srcQuat[QY] * s;   zs = srcQuat[QZ] * s;
-  wx = srcQuat[QW] * xs;  wy = srcQuat[QW] * ys;  wz = srcQuat[QW] * zs;
-  xx = srcQuat[QX] * xs;  xy = srcQuat[QX] * ys;  xz = srcQuat[QX] * zs;
-  yy = srcQuat[QY] * ys;  yz = srcQuat[QY] * zs;  zz = srcQuat[QZ] * zs;
-
-  destMatrix[QX][QX] = (PQP_REAL)1.0 - (yy + zz);
-  destMatrix[QX][QY] = xy + wz;
-  destMatrix[QX][QZ] = xz - wy;
-
-  destMatrix[QY][QX] = xy - wz;
-  destMatrix[QY][QY] = (PQP_REAL)1.0 - (xx + zz);
-  destMatrix[QY][QZ] = yz + wx;
-
-  destMatrix[QZ][QX] = xz + wy;
-  destMatrix[QZ][QY] = yz - wx;
-  destMatrix[QZ][QZ] = (PQP_REAL)1.0 - (xx + yy);
-} 
-
-inline
-void
-Mqinverse(PQP_REAL Mr[3][3], PQP_REAL m[3][3])
-{
-  int i,j;
-
-  for(i=0; i<3; i++)
-    for(j=0; j<3; j++)
-    {
-      int i1 = (i+1)%3;
-      int i2 = (i+2)%3;
-      int j1 = (j+1)%3;
-      int j2 = (j+2)%3;
-      Mr[i][j] = (m[j1][i1]*m[j2][i2] - m[j1][i2]*m[j2][i1]);
-    }
-}
-
-// Meigen from Numerical Recipes in C
-
-#if 0
-
-#define rfabs(x) ((x < 0) ? -x : x)
-
-#define ROT(a,i,j,k,l) g=a[i][j]; h=a[k][l]; a[i][j]=g-s*(h+g*tau); a[k][l]=h+s*(g-h*tau);
-
-int
-inline
-Meigen(PQP_REAL vout[3][3], PQP_REAL dout[3], PQP_REAL a[3][3])
-{
-  int i;
-  PQP_REAL tresh,theta,tau,t,sm,s,h,g,c;
-  int nrot;
-  PQP_REAL b[3];
-  PQP_REAL z[3];
-  PQP_REAL v[3][3];
-  PQP_REAL d[3];
-
-  v[0][0] = v[1][1] = v[2][2] = 1.0;
-  v[0][1] = v[1][2] = v[2][0] = 0.0;
-  v[0][2] = v[1][0] = v[2][1] = 0.0;
-  
-  b[0] = a[0][0]; d[0] = a[0][0]; z[0] = 0.0;
-  b[1] = a[1][1]; d[1] = a[1][1]; z[1] = 0.0;
-  b[2] = a[2][2]; d[2] = a[2][2]; z[2] = 0.0;
-
-  nrot = 0;
-
-  
-  for(i=0; i<50; i++)
-    {
-
-      printf("2\n");
-
-      sm=0.0; sm+=fabs(a[0][1]); sm+=fabs(a[0][2]); sm+=fabs(a[1][2]);
-      if (sm == 0.0) { McM(vout,v); VcV(dout,d); return i; }
-      
-      if (i < 3) tresh=0.2*sm/(3*3); else tresh=0.0;
-      
-      {
-	g = 100.0*rfabs(a[0][1]);  
-	if (i>3 && rfabs(d[0])+g==rfabs(d[0]) && rfabs(d[1])+g==rfabs(d[1]))
-	  a[0][1]=0.0;
-	else if (rfabs(a[0][1])>tresh)
-	  {
-	    h = d[1]-d[0];
-	    if (rfabs(h)+g == rfabs(h)) t=(a[0][1])/h;
-	    else
-	      {
-		theta=0.5*h/(a[0][1]);
-		t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
-		if (theta < 0.0) t = -t;
-	      }
-	    c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[0][1];
-	    z[0] -= h; z[1] += h; d[0] -= h; d[1] += h;
-	    a[0][1]=0.0;
-	    ROT(a,0,2,1,2); ROT(v,0,0,0,1); ROT(v,1,0,1,1); ROT(v,2,0,2,1); 
-	    nrot++;
-	  }
-      }
-
-      {
-	g = 100.0*rfabs(a[0][2]);
-	if (i>3 && rfabs(d[0])+g==rfabs(d[0]) && rfabs(d[2])+g==rfabs(d[2]))
-	  a[0][2]=0.0;
-	else if (rfabs(a[0][2])>tresh)
-	  {
-	    h = d[2]-d[0];
-	    if (rfabs(h)+g == rfabs(h)) t=(a[0][2])/h;
-	    else
-	      {
-		theta=0.5*h/(a[0][2]);
-		t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
-		if (theta < 0.0) t = -t;
-	      }
-	    c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[0][2];
-	    z[0] -= h; z[2] += h; d[0] -= h; d[2] += h;
-	    a[0][2]=0.0;
-	    ROT(a,0,1,1,2); ROT(v,0,0,0,2); ROT(v,1,0,1,2); ROT(v,2,0,2,2); 
-	    nrot++;
-	  }
-      }
-
-
-      {
-	g = 100.0*rfabs(a[1][2]);
-	if (i>3 && rfabs(d[1])+g==rfabs(d[1]) && rfabs(d[2])+g==rfabs(d[2]))
-	  a[1][2]=0.0;
-	else if (rfabs(a[1][2])>tresh)
-	  {
-	    h = d[2]-d[1];
-	    if (rfabs(h)+g == rfabs(h)) t=(a[1][2])/h;
-	    else
-	      {
-		theta=0.5*h/(a[1][2]);
-		t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
-		if (theta < 0.0) t = -t;
-	      }
-	    c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[1][2];
-	    z[1] -= h; z[2] += h; d[1] -= h; d[2] += h;
-	    a[1][2]=0.0;
-	    ROT(a,0,1,0,2); ROT(v,0,1,0,2); ROT(v,1,1,1,2); ROT(v,2,1,2,2); 
-	    nrot++;
-	  }
-      }
-
-      b[0] += z[0]; d[0] = b[0]; z[0] = 0.0;
-      b[1] += z[1]; d[1] = b[1]; z[1] = 0.0;
-      b[2] += z[2]; d[2] = b[2]; z[2] = 0.0;
-      
-    }
-
-  fprintf(stderr, "eigen: too many iterations in Jacobi transform (%d).\n", i);
-
-  return i;
-}
-
-#else
-
-
-
-#define ROTATE(a,i,j,k,l) g=a[i][j]; h=a[k][l]; a[i][j]=g-s*(h+g*tau); a[k][l]=h+s*(g-h*tau);
-
-void
-inline
-Meigen(PQP_REAL vout[3][3], PQP_REAL dout[3], PQP_REAL a[3][3])
-{
-  int n = 3;
-  int j,iq,ip,i;
-  PQP_REAL tresh,theta,tau,t,sm,s,h,g,c;
-  int nrot;
-  PQP_REAL b[3];
-  PQP_REAL z[3];
-  PQP_REAL v[3][3];
-  PQP_REAL d[3];
-  
-  Midentity(v);
-  for(ip=0; ip<n; ip++) 
-    {
-      b[ip] = a[ip][ip];
-      d[ip] = a[ip][ip];
-      z[ip] = 0.0;
-    }
-  
-  nrot = 0;
-  
-  for(i=0; i<50; i++)
-    {
-
-      sm=0.0;
-      for(ip=0;ip<n;ip++) for(iq=ip+1;iq<n;iq++) sm+=fabs(a[ip][iq]);
-      if (sm == 0.0)
-	{
-	  McM(vout, v);
-	  VcV(dout, d);
-	  return;
-	}
-      
-      
-      if (i < 3) tresh=(PQP_REAL)0.2*sm/(n*n);
-      else tresh=0.0;
-      
-      for(ip=0; ip<n; ip++) for(iq=ip+1; iq<n; iq++)
-	{
-	  g = (PQP_REAL)100.0*fabs(a[ip][iq]);
-	  if (i>3 && 
-	      fabs(d[ip])+g==fabs(d[ip]) && 
-	      fabs(d[iq])+g==fabs(d[iq]))
-	    a[ip][iq]=0.0;
-	  else if (fabs(a[ip][iq])>tresh)
-	    {
-	      h = d[iq]-d[ip];
-	      if (fabs(h)+g == fabs(h)) t=(a[ip][iq])/h;
-	      else
-		{
-		  theta=(PQP_REAL)0.5*h/(a[ip][iq]);
-		  t=(PQP_REAL)(1.0/(fabs(theta)+sqrt(1.0+theta*theta)));
-		  if (theta < 0.0) t = -t;
-		}
-	      c=(PQP_REAL)1.0/sqrt(1+t*t);
-	      s=t*c;
-	      tau=s/((PQP_REAL)1.0+c);
-	      h=t*a[ip][iq];
-	      z[ip] -= h;
-	      z[iq] += h;
-	      d[ip] -= h;
-	      d[iq] += h;
-	      a[ip][iq]=0.0;
-	      for(j=0;j<ip;j++) { ROTATE(a,j,ip,j,iq); } 
-	      for(j=ip+1;j<iq;j++) { ROTATE(a,ip,j,j,iq); } 
-	      for(j=iq+1;j<n;j++) { ROTATE(a,ip,j,iq,j); } 
-	      for(j=0;j<n;j++) { ROTATE(v,j,ip,j,iq); } 
-	      nrot++;
-	    }
-	}
-      for(ip=0;ip<n;ip++)
-	{
-	  b[ip] += z[ip];
-	  d[ip] = b[ip];
-	  z[ip] = 0.0;
-	}
-    }
-
-  fprintf(stderr, "eigen: too many iterations in Jacobi transform.\n");
-
-  return;
-}
-
-
-#endif
-
-#endif
-/* MATVEC_H */
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/falling.dsp b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/falling.dsp
deleted file mode 100644
index f7108cdd..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/falling.dsp
+++ /dev/null
@@ -1,95 +0,0 @@
-# Microsoft Developer Studio Project File - Name="falling" - Package Owner=<4>
-# Microsoft Developer Studio Generated Build File, Format Version 5.00
-# ** DO NOT EDIT **
-
-# TARGTYPE "Win32 (x86) Console Application" 0x0103
-
-CFG=falling - Win32 Debug
-!MESSAGE This is not a valid makefile. To build this project using NMAKE,
-!MESSAGE use the Export Makefile command and run
-!MESSAGE 
-!MESSAGE NMAKE /f "falling.mak".
-!MESSAGE 
-!MESSAGE You can specify a configuration when running NMAKE
-!MESSAGE by defining the macro CFG on the command line. For example:
-!MESSAGE 
-!MESSAGE NMAKE /f "falling.mak" CFG="falling - Win32 Debug"
-!MESSAGE 
-!MESSAGE Possible choices for configuration are:
-!MESSAGE 
-!MESSAGE "falling - Win32 Release" (based on "Win32 (x86) Console Application")
-!MESSAGE "falling - Win32 Debug" (based on "Win32 (x86) Console Application")
-!MESSAGE 
-
-# Begin Project
-# PROP Scc_ProjName ""
-# PROP Scc_LocalPath ""
-CPP=xicl5.exe
-RSC=rc.exe
-
-!IF  "$(CFG)" == "falling - Win32 Release"
-
-# PROP BASE Use_MFC 0
-# PROP BASE Use_Debug_Libraries 0
-# PROP BASE Output_Dir "Release"
-# PROP BASE Intermediate_Dir "Release"
-# PROP BASE Target_Dir ""
-# PROP Use_MFC 0
-# PROP Use_Debug_Libraries 0
-# PROP Output_Dir "./"
-# PROP Intermediate_Dir "Release"
-# PROP Target_Dir ""
-# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD CPP /nologo /W3 /GX /O2 /I "..\..\include" /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD BASE RSC /l 0x409 /d "NDEBUG"
-# ADD RSC /l 0x409 /d "NDEBUG"
-BSC32=bscmake.exe
-# ADD BASE BSC32 /nologo
-# ADD BSC32 /nologo
-LINK32=xilink5.exe
-# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
-# ADD LINK32 glut32.lib opengl32.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib pqp.lib /nologo /subsystem:console /machine:I386 /libpath:"..\..\lib"
-
-!ELSEIF  "$(CFG)" == "falling - Win32 Debug"
-
-# PROP BASE Use_MFC 0
-# PROP BASE Use_Debug_Libraries 1
-# PROP BASE Output_Dir "Debug"
-# PROP BASE Intermediate_Dir "Debug"
-# PROP BASE Target_Dir ""
-# PROP Use_MFC 0
-# PROP Use_Debug_Libraries 1
-# PROP Output_Dir "./"
-# PROP Intermediate_Dir "Debug"
-# PROP Target_Dir ""
-# ADD BASE CPP /nologo /W3 /Gm /GX /Zi /Od /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD CPP /nologo /W3 /Gm /GX /Zi /Od /I "..\..\include" /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD BASE RSC /l 0x409 /d "_DEBUG"
-# ADD RSC /l 0x409 /d "_DEBUG"
-BSC32=bscmake.exe
-# ADD BASE BSC32 /nologo
-# ADD BSC32 /nologo
-LINK32=xilink5.exe
-# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /debug /machine:I386 /pdbtype:sept
-# ADD LINK32 glut32.lib opengl32.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib pqp.lib /nologo /subsystem:console /debug /machine:I386 /pdbtype:sept /libpath:"..\..\lib"
-
-!ENDIF 
-
-# Begin Target
-
-# Name "falling - Win32 Release"
-# Name "falling - Win32 Debug"
-# Begin Source File
-
-SOURCE=.\main.cpp
-# End Source File
-# Begin Source File
-
-SOURCE=.\model.cpp
-# End Source File
-# Begin Source File
-
-SOURCE=.\model.h
-# End Source File
-# End Target
-# End Project
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/falling.plg b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/falling.plg
deleted file mode 100644
index b133bcb0..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/falling.plg
+++ /dev/null
@@ -1,21 +0,0 @@
---------------------Configuration: falling - Win32 Release--------------------
-Begining build with project "C:\WIN95\DESKTOP\PQP_v1.2.1\demos\falling\falling.dsp", at root.
-Active configuration is Win32 (x86) Console Application (based on Win32 (x86) Console Application)
-
-Project's tools are:
-			"32-bit C/C++ Compiler for 80x86" with flags "/nologo /ML /W3 /GX /O2 /I "..\..\include" /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /Fp"Release/falling.pch" /YX /Fo"Release/" /Fd"Release/" /FD /c "
-			"Win32 Resource Compiler" with flags "/l 0x409 /d "NDEBUG" "
-			"Browser Database Maker" with flags "/nologo /o"./falling.bsc" "
-			"COFF Linker for 80x86" with flags "glut32.lib opengl32.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib pqp.lib /nologo /subsystem:console /incremental:no /pdb:"./falling.pdb" /machine:I386 /out:"./falling.exe" /libpath:"..\..\lib" "
-			"Custom Build" with flags ""
-			"<Component 0xa>" with flags ""
-
-Creating temp file "C:\WIN95\TEMP\RSP4360.TMP" with contents <glut32.lib opengl32.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib pqp.lib /nologo /subsystem:console /incremental:no /pdb:"./falling.pdb" /machine:I386 /out:"./falling.exe" /libpath:"..\..\lib" 
-.\Release\main.obj
-.\Release\model.obj>
-Creating command line "link.exe @C:\WIN95\TEMP\RSP4360.TMP" 
-Linking...
-
-
-
-falling.exe - 0 error(s), 0 warning(s)
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/main.cpp b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/main.cpp
deleted file mode 100644
index ee0ea92e..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/main.cpp
+++ /dev/null
@@ -1,537 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <math.h>
-#include <GL/glut.h>
-#include "model.h"
-#include "PQP.h"
-#include "MatVec.h"
-
-PQP_Model *torus1_tested,*torus2_tested;
-Model     *torus1_drawn, *torus2_drawn;
-
-int mode;
-double beginx, beginy;
-double dis = 10.0, azim = 0.0, elev = 0.0;
-double ddis = 0.0, dazim = 0.0, delev = 0.0;
-
-int animating = 1;
-int step = 0;
-int number_of_steps;
-int query_type = 0;
-double tolerance = .05;
-
-PQP_REAL (*R1)[3][3];
-PQP_REAL (*T1)[3];
-PQP_REAL (*R2)[3][3];
-PQP_REAL (*T2)[3];
-
-void
-init_viewer_window()
-{
-  GLfloat Ambient[] = { 0.2f, 0.2f, 0.2f, 1.0f };  
-  GLfloat Diffuse[] = { 0.8f, 0.8f, 0.8f, 1.0f };  
-  GLfloat Specular[] = { 0.1f, 0.1f, 0.1f, 1.0f };   
-  GLfloat SpecularExp[] = { 50 };              
-  GLfloat Emission[] = { 0.1f, 0.1f, 0.1f, 1.0f };   
-
-  glMaterialfv(GL_FRONT, GL_AMBIENT, Ambient);
-  glMaterialfv(GL_FRONT, GL_DIFFUSE, Diffuse);
-  glMaterialfv(GL_FRONT, GL_SPECULAR, Specular);
-  glMaterialfv(GL_FRONT, GL_SHININESS, SpecularExp);
-  glMaterialfv(GL_FRONT, GL_EMISSION, Emission);
-
-  glMaterialfv(GL_BACK, GL_AMBIENT, Ambient);
-  glMaterialfv(GL_BACK, GL_DIFFUSE, Diffuse);
-  glMaterialfv(GL_BACK, GL_SPECULAR, Specular);
-  glMaterialfv(GL_BACK, GL_SHININESS, SpecularExp);
-  glMaterialfv(GL_BACK, GL_EMISSION, Emission);
-
-  glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE);
-
-  glEnable(GL_COLOR_MATERIAL);
-
-  GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
-  glLightfv(GL_LIGHT0, GL_POSITION, light_position);
-  glEnable(GL_LIGHT0);
-  glEnable(GL_LIGHTING);
-  glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
-
-  glDepthFunc(GL_LEQUAL);
-  glEnable(GL_DEPTH_TEST);
-  glEnable(GL_CULL_FACE);
-  glCullFace(GL_BACK);
-
-  glShadeModel(GL_FLAT);
-  glClearColor(0.0, 0.0, 0.0, 0.0);
-
-  glMatrixMode(GL_PROJECTION);
-  glLoadIdentity();
-  glFrustum(-0.004,0.004,-0.004,0.004,.01,100.0);
-
-  glMatrixMode(GL_MODELVIEW);
-}
-
-void
-cb_mouse(int _b, int _s, int _x, int _y)
-{
-  if (_s == GLUT_UP)
-  {
-    dis += ddis;
-    if (dis < .1) dis = .1;
-    azim += dazim;
-    elev += delev;
-    ddis = 0.0;
-    dazim = 0.0;
-    delev = 0.0;
-    return;
-  }
-
-  if (_b == GLUT_RIGHT_BUTTON)
-  {
-    mode = 0;
-    beginy = _y;
-    return;
-  }
-  else
-  {
-    mode = 1;
-    beginx = _x;
-    beginy = _y;
-  }
-}
-
-void
-cb_motion(int _x, int _y)
-{
-  if (mode == 0)
-  {
-    ddis = dis * (double)(_y - beginy)/200.0;
-  }
-  else
-  {
-    dazim = (_x - beginx)/5;
-    delev = (_y - beginy)/5;      
-  }
-  
-  glutPostRedisplay();
-}
-
-void cb_keyboard(unsigned char key, int x, int y) 
-{
-  switch(key) 
-  {
-  case 'q': 
-    delete torus1_drawn; 
-    delete torus2_drawn; 
-    delete torus1_tested;
-    delete torus2_tested;
-    delete [] R1;
-    delete [] T1;
-    delete [] R2;
-    delete [] T2;
-    exit(0);
-  case '0': query_type = 0; break;
-  case '1': query_type = 1; break;
-  case '2': query_type = 2; break;
-  case '3': query_type = 3; break;
-  case '-': 
-    tolerance -= .01; 
-    if (tolerance < 0.0) tolerance = 0.0; 
-    break;
-  case '=': 
-    tolerance += .01;
-    break;
-  default: animating = 1 - animating;
-  }
-
-  glutPostRedisplay();
-}
-
-void cb_idle()
-{
-  if (animating)
-  {
-    step = (step + 1) % number_of_steps;
-    glutPostRedisplay();
-  }
-}
-
-void
-BeginDraw()
-{
-  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
-
-  glLoadIdentity(); 
-  glTranslatef(0.0, 0.0, -(dis+ddis));
-  glRotated(elev+delev, 1.0, 0.0, 0.0);
-  glRotated(azim+dazim, 0.0, 1.0, 0.0);
-  glRotated(90.0,-1.0,0.0,0.0);
-}
-
-void
-EndDraw()
-{
-  glFlush();
-  glutSwapBuffers();
-}
-
-inline void glVertex3v(float V[3]) { glVertex3fv(V); }
-inline void glVertex3v(double V[3]) { glVertex3dv(V); }
-
-void
-cb_display()
-{
-  BeginDraw();
-
-  int i;
-  PQP_CollideResult cres;
-  PQP_DistanceResult dres;
-  PQP_ToleranceResult tres;
-  double oglm[16];
-
-  switch(query_type)
-  {
-  case 0:
-
-    // draw model 1
-
-    glColor3f(1,1,1);                 // setup color and transform
-    MVtoOGL(oglm,R1[step],T1[step]);
-    glPushMatrix();
-    glMultMatrixd(oglm);
-    torus1_drawn->Draw();             // do gl rendering
-    glPopMatrix();                    // restore transform
-
-    // draw model 2
-
-    MVtoOGL(oglm,R2[step],T2[step]);
-    glPushMatrix();
-    glMultMatrixd(oglm);
-    torus2_drawn->Draw();
-    glPopMatrix();
-
-    break;
-
-  case 1:
-
-    // perform collision query
-    
-    PQP_Collide(&cres,R1[step],T1[step],torus1_tested,
-                      R2[step],T2[step],torus2_tested,
-		                  PQP_ALL_CONTACTS);
-
-    // draw model 1 and its overlapping tris
-
-    MVtoOGL(oglm,R1[step],T1[step]);
-    glPushMatrix();
-    glMultMatrixd(oglm);
-    glColor3f(1,1,1);
-    torus1_drawn->Draw();
-    glColor3f(1,0,0);
-    for(i = 0; i < cres.NumPairs(); i++)
-    {
-      torus1_drawn->DrawTri(cres.Id1(i));
-    }
-    glPopMatrix();
-
-    // draw model 2 and its overlapping tris
-
-    MVtoOGL(oglm,R2[step],T2[step]);
-    glPushMatrix();
-    glMultMatrixd(oglm);
-    glColor3f(1,1,1);
-    torus2_drawn->Draw();
-    glColor3f(1,0,0);
-    for(i = 0; i < cres.NumPairs(); i++)
-    {
-      torus2_drawn->DrawTri(cres.Id2(i));
-    }
-    glPopMatrix();
-    
-    break;
-
-  case 2:
-
-    // perform distance query
-    
-    PQP_Distance(&dres,R1[step],T1[step],torus1_tested,
-                       R2[step],T2[step],torus2_tested,
-                       0.0,0.0);
-
-    // draw models
-
-    glColor3f(1,1,1);
-
-    MVtoOGL(oglm,R1[step],T1[step]);
-    glPushMatrix();
-    glMultMatrixd(oglm);
-    torus1_drawn->Draw();
-    glPopMatrix();
-
-    MVtoOGL(oglm,R2[step],T2[step]);
-    glPushMatrix();
-    glMultMatrixd(oglm);
-    torus2_drawn->Draw();
-    glPopMatrix();
-
-    // draw the closest points as small spheres
-    
-    glColor3f(0,1,0);
-    
-    PQP_REAL P1[3],P2[3],V1[3],V2[3];
-    VcV(P1,dres.P1());
-    VcV(P2,dres.P2());
-
-    // each point is in the space of its model;
-    // transform to world space
-    
-    MxVpV(V1,R1[step],P1,T1[step]);
-    
-    glPushMatrix();
-    glTranslated(V1[0],V1[1],V1[2]);
-    glutSolidSphere(.01,15,15);
-    glPopMatrix();                                                               
-    
-    MxVpV(V2,R2[step],P2,T2[step]);
-    
-    glPushMatrix();
-    glTranslated(V2[0],V2[1],V2[2]);
-    glutSolidSphere(.01,15,15);
-    glPopMatrix();
-    
-    // draw the line between the closest points
-    
-    glDisable(GL_LIGHTING);
-    glBegin(GL_LINES);
-    glVertex3v(V1);
-    glVertex3v(V2);
-    glEnd();
-    glEnable(GL_LIGHTING);
-    break;
-
-  case 3:
-
-    // perform tolerance query
-    
-    PQP_Tolerance(&tres,R1[step],T1[step],torus1_tested,
-                        R2[step],T2[step],torus2_tested,
-                        tolerance);
-    
-    if (tres.CloserThanTolerance())
-      glColor3f(0,0,1);
-    else 
-      glColor3f(1,1,1);
-
-    // draw models
-
-    MVtoOGL(oglm,R1[step],T1[step]);
-    glPushMatrix();
-    glMultMatrixd(oglm);
-    torus1_drawn->Draw();
-    glPopMatrix();
-
-    MVtoOGL(oglm,R2[step],T2[step]);
-    glPushMatrix();
-    glMultMatrixd(oglm);
-    torus2_drawn->Draw();
-    glPopMatrix();
-
-    break;
-
-  }
-
-  EndDraw();
-}
-
-void LoadPath(PQP_REAL (* &R)[3][3], PQP_REAL (* &T)[3], char *filename) 
-{
-  FILE *fp;
-  if ( (fp = fopen(filename, "r")) == NULL ) 
-  {
-    fprintf(stderr, "Error opening file %s\n", filename);
-    exit(1);
-  }
-  fscanf(fp, "%d", &number_of_steps);
-
-  R = new PQP_REAL[number_of_steps][3][3];
-  T = new PQP_REAL[number_of_steps][3];
-
-  for (int i = 0; i < number_of_steps; i++) 
-  {
-    double a, b, c;
-    fscanf(fp,"%lf %lf %lf",&a,&b,&c);
-    R[i][0][0] = (PQP_REAL)a;
-    R[i][0][1] = (PQP_REAL)b;
-    R[i][0][2] = (PQP_REAL)c;
-    fscanf(fp,"%lf %lf %lf",&a,&b,&c);
-    R[i][1][0] = (PQP_REAL)a;
-    R[i][1][1] = (PQP_REAL)b;
-    R[i][1][2] = (PQP_REAL)c;
-    fscanf(fp,"%lf %lf %lf",&a,&b,&c);
-    R[i][2][0] = (PQP_REAL)a;
-    R[i][2][1] = (PQP_REAL)b;
-    R[i][2][2] = (PQP_REAL)c;
-    fscanf(fp,"%lf %lf %lf",&a,&b,&c);
-    T[i][0] = (PQP_REAL)a;
-    T[i][1] = (PQP_REAL)b;
-    T[i][2] = (PQP_REAL)c;
-  }
-
-  fclose(fp);
-}
-
-void main(int argc, char **argv)
-{
-  // init glut
-
-  glutInit(&argc, argv);
-  glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH | GLUT_MULTISAMPLE);
-
-  // create the window
-
-  glutCreateWindow("PQP Demo - Falling");
-
-  // set OpenGL graphics state -- material props, perspective, etc.
-
-  init_viewer_window();
-
-  // set the callbacks
-
-  glutDisplayFunc(cb_display);
-  glutMouseFunc(cb_mouse);
-  glutMotionFunc(cb_motion);  
-  glutKeyboardFunc(cb_keyboard);
-  glutIdleFunc(cb_idle);
-
-  // create models
-
-  FILE *fp;
-  int ntris, i;
-  double a,b,c;
-  PQP_REAL p1[3],p2[3],p3[3];
-
-  // model 1
-
-  torus1_drawn = new Model("torus1.tris");
-
-  torus1_tested = new PQP_Model();
-
-  fp = fopen("torus1.tris","r");
-  fscanf(fp,"%d",&ntris);
-
-  torus1_tested->BeginModel();
-  for (i = 0; i < ntris; i++)
-  {
-    fscanf(fp,"%lf %lf %lf",&a,&b,&c);
-    p1[0] = (PQP_REAL)a;
-    p1[1] = (PQP_REAL)b;
-    p1[2] = (PQP_REAL)c;
-    fscanf(fp,"%lf %lf %lf",&a,&b,&c);
-    p2[0] = (PQP_REAL)a;
-    p2[1] = (PQP_REAL)b;
-    p2[2] = (PQP_REAL)c;
-    fscanf(fp,"%lf %lf %lf",&a,&b,&c);
-    p3[0] = (PQP_REAL)a;
-    p3[1] = (PQP_REAL)b;
-    p3[2] = (PQP_REAL)c;
-    torus1_tested->AddTri(p1,p2,p3,i);
-  }
-  torus1_tested->EndModel();  
-
-  fclose(fp);
-
-  // model 2
-
-  torus2_drawn = new Model("torus2.tris");
-
-  torus2_tested = new PQP_Model();
-
-  fp = fopen("torus2.tris","r");
-  fscanf(fp,"%d",&ntris);
-
-  torus2_tested->BeginModel();
-  for (i = 0; i < ntris; i++)
-  {
-    fscanf(fp,"%lf %lf %lf",&a,&b,&c);
-    p1[0] = (PQP_REAL)a;
-    p1[1] = (PQP_REAL)b;
-    p1[2] = (PQP_REAL)c;
-    fscanf(fp,"%lf %lf %lf",&a,&b,&c);
-    p2[0] = (PQP_REAL)a;
-    p2[1] = (PQP_REAL)b;
-    p2[2] = (PQP_REAL)c;
-    fscanf(fp,"%lf %lf %lf",&a,&b,&c);
-    p3[0] = (PQP_REAL)a;
-    p3[1] = (PQP_REAL)b;
-    p3[2] = (PQP_REAL)c;
-    torus2_tested->AddTri(p1,p2,p3,i);
-  }
-  torus2_tested->EndModel();  
-
-  fclose(fp);
-
-  // load paths
-
-  LoadPath(R1,T1,"torus1.path");
-  LoadPath(R2,T2,"torus2.path");
-
-  // print instructions
-
-  printf("PQP Demo - Falling:\n"
-         "Press:\n"
-         "0 - no proximity query, just animation\n"
-         "1 - collision query\n"
-         "    overlapping triangles shown in red.\n"
-         "2 - distance query\n"
-         "    closest points connected by a line.\n"
-         "3 - tolerance query\n"
-         "    reduce/increase tolerance with -/= keys.\n"
-         "    models turn blue when closer than the tolerance.\n"
-         "any other key to toggle animation on/off\n");
-
-  // Enter the main loop.
-
-  glutMainLoop();
-}
-
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/model.cpp b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/model.cpp
deleted file mode 100644
index e145b31b..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/model.cpp
+++ /dev/null
@@ -1,144 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <math.h>
-#include "GL/glut.h"
-#include "model.h"
-
-inline
-void
-VmV(double Vr[3], const double V1[3], const double V2[3])
-{
-  Vr[0] = V1[0] - V2[0];
-  Vr[1] = V1[1] - V2[1];
-  Vr[2] = V1[2] - V2[2];
-}
-
-inline
-void
-VcrossV(double Vr[3], const double V1[3], const double V2[3])
-{
-  Vr[0] = V1[1]*V2[2] - V1[2]*V2[1];
-  Vr[1] = V1[2]*V2[0] - V1[0]*V2[2];
-  Vr[2] = V1[0]*V2[1] - V1[1]*V2[0];
-}
-
-inline
-void
-Vnormalize(double V[3])
-{
-  double d = 1.0 / sqrt(V[0]*V[0] + V[1]*V[1] + V[2]*V[2]);
-  V[0] *= d;
-  V[1] *= d;
-  V[2] *= d;
-}
-
-Model::Model(char *tris_file)
-{
-  FILE *fp = fopen(tris_file,"r");
-  if (fp == NULL)
-  { 
-    fprintf(stderr,"Model Constructor: Couldn't open %s\n",tris_file); 
-    exit(-1); 
-  }
-
-  fscanf(fp,"%d",&ntris);
-  tri = new ModelTri[ntris];
-
-  int i;
-
-  for (i = 0; i < ntris; i++)
-  {
-    // read the tri verts
-
-    fscanf(fp,"%lf %lf %lf %lf %lf %lf %lf %lf %lf",
-           &tri[i].p0[0], &tri[i].p0[1], &tri[i].p0[2],
-           &tri[i].p1[0], &tri[i].p1[1], &tri[i].p1[2],
-           &tri[i].p2[0], &tri[i].p2[1], &tri[i].p2[2]);
-
-    // set the normal
-
-    double a[3],b[3];
-    VmV(a,tri[i].p1,tri[i].p0);
-    VmV(b,tri[i].p2,tri[i].p0);
-    VcrossV(tri[i].n,a,b);
-    Vnormalize(tri[i].n);
-  }
-  
-  fclose(fp);
-
-  // generate display list
-
-  display_list = glGenLists(1);
-  glNewList(display_list,GL_COMPILE);
-  glBegin(GL_TRIANGLES);
-  for (i = 0; i < ntris; i++)
-  {
-    glNormal3dv(tri[i].n);
-    glVertex3dv(tri[i].p0);
-    glVertex3dv(tri[i].p1);
-    glVertex3dv(tri[i].p2);
-  }
-  glEnd();
-  glEndList();  
-}
-
-Model::~Model()
-{
-  delete [] tri;
-}
-
-void
-Model::Draw()
-{
-  glCallList(display_list);
-}
-
-void
-Model::DrawTri(int index)
-{
-  glBegin(GL_TRIANGLES);
-  glVertex3dv(tri[index].p0);
-  glVertex3dv(tri[index].p1);
-  glVertex3dv(tri[index].p2);
-  glEnd();
-}
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/model.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/model.h
deleted file mode 100644
index df352e4e..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/model.h
+++ /dev/null
@@ -1,63 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef MODEL_H
-#define MODEL_H
-
-struct ModelTri
-{
-  double p0[3], p1[3], p2[3];
-  double n[3];
-};
-
-class Model
-{
-  int ntris;
-  ModelTri *tri;
-  int display_list;
-
-public:
-  Model(char *tris_file);
-  ~Model();
-  void Draw();
-  void DrawTri(int index);
-};
-
-#endif
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus1.path b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus1.path
deleted file mode 100644
index 3cc39f84..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus1.path
+++ /dev/null
@@ -1,11991 +0,0 @@
-2398
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.559976
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.559927
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.559855
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.559758
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.559637
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.559492
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.559323
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.559129
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.558912
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.55867
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.558404
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.558114
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.557799
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.557461
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.557098
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.556711
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.5563
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.555864
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.555405
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.554921
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.554413
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.553881
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.553325
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.552744
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.55214
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.551511
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.550858
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.550181
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.549479
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.548754
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.548004
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.54723
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.546432
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.54561
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.544763
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.543892
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.542998
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.542079
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.541135
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.540168
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.539176
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.53816
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.537121
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.536056
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.534968
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.533855
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.532719
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.531558
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.530373
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.529163
-
-0.990268 0.139173 0
--0.139173 0.990268 0
-0 0 1
-0 0 0.52793
-
-0.989936 0.141515 0.000593893
--0.141515 0.989936 -0.000519689
--0.00066146 0.000430414 1
-7.91318e-05 -5.04108e-06 0.526793
-
-0.989158 0.146842 0.00196527
--0.146839 0.989159 -0.00174679
--0.00220047 0.00143928 0.999997
-0.000262615 -2.14122e-05 0.525795
-
-0.987984 0.154504 0.00392549
--0.154491 0.987988 -0.00349908
--0.00441897 0.00285059 0.999986
-0.000525427 -4.36487e-05 0.524893
-
-0.986747 0.16216 0.00588377
--0.16213 0.986755 -0.00525338
--0.00665773 0.00422982 0.999969
-0.000788239 -6.58851e-05 0.523967
-
-0.985446 0.169809 0.00784009
--0.169755 0.985461 -0.00700965
--0.00891641 0.00557674 0.999945
-0.00105105 -8.81216e-05 0.523016
-
-0.984081 0.177449 0.00979444
--0.177366 0.984106 -0.0087679
--0.0111946 0.00689113 0.999914
-0.00131386 -0.000110358 0.522042
-
-0.982653 0.185082 0.0117468
--0.184963 0.982689 -0.0105281
--0.013492 0.00817276 0.999876
-0.00157667 -0.000132595 0.521043
-
-0.981161 0.192706 0.0136971
--0.192544 0.981211 -0.0122903
--0.0158082 0.00942143 0.999831
-0.00183949 -0.000154831 0.52002
-
-0.979606 0.20032 0.0156455
--0.200109 0.979673 -0.0140543
--0.0181428 0.0106369 0.999779
-0.0021023 -0.000177067 0.518973
-
-0.977987 0.207924 0.0175917
--0.207658 0.978073 -0.0158203
--0.0204955 0.011819 0.99972
-0.00236511 -0.000199304 0.517902
-
-0.976304 0.215518 0.019536
--0.215191 0.976414 -0.0175882
--0.0228658 0.0129675 0.999654
-0.00262792 -0.00022154 0.516807
-
-0.974559 0.223101 0.0214781
--0.222706 0.974694 -0.019358
--0.0252534 0.0140822 0.999582
-0.00289073 -0.000243777 0.515687
-
-0.97275 0.230673 0.0234182
--0.230203 0.972913 -0.0211297
--0.0276579 0.015163 0.999502
-0.00315355 -0.000266013 0.514543
-
-0.970877 0.238232 0.0253562
--0.237682 0.971073 -0.0229032
--0.030079 0.0162095 0.999416
-0.00341636 -0.00028825 0.513375
-
-0.970015 0.241539 0.0270236
--0.240942 0.970254 -0.0235414
--0.0319059 0.0163244 0.999358
-0.00374567 -0.000166828 0.512364
-
-0.970626 0.238937 0.028192
--0.238356 0.970918 -0.0224596
--0.0327385 0.0150802 0.99935
-0.00415481 0.00018866 0.511615
-
-0.972572 0.230798 0.0289044
--0.230293 0.972921 -0.0197626
--0.0326829 0.012564 0.999387
-0.00464566 0.000736041 0.511103
-
-0.975424 0.218374 0.0293345
--0.217984 0.975822 -0.015928
--0.0321035 0.00914215 0.999443
-0.00520252 0.00142812 0.510747
-
-0.978118 0.205913 0.0297574
--0.205637 0.978554 -0.0120928
--0.0316093 0.00570899 0.999484
-0.00575937 0.0021202 0.510367
-
-0.980652 0.193418 0.0301732
--0.193255 0.981114 -0.00825704
--0.0312004 0.00226616 0.999511
-0.00631622 0.00281228 0.509962
-
-0.983028 0.18089 0.0305819
--0.18084 0.983503 -0.00442071
--0.030877 -0.00118475 0.999522
-0.00687307 0.00350436 0.509534
-
-0.984714 0.17126 0.0317495
--0.171305 0.985217 -0.00132122
--0.0315065 -0.00413782 0.999495
-0.00753812 0.00418046 0.50924
-
-0.985627 0.165506 0.0338726
--0.16563 0.986188 0.000877665
--0.0332595 -0.00647538 0.999426
-0.00834163 0.00484375 0.50912
-
-0.985859 0.163451 0.0369643
--0.163642 0.986517 0.00216961
--0.0361113 -0.00818783 0.999314
-0.00928208 0.00549153 0.509174
-
-0.985392 0.165289 0.0410211
--0.165532 0.986201 0.00256789
--0.0400306 -0.00932065 0.999155
-0.0103621 0.00612824 0.509401
-
-0.984357 0.170116 0.0458363
--0.170396 0.985373 0.00223921
--0.0447849 -0.0100145 0.998946
-0.0115527 0.00675158 0.509761
-
-0.983276 0.174935 0.0506501
--0.175254 0.984521 0.00190724
--0.0495325 -0.010752 0.998715
-0.0127432 0.00737492 0.510097
-
-0.982149 0.179744 0.0554625
--0.180107 0.983646 0.00157196
--0.0542729 -0.0115331 0.99846
-0.0139338 0.00799827 0.510409
-
-0.980974 0.184545 0.0602734
--0.184954 0.982746 0.00123339
--0.0590058 -0.0123577 0.998181
-0.0151243 0.00862161 0.510697
-
-0.979753 0.189335 0.0650825
--0.189794 0.981823 0.000891545
--0.0637307 -0.0132258 0.997879
-0.0163149 0.00924495 0.510961
-
-0.978486 0.194116 0.0698898
--0.194629 0.980877 0.00054642
--0.0684472 -0.0141372 0.997555
-0.0175054 0.0098683 0.5112
-
-0.977172 0.198885 0.0746952
--0.199457 0.979907 0.000198027
--0.0731549 -0.015092 0.997206
-0.018696 0.0104916 0.511415
-
-0.975812 0.203644 0.0794986
--0.204279 0.978913 -0.000153627
--0.0778534 -0.01609 0.996835
-0.0198865 0.011115 0.511606
-
-0.974406 0.208392 0.0842998
--0.209094 0.977895 -0.000508535
--0.0825423 -0.0171311 0.99644
-0.0210771 0.0117383 0.511773
-
-0.972953 0.213127 0.0890987
--0.213902 0.976855 -0.000866689
--0.0872212 -0.0182152 0.996022
-0.0222677 0.0123617 0.511916
-
-0.971455 0.21785 0.0938953
--0.218704 0.97579 -0.00122808
--0.0918897 -0.0193422 0.995581
-0.0234582 0.012985 0.512034
-
-0.969911 0.222561 0.0986894
--0.223498 0.974703 -0.0015927
--0.0965473 -0.0205121 0.995117
-0.0246488 0.0136084 0.512128
-
-0.968321 0.227258 0.103481
--0.228286 0.973592 -0.00196055
--0.101194 -0.0217248 0.99463
-0.0258393 0.0142317 0.512199
-
-0.966685 0.231942 0.10827
--0.233066 0.972458 -0.00233161
--0.105828 -0.0229801 0.994119
-0.0270299 0.014855 0.512244
-
-0.965004 0.236612 0.113056
--0.237839 0.971301 -0.00270588
--0.110451 -0.0242778 0.993585
-0.0282204 0.0154784 0.512266
-
-0.963278 0.241268 0.117839
--0.242604 0.97012 -0.00308334
--0.115061 -0.025618 0.993028
-0.029411 0.0161017 0.512264
-
-0.961506 0.245909 0.122618
--0.247362 0.968917 -0.003464
--0.119659 -0.0270005 0.992448
-0.0306015 0.0167251 0.512237
-
-0.959689 0.250534 0.127395
--0.252112 0.96769 -0.00384784
--0.124243 -0.0284251 0.991845
-0.0317921 0.0173484 0.512186
-
-0.957827 0.255144 0.132169
--0.256854 0.966441 -0.00423486
--0.128814 -0.0298918 0.991218
-0.0329826 0.0179718 0.512111
-
-0.95592 0.259738 0.136939
--0.261589 0.965168 -0.00462504
--0.13337 -0.0314004 0.990569
-0.0341732 0.0185951 0.512012
-
-0.953969 0.264316 0.141705
--0.266315 0.963873 -0.00501838
--0.137912 -0.0329508 0.989896
-0.0353637 0.0192184 0.511889
-
-0.951973 0.268877 0.146468
--0.271033 0.962555 -0.00541486
--0.14244 -0.0345428 0.989201
-0.0365543 0.0198418 0.511741
-
-0.949932 0.27342 0.151227
--0.275742 0.961214 -0.00581449
--0.146952 -0.0361763 0.988482
-0.0377448 0.0204651 0.511569
-
-0.947848 0.277946 0.155983
--0.280443 0.959851 -0.00621725
--0.151448 -0.0378512 0.98774
-0.0389354 0.0210885 0.511373
-
-0.945719 0.282454 0.160734
--0.285135 0.958464 -0.00662314
--0.155928 -0.0395673 0.986976
-0.040126 0.0217118 0.511153
-
-0.943546 0.286944 0.165481
--0.289819 0.957056 -0.00703213
--0.160393 -0.0413245 0.986188
-0.0413165 0.0223352 0.510909
-
-0.941329 0.291415 0.170224
--0.294494 0.955624 -0.00744424
--0.16484 -0.0431225 0.985377
-0.0425071 0.0229585 0.51064
-
-0.939069 0.295866 0.174963
--0.29916 0.954171 -0.00785944
--0.16927 -0.0449614 0.984544
-0.0436976 0.0235818 0.510348
-
-0.936766 0.300298 0.179697
--0.303817 0.952695 -0.00827773
--0.173683 -0.0468408 0.983687
-0.0448882 0.0242052 0.510031
-
-0.934419 0.30471 0.184427
--0.308464 0.951196 -0.00869909
--0.178077 -0.0487606 0.982808
-0.0460787 0.0248285 0.50969
-
-0.932029 0.309102 0.189152
--0.313103 0.949676 -0.00912353
--0.182454 -0.0507207 0.981905
-0.0472693 0.0254519 0.509325
-
-0.929596 0.313472 0.193873
--0.317731 0.948133 -0.00955103
--0.186811 -0.0527209 0.98098
-0.0484598 0.0260752 0.508935
-
-0.92712 0.317822 0.198588
--0.322351 0.946568 -0.00998157
--0.19115 -0.054761 0.980032
-0.0496504 0.0266986 0.508522
-
-0.924602 0.32215 0.203299
--0.32696 0.944981 -0.0104152
--0.195469 -0.0568408 0.979061
-0.0508409 0.0273219 0.508084
-
-0.922042 0.326456 0.208004
--0.33156 0.943372 -0.0108518
--0.199768 -0.0589602 0.978068
-0.0520315 0.0279453 0.507622
-
-0.919439 0.33074 0.212705
--0.33615 0.941741 -0.0112914
--0.204047 -0.0611189 0.977051
-0.053222 0.0285686 0.507136
-
-0.916794 0.335001 0.2174
--0.34073 0.940088 -0.0117341
--0.208306 -0.0633168 0.976012
-0.0544126 0.0291919 0.506625
-
-0.914108 0.339239 0.222089
--0.345299 0.938414 -0.0121797
--0.212543 -0.0655537 0.97495
-0.0556031 0.0298153 0.506091
-
-0.91138 0.343453 0.226773
--0.349859 0.936717 -0.0126284
--0.21676 -0.0678294 0.973866
-0.0567937 0.0304386 0.505532
-
-0.908611 0.347644 0.231452
--0.354408 0.934999 -0.01308
--0.220954 -0.0701437 0.972758
-0.0579843 0.031062 0.504949
-
-0.905801 0.35181 0.236124
--0.358947 0.93326 -0.0135346
--0.225127 -0.0724963 0.971629
-0.0591748 0.0316853 0.504342
-
-0.90295 0.355952 0.240791
--0.363475 0.931499 -0.0139922
--0.229277 -0.0748872 0.970476
-0.0603654 0.0323087 0.503711
-
-0.900058 0.360068 0.245452
--0.367992 0.929717 -0.0144528
--0.233405 -0.077316 0.969301
-0.0615559 0.032932 0.503055
-
-0.897126 0.36416 0.250106
--0.372499 0.927913 -0.0149162
--0.237509 -0.0797826 0.968103
-0.0627465 0.0335553 0.502376
-
-0.894153 0.368226 0.254755
--0.376994 0.926088 -0.0153826
--0.24159 -0.0822867 0.966883
-0.063937 0.0341787 0.501672
-
-0.891141 0.372265 0.259397
--0.381479 0.924242 -0.015852
--0.245647 -0.0848281 0.965641
-0.0651276 0.034802 0.500944
-
-0.888088 0.376278 0.264033
--0.385952 0.922374 -0.0163242
--0.24968 -0.0874067 0.964376
-0.0663181 0.0354254 0.500191
-
-0.884997 0.380265 0.268662
--0.390414 0.920486 -0.0167994
--0.253688 -0.0900221 0.963088
-0.0675087 0.0360487 0.499415
-
-0.882963 0.382894 0.271603
--0.393034 0.919341 -0.0183206
--0.256711 -0.090573 0.962235
-0.0686088 0.0366123 0.49888
-
-0.882191 0.384232 0.272222
--0.39373 0.918983 -0.021151
--0.258294 -0.0885226 0.962002
-0.0695979 0.0370989 0.498681
-
-0.882693 0.384285 0.270516
--0.392514 0.919398 -0.0252899
--0.25843 -0.0838582 0.962383
-0.0704762 0.0375077 0.498817
-
-0.884286 0.383 0.267114
--0.389492 0.920526 -0.0304723
--0.257556 -0.0770925 0.963183
-0.0712643 0.0378552 0.499194
-
-0.886629 0.380739 0.262538
--0.385207 0.922113 -0.0363728
--0.255939 -0.0688823 0.964236
-0.0719974 0.038164 0.49973
-
-0.888961 0.378431 0.257951
--0.380927 0.923638 -0.0422742
--0.254251 -0.0606805 0.965233
-0.0727305 0.0384729 0.500241
-
-0.891279 0.376077 0.253353
--0.376654 0.925101 -0.048176
--0.252495 -0.0524879 0.966174
-0.0734636 0.0387818 0.500729
-
-0.893584 0.373676 0.248744
--0.372387 0.926501 -0.0540781
--0.250669 -0.0443056 0.967059
-0.0741968 0.0390906 0.501192
-
-0.895876 0.371228 0.244124
--0.368128 0.927838 -0.0599799
--0.248774 -0.0361343 0.967887
-0.0749299 0.0393995 0.501631
-
-0.898153 0.368733 0.239494
--0.363877 0.929114 -0.0658813
--0.24681 -0.0279749 0.96866
-0.075663 0.0397083 0.502046
-
-0.901867 0.362712 0.234682
--0.356305 0.93169 -0.0707163
--0.244301 -0.0198416 0.969497
-0.0764947 0.0402186 0.502622
-
-0.905528 0.356625 0.229864
--0.348728 0.934174 -0.0755532
--0.241677 -0.0117446 0.970286
-0.0773265 0.0407288 0.503173
-
-0.909134 0.350473 0.225041
--0.341148 0.936566 -0.0803919
--0.238941 -0.00368536 0.971027
-0.0781582 0.0412391 0.503701
-
-0.912685 0.344256 0.220212
--0.333567 0.938866 -0.0852321
--0.236092 0.00433451 0.971721
-0.07899 0.0417494 0.504204
-
-0.916179 0.337975 0.215379
--0.325984 0.941074 -0.0900735
--0.23313 0.0123134 0.972368
-0.0798217 0.0422596 0.504684
-
-0.919616 0.331631 0.21054
--0.318402 0.943192 -0.0949161
--0.230057 0.0202498 0.972966
-0.0806534 0.0427699 0.505139
-
-0.922994 0.325223 0.205697
--0.310822 0.945218 -0.0997594
--0.226873 0.0281422 0.973518
-0.0814852 0.0432801 0.505569
-
-0.926313 0.318753 0.20085
--0.303244 0.947154 -0.104603
--0.223579 0.0359888 0.974021
-0.0823169 0.0437904 0.505976
-
-0.929571 0.312222 0.195999
--0.295671 0.949 -0.109448
--0.220175 0.0437883 0.974477
-0.0831486 0.0443006 0.506358
-
-0.932767 0.305629 0.191143
--0.288102 0.950755 -0.114292
--0.216661 0.0515391 0.974885
-0.0839804 0.0448109 0.506717
-
-0.935901 0.298976 0.186285
--0.28054 0.95242 -0.119136
--0.21304 0.0592397 0.975246
-0.0848121 0.0453211 0.507051
-
-0.938972 0.292263 0.181422
--0.272985 0.953996 -0.12398
--0.209311 0.0668885 0.975559
-0.0856438 0.0458314 0.507361
-
-0.941978 0.285492 0.176557
--0.265439 0.955482 -0.128824
--0.205475 0.074484 0.975824
-0.0864756 0.0463416 0.507646
-
-0.944918 0.278662 0.171688
--0.257902 0.95688 -0.133666
--0.201533 0.0820248 0.976041
-0.0873073 0.0468519 0.507908
-
-0.947793 0.271774 0.166817
--0.250377 0.958189 -0.138508
--0.197485 0.0895094 0.976211
-0.088139 0.0473621 0.508145
-
-0.9506 0.264829 0.161944
--0.242863 0.959411 -0.143348
--0.193334 0.0969362 0.976333
-0.0889708 0.0478724 0.508358
-
-0.953338 0.257829 0.157068
--0.235363 0.960544 -0.148187
--0.189078 0.104304 0.976407
-0.0898025 0.0483826 0.508547
-
-0.956008 0.250773 0.152191
--0.227877 0.96159 -0.153024
--0.184719 0.111611 0.976433
-0.0906342 0.0488929 0.508712
-
-0.958607 0.243662 0.147311
--0.220406 0.96255 -0.157859
--0.180259 0.118856 0.976412
-0.091466 0.0494031 0.508853
-
-0.961136 0.236498 0.142431
--0.212952 0.963423 -0.162691
--0.175697 0.126038 0.976343
-0.0922977 0.0499134 0.508969
-
-0.963593 0.229281 0.137549
--0.205515 0.96421 -0.167522
--0.171035 0.133154 0.976226
-0.0931294 0.0504236 0.509061
-
-0.965977 0.222012 0.132666
--0.198097 0.964911 -0.172349
--0.166274 0.140205 0.976061
-0.0939612 0.0509339 0.509129
-
-0.968287 0.214691 0.127782
--0.190698 0.965528 -0.177174
--0.161415 0.147188 0.975849
-0.0947929 0.0514441 0.509173
-
-0.970523 0.20732 0.122897
--0.18332 0.96606 -0.181996
--0.156458 0.154101 0.975589
-0.0956246 0.0519544 0.509193
-
-0.972684 0.199899 0.118013
--0.175964 0.966508 -0.186814
--0.151404 0.160945 0.975281
-0.0964564 0.0524646 0.509188
-
-0.974768 0.19243 0.113128
--0.168631 0.966872 -0.191628
--0.146256 0.167716 0.974926
-0.0972881 0.0529749 0.509159
-
-0.976776 0.184912 0.108244
--0.161322 0.967154 -0.196439
--0.141012 0.174415 0.974523
-0.0981199 0.0534851 0.509107
-
-0.978705 0.177348 0.10336
--0.154038 0.967353 -0.201246
--0.135676 0.181039 0.974072
-0.0989516 0.0539954 0.509029
-
-0.980557 0.169738 0.0984764
--0.146779 0.967471 -0.206048
--0.130247 0.187588 0.973574
-0.0997833 0.0545056 0.508928
-
-0.982329 0.162082 0.0935939
--0.139548 0.967507 -0.210846
--0.124727 0.194059 0.973028
-0.100615 0.0550159 0.508803
-
-0.98402 0.154383 0.0887126
--0.132344 0.967463 -0.215639
--0.119117 0.200453 0.972435
-0.101447 0.0555261 0.508653
-
-0.985631 0.14664 0.0838327
--0.12517 0.967339 -0.220428
--0.113418 0.206767 0.971794
-0.102279 0.0560364 0.508479
-
-0.98716 0.138854 0.0789544
--0.118025 0.967135 -0.22521
--0.107631 0.213 0.971106
-0.10311 0.0565466 0.508281
-
-0.988607 0.131028 0.074078
--0.110911 0.966853 -0.229988
--0.101757 0.219152 0.97037
-0.103942 0.0570569 0.508059
-
-0.989971 0.123161 0.0692036
--0.103829 0.966492 -0.23476
--0.095798 0.22522 0.969587
-0.104774 0.0575671 0.507813
-
-0.991251 0.115255 0.0643316
--0.0967799 0.966054 -0.239526
--0.0897543 0.231204 0.968756
-0.105605 0.0580774 0.507542
-
-0.992446 0.10731 0.0594622
--0.0897644 0.96554 -0.244285
--0.0836274 0.237102 0.967879
-0.106437 0.0585876 0.507247
-
-0.993556 0.0993281 0.0545956
--0.0827835 0.964949 -0.249039
--0.0774185 0.242914 0.966953
-0.107269 0.0590979 0.506928
-
-0.99458 0.0913098 0.049732
--0.0758382 0.964283 -0.253786
--0.0711288 0.248639 0.965981
-0.108101 0.0596081 0.506585
-
-0.995517 0.0832562 0.0448717
--0.0689293 0.963542 -0.258526
--0.0647597 0.254274 0.964962
-0.108932 0.0601184 0.506218
-
-0.996368 0.0751683 0.040015
--0.0620577 0.962727 -0.263259
--0.0583122 0.259819 0.963895
-0.109764 0.0606286 0.505826
-
-0.99713 0.0670473 0.035162
--0.0552244 0.961839 -0.267984
--0.0517878 0.265274 0.962781
-0.110596 0.0611389 0.505411
-
-0.997804 0.0588941 0.030313
--0.0484301 0.960879 -0.272703
--0.0451877 0.270636 0.961621
-0.111428 0.0616491 0.504971
-
-0.998389 0.0507099 0.0254682
--0.0416757 0.959846 -0.277413
--0.0385132 0.275905 0.960413
-0.112259 0.0621594 0.504507
-
-0.998884 0.0424957 0.0206279
--0.0349621 0.958743 -0.282116
--0.0317656 0.28108 0.959159
-0.113091 0.0626696 0.504019
-
-0.999288 0.0342527 0.0157923
--0.02829 0.95757 -0.28681
--0.0249462 0.286159 0.957857
-0.113923 0.0631799 0.503506
-
-0.999602 0.0259818 0.0109616
--0.0216604 0.956327 -0.291496
--0.0180565 0.291143 0.956509
-0.114755 0.0636901 0.50297
-
-0.999825 0.0176843 0.00613613
--0.015074 0.955015 -0.296174
--0.0110977 0.296029 0.955114
-0.115586 0.0642004 0.502409
-
-0.999955 0.00936119 0.00131605
--0.00853163 0.953636 -0.300842
--0.00407127 0.300818 0.953673
-0.116418 0.0647106 0.501824
-
-0.999993 0.00101369 -0.00349839
--0.002034 0.952189 -0.305502
-0.00302145 0.305507 0.952185
-0.11725 0.0652209 0.501215
-
-0.999938 -0.0073571 -0.00830696
-0.00441808 0.950677 -0.310152
-0.0101791 0.310096 0.950651
-0.118081 0.0657311 0.500581
-
-0.99979 -0.01575 -0.0131094
-0.0108239 0.949099 -0.314793
-0.0174001 0.314585 0.94907
-0.118913 0.0662414 0.499924
-
-0.999548 -0.024164 -0.0179055
-0.0171826 0.947456 -0.319424
-0.0246832 0.318972 0.947443
-0.119745 0.0667516 0.499242
-
-0.999211 -0.0325977 -0.022695
-0.0234936 0.94575 -0.324045
-0.032027 0.323256 0.945769
-0.120577 0.0672619 0.498536
-
-0.998779 -0.0410502 -0.0274778
-0.0297562 0.943981 -0.328656
-0.0394298 0.327437 0.94405
-0.121408 0.0677721 0.497806
-
-0.998252 -0.0495201 -0.0322534
-0.0359695 0.94215 -0.333256
-0.0468904 0.331514 0.942284
-0.12224 0.0682824 0.497052
-
-0.99763 -0.0580063 -0.0370218
-0.0421331 0.940258 -0.337846
-0.0544073 0.335485 0.940473
-0.123072 0.0687926 0.496273
-
-0.996911 -0.0665076 -0.0417827
-0.0482461 0.938306 -0.342425
-0.0619788 0.339352 0.938616
-0.123904 0.0693029 0.495471
-
-0.996095 -0.0750229 -0.0465359
-0.0543079 0.936294 -0.346993
-0.0696037 0.343111 0.936712
-0.124735 0.0698131 0.494644
-
-0.995183 -0.0835509 -0.051281
-0.0603179 0.934224 -0.35155
-0.0772803 0.346764 0.934763
-0.125567 0.0703234 0.493793
-
-0.994174 -0.0920904 -0.056018
-0.0662755 0.932096 -0.356095
-0.0850072 0.350308 0.932769
-0.126399 0.0708336 0.492917
-
-0.993067 -0.10064 -0.0607466
-0.07218 0.929912 -0.360629
-0.0927828 0.353744 0.930729
-0.127231 0.0713439 0.492018
-
-0.991862 -0.109199 -0.0654665
-0.0780309 0.927672 -0.365151
-0.100606 0.357071 0.928644
-0.128062 0.0718541 0.491094
-
-0.990559 -0.117766 -0.0701775
-0.0838275 0.925378 -0.369661
-0.108474 0.360288 0.926513
-0.128894 0.0723644 0.490147
-
-0.989157 -0.126339 -0.0748793
-0.0895693 0.923029 -0.374158
-0.116387 0.363394 0.924337
-0.129726 0.0728746 0.489175
-
-0.987657 -0.134918 -0.0795719
-0.0952557 0.920628 -0.378643
-0.124342 0.366389 0.922116
-0.130558 0.0733849 0.488179
-
-0.986057 -0.143501 -0.0842548
-0.100886 0.918175 -0.383115
-0.132338 0.369273 0.91985
-0.131389 0.0738951 0.487158
-
-0.984358 -0.152087 -0.088928
-0.10646 0.915671 -0.387574
-0.140374 0.372044 0.917539
-0.132221 0.0744054 0.486114
-
-0.98256 -0.160674 -0.0935911
-0.111977 0.913117 -0.392019
-0.148447 0.374703 0.915184
-0.133053 0.0749156 0.485045
-
-0.980662 -0.169262 -0.098244
-0.117437 0.910513 -0.396452
-0.156557 0.377248 0.912784
-0.133884 0.0754259 0.483952
-
-0.978664 -0.177849 -0.102886
-0.122839 0.907862 -0.400871
-0.164701 0.379679 0.910339
-0.134716 0.0759361 0.482835
-
-0.976567 -0.186434 -0.107518
-0.128182 0.905163 -0.405276
-0.172879 0.381997 0.90785
-0.135548 0.0764464 0.481694
-
-0.974368 -0.195015 -0.112139
-0.133467 0.902419 -0.409667
-0.181087 0.3842 0.905317
-0.13638 0.0769566 0.480528
-
-0.97207 -0.203592 -0.116748
-0.138692 0.899629 -0.414044
-0.189326 0.386287 0.902739
-0.137211 0.0774669 0.479339
-
-0.969671 -0.212163 -0.121347
-0.143858 0.896795 -0.418406
-0.197593 0.388259 0.900118
-0.138043 0.0779771 0.478125
-
-0.967171 -0.220727 -0.125933
-0.148963 0.893918 -0.422754
-0.205887 0.390116 0.897452
-0.138875 0.0784874 0.476887
-
-0.964571 -0.229282 -0.130508
-0.154008 0.890999 -0.427086
-0.214206 0.391856 0.894743
-0.139707 0.0789976 0.475625
-
-0.96187 -0.237827 -0.135071
-0.158992 0.888038 -0.431404
-0.222548 0.39348 0.89199
-0.140538 0.0795079 0.474338
-
-0.959068 -0.246361 -0.139621
-0.163914 0.885038 -0.435707
-0.230912 0.394986 0.889194
-0.14137 0.0800181 0.473028
-
-0.956166 -0.254883 -0.144159
-0.168776 0.881998 -0.439994
-0.239295 0.396376 0.886354
-0.142202 0.0805284 0.471693
-
-0.953162 -0.263392 -0.148685
-0.173575 0.87892 -0.444265
-0.247698 0.397649 0.883471
-0.143034 0.0810386 0.470334
-
-0.950057 -0.271885 -0.153197
-0.178312 0.875805 -0.448521
-0.256117 0.398803 0.880545
-0.143865 0.0815489 0.468951
-
-0.946852 -0.280363 -0.157696
-0.182986 0.872654 -0.45276
-0.264551 0.39984 0.877576
-0.144697 0.0820592 0.467544
-
-0.943546 -0.288822 -0.162182
-0.187598 0.869467 -0.456983
-0.272999 0.400759 0.874565
-0.145529 0.0825694 0.466112
-
-0.940139 -0.297263 -0.166655
-0.192146 0.866247 -0.46119
-0.281459 0.40156 0.87151
-0.14636 0.0830797 0.464657
-
-0.937184 -0.303427 -0.172101
-0.194251 0.863729 -0.465015
-0.289747 0.402374 0.868414
-0.147179 0.0834856 0.463277
-
-0.93481 -0.306825 -0.178852
-0.193376 0.862145 -0.468307
-0.297885 0.403193 0.865275
-0.147988 0.0837531 0.462008
-
-0.933022 -0.307466 -0.186907
-0.189534 0.861501 -0.471054
-0.305854 0.404079 0.862075
-0.148787 0.0838815 0.460849
-
-0.931795 -0.305351 -0.196261
-0.182729 0.861775 -0.473238
-0.313636 0.405098 0.858794
-0.149575 0.0838704 0.4598
-
-0.930469 -0.303247 -0.205595
-0.175903 0.862022 -0.475369
-0.321381 0.406152 0.855427
-0.150362 0.0838593 0.458726
-
-0.929043 -0.301154 -0.214909
-0.169056 0.862243 -0.477449
-0.329089 0.407239 0.851972
-0.15115 0.0838482 0.457628
-
-0.927518 -0.299073 -0.224202
-0.162188 0.862437 -0.479476
-0.336758 0.40836 0.848431
-0.151938 0.0838371 0.456506
-
-0.925894 -0.297004 -0.233473
-0.1553 0.862604 -0.481451
-0.344388 0.409515 0.844805
-0.152725 0.083826 0.45536
-
-0.924171 -0.294948 -0.242721
-0.148392 0.862745 -0.483374
-0.351977 0.410702 0.841092
-0.153513 0.0838148 0.45419
-
-0.92235 -0.292905 -0.251945
-0.141466 0.862859 -0.485244
-0.359524 0.411923 0.837295
-0.154301 0.0838037 0.452995
-
-0.920465 -0.29082 -0.261091
-0.134587 0.863057 -0.486846
-0.366921 0.412985 0.833554
-0.155122 0.0839105 0.451855
-
-0.918571 -0.28857 -0.2701
-0.127758 0.863443 -0.488
-0.374038 0.413755 0.830001
-0.156001 0.0842083 0.45083
-
-0.91673 -0.286029 -0.278913
-0.120983 0.864122 -0.488524
-0.380747 0.414101 0.826772
-0.156958 0.0847693 0.449982
-
-0.914948 -0.283188 -0.287531
-0.114266 0.865093 -0.488424
-0.387057 0.414028 0.823874
-0.157994 0.0855925 0.449312
-
-0.913188 -0.28018 -0.29595
-0.10776 0.866349 -0.487676
-0.393033 0.413448 0.821332
-0.159121 0.0867206 0.448842
-
-0.911449 -0.277018 -0.304175
-0.101481 0.867876 -0.486306
-0.398701 0.412375 0.819136
-0.160329 0.0881093 0.448551
-
-0.909666 -0.273879 -0.312247
-0.0955343 0.8696 -0.484426
-0.404204 0.410836 0.817211
-0.161606 0.0897242 0.448407
-
-0.907851 -0.270654 -0.32024
-0.0896604 0.871406 -0.482299
-0.409595 0.409142 0.815374
-0.162919 0.0914543 0.44832
-
-0.905963 -0.267413 -0.328209
-0.0837959 0.873184 -0.480134
-0.414981 0.407481 0.81348
-0.164231 0.0931844 0.448209
-
-0.904003 -0.264156 -0.336155
-0.0779415 0.874932 -0.477933
-0.420361 0.405852 0.81153
-0.165544 0.0949145 0.448074
-
-0.901971 -0.260884 -0.344076
-0.0720973 0.876651 -0.475695
-0.425736 0.404256 0.809522
-0.166857 0.0966446 0.447915
-
-0.899866 -0.257598 -0.351972
-0.0662638 0.878341 -0.47342
-0.431103 0.402692 0.807459
-0.168169 0.0983747 0.447731
-
-0.897689 -0.254298 -0.359842
-0.0604415 0.880002 -0.471109
-0.436464 0.40116 0.805338
-0.169482 0.100105 0.447524
-
-0.89544 -0.250984 -0.367687
-0.0546307 0.881634 -0.468762
-0.441817 0.399661 0.803162
-0.170794 0.101835 0.447292
-
-0.89312 -0.247657 -0.375504
-0.0488319 0.883236 -0.466379
-0.447161 0.398195 0.800929
-0.172107 0.103565 0.447036
-
-0.890727 -0.244318 -0.383295
-0.0430454 0.88481 -0.463959
-0.452496 0.396762 0.798641
-0.17342 0.105295 0.446756
-
-0.888262 -0.240966 -0.391057
-0.0372716 0.886355 -0.461505
-0.457822 0.395362 0.796296
-0.174732 0.107025 0.446452
-
-0.885726 -0.237603 -0.398791
-0.0315109 0.88787 -0.459014
-0.463138 0.393994 0.793896
-0.176045 0.108755 0.446123
-
-0.883118 -0.234229 -0.406497
-0.0257637 0.889356 -0.456488
-0.468443 0.39266 0.791441
-0.177358 0.110485 0.445771
-
-0.880438 -0.230845 -0.414172
-0.0200304 0.890813 -0.453927
-0.473737 0.391359 0.78893
-0.17867 0.112216 0.445394
-
-0.877688 -0.227451 -0.421818
-0.0143115 0.892242 -0.451332
-0.479019 0.390091 0.786365
-0.179983 0.113946 0.444993
-
-0.874866 -0.224047 -0.429433
-0.00860718 0.893641 -0.448701
-0.484289 0.388857 0.783744
-0.181296 0.115676 0.444567
-
-0.871973 -0.220634 -0.437017
-0.00291798 0.89501 -0.446036
-0.489545 0.387656 0.781069
-0.182608 0.117406 0.444118
-
-0.869009 -0.217213 -0.444569
--0.00275575 0.896351 -0.443336
-0.494789 0.386488 0.778339
-0.183921 0.119136 0.443644
-
-0.865974 -0.213783 -0.452089
--0.00841363 0.897663 -0.440602
-0.500017 0.385354 0.775555
-0.185233 0.120866 0.443147
-
-0.862869 -0.210347 -0.459577
--0.0140553 0.898946 -0.437834
-0.505232 0.384253 0.772716
-0.186546 0.122596 0.442625
-
-0.859694 -0.206903 -0.467031
--0.0196803 0.9002 -0.435032
-0.510431 0.383186 0.769824
-0.187859 0.124326 0.442078
-
-0.856448 -0.203453 -0.474451
--0.0252883 0.901425 -0.432197
-0.515614 0.382152 0.766878
-0.189171 0.126056 0.441508
-
-0.853132 -0.199998 -0.481837
--0.0308789 0.902621 -0.429328
-0.52078 0.381152 0.763879
-0.190484 0.127787 0.440914
-
-0.849747 -0.196536 -0.489187
--0.0364518 0.903788 -0.426426
-0.52593 0.380185 0.760827
-0.191797 0.129517 0.440295
-
-0.846291 -0.19307 -0.496503
--0.0420065 0.904926 -0.42349
-0.531062 0.379253 0.757721
-0.193109 0.131247 0.439652
-
-0.842767 -0.1896 -0.503782
--0.0475427 0.906036 -0.420522
-0.536176 0.378353 0.754562
-0.194422 0.132977 0.438985
-
-0.839173 -0.186126 -0.511025
--0.05306 0.907116 -0.417522
-0.541271 0.377488 0.751351
-0.195734 0.134707 0.438294
-
-0.83551 -0.182648 -0.518231
--0.058558 0.908168 -0.414489
-0.546347 0.376656 0.748088
-0.197047 0.136437 0.437578
-
-0.831778 -0.179168 -0.525399
--0.0640364 0.909192 -0.411424
-0.551403 0.375858 0.744772
-0.19836 0.138167 0.436839
-
-0.827978 -0.175685 -0.53253
--0.0694947 0.910187 -0.408327
-0.556438 0.375093 0.741405
-0.199672 0.139897 0.436075
-
-0.824109 -0.1722 -0.539622
--0.0749327 0.911153 -0.405198
-0.561453 0.374362 0.737986
-0.200985 0.141627 0.435287
-
-0.820172 -0.168714 -0.546674
--0.08035 0.912091 -0.402038
-0.566446 0.373665 0.734515
-0.202298 0.143358 0.434474
-
-0.816168 -0.165228 -0.553688
--0.0857461 0.913 -0.398846
-0.571417 0.373002 0.730994
-0.20361 0.145088 0.433638
-
-0.812096 -0.16174 -0.560661
--0.0911208 0.913881 -0.395623
-0.576366 0.372372 0.727421
-0.204923 0.146818 0.432777
-
-0.807957 -0.158254 -0.567593
--0.0964736 0.914734 -0.39237
-0.581291 0.371776 0.723798
-0.206235 0.148548 0.431893
-
-0.80375 -0.154767 -0.574485
--0.101804 0.915559 -0.389086
-0.586192 0.371213 0.720125
-0.207548 0.150278 0.430984
-
-0.799477 -0.151282 -0.581335
--0.107112 0.916355 -0.385771
-0.59107 0.370684 0.716401
-0.208861 0.152008 0.430051
-
-0.795138 -0.147799 -0.588142
--0.112398 0.917124 -0.382427
-0.595922 0.370188 0.712628
-0.210173 0.153738 0.429093
-
-0.790732 -0.144318 -0.594908
--0.11766 0.917865 -0.379052
-0.600749 0.369726 0.708805
-0.211486 0.155468 0.428112
-
-0.786261 -0.140839 -0.60163
--0.122898 0.918577 -0.375648
-0.60555 0.369297 0.704932
-0.212799 0.157198 0.427106
-
-0.781724 -0.137364 -0.608309
--0.128112 0.919262 -0.372215
-0.610324 0.368901 0.701011
-0.214111 0.158928 0.426076
-
-0.777121 -0.133892 -0.614944
--0.133302 0.91992 -0.368752
-0.615072 0.368539 0.697041
-0.215424 0.160659 0.425022
-
-0.772454 -0.130424 -0.621534
--0.138468 0.920549 -0.365261
-0.619791 0.36821 0.693022
-0.216736 0.162389 0.423944
-
-0.767722 -0.126961 -0.628079
--0.143608 0.921152 -0.361741
-0.624483 0.367914 0.688956
-0.218049 0.164119 0.422842
-
-0.762926 -0.123503 -0.634579
--0.148724 0.921726 -0.358192
-0.629146 0.367651 0.684841
-0.219362 0.165849 0.421715
-
-0.758066 -0.120051 -0.641033
--0.153813 0.922274 -0.354616
-0.63378 0.367422 0.680679
-0.220674 0.167579 0.420564
-
-0.753143 -0.116605 -0.647441
--0.158877 0.922794 -0.351011
-0.638384 0.367225 0.67647
-0.221987 0.169309 0.419389
-
-0.748156 -0.113165 -0.653802
--0.163914 0.923288 -0.347379
-0.642958 0.367061 0.672214
-0.2233 0.171039 0.41819
-
-0.743106 -0.109732 -0.660115
--0.168925 0.923754 -0.34372
-0.647501 0.36693 0.667911
-0.224612 0.172769 0.416967
-
-0.737994 -0.106307 -0.666381
--0.173908 0.924193 -0.340033
-0.652013 0.366831 0.663561
-0.225925 0.174499 0.415719
-
-0.732819 -0.10289 -0.672599
--0.178864 0.924606 -0.33632
-0.656493 0.366766 0.659166
-0.227238 0.17623 0.414447
-
-0.727583 -0.0994813 -0.678768
--0.183793 0.924992 -0.332579
-0.660941 0.366732 0.654725
-0.22855 0.17796 0.413151
-
-0.722286 -0.0960816 -0.684888
--0.188694 0.925352 -0.328813
-0.665356 0.366731 0.650239
-0.229863 0.17969 0.411831
-
-0.716927 -0.0926912 -0.690959
--0.193566 0.925685 -0.325021
-0.669737 0.366763 0.645707
-0.231175 0.18142 0.410487
-
-0.711508 -0.0893107 -0.696979
--0.19841 0.925993 -0.321203
-0.674085 0.366826 0.641131
-0.232488 0.18315 0.409119
-
-0.706028 -0.0859406 -0.70295
--0.203225 0.926274 -0.317359
-0.678398 0.366922 0.63651
-0.233801 0.18488 0.407726
-
-0.700489 -0.0825812 -0.708869
--0.208011 0.926529 -0.31349
-0.682676 0.367049 0.631845
-0.235113 0.18661 0.406309
-
-0.69489 -0.0792332 -0.714737
--0.212767 0.926758 -0.309596
-0.686919 0.367208 0.627137
-0.236426 0.18834 0.404868
-
-0.689233 -0.0758968 -0.720554
--0.217494 0.926961 -0.305678
-0.691126 0.367399 0.622385
-0.237739 0.19007 0.403403
-
-0.683516 -0.0725726 -0.726318
--0.22219 0.927139 -0.301735
-0.695296 0.367622 0.61759
-0.239051 0.191801 0.401913
-
-0.677742 -0.069261 -0.73203
--0.226856 0.927292 -0.297768
-0.69943 0.367876 0.612752
-0.240364 0.193531 0.4004
-
-0.67191 -0.0659626 -0.73769
--0.231492 0.927419 -0.293777
-0.703526 0.368161 0.607872
-0.241676 0.195261 0.398862
-
-0.66602 -0.0626776 -0.743296
--0.236096 0.927521 -0.289763
-0.707584 0.368477 0.60295
-0.242989 0.196991 0.3973
-
-0.660074 -0.0594067 -0.748848
--0.240669 0.927599 -0.285726
-0.711604 0.368825 0.597987
-0.244302 0.198721 0.395714
-
-0.654071 -0.0561501 -0.754346
--0.245211 0.927651 -0.281665
-0.715585 0.369203 0.592981
-0.245614 0.200451 0.394104
-
-0.648013 -0.0529085 -0.759789
--0.24972 0.927679 -0.277582
-0.719527 0.369612 0.587935
-0.246927 0.202181 0.392469
-
-0.641899 -0.0496821 -0.765178
--0.254198 0.927682 -0.273477
-0.723429 0.370051 0.582849
-0.24824 0.203911 0.39081
-
-0.636342 -0.0469435 -0.769977
--0.258604 0.927406 -0.270263
-0.726768 0.3711 0.578008
-0.249431 0.205625 0.389206
-
-0.632721 -0.0455115 -0.773041
--0.263187 0.926209 -0.269943
-0.728283 0.374253 0.574054
-0.250255 0.207244 0.387854
-
-0.632129 -0.0448178 -0.773566
--0.269659 0.923198 -0.273842
-0.726427 0.381703 0.571495
-0.250536 0.208776 0.386888
-
-0.634605 -0.0446989 -0.771543
--0.278155 0.918213 -0.281983
-0.721045 0.393557 0.57027
-0.250276 0.210225 0.386309
-
-0.639578 -0.0450972 -0.767402
--0.287971 0.911531 -0.293571
-0.71275 0.408751 0.570009
-0.249587 0.211568 0.38605
-
-0.645059 -0.0453201 -0.762788
--0.297999 0.904281 -0.305732
-0.703631 0.424525 0.569809
-0.248821 0.212902 0.385824
-
-0.65061 -0.0453565 -0.758057
--0.30782 0.896784 -0.317846
-0.694229 0.440139 0.569494
-0.248055 0.214235 0.385575
-
-0.656226 -0.0452036 -0.753209
--0.317428 0.889043 -0.329912
-0.684549 0.455587 0.569064
-0.247289 0.215569 0.385301
-
-0.661902 -0.0448589 -0.748247
--0.326818 0.881065 -0.341926
-0.674593 0.470863 0.568518
-0.246522 0.216903 0.385003
-
-0.667634 -0.0443198 -0.743169
--0.335984 0.872856 -0.353888
-0.664364 0.485961 0.567858
-0.245756 0.218237 0.384681
-
-0.673415 -0.0435839 -0.737979
--0.34492 0.864421 -0.365795
-0.653867 0.500876 0.567081
-0.24499 0.219571 0.384335
-
-0.679241 -0.0426491 -0.732675
--0.353621 0.855767 -0.377645
-0.643105 0.515601 0.56619
-0.244223 0.220905 0.383964
-
-0.685106 -0.0415131 -0.72726
--0.362081 0.846898 -0.389436
-0.632082 0.530132 0.565184
-0.243457 0.222239 0.383569
-
-0.691004 -0.0401742 -0.721733
--0.370296 0.837823 -0.401166
-0.620801 0.544462 0.564063
-0.242691 0.223573 0.383151
-
-0.696931 -0.0386304 -0.716097
--0.37826 0.828546 -0.412832
-0.609268 0.558586 0.562827
-0.241925 0.224907 0.382707
-
-0.70288 -0.0368802 -0.710352
--0.385969 0.819075 -0.424434
-0.597485 0.572499 0.561477
-0.241158 0.226241 0.38224
-
-0.708136 -0.0346436 -0.705226
--0.39332 0.810124 -0.43474
-0.586381 0.585234 0.560052
-0.240329 0.227422 0.381852
-
-0.711334 -0.0327033 -0.702093
--0.398653 0.803922 -0.441346
-0.578862 0.593835 0.558819
-0.239272 0.228218 0.381777
-
-0.712106 -0.0301868 -0.701423
--0.403051 0.800459 -0.443638
-0.574853 0.598626 0.557845
-0.237992 0.228481 0.382041
-
-0.710434 -0.0270889 -0.703243
--0.406665 0.799742 -0.441629
-0.574376 0.599732 0.557147
-0.236482 0.228214 0.382644
-
-0.706452 -0.0232477 -0.707379
--0.409781 0.801464 -0.435585
-0.577065 0.59759 0.55667
-0.234745 0.227458 0.383563
-
-0.700685 -0.019316 -0.71321
--0.411863 0.805306 -0.42644
-0.582589 0.592545 0.55631
-0.232829 0.226345 0.384719
-
-0.694884 -0.0153254 -0.718958
--0.413857 0.809091 -0.417246
-0.588097 0.587484 0.555882
-0.230914 0.225232 0.385852
-
-0.689053 -0.0112765 -0.724623
--0.415764 0.812818 -0.408004
-0.593588 0.582408 0.555386
-0.228998 0.224119 0.38696
-
-0.683191 -0.00716952 -0.730204
--0.417583 0.816487 -0.398714
-0.599061 0.577319 0.554823
-0.227082 0.223006 0.388044
-
-0.677301 -0.00300493 -0.7357
--0.419314 0.820097 -0.389379
-0.604516 0.572216 0.554192
-0.225167 0.221893 0.389104
-
-0.671381 0.00121689 -0.741111
--0.420958 0.823648 -0.379998
-0.609952 0.5671 0.553494
-0.223251 0.22078 0.390139
-
-0.665435 0.00549552 -0.746436
--0.422513 0.827138 -0.370574
-0.615369 0.561971 0.552729
-0.221335 0.219667 0.391151
-
-0.659462 0.00983053 -0.751674
--0.42398 0.830568 -0.361106
-0.620766 0.556831 0.551896
-0.21942 0.218554 0.392138
-
-0.653463 0.0142215 -0.756825
--0.42536 0.833936 -0.351597
-0.626143 0.551679 0.550996
-0.217504 0.217441 0.393101
-
-0.64744 0.018668 -0.761887
--0.426651 0.837241 -0.342047
-0.631498 0.546515 0.550028
-0.215588 0.216328 0.39404
-
-0.641394 0.0231695 -0.766862
--0.427854 0.840483 -0.332458
-0.636832 0.541342 0.548994
-0.213673 0.215214 0.394955
-
-0.635325 0.0277256 -0.771747
--0.428969 0.843662 -0.322831
-0.642143 0.536158 0.547893
-0.211757 0.214101 0.395845
-
-0.629234 0.0323359 -0.776543
--0.429996 0.846777 -0.313166
-0.647432 0.530965 0.546725
-0.209841 0.212988 0.396711
-
-0.623123 0.0369999 -0.781248
--0.430935 0.849826 -0.303465
-0.652697 0.525763 0.54549
-0.207926 0.211875 0.397553
-
-0.616992 0.041717 -0.785863
--0.431785 0.85281 -0.29373
-0.657938 0.520553 0.544189
-0.20601 0.210762 0.398371
-
-0.610842 0.0464868 -0.790386
--0.432547 0.855727 -0.28396
-0.663155 0.515334 0.542822
-0.204094 0.209649 0.399165
-
-0.604675 0.0513087 -0.794818
--0.433222 0.858578 -0.274158
-0.668347 0.510109 0.541389
-0.202179 0.208536 0.399935
-
-0.598491 0.0561824 -0.799157
--0.433808 0.861361 -0.264325
-0.673513 0.504877 0.539889
-0.200263 0.207423 0.40068
-
-0.592291 0.0611072 -0.803403
--0.434306 0.864076 -0.254461
-0.678652 0.499638 0.538324
-0.198347 0.20631 0.401401
-
-0.586077 0.0660826 -0.807556
--0.434717 0.866722 -0.244568
-0.683766 0.494394 0.536693
-0.196432 0.205197 0.402098
-
-0.579848 0.0711081 -0.811615
--0.43504 0.869299 -0.234647
-0.688851 0.489145 0.534997
-0.194516 0.204084 0.402771
-
-0.573607 0.0761831 -0.81558
--0.435275 0.871806 -0.224699
-0.69391 0.483891 0.533235
-0.1926 0.202971 0.40342
-
-0.567354 0.0813071 -0.81945
--0.435423 0.874243 -0.214726
-0.698939 0.478633 0.531408
-0.190685 0.201857 0.404044
-
-0.561091 0.0864795 -0.823225
--0.435483 0.876608 -0.204728
-0.70394 0.473371 0.529517
-0.188769 0.200744 0.404645
-
-0.554817 0.0916998 -0.826903
--0.435456 0.878901 -0.194706
-0.708912 0.468107 0.52756
-0.186854 0.199631 0.405221
-
-0.548534 0.0969673 -0.830486
--0.435342 0.881122 -0.184663
-0.713854 0.46284 0.52554
-0.184938 0.198518 0.405772
-
-0.542244 0.102282 -0.833972
--0.435142 0.883271 -0.174599
-0.718765 0.457571 0.523455
-0.183022 0.197405 0.4063
-
-0.535947 0.107642 -0.837361
--0.434854 0.885345 -0.164515
-0.723645 0.452302 0.521307
-0.181107 0.196292 0.406804
-
-0.529644 0.113048 -0.840653
--0.43448 0.887346 -0.154413
-0.728495 0.447031 0.519094
-0.179191 0.195179 0.407283
-
-0.523336 0.118498 -0.843847
--0.43402 0.889273 -0.144293
-0.733312 0.44176 0.516819
-0.177275 0.194066 0.407738
-
-0.517023 0.123993 -0.846943
--0.433474 0.891124 -0.134157
-0.738097 0.43649 0.51448
-0.17536 0.192953 0.408169
-
-0.510708 0.129532 -0.84994
--0.432842 0.8929 -0.124006
-0.742849 0.431221 0.512078
-0.173444 0.19184 0.408576
-
-0.504391 0.135113 -0.852839
--0.432125 0.894599 -0.113841
-0.747568 0.425953 0.509614
-0.171528 0.190727 0.408959
-
-0.498073 0.140737 -0.855638
--0.431322 0.896223 -0.103664
-0.752253 0.420688 0.507087
-0.169613 0.189614 0.409317
-
-0.491755 0.146403 -0.858338
--0.430435 0.897768 -0.0934748
-0.756903 0.415425 0.504499
-0.167697 0.188501 0.409651
-
-0.485438 0.152109 -0.860937
--0.429463 0.899237 -0.0832759
-0.76152 0.410166 0.501849
-0.165781 0.187387 0.409961
-
-0.479122 0.157856 -0.863437
--0.428406 0.900627 -0.073068
-0.766101 0.40491 0.499137
-0.163866 0.186274 0.410247
-
-0.47281 0.163642 -0.865836
--0.427266 0.901939 -0.0628523
-0.770646 0.399659 0.496364
-0.16195 0.185161 0.410509
-
-0.468566 0.168641 -0.867183
--0.428821 0.90163 -0.056365
-0.772372 0.398277 0.494789
-0.159582 0.184 0.411088
-
-0.466335 0.172795 -0.867568
--0.433146 0.899727 -0.0536244
-0.771308 0.40079 0.49442
-0.156762 0.182792 0.411985
-
-0.464077 0.176933 -0.867944
--0.437458 0.897798 -0.050883
-0.770236 0.403303 0.494048
-0.153942 0.181585 0.412858
-
-0.46179 0.181056 -0.868314
--0.441757 0.895842 -0.0481409
-0.769156 0.405814 0.493674
-0.151121 0.180377 0.413707
-
-0.459476 0.185163 -0.868675
--0.446043 0.89386 -0.0453981
-0.768068 0.408326 0.493297
-0.148301 0.179169 0.414532
-
-0.457133 0.189254 -0.869029
--0.450315 0.89185 -0.0426546
-0.766972 0.410836 0.492918
-0.145481 0.177962 0.415332
-
-0.454763 0.193329 -0.869376
--0.454574 0.889814 -0.0399105
-0.765867 0.413346 0.492537
-0.142661 0.176754 0.416108
-
-0.452366 0.197387 -0.869715
--0.45882 0.887752 -0.0371657
-0.764755 0.415855 0.492154
-0.139841 0.175547 0.41686
-
-0.449941 0.201429 -0.870046
--0.463051 0.885663 -0.0344203
-0.763634 0.418363 0.491768
-0.13702 0.174339 0.417588
-
-0.447488 0.205455 -0.870369
--0.467269 0.883548 -0.0316744
-0.762505 0.42087 0.49138
-0.1342 0.173132 0.418292
-
-0.44485 0.207233 -0.8713
--0.468428 0.883021 -0.0291398
-0.763337 0.421104 0.489885
-0.131658 0.171882 0.419024
-
-0.441911 0.205936 -0.873101
--0.465429 0.884676 -0.0269057
-0.766871 0.418256 0.486797
-0.129488 0.170569 0.419777
-
-0.438724 0.201618 -0.875712
--0.458221 0.888487 -0.0250052
-0.773017 0.41224 0.482186
-0.127685 0.169196 0.420561
-
-0.435194 0.194802 -0.87901
--0.447416 0.89402 -0.023385
-0.781297 0.40346 0.47623
-0.126205 0.167773 0.421377
-
-0.431223 0.18554 -0.882962
--0.432941 0.901152 -0.0220783
-0.791587 0.391791 0.468925
-0.125047 0.166302 0.422227
-
-0.426853 0.174992 -0.887228
--0.416265 0.909001 -0.0209824
-0.80282 0.378278 0.460853
-0.124075 0.164805 0.423092
-
-0.422213 0.164637 -0.891421
--0.39943 0.916547 -0.0199091
-0.813751 0.364466 0.452739
-0.123103 0.163309 0.423934
-
-0.417308 0.154482 -0.895539
--0.382443 0.923787 -0.0188586
-0.824373 0.350362 0.444584
-0.12213 0.161812 0.424752
-
-0.412144 0.144533 -0.899582
--0.365308 0.930716 -0.0178308
-0.834678 0.335974 0.436388
-0.121158 0.160316 0.425545
-
-0.406726 0.134798 -0.90355
--0.348032 0.937332 -0.016826
-0.844658 0.321308 0.428151
-0.120186 0.158819 0.426314
-
-0.401062 0.125284 -0.907443
--0.33062 0.943631 -0.0158441
-0.854307 0.306373 0.419876
-0.119213 0.157323 0.427059
-
-0.395158 0.115996 -0.91126
--0.313078 0.949611 -0.0148853
-0.863616 0.291178 0.411562
-0.118241 0.155827 0.42778
-
-0.389019 0.106941 -0.915001
--0.295412 0.955268 -0.0139496
-0.87258 0.275729 0.403209
-0.117269 0.15433 0.428477
-
-0.382654 0.0981249 -0.918666
--0.277628 0.9606 -0.0130371
-0.881191 0.260036 0.39482
-0.116296 0.152834 0.429149
-
-0.376069 0.089554 -0.922254
--0.259732 0.965604 -0.012148
-0.889444 0.244107 0.386394
-0.115324 0.151337 0.429798
-
-0.369272 0.081234 -0.925764
--0.24173 0.970278 -0.0112822
-0.897332 0.227951 0.377933
-0.114351 0.149841 0.430422
-
-0.362269 0.0731703 -0.929197
--0.223629 0.974618 -0.0104399
-0.904849 0.211578 0.369437
-0.113379 0.148345 0.431022
-
-0.355067 0.0653683 -0.932552
--0.205435 0.978624 -0.00962109
-0.911989 0.194995 0.360906
-0.112407 0.146848 0.431597
-
-0.347676 0.0578332 -0.93583
--0.187153 0.982291 -0.00882591
-0.918747 0.178212 0.352343
-0.111434 0.145352 0.432149
-
-0.340101 0.05057 -0.939028
--0.168791 0.985619 -0.00805438
-0.925117 0.161239 0.343746
-0.110462 0.143855 0.432676
-
-0.332352 0.0435835 -0.942148
--0.150355 0.988605 -0.00730659
-0.931094 0.144085 0.335118
-0.10949 0.142359 0.433179
-
-0.324436 0.0368782 -0.945189
--0.131851 0.991248 -0.0065826
-0.936673 0.12676 0.326458
-0.108517 0.140862 0.433658
-
-0.31636 0.0304585 -0.94815
--0.113287 0.993545 -0.00588246
-0.94185 0.109274 0.317769
-0.107545 0.139366 0.434113
-
-0.308134 0.0243286 -0.951032
--0.0946674 0.995495 -0.00520623
-0.946621 0.0916359 0.309049
-0.106573 0.13787 0.434544
-
-0.299766 0.0184922 -0.953833
--0.0760003 0.997097 -0.00455398
-0.950981 0.0738568 0.300301
-0.1056 0.136373 0.43495
-
-0.291264 0.0129533 -0.956555
--0.0572921 0.99835 -0.00392576
-0.954926 0.0559465 0.291525
-0.104628 0.134877 0.435332
-
-0.282636 0.00771517 -0.959196
--0.0385494 0.999251 -0.00332162
-0.958452 0.0379153 0.282722
-0.103656 0.13338 0.43569
-
-0.273892 0.00278114 -0.961756
--0.0197791 0.999801 -0.00274161
-0.961557 0.0197736 0.273892
-0.102683 0.131884 0.436024
-
-0.26504 -0.00184578 -0.964236
--0.00098787 0.999997 -0.00218577
-0.964237 0.00153186 0.265037
-0.101711 0.130388 0.436334
-
-0.256088 -0.0061628 -0.966634
-0.0178174 0.99984 -0.00165416
-0.966489 -0.0167993 0.256157
-0.100739 0.128891 0.436619
-
-0.247046 -0.0101674 -0.96895
-0.03663 0.999328 -0.00114682
-0.968311 -0.0352093 0.247253
-0.0997663 0.127395 0.436881
-
-0.237923 -0.0138571 -0.971185
-0.0554429 0.998462 -0.000663794
-0.9697 -0.0536874 0.238325
-0.098794 0.125898 0.437118
-
-0.230184 -0.018568 -0.97297
-0.0738513 0.997268 -0.00156006
-0.970341 -0.071496 0.230927
-0.0975447 0.124407 0.437402
-
-0.224051 -0.0245159 -0.974269
-0.0915416 0.995793 -0.00400585
-0.970269 -0.0882886 0.225353
-0.0959736 0.122926 0.437742
-
-0.219473 -0.0318306 -0.975099
-0.108742 0.994038 -0.00797353
-0.96954 -0.104284 0.221626
-0.0940799 0.121444 0.438144
-
-0.214713 -0.0390071 -0.975898
-0.125896 0.991971 -0.0119505
-0.968529 -0.120295 0.2179
-0.0921862 0.119962 0.438521
-
-0.209777 -0.0460413 -0.976665
-0.142998 0.989595 -0.0159366
-0.967236 -0.136318 0.214178
-0.0902925 0.11848 0.438874
-
-0.204666 -0.0529292 -0.9774
-0.160042 0.986909 -0.0199317
-0.96566 -0.152345 0.210457
-0.0883988 0.116999 0.439202
-
-0.199384 -0.0596666 -0.978103
-0.177022 0.983916 -0.0239357
-0.963799 -0.168373 0.20674
-0.0865051 0.115517 0.439507
-
-0.193936 -0.0662498 -0.978775
-0.193933 0.980617 -0.0279483
-0.961654 -0.184397 0.203025
-0.0846114 0.114035 0.439787
-
-0.188324 -0.0726749 -0.979414
-0.210769 0.977013 -0.0319696
-0.959224 -0.200409 0.199313
-0.0827177 0.112553 0.440043
-
-0.182553 -0.0789381 -0.980022
-0.227524 0.973107 -0.0359993
-0.956508 -0.216407 0.195604
-0.080824 0.111071 0.440275
-
-0.176626 -0.0850358 -0.980598
-0.244192 0.9689 -0.0400373
-0.953506 -0.232383 0.191898
-0.0789302 0.10959 0.440483
-
-0.170547 -0.0909644 -0.981142
-0.260769 0.964394 -0.0440835
-0.950217 -0.248333 0.188195
-0.0770365 0.108108 0.440667
-
-0.164321 -0.0967203 -0.981654
-0.277248 0.959592 -0.0481377
-0.946643 -0.264251 0.184496
-0.0751428 0.106626 0.440826
-
-0.15795 -0.1023 -0.982134
-0.293624 0.954495 -0.0521997
-0.942781 -0.280133 0.180801
-0.0732491 0.105144 0.440961
-
-0.151441 -0.107701 -0.982581
-0.309891 0.949106 -0.0562695
-0.938634 -0.295971 0.177109
-0.0713554 0.103662 0.441072
-
-0.145715 -0.111971 -0.98297
-0.326326 0.943408 -0.0590901
-0.933958 -0.312159 0.174008
-0.0693565 0.102413 0.441301
-
-0.141095 -0.114846 -0.983312
-0.343025 0.937391 -0.0602626
-0.928669 -0.328798 0.171656
-0.0672365 0.10153 0.441711
-
-0.137566 -0.116456 -0.983623
-0.359663 0.931155 -0.0599428
-0.922886 -0.345527 0.16998
-0.0650016 0.10097 0.442278
-
-0.135236 -0.116805 -0.983904
-0.376178 0.924726 -0.0580741
-0.916625 -0.362269 0.168995
-0.0626428 0.100733 0.442999
-
-0.133788 -0.116324 -0.984159
-0.392656 0.918032 -0.05513
-0.909902 -0.37906 0.168497
-0.0602082 0.100742 0.443832
-
-0.132857 -0.115431 -0.98439
-0.408871 0.911129 -0.051657
-0.902869 -0.395626 0.168247
-0.0577362 0.100873 0.444711
-
-0.131993 -0.114538 -0.984611
-0.424961 0.903928 -0.0481837
-0.895537 -0.412062 0.167986
-0.0552642 0.101005 0.445566
-
-0.131193 -0.113647 -0.984821
-0.44092 0.896432 -0.04471
-0.887906 -0.428362 0.167715
-0.0527921 0.101137 0.446396
-
-0.130459 -0.112761 -0.985021
-0.456743 0.888643 -0.0412362
-0.879981 -0.444521 0.167434
-0.0503201 0.101269 0.447203
-
-0.129788 -0.111882 -0.985209
-0.472423 0.880563 -0.0377623
-0.871763 -0.460535 0.167142
-0.0478481 0.1014 0.447985
-
-0.129182 -0.11101 -0.985388
-0.487956 0.872194 -0.0342882
-0.863256 -0.476396 0.16684
-0.0453761 0.101532 0.448743
-
-0.12864 -0.110149 -0.985555
-0.503336 0.863541 -0.0308141
-0.854462 -0.492102 0.166528
-0.0429041 0.101664 0.449476
-
-0.128161 -0.1093 -0.985712
-0.518558 0.854605 -0.0273401
-0.845383 -0.507645 0.166205
-0.040432 0.101795 0.450186
-
-0.127744 -0.108465 -0.985858
-0.533616 0.84539 -0.0238662
-0.836024 -0.523021 0.165872
-0.03796 0.101927 0.450871
-
-0.127389 -0.107645 -0.985994
-0.548505 0.835899 -0.0203925
-0.826386 -0.538225 0.165529
-0.035488 0.102059 0.451532
-
-0.127096 -0.106844 -0.986119
-0.56322 0.826134 -0.0169189
-0.816474 -0.553252 0.165175
-0.033016 0.102191 0.452169
-
-0.126863 -0.106061 -0.986234
-0.577756 0.816099 -0.0134457
-0.80629 -0.568096 0.16481
-0.0305439 0.102322 0.452782
-
-0.12669 -0.1053 -0.986337
-0.592107 0.805798 -0.00997286
-0.795838 -0.582754 0.164436
-0.0280719 0.102454 0.453371
-
-0.126577 -0.104563 -0.98643
-0.606269 0.795233 -0.00650042
-0.785122 -0.59722 0.164051
-0.0255999 0.102586 0.453935
-
-0.126521 -0.10385 -0.986513
-0.620237 0.784409 -0.00302846
-0.774144 -0.611489 0.163656
-0.0231279 0.102717 0.454475
-
-0.126523 -0.103163 -0.986585
-0.634005 0.773328 0.000442957
-0.762908 -0.625556 0.16325
-0.0206559 0.102849 0.454991
-
-0.126581 -0.102506 -0.986646
-0.64757 0.761996 0.00391376
-0.751419 -0.639417 0.162834
-0.0181838 0.102981 0.455483
-
-0.126695 -0.101878 -0.986696
-0.660925 0.750415 0.0073839
-0.73968 -0.653068 0.162408
-0.0157118 0.103112 0.455951
-
-0.126864 -0.101282 -0.986736
-0.674068 0.73859 0.0108533
-0.727694 -0.666504 0.161971
-0.0132398 0.103244 0.456394
-
-0.127086 -0.100719 -0.986765
-0.686992 0.726524 0.0143219
-0.715466 -0.679719 0.161524
-0.0107678 0.103376 0.456813
-
-0.127361 -0.100191 -0.986783
-0.699693 0.714222 0.0177897
-0.703 -0.692711 0.161067
-0.00829575 0.103508 0.457209
-
-0.127686 -0.0997003 -0.986791
-0.712168 0.701688 0.0212565
-0.690299 -0.705475 0.160599
-0.00582373 0.103639 0.457579
-
-0.128062 -0.0992475 -0.986788
-0.724411 0.688925 0.0247223
-0.677369 -0.718006 0.160121
-0.0033517 0.103771 0.457926
-
-0.128487 -0.0988345 -0.986774
-0.736418 0.675939 0.0281871
-0.664213 -0.7303 0.159633
-0.000879681 0.103903 0.458249
-
-0.12896 -0.0984628 -0.986749
-0.748185 0.662734 0.0316508
-0.650836 -0.742353 0.159135
--0.00159234 0.104034 0.458547
-
-0.129479 -0.0981339 -0.986714
-0.759709 0.649315 0.0351133
-0.637242 -0.754162 0.158626
--0.00406436 0.104166 0.458821
-
-0.130044 -0.0978491 -0.986668
-0.770984 0.635685 0.0385746
-0.623436 -0.765722 0.158107
--0.00653639 0.104298 0.459071
-
-0.130652 -0.0976101 -0.986612
-0.782007 0.62185 0.0420345
-0.609422 -0.777029 0.157578
--0.00900841 0.10443 0.459297
-
-0.131302 -0.097418 -0.986544
-0.792775 0.607815 0.0454931
-0.595204 -0.788081 0.157038
--0.0114804 0.104561 0.459499
-
-0.131994 -0.0972744 -0.986466
-0.803282 0.593584 0.0489503
-0.580788 -0.798872 0.156488
--0.0139525 0.104693 0.459676
-
-0.132725 -0.0971805 -0.986377
-0.813527 0.579161 0.052406
-0.566179 -0.8094 0.155928
--0.0164245 0.104825 0.459829
-
-0.133494 -0.0971375 -0.986278
-0.823504 0.564553 0.0558601
-0.55138 -0.819661 0.155358
--0.0188965 0.104956 0.459958
-
-0.1343 -0.0971468 -0.986167
-0.833211 0.549764 0.0593127
-0.536398 -0.829651 0.154777
--0.0213685 0.105088 0.460063
-
-0.13514 -0.0972096 -0.986046
-0.842645 0.5348 0.0627635
-0.521236 -0.839368 0.154186
--0.0238405 0.10522 0.460144
-
-0.136015 -0.097327 -0.985915
-0.851801 0.519665 0.0662126
-0.505901 -0.848809 0.153585
--0.0263126 0.105352 0.460201
-
-0.136921 -0.0975002 -0.985772
-0.860677 0.504364 0.0696599
-0.490396 -0.857969 0.152974
--0.0287846 0.105483 0.460233
-
-0.137857 -0.0977302 -0.985619
-0.869269 0.488903 0.0731053
-0.474728 -0.866846 0.152352
--0.0312566 0.105615 0.460241
-
-0.138821 -0.0980181 -0.985455
-0.877576 0.473288 0.0765488
-0.458901 -0.875438 0.151721
--0.0337286 0.105747 0.460225
-
-0.139813 -0.098365 -0.98528
-0.885593 0.457523 0.0799903
-0.44292 -0.88374 0.151079
--0.0362007 0.105878 0.460185
-
-0.140829 -0.0987718 -0.985095
-0.893317 0.441615 0.0834297
-0.426792 -0.891751 0.150427
--0.0386727 0.10601 0.46012
-
-0.141869 -0.0992394 -0.984898
-0.900748 0.425568 0.0868671
-0.41052 -0.899469 0.149765
--0.0411447 0.106142 0.460032
-
-0.142931 -0.0997688 -0.984691
-0.90788 0.409388 0.0903022
-0.394112 -0.906889 0.149092
--0.0436167 0.106274 0.459919
-
-0.144012 -0.100361 -0.984474
-0.914714 0.393081 0.0937351
-0.377571 -0.91401 0.14841
--0.0460887 0.106405 0.459782
-
-0.145111 -0.101016 -0.984245
-0.921244 0.376653 0.0971657
-0.360904 -0.92083 0.147717
--0.0485608 0.106537 0.459621
-
-0.146227 -0.101736 -0.984006
-0.927471 0.360109 0.100594
-0.344115 -0.927346 0.147014
--0.0510328 0.106669 0.459435
-
-0.147356 -0.10252 -0.983756
-0.933391 0.343455 0.10402
-0.327212 -0.933557 0.146301
--0.0535048 0.1068 0.459226
-
-0.148498 -0.10337 -0.983495
-0.939002 0.326697 0.107443
-0.310198 -0.939459 0.145578
--0.0559768 0.106932 0.458992
-
-0.149651 -0.104286 -0.983224
-0.944303 0.30984 0.110864
-0.293081 -0.945052 0.144845
--0.0584489 0.107064 0.458734
-
-0.150812 -0.105269 -0.982942
-0.949292 0.292891 0.114282
-0.275864 -0.950333 0.144102
--0.0609209 0.107196 0.458452
-
-0.15198 -0.106319 -0.982649
-0.953966 0.275855 0.117697
-0.258555 -0.955301 0.143349
--0.0633929 0.107327 0.458146
-
-0.15422 -0.105785 -0.982357
-0.957264 0.262203 0.122046
-0.244666 -0.959197 0.141701
--0.0656746 0.107471 0.457855
-
-0.158443 -0.102205 -0.982064
-0.958356 0.255259 0.128053
-0.237593 -0.961456 0.138393
--0.0675955 0.107608 0.457658
-
-0.16534 -0.0941131 -0.981736
-0.956417 0.258233 0.13632
-0.240687 -0.961488 0.132707
--0.0690151 0.107766 0.457587
-
-0.173448 -0.0838426 -0.981268
-0.953042 0.265444 0.145779
-0.248249 -0.960474 0.125946
--0.0701972 0.107937 0.457542
-
-0.181395 -0.0734487 -0.980664
-0.949541 0.272538 0.155226
-0.255867 -0.959337 0.11918
--0.0713792 0.108107 0.457473
-
-0.189178 -0.0629346 -0.979924
-0.945917 0.279514 0.164661
-0.263539 -0.958077 0.112409
--0.0725612 0.108278 0.45738
-
-0.196793 -0.0523033 -0.979049
-0.942172 0.286369 0.174082
-0.271264 -0.956691 0.105634
--0.0737433 0.108449 0.457263
-
-0.204238 -0.0415581 -0.978039
-0.938309 0.293102 0.183487
-0.279039 -0.955178 0.0988568
--0.0749253 0.108619 0.457122
-
-0.211511 -0.030702 -0.976893
-0.93433 0.29971 0.192876
-0.286863 -0.953536 0.0920779
--0.0761073 0.10879 0.456956
-
-0.21861 -0.0197385 -0.975613
-0.930238 0.306192 0.202248
-0.294733 -0.951765 0.0852982
--0.0772894 0.108961 0.456766
-
-0.225532 -0.00867086 -0.974197
-0.926035 0.312546 0.2116
-0.302647 -0.949863 0.0785187
--0.0784714 0.109131 0.456553
-
-0.232274 0.00249758 -0.972647
-0.921723 0.318771 0.220932
-0.310603 -0.947829 0.0717402
--0.0796534 0.109302 0.456314
-
-0.238836 0.0137634 -0.970962
-0.917307 0.324864 0.230242
-0.3186 -0.945661 0.0649638
--0.0808355 0.109472 0.456052
-
-0.245213 0.0251231 -0.969144
-0.912787 0.330824 0.23953
-0.326634 -0.943358 0.0581903
--0.0820175 0.109643 0.455766
-
-0.251405 0.0365732 -0.967191
-0.908168 0.336649 0.248793
-0.334703 -0.94092 0.0514208
--0.0831995 0.109814 0.455455
-
-0.257409 0.0481102 -0.965104
-0.903451 0.342339 0.258031
-0.342807 -0.938344 0.044656
--0.0843816 0.109984 0.45512
-
-0.263224 0.0597305 -0.962884
-0.89864 0.347891 0.267242
-0.350941 -0.93563 0.037897
--0.0855636 0.110155 0.454761
-
-0.268847 0.0714304 -0.960531
-0.893737 0.353304 0.276426
-0.359104 -0.932778 0.0311447
--0.0867456 0.110326 0.454378
-
-0.274277 0.0832063 -0.958044
-0.888745 0.358576 0.28558
-0.367294 -0.929785 0.0244
--0.0879277 0.110496 0.453971
-
-0.279511 0.0950544 -0.955426
-0.883667 0.363707 0.294703
-0.375508 -0.926651 0.0176638
--0.0891097 0.110667 0.453539
-
-0.284549 0.106971 -0.952675
-0.878506 0.368695 0.303795
-0.383744 -0.923375 0.0109371
--0.0902917 0.110838 0.453083
-
-0.289388 0.118953 -0.949792
-0.873265 0.373539 0.312854
-0.391999 -0.919956 0.00422077
--0.0914738 0.111008 0.452603
-
-0.294028 0.130995 -0.946778
-0.867946 0.378238 0.321878
-0.400272 -0.916393 -0.00248425
--0.0926558 0.111179 0.452099
-
-0.298465 0.143095 -0.943633
-0.862553 0.38279 0.330868
-0.408559 -0.912686 -0.00917704
--0.0938378 0.11135 0.451571
-
-0.3027 0.155247 -0.940357
-0.857089 0.387195 0.33982
-0.416858 -0.908833 -0.0158567
--0.0950199 0.11152 0.451018
-
-0.306731 0.167449 -0.936951
-0.851557 0.391452 0.348735
-0.425167 -0.904835 -0.0225222
--0.0962019 0.111691 0.450442
-
-0.310556 0.179697 -0.933415
-0.845959 0.39556 0.35761
-0.433483 -0.900689 -0.0291728
--0.0973839 0.111862 0.449841
-
-0.314175 0.191986 -0.92975
-0.8403 0.399518 0.366445
-0.441804 -0.896397 -0.0358075
--0.098566 0.112032 0.449216
-
-0.317585 0.204312 -0.925957
-0.834581 0.403325 0.375239
-0.450127 -0.891956 -0.0424253
--0.099748 0.112203 0.448567
-
-0.320787 0.216672 -0.922035
-0.828806 0.40698 0.383989
-0.45845 -0.887367 -0.0490254
--0.10093 0.112373 0.447893
-
-0.323779 0.229062 -0.917986
-0.822978 0.410483 0.392696
-0.466769 -0.882629 -0.0556069
--0.102112 0.112544 0.447195
-
-0.326561 0.241476 -0.913809
-0.817101 0.413833 0.401357
-0.475083 -0.877742 -0.0621688
--0.103294 0.112715 0.446474
-
-0.329131 0.253912 -0.909506
-0.811177 0.417031 0.409973
-0.483389 -0.872705 -0.0687103
--0.104476 0.112885 0.445728
-
-0.331489 0.266366 -0.905077
-0.805209 0.420074 0.41854
-0.491684 -0.867518 -0.0752304
--0.105658 0.113056 0.444958
-
-0.333634 0.278832 -0.900523
-0.799202 0.422963 0.427059
-0.499965 -0.86218 -0.0817283
--0.10684 0.113227 0.444163
-
-0.335565 0.291307 -0.895844
-0.793157 0.425697 0.435528
-0.508231 -0.856692 -0.088203
--0.108022 0.113397 0.443345
-
-0.337283 0.303787 -0.891041
-0.787078 0.428277 0.443945
-0.516477 -0.851054 -0.0946537
--0.109204 0.113568 0.442502
-
-0.338787 0.316268 -0.886114
-0.780968 0.430701 0.452311
-0.524702 -0.845264 -0.101079
--0.110386 0.113739 0.441635
-
-0.340076 0.328746 -0.881064
-0.774831 0.432971 0.460623
-0.532903 -0.839323 -0.107479
--0.111568 0.113909 0.440744
-
-0.34115 0.341215 -0.875893
-0.768669 0.435085 0.468881
-0.541077 -0.833231 -0.113853
--0.11275 0.11408 0.439829
-
-0.342009 0.353673 -0.8706
-0.762486 0.437043 0.477082
-0.549221 -0.826988 -0.120198
--0.113932 0.114251 0.438889
-
-0.342654 0.366115 -0.865187
-0.756286 0.438846 0.485227
-0.557333 -0.820593 -0.126516
--0.115114 0.114421 0.437925
-
-0.343083 0.378537 -0.859653
-0.75007 0.440494 0.493315
-0.56541 -0.814048 -0.132803
--0.116296 0.114592 0.436938
-
-0.343297 0.390934 -0.854001
-0.743843 0.441987 0.501343
-0.573449 -0.807352 -0.139061
--0.117479 0.114763 0.435926
-
-0.343296 0.403303 -0.84823
-0.737608 0.443325 0.509311
-0.581448 -0.800506 -0.145288
--0.118661 0.114933 0.434889
-
-0.343081 0.415639 -0.842342
-0.731368 0.444508 0.517217
-0.589404 -0.793509 -0.151483
--0.119843 0.115104 0.433829
-
-0.342652 0.427938 -0.836336
-0.725125 0.445537 0.525062
-0.597313 -0.786362 -0.157645
--0.121025 0.115274 0.432744
-
-0.342009 0.440196 -0.830215
-0.718884 0.446413 0.532842
-0.605174 -0.779066 -0.163773
--0.122207 0.115445 0.431636
-
-0.341153 0.452409 -0.823979
-0.712648 0.447135 0.540559
-0.612983 -0.77162 -0.169867
--0.123389 0.115616 0.430503
-
-0.340084 0.464572 -0.817629
-0.706419 0.447704 0.54821
-0.620738 -0.764025 -0.175925
--0.124571 0.115786 0.429346
-
-0.338803 0.476681 -0.811165
-0.700201 0.448121 0.555794
-0.628436 -0.756283 -0.181948
--0.125753 0.115957 0.428164
-
-0.337311 0.488732 -0.804588
-0.693997 0.448386 0.563311
-0.636074 -0.748392 -0.187933
--0.126935 0.116128 0.426959
-
-0.335608 0.500722 -0.7979
-0.68781 0.4485 0.570758
-0.64365 -0.740355 -0.193881
--0.128117 0.116298 0.425729
-
-0.333696 0.512645 -0.791102
-0.681643 0.448465 0.578137
-0.65116 -0.732171 -0.19979
--0.129299 0.116469 0.424475
-
-0.331576 0.524498 -0.784194
-0.6755 0.44828 0.585444
-0.658603 -0.723841 -0.205659
--0.130481 0.11664 0.423197
-
-0.329248 0.536277 -0.777176
-0.669383 0.447948 0.59268
-0.665975 -0.715367 -0.211489
--0.131663 0.11681 0.421895
-
-0.326714 0.547977 -0.770052
-0.663296 0.447468 0.599843
-0.673273 -0.706749 -0.217277
--0.132845 0.116981 0.420568
-
-0.323975 0.559595 -0.76282
-0.657241 0.446842 0.606932
-0.680496 -0.697987 -0.223023
--0.134027 0.117152 0.419218
-
-0.321032 0.571126 -0.755482
-0.651223 0.44607 0.613946
-0.687639 -0.689084 -0.228727
--0.135209 0.117322 0.417843
-
-0.317887 0.582567 -0.74804
-0.645243 0.445155 0.620885
-0.694701 -0.680039 -0.234387
--0.136391 0.117493 0.416444
-
-0.314542 0.593913 -0.740494
-0.639304 0.444098 0.627748
-0.701679 -0.670854 -0.240003
--0.137573 0.117663 0.415021
-
-0.310997 0.60516 -0.732845
-0.633411 0.442899 0.634532
-0.70857 -0.66153 -0.245574
--0.138755 0.117834 0.413573
-
-0.307255 0.616305 -0.725095
-0.627565 0.44156 0.641239
-0.715371 -0.652068 -0.2511
--0.139937 0.118005 0.412102
-
-0.303318 0.627344 -0.717243
-0.62177 0.440083 0.647865
-0.722081 -0.642469 -0.256578
--0.141119 0.118175 0.410606
-
-0.299186 0.638272 -0.709293
-0.616028 0.438468 0.654412
-0.728695 -0.632735 -0.26201
--0.142301 0.118346 0.409086
-
-0.294863 0.649087 -0.701243
-0.610343 0.436719 0.660877
-0.735213 -0.622867 -0.267393
--0.143483 0.118517 0.407542
-
-0.29035 0.659783 -0.693097
-0.604717 0.434835 0.66726
-0.74163 -0.612866 -0.272728
--0.144665 0.118687 0.405974
-
-0.285648 0.670358 -0.684854
-0.599153 0.432819 0.67356
-0.747944 -0.602734 -0.278013
--0.145847 0.118858 0.404381
-
-0.280761 0.680807 -0.676517
-0.593654 0.430673 0.679777
-0.754154 -0.592472 -0.283248
--0.147029 0.119029 0.402765
-
-0.275691 0.691127 -0.668085
-0.588222 0.428398 0.685908
-0.760256 -0.582081 -0.288431
--0.148211 0.119199 0.401124
-
-0.270439 0.701315 -0.65956
-0.582861 0.425996 0.691954
-0.766248 -0.571564 -0.293563
--0.149393 0.11937 0.399459
-
-0.265009 0.711366 -0.650944
-0.577573 0.423469 0.697914
-0.772127 -0.560921 -0.298643
--0.150575 0.119541 0.39777
-
-0.259402 0.721277 -0.642238
-0.57236 0.420819 0.703786
-0.777891 -0.550155 -0.303669
--0.151758 0.119711 0.396056
-
-0.253621 0.731045 -0.633443
-0.567226 0.418048 0.709571
-0.783538 -0.539267 -0.308642
--0.15294 0.119882 0.394319
-
-0.247669 0.740666 -0.624559
-0.562172 0.415158 0.715266
-0.789064 -0.528259 -0.31356
--0.154122 0.120053 0.392557
-
-0.242405 0.748854 -0.616813
-0.559174 0.411709 0.719597
-0.79282 -0.51934 -0.318939
--0.155205 0.120025 0.390868
-
-0.238742 0.75448 -0.61136
-0.559959 0.407397 0.721439
-0.793378 -0.514575 -0.325215
--0.156057 0.119643 0.389368
-
-0.237198 0.756785 -0.609109
-0.565723 0.402112 0.719906
-0.789743 -0.515347 -0.33275
--0.156609 0.118756 0.388122
-
-0.237592 0.756058 -0.609858
-0.575937 0.395928 0.715219
-0.782207 -0.52117 -0.341372
--0.156853 0.117419 0.387133
-
-0.239718 0.753131 -0.612642
-0.589314 0.388603 0.708306
-0.771521 -0.530832 -0.350675
--0.156891 0.115772 0.386324
-
-0.241913 0.749801 -0.615854
-0.603126 0.380994 0.700773
-0.760077 -0.540963 -0.360057
--0.156886 0.114047 0.38553
-
-0.244027 0.746529 -0.618988
-0.616745 0.373103 0.693123
-0.748382 -0.550898 -0.369371
--0.156882 0.112322 0.384712
-
-0.246062 0.743315 -0.622042
-0.630166 0.364933 0.685357
-0.73644 -0.560631 -0.378616
--0.156877 0.110597 0.383869
-
-0.248022 0.740161 -0.625017
-0.643383 0.356491 0.677475
-0.724254 -0.570154 -0.38779
--0.156872 0.108871 0.383003
-
-0.249908 0.73707 -0.627912
-0.656389 0.347779 0.66948
-0.711828 -0.579463 -0.396892
--0.156868 0.107146 0.382112
-
-0.251724 0.734043 -0.630727
-0.669178 0.338804 0.661372
-0.699168 -0.588551 -0.40592
--0.156863 0.105421 0.381197
-
-0.253472 0.731081 -0.63346
-0.681744 0.329571 0.653152
-0.686278 -0.597414 -0.414873
--0.156859 0.103696 0.380258
-
-0.255156 0.728187 -0.636113
-0.694082 0.320084 0.644823
-0.673161 -0.606044 -0.42375
--0.156854 0.101971 0.379294
-
-0.256778 0.725362 -0.638683
-0.706185 0.310349 0.636385
-0.659824 -0.614438 -0.432549
--0.15685 0.100245 0.378307
-
-0.258341 0.722606 -0.641171
-0.718049 0.300372 0.627839
-0.64627 -0.622589 -0.441269
--0.156845 0.0985202 0.377295
-
-0.259848 0.719922 -0.643577
-0.729668 0.290158 0.619187
-0.632505 -0.630492 -0.449908
--0.156841 0.096795 0.376259
-
-0.261303 0.717311 -0.645899
-0.741037 0.279713 0.61043
-0.618534 -0.638142 -0.458464
--0.156836 0.0950698 0.375199
-
-0.262708 0.714774 -0.648138
-0.75215 0.269042 0.60157
-0.604363 -0.645535 -0.466938
--0.156832 0.0933446 0.374115
-
-0.264067 0.712311 -0.650293
-0.763003 0.258152 0.592608
-0.589996 -0.652664 -0.475326
--0.156827 0.0916194 0.373007
-
-0.265382 0.709925 -0.652364
-0.773591 0.247049 0.583545
-0.575439 -0.659525 -0.483628
--0.156823 0.0898941 0.371874
-
-0.266658 0.707615 -0.654351
-0.783908 0.235739 0.574382
-0.560698 -0.666114 -0.491843
--0.156818 0.0881689 0.370717
-
-0.267114 0.705583 -0.656356
-0.793398 0.225565 0.565368
-0.546965 -0.671769 -0.499556
--0.15687 0.0865726 0.369573
-
-0.264576 0.704458 -0.658589
-0.800628 0.22024 0.557216
-0.537582 -0.67471 -0.505738
--0.157075 0.0853706 0.368448
-
-0.258688 0.704298 -0.661093
-0.805475 0.220491 0.550085
-0.533189 -0.674795 -0.510256
--0.157463 0.0846317 0.367363
-
-0.248952 0.705192 -0.663872
-0.807781 0.226984 0.544029
-0.534334 -0.671701 -0.513133
--0.158038 0.0843957 0.366333
-
-0.235364 0.706957 -0.666945
-0.807434 0.23973 0.539055
-0.540975 -0.665388 -0.514398
--0.158804 0.084661 0.365359
-
-0.218248 0.709257 -0.670315
-0.80436 0.25821 0.535101
-0.552606 -0.655959 -0.514144
--0.159756 0.0853834 0.364424
-
-0.19784 0.711762 -0.673984
-0.798388 0.281913 0.532073
-0.568715 -0.643366 -0.512488
--0.160883 0.0865224 0.363523
-
-0.175326 0.714012 -0.677826
-0.790158 0.308652 0.529512
-0.587291 -0.628427 -0.510068
--0.162135 0.0879543 0.362692
-
-0.151032 0.715775 -0.681803
-0.779577 0.337846 0.52737
-0.607823 -0.611167 -0.506977
--0.163474 0.0896062 0.361883
-
-0.126793 0.716697 -0.685762
-0.767936 0.366667 0.525195
-0.627852 -0.593212 -0.503886
--0.164813 0.0912581 0.36105
-
-0.102641 0.716782 -0.689702
-0.755248 0.395078 0.522986
-0.647353 -0.574575 -0.500797
--0.166152 0.0929101 0.360192
-
-0.078603 0.716037 -0.693623
-0.741527 0.423041 0.520743
-0.666302 -0.555273 -0.497708
--0.167491 0.094562 0.359311
-
-0.0547093 0.714468 -0.697526
-0.726791 0.450519 0.518467
-0.684677 -0.53532 -0.494621
--0.16883 0.0962139 0.358405
-
-0.0309882 0.712085 -0.701409
-0.711055 0.477475 0.516157
-0.702453 -0.514735 -0.491535
--0.170169 0.0978658 0.357475
-
-0.00746794 0.708896 -0.705273
-0.694339 0.503874 0.513814
-0.719609 -0.493536 -0.488451
--0.171508 0.0995177 0.356521
-
--0.0148007 0.704709 -0.709342
-0.677224 0.528991 0.511405
-0.735628 -0.472815 -0.485076
--0.172943 0.101169 0.355557
-
--0.0357923 0.699623 -0.713615
-0.659816 0.552852 0.508918
-0.750574 -0.452639 -0.48141
--0.174475 0.102817 0.354581
-
--0.0554881 0.693735 -0.71809
-0.642213 0.575484 0.50634
-0.764515 -0.433071 -0.477458
--0.176104 0.10446 0.353593
-
--0.0734221 0.687098 -0.722845
-0.62482 0.596611 0.503641
-0.777309 -0.41467 -0.473117
--0.177876 0.106089 0.352605
-
--0.0893401 0.679742 -0.72799
-0.607831 0.616233 0.500798
-0.789025 -0.397753 -0.468222
--0.179839 0.107717 0.351623
-
--0.103367 0.671772 -0.733511
-0.591254 0.634522 0.497795
-0.799833 -0.382236 -0.462777
--0.181993 0.109342 0.35065
-
--0.117069 0.663473 -0.738985
-0.574168 0.652355 0.494736
-0.810325 -0.366383 -0.457316
--0.184147 0.110967 0.349652
-
--0.130438 0.654856 -0.744412
-0.556584 0.669718 0.491622
-0.820488 -0.350201 -0.451839
--0.186301 0.112593 0.34863
-
--0.143466 0.645933 -0.749792
-0.538515 0.686598 0.488452
-0.830313 -0.333698 -0.446348
--0.188456 0.114218 0.347584
-
--0.156144 0.636714 -0.755125
-0.519974 0.702981 0.485227
-0.839789 -0.31688 -0.440842
--0.19061 0.115843 0.346513
-
--0.168466 0.627213 -0.760409
-0.500976 0.718853 0.481947
-0.848906 -0.299755 -0.435322
--0.192764 0.117468 0.345418
-
--0.180424 0.617442 -0.765646
-0.481535 0.734203 0.478612
-0.857654 -0.282332 -0.429788
--0.194918 0.119093 0.3443
-
--0.192012 0.607411 -0.770833
-0.461665 0.749019 0.475223
-0.866024 -0.264618 -0.424241
--0.197073 0.120719 0.343157
-
--0.203223 0.597135 -0.775971
-0.44138 0.763288 0.471779
-0.874004 -0.246622 -0.418681
--0.199227 0.122344 0.341989
-
--0.214052 0.586625 -0.781059
-0.420697 0.776998 0.468281
-0.881587 -0.228353 -0.41311
--0.201381 0.123969 0.340798
-
--0.224493 0.575894 -0.786097
-0.399631 0.79014 0.46473
-0.888762 -0.20982 -0.407526
--0.203535 0.125594 0.339582
-
--0.234541 0.564956 -0.791085
-0.378196 0.802703 0.461125
-0.895521 -0.191033 -0.40193
--0.205689 0.12722 0.338343
-
--0.244191 0.553823 -0.796022
-0.35641 0.814675 0.457467
-0.901855 -0.172002 -0.396324
--0.207844 0.128845 0.337079
-
--0.253439 0.542508 -0.800908
-0.334289 0.826049 0.453755
-0.907755 -0.152736 -0.390707
--0.209998 0.13047 0.335791
-
--0.262281 0.531025 -0.805742
-0.31185 0.836814 0.449992
-0.913213 -0.133246 -0.38508
--0.212152 0.132095 0.334478
-
--0.270714 0.519388 -0.810525
-0.289108 0.846962 0.446175
-0.918221 -0.113544 -0.379444
--0.214306 0.133721 0.333142
-
--0.278735 0.507609 -0.815255
-0.266082 0.856484 0.442306
-0.922771 -0.0936387 -0.373798
--0.21646 0.135346 0.331781
-
--0.286341 0.495702 -0.819932
-0.242789 0.865373 0.438386
-0.926856 -0.0735429 -0.368143
--0.218615 0.136971 0.330396
-
--0.29353 0.48368 -0.824556
-0.219247 0.873622 0.434414
-0.930468 -0.0532676 -0.36248
--0.220769 0.138596 0.328987
-
--0.300301 0.471558 -0.829127
-0.195472 0.881224 0.43039
-0.933601 -0.0328247 -0.356809
--0.222923 0.140222 0.327554
-
--0.30368 0.462147 -0.833186
-0.182623 0.886504 0.425159
-0.935108 -0.0230462 -0.353612
--0.224833 0.14144 0.326115
-
--0.303294 0.456114 -0.836644
-0.183996 0.889509 0.418234
-0.934964 -0.0270914 -0.353706
--0.226407 0.14211 0.324631
-
--0.299136 0.453764 -0.839414
-0.200933 0.889925 0.409463
-0.932815 -0.0461807 -0.357385
--0.227617 0.142195 0.323122
-
--0.29236 0.454167 -0.841581
-0.229086 0.887668 0.399455
-0.928464 -0.0760094 -0.363562
--0.228574 0.14188 0.321615
-
--0.285231 0.455083 -0.84353
-0.259346 0.883904 0.38917
-0.922704 -0.107763 -0.37014
--0.229479 0.141485 0.320076
-
--0.278295 0.455947 -0.845378
-0.289491 0.879036 0.378801
-0.915831 -0.13931 -0.376624
--0.230383 0.14109 0.318512
-
--0.271551 0.456773 -0.847124
-0.319479 0.873069 0.368352
-0.907851 -0.170612 -0.383013
--0.231287 0.140694 0.316924
-
--0.264994 0.457573 -0.848767
-0.34927 0.86601 0.357823
-0.898771 -0.201628 -0.389304
--0.232192 0.140299 0.315312
-
--0.25862 0.458359 -0.850307
-0.378821 0.857867 0.347216
-0.8886 -0.232317 -0.395498
--0.233096 0.139904 0.313675
-
--0.252423 0.459145 -0.851744
-0.408093 0.848649 0.336534
-0.87735 -0.262642 -0.401593
--0.234 0.139508 0.312015
-
--0.246398 0.459941 -0.853078
-0.437045 0.838368 0.325777
-0.865032 -0.292563 -0.407587
--0.234904 0.139113 0.31033
-
--0.240538 0.46076 -0.854308
-0.465636 0.827037 0.314948
-0.85166 -0.32204 -0.413481
--0.235809 0.138718 0.308621
-
--0.234837 0.461612 -0.855433
-0.493828 0.814671 0.304048
-0.837249 -0.351036 -0.419272
--0.236713 0.138322 0.306888
-
--0.229286 0.462508 -0.856454
-0.521582 0.801284 0.293079
-0.821815 -0.379512 -0.424959
--0.237617 0.137927 0.305131
-
--0.224827 0.464736 -0.856431
-0.542954 0.789585 0.285929
-0.809107 -0.400718 -0.42985
--0.238088 0.137587 0.303711
-
--0.221166 0.468896 -0.855115
-0.55689 0.780536 0.283967
-0.800599 -0.413402 -0.433751
--0.237986 0.137293 0.302746
-
--0.218363 0.475308 -0.852291
-0.562491 0.774991 0.288085
-0.797447 -0.416499 -0.436586
--0.237214 0.137062 0.30232
-
--0.216344 0.484016 -0.847894
-0.560016 0.772908 0.29832
-0.799736 -0.410294 -0.438271
--0.235766 0.136882 0.302428
-
--0.215186 0.494484 -0.842129
-0.550954 0.773461 0.31338
-0.806315 -0.396539 -0.438876
--0.233777 0.136757 0.302947
-
--0.215066 0.505768 -0.835431
-0.537708 0.775432 0.331022
-0.81524 -0.378026 -0.438725
--0.231497 0.136661 0.303689
-
--0.215338 0.517012 -0.828449
-0.524338 0.776904 0.348553
-0.823832 -0.359331 -0.438386
--0.229218 0.136566 0.304407
-
--0.216003 0.528201 -0.821186
-0.51086 0.777875 0.365967
-0.832084 -0.340461 -0.43786
--0.226939 0.13647 0.305101
-
--0.21706 0.539322 -0.813644
-0.49729 0.778342 0.383258
-0.839993 -0.321427 -0.437146
--0.22466 0.136375 0.305771
-
--0.218509 0.550362 -0.805826
-0.483642 0.778303 0.400419
-0.847552 -0.302236 -0.436244
--0.22238 0.136279 0.306416
-
--0.220351 0.561306 -0.797735
-0.469932 0.777756 0.417444
-0.854757 -0.282897 -0.435155
--0.220101 0.136184 0.307038
-
--0.222584 0.572142 -0.789373
-0.456176 0.776701 0.434326
-0.861603 -0.263419 -0.433879
--0.217822 0.136088 0.307635
-
--0.225207 0.582856 -0.780744
-0.442391 0.775135 0.45106
-0.868085 -0.243812 -0.432416
--0.215543 0.135992 0.308208
-
--0.228218 0.593434 -0.77185
-0.428592 0.77306 0.46764
-0.8742 -0.224084 -0.430767
--0.213263 0.135897 0.308757
-
--0.231615 0.603863 -0.762695
-0.414794 0.770476 0.484059
-0.879943 -0.204246 -0.428933
--0.210984 0.135801 0.309281
-
--0.235395 0.61413 -0.753282
-0.401014 0.767382 0.500312
-0.885312 -0.184306 -0.426913
--0.208705 0.135706 0.309782
-
--0.239554 0.624221 -0.743615
-0.387269 0.763782 0.516392
-0.890302 -0.164275 -0.424708
--0.206426 0.13561 0.310258
-
--0.244089 0.634122 -0.733696
-0.373573 0.759675 0.532294
-0.89491 -0.144161 -0.422319
--0.204146 0.135514 0.31071
-
--0.248997 0.643821 -0.72353
-0.359943 0.755066 0.548012
-0.899134 -0.123976 -0.419748
--0.201867 0.135419 0.311138
-
--0.254272 0.653305 -0.713119
-0.346395 0.749956 0.56354
-0.902971 -0.103729 -0.416994
--0.199588 0.135323 0.311542
-
--0.259909 0.662559 -0.702469
-0.332945 0.744349 0.578872
-0.906419 -0.0834292 -0.414059
--0.197309 0.135228 0.311921
-
--0.268702 0.668737 -0.693246
-0.319552 0.740844 0.590794
-0.908673 -0.0627805 -0.412762
--0.194904 0.134723 0.312371
-
--0.27864 0.671707 -0.686418
-0.306614 0.739539 0.599225
-0.910136 -0.0434971 -0.41202
--0.192738 0.133913 0.312882
-
--0.290101 0.671185 -0.682167
-0.29338 0.740873 0.604182
-0.910917 -0.0248611 -0.41184
--0.190921 0.132811 0.313516
-
--0.303026 0.66727 -0.680387
-0.279915 0.744784 0.60576
-0.910946 -0.00688984 -0.412468
--0.189474 0.131379 0.314304
-
--0.317476 0.659585 -0.68129
-0.266127 0.751559 0.603602
-0.910157 0.01032 -0.414135
--0.188459 0.129579 0.31527
-
--0.329685 0.650936 -0.683805
-0.252306 0.758705 0.60059
-0.909752 0.025477 -0.414369
--0.188185 0.127823 0.316356
-
--0.339519 0.641415 -0.687978
-0.238507 0.766228 0.596665
-0.909858 0.0384915 -0.413131
--0.188657 0.126107 0.31755
-
--0.347212 0.631037 -0.693712
-0.224577 0.77416 0.591813
-0.910499 0.0496932 -0.410514
--0.189833 0.124425 0.318833
-
--0.353394 0.619728 -0.70075
-0.210023 0.782523 0.58613
-0.911594 0.0599616 -0.406696
--0.191634 0.122773 0.320218
-
--0.358672 0.607386 -0.708828
-0.194369 0.791303 0.579707
-0.913003 0.0701504 -0.401875
--0.193933 0.121162 0.321687
-
--0.363067 0.593992 -0.717882
-0.177574 0.800445 0.572499
-0.914686 0.080378 -0.396093
--0.196604 0.119616 0.32317
-
--0.367087 0.580502 -0.726818
-0.160596 0.809186 0.565178
-0.916218 0.0907459 -0.390268
--0.199274 0.118069 0.324628
-
--0.370729 0.566925 -0.735633
-0.143442 0.817523 0.557746
-0.917597 0.101252 -0.384401
--0.201945 0.116523 0.326062
-
--0.373991 0.553273 -0.744325
-0.126124 0.825451 0.550203
-0.918816 0.111893 -0.378492
--0.204616 0.114977 0.327472
-
--0.37687 0.539555 -0.752894
-0.108652 0.832966 0.542552
-0.919872 0.122668 -0.372544
--0.207287 0.113431 0.328857
-
--0.379365 0.525783 -0.761337
-0.0910347 0.840066 0.534792
-0.920758 0.133573 -0.366556
--0.209957 0.111884 0.330219
-
--0.37961 0.513644 -0.769459
-0.0791384 0.846695 0.52616
-0.921756 0.138842 -0.362063
--0.2125 0.110078 0.331531
-
--0.377106 0.503831 -0.777139
-0.0753685 0.853 0.51644
-0.923098 0.136181 -0.359645
--0.214869 0.107929 0.332815
-
--0.372068 0.496317 -0.784369
-0.0799169 0.859029 0.50565
-0.924759 0.125452 -0.359282
--0.21706 0.105441 0.334072
-
--0.367118 0.488672 -0.79147
-0.0845723 0.864895 0.494778
-0.926322 0.114706 -0.358847
--0.219252 0.102953 0.335305
-
--0.362259 0.480897 -0.79844
-0.0893323 0.870594 0.483824
-0.927787 0.103943 -0.35834
--0.221443 0.100465 0.336513
-
--0.357492 0.472995 -0.805279
-0.0941947 0.876125 0.472791
-0.929154 0.0931663 -0.357762
--0.223634 0.0979768 0.337698
-
--0.352821 0.464969 -0.811986
-0.099157 0.881486 0.461681
-0.930422 0.0823768 -0.357112
--0.225825 0.0954886 0.338858
-
--0.348247 0.45682 -0.818559
-0.104217 0.886675 0.450496
-0.931592 0.0715764 -0.35639
--0.228017 0.0930004 0.339994
-
--0.343773 0.448552 -0.824998
-0.109371 0.891689 0.439237
-0.932662 0.0607667 -0.355597
--0.230208 0.0905122 0.341106
-
--0.339401 0.440166 -0.831301
-0.114618 0.896526 0.427906
-0.933632 0.0499495 -0.354733
--0.232399 0.0880241 0.342194
-
--0.335133 0.431666 -0.837466
-0.119955 0.901184 0.416506
-0.934503 0.0391265 -0.353798
--0.234591 0.0855359 0.343258
-
--0.330972 0.423054 -0.843494
-0.125379 0.905662 0.405038
-0.935274 0.0282995 -0.352791
--0.236782 0.0830477 0.344297
-
--0.326919 0.414333 -0.849383
-0.130888 0.909958 0.393504
-0.935945 0.01747 -0.351714
--0.238973 0.0805596 0.345312
-
--0.322977 0.405505 -0.855133
-0.136478 0.914069 0.381906
-0.936515 0.00664 -0.350566
--0.241165 0.0780714 0.346303
-
--0.319147 0.396573 -0.860741
-0.142147 0.917993 0.370246
-0.936984 -0.00418893 -0.349347
--0.243356 0.0755832 0.34727
-
--0.315432 0.387541 -0.866207
-0.147893 0.92173 0.358526
-0.937353 -0.015015 -0.348058
--0.245547 0.073095 0.348213
-
--0.311834 0.37841 -0.87153
-0.153712 0.925277 0.346748
-0.93762 -0.0258365 -0.346699
--0.247739 0.0706069 0.349131
-
--0.308354 0.369184 -0.87671
-0.159601 0.928633 0.334914
-0.937787 -0.0366517 -0.34527
--0.24993 0.0681187 0.350025
-
--0.304995 0.359866 -0.881745
-0.165558 0.931796 0.323027
-0.937853 -0.0474589 -0.343772
--0.252121 0.0656305 0.350895
-
--0.301757 0.350458 -0.886635
-0.17158 0.934765 0.311087
-0.937818 -0.0582562 -0.342203
--0.254312 0.0631424 0.351741
-
--0.298643 0.340964 -0.891379
-0.177663 0.937538 0.299097
-0.937682 -0.069042 -0.340566
--0.256504 0.0606542 0.352563
-
--0.295655 0.331387 -0.895975
-0.183805 0.940113 0.287059
-0.937445 -0.0798145 -0.33886
--0.258695 0.058166 0.353361
-
--0.292794 0.321729 -0.900423
-0.190003 0.94249 0.274976
-0.937107 -0.090572 -0.337085
--0.260886 0.0556778 0.354134
-
--0.290062 0.311994 -0.904723
-0.196253 0.944667 0.262848
-0.936669 -0.101313 -0.335242
--0.263078 0.0531897 0.354883
-
--0.28746 0.302185 -0.908873
-0.202553 0.946643 0.250679
-0.93613 -0.112035 -0.333331
--0.265269 0.0507015 0.355608
-
--0.28499 0.292305 -0.912874
-0.208899 0.948416 0.23847
-0.93549 -0.122737 -0.331352
--0.26746 0.0482133 0.356309
-
--0.282653 0.282358 -0.916723
-0.215289 0.949986 0.226223
-0.93475 -0.133417 -0.329305
--0.269652 0.0457252 0.356985
-
--0.280451 0.272345 -0.920421
-0.221718 0.951352 0.213941
-0.93391 -0.144074 -0.327191
--0.271843 0.043237 0.357638
-
--0.278991 0.262288 -0.92378
-0.222757 0.953413 0.203426
-0.9341 -0.149025 -0.32442
--0.273836 0.0408039 0.358475
-
--0.278833 0.252179 -0.926638
-0.212712 0.957157 0.196478
-0.936486 -0.142322 -0.320528
--0.275427 0.0384417 0.359693
-
--0.279551 0.242186 -0.929084
-0.192336 0.962175 0.19294
-0.940669 -0.12476 -0.315558
--0.276639 0.0361987 0.361277
-
--0.28109 0.232126 -0.931185
-0.162111 0.967848 0.192329
-0.94589 -0.0968939 -0.309682
--0.277523 0.0340301 0.363182
-
--0.28244 0.222153 -0.933207
-0.129838 0.972716 0.192262
-0.950458 -0.066863 -0.303578
--0.278343 0.0318856 0.365132
-
--0.283436 0.212304 -0.935196
-0.0974171 0.976517 0.19216
-0.95403 -0.036639 -0.297462
--0.279163 0.029741 0.367058
-
--0.284086 0.20259 -0.937151
-0.0648842 0.979244 0.192021
-0.956601 -0.00625577 -0.291335
--0.279983 0.0275965 0.36896
-
--0.284683 0.194509 -0.938681
-0.0364446 0.980687 0.19216
-0.957929 0.0204949 -0.286274
--0.280635 0.0253554 0.370828
-
--0.285788 0.190211 -0.939226
-0.0192841 0.981046 0.192813
-0.958099 0.0369914 -0.284039
--0.280897 0.0228399 0.372714
-
--0.2876 0.1896 -0.938796
-0.0135443 0.980916 0.193957
-0.957655 0.0430668 -0.28468
--0.280779 0.0200481 0.374629
-
--0.290203 0.19267 -0.937369
-0.0192183 0.980498 0.195586
-0.956772 0.0387449 -0.288246
--0.280274 0.0169804 0.376563
-
--0.29317 0.197639 -0.935409
-0.0301464 0.979824 0.197575
-0.955585 0.0297237 -0.293213
--0.27956 0.0137908 0.378461
-
--0.296058 0.202676 -0.93342
-0.0410755 0.979026 0.199551
-0.954286 0.0207378 -0.298173
--0.278845 0.0106012 0.380335
-
--0.298866 0.207781 -0.9314
-0.0520041 0.978104 0.201513
-0.952877 0.0117886 -0.303127
--0.278131 0.00741154 0.382185
-
--0.301593 0.212952 -0.929351
-0.0629307 0.977058 0.203461
-0.951358 0.00287774 -0.308075
--0.277417 0.00422193 0.38401
-
--0.304237 0.218188 -0.927272
-0.0738537 0.975888 0.205396
-0.949729 -0.00599335 -0.313015
--0.276702 0.00103232 0.385812
-
--0.306798 0.223488 -0.925164
-0.0847717 0.974594 0.207317
-0.947992 -0.0148232 -0.317949
--0.275988 -0.00215729 0.387589
-
--0.309274 0.228851 -0.923026
-0.0956832 0.973175 0.209225
-0.946147 -0.0236102 -0.322875
--0.275273 -0.00534691 0.389342
-
--0.311665 0.234275 -0.920858
-0.106587 0.971632 0.211118
-0.944195 -0.032353 -0.327794
--0.274559 -0.00853652 0.391071
-
--0.313969 0.23976 -0.918661
-0.117481 0.969964 0.212998
-0.942137 -0.0410502 -0.332705
--0.273845 -0.0117261 0.392775
-
--0.316185 0.245303 -0.916435
-0.128363 0.968172 0.214863
-0.939973 -0.0497002 -0.337609
--0.27313 -0.0149157 0.394455
-
--0.318312 0.250903 -0.91418
-0.139234 0.966255 0.216715
-0.937705 -0.0583017 -0.342505
--0.272416 -0.0181054 0.396112
-
--0.32035 0.25656 -0.911895
-0.15009 0.964214 0.218552
-0.935333 -0.0668532 -0.347393
--0.271702 -0.021295 0.397744
-
--0.322297 0.262271 -0.909582
-0.160931 0.962048 0.220376
-0.932859 -0.0753534 -0.352273
--0.270987 -0.0244846 0.399351
-
--0.324152 0.268035 -0.907239
-0.171755 0.959757 0.222184
-0.930283 -0.0838008 -0.357144
--0.270273 -0.0276742 0.400935
-
--0.325915 0.273852 -0.904867
-0.18256 0.957343 0.223979
-0.927605 -0.0921941 -0.362007
--0.269559 -0.0308638 0.402495
-
--0.327584 0.279719 -0.902467
-0.193345 0.954804 0.225759
-0.924828 -0.100532 -0.366861
--0.268844 -0.0340534 0.40403
-
--0.329159 0.285635 -0.900037
-0.204108 0.952141 0.227525
-0.921951 -0.108813 -0.371706
--0.26813 -0.037243 0.405541
-
--0.330638 0.291599 -0.897579
-0.214848 0.949354 0.229276
-0.918977 -0.117036 -0.376542
--0.267416 -0.0404326 0.407028
-
--0.332021 0.297609 -0.895093
-0.225564 0.946443 0.231013
-0.915906 -0.125199 -0.381369
--0.266701 -0.0436222 0.40849
-
--0.333307 0.303663 -0.892578
-0.236253 0.943408 0.232735
-0.912738 -0.133302 -0.386186
--0.265987 -0.0468119 0.409929
-
--0.334496 0.309761 -0.890034
-0.246915 0.94025 0.234442
-0.909475 -0.141343 -0.390994
--0.265273 -0.0500015 0.411343
-
--0.335586 0.315901 -0.887462
-0.257547 0.936969 0.236134
-0.906119 -0.14932 -0.395793
--0.264558 -0.0531911 0.412733
-
--0.336576 0.322081 -0.884862
-0.268149 0.933564 0.237812
-0.90267 -0.157233 -0.400581
--0.263844 -0.0563807 0.414099
-
--0.337466 0.3283 -0.882233
-0.278718 0.930036 0.239475
-0.899129 -0.16508 -0.405359
--0.263129 -0.0595703 0.415441
-
--0.338256 0.334556 -0.879577
-0.289254 0.926386 0.241123
-0.895497 -0.17286 -0.410127
--0.262415 -0.0627599 0.416759
-
--0.338944 0.340847 -0.876892
-0.299755 0.922614 0.242756
-0.891776 -0.180572 -0.414885
--0.261701 -0.0659495 0.418052
-
--0.338589 0.348025 -0.874206
-0.309607 0.918555 0.245766
-0.888539 -0.187447 -0.418763
--0.261081 -0.0687217 0.419527
-
--0.33698 0.356162 -0.871546
-0.318348 0.914269 0.250533
-0.886058 -0.19303 -0.421474
--0.260591 -0.0709582 0.42125
-
--0.333985 0.36533 -0.8689
-0.325666 0.909789 0.257343
-0.884531 -0.197023 -0.422832
--0.260259 -0.0726189 0.423215
-
--0.329636 0.375379 -0.866274
-0.330798 0.905314 0.26642
-0.884258 -0.19874 -0.422598
--0.260113 -0.0736649 0.425422
-
--0.323963 0.386338 -0.863592
-0.334239 0.900694 0.277552
-0.88506 -0.19873 -0.420921
--0.260125 -0.0741353 0.427873
-
--0.317637 0.397629 -0.860813
-0.336464 0.896016 0.289736
-0.886509 -0.197602 -0.418396
--0.260225 -0.0743092 0.43044
-
--0.311243 0.408843 -0.85789
-0.338592 0.891195 0.301873
-0.887966 -0.196519 -0.415809
--0.260326 -0.0744831 0.432983
-
--0.304782 0.419979 -0.854825
-0.340622 0.88623 0.313962
-0.889429 -0.195483 -0.413161
--0.260427 -0.0746569 0.435502
-
--0.298256 0.431035 -0.851617
-0.342553 0.881125 0.326
-0.890899 -0.194493 -0.410453
--0.260528 -0.0748308 0.437996
-
--0.291667 0.442009 -0.848268
-0.344383 0.875881 0.337985
-0.892374 -0.19355 -0.407685
--0.260628 -0.0750047 0.440467
-
--0.285015 0.452899 -0.844778
-0.34611 0.870498 0.349916
-0.893854 -0.192655 -0.404858
--0.260729 -0.0751786 0.442913
-
--0.278302 0.463704 -0.841146
-0.347734 0.864979 0.361791
-0.895337 -0.191809 -0.401971
--0.26083 -0.0753525 0.445335
-
--0.27153 0.474421 -0.837375
-0.349254 0.859325 0.373607
-0.896824 -0.191012 -0.399026
--0.260931 -0.0755264 0.447733
-
--0.264699 0.485048 -0.833464
-0.350669 0.853538 0.385362
-0.898313 -0.190264 -0.396022
--0.261031 -0.0757003 0.450107
-
--0.257813 0.495585 -0.829414
-0.351976 0.84762 0.397056
-0.899803 -0.189568 -0.392961
--0.261132 -0.0758742 0.452456
-
--0.250871 0.506028 -0.825226
-0.353176 0.841572 0.408685
-0.901294 -0.188922 -0.389843
--0.261233 -0.0760481 0.454782
-
--0.243876 0.516377 -0.820901
-0.354266 0.835396 0.420248
-0.902784 -0.188329 -0.386668
--0.261334 -0.076222 0.457083
-
--0.23683 0.52663 -0.816439
-0.355247 0.829094 0.431744
-0.904274 -0.187787 -0.383438
--0.261434 -0.0763958 0.45936
-
--0.229733 0.536784 -0.811841
-0.356116 0.822668 0.44317
-0.905762 -0.187299 -0.380151
--0.261535 -0.0765697 0.461612
-
--0.222588 0.546838 -0.807107
-0.356873 0.816119 0.454524
-0.907246 -0.186864 -0.37681
--0.261636 -0.0767436 0.463841
-
--0.215396 0.556791 -0.802239
-0.357517 0.809449 0.465804
-0.908728 -0.186482 -0.373414
--0.261737 -0.0769175 0.466046
-
--0.208158 0.566641 -0.797238
-0.358048 0.802661 0.477009
-0.910204 -0.186156 -0.369965
--0.261837 -0.0770914 0.468226
-
--0.200877 0.576386 -0.792103
-0.358463 0.795755 0.488137
-0.911676 -0.185884 -0.366462
--0.261938 -0.0772653 0.470382
-
--0.193554 0.586025 -0.786836
-0.358762 0.788735 0.499187
-0.913141 -0.185668 -0.362906
--0.262039 -0.0774392 0.472514
-
--0.186191 0.595556 -0.781439
-0.358945 0.781601 0.510155
-0.914599 -0.185507 -0.359299
--0.26214 -0.0776131 0.474621
-
--0.178789 0.604977 -0.77591
-0.35901 0.774356 0.521041
-0.916049 -0.185404 -0.355639
--0.26224 -0.077787 0.476705
-
--0.17135 0.614288 -0.770253
-0.358957 0.767003 0.531843
-0.91749 -0.185357 -0.351929
--0.262341 -0.0779609 0.478764
-
--0.163876 0.623487 -0.764467
-0.358785 0.759542 0.542558
-0.918922 -0.185367 -0.348169
--0.262442 -0.0781348 0.480799
-
--0.156369 0.632571 -0.758553
-0.358493 0.751976 0.553186
-0.920343 -0.185435 -0.344358
--0.262543 -0.0783086 0.48281
-
--0.148831 0.641541 -0.752513
-0.358081 0.744307 0.563724
-0.921752 -0.185561 -0.340499
--0.262643 -0.0784825 0.484797
-
--0.141262 0.650394 -0.746347
-0.357548 0.736537 0.574172
-0.923149 -0.185746 -0.336591
--0.262744 -0.0786564 0.48676
-
--0.133666 0.659129 -0.740056
-0.356892 0.728668 0.584526
-0.924533 -0.185989 -0.332636
--0.262845 -0.0788303 0.488698
-
--0.126043 0.667744 -0.733642
-0.356115 0.720703 0.594785
-0.925903 -0.186292 -0.328633
--0.262946 -0.0790042 0.490612
-
--0.118396 0.67624 -0.727105
-0.355214 0.712643 0.604949
-0.927257 -0.186654 -0.324584
--0.263046 -0.0791781 0.492502
-
--0.110727 0.684613 -0.720447
-0.35419 0.704491 0.615014
-0.928595 -0.187077 -0.320489
--0.263147 -0.079352 0.494368
-
--0.103036 0.692864 -0.713669
-0.353042 0.696248 0.62498
-0.929917 -0.187559 -0.316349
--0.263248 -0.0795259 0.49621
-
--0.0953275 0.70099 -0.706771
-0.351769 0.687918 0.634845
-0.93122 -0.188102 -0.312164
--0.263349 -0.0796998 0.498027
-
--0.0876016 0.708991 -0.699755
-0.350372 0.679501 0.644607
-0.932505 -0.188706 -0.307936
--0.263449 -0.0798737 0.49982
-
--0.0798606 0.716865 -0.692623
-0.348849 0.671001 0.654264
-0.93377 -0.189371 -0.303664
--0.26355 -0.0800475 0.501589
-
--0.0721064 0.724612 -0.685374
-0.3472 0.66242 0.663816
-0.935015 -0.190097 -0.29935
--0.263651 -0.0802214 0.503334
-
--0.0643409 0.732231 -0.678011
-0.345426 0.65376 0.67326
-0.936238 -0.190884 -0.294995
--0.263752 -0.0803953 0.505055
-
--0.056566 0.739719 -0.670534
-0.343525 0.645022 0.682596
-0.937439 -0.191733 -0.290598
--0.263852 -0.0805692 0.506751
-
--0.0487837 0.747077 -0.662945
-0.341497 0.636211 0.691821
-0.938616 -0.192644 -0.286161
--0.263953 -0.0807431 0.508424
-
--0.0409958 0.754303 -0.655245
-0.339343 0.627327 0.700933
-0.939769 -0.193617 -0.281685
--0.264054 -0.080917 0.510072
-
--0.0332042 0.761397 -0.647435
-0.337061 0.618373 0.709933
-0.940897 -0.194653 -0.27717
--0.264155 -0.0810909 0.511696
-
--0.025411 0.768357 -0.639517
-0.334653 0.609352 0.718817
-0.941999 -0.19575 -0.272617
--0.264255 -0.0812648 0.513296
-
--0.0176179 0.775183 -0.631492
-0.332117 0.600265 0.727585
-0.943074 -0.19691 -0.268027
--0.264356 -0.0814387 0.514871
-
--0.00982712 0.781873 -0.62336
-0.329453 0.591116 0.736235
-0.944121 -0.198133 -0.2634
--0.264457 -0.0816126 0.516423
-
--0.00204042 0.788427 -0.615125
-0.326662 0.581906 0.744766
-0.945139 -0.199418 -0.258737
--0.264558 -0.0817865 0.51795
-
-0.0057402 0.794845 -0.606786
-0.323744 0.572638 0.753177
-0.946127 -0.200767 -0.254039
--0.264658 -0.0819603 0.519453
-
-0.0135128 0.801125 -0.598345
-0.320698 0.563315 0.761465
-0.947085 -0.202178 -0.249307
--0.264759 -0.0821342 0.520932
-
-0.0212753 0.807267 -0.589803
-0.317525 0.553938 0.769631
-0.948011 -0.203651 -0.244542
--0.26486 -0.0823081 0.522386
-
-0.0290259 0.813269 -0.581163
-0.314224 0.54451 0.777671
-0.948905 -0.205188 -0.239744
--0.26496 -0.082482 0.523817
-
-0.0367626 0.819133 -0.572425
-0.310796 0.535034 0.785586
-0.949765 -0.206787 -0.234914
--0.265061 -0.0826559 0.525223
-
-0.0444833 0.824856 -0.563591
-0.307241 0.525511 0.793373
-0.950592 -0.20845 -0.230053
--0.265162 -0.0828298 0.526605
-
-0.0521861 0.830438 -0.554662
-0.303559 0.515945 0.801032
-0.951383 -0.210175 -0.225161
--0.265263 -0.0830037 0.527963
-
-0.0598691 0.835879 -0.545639
-0.29975 0.506338 0.808562
-0.952137 -0.211963 -0.22024
--0.265363 -0.0831776 0.529297
-
-0.0675303 0.841178 -0.536525
-0.295814 0.496692 0.81596
-0.952855 -0.213814 -0.215291
--0.265464 -0.0833515 0.530607
-
-0.0751676 0.846335 -0.52732
-0.291753 0.48701 0.823226
-0.953536 -0.215727 -0.210313
--0.265565 -0.0835254 0.531892
-
-0.0827792 0.85135 -0.518026
-0.287566 0.477294 0.83036
-0.954177 -0.217703 -0.205309
--0.265666 -0.0836992 0.533153
-
-0.090363 0.856221 -0.508645
-0.283253 0.467546 0.837358
-0.954779 -0.219741 -0.200278
--0.265766 -0.0838731 0.53439
-
-0.0979171 0.860949 -0.499178
-0.278815 0.45777 0.844221
-0.95534 -0.221842 -0.195222
--0.265867 -0.084047 0.535603
-
-0.10544 0.865533 -0.489627
-0.274252 0.447967 0.850947
-0.95586 -0.224005 -0.190141
--0.265968 -0.0842209 0.536792
-
-0.112928 0.869973 -0.479993
-0.269565 0.43814 0.857536
-0.956338 -0.22623 -0.185036
--0.266069 -0.0843948 0.537956
-
-0.120381 0.874269 -0.470278
-0.264755 0.428291 0.863986
-0.956772 -0.228516 -0.179909
--0.266169 -0.0845687 0.539096
-
-0.127797 0.878421 -0.460483
-0.259821 0.418424 0.870296
-0.957163 -0.230864 -0.174759
--0.26627 -0.0847426 0.540212
-
-0.135173 0.882428 -0.45061
-0.254765 0.40854 0.876465
-0.957509 -0.233274 -0.169588
--0.266371 -0.0849165 0.541304
-
-0.142507 0.88629 -0.440661
-0.249587 0.398641 0.882492
-0.957809 -0.235745 -0.164397
--0.266472 -0.0850904 0.542372
-
-0.149798 0.890007 -0.430637
-0.244288 0.388731 0.888376
-0.958063 -0.238277 -0.159186
--0.266572 -0.0852643 0.543415
-
-0.157044 0.893579 -0.42054
-0.238867 0.378812 0.894116
-0.958269 -0.240869 -0.153957
--0.266673 -0.0854381 0.544435
-
-0.164242 0.897006 -0.410371
-0.233327 0.368886 0.899712
-0.958427 -0.243522 -0.148709
--0.266774 -0.085612 0.54543
-
-0.171392 0.900288 -0.400132
-0.227668 0.358956 0.905162
-0.958536 -0.246234 -0.143445
--0.266875 -0.0857859 0.546401
-
-0.17849 0.903426 -0.389825
-0.221891 0.349024 0.910465
-0.958596 -0.249007 -0.138165
--0.266975 -0.0859598 0.547348
-
-0.185534 0.906418 -0.379452
-0.215995 0.339092 0.915621
-0.958605 -0.251839 -0.132869
--0.267076 -0.0861337 0.54827
-
-0.192524 0.909265 -0.369013
-0.209983 0.329164 0.920629
-0.958562 -0.25473 -0.127559
--0.267177 -0.0863076 0.549169
-
-0.199457 0.911968 -0.358512
-0.203856 0.319241 0.925488
-0.958467 -0.25768 -0.122235
--0.267278 -0.0864815 0.550043
-
-0.206331 0.914527 -0.347949
-0.197613 0.309326 0.930197
-0.95832 -0.260688 -0.116899
--0.267378 -0.0866554 0.550893
-
-0.213145 0.916941 -0.337326
-0.191256 0.299422 0.934755
-0.958118 -0.263754 -0.111551
--0.267479 -0.0868293 0.551719
-
-0.219896 0.919211 -0.326646
-0.184787 0.28953 0.939162
-0.957862 -0.266878 -0.106192
--0.26758 -0.0870032 0.55252
-
-0.226582 0.921337 -0.315909
-0.178205 0.279654 0.943417
-0.957551 -0.270059 -0.100822
--0.267681 -0.0871771 0.553298
-
-0.233203 0.92332 -0.305117
-0.171513 0.269795 0.94752
-0.957183 -0.273296 -0.0954443
--0.267781 -0.0873509 0.554051
-
-0.239755 0.92516 -0.294273
-0.164711 0.259957 0.951469
-0.956759 -0.27659 -0.0900578
--0.267882 -0.0875248 0.55478
-
-0.246238 0.926857 -0.283378
-0.1578 0.25014 0.955264
-0.956277 -0.279939 -0.0846639
--0.267983 -0.0876987 0.555485
-
-0.252648 0.928412 -0.272433
-0.150781 0.240349 0.958904
-0.955737 -0.283343 -0.0792635
--0.268084 -0.0878726 0.556166
-
-0.258986 0.929825 -0.261441
-0.143657 0.230585 0.962389
-0.955138 -0.286803 -0.0738575
--0.268184 -0.0880465 0.556822
-
-0.265247 0.931097 -0.250404
-0.136427 0.22085 0.965719
-0.95448 -0.290316 -0.0684468
--0.268285 -0.0882204 0.557455
-
-0.271432 0.932228 -0.239322
-0.129093 0.211147 0.968892
-0.953761 -0.293883 -0.0630322
--0.268386 -0.0883943 0.558063
-
-0.277538 0.933219 -0.228198
-0.121657 0.201478 0.971908
-0.952981 -0.297504 -0.0576146
--0.268487 -0.0885682 0.558647
-
-0.283564 0.93407 -0.217035
-0.114119 0.191846 0.974768
-0.952139 -0.301177 -0.0521949
--0.268587 -0.0887421 0.559207
-
-0.289507 0.934783 -0.205832
-0.106482 0.182253 0.977469
-0.951235 -0.304902 -0.046774
--0.268688 -0.088916 0.559742
-
-0.30059 0.93341 -0.195938
-0.101288 0.173035 0.979694
-0.94836 -0.314332 -0.0425304
--0.268654 -0.0893457 0.560497
-
-0.316784 0.929807 -0.187367
-0.0984063 0.164257 0.981497
-0.943379 -0.329361 -0.039465
--0.268485 -0.0900341 0.561466
-
-0.337988 0.923756 -0.180107
-0.0976895 0.155901 0.98293
-0.936067 -0.349814 -0.0375484
--0.268176 -0.0909779 0.562652
-
-0.359051 0.917176 -0.172832
-0.0966682 0.147639 0.984306
-0.928298 -0.370124 -0.0356518
--0.267866 -0.0919218 0.563813
-
-0.379959 0.91007 -0.165543
-0.095346 0.139479 0.985624
-0.920076 -0.39028 -0.0337752
--0.267557 -0.0928657 0.56495
-
-0.400698 0.902442 -0.15824
-0.0937267 0.131431 0.986885
-0.911404 -0.410274 -0.0319188
--0.267247 -0.0938096 0.566062
-
-0.421254 0.894297 -0.150924
-0.0918143 0.123504 0.988087
-0.902283 -0.430093 -0.0300827
--0.266938 -0.0947535 0.567151
-
-0.441614 0.885639 -0.143596
-0.0896134 0.115707 0.989233
-0.892718 -0.449727 -0.0282671
--0.266628 -0.0956974 0.568215
-
-0.461765 0.876475 -0.136255
-0.0871284 0.10805 0.99032
-0.882713 -0.469167 -0.0264721
--0.266319 -0.0966413 0.569255
-
-0.481694 0.866808 -0.128902
-0.0843643 0.100541 0.99135
-0.872269 -0.488401 -0.0246978
--0.266009 -0.0975851 0.570271
-
-0.501386 0.856645 -0.121539
-0.0813263 0.0931885 0.992321
-0.861393 -0.507421 -0.0229443
--0.2657 -0.098529 0.571263
-
-0.52083 0.845992 -0.114164
-0.0780198 0.0860018 0.993235
-0.850088 -0.526214 -0.0212118
--0.26539 -0.0994729 0.572231
-
-0.540013 0.834856 -0.10678
-0.0744506 0.0789891 0.994091
-0.838358 -0.544772 -0.0195004
--0.265081 -0.100417 0.573174
-
-0.558921 0.823243 -0.0993856
-0.0706245 0.0721587 0.99489
-0.826208 -0.563084 -0.0178102
--0.264771 -0.101361 0.574094
-
-0.577543 0.811162 -0.0919823
-0.0665478 0.0655185 0.99563
-0.813643 -0.58114 -0.0161413
--0.264462 -0.102305 0.574989
-
-0.595866 0.798618 -0.0845704
-0.0622269 0.0590766 0.996312
-0.800669 -0.598931 -0.0144938
--0.264152 -0.103248 0.575859
-
-0.613879 0.785621 -0.0771504
-0.0576684 0.0528405 0.996936
-0.787291 -0.616447 -0.0128679
--0.263843 -0.104192 0.576706
-
-0.631569 0.772178 -0.0697227
-0.0528793 0.0468178 0.997503
-0.773514 -0.633679 -0.0112636
--0.263533 -0.105136 0.577529
-
-0.648925 0.758298 -0.0622879
-0.0478668 0.0410157 0.998011
-0.759345 -0.650616 -0.00968118
--0.263224 -0.10608 0.578327
-
-0.665936 0.74399 -0.0548466
-0.042638 0.0354413 0.998462
-0.74479 -0.66725 -0.00812062
--0.262914 -0.107024 0.579101
-
-0.68259 0.729263 -0.0473991
-0.0372007 0.0301016 0.998854
-0.729854 -0.683571 -0.00658206
--0.262605 -0.107968 0.579851
-
-0.698876 0.714126 -0.039946
-0.0315625 0.025003 0.999189
-0.714546 -0.69957 -0.00506562
--0.262295 -0.108912 0.580577
-
-0.714785 0.698589 -0.0324878
-0.0257315 0.020152 0.999466
-0.698871 -0.715239 -0.00357141
--0.261986 -0.109856 0.581278
-
-0.730305 0.682663 -0.025025
-0.0197157 0.0155547 0.999685
-0.682837 -0.730568 -0.00209952
--0.261676 -0.1108 0.581956
-
-0.745427 0.666356 -0.0175581
-0.0135236 0.0112171 0.999846
-0.66645 -0.745549 -0.000650061
--0.261367 -0.111743 0.582609
-
-0.76014 0.649681 -0.0100877
-0.00716369 0.0071447 0.999949
-0.64972 -0.760173 0.00077686
--0.261057 -0.112687 0.583238
-
-0.774436 0.632647 -0.00261415
-0.000644591 0.00334301 0.999994
-0.632652 -0.774433 0.00218114
--0.260748 -0.113631 0.583843
-
-0.788304 0.615266 0.00486197
--0.00602479 -0.000182871 0.999982
-0.615256 -0.788319 0.00356269
--0.260438 -0.114575 0.584424
-
-0.801737 0.597549 0.0123402
--0.0128354 -0.00342806 0.999912
-0.597539 -0.801825 0.0049214
--0.260129 -0.115519 0.58498
-
-0.814725 0.579508 0.01982
--0.0197782 -0.00638797 0.999784
-0.579509 -0.814941 0.00625718
--0.259819 -0.116463 0.585512
-
-0.827261 0.561154 0.0273008
--0.0268438 -0.00905827 0.999599
-0.561176 -0.827662 0.00756994
--0.25951 -0.117407 0.58602
-
-0.839335 0.5425 0.0347823
--0.0340227 -0.0114349 0.999356
-0.542548 -0.839978 0.00885957
--0.2592 -0.118351 0.586504
-
-0.850942 0.523557 0.0422638
--0.0413054 -0.0135141 0.999055
-0.523634 -0.851883 0.010126
--0.258891 -0.119295 0.586964
-
-0.862072 0.504339 0.0497449
--0.0486822 -0.0152925 0.998697
-0.504442 -0.863371 0.0113691
--0.258581 -0.120238 0.5874
-
-0.872719 0.484857 0.0572251
--0.0561433 -0.0167667 0.998282
-0.484983 -0.874433 0.0125888
--0.258272 -0.121182 0.587811
-
-0.882878 0.465124 0.0647039
--0.0636789 -0.017934 0.997809
-0.465266 -0.885064 0.0137851
--0.257962 -0.122126 0.588198
-
-0.89254 0.445154 0.0721808
--0.0712789 -0.0187917 0.997279
-0.445299 -0.895257 0.0149578
--0.257653 -0.12307 0.588561
-
-0.901701 0.42496 0.0796553
--0.0789333 -0.0193375 0.996692
-0.425094 -0.905006 0.0161068
--0.257343 -0.124014 0.5889
-
-0.910354 0.404554 0.087127
--0.0866319 -0.0195695 0.996048
-0.40466 -0.914305 0.0172321
--0.257034 -0.124958 0.589215
-
-0.918495 0.383951 0.0945952
--0.0943645 -0.019486 0.995347
-0.384008 -0.923148 0.0183336
--0.256724 -0.125902 0.589505
-
-0.926119 0.363163 0.10206
--0.102121 -0.0190855 0.994589
-0.363146 -0.93153 0.0194112
--0.256415 -0.126846 0.589771
-
-0.933221 0.342206 0.10952
--0.109891 -0.018367 0.993774
-0.342087 -0.939446 0.0204648
--0.256105 -0.12779 0.590013
-
-0.939796 0.321091 0.116975
--0.117664 -0.0173298 0.992902
-0.320839 -0.94689 0.0214944
--0.255796 -0.128733 0.590231
-
-0.945842 0.299834 0.124424
--0.125429 -0.0159733 0.991974
-0.299415 -0.953858 0.0224998
--0.255486 -0.129677 0.590425
-
-0.951355 0.278448 0.131868
--0.133177 -0.0142975 0.990989
-0.277825 -0.960345 0.0234811
--0.255177 -0.130621 0.590594
-
-0.956332 0.256948 0.139306
--0.140897 -0.0123025 0.989948
-0.256079 -0.966347 0.0244381
--0.254867 -0.131565 0.59074
-
-0.96077 0.235347 0.146737
--0.148579 -0.00998877 0.98885
-0.234189 -0.97186 0.0253707
--0.254558 -0.132509 0.590861
-
-0.964668 0.213661 0.154161
--0.156211 -0.00735718 0.987696
-0.212166 -0.97688 0.026279
--0.254248 -0.133453 0.590958
-
-0.968022 0.191902 0.161576
--0.163784 -0.0044088 0.986486
-0.190021 -0.981404 0.0271627
--0.253939 -0.134397 0.59103
-
-0.970832 0.170086 0.168984
--0.171288 -0.00114507 0.98522
-0.167766 -0.985429 0.028022
--0.253629 -0.135341 0.591079
-
-0.973097 0.148227 0.176383
--0.178711 0.00243228 0.983899
-0.145411 -0.98895 0.0288566
--0.25332 -0.136285 0.591103
-
-0.974816 0.126339 0.183772
--0.186044 0.00632118 0.982521
-0.122969 -0.991967 0.0296666
--0.25301 -0.137228 0.591104
-
-0.975989 0.104437 0.191152
--0.193277 0.0105193 0.981088
-0.100451 -0.994476 0.0304518
--0.252701 -0.138172 0.59108
-
-0.976615 0.0825344 0.198522
--0.200398 0.0150239 0.979599
-0.077868 -0.996475 0.0312123
--0.252391 -0.139116 0.591031
-
-0.976696 0.0606467 0.205881
--0.207399 0.019832 0.978055
-0.0552328 -0.997962 0.0319479
--0.252082 -0.14006 0.590959
-
-0.976232 0.0387879 0.213229
--0.214269 0.0249404 0.976456
-0.0325567 -0.998936 0.0326587
--0.251772 -0.141004 0.590863
-
-0.975224 0.0169724 0.220566
--0.220998 0.0303454 0.974802
-0.00985155 -0.999395 0.0333444
--0.251463 -0.141948 0.590742
-
-0.973675 -0.00478566 0.22789
--0.227577 0.0360432 0.973093
--0.0128708 -0.999339 0.0340052
--0.251153 -0.142892 0.590597
-
-0.971586 -0.0264719 0.235202
--0.233995 0.0420295 0.971329
--0.0355983 -0.998766 0.034641
--0.250844 -0.143836 0.590428
-
-0.968959 -0.0480722 0.242501
--0.240243 0.0482998 0.969511
--0.0583192 -0.997675 0.0352516
--0.250534 -0.14478 0.590235
-
-0.965798 -0.0695724 0.249786
--0.246311 0.0548495 0.967638
--0.0810215 -0.996068 0.0358371
--0.250225 -0.145723 0.590017
-
-0.962106 -0.0909584 0.257058
--0.25219 0.0616733 0.96571
--0.103693 -0.993943 0.0363974
--0.249915 -0.146667 0.589775
-
-0.957886 -0.112216 0.264315
--0.257871 0.0687659 0.963729
--0.126322 -0.991302 0.0369324
--0.249606 -0.147611 0.58951
-
-0.953142 -0.133333 0.271557
--0.263345 0.0761216 0.961694
--0.148896 -0.988144 0.0374422
--0.249296 -0.148555 0.58922
-
-0.947878 -0.154293 0.278784
--0.268603 0.0837347 0.959605
--0.171404 -0.98447 0.0379266
--0.248987 -0.149499 0.588905
-
-0.9421 -0.175084 0.285996
--0.273636 0.0915987 0.957462
--0.193833 -0.980283 0.0383857
--0.248677 -0.150443 0.588567
-
-0.935812 -0.195693 0.293191
--0.278435 0.0997073 0.955266
--0.216172 -0.975583 0.0388194
--0.248368 -0.151387 0.588204
-
-0.929019 -0.216106 0.300369
--0.282992 0.108054 0.953016
--0.238408 -0.970372 0.0392277
--0.248058 -0.152331 0.587818
-
-0.921728 -0.236309 0.30753
--0.2873 0.116631 0.950714
--0.26053 -0.964653 0.0396105
--0.247749 -0.153275 0.587407
-
-0.913945 -0.256291 0.314674
--0.291348 0.125432 0.948358
--0.282525 -0.958427 0.0399677
--0.24744 -0.154218 0.586971
-
-0.905676 -0.276037 0.321799
--0.295131 0.134448 0.94595
--0.304383 -0.951697 0.0402995
--0.24713 -0.155162 0.586512
-
-0.896927 -0.295536 0.328907
--0.298641 0.143674 0.943489
--0.32609 -0.944466 0.0406057
--0.246821 -0.156106 0.586029
-
-0.887707 -0.314775 0.335995
--0.301869 0.153099 0.940976
--0.347636 -0.936738 0.0408863
--0.246511 -0.15705 0.585521
-
-0.878023 -0.333742 0.343064
--0.304809 0.162717 0.938411
--0.369009 -0.928515 0.0411413
--0.246202 -0.157994 0.584989
-
-0.867882 -0.352424 0.350113
--0.307454 0.172518 0.935794
--0.390197 -0.919802 0.0413706
--0.245892 -0.158938 0.584433
-
-0.857292 -0.370811 0.357141
--0.309797 0.182494 0.933125
--0.411189 -0.910602 0.0415743
--0.245583 -0.159882 0.583853
-
-0.846263 -0.388889 0.36415
--0.311833 0.192636 0.930404
--0.431973 -0.90092 0.0417523
--0.245273 -0.160826 0.583248
-
-0.834802 -0.406649 0.371136
--0.313553 0.202935 0.927632
--0.452537 -0.89076 0.0419046
--0.244964 -0.161769 0.58262
-
-0.822919 -0.424079 0.378102
--0.314953 0.213382 0.924809
--0.472872 -0.880128 0.0420311
--0.244654 -0.162713 0.581967
-
-0.810624 -0.441168 0.385045
--0.316028 0.223967 0.921936
--0.492966 -0.869028 0.0421319
--0.244345 -0.163657 0.58129
-
-0.797926 -0.457905 0.391966
--0.316771 0.234681 0.919011
--0.512807 -0.857466 0.042207
--0.244035 -0.164601 0.580589
-
-0.784835 -0.474281 0.398864
--0.317177 0.245513 0.916036
--0.532385 -0.845447 0.0422563
--0.243726 -0.165545 0.579863
-
-0.77136 -0.490285 0.405739
--0.317242 0.256454 0.913011
--0.551689 -0.832978 0.0422798
--0.243416 -0.166489 0.579114
-
-0.757514 -0.505907 0.41259
--0.316962 0.267494 0.909935
--0.570708 -0.820064 0.0422775
--0.243107 -0.167433 0.57834
-
-0.743306 -0.521138 0.419417
--0.316331 0.278622 0.90681
--0.589432 -0.806712 0.0422495
--0.242797 -0.168377 0.577542
-
-0.735017 -0.528839 0.424358
--0.315826 0.286793 0.904436
--0.600003 -0.798799 0.0437763
--0.242406 -0.168991 0.576993
-
-0.73475 -0.527186 0.42687
--0.315892 0.290969 0.903078
--0.600296 -0.798381 0.0472553
--0.241928 -0.169177 0.576796
-
-0.74326 -0.515311 0.426637
--0.316809 0.290569 0.902885
--0.589234 -0.806241 0.0527129
--0.24135 -0.168901 0.576982
-
-0.757578 -0.49596 0.424382
--0.318243 0.287006 0.90352
--0.56991 -0.819543 0.0595933
--0.240689 -0.168299 0.57742
-
-0.771391 -0.476235 0.422085
--0.319672 0.283519 0.904117
--0.550241 -0.832356 0.0664645
--0.240029 -0.167697 0.577835
-
-0.784691 -0.45615 0.419746
--0.321099 0.280105 0.904675
--0.530241 -0.84467 0.0733261
--0.239368 -0.167094 0.578225
-
-0.797468 -0.435719 0.417366
--0.322529 0.276763 0.905195
--0.509922 -0.856476 0.0801777
--0.238707 -0.166492 0.578591
-
-0.809713 -0.414953 0.414945
--0.323966 0.273492 0.905676
--0.489297 -0.867765 0.0870189
--0.238047 -0.16589 0.578933
-
-0.821417 -0.393869 0.412482
--0.325413 0.270288 0.906118
--0.468381 -0.878528 0.0938491
--0.237386 -0.165288 0.579251
-
-0.832572 -0.37248 0.409979
--0.326875 0.267151 0.906523
--0.447187 -0.888757 0.100668
--0.236726 -0.164685 0.579545
-
-0.843171 -0.3508 0.407435
--0.328355 0.264077 0.906888
--0.42573 -0.898445 0.107475
--0.236065 -0.164083 0.579814
-
-0.853205 -0.328844 0.40485
--0.329858 0.261065 0.907215
--0.404024 -0.907583 0.11427
--0.235404 -0.163481 0.580059
-
-0.862668 -0.306627 0.402224
--0.331386 0.258111 0.907503
--0.382083 -0.916165 0.121052
--0.234744 -0.162879 0.580281
-
-0.871553 -0.284163 0.399559
--0.332944 0.255214 0.907752
--0.359923 -0.924185 0.127822
--0.234083 -0.162276 0.580477
-
-0.879853 -0.261469 0.396853
--0.334534 0.252369 0.907963
--0.337558 -0.931635 0.134577
--0.233422 -0.161674 0.58065
-
-0.887563 -0.238559 0.394107
--0.336161 0.249575 0.908135
--0.315003 -0.93851 0.141319
--0.232762 -0.161072 0.580799
-
-0.894678 -0.215449 0.391322
--0.337826 0.246827 0.908267
--0.292275 -0.944806 0.148047
--0.232101 -0.16047 0.580923
-
-0.901192 -0.192155 0.388496
--0.339534 0.244124 0.908361
--0.269388 -0.950516 0.154759
--0.231441 -0.159867 0.581023
-
-0.9071 -0.168692 0.385632
--0.341287 0.241461 0.908416
--0.246358 -0.955636 0.161457
--0.23078 -0.159265 0.581099
-
-0.912399 -0.145077 0.382728
--0.343088 0.238835 0.908432
--0.223201 -0.960162 0.168139
--0.230119 -0.158663 0.581151
-
-0.917084 -0.121324 0.379785
--0.344939 0.236242 0.908409
--0.199933 -0.96409 0.174804
--0.229459 -0.158061 0.581178
-
-0.921153 -0.0974515 0.376803
--0.346843 0.233679 0.908347
--0.176571 -0.967418 0.181453
--0.228798 -0.157458 0.581182
-
-0.924602 -0.0734742 0.373783
--0.348803 0.231141 0.908246
--0.153129 -0.970142 0.188086
--0.228137 -0.156856 0.581161
-
-0.927428 -0.0494088 0.370724
--0.35082 0.228626 0.908106
--0.129625 -0.97226 0.194701
--0.227477 -0.156254 0.581116
-
-0.92963 -0.0252717 0.367626
--0.352896 0.226129 0.907926
--0.106076 -0.97377 0.201298
--0.226816 -0.155652 0.581047
-
-0.931206 -0.00107911 0.364491
--0.355034 0.223645 0.907708
--0.082496 -0.97467 0.207876
--0.226156 -0.155049 0.580954
-
-0.932155 0.0231524 0.361317
--0.357235 0.221171 0.907451
--0.0589033 -0.97496 0.214437
--0.225495 -0.154447 0.580836
-
-0.932476 0.0474065 0.358106
--0.3595 0.218703 0.907154
--0.0353139 -0.974639 0.220978
--0.224834 -0.153845 0.580694
-
-0.932169 0.0716666 0.354858
--0.361832 0.216236 0.906819
--0.0117443 -0.973707 0.227499
--0.224174 -0.153243 0.580528
-
-0.931234 0.0959163 0.351572
--0.364231 0.213765 0.906444
-0.0117888 -0.972165 0.234001
--0.223513 -0.15264 0.580338
-
-0.929671 0.120139 0.348249
--0.366697 0.211287 0.90603
-0.035269 -0.970012 0.240483
--0.222852 -0.152038 0.580124
-
-0.927482 0.144319 0.34489
--0.369233 0.208797 0.905577
-0.0586797 -0.967252 0.246943
--0.222192 -0.151436 0.579886
-
-0.924668 0.168439 0.341493
--0.371839 0.206291 0.905085
-0.0820043 -0.963884 0.253383
--0.221531 -0.150834 0.579623
-
-0.921231 0.192482 0.33806
--0.374515 0.203763 0.904555
-0.105227 -0.959912 0.2598
--0.220871 -0.150231 0.579336
-
-0.917172 0.216434 0.334591
--0.377262 0.20121 0.903985
-0.12833 -0.955338 0.266196
--0.22021 -0.149629 0.579025
-
-0.912496 0.240277 0.331086
--0.380079 0.198626 0.903376
-0.151298 -0.950166 0.27257
--0.219549 -0.149027 0.57869
-
-0.907205 0.263995 0.327546
--0.382967 0.196007 0.902728
-0.174114 -0.944398 0.27892
--0.218889 -0.148425 0.57833
-
-0.901302 0.287573 0.323969
--0.385925 0.193349 0.902041
-0.196763 -0.93804 0.285247
--0.218228 -0.147822 0.577947
-
-0.894793 0.310994 0.320358
--0.388954 0.190646 0.901315
-0.219228 -0.931095 0.291551
--0.217568 -0.14722 0.577539
-
-0.88768 0.334242 0.316711
--0.392052 0.187894 0.90055
-0.241494 -0.923568 0.29783
--0.216907 -0.146618 0.577107
-
-0.87997 0.357302 0.31303
--0.395218 0.185089 0.899747
-0.263543 -0.915466 0.304085
--0.216246 -0.146016 0.576651
-
-0.871667 0.380159 0.309314
--0.398453 0.182225 0.898905
-0.285362 -0.906793 0.310315
--0.215586 -0.145413 0.576171
-
-0.862778 0.402796 0.305564
--0.401754 0.179298 0.898023
-0.306934 -0.897556 0.31652
--0.214925 -0.144811 0.575666
-
-0.853308 0.4252 0.301779
--0.40512 0.176304 0.897104
-0.328243 -0.887762 0.322699
--0.214264 -0.144209 0.575138
-
-0.843264 0.447354 0.297961
--0.408549 0.173238 0.896145
-0.349276 -0.877419 0.328851
--0.213604 -0.143607 0.574585
-
-0.832653 0.469243 0.294109
--0.412041 0.170095 0.895148
-0.370016 -0.866532 0.334978
--0.212943 -0.143004 0.574008
-
-0.821482 0.490854 0.290224
--0.415593 0.166871 0.894112
-0.390449 -0.855112 0.341077
--0.212283 -0.142402 0.573406
-
-0.809759 0.512172 0.286306
--0.419203 0.163561 0.893038
-0.410561 -0.843165 0.347149
--0.211622 -0.1418 0.572781
-
-0.797492 0.533182 0.282354
--0.422868 0.160161 0.891925
-0.430336 -0.830702 0.353193
--0.210961 -0.141198 0.572131
-
-0.784689 0.55387 0.278371
--0.426587 0.156667 0.890774
-0.449762 -0.817731 0.359209
--0.210301 -0.140595 0.571458
-
-0.77136 0.574224 0.274354
--0.430357 0.153074 0.889585
-0.468824 -0.804261 0.365196
--0.20964 -0.139993 0.57076
-
-0.759474 0.592015 0.269661
--0.432754 0.150274 0.888899
-0.485718 -0.791793 0.370327
--0.208856 -0.139638 0.570232
-
-0.750783 0.605555 0.26387
--0.432816 0.149216 0.889047
-0.498994 -0.781689 0.374123
--0.207937 -0.13966 0.569934
-
-0.745696 0.614745 0.256955
--0.430487 0.150173 0.890016
-0.508545 -0.774297 0.376623
--0.20685 -0.140084 0.569887
-
-0.744347 0.619661 0.248933
--0.425768 0.153194 0.89177
-0.51446 -0.769774 0.377862
--0.205593 -0.140908 0.570088
-
-0.745612 0.621615 0.240121
--0.419352 0.157651 0.89403
-0.517888 -0.767294 0.378222
--0.204163 -0.142043 0.570515
-
-0.746808 0.623525 0.231289
--0.412926 0.16213 0.896218
-0.521315 -0.764808 0.37855
--0.202733 -0.143178 0.570918
-
-0.747936 0.62539 0.222438
--0.406493 0.16663 0.898331
-0.524742 -0.762314 0.378845
--0.201303 -0.144312 0.571296
-
-0.748997 0.62721 0.213568
--0.400052 0.171151 0.90037
-0.528169 -0.759812 0.379108
--0.199873 -0.145447 0.571651
-
-0.749989 0.628985 0.204681
--0.393604 0.175693 0.902335
-0.531594 -0.757304 0.379339
--0.198443 -0.146582 0.571981
-
-0.750913 0.630715 0.195777
--0.38715 0.180255 0.904225
-0.535019 -0.754789 0.379537
--0.197013 -0.147716 0.572287
-
-0.751769 0.632399 0.186857
--0.38069 0.184837 0.906041
-0.538442 -0.752268 0.379703
--0.195583 -0.148851 0.572568
-
-0.752556 0.634037 0.177921
--0.374225 0.189439 0.907782
-0.541863 -0.74974 0.379836
--0.194153 -0.149986 0.572826
-
-0.753275 0.63563 0.168971
--0.367755 0.19406 0.909449
-0.545282 -0.747205 0.379937
--0.192723 -0.15112 0.573059
-
-0.753926 0.637176 0.160007
--0.361281 0.1987 0.91104
-0.548699 -0.744665 0.380005
--0.191293 -0.152255 0.573268
-
-0.754509 0.638675 0.151029
--0.354804 0.203359 0.912556
-0.552114 -0.742118 0.380041
--0.189863 -0.15339 0.573453
-
-0.755024 0.640128 0.14204
--0.348324 0.208036 0.913998
-0.555526 -0.739566 0.380044
--0.188433 -0.154524 0.573614
-
-0.755471 0.641533 0.133038
--0.341842 0.21273 0.915363
-0.558935 -0.737008 0.380015
--0.187003 -0.155659 0.573751
-
-0.755849 0.642892 0.124025
--0.335358 0.217442 0.916653
-0.562341 -0.734445 0.379953
--0.185573 -0.156794 0.573863
-
-0.756159 0.644203 0.115003
--0.328874 0.222172 0.917868
-0.565743 -0.731876 0.379859
--0.184143 -0.157928 0.573951
-
-0.756402 0.645467 0.105971
--0.322389 0.226917 0.919007
-0.569142 -0.729302 0.379732
--0.182713 -0.159063 0.574015
-
-0.756576 0.646682 0.0969296
--0.315904 0.23168 0.92007
-0.572536 -0.726723 0.379573
--0.181283 -0.160197 0.574055
-
-0.756682 0.64785 0.0878807
--0.30942 0.236458 0.921058
-0.575927 -0.72414 0.379381
--0.179853 -0.161332 0.574071
-
-0.75672 0.648969 0.0788246
--0.302937 0.241251 0.921969
-0.579313 -0.721552 0.379157
--0.178423 -0.162467 0.574062
-
-0.756691 0.65004 0.0697621
--0.296456 0.24606 0.922804
-0.582694 -0.718959 0.3789
--0.176993 -0.163601 0.57403
-
-0.756593 0.651063 0.0606938
--0.289978 0.250884 0.923564
-0.586071 -0.716362 0.378611
--0.175563 -0.164736 0.573973
-
-0.756428 0.652036 0.0516205
--0.283503 0.255722 0.924247
-0.589442 -0.713761 0.37829
--0.174133 -0.165871 0.573892
-
-0.756196 0.652961 0.0425431
--0.277032 0.260574 0.924854
-0.592808 -0.711156 0.377936
--0.172703 -0.167005 0.573787
-
-0.755896 0.653837 0.0334622
--0.270565 0.265439 0.925385
-0.596168 -0.708548 0.37755
--0.171273 -0.16814 0.573657
-
-0.755528 0.654663 0.0243786
--0.264103 0.270318 0.925839
-0.599522 -0.705936 0.377131
--0.169843 -0.169275 0.573504
-
-0.755093 0.655439 0.015293
--0.257647 0.275209 0.926217
-0.60287 -0.70332 0.376681
--0.168413 -0.170409 0.573326
-
-0.754591 0.656166 0.00620624
--0.251197 0.280113 0.926519
-0.606212 -0.700701 0.376198
--0.166983 -0.171544 0.573124
-
-0.754021 0.656843 -0.00288097
--0.244753 0.285029 0.926744
-0.609547 -0.69808 0.375682
--0.165552 -0.172679 0.572898
-
-0.753385 0.657471 -0.0119679
--0.238317 0.289956 0.926893
-0.612875 -0.695455 0.375135
--0.164122 -0.173813 0.572647
-
-0.752682 0.658048 -0.0210537
--0.231889 0.294895 0.926965
-0.616196 -0.692828 0.374556
--0.162692 -0.174948 0.572373
-
-0.751912 0.658574 -0.0301377
--0.225469 0.299844 0.926961
-0.619509 -0.690198 0.373944
--0.161262 -0.176083 0.572074
-
-0.751076 0.65905 -0.0392192
--0.219058 0.304803 0.926881
-0.622815 -0.687566 0.373301
--0.159832 -0.177217 0.571751
-
-0.750173 0.659476 -0.0482973
--0.212657 0.309773 0.926724
-0.626113 -0.684932 0.372625
--0.158402 -0.178352 0.571404
-
-0.749203 0.659851 -0.0573713
--0.206266 0.314752 0.926491
-0.629403 -0.682296 0.371918
--0.156972 -0.179486 0.571033
-
-0.748168 0.660175 -0.0664406
--0.199886 0.31974 0.926181
-0.632685 -0.679659 0.371179
--0.155542 -0.180621 0.570637
-
-0.747066 0.660447 -0.0755042
--0.193517 0.324737 0.925795
-0.635958 -0.677019 0.370408
--0.154112 -0.181756 0.570218
-
-0.745899 0.660669 -0.0845615
--0.18716 0.329742 0.925333
-0.639223 -0.674379 0.369605
--0.152682 -0.18289 0.569774
-
-0.744666 0.66084 -0.0936118
--0.180816 0.334755 0.924795
-0.642478 -0.671737 0.368771
--0.151252 -0.184025 0.569306
-
-0.743368 0.660959 -0.102654
--0.174484 0.339775 0.92418
-0.645724 -0.669094 0.367905
--0.149822 -0.18516 0.568813
-
-0.742004 0.661026 -0.111688
--0.168167 0.344802 0.923489
-0.64896 -0.66645 0.367007
--0.148392 -0.186294 0.568297
-
-0.740576 0.661042 -0.120712
--0.161863 0.349836 0.922722
-0.652187 -0.663806 0.366078
--0.146962 -0.187429 0.567756
-
-0.739082 0.661006 -0.129727
--0.155575 0.354876 0.921878
-0.655404 -0.661162 0.365118
--0.145532 -0.188564 0.567192
-
-0.737524 0.660918 -0.13873
--0.149301 0.359921 0.920959
-0.658611 -0.658517 0.364126
--0.144102 -0.189698 0.566603
-
-0.735901 0.660778 -0.147722
--0.143044 0.364972 0.919964
-0.661807 -0.655872 0.363104
--0.142672 -0.190833 0.56599
-
-0.734214 0.660586 -0.156702
--0.136803 0.370028 0.918893
-0.664992 -0.653227 0.36205
--0.141242 -0.191968 0.565352
-
-0.732463 0.660343 -0.165669
--0.130579 0.375088 0.917746
-0.668167 -0.650582 0.360965
--0.139812 -0.193102 0.564691
-
-0.730648 0.660046 -0.174622
--0.124373 0.380152 0.916524
-0.671331 -0.647938 0.359849
--0.138382 -0.194237 0.564005
-
-0.728769 0.659698 -0.18356
--0.118185 0.385219 0.915226
-0.674483 -0.645295 0.358702
--0.136952 -0.195372 0.563295
-
-0.726827 0.659297 -0.192483
--0.112015 0.39029 0.913853
-0.677624 -0.642652 0.357525
--0.135522 -0.196506 0.562561
-
-0.724822 0.658843 -0.20139
--0.105865 0.395363 0.912404
-0.680753 -0.640011 0.356316
--0.134092 -0.197641 0.561803
-
-0.722755 0.658337 -0.21028
--0.0997347 0.400438 0.91088
-0.68387 -0.63737 0.355078
--0.132662 -0.198776 0.56102
-
-0.720624 0.657779 -0.219153
--0.0936246 0.405515 0.909281
-0.686975 -0.634732 0.353809
--0.131232 -0.19991 0.560214
-
-0.718431 0.657168 -0.228007
--0.0875354 0.410594 0.907607
-0.690068 -0.632095 0.352509
--0.129802 -0.201045 0.559383
-
-0.716177 0.656503 -0.236843
--0.0814676 0.415673 0.905858
-0.693148 -0.629459 0.351179
--0.128372 -0.202179 0.558528
-
-0.71386 0.655787 -0.245658
--0.0754218 0.420753 0.904035
-0.696215 -0.626826 0.349819
--0.126942 -0.203314 0.557649
-
-0.711482 0.655017 -0.254454
--0.0693984 0.425833 0.902137
-0.699269 -0.624195 0.348429
--0.125512 -0.204449 0.556745
-
-0.709042 0.654194 -0.263228
--0.0633981 0.430912 0.900164
-0.70231 -0.621566 0.347009
--0.124082 -0.205583 0.555818
-
-0.706542 0.653319 -0.27198
--0.0574213 0.43599 0.898118
-0.705338 -0.61894 0.34556
--0.122652 -0.206718 0.554866
-
-0.703981 0.65239 -0.28071
--0.0514687 0.441067 0.895997
-0.708352 -0.616317 0.34408
--0.121222 -0.207853 0.55389
-
-0.701359 0.651409 -0.289416
--0.0455406 0.446142 0.893803
-0.711352 -0.613697 0.342572
--0.119792 -0.208987 0.55289
-
-0.698678 0.650374 -0.298098
--0.0396376 0.451215 0.891535
-0.714338 -0.61108 0.341033
--0.118362 -0.210122 0.551866
-
-0.695937 0.649287 -0.306756
--0.0337602 0.456285 0.889193
-0.717309 -0.608466 0.339466
--0.116932 -0.211257 0.550817
-
-0.693136 0.648146 -0.315387
--0.0279091 0.461352 0.886778
-0.720266 -0.605856 0.337869
--0.115502 -0.212391 0.549745
-
-0.690276 0.646952 -0.323993
--0.0220846 0.466415 0.88429
-0.723209 -0.603249 0.336243
--0.114071 -0.213526 0.548648
-
-0.687358 0.645705 -0.332572
--0.0162872 0.471474 0.881729
-0.726137 -0.600647 0.334588
--0.112641 -0.214661 0.547527
-
-0.68438 0.644406 -0.341123
--0.0105176 0.476529 0.879096
-0.729049 -0.598048 0.332905
--0.111211 -0.215795 0.546382
-
-0.681345 0.643052 -0.349646
--0.0047761 0.481579 0.87639
-0.731947 -0.595454 0.331193
--0.109781 -0.21693 0.545212
-
-0.678252 0.641646 -0.35814
-0.000936686 0.486623 0.873612
-0.734829 -0.592865 0.329452
--0.108351 -0.218065 0.544019
-
-0.675102 0.640187 -0.366604
-0.00662029 0.491661 0.870762
-0.737695 -0.59028 0.327683
--0.106921 -0.219199 0.542801
-
-0.67269 0.637839 -0.375032
-0.0117018 0.497618 0.867317
-0.739832 -0.587824 0.327279
--0.105572 -0.220158 0.54158
-
-0.671243 0.634374 -0.383408
-0.0160485 0.504695 0.863149
-0.741063 -0.585536 0.328592
--0.104328 -0.2209 0.540371
-
-0.670405 0.630191 -0.391685
-0.0190635 0.513077 0.858131
-0.741751 -0.582762 0.331956
--0.103195 -0.221377 0.539175
-
-0.670332 0.625118 -0.399855
-0.0208713 0.522747 0.852232
-0.741768 -0.579624 0.337367
--0.102182 -0.22159 0.537994
-
-0.671071 0.619063 -0.407952
-0.0221842 0.533237 0.845675
-0.741061 -0.576558 0.344107
--0.101257 -0.221635 0.536828
-
-0.671789 0.612908 -0.415985
-0.0235237 0.543642 0.838987
-0.740369 -0.573408 0.350795
--0.100332 -0.221679 0.535637
-
-0.672485 0.606654 -0.423952
-0.0248892 0.553961 0.83217
-0.739692 -0.570174 0.357431
--0.0994076 -0.221724 0.534422
-
-0.673158 0.600301 -0.431853
-0.0262803 0.564192 0.825225
-0.739031 -0.566856 0.364014
--0.0984829 -0.221769 0.533183
-
-0.673809 0.593851 -0.439685
-0.0276964 0.574332 0.818153
-0.738386 -0.563457 0.370543
--0.0975582 -0.221813 0.53192
-
-0.674437 0.587303 -0.447448
-0.0291372 0.584382 0.810956
-0.737758 -0.559976 0.377016
--0.0966334 -0.221858 0.530633
-
-0.675041 0.58066 -0.455141
-0.030602 0.594338 0.803633
-0.737146 -0.556413 0.383433
--0.0957087 -0.221902 0.529321
-
-0.675621 0.573923 -0.462762
-0.0320904 0.6042 0.796186
-0.73655 -0.55277 0.389793
--0.094784 -0.221947 0.527986
-
-0.676177 0.567091 -0.470311
-0.0336017 0.613965 0.788617
-0.735972 -0.549048 0.396094
--0.0938593 -0.221992 0.526626
-
-0.676709 0.560167 -0.477785
-0.0351356 0.623633 0.780927
-0.735412 -0.545247 0.402336
--0.0929346 -0.222036 0.525242
-
-0.677215 0.55315 -0.485184
-0.0366914 0.633202 0.773116
-0.734869 -0.541368 0.408518
--0.0920099 -0.222081 0.523833
-
-0.677697 0.546043 -0.492508
-0.0382685 0.64267 0.765187
-0.734345 -0.537412 0.414639
--0.0910852 -0.222126 0.522401
-
-0.678153 0.538847 -0.499753
-0.0398665 0.652036 0.757139
-0.733839 -0.533379 0.420698
--0.0901605 -0.22217 0.520944
-
-0.678583 0.531561 -0.506921
-0.0414847 0.661298 0.748975
-0.733352 -0.529271 0.426694
--0.0892358 -0.222215 0.519463
-
-0.678986 0.524188 -0.514008
-0.0431225 0.670455 0.740696
-0.732883 -0.525088 0.432625
--0.0883111 -0.22226 0.517958
-
-0.679364 0.516728 -0.521015
-0.0447795 0.679505 0.732303
-0.732434 -0.520831 0.438492
--0.0873864 -0.222304 0.516429
-
-0.679714 0.509183 -0.52794
-0.0464549 0.688447 0.723797
-0.732004 -0.516501 0.444293
--0.0864617 -0.222349 0.514876
-
-0.680038 0.501554 -0.534783
-0.0481482 0.69728 0.71518
-0.731594 -0.512098 0.450028
--0.085537 -0.222394 0.513298
-
-0.680334 0.493841 -0.541541
-0.0498588 0.706002 0.706453
-0.731204 -0.507624 0.455695
--0.0846122 -0.222438 0.511697
-
-0.680602 0.486046 -0.548215
-0.051586 0.714612 0.697617
-0.730835 -0.50308 0.461293
--0.0836875 -0.222483 0.510071
-
-0.680843 0.47817 -0.554803
-0.0533293 0.723108 0.688673
-0.730485 -0.498466 0.466823
--0.0827628 -0.222528 0.508421
-
-0.681056 0.470215 -0.561303
-0.055088 0.731489 0.679624
-0.730156 -0.493783 0.472282
--0.0818381 -0.222572 0.506746
-
-0.68124 0.462181 -0.567716
-0.0568616 0.739755 0.67047
-0.729849 -0.489032 0.47767
--0.0809134 -0.222617 0.505048
-
-0.681395 0.454069 -0.57404
-0.0586492 0.747902 0.661213
-0.729562 -0.484215 0.482986
--0.0799887 -0.222662 0.503325
-
-0.681522 0.445881 -0.580274
-0.0604504 0.755931 0.651854
-0.729296 -0.479331 0.48823
--0.079064 -0.222706 0.501578
-
-0.68162 0.437618 -0.586417
-0.0622645 0.76384 0.642395
-0.729052 -0.474382 0.493401
--0.0781393 -0.222751 0.499807
-
-0.681689 0.429282 -0.592468
-0.0640908 0.771628 0.632837
-0.72883 -0.46937 0.498497
--0.0772146 -0.222796 0.498012
-
-0.681728 0.420872 -0.598426
-0.0659286 0.779293 0.623182
-0.728629 -0.464294 0.503518
--0.0762899 -0.22284 0.496193
-
-0.681737 0.412392 -0.604291
-0.0677774 0.786835 0.613431
-0.728451 -0.459156 0.508464
--0.0753652 -0.222885 0.494349
-
-0.681717 0.403841 -0.610061
-0.0696363 0.794252 0.603585
-0.728295 -0.453957 0.513333
--0.0744405 -0.22293 0.492481
-
-0.681667 0.395222 -0.615736
-0.0715049 0.801542 0.593647
-0.728161 -0.448697 0.518124
--0.0735157 -0.222974 0.490589
-
-0.681586 0.386535 -0.621314
-0.0733823 0.808706 0.583617
-0.728049 -0.443379 0.522838
--0.072591 -0.223019 0.488673
-
-0.681475 0.377782 -0.626795
-0.075268 0.815742 0.573498
-0.72796 -0.438002 0.527473
--0.0716663 -0.223064 0.486733
-
-0.681334 0.368964 -0.632178
-0.0771611 0.822648 0.56329
-0.727894 -0.432569 0.532029
--0.0707416 -0.223108 0.484768
-
-0.681163 0.360082 -0.637463
-0.0790611 0.829424 0.552996
-0.727851 -0.427079 0.536504
--0.0698169 -0.223153 0.482779
-
-0.68096 0.351138 -0.642647
-0.0809673 0.836069 0.542617
-0.727831 -0.421534 0.540899
--0.0688922 -0.223198 0.480767
-
-0.680727 0.342133 -0.647731
-0.0828789 0.842581 0.532154
-0.727834 -0.415935 0.545212
--0.0679675 -0.223242 0.47873
-
-0.680463 0.333069 -0.652714
-0.0847953 0.84896 0.52161
-0.72786 -0.410283 0.549443
--0.0670428 -0.223287 0.476668
-
-0.680168 0.323946 -0.657595
-0.0867158 0.855204 0.510985
-0.727909 -0.404579 0.553591
--0.0661181 -0.223332 0.474583
-
-0.679842 0.314766 -0.662373
-0.0886397 0.861314 0.500282
-0.727982 -0.398825 0.557656
--0.0651934 -0.223376 0.472473
-
-0.679484 0.30553 -0.667047
-0.0905662 0.867287 0.489502
-0.728079 -0.393021 0.561637
--0.0642687 -0.223421 0.470339
-
-0.679096 0.296241 -0.671618
-0.0924947 0.873122 0.478646
-0.728199 -0.387168 0.565533
--0.063344 -0.223466 0.468181
-
-0.678676 0.286898 -0.676083
-0.0944245 0.87882 0.467717
-0.728343 -0.381267 0.569344
--0.0624193 -0.22351 0.465999
-
-0.678225 0.277504 -0.680443
-0.0963549 0.884379 0.456716
-0.72851 -0.37532 0.573069
--0.0614945 -0.223555 0.463793
-
-0.677742 0.26806 -0.684696
-0.0982851 0.889798 0.445645
-0.728701 -0.369328 0.576707
--0.0605698 -0.2236 0.461562
-
-0.677228 0.258568 -0.688843
-0.100214 0.895077 0.434505
-0.728916 -0.363291 0.580259
--0.0596451 -0.223644 0.459307
-
-0.676683 0.249028 -0.692882
-0.102142 0.900214 0.423299
-0.729155 -0.357212 0.583723
--0.0587204 -0.223689 0.457029
-
-0.676106 0.239442 -0.696813
-0.104068 0.905209 0.412028
-0.729418 -0.35109 0.587099
--0.0577957 -0.223734 0.454725
-
-0.675498 0.229812 -0.700635
-0.10599 0.910061 0.400693
-0.729705 -0.344928 0.590386
--0.056871 -0.223778 0.452398
-
-0.674858 0.220139 -0.704347
-0.107909 0.91477 0.389297
-0.730015 -0.338725 0.593585
--0.0559463 -0.223823 0.450047
-
-0.674187 0.210425 -0.70795
-0.109824 0.919334 0.37784
-0.73035 -0.332485 0.596694
--0.0550216 -0.223868 0.447671
-
-0.673485 0.20067 -0.711442
-0.111733 0.923754 0.366326
-0.730708 -0.326207 0.599712
--0.0540969 -0.223912 0.445271
-
-0.672751 0.190877 -0.714823
-0.113636 0.928028 0.354756
-0.73109 -0.319892 0.602641
--0.0531722 -0.223957 0.442847
-
-0.671986 0.181046 -0.718093
-0.115533 0.932155 0.343131
-0.731497 -0.313543 0.605478
--0.0522475 -0.224002 0.440399
-
-0.671189 0.17118 -0.72125
-0.117423 0.936136 0.331453
-0.731927 -0.307159 0.608224
--0.0513228 -0.224046 0.437926
-
-0.670362 0.161279 -0.724295
-0.119305 0.939969 0.319725
-0.732381 -0.300743 0.610878
--0.0503981 -0.224091 0.43543
-
-0.669503 0.151346 -0.727227
-0.121178 0.943655 0.307947
-0.732858 -0.294296 0.61344
--0.0494733 -0.224136 0.432909
-
-0.668614 0.141381 -0.730046
-0.123042 0.947192 0.296122
-0.73336 -0.287818 0.61591
--0.0485486 -0.22418 0.430364
-
-0.667693 0.131387 -0.73275
-0.124896 0.95058 0.284252
-0.733885 -0.281311 0.618286
--0.0476239 -0.224225 0.427795
-
-0.668726 0.114621 -0.734621
-0.140123 0.950911 0.275922
-0.730186 -0.287453 0.619838
--0.0468975 -0.224124 0.425726
-
-0.6714 0.091107 -0.735473
-0.168814 0.947523 0.271482
-0.721612 -0.306431 0.620787
--0.0464084 -0.223891 0.424192
-
-0.67474 0.0619723 -0.735449
-0.208431 0.939907 0.270427
-0.708013 -0.335758 0.621276
--0.0461226 -0.22354 0.423109
-
-0.677201 0.0338412 -0.735019
-0.246341 0.930866 0.269822
-0.693336 -0.363789 0.622047
--0.0458736 -0.223121 0.422062
-
-0.680357 0.0113884 -0.732792
-0.276513 0.921992 0.271055
-0.678716 -0.387041 0.624135
--0.0458147 -0.222405 0.421239
-
-0.685413 -0.00318407 -0.728148
-0.296014 0.914849 0.27464
-0.665271 -0.403783 0.627992
--0.0459716 -0.22126 0.420737
-
-0.692625 -0.0103399 -0.721224
-0.305435 0.91003 0.280277
-0.653438 -0.414414 0.633467
--0.0463295 -0.21973 0.420531
-
-0.701977 -0.010841 -0.712117
-0.305973 0.907498 0.2878
-0.643125 -0.419918 0.640359
--0.0468901 -0.217856 0.420568
-
-0.711217 -0.0114638 -0.702879
-0.306401 0.904947 0.295277
-0.632683 -0.425369 0.647127
--0.0474507 -0.215982 0.42058
-
-0.720343 -0.0122076 -0.693511
-0.306722 0.902381 0.302705
-0.622115 -0.430766 0.653768
--0.0480113 -0.214108 0.420569
-
-0.729351 -0.0130715 -0.684014
-0.306934 0.8998 0.310083
-0.611423 -0.436107 0.660282
--0.048572 -0.212234 0.420533
-
-0.73824 -0.0140545 -0.674392
-0.307039 0.897205 0.31741
-0.600607 -0.44139 0.666668
--0.0491326 -0.21036 0.420472
-
-0.747005 -0.0151558 -0.664645
-0.307037 0.8946 0.324684
-0.589671 -0.446612 0.672924
--0.0496932 -0.208485 0.420388
-
-0.755645 -0.0163743 -0.654776
-0.306928 0.891983 0.331905
-0.578615 -0.451771 0.679049
--0.0502538 -0.206611 0.420279
-
-0.764158 -0.017709 -0.644786
-0.306713 0.889359 0.33907
-0.567442 -0.456867 0.685042
--0.0508145 -0.204737 0.420147
-
-0.77254 -0.0191588 -0.634677
-0.306392 0.886727 0.346178
-0.556153 -0.461896 0.690902
--0.0513751 -0.202863 0.41999
-
-0.780788 -0.0207225 -0.624452
-0.305966 0.88409 0.353228
-0.544752 -0.466857 0.696628
--0.0519357 -0.200989 0.419809
-
-0.788902 -0.0223991 -0.614111
-0.305435 0.881449 0.360219
-0.533239 -0.471748 0.702218
--0.0524963 -0.199115 0.419603
-
-0.796877 -0.0241872 -0.603657
-0.3048 0.878805 0.367149
-0.521617 -0.476567 0.707672
--0.053057 -0.197241 0.419374
-
-0.804711 -0.0260856 -0.593093
-0.304062 0.876161 0.374017
-0.509888 -0.481313 0.712988
--0.0536176 -0.195367 0.41912
-
-0.812403 -0.0280929 -0.582419
-0.303221 0.873517 0.380822
-0.498054 -0.485983 0.718166
--0.0541782 -0.193493 0.418842
-
-0.81995 -0.0302079 -0.571638
-0.302278 0.870875 0.387563
-0.486118 -0.490575 0.723205
--0.0547388 -0.191619 0.41854
-
-0.827349 -0.032429 -0.560752
-0.301234 0.868237 0.394237
-0.474081 -0.495089 0.728103
--0.0552995 -0.189744 0.418214
-
-0.834598 -0.0347549 -0.549763
-0.300089 0.865604 0.400845
-0.461945 -0.499522 0.73286
--0.0558601 -0.18787 0.417864
-
-0.841694 -0.037184 -0.538673
-0.298845 0.862977 0.407385
-0.449714 -0.503873 0.737475
--0.0564207 -0.185996 0.417489
-
-0.848636 -0.0397148 -0.527484
-0.297501 0.860359 0.413855
-0.437389 -0.508139 0.741947
--0.0569813 -0.184122 0.41709
-
-0.855422 -0.0423457 -0.516198
-0.29606 0.85775 0.420254
-0.424973 -0.51232 0.746275
--0.057542 -0.182248 0.416667
-
-0.862048 -0.0450751 -0.504818
-0.294522 0.855152 0.426581
-0.412468 -0.516414 0.750458
--0.0581026 -0.180374 0.41622
-
-0.868514 -0.0479014 -0.493345
-0.292887 0.852567 0.432836
-0.399876 -0.520418 0.754496
--0.0586632 -0.1785 0.415749
-
-0.874816 -0.0508228 -0.481782
-0.291157 0.849995 0.439016
-0.3872 -0.524333 0.758387
--0.0592238 -0.176626 0.415253
-
-0.880953 -0.0538375 -0.47013
-0.289333 0.847439 0.445121
-0.374443 -0.528155 0.762132
--0.0597845 -0.174752 0.414734
-
-0.886923 -0.0569439 -0.458393
-0.287416 0.8449 0.45115
-0.361606 -0.531885 0.765728
--0.0603451 -0.172877 0.41419
-
-0.892651 -0.0573978 -0.44708
-0.283537 0.84255 0.457947
-0.350402 -0.535551 0.768377
--0.060717 -0.171209 0.413691
-
-0.898175 -0.054825 -0.436207
-0.277406 0.840412 0.465568
-0.341068 -0.539168 0.770045
--0.0608965 -0.169743 0.413221
-
-0.90345 -0.0477868 -0.426021
-0.26806 0.838496 0.474413
-0.334546 -0.542808 0.770349
--0.060793 -0.168582 0.412811
-
-0.908355 -0.0362333 -0.416628
-0.255613 0.836588 0.484544
-0.33099 -0.546633 0.76918
--0.0603766 -0.167755 0.412485
-
-0.91275 -0.0206592 -0.407995
-0.240528 0.834436 0.495846
-0.330202 -0.550718 0.7666
--0.0596741 -0.16723 0.412218
-
-0.916522 -0.00149687 -0.399981
-0.223131 0.831849 0.508173
-0.331964 -0.555 0.762742
--0.0587226 -0.166979 0.412004
-
-0.919859 0.0176757 -0.391852
-0.205747 0.828784 0.52037
-0.333958 -0.559289 0.758728
--0.0577711 -0.166727 0.411766
-
-0.922761 0.0368477 -0.383608
-0.188389 0.825241 0.532435
-0.336188 -0.563578 0.754558
--0.0568196 -0.166476 0.411504
-
-0.925229 0.0560085 -0.375253
-0.171071 0.821219 0.544366
-0.338654 -0.567858 0.750234
--0.0558681 -0.166224 0.411217
-
-0.927265 0.0751471 -0.366788
-0.153805 0.81672 0.556159
-0.341356 -0.572121 0.745757
--0.0549166 -0.165973 0.410906
-
-0.92887 0.094253 -0.358214
-0.136606 0.811744 0.567813
-0.344296 -0.576358 0.741128
--0.0539651 -0.165721 0.410571
-
-0.930045 0.113316 -0.349535
-0.119487 0.806292 0.579323
-0.347474 -0.580562 0.736349
--0.0530137 -0.16547 0.410212
-
-0.930794 0.132324 -0.340753
-0.102462 0.800368 0.590688
-0.35089 -0.584723 0.73142
--0.0520622 -0.165218 0.409829
-
-0.931118 0.151268 -0.331868
-0.0855427 0.793972 0.601906
-0.354543 -0.588834 0.726342
--0.0511107 -0.164967 0.409422
-
-0.93102 0.170138 -0.322884
-0.0687442 0.787108 0.612972
-0.358434 -0.592886 0.721118
--0.0501592 -0.164715 0.40899
-
-0.930503 0.188922 -0.313803
-0.0520791 0.779779 0.623885
-0.362562 -0.59687 0.715748
--0.0492077 -0.164464 0.408534
-
-0.92957 0.20761 -0.304626
-0.0355609 0.771987 0.634643
-0.366925 -0.600778 0.710233
--0.0482562 -0.164212 0.408054
-
-0.928225 0.226193 -0.295356
-0.0192025 0.763736 0.645243
-0.371523 -0.604602 0.704575
--0.0473047 -0.163961 0.40755
-
-0.926471 0.244661 -0.285995
-0.00301707 0.755031 0.655682
-0.376355 -0.608333 0.698776
--0.0463532 -0.163709 0.407021
-
-0.924312 0.263003 -0.276545
--0.0129824 0.745876 0.665958
-0.381417 -0.611963 0.692837
--0.0454017 -0.163458 0.406469
-
-0.921753 0.281209 -0.267009
--0.0287831 0.736276 0.676069
-0.386709 -0.615483 0.686758
--0.0444502 -0.163206 0.405892
-
-0.918797 0.299271 -0.257388
--0.0443724 0.726235 0.686013
-0.392228 -0.618885 0.680542
--0.0434987 -0.162955 0.405291
-
-0.915451 0.317178 -0.247686
--0.0597376 0.715761 0.695786
-0.397972 -0.622162 0.674191
--0.0425472 -0.162703 0.404666
-
-0.911718 0.334921 -0.237904
--0.0748662 0.704857 0.705388
-0.403937 -0.625304 0.667705
--0.0415958 -0.162452 0.404016
-
-0.907605 0.352491 -0.228044
--0.0897461 0.693531 0.714815
-0.410121 -0.628303 0.661087
--0.0406443 -0.1622 0.403343
-
-0.903116 0.369879 -0.21811
--0.104365 0.681789 0.724066
-0.416521 -0.631152 0.654337
--0.0396928 -0.161949 0.402645
-
-0.898269 0.386885 -0.208403
--0.11851 0.669944 0.732892
-0.423164 -0.633637 0.64764
--0.0389186 -0.161829 0.402024
-
-0.893115 0.403459 -0.198916
--0.132151 0.658021 0.741312
-0.42998 -0.63579 0.641006
--0.0383501 -0.161876 0.401499
-
-0.887662 0.419632 -0.189645
--0.145313 0.646038 0.749345
-0.436967 -0.637608 0.634442
--0.0379878 -0.162086 0.401075
-
-0.882066 0.435043 -0.180823
--0.157701 0.634313 0.756821
-0.443948 -0.63905 0.628112
--0.0379708 -0.162549 0.400851
-
-0.875661 0.45123 -0.172074
--0.170544 0.622298 0.763977
-0.45181 -0.639638 0.621876
--0.0383214 -0.163369 0.400838
-
-0.868585 0.467797 -0.163479
--0.183516 0.610104 0.770776
-0.460306 -0.639484 0.615775
--0.0390729 -0.164562 0.401084
-
-0.860243 0.48584 -0.154733
--0.197436 0.597184 0.777425
-0.470108 -0.638224 0.609646
--0.0401167 -0.166074 0.40151
-
-0.851358 0.503854 -0.146018
--0.211146 0.583937 0.783859
-0.480216 -0.636513 0.603526
--0.0413162 -0.167724 0.402034
-
-0.842072 0.521608 -0.13726
--0.224474 0.570315 0.79016
-0.490435 -0.63456 0.597333
--0.0425156 -0.169375 0.402534
-
-0.832393 0.539092 -0.128459
--0.237408 0.556329 0.796326
-0.500758 -0.632359 0.591069
--0.043715 -0.171026 0.40301
-
-0.822329 0.556297 -0.119617
--0.249939 0.541991 0.802357
-0.51118 -0.629905 0.584735
--0.0449144 -0.172676 0.403462
-
-0.811889 0.573213 -0.110736
--0.262055 0.527311 0.808251
-0.521693 -0.627192 0.578332
--0.0461138 -0.174327 0.40389
-
-0.801081 0.589833 -0.101816
--0.273747 0.512302 0.814009
-0.53229 -0.624215 0.57186
--0.0473133 -0.175978 0.404294
-
-0.789913 0.606148 -0.0928603
--0.285004 0.496974 0.819628
-0.542965 -0.620969 0.565321
--0.0485127 -0.177628 0.404673
-
-0.778394 0.622148 -0.0838691
--0.295819 0.48134 0.825108
-0.553709 -0.617449 0.558715
--0.0497121 -0.179279 0.405028
-
-0.766535 0.637826 -0.074844
--0.306181 0.465412 0.830449
-0.564515 -0.613652 0.552045
--0.0509115 -0.18093 0.405359
-
-0.754344 0.653175 -0.0657867
--0.316081 0.449204 0.835649
-0.575376 -0.609572 0.54531
--0.0521109 -0.18258 0.405666
-
-0.741831 0.668186 -0.0566985
--0.325513 0.432727 0.840707
-0.586284 -0.605206 0.538513
--0.0533104 -0.184231 0.405949
-
-0.729005 0.682853 -0.0475809
--0.334467 0.415995 0.845624
-0.59723 -0.60055 0.531654
--0.0545098 -0.185882 0.406207
-
-0.715877 0.697168 -0.0384354
--0.342936 0.399022 0.850398
-0.608207 -0.595599 0.524734
--0.0557092 -0.187532 0.406441
-
-0.702456 0.711125 -0.0292634
--0.350913 0.38182 0.855028
-0.619205 -0.590351 0.517755
--0.0569086 -0.189183 0.406651
-
-0.688754 0.724717 -0.0200664
--0.358391 0.364405 0.859515
-0.630217 -0.584803 0.510717
--0.058108 -0.190834 0.406837
-
-0.674781 0.737939 -0.0108458
--0.365363 0.346789 0.863856
-0.641234 -0.57895 0.503622
--0.0593075 -0.192484 0.406999
-
-0.660546 0.750784 -0.00160326
--0.371824 0.328988 0.868052
-0.652247 -0.572792 0.496471
--0.0605069 -0.194135 0.407136
-
-0.646061 0.763247 0.00765989
--0.377768 0.311015 0.872102
-0.663247 -0.566325 0.489265
--0.0617063 -0.195786 0.40725
-
-0.631338 0.775323 0.0169421
--0.383189 0.292885 0.876005
-0.674224 -0.559547 0.482005
--0.0629057 -0.197436 0.407339
-
-0.616386 0.787007 0.026242
--0.388084 0.274613 0.87976
-0.685171 -0.552456 0.474692
--0.0641051 -0.199087 0.407404
-
-0.601217 0.798294 0.035558
--0.392447 0.256215 0.883368
-0.696078 -0.545051 0.467328
--0.0653046 -0.200738 0.407445
-
-0.585842 0.809181 0.0448887
--0.396274 0.237704 0.886828
-0.706934 -0.537329 0.459914
--0.066504 -0.202388 0.407461
-
-0.570273 0.819663 0.0542325
--0.399562 0.219096 0.890139
-0.717732 -0.529291 0.452451
--0.0677034 -0.204039 0.407454
-
-0.555082 0.829389 0.0632231
--0.403275 0.201861 0.892537
-0.727498 -0.520927 0.446521
--0.0688806 -0.205447 0.407416
-
-0.541949 0.837379 0.071336
--0.408103 0.188017 0.893365
-0.734672 -0.51327 0.443632
--0.0700284 -0.206379 0.407374
-
-0.530342 0.844157 0.0783368
--0.415034 0.177947 0.892234
-0.739246 -0.505702 0.444726
--0.0711125 -0.206701 0.407334
-
-0.51973 0.850172 0.0841915
--0.424318 0.171343 0.889155
-0.741509 -0.497844 0.449795
--0.0721164 -0.206415 0.407298
-
-0.51076 0.855116 0.0888893
--0.435654 0.168299 0.88424
-0.741168 -0.490359 0.458495
--0.0730546 -0.205567 0.407272
-
-0.502587 0.859534 0.0927803
--0.448465 0.167456 0.877973
-0.739111 -0.482867 0.469633
--0.0739404 -0.204338 0.407244
-
-0.494866 0.863635 0.0961387
--0.462167 0.167892 0.870755
-0.735873 -0.475339 0.482228
--0.0747867 -0.202868 0.40719
-
-0.489701 0.866267 0.0988697
--0.474685 0.169771 0.863627
-0.731347 -0.469851 0.49434
--0.0755749 -0.201575 0.407167
-
-0.489055 0.866423 0.100681
--0.485338 0.174392 0.856758
-0.724757 -0.467866 0.505795
--0.0762188 -0.200603 0.407253
-
-0.492997 0.86408 0.101589
--0.494068 0.181934 0.850175
-0.716136 -0.469325 0.516607
--0.0767225 -0.199955 0.407446
-
-0.501632 0.859097 0.101581
--0.500703 0.192576 0.843926
-0.705452 -0.474202 0.526754
--0.0770587 -0.199662 0.407767
-
-0.515829 0.850775 0.100507
--0.50465 0.206955 0.838152
-0.692278 -0.483064 0.536097
--0.0772311 -0.199776 0.408223
-
-0.535429 0.838833 0.0983566
--0.505657 0.225107 0.832849
-0.676481 -0.495667 0.544691
--0.0772336 -0.200295 0.408804
-
-0.559937 0.823057 0.0951154
--0.503465 0.246827 0.828009
-0.658022 -0.51152 0.552588
--0.07709 -0.20119 0.409481
-
-0.587565 0.804028 0.0911443
--0.49853 0.27097 0.823433
-0.637366 -0.529259 0.560045
--0.0768468 -0.20234 0.41022
-
-0.614564 0.784032 0.0872083
--0.492537 0.295004 0.818767
-0.616213 -0.546138 0.567464
--0.0766037 -0.20349 0.410935
-
-0.6409 0.763091 0.0833076
--0.485489 0.318883 0.814011
-0.594599 -0.562144 0.574844
--0.0763605 -0.20464 0.411625
-
-0.666538 0.741226 0.0794429
--0.47739 0.342562 0.809166
-0.572561 -0.577265 0.582185
--0.0761173 -0.20579 0.412292
-
-0.691445 0.718461 0.0756144
--0.468247 0.365998 0.804232
-0.550135 -0.591489 0.589485
--0.0758741 -0.20694 0.412934
-
-0.715588 0.69482 0.0718227
--0.458069 0.389147 0.799211
-0.527358 -0.604805 0.596744
--0.0756309 -0.20809 0.413552
-
-0.738935 0.670329 0.0680682
--0.446865 0.411964 0.794102
-0.504268 -0.617207 0.603961
--0.0753877 -0.209239 0.414146
-
-0.761456 0.645014 0.0643512
--0.434648 0.434406 0.788906
-0.480901 -0.628687 0.611135
--0.0751445 -0.210389 0.414716
-
-0.78312 0.618904 0.0606723
--0.421431 0.45643 0.783624
-0.457296 -0.639241 0.618265
--0.0749013 -0.211539 0.415261
-
-0.803897 0.592028 0.0570318
--0.40723 0.477994 0.778257
-0.433489 -0.648864 0.62535
--0.0746582 -0.212689 0.415782
-
-0.82376 0.564415 0.0534301
--0.392063 0.499057 0.772806
-0.409519 -0.657555 0.632389
--0.074415 -0.213839 0.416279
-
-0.842682 0.536097 0.0498677
--0.375949 0.519576 0.76727
-0.385422 -0.665313 0.639382
--0.0741718 -0.214989 0.416752
-
-0.860636 0.507107 0.0463449
--0.358907 0.539511 0.761652
-0.361235 -0.672138 0.646327
--0.0739286 -0.216139 0.417201
-
-0.877598 0.477478 0.0428621
--0.340962 0.558824 0.75595
-0.336997 -0.678034 0.653224
--0.0736854 -0.217288 0.417626
-
-0.893543 0.447244 0.0394196
--0.322137 0.577475 0.750167
-0.312744 -0.683005 0.660072
--0.0734422 -0.218438 0.418026
-
-0.90845 0.41644 0.036018
--0.302458 0.595426 0.744303
-0.288511 -0.687056 0.66687
--0.073199 -0.219588 0.418402
-
-0.922296 0.385102 0.0326575
--0.281951 0.612642 0.738359
-0.264336 -0.690193 0.673617
--0.0729559 -0.220738 0.418754
-
-0.935062 0.353268 0.0293385
--0.260647 0.629085 0.732335
-0.240254 -0.692426 0.680312
--0.0727127 -0.221888 0.419082
-
-0.946729 0.320974 0.0260614
--0.238575 0.644723 0.726233
-0.216299 -0.693763 0.686955
--0.0724695 -0.223038 0.419386
-
-0.95728 0.28826 0.0228265
--0.215768 0.659522 0.720052
-0.192508 -0.694217 0.693544
--0.0722263 -0.224187 0.419665
-
-0.966698 0.255164 0.0196342
--0.192257 0.67345 0.713795
-0.168912 -0.693799 0.70008
--0.0719831 -0.225337 0.41992
-
-0.97497 0.221726 0.0164849
--0.168079 0.686476 0.707461
-0.145546 -0.692524 0.70656
--0.0717399 -0.226487 0.420151
-
-0.98208 0.187986 0.0133788
--0.143268 0.698571 0.701051
-0.122442 -0.690406 0.712985
--0.0714967 -0.227637 0.420358
-
-0.988019 0.153986 0.0103163
--0.117863 0.709707 0.694568
-0.0996322 -0.687462 0.719354
--0.0712535 -0.228787 0.420541
-
-0.992775 0.119766 0.00729769
--0.0918997 0.719859 0.68801
-0.0771471 -0.68371 0.725665
--0.0710104 -0.229937 0.4207
-
-0.99634 0.0853687 0.00432335
--0.0654191 0.729001 0.681379
-0.0550167 -0.679168 0.731918
--0.0707672 -0.231087 0.420834
-
-0.998706 0.0508354 0.00139357
--0.0384613 0.737111 0.674676
-0.0332702 -0.673857 0.738112
--0.070524 -0.232236 0.420944
-
-0.999868 0.016209 -0.00149135
--0.0110676 0.744167 0.667902
-0.0119358 -0.667797 0.744247
--0.0702808 -0.233386 0.42103
-
-0.99982 -0.018468 -0.00433109
-0.0167199 0.750148 0.661058
--0.00895947 -0.661012 0.750322
--0.0700376 -0.234536 0.421092
-
-0.998561 -0.0531526 -0.00712537
-0.0448578 0.755038 0.654144
--0.0293896 -0.653523 0.756336
--0.0697944 -0.235686 0.421129
-
-0.996089 -0.0878018 -0.0098739
-0.0733025 0.75882 0.647162
--0.0493295 -0.645355 0.762288
--0.0695512 -0.236836 0.421143
-
-0.992405 -0.122372 -0.0125764
-0.102009 0.761479 0.640112
--0.0687555 -0.636533 0.768178
--0.0693081 -0.237986 0.421132
-
-0.98751 -0.156821 -0.0152326
-0.130933 0.763003 0.632996
--0.0876448 -0.627084 0.774005
--0.0690649 -0.239136 0.421097
-
-0.981407 -0.191105 -0.0178422
-0.160027 0.76338 0.625813
--0.105976 -0.617033 0.779769
--0.0688217 -0.240285 0.421038
-
-0.974103 -0.225182 -0.0204049
-0.189247 0.762602 0.618566
--0.123729 -0.606409 0.785468
--0.0685785 -0.241435 0.420955
-
-0.965603 -0.259007 -0.0229205
-0.218544 0.760661 0.611255
--0.140885 -0.595239 0.791102
--0.0683353 -0.242585 0.420847
-
-0.955917 -0.292539 -0.0253888
-0.247872 0.757553 0.603881
--0.157425 -0.583553 0.79667
--0.0680921 -0.243735 0.420715
-
-0.945052 -0.325734 -0.0278094
-0.277185 0.753274 0.596445
--0.173335 -0.57138 0.802172
--0.0678489 -0.244885 0.42056
-
-0.933022 -0.358552 -0.0301822
-0.306433 0.747822 0.588948
--0.188598 -0.55875 0.807607
--0.0676057 -0.246035 0.420379
-
-0.919838 -0.39095 -0.0325069
-0.335571 0.741199 0.581391
--0.203201 -0.545694 0.812975
--0.0673626 -0.247185 0.420175
-
-0.905515 -0.422886 -0.0347833
-0.36455 0.733407 0.573775
--0.217131 -0.532242 0.818274
--0.0671194 -0.248334 0.419947
-
-0.890069 -0.454321 -0.0370112
-0.393323 0.724449 0.566101
--0.230379 -0.518426 0.823505
--0.0668762 -0.249484 0.419694
-
-0.873517 -0.485213 -0.0391903
-0.421843 0.714333 0.55837
--0.242933 -0.504278 0.828666
--0.066633 -0.250634 0.419417
-
-0.855879 -0.515523 -0.0413205
-0.450062 0.703067 0.550582
--0.254787 -0.489828 0.833758
--0.0663898 -0.251784 0.419116
-
-0.837174 -0.545213 -0.0434015
-0.477933 0.690661 0.54274
--0.265933 -0.47511 0.838779
--0.0661466 -0.252934 0.418791
-
-0.817424 -0.574242 -0.0454332
-0.505411 0.677128 0.534843
--0.276366 -0.460156 0.843729
--0.0659034 -0.254084 0.418442
-
-0.796652 -0.602575 -0.0474153
-0.53245 0.66248 0.526894
--0.286082 -0.444997 0.848608
--0.0656602 -0.255234 0.418068
-
-0.774884 -0.630175 -0.0493477
-0.559003 0.646735 0.518892
--0.295078 -0.429667 0.853414
--0.0654171 -0.256383 0.41767
-
-0.752144 -0.657005 -0.0512302
-0.585027 0.62991 0.51084
--0.303354 -0.414196 0.858148
--0.0651739 -0.257533 0.417248
-
-0.72846 -0.68303 -0.0530627
-0.610477 0.612024 0.502737
--0.310909 -0.398617 0.862809
--0.0649307 -0.258683 0.416802
-
-0.70386 -0.708218 -0.0548449
-0.635309 0.5931 0.494586
--0.317746 -0.382963 0.867397
--0.0646875 -0.259833 0.416332
-
-0.678375 -0.732534 -0.0565767
-0.659482 0.573159 0.486386
--0.323867 -0.367264 0.87191
--0.0644443 -0.260983 0.415838
-
-0.652035 -0.755947 -0.058258
-0.682954 0.552228 0.47814
--0.329277 -0.351552 0.876349
--0.0642011 -0.262133 0.415319
-
-0.624873 -0.778426 -0.0598886
-0.705684 0.530332 0.469848
--0.333981 -0.335858 0.880713
--0.0639579 -0.263283 0.414776
-
-0.596921 -0.799942 -0.0614684
-0.727633 0.5075 0.461511
--0.337987 -0.320212 0.885002
--0.0637148 -0.264432 0.414209
-
-0.568213 -0.820466 -0.0629972
-0.748763 0.483763 0.453131
--0.341303 -0.304645 0.889215
--0.0634716 -0.265582 0.413618
-
-0.538786 -0.839972 -0.0644749
-0.769035 0.45915 0.444708
--0.343939 -0.289186 0.893352
--0.0632284 -0.266732 0.413002
-
-0.508676 -0.858432 -0.0659015
-0.788415 0.433696 0.436244
--0.345904 -0.273864 0.897412
--0.0629852 -0.267882 0.412363
-
-0.47792 -0.875823 -0.0672767
-0.806868 0.407435 0.427739
--0.347213 -0.258708 0.901395
--0.062742 -0.269032 0.411699
-
-0.446556 -0.892122 -0.0686006
-0.82436 0.380403 0.419194
--0.347877 -0.243745 0.905301
--0.0624988 -0.270182 0.411011
-
-0.414623 -0.907307 -0.0698729
-0.84086 0.352636 0.410612
--0.347911 -0.229002 0.909129
--0.0622556 -0.271332 0.410299
-
-0.382161 -0.921357 -0.0710936
-0.856337 0.324174 0.401992
--0.347331 -0.214506 0.912879
--0.0620124 -0.272481 0.409563
-
-0.349212 -0.934253 -0.0722627
-0.870763 0.295056 0.393336
--0.346154 -0.200281 0.916551
--0.0617693 -0.273631 0.408802
-
-0.315815 -0.945979 -0.07338
-0.884111 0.265324 0.384644
--0.344396 -0.186353 0.920143
--0.0615261 -0.274781 0.408017
-
-0.282014 -0.956518 -0.0744454
-0.896354 0.235018 0.375919
--0.342077 -0.172744 0.923657
--0.0612829 -0.275931 0.407208
-
-0.258169 -0.963345 -0.0729101
-0.904119 0.214321 0.369642
--0.340466 -0.16135 0.926309
--0.0613301 -0.27691 0.406779
-
-0.247294 -0.96652 -0.0684478
-0.907269 0.206175 0.366545
--0.340161 -0.152745 0.927879
--0.0617279 -0.277686 0.406832
-
-0.252394 -0.965751 -0.0601927
-0.90522 0.213681 0.36731
--0.341868 -0.147194 0.928149
--0.0625032 -0.278137 0.407507
-
-0.26761 -0.962253 -0.0495414
-0.899646 0.231127 0.37043
--0.344997 -0.1437 0.927538
--0.0635643 -0.278444 0.408565
-
-0.282717 -0.958415 -0.0388787
-0.893736 0.248487 0.373483
--0.348291 -0.140337 0.926822
--0.0646255 -0.27875 0.4096
-
-0.297706 -0.954241 -0.0282058
-0.887494 0.265755 0.376468
--0.351745 -0.137109 0.926
--0.0656866 -0.279057 0.41061
-
-0.31257 -0.949733 -0.0175242
-0.880921 0.282923 0.379386
--0.355357 -0.134022 0.925073
--0.0667478 -0.279363 0.411596
-
-0.327301 -0.944895 -0.00683523
-0.874017 0.299985 0.382235
--0.359121 -0.13108 0.92404
--0.0678089 -0.27967 0.412558
-
-0.341892 -0.939731 0.00385977
-0.866785 0.316934 0.385015
--0.363034 -0.128288 0.922902
--0.0688701 -0.279976 0.413495
-
-0.356334 -0.934245 0.0145594
-0.859227 0.333763 0.387727
--0.367091 -0.12565 0.921659
--0.0699312 -0.280283 0.414409
-
-0.37062 -0.928441 0.0252624
-0.851344 0.350465 0.390369
--0.371288 -0.123171 0.920312
--0.0709923 -0.280589 0.415298
-
-0.384742 -0.922323 0.0359672
-0.843139 0.367034 0.392941
--0.37562 -0.120856 0.91886
--0.0720535 -0.280896 0.416163
-
-0.398694 -0.915896 0.0466727
-0.834614 0.383463 0.395444
--0.380083 -0.118707 0.917304
--0.0731146 -0.281202 0.417004
-
-0.412468 -0.909164 0.0573774
-0.825772 0.399744 0.397876
--0.384671 -0.11673 0.915643
--0.0741758 -0.281509 0.417821
-
-0.426056 -0.902132 0.0680799
-0.816615 0.415873 0.400237
--0.389379 -0.114929 0.913879
--0.0752369 -0.281815 0.418613
-
-0.439453 -0.894805 0.0787789
-0.807146 0.431841 0.402528
--0.394204 -0.113306 0.912012
--0.0762981 -0.282122 0.419382
-
-0.452651 -0.887188 0.089473
-0.797368 0.447643 0.404747
--0.399139 -0.111866 0.910041
--0.0773592 -0.282428 0.420126
-
-0.465643 -0.879286 0.100161
-0.787284 0.463271 0.406895
--0.404179 -0.110613 0.907967
--0.0784203 -0.282734 0.420846
-
-0.478423 -0.871106 0.110841
-0.776897 0.47872 0.408972
--0.40932 -0.109549 0.905791
--0.0794815 -0.283041 0.421542
-
-0.490984 -0.862652 0.121513
-0.766211 0.493984 0.410976
--0.414554 -0.108678 0.903512
--0.0805426 -0.283347 0.422213
-
-0.503321 -0.853931 0.132174
-0.755228 0.509055 0.412907
--0.419878 -0.108003 0.901131
--0.0816038 -0.283654 0.422861
-
-0.515427 -0.844948 0.142824
-0.743954 0.523929 0.414767
--0.425286 -0.107528 0.898649
--0.0826649 -0.28396 0.423484
-
-0.527296 -0.835709 0.15346
-0.73239 0.538598 0.416553
--0.430771 -0.107254 0.896065
--0.083726 -0.284267 0.424083
-
-0.538922 -0.82622 0.164083
-0.720542 0.553056 0.418267
--0.436328 -0.107185 0.893381
--0.0847872 -0.284573 0.424658
-
-0.550299 -0.816489 0.17469
-0.708414 0.567299 0.419907
--0.441951 -0.107322 0.890596
--0.0858483 -0.28488 0.425209
-
-0.5561 -0.810629 0.183396
-0.700245 0.575842 0.421974
--0.447671 -0.106238 0.887865
--0.0867753 -0.284988 0.425904
-
-0.551883 -0.812448 0.188026
-0.700128 0.573899 0.424808
--0.453042 -0.102802 0.885542
--0.0873661 -0.284711 0.426928
-
-0.537549 -0.821878 0.188567
-0.708048 0.561385 0.428387
--0.45794 -0.0967645 0.883701
--0.0876187 -0.284049 0.428277
-
-0.51479 -0.836932 0.185837
-0.72199 0.540112 0.432445
--0.4623 -0.0884455 0.882302
--0.0876391 -0.283065 0.42988
-
-0.491615 -0.851348 0.183088
-0.735302 0.518472 0.436483
--0.466525 -0.0799563 0.880887
--0.0876596 -0.282081 0.431458
-
-0.468043 -0.865113 0.18032
-0.747973 0.496483 0.4405
--0.470608 -0.0712984 0.879457
--0.08768 -0.281098 0.433012
-
-0.444092 -0.878217 0.177532
-0.759994 0.474165 0.444497
--0.474544 -0.0624738 0.878012
--0.0877005 -0.280114 0.434542
-
-0.41978 -0.890649 0.174726
-0.771355 0.451535 0.448473
--0.478327 -0.0534845 0.876552
--0.087721 -0.27913 0.436048
-
-0.395128 -0.902399 0.1719
-0.782048 0.428615 0.452428
--0.481949 -0.0443325 0.875077
--0.0877414 -0.278147 0.437529
-
-0.370154 -0.913458 0.169056
-0.792065 0.405423 0.456361
--0.485406 -0.0350205 0.873587
--0.0877619 -0.277163 0.438987
-
-0.344878 -0.923818 0.166193
-0.801399 0.381979 0.460274
--0.488692 -0.025551 0.872082
--0.0877824 -0.276179 0.44042
-
-0.319319 -0.933469 0.163312
-0.810043 0.358304 0.464165
--0.491799 -0.0159268 0.870563
--0.0878028 -0.275196 0.441829
-
-0.293497 -0.942405 0.160412
-0.817991 0.334417 0.468035
--0.494723 -0.00615108 0.869029
--0.0878233 -0.274212 0.443214
-
-0.267433 -0.950618 0.157494
-0.825237 0.31034 0.471883
--0.497457 0.00377296 0.86748
--0.0878438 -0.273228 0.444574
-
-0.241147 -0.958102 0.154558
-0.831776 0.286092 0.475709
--0.499996 0.0138418 0.865917
--0.0878642 -0.272245 0.445911
-
-0.21466 -0.964851 0.151604
-0.837605 0.261695 0.479514
--0.502333 0.0240518 0.86434
--0.0878847 -0.271261 0.447223
-
-0.187992 -0.970859 0.148632
-0.842719 0.237169 0.483296
--0.504463 0.0343991 0.862748
--0.0879052 -0.270277 0.448511
-
-0.161164 -0.976122 0.145642
-0.847115 0.212536 0.487056
--0.506381 0.0448795 0.861141
--0.0879256 -0.269294 0.449775
-
-0.134198 -0.980636 0.142635
-0.850791 0.187816 0.490794
--0.50808 0.0554887 0.859521
--0.0879461 -0.26831 0.451015
-
-0.107114 -0.984396 0.13961
-0.853745 0.16303 0.49451
--0.509554 0.0662222 0.857886
--0.0879666 -0.267327 0.45223
-
-0.0799337 -0.987401 0.136567
-0.855976 0.138201 0.498203
--0.5108 0.0770752 0.856238
--0.087987 -0.266343 0.453421
-
-0.052678 -0.989647 0.133508
-0.857482 0.113348 0.501873
--0.51181 0.088043 0.854575
--0.0880075 -0.265359 0.454588
-
-0.0253686 -0.991133 0.130431
-0.858264 0.0884934 0.505521
--0.512581 0.0991202 0.852899
--0.088028 -0.264376 0.455731
-
--0.0019733 -0.991857 0.127338
-0.858323 0.0636581 0.509146
--0.513106 0.110302 0.851208
--0.0880484 -0.263392 0.45685
-
--0.0293262 -0.99182 0.124227
-0.85766 0.0388632 0.512747
--0.513381 0.121582 0.849504
--0.0880689 -0.262408 0.457945
-
--0.0566688 -0.991021 0.1211
-0.856276 0.01413 0.516326
--0.513401 0.132955 0.847787
--0.0880893 -0.261425 0.459015
-
--0.0839797 -0.989461 0.117957
-0.854174 -0.0105206 0.519881
--0.513161 0.144415 0.846055
--0.0881098 -0.260441 0.460061
-
--0.111237 -0.987141 0.114797
-0.851357 -0.0350676 0.523413
--0.512657 0.155956 0.844311
--0.0881303 -0.259457 0.461083
-
--0.138421 -0.984063 0.11162
-0.847829 -0.0594901 0.526921
--0.511884 0.167572 0.842553
--0.0881507 -0.258474 0.462081
-
--0.165508 -0.98023 0.108428
-0.843595 -0.0837672 0.530406
--0.510837 0.179256 0.840781
--0.0881712 -0.25749 0.463055
-
--0.192479 -0.975644 0.105219
-0.838658 -0.107878 0.533867
--0.509513 0.191001 0.838996
--0.0881917 -0.256506 0.464004
-
--0.219312 -0.970309 0.101995
-0.833026 -0.131803 0.537304
--0.507908 0.202802 0.837198
--0.0882121 -0.255523 0.464929
-
--0.245986 -0.96423 0.0987547
-0.826703 -0.155522 0.540718
--0.506018 0.21465 0.835387
--0.0882326 -0.254539 0.465831
-
--0.27248 -0.95741 0.095499
-0.819696 -0.179013 0.544107
--0.503838 0.226538 0.833563
--0.0882531 -0.253555 0.466707
-
--0.298773 -0.949857 0.0922278
-0.812014 -0.202258 0.547472
--0.501366 0.23846 0.831726
--0.0882735 -0.252572 0.46756
-
--0.324846 -0.941576 0.0889413
-0.803663 -0.225236 0.550813
--0.498599 0.250408 0.829876
--0.088294 -0.251588 0.468389
-
--0.350677 -0.932572 0.0856395
-0.794652 -0.247928 0.554129
--0.495533 0.262374 0.828014
--0.0883145 -0.250604 0.469193
-
--0.376247 -0.922855 0.0823228
-0.784991 -0.270316 0.557421
--0.492166 0.274351 0.826138
--0.0883349 -0.249621 0.469973
-
--0.401536 -0.91243 0.0789911
-0.774689 -0.29238 0.560688
--0.488494 0.28633 0.82425
--0.0883554 -0.248637 0.470729
-
--0.426524 -0.901308 0.0756446
-0.763756 -0.314101 0.563931
--0.484515 0.298304 0.82235
--0.0883759 -0.247653 0.471461
-
--0.451191 -0.889495 0.0722835
-0.752202 -0.335461 0.567149
--0.480228 0.310264 0.820437
--0.0883963 -0.24667 0.472169
-
--0.475518 -0.877003 0.068908
-0.74004 -0.356442 0.570342
--0.47563 0.322202 0.818512
--0.0884168 -0.245686 0.472852
-
--0.499487 -0.863841 0.0655181
-0.72728 -0.377028 0.57351
--0.470719 0.33411 0.816575
--0.0884372 -0.244702 0.473511
-
--0.523078 -0.850018 0.0621139
-0.713936 -0.397199 0.576653
--0.465494 0.34598 0.814625
--0.0884577 -0.243719 0.474146
-
--0.546274 -0.835547 0.0586958
-0.70002 -0.41694 0.57977
--0.459953 0.357802 0.812663
--0.0884782 -0.242735 0.474757
-
--0.569057 -0.820439 0.0552637
-0.685545 -0.436233 0.582862
--0.454095 0.369567 0.810689
--0.0884986 -0.241751 0.475344
-
--0.591408 -0.804706 0.0518178
-0.670525 -0.455064 0.585929
--0.44792 0.381268 0.808704
--0.0885191 -0.240768 0.475906
-
--0.613311 -0.78836 0.0483583
-0.654975 -0.473415 0.588971
--0.441427 0.392896 0.806706
--0.0885396 -0.239784 0.476445
-
--0.634748 -0.771414 0.0448852
-0.638908 -0.491272 0.591987
--0.434616 0.40444 0.804697
--0.08856 -0.2388 0.476959
-
--0.655704 -0.753882 0.0413989
-0.622341 -0.50862 0.594977
--0.427486 0.415893 0.802676
--0.0885805 -0.237817 0.477449
-
--0.676161 -0.735778 0.0378993
-0.605288 -0.525445 0.597941
--0.420038 0.427245 0.800644
--0.088601 -0.236833 0.477914
-
--0.696105 -0.717116 0.0343867
-0.587767 -0.541732 0.60088
--0.412272 0.438487 0.7986
--0.0886214 -0.235849 0.478356
-
--0.715519 -0.697911 0.0308612
-0.569792 -0.557469 0.603792
--0.404189 0.449609 0.796544
--0.0886419 -0.234866 0.478773
-
--0.73439 -0.678178 0.0273228
-0.551382 -0.572642 0.606679
--0.39579 0.460604 0.794477
--0.0886624 -0.233882 0.479167
-
--0.752701 -0.657933 0.0237719
-0.532553 -0.587239 0.609539
--0.387076 0.471461 0.7924
--0.0886828 -0.232898 0.479536
-
--0.770441 -0.637191 0.0202085
-0.513323 -0.601247 0.612373
--0.378049 0.482171 0.79031
--0.0887033 -0.231915 0.47988
-
--0.787594 -0.61597 0.0166327
-0.49371 -0.614657 0.615181
--0.36871 0.492724 0.78821
--0.0887238 -0.230931 0.480201
-
--0.804148 -0.594287 0.0130448
-0.473731 -0.627456 0.617963
--0.359062 0.503113 0.786099
--0.0887442 -0.229947 0.480497
-
--0.82009 -0.572157 0.00944478
-0.453406 -0.639634 0.620718
--0.349107 0.513327 0.783977
--0.0887647 -0.228964 0.48077
-
--0.835408 -0.549599 0.00583289
-0.432754 -0.651183 0.623446
--0.338847 0.523356 0.781845
--0.0887851 -0.22798 0.481018
-
--0.850091 -0.526631 0.00220924
-0.411793 -0.662092 0.626148
--0.328286 0.533193 0.779701
--0.0888056 -0.226996 0.481242
-
--0.864127 -0.503271 -0.00142601
-0.390543 -0.672352 0.628823
--0.317427 0.542826 0.777547
--0.0888261 -0.226013 0.481441
-
--0.877507 -0.479537 -0.00507272
-0.369023 -0.681957 0.631472
--0.306273 0.552249 0.775382
--0.0888465 -0.225029 0.481617
-
--0.890219 -0.455448 -0.00873074
-0.347254 -0.690898 0.634093
--0.294829 0.56145 0.773207
--0.088867 -0.224045 0.481768
-
--0.902255 -0.431023 -0.0123999
-0.325255 -0.699169 0.636688
--0.283097 0.570422 0.771022
--0.0888875 -0.223062 0.481895
-
--0.913606 -0.406282 -0.0160801
-0.303048 -0.706764 0.639255
--0.271083 0.579154 0.768827
--0.0889079 -0.222078 0.481998
-
--0.924263 -0.381244 -0.0197712
-0.280651 -0.713676 0.641796
--0.258791 0.587639 0.766621
--0.0889284 -0.221094 0.482077
-
--0.934219 -0.355928 -0.023473
-0.258086 -0.719901 0.644309
--0.246226 0.595867 0.764405
--0.0889489 -0.220111 0.482132
-
--0.943465 -0.330355 -0.0271854
-0.235374 -0.725434 0.646795
--0.233393 0.60383 0.762179
--0.0889693 -0.219127 0.482162
-
--0.951996 -0.304545 -0.0309082
-0.212536 -0.730273 0.649254
--0.220298 0.611518 0.759944
--0.0889898 -0.218143 0.482168
-
--0.959806 -0.278517 -0.0346412
-0.189592 -0.734412 0.651685
--0.206946 0.618924 0.757698
--0.0890103 -0.21716 0.48215
-
--0.966889 -0.252293 -0.0383844
-0.166563 -0.737851 0.654089
--0.193344 0.626038 0.755443
--0.0890307 -0.216176 0.482108
-
--0.97324 -0.225894 -0.0421376
-0.143471 -0.740587 0.656466
--0.179498 0.632853 0.753178
--0.0890512 -0.215192 0.482042
-
--0.978855 -0.199339 -0.0459006
-0.120338 -0.742619 0.658814
--0.165414 0.63936 0.750904
--0.0890717 -0.214209 0.481951
-
--0.98373 -0.17265 -0.0496733
-0.0971828 -0.743946 0.661136
--0.1511 0.645552 0.74862
--0.0890921 -0.213225 0.481837
-
--0.987862 -0.145848 -0.0534555
-0.0740284 -0.744568 0.663429
--0.136561 0.651419 0.746327
--0.0891126 -0.212241 0.481698
-
--0.991248 -0.118953 -0.0572471
-0.0508955 -0.744486 0.665695
--0.121806 0.656955 0.744025
--0.0891331 -0.211258 0.481535
-
--0.993887 -0.0919876 -0.061048
-0.0278054 -0.743702 0.667933
--0.106843 0.662152 0.741713
--0.0891535 -0.210274 0.481347
-
--0.995777 -0.0649717 -0.0648579
-0.00477916 -0.742217 0.670143
--0.0916789 0.667003 0.739393
--0.089174 -0.20929 0.481136
-
--0.996918 -0.0379266 -0.0686768
--0.0181621 -0.740033 0.672325
--0.0763221 0.6715 0.737064
--0.0891944 -0.208307 0.4809
-
--0.997309 -0.0108737 -0.0725045
--0.0409975 -0.737155 0.674479
--0.0607811 0.675636 0.734725
--0.0892149 -0.207323 0.48064
-
--0.996951 0.0161661 -0.0763407
--0.063706 -0.733585 0.676605
--0.0450644 0.679405 0.732378
--0.0892354 -0.206339 0.480356
-
--0.995845 0.0431717 -0.0801855
--0.086267 -0.729329 0.678703
--0.0291809 0.6828 0.730023
--0.0892558 -0.205356 0.480048
-
--0.993992 0.070122 -0.0840386
--0.10866 -0.724391 0.680772
--0.0131397 0.685814 0.727658
--0.0892763 -0.204372 0.479716
-
--0.991396 0.0969961 -0.0879
--0.130864 -0.718777 0.682814
-0.00304984 0.688442 0.725285
--0.0892968 -0.203388 0.479359
-
--0.988058 0.123773 -0.0917693
--0.152859 -0.712493 0.684827
-0.0193782 0.690676 0.722904
--0.0893172 -0.202405 0.478979
-
--0.983983 0.150432 -0.0956465
--0.174625 -0.705546 0.686812
-0.0358356 0.692513 0.720515
--0.0893377 -0.201421 0.478574
-
--0.979174 0.176953 -0.0995315
--0.196142 -0.697945 0.688768
-0.0524121 0.693946 0.718117
--0.0893582 -0.200437 0.478145
-
--0.973636 0.203315 -0.103424
--0.217391 -0.689696 0.690696
-0.0690975 0.69497 0.715711
--0.0893786 -0.199454 0.477691
-
--0.967374 0.229497 -0.107324
--0.238352 -0.680808 0.692595
-0.0858815 0.69558 0.713297
--0.0893991 -0.19847 0.477214
-
--0.960395 0.25548 -0.111231
--0.259006 -0.671292 0.694466
-0.102754 0.695771 0.710876
--0.0894196 -0.197486 0.476712
-
--0.952703 0.281243 -0.115146
--0.279334 -0.661156 0.696309
-0.119703 0.69554 0.708446
--0.08944 -0.196503 0.476186
-
--0.944308 0.306767 -0.119067
--0.299318 -0.650411 0.698122
-0.136718 0.694881 0.706009
--0.0894605 -0.195519 0.475636
-
--0.935215 0.332032 -0.122995
--0.318939 -0.639068 0.699907
-0.153789 0.693792 0.703564
--0.089481 -0.194535 0.475062
-
--0.925433 0.357019 -0.12693
--0.33818 -0.627139 0.701663
-0.170904 0.692268 0.701111
--0.0895014 -0.193552 0.474464
-
--0.915328 0.380831 -0.130928
--0.356429 -0.614801 0.703547
-0.187437 0.690643 0.698484
--0.0894758 -0.192644 0.47388
-
--0.905429 0.402432 -0.13508
--0.373001 -0.602324 0.705745
-0.202652 0.689387 0.69547
--0.0893501 -0.191889 0.473339
-
--0.896235 0.42109 -0.139451
--0.387434 -0.590018 0.70836
-0.216004 0.688885 0.691939
--0.0890729 -0.191355 0.472888
-
--0.888262 0.436152 -0.144089
--0.39933 -0.578227 0.711469
-0.226993 0.68951 0.687786
--0.0885977 -0.191111 0.472574
-
--0.881301 0.448485 -0.148898
--0.409258 -0.566843 0.71498
-0.236256 0.69105 0.683105
--0.0879014 -0.19121 0.472471
-
--0.875688 0.457699 -0.153887
--0.417026 -0.556177 0.718858
-0.243432 0.69367 0.67791
--0.0869727 -0.191685 0.472611
-
--0.87176 0.463377 -0.159113
--0.422422 -0.546377 0.723209
-0.248182 0.697677 0.67205
--0.0858474 -0.192455 0.47288
-
--0.869036 0.466606 -0.164483
--0.426197 -0.5372 0.727854
-0.251261 0.702634 0.665713
--0.0845783 -0.193444 0.47325
-
--0.867378 0.467717 -0.169987
--0.428621 -0.528567 0.732735
-0.252863 0.708419 0.658941
--0.0831815 -0.19461 0.473699
-
--0.865715 0.468769 -0.175478
--0.431001 -0.519877 0.737541
-0.254509 0.714132 0.652105
--0.0817848 -0.195776 0.474124
-
--0.864049 0.46976 -0.180955
--0.433339 -0.511129 0.74227
-0.256197 0.719773 0.645206
--0.080388 -0.196942 0.474525
-
--0.862379 0.470692 -0.186418
--0.435632 -0.502325 0.746923
-0.257928 0.725341 0.638243
--0.0789912 -0.198108 0.474902
-
--0.860706 0.471564 -0.191866
--0.437882 -0.493466 0.751499
-0.2597 0.730835 0.631218
--0.0775945 -0.199274 0.475255
-
--0.859031 0.472376 -0.197299
--0.440087 -0.484552 0.755998
-0.261514 0.736254 0.624132
--0.0761977 -0.20044 0.475583
-
--0.857354 0.473129 -0.202715
--0.442246 -0.475585 0.760419
-0.263368 0.741598 0.616984
--0.0748009 -0.201606 0.475887
-
--0.855675 0.473823 -0.208115
--0.44436 -0.466566 0.764762
-0.265262 0.746866 0.609777
--0.0734042 -0.202772 0.476167
-
--0.853996 0.474457 -0.213498
--0.446428 -0.457495 0.769026
-0.267195 0.752056 0.60251
--0.0720074 -0.203938 0.476423
-
--0.852316 0.475033 -0.218863
--0.448449 -0.448374 0.773211
-0.269168 0.757169 0.595184
--0.0706106 -0.205104 0.476655
-
--0.850636 0.47555 -0.224211
--0.450422 -0.439203 0.777316
-0.271179 0.762202 0.587801
--0.0692139 -0.20627 0.476862
-
--0.848957 0.476009 -0.229539
--0.452349 -0.429984 0.781341
-0.273227 0.767157 0.58036
--0.0678171 -0.207435 0.477045
-
--0.847278 0.476409 -0.234848
--0.454227 -0.420717 0.785286
-0.275313 0.772031 0.572862
--0.0664203 -0.208601 0.477204
-
--0.845602 0.476751 -0.240138
--0.456057 -0.411404 0.789151
-0.277435 0.776824 0.565309
--0.0650236 -0.209767 0.477339
-
--0.843927 0.477035 -0.245408
--0.457838 -0.402045 0.792934
-0.279593 0.781535 0.557701
--0.0636268 -0.210933 0.47745
-
--0.842254 0.477262 -0.250656
--0.45957 -0.392641 0.796636
-0.281786 0.786164 0.550039
--0.06223 -0.212099 0.477536
-
--0.840585 0.477431 -0.255884
--0.461252 -0.383194 0.800256
-0.284014 0.790709 0.542323
--0.0608333 -0.213265 0.477599
-
--0.838919 0.477543 -0.261089
--0.462884 -0.373705 0.803793
-0.286276 0.795171 0.534555
--0.0594365 -0.214431 0.477637
-
--0.837257 0.477599 -0.266272
--0.464465 -0.364174 0.807248
-0.288571 0.799548 0.526735
--0.0580397 -0.215597 0.477651
-
--0.835599 0.477597 -0.271433
--0.465996 -0.354602 0.81062
-0.290899 0.80384 0.518863
--0.056643 -0.216763 0.477641
-
--0.833946 0.477539 -0.276569
--0.467475 -0.344991 0.813909
-0.293259 0.808046 0.510942
--0.0552462 -0.217929 0.477606
-
--0.832298 0.477425 -0.281683
--0.468903 -0.335342 0.817114
-0.295651 0.812165 0.50297
--0.0538494 -0.219095 0.477548
-
--0.830656 0.477255 -0.286771
--0.470279 -0.325655 0.820236
-0.298073 0.816196 0.49495
--0.0524527 -0.220261 0.477465
-
--0.829021 0.477029 -0.291835
--0.471603 -0.315932 0.823273
-0.300525 0.82014 0.486882
--0.0510559 -0.221427 0.477358
-
--0.827392 0.476748 -0.296873
--0.472874 -0.306173 0.826225
-0.303007 0.823996 0.478767
--0.0496591 -0.222593 0.477227
-
--0.82577 0.476413 -0.301886
--0.474092 -0.296381 0.829093
-0.305517 0.827762 0.470606
--0.0482624 -0.223759 0.477071
-
--0.824156 0.476022 -0.306872
--0.475257 -0.286555 0.831876
-0.308056 0.831438 0.462399
--0.0468656 -0.224925 0.476892
-
--0.82255 0.475577 -0.311831
--0.476368 -0.276698 0.834573
-0.310621 0.835024 0.454147
--0.0454688 -0.226091 0.476688
-
--0.820952 0.475078 -0.316762
--0.477426 -0.266809 0.837184
-0.313213 0.838519 0.445852
--0.0440721 -0.227257 0.47646
-
--0.819363 0.474526 -0.321666
--0.478429 -0.25689 0.83971
-0.315831 0.841922 0.437514
--0.0426753 -0.228423 0.476208
-
--0.817784 0.47392 -0.326542
--0.479378 -0.246943 0.842149
-0.318474 0.845233 0.429133
--0.0412786 -0.229589 0.475932
-
--0.816214 0.473261 -0.331388
--0.480273 -0.236968 0.844502
-0.321142 0.848452 0.420711
--0.0398818 -0.230755 0.475631
-
--0.814655 0.47255 -0.336205
--0.481112 -0.226966 0.846769
-0.323833 0.851577 0.412249
--0.038485 -0.231921 0.475307
-
--0.813107 0.471786 -0.340992
--0.481897 -0.216939 0.848948
-0.326547 0.854609 0.403746
--0.0370883 -0.233087 0.474958
-
--0.811569 0.47097 -0.345749
--0.482626 -0.206887 0.851041
-0.329283 0.857546 0.395206
--0.0356915 -0.234253 0.474585
-
--0.810043 0.470103 -0.350476
--0.483299 -0.196812 0.853046
-0.332041 0.860389 0.386627
--0.0342947 -0.235419 0.474188
-
--0.80853 0.469184 -0.35517
--0.483917 -0.186715 0.854963
-0.33482 0.863136 0.378011
--0.032898 -0.236585 0.473766
-
--0.807028 0.468215 -0.359834
--0.484479 -0.176596 0.856793
-0.337618 0.865788 0.369358
--0.0315012 -0.237751 0.473321
-
--0.80554 0.467195 -0.364464
--0.484984 -0.166458 0.858535
-0.340435 0.868343 0.360671
--0.0301044 -0.238917 0.472851
-
--0.802535 0.470615 -0.366686
--0.484686 -0.155921 0.860679
-0.347874 0.868453 0.353232
--0.0288835 -0.23981 0.472556
-
--0.797867 0.478862 -0.366196
--0.483301 -0.145036 0.863357
-0.360317 0.865827 0.347154
--0.0278499 -0.240389 0.47246
-
--0.791088 0.492579 -0.362693
--0.48062 -0.133738 0.866671
-0.378398 0.85993 0.342542
--0.0270188 -0.240619 0.472593
-
--0.782152 0.510853 -0.356745
--0.476782 -0.122088 0.870502
-0.401144 0.850954 0.339057
--0.0263621 -0.240575 0.472901
-
--0.772009 0.530637 -0.349895
--0.472292 -0.110498 0.874489
-0.425374 0.840366 0.335921
--0.0257482 -0.240421 0.47327
-
--0.761304 0.550221 -0.343036
--0.467491 -0.0991868 0.878416
-0.449298 0.829108 0.332734
--0.0251343 -0.240267 0.473615
-
--0.750042 0.569586 -0.336167
--0.46239 -0.0881645 0.882283
-0.472898 0.81719 0.329498
--0.0245204 -0.240113 0.473935
-
--0.738228 0.588717 -0.32929
--0.456999 -0.0774393 0.88609
-0.496156 0.804621 0.326211
--0.0239064 -0.23996 0.474232
-
--0.725866 0.607597 -0.322404
--0.451333 -0.0670191 0.889836
-0.519054 0.791413 0.322875
--0.0232925 -0.239806 0.474504
-
--0.712962 0.626209 -0.315511
--0.445401 -0.0569115 0.893521
-0.541575 0.777575 0.31949
--0.0226786 -0.239652 0.474752
-
--0.699522 0.644538 -0.308611
--0.439216 -0.0471237 0.897145
-0.563701 0.763119 0.316056
--0.0220647 -0.239498 0.474976
-
--0.685552 0.662566 -0.301704
--0.432792 -0.0376624 0.900707
-0.585415 0.748056 0.312573
--0.0214507 -0.239344 0.475176
-
--0.671059 0.680278 -0.294792
--0.426139 -0.028534 0.904207
-0.606701 0.732399 0.309041
--0.0208368 -0.23919 0.475352
-
--0.656051 0.697657 -0.287875
--0.419272 -0.0197443 0.907646
-0.627542 0.71616 0.305461
--0.0202229 -0.239036 0.475503
-
--0.640535 0.714689 -0.280954
--0.412203 -0.0112988 0.911022
-0.647923 0.699351 0.301834
--0.0196089 -0.238882 0.47563
-
--0.624521 0.731357 -0.274028
--0.404944 -0.00320249 0.914336
-0.667828 0.681988 0.298159
--0.018995 -0.238728 0.475733
-
--0.608016 0.747645 -0.2671
--0.39751 0.00454014 0.917586
-0.687242 0.664083 0.294436
--0.0183811 -0.238575 0.475812
-
--0.591032 0.76354 -0.260169
--0.389914 0.011925 0.920774
-0.706151 0.64565 0.290667
--0.0177672 -0.238421 0.475867
-
--0.573576 0.779026 -0.253236
--0.382169 0.0189484 0.923898
-0.72454 0.626705 0.286851
--0.0171532 -0.238267 0.475897
-
--0.55566 0.794089 -0.246301
--0.374288 0.0256073 0.926959
-0.742395 0.607262 0.282989
--0.0165393 -0.238113 0.475904
-
--0.537295 0.808714 -0.239366
--0.366285 0.0318988 0.929956
-0.759704 0.587337 0.27908
--0.0159254 -0.237959 0.475886
-
--0.518491 0.822887 -0.232431
--0.358173 0.0378209 0.932889
-0.776453 0.566945 0.275126
--0.0153115 -0.237805 0.475844
-
--0.499261 0.836594 -0.225496
--0.349967 0.0433715 0.935757
-0.792629 0.546104 0.271127
--0.0146975 -0.237651 0.475777
-
--0.479617 0.849823 -0.218562
--0.34168 0.0485496 0.938561
-0.808222 0.524828 0.267082
--0.0140836 -0.237497 0.475687
-
--0.45957 0.862559 -0.21163
--0.333326 0.0533541 0.941301
-0.823219 0.503135 0.262993
--0.0134697 -0.237343 0.475572
-
--0.439135 0.874791 -0.2047
--0.324917 0.0577848 0.943975
-0.837609 0.481043 0.258859
--0.0128557 -0.23719 0.475434
-
--0.418324 0.886505 -0.197773
--0.316469 0.0618416 0.946585
-0.851383 0.458568 0.254682
--0.0122418 -0.237036 0.475271
-
--0.397151 0.89769 -0.19085
--0.307994 0.065525 0.949129
-0.864529 0.435728 0.25046
--0.0116279 -0.236882 0.475083
-
--0.37563 0.908334 -0.183931
--0.299507 0.0688362 0.951608
-0.877039 0.412541 0.246195
--0.011014 -0.236728 0.474872
-
--0.353776 0.918427 -0.177016
--0.29102 0.0717765 0.954021
-0.888904 0.389025 0.241887
--0.0104 -0.236574 0.474636
-
--0.331604 0.927956 -0.170107
--0.282547 0.0743478 0.956368
-0.900114 0.365199 0.237537
--0.00978611 -0.23642 0.474377
-
--0.309129 0.936912 -0.163204
--0.274101 0.0765524 0.958649
-0.910663 0.341081 0.233144
--0.00917219 -0.236266 0.474093
-
--0.286366 0.945284 -0.156307
--0.265696 0.0783932 0.960864
-0.920543 0.316689 0.228709
--0.00855826 -0.236112 0.473785
-
--0.263332 0.953064 -0.149418
--0.257345 0.0798733 0.963013
-0.929747 0.292044 0.224233
--0.00794433 -0.235958 0.473452
-
--0.240042 0.960241 -0.142536
--0.24906 0.0809965 0.965095
-0.938269 0.267163 0.219715
--0.00733041 -0.235805 0.473096
-
--0.216513 0.966808 -0.135663
--0.240855 0.0817668 0.967111
-0.946103 0.242067 0.215157
--0.00671648 -0.235651 0.472715
-
--0.192762 0.972756 -0.128798
--0.232741 0.0821887 0.96906
-0.953244 0.216775 0.210558
--0.00610255 -0.235497 0.47231
-
--0.168806 0.978077 -0.121944
--0.224733 0.0822673 0.970941
-0.959687 0.191305 0.205919
--0.00548862 -0.235343 0.471881
-
--0.144662 0.982764 -0.115099
--0.216841 0.0820079 0.972756
-0.965429 0.165679 0.20124
--0.0048747 -0.235189 0.471428
-
--0.120348 0.986811 -0.108265
--0.209077 0.0814162 0.974504
-0.970465 0.139916 0.196522
--0.00426077 -0.235035 0.470951
-
--0.0958818 0.99021 -0.101442
--0.201455 0.0804984 0.976184
-0.974794 0.114034 0.191764
--0.00364684 -0.234881 0.470449
-
--0.0761349 0.992567 -0.0949439
--0.19559 0.0785036 0.977539
-0.977726 0.0929949 0.18816
--0.00295799 -0.234556 0.469966
-
--0.0668634 0.9938 -0.0888262
--0.193424 0.0744261 0.978288
-0.978834 0.0825929 0.187249
--0.0021043 -0.233847 0.469536
-
--0.0693505 0.994119 -0.083177
--0.19523 0.0682407 0.978381
-0.978302 0.0840898 0.189349
--0.00106004 -0.23271 0.469155
-
--0.0826554 0.993524 -0.0779646
--0.20048 0.0600563 0.977855
-0.976205 0.0964554 0.194218
-0.000154671 -0.231192 0.468852
-
--0.0959815 0.99272 -0.0727579
--0.20555 0.0517525 0.977277
-0.973929 0.108756 0.199086
-0.00136938 -0.229674 0.468526
-
--0.109325 0.991708 -0.0675571
--0.210436 0.0433328 0.976647
-0.971476 0.120989 0.203954
-0.0025841 -0.228156 0.468175
-
--0.122683 0.990485 -0.0623624
--0.215137 0.0348009 0.975964
-0.968847 0.133151 0.208821
-0.00379881 -0.226638 0.4678
-
--0.136051 0.989051 -0.0571742
--0.219651 0.0261605 0.975228
-0.966045 0.145239 0.213687
-0.00501352 -0.22512 0.467401
-
--0.149427 0.987405 -0.0519927
--0.223975 0.0174153 0.974439
-0.963072 0.157252 0.218551
-0.00622823 -0.223602 0.466978
-
--0.162805 0.985547 -0.0468182
--0.228107 0.00856909 0.973598
-0.959928 0.169186 0.223415
-0.00744294 -0.222084 0.466531
-
--0.176183 0.983476 -0.0416511
--0.232045 -0.000374304 0.972705
-0.956616 0.181039 0.228276
-0.00865766 -0.220566 0.466059
-
--0.189557 0.981191 -0.0364915
--0.235786 -0.00941103 0.971759
-0.953138 0.192808 0.233136
-0.00987237 -0.219048 0.465563
-
--0.202923 0.978693 -0.0313399
--0.23933 -0.0185372 0.970761
-0.949496 0.204491 0.237993
-0.0110871 -0.21753 0.465043
-
--0.216278 0.97598 -0.0261964
--0.242675 -0.0277489 0.969711
-0.945692 0.216085 0.242847
-0.0123018 -0.216012 0.464499
-
--0.229618 0.973053 -0.0210613
--0.245817 -0.0370421 0.968608
-0.941727 0.227587 0.247699
-0.0135165 -0.214494 0.463931
-
--0.242939 0.969911 -0.015935
--0.248757 -0.0464128 0.967453
-0.937604 0.238996 0.252547
-0.0147312 -0.212976 0.463338
-
--0.256237 0.966553 -0.0108178
--0.251491 -0.055857 0.966246
-0.933324 0.250309 0.257392
-0.0159459 -0.211458 0.462722
-
--0.269509 0.962981 -0.00570979
--0.254019 -0.0653707 0.964987
-0.928891 0.261523 0.262234
-0.0171606 -0.20994 0.462081
-
--0.282751 0.959193 -0.000611417
--0.25634 -0.0749496 0.963677
-0.924306 0.272637 0.267071
-0.0183754 -0.208422 0.461416
-
--0.295959 0.95519 0.00447709
--0.258451 -0.0845897 0.962314
-0.919571 0.283648 0.271905
-0.0195901 -0.206904 0.460726
-
--0.30913 0.950972 0.00955545
--0.260351 -0.0942868 0.960899
-0.914689 0.294555 0.276733
-0.0208048 -0.205386 0.460013
-
--0.322258 0.946539 0.0146234
--0.26204 -0.104037 0.959433
-0.909662 0.305353 0.281558
-0.0220195 -0.203868 0.459275
-
--0.335342 0.941891 0.0196806
--0.263516 -0.113835 0.957915
-0.904492 0.316043 0.286377
-0.0232342 -0.20235 0.458513
-
--0.348377 0.937028 0.0247268
--0.264778 -0.123678 0.956345
-0.899181 0.326622 0.291191
-0.0244489 -0.200832 0.457727
-
--0.361359 0.931952 0.0297618
--0.265824 -0.133561 0.954724
-0.893732 0.337087 0.295999
-0.0256636 -0.199314 0.456917
-
--0.374284 0.926661 0.0347852
--0.266656 -0.14348 0.953052
-0.888148 0.347437 0.300802
-0.0268783 -0.197796 0.456083
-
--0.387149 0.921158 0.0397967
--0.26727 -0.15343 0.951329
-0.88243 0.35767 0.305598
-0.028093 -0.196278 0.455224
-
--0.39995 0.915442 0.0447962
--0.267667 -0.163407 0.949554
-0.876581 0.367784 0.310388
-0.0293078 -0.19476 0.454341
-
--0.412683 0.909513 0.0497833
--0.267846 -0.173408 0.947728
-0.870604 0.377777 0.315172
-0.0305225 -0.193242 0.453435
-
--0.425344 0.903374 0.0547578
--0.267807 -0.183426 0.945851
-0.864501 0.387648 0.319949
-0.0317372 -0.191724 0.452503
-
--0.43793 0.897024 0.0597193
--0.267548 -0.193459 0.943923
-0.858275 0.397394 0.324719
-0.0329519 -0.190206 0.451548
-
--0.450436 0.890464 0.0646677
--0.26707 -0.203502 0.941945
-0.851928 0.407015 0.329481
-0.0341666 -0.188688 0.450569
-
--0.462859 0.883695 0.0696025
--0.266372 -0.21355 0.939916
-0.845463 0.416509 0.334236
-0.0353813 -0.18717 0.449565
-
--0.475196 0.876719 0.0745236
--0.265455 -0.223599 0.937836
-0.838882 0.425873 0.338982
-0.036596 -0.185652 0.448537
-
--0.487441 0.869535 0.0794308
--0.264317 -0.233645 0.935706
-0.832188 0.435107 0.343721
-0.0378107 -0.184134 0.447485
-
--0.499593 0.862146 0.0843236
--0.262959 -0.243683 0.933526
-0.825385 0.444209 0.348451
-0.0390255 -0.182616 0.446409
-
--0.511646 0.854553 0.0892019
--0.261381 -0.253709 0.931296
-0.818473 0.453179 0.353173
-0.0402402 -0.181098 0.445308
-
--0.523598 0.846757 0.0940653
--0.259583 -0.263718 0.929015
-0.811457 0.462013 0.357886
-0.0414549 -0.17958 0.444184
-
--0.535444 0.838758 0.0989137
--0.257565 -0.273706 0.926685
-0.804338 0.470712 0.362589
-0.0426696 -0.178062 0.443035
-
--0.547182 0.830559 0.103747
--0.255327 -0.283669 0.924305
-0.79712 0.479273 0.367283
-0.0438843 -0.176544 0.441862
-
--0.558806 0.822161 0.108564
--0.252871 -0.293602 0.921875
-0.789805 0.487697 0.371967
-0.045099 -0.175026 0.440665
-
--0.570314 0.813566 0.113366
--0.250196 -0.303501 0.919396
-0.782396 0.495981 0.376642
-0.0463137 -0.173508 0.439444
-
--0.581702 0.804775 0.118151
--0.247302 -0.313361 0.916868
-0.774896 0.504125 0.381306
-0.0475284 -0.17199 0.438198
-
--0.592967 0.79579 0.12292
--0.244192 -0.323178 0.91429
-0.767308 0.512127 0.385959
-0.0487432 -0.170472 0.436928
-
--0.604104 0.786612 0.127672
--0.240864 -0.332948 0.911663
-0.759633 0.519988 0.390602
-0.0499579 -0.168954 0.435634
-
--0.615111 0.777243 0.132408
--0.237321 -0.342667 0.908987
-0.751876 0.527705 0.395234
-0.0511726 -0.167436 0.434316
-
--0.625983 0.767686 0.137126
--0.233563 -0.352329 0.906263
-0.744039 0.535278 0.399855
-0.0523873 -0.165918 0.432974
-
--0.636717 0.757942 0.141827
--0.22959 -0.361931 0.90349
-0.736125 0.542706 0.404464
-0.053602 -0.1644 0.431608
-
--0.647311 0.748013 0.14651
--0.225405 -0.371469 0.900669
-0.728136 0.549988 0.409061
-0.0548167 -0.162882 0.430217
-
--0.657759 0.737902 0.151175
--0.221007 -0.380937 0.897799
-0.720075 0.557125 0.413647
-0.0560314 -0.161364 0.428802
-
--0.66806 0.727609 0.155822
--0.216399 -0.390332 0.894881
-0.711946 0.564114 0.41822
-0.0572461 -0.159846 0.427363
-
--0.674445 0.720622 0.160708
--0.212543 -0.397951 0.892447
-0.707071 0.567749 0.421559
-0.0582775 -0.15859 0.42599
-
--0.675602 0.718333 0.166011
--0.20982 -0.403193 0.890736
-0.70678 0.566951 0.423118
-0.0590674 -0.15767 0.42466
-
--0.67186 0.720507 0.171678
--0.208226 -0.406173 0.889756
-0.710806 0.562044 0.42292
-0.0596244 -0.157091 0.423378
-
--0.662116 0.728009 0.17778
--0.208124 -0.406531 0.889616
-0.719921 0.552029 0.420687
-0.059886 -0.156919 0.422184
-
--0.64689 0.739996 0.184225
--0.209377 -0.404647 0.890181
-0.733276 0.537277 0.4167
-0.0599034 -0.157081 0.421037
-
--0.626671 0.755528 0.190946
--0.211701 -0.400865 0.891341
-0.749977 0.518154 0.411157
-0.0597087 -0.157542 0.419942
-
--0.60602 0.770508 0.197632
--0.213958 -0.397191 0.892447
-0.766135 0.498556 0.405561
-0.059514 -0.158003 0.418822
-
--0.584951 0.784922 0.204281
--0.216153 -0.393624 0.893498
-0.781736 0.478496 0.399914
-0.0593193 -0.158464 0.417679
-
--0.56348 0.798758 0.210895
--0.218294 -0.390166 0.894493
-0.796767 0.457992 0.394214
-0.0591246 -0.158925 0.416511
-
--0.541624 0.812004 0.217471
--0.220386 -0.386818 0.895434
-0.811217 0.437061 0.388464
-0.0589298 -0.159386 0.415319
-
--0.519398 0.824649 0.22401
--0.222438 -0.383579 0.896319
-0.825074 0.415718 0.382663
-0.0587351 -0.159847 0.414103
-
--0.49682 0.836681 0.23051
--0.224455 -0.38045 0.89715
-0.838326 0.393983 0.376813
-0.0585404 -0.160308 0.412862
-
--0.473906 0.84809 0.236971
--0.226444 -0.377431 0.897925
-0.850962 0.371872 0.370912
-0.0583457 -0.160769 0.411598
-
--0.450675 0.858866 0.243394
--0.228412 -0.374521 0.898644
-0.862972 0.349403 0.364963
-0.058151 -0.16123 0.410309
-
--0.427143 0.869 0.249776
--0.230365 -0.37172 0.899309
-0.874346 0.326594 0.358965
-0.0579562 -0.161691 0.408996
-
--0.403329 0.878481 0.256117
--0.232311 -0.369026 0.899918
-0.885075 0.303464 0.352919
-0.0577615 -0.162152 0.407659
-
--0.379251 0.887302 0.262418
--0.234254 -0.366437 0.900471
-0.89515 0.280033 0.346826
-0.0575668 -0.162612 0.406298
-
--0.354928 0.895455 0.268676
--0.236203 -0.363954 0.900969
-0.904563 0.256317 0.340686
-0.0573721 -0.163073 0.404912
-
--0.330378 0.902931 0.274893
--0.238162 -0.361573 0.901412
-0.913307 0.232338 0.3345
-0.0571774 -0.163534 0.403503
-
--0.305621 0.909724 0.281067
--0.240139 -0.359293 0.901799
-0.921373 0.208114 0.328268
-0.0569826 -0.163995 0.402069
-
--0.280676 0.915827 0.287198
--0.242139 -0.357112 0.902131
-0.928757 0.183664 0.32199
-0.0567879 -0.164456 0.400611
-
--0.255562 0.921234 0.293284
--0.244169 -0.355026 0.902407
-0.935452 0.15901 0.315668
-0.0565932 -0.164917 0.399129
-
--0.230299 0.925941 0.299327
--0.246234 -0.353033 0.902627
-0.941452 0.134169 0.309301
-0.0563985 -0.165378 0.397622
-
--0.205633 0.929806 0.305249
--0.247967 -0.35124 0.902853
-0.946693 0.109964 0.302787
-0.0562952 -0.165941 0.396141
-
--0.182052 0.932811 0.311001
--0.249142 -0.349725 0.903117
-0.951202 0.0869306 0.296071
-0.0563439 -0.166673 0.394716
-
--0.159582 0.935046 0.316579
--0.249766 -0.348498 0.903419
-0.955066 0.0650989 0.289157
-0.056547 -0.167574 0.393345
-
--0.138156 0.936608 0.32199
--0.249873 -0.347553 0.903753
-0.958372 0.0444026 0.28205
-0.056904 -0.168646 0.392027
-
--0.11756 0.937552 0.327378
--0.249673 -0.346979 0.904029
-0.961167 0.0245403 0.274872
-0.0574211 -0.169871 0.390788
-
--0.0978071 0.937932 0.332742
--0.249174 -0.346775 0.904245
-0.963507 0.00553099 0.267625
-0.0581005 -0.17125 0.389623
-
--0.07862 0.937812 0.338124
--0.248545 -0.346903 0.904369
-0.965424 -0.0129375 0.260362
-0.0588832 -0.172713 0.388498
-
--0.0594208 0.937285 0.343462
--0.24799 -0.347144 0.904429
-0.966939 -0.0314331 0.253064
-0.0596658 -0.174177 0.387349
-
--0.0402184 0.936351 0.348755
--0.247512 -0.347495 0.904425
-0.96805 -0.0499465 0.245734
-0.0604485 -0.175641 0.386175
-
--0.0210218 0.935008 0.354002
--0.247116 -0.347953 0.904357
-0.968758 -0.0684684 0.238371
-0.0612312 -0.177104 0.384978
-
--0.00191559 0.934076 0.357068
--0.249015 -0.346266 0.904484
-0.968498 -0.0871827 0.233262
-0.0621564 -0.178178 0.383841
-
-0.0174172 0.933731 0.357551
--0.253712 -0.341773 0.904887
-0.967123 -0.106476 0.230946
-0.0632541 -0.178777 0.382776
-
-0.0356611 0.934142 0.355115
--0.261242 -0.334271 0.905547
-0.964614 -0.125064 0.232117
-0.06459 -0.178826 0.381788
-
-0.0525532 0.935517 0.349352
--0.271895 -0.323214 0.906425
-0.960891 -0.142622 0.237376
-0.0662096 -0.178241 0.38089
-
-0.0690899 0.936828 0.342899
--0.282877 -0.311216 0.907263
-0.956665 -0.159681 0.243505
-0.0678971 -0.177528 0.379982
-
-0.0857292 0.937797 0.336434
--0.293515 -0.298919 0.908018
-0.952103 -0.176592 0.249631
-0.0695846 -0.176816 0.37905
-
-0.102463 0.938419 0.329957
--0.303802 -0.286333 0.90869
-0.947209 -0.193349 0.255755
-0.0712722 -0.176103 0.378093
-
-0.119284 0.93869 0.32347
--0.31373 -0.273467 0.909279
-0.94199 -0.209945 0.261875
-0.0729597 -0.17539 0.377113
-
-0.136184 0.938607 0.316971
--0.323292 -0.260331 0.909786
-0.936449 -0.226373 0.267991
-0.0746473 -0.174677 0.376108
-
-0.153155 0.938166 0.310463
--0.33248 -0.246934 0.910209
-0.930591 -0.242626 0.274103
-0.0763348 -0.173965 0.37508
-
-0.170189 0.937365 0.303946
--0.341288 -0.233286 0.910549
-0.924423 -0.258698 0.280209
-0.0780223 -0.173252 0.374027
-
-0.187277 0.936199 0.297419
--0.349709 -0.219397 0.910807
-0.917949 -0.274583 0.28631
-0.0797099 -0.172539 0.372949
-
-0.20441 0.934667 0.290885
--0.357737 -0.205276 0.910981
-0.911175 -0.290274 0.292404
-0.0813974 -0.171826 0.371848
-
-0.221581 0.932765 0.284342
--0.365365 -0.190936 0.911072
-0.904107 -0.305765 0.298492
-0.0830849 -0.171113 0.370723
-
-0.23878 0.930492 0.277793
--0.372589 -0.176385 0.91108
-0.896751 -0.321051 0.304573
-0.0847725 -0.170401 0.369573
-
-0.256 0.927844 0.271238
--0.379401 -0.161635 0.911004
-0.889111 -0.336125 0.310646
-0.08646 -0.169688 0.368399
-
-0.27323 0.92482 0.264676
--0.385797 -0.146697 0.910846
-0.881196 -0.350982 0.316711
-0.0881476 -0.168975 0.367201
-
-0.290462 0.921418 0.25811
--0.391772 -0.131581 0.910605
-0.87301 -0.365617 0.322767
-0.0898351 -0.168262 0.365979
-
-0.307688 0.917636 0.251538
--0.397322 -0.116298 0.91028
-0.86456 -0.380024 0.328813
-0.0915226 -0.16755 0.364732
-
-0.324897 0.913474 0.244963
--0.402441 -0.10086 0.909873
-0.855852 -0.394198 0.33485
-0.0932102 -0.166837 0.363462
-
-0.342082 0.90893 0.238384
--0.407125 -0.0852785 0.909382
-0.846894 -0.408135 0.340876
-0.0948977 -0.166124 0.362167
-
-0.359232 0.904002 0.231803
--0.411372 -0.0695643 0.908809
-0.837691 -0.42183 0.346891
-0.0965853 -0.165411 0.360848
-
-0.376339 0.898691 0.225219
--0.415176 -0.0537291 0.908153
-0.82825 -0.435279 0.352895
-0.0982728 -0.164698 0.359504
-
-0.393393 0.892996 0.218633
--0.418536 -0.0377845 0.907414
-0.818578 -0.448476 0.358887
-0.0999603 -0.163986 0.358137
-
-0.410385 0.886916 0.212046
--0.421447 -0.0217424 0.906592
-0.808682 -0.461418 0.364866
-0.101648 -0.163273 0.356746
-
-0.427306 0.880452 0.205459
--0.423908 -0.00561455 0.905688
-0.798569 -0.474101 0.370832
-0.103335 -0.16256 0.35533
-
-0.444145 0.873604 0.198872
--0.425916 0.0105872 0.904701
-0.788245 -0.486521 0.376784
-0.105023 -0.161847 0.35389
-
-0.460895 0.866373 0.192285
--0.427468 0.026851 0.903631
-0.777719 -0.498675 0.382723
-0.10671 -0.161134 0.352426
-
-0.477545 0.858759 0.1857
--0.428564 0.0431646 0.90248
-0.766996 -0.510559 0.388646
-0.108398 -0.160422 0.350937
-
-0.494086 0.850762 0.179117
--0.429202 0.0595162 0.901246
-0.756085 -0.52217 0.394555
-0.110086 -0.159709 0.349425
-
-0.510508 0.842385 0.172536
--0.42938 0.0758935 0.89993
-0.744993 -0.533505 0.400447
-0.111773 -0.158996 0.347888
-
-0.526803 0.833629 0.165958
--0.429098 0.0922845 0.898531
-0.733726 -0.544561 0.406324
-0.113461 -0.158283 0.346327
-
-0.54296 0.824495 0.159384
--0.428355 0.108677 0.897052
-0.722293 -0.555336 0.412184
-0.115148 -0.157571 0.344742
-
-0.55897 0.814985 0.152814
--0.427151 0.125059 0.89549
-0.7107 -0.565826 0.418026
-0.116836 -0.156858 0.343133
-
-0.574824 0.805102 0.146249
--0.425487 0.141418 0.893847
-0.698955 -0.576031 0.423851
-0.118523 -0.156145 0.3415
-
-0.590512 0.794848 0.139689
--0.423363 0.157742 0.892122
-0.687066 -0.585948 0.429657
-0.120211 -0.155432 0.339842
-
-0.603342 0.786164 0.133884
--0.421468 0.171818 0.890418
-0.677011 -0.593654 0.435008
-0.121792 -0.154869 0.338226
-
-0.611863 0.780335 0.129231
--0.420392 0.182434 0.888813
-0.669996 -0.598159 0.439671
-0.123136 -0.154555 0.336738
-
-0.612113 0.780527 0.126867
--0.421619 0.186407 0.887406
-0.668996 -0.596683 0.443187
-0.124019 -0.154734 0.335488
-
-0.604145 0.78674 0.126686
--0.425254 0.183853 0.886204
-0.67392 -0.589269 0.445638
-0.124487 -0.155386 0.334456
-
-0.587768 0.79873 0.128683
--0.431203 0.174702 0.88518
-0.684539 -0.575768 0.447099
-0.124537 -0.156511 0.333638
-
-0.564054 0.815033 0.132531
--0.438693 0.159807 0.884313
-0.699565 -0.556941 0.447689
-0.124266 -0.158032 0.332999
-
-0.535655 0.83318 0.137426
--0.446587 0.141387 0.883498
-0.716683 -0.534623 0.447822
-0.123737 -0.159788 0.332482
-
-0.506647 0.850327 0.142313
--0.453747 0.122631 0.882652
-0.733091 -0.511768 0.447964
-0.123208 -0.161544 0.331942
-
-0.477067 0.866453 0.147192
--0.46016 0.103568 0.881775
-0.748772 -0.488397 0.448116
-0.122678 -0.1633 0.331377
-
-0.44695 0.88154 0.152061
--0.465813 0.0842271 0.880866
-0.763711 -0.464535 0.448278
-0.122149 -0.165057 0.330788
-
-0.416333 0.895568 0.156922
--0.470695 0.0646365 0.879925
-0.77789 -0.440205 0.44845
-0.12162 -0.166813 0.330175
-
-0.385255 0.90852 0.161773
--0.474795 0.0448265 0.878954
-0.791295 -0.41543 0.448631
-0.12109 -0.168569 0.329538
-
-0.353751 0.92038 0.166615
--0.478106 0.0248272 0.877951
-0.803912 -0.390236 0.448822
-0.120561 -0.170325 0.328876
-
-0.321863 0.931134 0.171448
--0.480618 0.00466912 0.876918
-0.815727 -0.364648 0.449022
-0.120032 -0.172081 0.32819
-
-0.289628 0.940768 0.17627
--0.482324 -0.0156169 0.875853
-0.826728 -0.338691 0.449232
-0.119502 -0.173837 0.327481
-
-0.257087 0.949271 0.181082
--0.483221 -0.0359998 0.874758
-0.836902 -0.312391 0.449452
-0.118973 -0.175593 0.326747
-
-0.224279 0.956633 0.185884
--0.483301 -0.0564482 0.873632
-0.846238 -0.285775 0.449682
-0.118443 -0.17735 0.325988
-
-0.191245 0.962844 0.190676
--0.482564 -0.0769305 0.872476
-0.854727 -0.258869 0.449921
-0.117914 -0.179106 0.325206
-
-0.158025 0.967897 0.195456
--0.481006 -0.0974151 0.871289
-0.862358 -0.231701 0.45017
-0.117385 -0.180862 0.324399
-
-0.124661 0.971787 0.200226
--0.478626 -0.11787 0.870071
-0.869124 -0.204298 0.450429
-0.116855 -0.182618 0.323568
-
-0.0911946 0.974507 0.204985
--0.475426 -0.138264 0.868823
-0.875016 -0.176687 0.450697
-0.116326 -0.184374 0.322713
-
-0.0576662 0.976057 0.209732
--0.471406 -0.158564 0.867545
-0.880029 -0.148897 0.450975
-0.115797 -0.18613 0.321834
-
-0.0241175 0.976433 0.214468
--0.466569 -0.17874 0.866236
-0.884156 -0.120956 0.451263
-0.115267 -0.187886 0.320931
-
--0.00940982 0.975636 0.219192
--0.460919 -0.198758 0.864898
-0.887392 -0.0928913 0.45156
-0.114738 -0.189643 0.320003
-
--0.0428742 0.973668 0.223904
--0.454462 -0.218588 0.863529
-0.889734 -0.0647328 0.451867
-0.114209 -0.191399 0.319052
-
--0.0762342 0.97053 0.228604
--0.447204 -0.238199 0.862131
-0.891177 -0.0365088 0.452184
-0.113679 -0.193155 0.318076
-
--0.109448 0.966228 0.233292
--0.439152 -0.257558 0.860703
-0.891721 -0.00824795 0.45251
-0.11315 -0.194911 0.317076
-
--0.142476 0.960767 0.237967
--0.430315 -0.276635 0.859245
-0.891364 0.0200207 0.452846
-0.11262 -0.196667 0.316051
-
--0.175275 0.954154 0.24263
--0.420703 -0.295399 0.857758
-0.890106 0.0482684 0.453191
-0.112091 -0.198423 0.315003
-
--0.207805 0.946399 0.247279
--0.410327 -0.31382 0.856241
-0.887947 0.076466 0.453546
-0.111562 -0.20018 0.31393
-
--0.240026 0.937511 0.251915
--0.399199 -0.331867 0.854695
-0.884888 0.104585 0.453911
-0.111032 -0.201936 0.312833
-
--0.271898 0.927502 0.256539
--0.387334 -0.349512 0.85312
-0.880934 0.132595 0.454285
-0.110503 -0.203692 0.311712
-
--0.303381 0.916385 0.261148
--0.374745 -0.366726 0.851515
-0.876086 0.160469 0.454668
-0.109974 -0.205448 0.310567
-
--0.334435 0.904175 0.265744
--0.361448 -0.383479 0.849882
-0.870349 0.188178 0.455062
-0.109444 -0.207204 0.309398
-
--0.363313 0.892129 0.268534
--0.349486 -0.397684 0.848356
-0.863634 0.21437 0.45627
-0.108875 -0.208669 0.308356
-
--0.389632 0.880805 0.269017
--0.339587 -0.408922 0.847032
-0.856077 0.238676 0.458439
-0.10825 -0.20976 0.307478
-
--0.412929 0.870946 0.26635
--0.332834 -0.416525 0.846007
-0.847768 0.260691 0.461876
-0.107509 -0.21033 0.306859
-
--0.43389 0.86249 0.260481
--0.329166 -0.420879 0.845287
-0.838683 0.28102 0.466518
-0.10666 -0.210383 0.306506
-
--0.453206 0.85521 0.251437
--0.328392 -0.42241 0.844825
-0.828712 0.30031 0.472282
-0.105746 -0.209954 0.306402
-
--0.471824 0.848205 0.240689
--0.329098 -0.422679 0.844415
-0.817971 0.319205 0.478572
-0.104803 -0.209278 0.306418
-
--0.490229 0.840729 0.229892
--0.329884 -0.423112 0.843891
-0.806754 0.337862 0.484765
-0.10386 -0.208601 0.30641
-
--0.508408 0.83279 0.219047
--0.330744 -0.423715 0.843252
-0.795066 0.356268 0.49086
-0.102917 -0.207925 0.306378
-
--0.524713 0.82543 0.208184
--0.332071 -0.423648 0.842764
-0.78384 0.373078 0.496395
-0.101919 -0.207328 0.30632
-
--0.535206 0.82133 0.197414
--0.334814 -0.420821 0.843095
-0.775535 0.385132 0.500219
-0.100725 -0.20701 0.306229
-
--0.538508 0.82167 0.186726
--0.339444 -0.414366 0.84444
-0.771224 0.391355 0.502051
-0.0992853 -0.207047 0.306119
-
--0.533555 0.827205 0.17621
--0.346112 -0.403655 0.846917
-0.771703 0.390889 0.501678
-0.0975659 -0.207474 0.305973
-
--0.524589 0.835059 0.165778
--0.35346 -0.390773 0.849919
-0.774514 0.387262 0.500156
-0.095714 -0.208104 0.3058
-
--0.51383 0.84371 0.155345
--0.36091 -0.376865 0.853063
-0.778282 0.382264 0.498148
-0.0938099 -0.208816 0.3056
-
--0.502902 0.852113 0.144888
--0.368078 -0.362798 0.856094
-0.782054 0.377201 0.496096
-0.0919058 -0.209528 0.305375
-
--0.491811 0.860265 0.134408
--0.374963 -0.348576 0.85901
-0.785827 0.372073 0.494001
-0.0900017 -0.210239 0.305125
-
--0.480563 0.868163 0.123906
--0.381559 -0.334208 0.861811
-0.789602 0.366877 0.491863
-0.0880976 -0.210951 0.304852
-
--0.469164 0.875802 0.113384
--0.387863 -0.319698 0.864497
-0.793377 0.361613 0.489682
-0.0861935 -0.211663 0.304554
-
--0.457619 0.883181 0.102844
--0.393873 -0.305052 0.867068
-0.797151 0.35628 0.487458
-0.0842893 -0.212375 0.304233
-
--0.445935 0.890295 0.0922857
--0.399584 -0.290278 0.869524
-0.800921 0.350875 0.485192
-0.0823852 -0.213087 0.303887
-
--0.434117 0.897143 0.0817114
--0.404994 -0.27538 0.871863
-0.804688 0.345398 0.482885
-0.0804811 -0.213798 0.303517
-
--0.422171 0.903722 0.0711222
--0.4101 -0.260367 0.874087
-0.808449 0.339847 0.480535
-0.078577 -0.21451 0.303122
-
--0.410104 0.910028 0.0605195
--0.414898 -0.245243 0.876194
-0.812203 0.334221 0.478145
-0.0766729 -0.215222 0.302704
-
--0.397923 0.916061 0.0499045
--0.419387 -0.230016 0.878184
-0.815949 0.32852 0.475713
-0.0747688 -0.215934 0.302261
-
--0.385632 0.921816 0.0392787
--0.423564 -0.214693 0.880057
-0.819684 0.322741 0.473241
-0.0728646 -0.216645 0.301794
-
--0.373238 0.927293 0.0286434
--0.427426 -0.199279 0.881813
-0.823408 0.316884 0.470728
-0.0709605 -0.217357 0.301303
-
--0.360749 0.932489 0.0179999
--0.430971 -0.183782 0.883452
-0.827118 0.310947 0.468175
-0.0690564 -0.218069 0.300788
-
--0.34817 0.937403 0.00734948
--0.434198 -0.168208 0.884974
-0.830813 0.30493 0.465583
-0.0671523 -0.218781 0.300249
-
--0.335507 0.942032 -0.00330644
--0.437103 -0.152564 0.886378
-0.834492 0.298831 0.462951
-0.0652482 -0.219493 0.299685
-
--0.322767 0.946375 -0.0139665
--0.439686 -0.136857 0.887664
-0.838151 0.29265 0.460281
-0.0633441 -0.220204 0.299097
-
--0.309957 0.950431 -0.0246295
--0.441944 -0.121095 0.888832
-0.841791 0.286385 0.457572
-0.06144 -0.220916 0.298485
-
--0.297083 0.954199 -0.0352939
--0.443876 -0.105283 0.889882
-0.845408 0.280035 0.454824
-0.0595358 -0.221628 0.297849
-
--0.284152 0.957677 -0.0459586
--0.445482 -0.089429 0.890813
-0.849002 0.2736 0.452039
-0.0576317 -0.22234 0.297189
-
--0.27117 0.960865 -0.056622
--0.446759 -0.07354 0.891627
-0.852569 0.267079 0.449216
-0.0557276 -0.223051 0.296504
-
--0.258144 0.963761 -0.067283
--0.447706 -0.0576229 0.892322
-0.856108 0.260471 0.446357
-0.0538235 -0.223763 0.295796
-
--0.245081 0.966365 -0.0779402
--0.448323 -0.041685 0.892899
-0.859617 0.253775 0.44346
-0.0519194 -0.224475 0.295063
-
--0.231987 0.968676 -0.0885922
--0.448609 -0.0257332 0.893357
-0.863094 0.246991 0.440527
-0.0500153 -0.225187 0.294306
-
--0.218869 0.970695 -0.0992377
--0.448564 -0.00977484 0.893697
-0.866537 0.240117 0.437558
-0.0481111 -0.225899 0.293524
-
--0.205734 0.97242 -0.109875
--0.448187 0.00618308 0.893919
-0.869944 0.233154 0.434554
-0.046207 -0.22661 0.292719
-
--0.192587 0.973853 -0.120504
--0.447477 0.0221333 0.894022
-0.873312 0.2261 0.431514
-0.0443029 -0.227322 0.291889
-
--0.179437 0.974992 -0.131122
--0.446435 0.0380688 0.894006
-0.87664 0.218955 0.42844
-0.0423988 -0.228034 0.291035
-
--0.16629 0.975839 -0.141728
--0.445061 0.0539821 0.893872
-0.879925 0.211719 0.425331
-0.0404947 -0.228746 0.290157
-
--0.153152 0.976393 -0.152321
--0.443354 0.0698663 0.893619
-0.883166 0.204392 0.422188
-0.0385906 -0.229457 0.289255
-
--0.140029 0.976655 -0.1629
--0.441317 0.085714 0.893248
-0.886359 0.196972 0.419012
-0.0366865 -0.230169 0.288329
-
--0.12693 0.976627 -0.173463
--0.438948 0.101518 0.892759
-0.889502 0.189459 0.415802
-0.0347823 -0.230881 0.287378
-
--0.11386 0.976308 -0.184009
--0.436248 0.117271 0.892152
-0.892594 0.181854 0.41256
-0.0328782 -0.231593 0.286404
-
--0.100825 0.9757 -0.194537
--0.433219 0.132967 0.891426
-0.895631 0.174155 0.409285
-0.0309741 -0.232305 0.285405
-
--0.0863614 0.97523 -0.203639
--0.428616 0.148149 0.891258
-0.89935 0.164253 0.405205
-0.0289455 -0.232887 0.284545
-
--0.0705999 0.974918 -0.211071
--0.422176 0.16251 0.891828
-0.90376 0.152072 0.400114
-0.0267647 -0.233314 0.283855
-
--0.053518 0.974734 -0.216862
--0.41387 0.17599 0.893162
-0.908761 0.137553 0.393995
-0.0244319 -0.233586 0.283335
-
--0.0361891 0.974408 -0.221854
--0.404477 0.188721 0.894864
-0.913832 0.122119 0.387296
-0.0220221 -0.233777 0.282884
-
--0.0189198 0.973747 -0.226847
--0.39475 0.20118 0.896493
-0.918594 0.106509 0.38058
-0.0196122 -0.233968 0.282409
-
--0.00171713 0.972752 -0.231841
--0.384696 0.213357 0.898047
-0.923042 0.0907301 0.373847
-0.0172024 -0.23416 0.28191
-
-0.0154121 0.971428 -0.236834
--0.374321 0.225243 0.899527
-0.927171 0.0747884 0.367097
-0.0147925 -0.234351 0.281387
-
-0.0324611 0.969776 -0.241827
--0.363634 0.236832 0.900933
-0.930976 0.0586913 0.360332
-0.0123827 -0.234542 0.280839
-
-0.0494231 0.9678 -0.246819
--0.352642 0.248114 0.902265
-0.934452 0.0424461 0.35355
-0.00997283 -0.234734 0.280268
-
-0.0662917 0.965504 -0.25181
--0.341354 0.259083 0.903523
-0.937594 0.0260603 0.346753
-0.00756298 -0.234925 0.279672
-
-0.0830603 0.962889 -0.2568
--0.329777 0.26973 0.904706
-0.940398 0.00954144 0.339942
-0.00515314 -0.235116 0.279052
-
-0.0997225 0.95996 -0.261787
--0.31792 0.280047 0.905815
-0.942859 -0.00710283 0.333117
-0.00274329 -0.235307 0.278408
-
-0.116272 0.95672 -0.266772
--0.305791 0.290029 0.906849
-0.944972 -0.0238647 0.326278
-0.000333447 -0.235499 0.277739
-
-0.132703 0.953173 -0.271755
--0.293399 0.299668 0.907808
-0.946735 -0.0407361 0.319427
--0.0020764 -0.23569 0.277047
-
-0.149008 0.949323 -0.276734
--0.280753 0.308958 0.908693
-0.948142 -0.0577091 0.312563
--0.00448624 -0.235881 0.27633
-
-0.159357 0.946123 -0.28188
--0.27139 0.316512 0.908937
-0.949185 -0.0683464 0.307207
--0.00683254 -0.235791 0.275549
-
-0.162205 0.944007 -0.287299
--0.266578 0.322251 0.908345
-0.950066 -0.0707509 0.303922
--0.00909708 -0.235326 0.274676
-
-0.157643 0.943042 -0.292952
--0.266474 0.326281 0.906936
-0.950863 -0.0649079 0.302732
--0.0112835 -0.234487 0.273708
-
-0.145722 0.943101 -0.298873
--0.271178 0.328604 0.9047
-0.951435 -0.0507866 0.303633
--0.0133911 -0.233273 0.272649
-
-0.128299 0.943681 -0.304967
--0.279567 0.329452 0.901833
-0.951515 -0.0304459 0.306091
--0.0154415 -0.231778 0.271515
-
-0.110916 0.943898 -0.311052
--0.288067 0.330081 0.898924
-0.951165 -0.010101 0.308517
--0.0174919 -0.230282 0.270357
-
-0.0935792 0.943754 -0.317129
--0.296671 0.330489 0.895971
-0.950384 0.0102385 0.310911
--0.0195423 -0.228787 0.269175
-
-0.0762974 0.943251 -0.323196
--0.305372 0.33067 0.892975
-0.949171 0.0305635 0.313272
--0.0215927 -0.227291 0.267968
-
-0.0590785 0.942391 -0.329255
--0.314167 0.330623 0.889937
-0.947528 0.0508647 0.315601
--0.0236431 -0.225796 0.266738
-
-0.0419303 0.941177 -0.335303
--0.323047 0.330343 0.886856
-0.945453 0.0711327 0.317896
--0.0256935 -0.2243 0.265483
-
-0.0248607 0.93961 -0.341342
--0.332009 0.329827 0.883733
-0.942949 0.0913583 0.320159
--0.0277439 -0.222805 0.264204
-
-0.00787739 0.937695 -0.34737
--0.341045 0.329072 0.880568
-0.940014 0.111532 0.322388
--0.0297943 -0.221309 0.262901
-
--0.00901191 0.935434 -0.353388
--0.350149 0.328076 0.877361
-0.936651 0.131645 0.324584
--0.0318447 -0.219814 0.261573
-
--0.0239634 0.933268 -0.358381
--0.357832 0.326726 0.874761
-0.933479 0.149202 0.326123
--0.0340058 -0.218225 0.260352
-
--0.0325674 0.932186 -0.360511
--0.361216 0.325344 0.873884
-0.931913 0.158683 0.326125
--0.0364237 -0.216342 0.259454
-
--0.0342085 0.932431 -0.359726
--0.360104 0.324261 0.874746
-0.932285 0.159463 0.324679
--0.0390894 -0.214159 0.258881
-
--0.0341696 0.933134 -0.357901
--0.35755 0.322994 0.876261
-0.933269 0.157909 0.322606
--0.0418702 -0.211883 0.258411
-
--0.0341246 0.933835 -0.356072
--0.354996 0.32172 0.877767
-0.934245 0.156357 0.320529
--0.0446511 -0.209608 0.257917
-
--0.0340737 0.934534 -0.354239
--0.35244 0.320439 0.879264
-0.935214 0.154808 0.318448
--0.0474319 -0.207333 0.257399
-
--0.0340168 0.93523 -0.352404
--0.349883 0.31915 0.880752
-0.936176 0.153261 0.316365
--0.0502127 -0.205057 0.256857
-
--0.0339539 0.935923 -0.350565
--0.347325 0.317854 0.882232
-0.93713 0.151715 0.314277
--0.0529936 -0.202782 0.25629
-
--0.033885 0.936613 -0.348724
--0.344767 0.316551 0.883703
-0.938077 0.150173 0.312186
--0.0557744 -0.200506 0.2557
-
--0.0338101 0.9373 -0.346879
--0.342207 0.31524 0.885166
-0.939016 0.148632 0.310092
--0.0585552 -0.198231 0.255085
-
--0.0337293 0.937985 -0.345031
--0.339646 0.313923 0.886619
-0.939948 0.147093 0.307995
--0.0613361 -0.195955 0.254446
-
--0.0336424 0.938667 -0.34318
--0.337085 0.312597 0.888064
-0.940873 0.145557 0.305894
--0.0641169 -0.19368 0.253782
-
--0.0335496 0.939346 -0.341325
--0.334522 0.311265 0.889499
-0.94179 0.144023 0.30379
--0.0668977 -0.191405 0.253095
-
--0.0334507 0.940023 -0.339468
--0.331959 0.309925 0.890926
-0.9427 0.142492 0.301682
--0.0696785 -0.189129 0.252383
-
--0.0333459 0.940696 -0.337608
--0.329396 0.308578 0.892344
-0.943603 0.140962 0.299571
--0.0724594 -0.186854 0.251647
-
--0.0332351 0.941367 -0.335744
--0.326831 0.307224 0.893753
-0.944498 0.139436 0.297457
--0.0752402 -0.184578 0.250887
-
--0.0331183 0.942034 -0.333878
--0.324266 0.305862 0.895154
-0.945386 0.137911 0.29534
--0.078021 -0.182303 0.250103
-
--0.0329956 0.942699 -0.332008
--0.3217 0.304494 0.896545
-0.946267 0.136389 0.293219
--0.0808019 -0.180027 0.249295
-
--0.0328668 0.943361 -0.330136
--0.319133 0.303118 0.897927
-0.94714 0.134869 0.291095
--0.0835827 -0.177752 0.248462
-
--0.0327321 0.94402 -0.328261
--0.316566 0.301734 0.899301
-0.948005 0.133352 0.288968
--0.0863635 -0.175477 0.247605
-
--0.0325914 0.944676 -0.326383
--0.313999 0.300344 0.900665
-0.948864 0.131838 0.286838
--0.0891443 -0.173201 0.246725
-
--0.0324447 0.945329 -0.324501
--0.311431 0.298947 0.902021
-0.949715 0.130325 0.284705
--0.0919252 -0.170926 0.245819
-
--0.0334242 0.945755 -0.323157
--0.308704 0.297758 0.903351
-0.950571 0.129954 0.282006
--0.094602 -0.168752 0.24489
-
--0.0358703 0.94549 -0.323671
--0.304493 0.298139 0.904653
-0.951839 0.131006 0.2772
--0.0969965 -0.166959 0.24394
-
--0.0402045 0.944436 -0.326228
--0.298704 0.300201 0.9059
-0.953499 0.133867 0.270037
--0.0990861 -0.165584 0.242957
-
--0.0471117 0.942436 -0.331051
--0.291327 0.304047 0.907019
-0.955463 0.139175 0.260233
--0.100848 -0.164662 0.241924
-
--0.0567694 0.939402 -0.338084
--0.28247 0.309682 0.907914
-0.957595 0.14704 0.247773
--0.102271 -0.164191 0.24085
-
--0.0680597 0.935853 -0.345755
--0.273463 0.315787 0.908569
-0.959472 0.156388 0.234429
--0.103557 -0.163857 0.239754
-
--0.0793989 0.932123 -0.35333
--0.264548 0.322036 0.909014
-0.961098 0.165648 0.221022
--0.104844 -0.163524 0.238634
-
--0.0907833 0.928211 -0.36081
--0.255731 0.328428 0.909251
-0.962476 0.174815 0.207556
--0.106131 -0.16319 0.237489
-
--0.102209 0.924115 -0.368191
--0.247015 0.334959 0.909278
-0.963606 0.183885 0.194034
--0.107418 -0.162857 0.236321
-
--0.113673 0.919836 -0.375472
--0.238404 0.341626 0.909096
-0.964491 0.192854 0.180459
--0.108705 -0.162523 0.235128
-
--0.125171 0.915374 -0.382652
--0.229902 0.348426 0.908705
-0.965131 0.201716 0.166834
--0.109992 -0.16219 0.233911
-
--0.1367 0.910728 -0.389728
--0.221514 0.355357 0.908104
-0.965528 0.210468 0.153162
--0.111279 -0.161856 0.23267
-
--0.148255 0.905897 -0.3967
--0.213243 0.362413 0.907295
-0.965685 0.219105 0.139447
--0.112565 -0.161523 0.231405
-
--0.159833 0.900882 -0.403564
--0.205094 0.369593 0.906277
-0.965603 0.227621 0.125692
--0.113852 -0.161189 0.230115
-
--0.17143 0.895683 -0.410321
--0.197069 0.376893 0.90505
-0.965285 0.236014 0.1119
--0.115139 -0.160856 0.228802
-
--0.183043 0.8903 -0.416967
--0.189173 0.38431 0.903615
-0.964733 0.244279 0.0980753
--0.116426 -0.160522 0.227464
-
--0.194667 0.884732 -0.423502
--0.181409 0.391839 0.901972
-0.963948 0.252411 0.08422
--0.117713 -0.160189 0.226102
-
--0.206299 0.87898 -0.429924
--0.17378 0.399477 0.900121
-0.962934 0.260406 0.0703379
--0.119 -0.159855 0.224716
-
--0.217934 0.873045 -0.436231
--0.166291 0.407221 0.898063
-0.961692 0.26826 0.0564322
--0.120287 -0.159522 0.223305
-
--0.22957 0.866926 -0.442422
--0.158945 0.415067 0.895799
-0.960226 0.27597 0.0425063
--0.121573 -0.159189 0.221871
-
--0.241203 0.860624 -0.448495
--0.151744 0.42301 0.893329
-0.958538 0.28353 0.0285635
--0.12286 -0.158855 0.220412
-
--0.252827 0.854139 -0.45445
--0.144693 0.431047 0.890653
-0.956631 0.290937 0.0146072
--0.124147 -0.158522 0.218929
-
--0.258613 0.850094 -0.458758
--0.134775 0.438516 0.88856
-0.956533 0.291623 0.0011655
--0.125288 -0.157849 0.217641
-
--0.254749 0.850401 -0.46035
--0.119799 0.444635 0.887665
-0.959558 0.281281 -0.0113936
--0.126227 -0.156619 0.216689
-
--0.24512 0.85328 -0.46025
--0.101767 0.449464 0.887483
-0.964137 0.264378 -0.0233368
--0.12695 -0.155003 0.215975
-
--0.230347 0.858258 -0.458622
--0.0810607 0.452734 0.887953
-0.969726 0.241714 -0.0347151
--0.127469 -0.153034 0.215473
-
--0.211769 0.864449 -0.455942
--0.0583959 0.454497 0.888832
-0.975574 0.214852 -0.0457679
--0.12793 -0.150862 0.215069
-
--0.192995 0.870245 -0.45324
--0.0356913 0.455392 0.889575
-0.98055 0.187861 -0.0568283
--0.128391 -0.148691 0.21464
-
--0.174035 0.875641 -0.450516
--0.0129782 0.455418 0.890183
-0.984654 0.16077 -0.0678946
--0.128852 -0.146519 0.214188
-
--0.154897 0.880629 -0.447771
-0.0097122 0.454577 0.890655
-0.987883 0.13361 -0.0789652
--0.129312 -0.144348 0.213711
-
--0.135588 0.885204 -0.445005
-0.0323486 0.452869 0.89099
-0.990237 0.106412 -0.0900385
--0.129773 -0.142176 0.21321
-
--0.116117 0.889359 -0.442219
-0.0549 0.450297 0.891189
-0.991717 0.0792043 -0.101113
--0.130234 -0.140005 0.212685
-
--0.101835 0.892087 -0.440239
-0.0726686 0.448028 0.891061
-0.992144 0.05875 -0.110452
--0.130669 -0.137553 0.21208
-
--0.0959101 0.893112 -0.439492
-0.0829893 0.447165 0.890593
-0.991924 0.0489438 -0.117006
--0.131042 -0.134653 0.211304
-
--0.0992741 0.892403 -0.440183
-0.0851638 0.448365 0.889784
-0.991409 0.0508449 -0.120512
--0.131364 -0.131252 0.210387
-
--0.108812 0.890528 -0.441724
-0.0819769 0.450887 0.888808
-0.990676 0.0605018 -0.122065
--0.131651 -0.127529 0.209361
-
--0.118326 0.888549 -0.44326
-0.0787488 0.453387 0.887828
-0.989847 0.0701468 -0.12362
--0.131939 -0.123806 0.20831
-
--0.127815 0.886467 -0.444792
-0.0754796 0.455864 0.886843
-0.988922 0.0797791 -0.125176
--0.132226 -0.120083 0.207236
-
--0.137278 0.884282 -0.446319
-0.0721695 0.458317 0.885854
-0.9879 0.0893976 -0.126735
--0.132514 -0.11636 0.206137
-
--0.146714 0.881994 -0.447842
-0.0688186 0.460745 0.88486
-0.986782 0.0990013 -0.128295
--0.132801 -0.112637 0.205014
-
--0.156121 0.879603 -0.44936
-0.0654272 0.463148 0.883863
-0.985569 0.108589 -0.129857
--0.133089 -0.108914 0.203867
-
--0.165499 0.877111 -0.450873
-0.0619955 0.465526 0.88286
-0.984259 0.118161 -0.131421
--0.133376 -0.105191 0.202696
-
--0.174847 0.874517 -0.452381
-0.0585235 0.467877 0.881854
-0.982855 0.127714 -0.132987
--0.133664 -0.101468 0.2015
-
--0.187641 0.871649 -0.45279
-0.0533981 0.469349 0.881397
-0.980785 0.141208 -0.134614
--0.134053 -0.0979454 0.200374
-
--0.204946 0.86828 -0.45176
-0.046074 0.469604 0.881674
-0.977688 0.159881 -0.136248
--0.134651 -0.0947225 0.199335
-
--0.227074 0.86418 -0.449033
-0.0366062 0.468325 0.882798
-0.973189 0.184023 -0.137979
--0.135425 -0.0918104 0.19841
-
--0.253677 0.859023 -0.444665
-0.0252847 0.465434 0.884721
-0.966958 0.21319 -0.13979
--0.136338 -0.0891812 0.197589
-
--0.284016 0.852512 -0.438815
-0.0126027 0.460941 0.887341
-0.958737 0.246488 -0.141658
--0.137364 -0.0867967 0.196854
-
--0.314176 0.844899 -0.432941
-0.00023174 0.456101 0.889928
-0.949365 0.279494 -0.143492
--0.138391 -0.0844121 0.196095
-
--0.344119 0.83619 -0.427045
--0.0118187 0.450929 0.892481
-0.938852 0.312167 -0.145291
--0.139417 -0.0820275 0.195311
-
--0.373803 0.826392 -0.421127
--0.0235396 0.445442 0.895001
-0.927209 0.344467 -0.147055
--0.140444 -0.0796429 0.194504
-
--0.403188 0.815512 -0.415186
--0.034923 0.439655 0.897488
-0.914451 0.376355 -0.148783
--0.141471 -0.0772583 0.193672
-
--0.432233 0.803561 -0.409224
--0.0459613 0.433584 0.89994
-0.90059 0.407793 -0.150477
--0.142497 -0.0748737 0.192816
-
--0.4609 0.790549 -0.403241
--0.0566478 0.427247 0.902359
-0.885642 0.43874 -0.152135
--0.143524 -0.0724891 0.191936
-
--0.489149 0.776489 -0.397238
--0.0669765 0.420658 0.904743
-0.869625 0.46916 -0.153758
--0.14455 -0.0701046 0.191032
-
--0.516941 0.761396 -0.391214
--0.076942 0.413836 0.907094
-0.852556 0.499015 -0.155345
--0.145577 -0.06772 0.190103
-
--0.544237 0.745285 -0.38517
--0.0865398 0.406797 0.90941
-0.834456 0.528267 -0.156897
--0.146603 -0.0653354 0.189151
-
--0.571 0.728173 -0.379107
--0.0957659 0.399557 0.911692
-0.815345 0.556882 -0.158413
--0.14763 -0.0629508 0.188174
-
--0.597193 0.710079 -0.373026
--0.104617 0.392134 0.91394
-0.795246 0.584824 -0.159893
--0.148656 -0.0605662 0.187173
-
--0.622779 0.691022 -0.366925
--0.113092 0.384544 0.916153
-0.774181 0.612057 -0.161337
--0.149683 -0.0581816 0.186148
-
--0.647722 0.671024 -0.360807
--0.121187 0.376805 0.918331
-0.752176 0.638549 -0.162746
--0.150709 -0.055797 0.185098
-
--0.671988 0.650108 -0.354672
--0.128902 0.368932 0.920475
-0.729257 0.664266 -0.164118
--0.151736 -0.0534125 0.184025
-
--0.695542 0.628297 -0.348519
--0.136237 0.360943 0.922583
-0.705451 0.689176 -0.165453
--0.152762 -0.0510279 0.182927
-
--0.71835 0.605616 -0.342349
--0.143192 0.352854 0.924657
-0.680786 0.713249 -0.166753
--0.153789 -0.0486433 0.181805
-
--0.74038 0.582092 -0.336164
--0.149768 0.344681 0.926695
-0.655291 0.736454 -0.168016
--0.154815 -0.0462587 0.180659
-
--0.761601 0.557753 -0.329962
--0.155967 0.336441 0.928699
-0.628997 0.758762 -0.169243
--0.155842 -0.0438741 0.179488
-
--0.781983 0.532627 -0.323746
--0.161792 0.32815 0.930667
-0.601935 0.780145 -0.170433
--0.156869 -0.0414895 0.178294
-
--0.801495 0.506745 -0.317514
--0.167244 0.319823 0.9326
-0.574138 0.800577 -0.171586
--0.157895 -0.0391049 0.177075
-
--0.82011 0.480137 -0.311268
--0.172329 0.311476 0.934498
-0.545639 0.820031 -0.172703
--0.158922 -0.0367203 0.175832
-
--0.8378 0.452836 -0.305008
--0.17705 0.303124 0.93636
-0.516473 0.838484 -0.173783
--0.159948 -0.0343358 0.174565
-
--0.85454 0.424875 -0.298735
--0.181412 0.294782 0.938186
-0.486674 0.855912 -0.174826
--0.160975 -0.0319512 0.173274
-
--0.868839 0.400481 -0.29109
--0.18273 0.287047 0.940326
-0.46014 0.870183 -0.176218
--0.162163 -0.0298064 0.171981
-
--0.880145 0.382263 -0.281461
--0.179658 0.280581 0.942867
-0.439395 0.880426 -0.178275
--0.163593 -0.0280218 0.170704
-
--0.888825 0.370364 -0.269852
--0.172361 0.275437 0.945741
-0.424596 0.887111 -0.180979
--0.165273 -0.0265905 0.16944
-
--0.895441 0.363692 -0.256737
--0.161759 0.27148 0.948753
-0.414753 0.891082 -0.184264
--0.167153 -0.0254303 0.168187
-
--0.899794 0.361677 -0.244051
--0.149572 0.269762 0.95124
-0.409877 0.892423 -0.188633
--0.16871 -0.024463 0.167117
-
--0.903033 0.359988 -0.234392
--0.139479 0.270364 0.952601
-0.406297 0.892923 -0.193937
--0.169497 -0.0234946 0.166311
-
--0.90486 0.359365 -0.228222
--0.131667 0.273563 0.9528
-0.404836 0.8922 -0.200219
--0.16949 -0.0225905 0.165778
-
--0.905356 0.359416 -0.226164
--0.126664 0.279782 0.951671
-0.405322 0.890249 -0.207777
--0.16865 -0.0218277 0.165561
-
--0.904486 0.360465 -0.22797
--0.124184 0.288771 0.94931
-0.408024 0.886948 -0.216426
--0.167004 -0.0211824 0.165636
-
--0.902441 0.362393 -0.232964
--0.123673 0.300074 0.945865
-0.412681 0.882398 -0.225981
--0.164634 -0.0205949 0.165969
-
--0.899123 0.365348 -0.241036
--0.124935 0.313559 0.941314
-0.419486 0.876471 -0.236284
--0.161648 -0.0201124 0.166516
-
--0.895776 0.36817 -0.249072
--0.126014 0.32701 0.936581
-0.42627 0.870353 -0.246533
--0.158662 -0.0196298 0.167039
-
--0.890564 0.376284 -0.255552
--0.123352 0.340983 0.931941
-0.437814 0.861476 -0.257252
--0.155812 -0.0194025 0.16755
-
--0.8831 0.39052 -0.260054
--0.115988 0.355355 0.927507
-0.454622 0.849245 -0.268519
--0.153083 -0.0194862 0.168045
-
--0.873345 0.410136 -0.262787
--0.104097 0.369878 0.92323
-0.475849 0.833654 -0.280337
--0.150441 -0.0198477 0.16852
-
--0.863166 0.42947 -0.26552
--0.091585 0.383972 0.918791
-0.496545 0.817387 -0.292099
--0.147799 -0.0202092 0.168971
-
--0.852572 0.448511 -0.268252
--0.0784673 0.397614 0.914191
-0.516686 0.800463 -0.303801
--0.145156 -0.0205706 0.169398
-
--0.841572 0.467252 -0.270982
--0.0647609 0.410781 0.909431
-0.536248 0.782901 -0.315442
--0.142514 -0.0209321 0.1698
-
--0.830176 0.485685 -0.273711
--0.0504834 0.423451 0.904511
-0.555211 0.764721 -0.32702
--0.139872 -0.0212936 0.170178
-
--0.818393 0.503802 -0.276437
--0.0356533 0.435603 0.899432
-0.573552 0.745945 -0.338532
--0.13723 -0.021655 0.170532
-
--0.806232 0.521594 -0.27916
--0.0202897 0.447216 0.894196
-0.591252 0.726593 -0.349977
--0.134588 -0.0220165 0.170862
-
--0.793702 0.539055 -0.28188
--0.00441256 0.458271 0.888802
-0.60829 0.706688 -0.361352
--0.131946 -0.022378 0.171168
-
--0.780815 0.556177 -0.284596
-0.0119573 0.468747 0.883252
-0.624648 0.686253 -0.372655
--0.129303 -0.0227394 0.17145
-
--0.767579 0.572954 -0.287308
-0.0287987 0.478626 0.877546
-0.640307 0.665312 -0.383884
--0.126661 -0.0231009 0.171707
-
--0.754005 0.58938 -0.290015
-0.0460895 0.487892 0.871687
-0.65525 0.643889 -0.395037
--0.124019 -0.0234623 0.17194
-
--0.740102 0.605447 -0.292716
-0.063807 0.496526 0.865673
-0.669461 0.622009 -0.406112
--0.121377 -0.0238238 0.172149
-
--0.725881 0.621151 -0.295412
-0.081928 0.504513 0.859508
-0.682923 0.599698 -0.417106
--0.118735 -0.0241853 0.172334
-
--0.711352 0.636485 -0.298101
-0.100429 0.511839 0.853191
-0.695624 0.576982 -0.428019
--0.116092 -0.0245467 0.172495
-
--0.698348 0.650404 -0.298806
-0.119149 0.517279 0.847482
-0.705771 0.556235 -0.438736
--0.113613 -0.0251775 0.172748
-
--0.688496 0.661893 -0.296429
-0.137345 0.520334 0.842846
-0.712116 0.539583 -0.449156
--0.111379 -0.0262308 0.17317
-
--0.681902 0.671078 -0.29097
-0.154802 0.521199 0.839278
-0.714875 0.527263 -0.459291
--0.109392 -0.0277033 0.173764
-
--0.678586 0.677798 -0.283038
-0.170926 0.520473 0.836595
-0.714356 0.519324 -0.469039
--0.107618 -0.0295153 0.174497
-
--0.678597 0.682052 -0.272601
-0.185659 0.518357 0.834767
-0.710659 0.51586 -0.478385
--0.106061 -0.0316626 0.175373
-
--0.681186 0.684288 -0.26026
-0.199203 0.515321 0.833524
-0.704488 0.515941 -0.487342
--0.104692 -0.0340669 0.176346
-
--0.683584 0.686497 -0.24786
-0.212716 0.512238 0.832084
-0.698187 0.516076 -0.496187
--0.103322 -0.0364712 0.177294
-
--0.68579 0.688678 -0.235404
-0.226194 0.50911 0.830447
-0.691757 0.516265 -0.504918
--0.101952 -0.0388755 0.178219
-
--0.687804 0.690828 -0.222895
-0.239635 0.505938 0.828615
-0.685201 0.516511 -0.513533
--0.100583 -0.0412798 0.179119
-
--0.689624 0.692948 -0.210335
-0.253036 0.502721 0.826586
-0.678521 0.516812 -0.52203
--0.0992132 -0.0436841 0.179995
-
--0.691252 0.695036 -0.197728
-0.266393 0.499462 0.824362
-0.671718 0.517168 -0.530407
--0.0978435 -0.0460884 0.180847
-
--0.692686 0.697089 -0.185077
-0.279703 0.496161 0.821943
-0.664795 0.517582 -0.538661
--0.0964739 -0.0484927 0.181674
-
--0.693925 0.699108 -0.172384
-0.292963 0.492819 0.81933
-0.657754 0.518052 -0.546793
--0.0951042 -0.050897 0.182478
-
--0.695887 0.700136 -0.159846
-0.30495 0.489599 0.816883
-0.65019 0.519713 -0.554212
--0.0937306 -0.0532104 0.183223
-
--0.701231 0.69739 -0.148062
-0.311691 0.486671 0.816089
-0.64119 0.526117 -0.558638
--0.0923667 -0.055058 0.183855
-
--0.710785 0.689894 -0.137226
-0.312024 0.48408 0.817501
-0.630418 0.53825 -0.55934
--0.0910027 -0.0563243 0.184308
-
--0.724869 0.676988 -0.127484
-0.305515 0.481784 0.821307
-0.617434 0.556392 -0.55606
--0.0896362 -0.0569611 0.184573
-
--0.742111 0.659689 -0.118663
-0.293658 0.479135 0.827161
-0.602524 0.578999 -0.549295
--0.0882797 -0.0570485 0.184687
-
--0.761053 0.639202 -0.11054
-0.278264 0.475619 0.834479
-0.585976 0.604324 -0.539838
--0.0869418 -0.0567198 0.184697
-
--0.779882 0.617453 -0.102644
-0.26217 0.471141 0.842196
-0.568376 0.629903 -0.529312
--0.085611 -0.056253 0.184636
-
--0.798093 0.595033 -0.0947803
-0.24654 0.466024 0.849729
-0.549787 0.654796 -0.51863
--0.0842802 -0.0557862 0.184551
-
--0.815661 0.571958 -0.086951
-0.2314 0.460293 0.857079
-0.530236 0.678966 -0.507794
--0.0829493 -0.0553194 0.184441
-
--0.830354 0.551503 -0.0797292
-0.217762 0.452857 0.864581
-0.512925 0.700546 -0.496128
--0.0815555 -0.054932 0.184415
-
--0.840487 0.536799 -0.0736772
-0.20634 0.442833 0.872538
-0.501004 0.718154 -0.482959
--0.080023 -0.0547232 0.184549
-
--0.846491 0.527939 -0.0688002
-0.196848 0.430422 0.880902
-0.494676 0.732132 -0.468272
--0.0783572 -0.0546994 0.184841
-
--0.849864 0.523013 -0.0647224
-0.188514 0.416389 0.889428
-0.492132 0.743692 -0.452469
--0.0766204 -0.0547961 0.185247
-
--0.853232 0.517994 -0.0606398
-0.180327 0.402118 0.897654
-0.489363 0.754973 -0.436509
--0.0748837 -0.0548928 0.185629
-
--0.856595 0.51288 -0.0565538
-0.172294 0.387616 0.905576
-0.486373 0.765969 -0.420396
--0.0731469 -0.0549895 0.185987
-
--0.859951 0.507673 -0.0524658
-0.16442 0.372887 0.913193
-0.483167 0.776674 -0.404137
--0.0714101 -0.0550862 0.186321
-
--0.863298 0.502371 -0.0483771
-0.156711 0.35794 0.9205
-0.479749 0.787084 -0.387736
--0.0696734 -0.0551829 0.18663
-
--0.866634 0.496975 -0.0442892
-0.14917 0.342781 0.927496
-0.476124 0.797193 -0.371199
--0.0679366 -0.0552796 0.186916
-
--0.869958 0.491485 -0.0402034
-0.141803 0.327416 0.934179
-0.472298 0.806995 -0.354533
--0.0661998 -0.0553763 0.187177
-
--0.873268 0.485899 -0.0361211
-0.134616 0.311853 0.940546
-0.468275 0.816486 -0.337741
--0.0644631 -0.055473 0.187414
-
--0.876563 0.480219 -0.0320438
-0.127612 0.296099 0.946594
-0.464061 0.82566 -0.320831
--0.0627263 -0.0555697 0.187627
-
--0.879841 0.474444 -0.0279728
-0.120796 0.280161 0.952323
-0.459661 0.834513 -0.303808
--0.0609895 -0.0556664 0.187815
-
--0.8831 0.468575 -0.0239095
-0.114173 0.264046 0.957729
-0.45508 0.843041 -0.286678
--0.0592528 -0.0557631 0.18798
-
--0.886339 0.46261 -0.0198553
-0.107747 0.247762 0.962811
-0.450325 0.851238 -0.269446
--0.057516 -0.0558598 0.18812
-
--0.889557 0.456551 -0.0158116
-0.101521 0.231316 0.967567
-0.445401 0.859101 -0.252118
--0.0557792 -0.0559565 0.188236
-
--0.89275 0.450398 -0.0117797
-0.0955003 0.214716 0.971996
-0.440314 0.866625 -0.234701
--0.0540425 -0.0560532 0.188328
-
--0.895919 0.44415 -0.00776104
-0.0896878 0.19797 0.976096
-0.43507 0.873807 -0.2172
--0.0523057 -0.0561499 0.188396
-
--0.89906 0.437808 -0.003757
-0.0840873 0.181086 0.979866
-0.429674 0.880643 -0.199621
--0.0505689 -0.0562466 0.188439
-
--0.902174 0.431373 0.000231085
-0.0787023 0.164071 0.983304
-0.424133 0.887129 -0.181971
--0.0488322 -0.0563433 0.188458
-
--0.905257 0.424845 0.00420184
-0.0735358 0.146934 0.986409
-0.418453 0.893262 -0.164254
--0.0470954 -0.0564401 0.188454
-
--0.908308 0.418223 0.00815392
-0.0685911 0.129682 0.98918
-0.412641 0.899039 -0.146478
--0.0453586 -0.0565368 0.188425
-
--0.911325 0.411509 0.012086
-0.0638709 0.112324 0.991617
-0.406702 0.904457 -0.128648
--0.0436219 -0.0566335 0.188371
-
--0.914308 0.404703 0.0159967
-0.059378 0.0948687 0.993717
-0.400643 0.909514 -0.11077
--0.0418851 -0.0567302 0.188294
-
--0.917254 0.397806 0.0198846
-0.055115 0.0773232 0.995482
-0.394471 0.914205 -0.0928501
--0.0401483 -0.0568269 0.188192
-
--0.920162 0.390818 0.0237486
-0.0510841 0.0596965 0.996909
-0.388192 0.91853 -0.074895
--0.0384116 -0.0569236 0.188066
-
--0.923029 0.38374 0.0275872
-0.0472876 0.0419969 0.997998
-0.381813 0.922486 -0.0569105
--0.0366748 -0.0570203 0.187916
-
--0.925855 0.376572 0.0313991
-0.0437275 0.0242329 0.99875
-0.37534 0.92607 -0.0389027
--0.034938 -0.057117 0.187742
-
--0.928638 0.369315 0.0351831
-0.0404055 0.00641299 0.999163
-0.36878 0.929282 -0.0208777
--0.0332013 -0.0572137 0.187544
-
--0.928479 0.369179 0.040417
-0.0393824 -0.0103414 0.999171
-0.369291 0.929301 -0.00493734
--0.0316171 -0.057663 0.187276
-
--0.924199 0.378901 0.0478505
-0.0411831 -0.0256866 0.998821
-0.379683 0.925081 0.00813521
--0.0302225 -0.0585942 0.186884
-
--0.915484 0.398226 0.0574968
-0.0454191 -0.0397053 0.998179
-0.399783 0.916428 0.0182625
--0.029007 -0.0600023 0.186352
-
--0.902951 0.424237 0.068574
-0.0509077 -0.0528525 0.997304
-0.426718 0.904007 0.0261262
--0.0279528 -0.061758 0.185741
-
--0.889597 0.449745 0.0796659
-0.0556925 -0.0663105 0.996244
-0.453338 0.890692 0.0339422
--0.0268986 -0.0635137 0.185105
-
--0.875443 0.474721 0.0907704
-0.0597592 -0.0800483 0.994998
-0.479613 0.876489 0.0417088
--0.0258443 -0.0652693 0.184446
-
--0.860512 0.499138 0.101885
-0.0630948 -0.0940341 0.993568
-0.505508 0.861405 0.0494244
--0.0247901 -0.067025 0.183762
-
--0.844826 0.52297 0.113008
-0.0656878 -0.108236 0.991953
-0.530993 0.845451 0.0570875
--0.0237359 -0.0687807 0.183054
-
--0.828411 0.546192 0.124137
-0.0675279 -0.12262 0.990154
-0.556035 0.828637 0.0646966
--0.0226817 -0.0705363 0.182322
-
--0.811291 0.568779 0.13527
-0.0686062 -0.137154 0.988171
-0.580604 0.810974 0.07225
--0.0216274 -0.072292 0.181565
-
--0.793492 0.590709 0.146404
-0.0689153 -0.151804 0.986005
-0.604666 0.792476 0.0797463
--0.0205732 -0.0740477 0.180785
-
--0.775041 0.611959 0.157538
-0.0684491 -0.166536 0.983657
-0.628193 0.773157 0.0871839
--0.019519 -0.0758033 0.17998
-
--0.755965 0.632508 0.16867
-0.067203 -0.181315 0.981126
-0.651153 0.753033 0.0945613
--0.0184648 -0.077559 0.179151
-
--0.736294 0.652338 0.179796
-0.0651739 -0.196107 0.978414
-0.673516 0.732118 0.101877
--0.0174105 -0.0793147 0.178298
-
--0.716055 0.671428 0.190916
-0.0623602 -0.210877 0.975521
-0.695253 0.710433 0.10913
--0.0163563 -0.0810703 0.177421
-
--0.706871 0.678795 0.198921
-0.0624046 -0.220281 0.973438
-0.704584 0.700509 0.11335
--0.0149716 -0.0835053 0.176444
-
--0.709076 0.675109 0.203566
-0.0657442 -0.224138 0.972337
-0.702061 0.702844 0.114546
--0.0132197 -0.0866432 0.175382
-
--0.720306 0.662419 0.205819
-0.0721623 -0.223546 0.972018
-0.689893 0.715003 0.11322
--0.0112604 -0.0903053 0.174195
-
--0.731304 0.649539 0.208073
-0.0785769 -0.222803 0.971692
-0.67751 0.726951 0.111898
--0.00930107 -0.0939675 0.172983
-
--0.742067 0.636474 0.210328
-0.0849848 -0.221908 0.971357
-0.664917 0.738686 0.11058
--0.00734178 -0.0976296 0.171748
-
--0.752591 0.623229 0.212584
-0.0913828 -0.220863 0.971014
-0.652116 0.750203 0.109267
--0.00538249 -0.101292 0.170488
-
--0.762875 0.609808 0.214841
-0.0977675 -0.219666 0.970664
-0.639112 0.761499 0.107958
--0.0034232 -0.104954 0.169204
-
--0.772913 0.596215 0.2171
-0.104136 -0.218319 0.970305
-0.625908 0.77257 0.106655
--0.00146391 -0.108616 0.167896
-
--0.782705 0.582455 0.219359
-0.110484 -0.216822 0.969939
-0.612508 0.783412 0.105355
-0.000495381 -0.112278 0.166563
-
--0.792246 0.568533 0.22162
-0.116809 -0.215174 0.969565
-0.598917 0.794022 0.104061
-0.00245467 -0.11594 0.165207
-
--0.801535 0.554453 0.223882
-0.123109 -0.213376 0.969183
-0.585137 0.804396 0.10277
-0.00441396 -0.119602 0.163826
-
--0.810568 0.54022 0.226145
-0.129378 -0.211429 0.968793
-0.571174 0.814531 0.101485
-0.00637325 -0.123264 0.162421
-
--0.819344 0.525838 0.228409
-0.135615 -0.209333 0.968395
-0.557032 0.824424 0.100204
-0.00833254 -0.126927 0.160992
-
--0.827859 0.511312 0.230674
-0.141816 -0.207088 0.967989
-0.542714 0.834071 0.098928
-0.0102918 -0.130589 0.159539
-
--0.836111 0.496647 0.23294
-0.147977 -0.204696 0.967575
-0.528225 0.84347 0.0976565
-0.0122511 -0.134251 0.158061
-
--0.844097 0.481848 0.235207
-0.154096 -0.202157 0.967154
-0.51357 0.852617 0.0963897
-0.0142104 -0.137913 0.156559
-
--0.851817 0.466919 0.237475
-0.160169 -0.199472 0.966725
-0.498752 0.861509 0.0951277
-0.0161697 -0.141575 0.155034
-
--0.859267 0.451867 0.239743
-0.166194 -0.196642 0.966287
-0.483777 0.870143 0.0938704
-0.018129 -0.145237 0.153484
-
--0.866446 0.436694 0.242013
-0.172167 -0.193667 0.965843
-0.468648 0.878516 0.0926178
-0.0200883 -0.148899 0.151909
-
--0.873351 0.421407 0.244283
-0.178084 -0.190549 0.96539
-0.45337 0.886627 0.09137
-0.0220476 -0.152562 0.150311
-
--0.879981 0.406011 0.246554
-0.183943 -0.187288 0.964929
-0.437948 0.894471 0.090127
-0.0240069 -0.156224 0.148688
-
--0.886334 0.39051 0.248826
-0.189741 -0.183886 0.964461
-0.422387 0.902047 0.0888887
-0.0259662 -0.159886 0.147041
-
--0.892408 0.374909 0.251099
-0.195474 -0.180344 0.963984
-0.406691 0.909351 0.0876553
-0.0279254 -0.163548 0.14537
-
--0.898202 0.359215 0.253372
-0.20114 -0.176663 0.9635
-0.390865 0.916381 0.0864267
-0.0298847 -0.16721 0.143675
-
--0.903715 0.34343 0.255646
-0.206735 -0.172844 0.963008
-0.374914 0.923136 0.085203
-0.031844 -0.170872 0.141956
-
--0.91083 0.323509 0.25638
-0.211711 -0.167069 0.962947
-0.354355 0.931359 0.0836816
-0.0338208 -0.174315 0.140313
-
--0.919276 0.299351 0.255579
-0.215946 -0.159316 0.96332
-0.329089 0.940748 0.0818114
-0.0358136 -0.177539 0.138746
-
--0.928144 0.272222 0.253858
-0.219568 -0.150305 0.963949
-0.300565 0.950423 0.0797334
-0.0378165 -0.180633 0.13722
-
--0.936206 0.244829 0.252144
-0.222854 -0.141216 0.964569
-0.271761 0.959227 0.0776466
-0.0398194 -0.183727 0.13567
-
--0.943455 0.217195 0.250438
-0.225802 -0.132062 0.96518
-0.242705 0.967154 0.075551
-0.0418222 -0.186821 0.134095
-
--0.949883 0.189344 0.248738
-0.228413 -0.122852 0.965782
-0.213423 0.974195 0.0734469
-0.0438251 -0.189916 0.132496
-
--0.955484 0.161301 0.247046
-0.230684 -0.113601 0.966375
-0.183942 0.980345 0.0713341
-0.045828 -0.19301 0.130874
-
--0.960252 0.133091 0.245361
-0.232616 -0.104318 0.966958
-0.154289 0.985599 0.0692127
-0.0478308 -0.196104 0.129226
-
--0.964183 0.104738 0.243684
-0.234209 -0.0950166 0.967532
-0.124491 0.98995 0.0670828
-0.0498337 -0.199198 0.127555
-
--0.967271 0.0762679 0.242014
-0.235462 -0.0857079 0.968097
-0.0945771 0.993397 0.0649445
-0.0518366 -0.202292 0.12586
-
--0.969513 0.0477053 0.240351
-0.236378 -0.0764036 0.968653
-0.0645736 0.995935 0.0627978
-0.0538394 -0.205386 0.12414
-
--0.970565 0.0262406 0.239405
-0.237076 -0.0709322 0.968898
-0.042406 0.997136 0.0626233
-0.0557031 -0.208159 0.122233
-
--0.970826 0.0128127 0.239444
-0.238005 -0.0699991 0.968738
-0.029173 0.997465 0.0649075
-0.0573994 -0.210539 0.120094
-
--0.970533 0.00965439 0.240775
-0.239408 -0.0749041 0.968025
-0.0273807 0.997144 0.0703855
-0.0588808 -0.21241 0.117683
-
--0.969791 0.0166851 0.243367
-0.241121 -0.0856411 0.966709
-0.0369718 0.996186 0.0790308
-0.0601482 -0.213771 0.114996
-
--0.968538 0.0313436 0.246885
-0.242684 -0.1008 0.964854
-0.0551281 0.994413 0.0900224
-0.061248 -0.214743 0.112071
-
--0.966618 0.0514627 0.251001
-0.243599 -0.119118 0.962533
-0.0794333 0.991546 0.102605
-0.062224 -0.215443 0.108968
-
--0.967215 0.0497953 0.249029
-0.240993 -0.129357 0.961868
-0.0801103 0.990347 0.113116
-0.0633086 -0.215282 0.106378
-
--0.970538 0.022965 0.239853
-0.23496 -0.130368 0.963223
-0.0533896 0.9912 0.121131
-0.0644592 -0.214128 0.104394
-
--0.973352 -0.00902488 0.22914
-0.228352 -0.129757 0.964893
-0.0210244 0.991505 0.12836
-0.0656721 -0.212782 0.102521
-
--0.975001 -0.0411024 0.218364
-0.221906 -0.129643 0.966411
--0.0114124 0.990708 0.135523
-0.0668849 -0.211437 0.100625
-
--0.975485 -0.0732229 0.207528
-0.215647 -0.130017 0.967777
--0.0438813 0.988804 0.14262
-0.0680978 -0.210092 0.0987047
-
--0.974802 -0.105342 0.196632
-0.209602 -0.130866 0.96899
--0.0763424 0.985788 0.149649
-0.0693107 -0.208747 0.09676
-
--0.972954 -0.137414 0.18568
-0.203794 -0.132178 0.97005
--0.108755 0.981655 0.156608
-0.0705235 -0.207402 0.0947912
-
--0.970064 -0.168457 0.174922
-0.198434 -0.134605 0.970827
--0.139997 0.976475 0.164004
-0.0717013 -0.20598 0.0927488
-
--0.966323 -0.1979 0.164485
-0.193681 -0.138471 0.971243
--0.169433 0.970392 0.172138
-0.0728298 -0.204439 0.0906146
-
--0.96189 -0.225708 0.154346
-0.189576 -0.143708 0.971292
--0.197048 0.963537 0.18102
-0.0739105 -0.202778 0.0883875
-
--0.956582 -0.25332 0.144151
-0.185869 -0.14923 0.971176
--0.224507 0.955803 0.189835
-0.0749913 -0.201117 0.0861361
-
--0.95111 -0.277612 0.135354
-0.183285 -0.154601 0.970827
--0.248588 0.948172 0.197925
-0.0757862 -0.1997 0.0838478
-
--0.946434 -0.296106 0.128777
-0.181978 -0.159689 0.970249
--0.266733 0.941712 0.20502
-0.0759278 -0.19868 0.081525
-
--0.942826 -0.308999 0.124898
-0.182178 -0.163995 0.969493
--0.27909 0.936817 0.210911
-0.075365 -0.198142 0.0791609
-
--0.940623 -0.316011 0.123958
-0.183863 -0.167336 0.968604
--0.285347 0.933882 0.215503
-0.0739933 -0.198139 0.0767646
-
--0.942395 -0.31023 0.1251
-0.183964 -0.168321 0.968414
--0.279374 0.935642 0.215696
-0.0721486 -0.198356 0.0747142
-
--0.948261 -0.290716 0.127614
-0.181481 -0.166517 0.969194
--0.260511 0.942208 0.210661
-0.0699926 -0.198635 0.0730666
-
--0.95734 -0.257535 0.13106
-0.176507 -0.162059 0.970867
--0.228793 0.952582 0.200602
-0.0677218 -0.198886 0.0717877
-
--0.966577 -0.218223 0.134567
-0.17079 -0.156617 0.972781
--0.191208 0.96325 0.188653
-0.0653713 -0.199108 0.0706184
-
--0.97421 -0.178535 0.137985
-0.165699 -0.15096 0.974554
--0.153162 0.972284 0.17665
-0.0630208 -0.199329 0.0694248
-
--0.980223 -0.138538 0.141314
-0.161243 -0.145128 0.976186
--0.11473 0.979666 0.164596
-0.0606703 -0.19955 0.0682071
-
--0.984602 -0.0982978 0.144554
-0.15743 -0.139162 0.977676
--0.0759871 0.985379 0.152494
-0.0583198 -0.199771 0.0669651
-
--0.987337 -0.0578816 0.147703
-0.154262 -0.133101 0.979024
--0.037008 0.989411 0.140345
-0.0559693 -0.199992 0.065699
-
--0.988418 -0.0173573 0.150761
-0.151742 -0.126988 0.980229
-0.0021308 0.991752 0.128151
-0.0536187 -0.200213 0.0644087
-
--0.987841 0.0232069 0.153728
-0.149869 -0.120863 0.981291
-0.0413528 0.992398 0.115916
-0.0512682 -0.200435 0.0630942
-
--0.985603 0.0637425 0.156602
-0.148641 -0.114767 0.982209
-0.0805813 0.991345 0.10364
-0.0489177 -0.200656 0.0617556
-
--0.981704 0.104181 0.159385
-0.148052 -0.108741 0.982983
-0.11974 0.988596 0.0913269
-0.0465672 -0.200877 0.0603927
-
--0.976148 0.144453 0.162074
-0.148097 -0.102824 0.983613
-0.158751 0.984155 0.0789781
-0.0442167 -0.201098 0.0590057
-
--0.971191 0.175032 0.161714
-0.147024 -0.0939496 0.984661
-0.18754 0.98007 0.065509
-0.0419028 -0.200894 0.0578148
-
--0.968846 0.191523 0.157024
-0.1439 -0.080699 0.986296
-0.20157 0.978165 0.0506248
-0.039552 -0.200057 0.0568944
-
--0.96946 0.195321 0.148316
-0.138438 -0.0633685 0.988342
-0.202443 0.97869 0.0343934
-0.0372455 -0.198663 0.0562264
-
--0.97002 0.198964 0.139554
-0.133001 -0.0459936 0.990048
-0.203403 0.978927 0.0181522
-0.034939 -0.197269 0.0555341
-
--0.970526 0.202452 0.13074
-0.127592 -0.0285803 0.991415
-0.20445 0.978875 0.00190659
-0.0326325 -0.195875 0.0548177
-
--0.970979 0.205783 0.121878
-0.122212 -0.0111346 0.992442
-0.205584 0.978534 -0.0143377
-0.030326 -0.194481 0.0540771
-
--0.971378 0.208956 0.11297
-0.116863 0.00633735 0.993128
-0.206804 0.977905 -0.0305752
-0.0280194 -0.193087 0.0533123
-
--0.971724 0.211971 0.104021
-0.111547 0.0238294 0.993473
-0.208108 0.976985 -0.0468002
-0.0257129 -0.191693 0.0525233
-
--0.972018 0.214826 0.0950317
-0.106265 0.0413353 0.993478
-0.209497 0.975777 -0.0630073
-0.0234064 -0.190299 0.0517101
-
--0.972259 0.217522 0.0860066
-0.10102 0.0588492 0.993142
-0.210969 0.97428 -0.0791908
-0.0210999 -0.188905 0.0508728
-
--0.972447 0.220058 0.0769485
-0.0958133 0.0763647 0.992466
-0.212524 0.972493 -0.0953451
-0.0187933 -0.187511 0.0500113
-
--0.972584 0.222432 0.0678605
-0.0906464 0.0938759 0.991449
-0.21416 0.970418 -0.111465
-0.0164868 -0.186116 0.0491255
-
--0.972668 0.224646 0.0587457
-0.0855213 0.111376 0.990092
-0.215877 0.968055 -0.127544
-0.0141803 -0.184722 0.0482156
-
--0.972701 0.226697 0.0496072
-0.0804397 0.12886 0.988395
-0.217674 0.965403 -0.143578
-0.0118738 -0.183328 0.0472815
-
--0.972683 0.228586 0.0404482
-0.0754034 0.146322 0.986359
-0.21955 0.962465 -0.159561
-0.00956725 -0.181934 0.0463233
-
--0.972614 0.230313 0.0312718
-0.070414 0.163754 0.983985
-0.221504 0.95924 -0.175486
-0.00726072 -0.18054 0.0453408
-
--0.972494 0.231877 0.0220812
-0.0654733 0.181151 0.981273
-0.223535 0.955729 -0.19135
-0.0049542 -0.179146 0.0443342
-
--0.972325 0.233278 0.0128795
-0.060583 0.198507 0.978225
-0.225642 0.951933 -0.207146
-0.00264768 -0.177752 0.0433033
-
--0.97057 0.24067 0.00843772
-0.0608034 0.211003 0.975592
-0.233016 0.947394 -0.219427
-5.07454e-05 -0.175651 0.0420046
-
--0.967123 0.254157 0.00876584
-0.0662905 0.218672 0.973544
-0.245516 0.942118 -0.228331
--0.0028259 -0.172842 0.0404392
-
--0.962892 0.269603 0.0123942
-0.0750216 0.223262 0.971867
-0.259251 0.936733 -0.235203
--0.00584945 -0.169559 0.0386868
-
--0.958394 0.285001 0.016006
-0.083893 0.22763 0.970127
-0.272843 0.931106 -0.242069
--0.008873 -0.166276 0.0369102
-
--0.953629 0.300346 0.0196009
-0.0928997 0.231772 0.968324
-0.286289 0.925243 -0.248927
--0.0118966 -0.162993 0.0351095
-
--0.948598 0.315634 0.0231787
-0.102036 0.235686 0.966458
-0.299584 0.919145 -0.255777
--0.0149201 -0.15971 0.0332845
-
--0.943301 0.330859 0.0267391
-0.111298 0.239368 0.964529
-0.312722 0.912817 -0.26262
--0.0179437 -0.156428 0.0314354
-
--0.93774 0.346017 0.0302819
-0.120679 0.242814 0.962537
-0.325701 0.906264 -0.269454
--0.0209672 -0.153145 0.0295621
-
--0.931913 0.361102 0.0338068
-0.130174 0.246023 0.960483
-0.338515 0.899487 -0.276278
--0.0239908 -0.149862 0.0276646
-
--0.925823 0.376111 0.0373137
-0.139777 0.248992 0.958366
-0.351161 0.892493 -0.283094
--0.0270143 -0.146579 0.0257429
-
--0.91947 0.391037 0.0408023
-0.149483 0.251716 0.956187
-0.363634 0.885285 -0.289899
--0.0300379 -0.143296 0.023797
-
--0.912855 0.405876 0.0442722
-0.159286 0.254195 0.953946
-0.37593 0.877866 -0.296694
--0.0330614 -0.140014 0.021827
-
--0.905979 0.420623 0.0477234
-0.169181 0.256426 0.951643
-0.388046 0.870242 -0.303478
--0.036085 -0.136731 0.0198327
-
--0.895509 0.442244 0.0498384
-0.179318 0.256059 0.949884
-0.407318 0.859566 -0.308605
--0.0389347 -0.133765 0.017916
-
--0.880566 0.471231 0.05044
-0.189535 0.252614 0.948822
-0.434373 0.84506 -0.311758
--0.0416017 -0.131163 0.016101
-
--0.859985 0.507918 0.0494485
-0.199617 0.245633 0.948587
-0.469658 0.825642 -0.31263
--0.0440712 -0.128967 0.0144001
-
--0.833944 0.549821 0.0472654
-0.209287 0.235858 0.948984
-0.510623 0.801291 -0.311763
--0.0464191 -0.127057 0.0128131
-
--0.80586 0.590387 0.0450911
-0.218481 0.22571 0.949379
-0.550324 0.774918 -0.310879
--0.0487669 -0.125147 0.0112019
-
--0.775801 0.629515 0.0429256
-0.227184 0.215213 0.949774
-0.588659 0.746588 -0.309978
--0.0511148 -0.123237 0.00956646
-
--0.743843 0.66711 0.0407692
-0.235384 0.204391 0.950168
-0.625534 0.716372 -0.309061
--0.0534626 -0.121327 0.00790687
-
--0.710062 0.70308 0.0386219
-0.243069 0.193266 0.950561
-0.660855 0.684344 -0.308128
--0.0558105 -0.119417 0.00622309
-
--0.674541 0.737335 0.0364837
-0.250229 0.181865 0.950952
-0.694535 0.650586 -0.307178
--0.0581584 -0.117506 0.00451513
-
--0.637369 0.769793 0.0343549
-0.256855 0.170212 0.951343
-0.726489 0.615181 -0.306213
--0.0605062 -0.115596 0.00278298
-
--0.598635 0.800373 0.0322356
-0.262937 0.158331 0.951733
-0.756637 0.578216 -0.30523
--0.0628541 -0.113686 0.00102665
-
--0.558435 0.829001 0.0301257
-0.26847 0.146248 0.952121
-0.784904 0.539786 -0.304232
--0.065202 -0.111776 -0.000753867
-
--0.516867 0.855607 0.0280255
-0.273447 0.133989 0.952509
-0.811218 0.499984 -0.303218
--0.0675498 -0.109866 -0.00255857
-
--0.474034 0.880125 0.025935
-0.277864 0.121578 0.952896
-0.835514 0.458911 -0.302187
--0.0698977 -0.107956 -0.00438746
-
--0.43004 0.902495 0.0238543
-0.281717 0.109042 0.953281
-0.85773 0.416669 -0.301141
--0.0722456 -0.106045 -0.00624054
-
--0.384992 0.922663 0.0217835
-0.285004 0.0964059 0.953666
-0.877812 0.373362 -0.300078
--0.0745934 -0.104135 -0.0081178
-
--0.340357 0.940104 0.0190091
-0.287345 0.0847395 0.954071
-0.895315 0.330187 -0.298976
--0.0767607 -0.102296 -0.0100135
-
--0.299842 0.953887 0.0139433
-0.28799 0.0765726 0.954567
-0.909482 0.290234 -0.29767
--0.0784753 -0.100712 -0.0119413
-
--0.264263 0.964429 0.00650153
-0.287353 0.0722991 0.955092
-0.920648 0.254264 -0.296237
--0.0796638 -0.0993982 -0.0139041
-
--0.241834 0.970314 -0.00268097
-0.284062 0.0734388 0.955989
-0.927807 0.230429 -0.293389
--0.0803765 -0.098718 -0.0158427
-
--0.238306 0.971106 -0.0127552
-0.277127 0.0805818 0.957448
-0.930812 0.224631 -0.288323
--0.0806789 -0.0989003 -0.0176681
-
--0.253754 0.966988 -0.0232948
-0.266271 0.092986 0.959403
-0.929897 0.237249 -0.281077
--0.0806285 -0.0999462 -0.0193827
-
--0.285709 0.957721 -0.033771
-0.251425 0.108918 0.961729
-0.924746 0.266284 -0.271914
--0.0803722 -0.101729 -0.0209924
-
--0.323835 0.945108 -0.0436087
-0.234248 0.12475 0.96414
-0.916656 0.302006 -0.261788
--0.0801389 -0.103792 -0.0225622
-
--0.361309 0.930911 -0.0534878
-0.216215 0.139442 0.966337
-0.907032 0.337582 -0.251658
--0.0799056 -0.105856 -0.0241563
-
--0.398065 0.915163 -0.0634059
-0.197389 0.152946 0.968321
-0.895869 0.372939 -0.241526
--0.0796723 -0.107919 -0.0257745
-
--0.434035 0.897904 -0.0733607
-0.177837 0.165223 0.97009
-0.883169 0.408007 -0.231393
--0.0794389 -0.109983 -0.0274169
-
--0.469155 0.879174 -0.08335
-0.157628 0.176232 0.971646
-0.868935 0.442714 -0.221262
--0.0792056 -0.112046 -0.0290835
-
--0.50336 0.859017 -0.0933715
-0.136833 0.18594 0.972987
-0.853174 0.476986 -0.211136
--0.0789723 -0.11411 -0.0307743
-
--0.536591 0.83748 -0.103423
-0.115524 0.194315 0.974113
-0.835897 0.510753 -0.201017
--0.0787389 -0.116173 -0.0324893
-
--0.568791 0.814613 -0.113502
-0.0937768 0.20133 0.975024
-0.817119 0.543941 -0.190907
--0.0785056 -0.118237 -0.0342284
-
--0.599902 0.790468 -0.123606
-0.0716664 0.206963 0.97572
-0.796857 0.576478 -0.180808
--0.0782723 -0.1203 -0.0359918
-
--0.629873 0.765098 -0.133733
-0.04927 0.211194 0.976202
-0.775134 0.608294 -0.170722
--0.0780389 -0.122364 -0.0377793
-
--0.658654 0.738562 -0.143881
-0.026666 0.214009 0.976468
-0.751973 0.639318 -0.160652
--0.0778056 -0.124428 -0.039591
-
--0.686197 0.710917 -0.154048
-0.0039332 0.215397 0.976519
-0.727405 0.669478 -0.150601
--0.0775723 -0.126491 -0.0414269
-
--0.712337 0.682596 -0.16321
--0.0180745 0.214628 0.976529
-0.701604 0.698568 -0.14055
--0.0772701 -0.128375 -0.0433055
-
--0.737245 0.653795 -0.170359
--0.0385126 0.211073 0.976711
-0.674527 0.726637 -0.130433
--0.0767802 -0.129875 -0.0452488
-
--0.762541 0.622765 -0.175203
--0.0574042 0.204616 0.977158
-0.644389 0.75518 -0.120279
--0.0760484 -0.130931 -0.0473149
-
--0.788856 0.588636 -0.176678
--0.0739573 0.194466 0.978117
-0.610112 0.78466 -0.109872
--0.0751018 -0.131395 -0.0495273
-
--0.815816 0.551194 -0.175011
--0.0879464 0.180857 0.979569
-0.571585 0.81454 -0.0990707
--0.0739541 -0.131306 -0.0518686
-
--0.84099 0.512512 -0.173397
--0.100849 0.166378 0.980891
-0.531568 0.842407 -0.0882357
--0.0728064 -0.131216 -0.054234
-
--0.86432 0.472676 -0.171835
--0.112614 0.1511 0.982083
-0.490172 0.868185 -0.0773685
--0.0716587 -0.131126 -0.0566237
-
--0.885754 0.431775 -0.170325
--0.123196 0.135099 0.983143
-0.447507 0.891806 -0.0664709
--0.070511 -0.131036 -0.0590375
-
--0.905242 0.389899 -0.168868
--0.132555 0.118452 0.984072
-0.403692 0.913207 -0.0555447
--0.0693633 -0.130946 -0.0614755
-
--0.922739 0.347142 -0.167464
--0.140653 0.10124 0.984869
-0.358844 0.932332 -0.0445916
--0.0682156 -0.130856 -0.0639377
-
--0.938207 0.3036 -0.166113
--0.147458 0.0835442 0.985534
-0.313086 0.94913 -0.0336135
--0.0670679 -0.130766 -0.0664241
-
--0.951611 0.25937 -0.164816
--0.152945 0.0654484 0.986065
-0.266542 0.963558 -0.0226122
--0.0659202 -0.130676 -0.0689347
-
--0.962919 0.21455 -0.163572
--0.157091 0.0470375 0.986463
-0.219339 0.97558 -0.0115894
--0.0647725 -0.130586 -0.0714694
-
--0.972106 0.16924 -0.162382
--0.159881 0.0283975 0.986728
-0.171606 0.985166 -0.00054709
--0.0636248 -0.130496 -0.0740284
-
--0.979151 0.123543 -0.161246
--0.161302 0.00961533 0.986858
-0.12347 0.992293 0.0105129
--0.0624772 -0.130406 -0.0766115
-
--0.984039 0.0775601 -0.160164
--0.161349 -0.00922168 0.986854
-0.0750636 0.996945 0.0215887
--0.0613295 -0.130316 -0.0792188
-
--0.986757 0.0313939 -0.159136
--0.160021 -0.028026 0.986716
-0.0265169 0.999114 0.0326785
--0.0601818 -0.130226 -0.0818503
-
--0.987301 -0.0148523 -0.158163
--0.157322 -0.0467101 0.986442
--0.0220387 0.998798 0.0437803
--0.0590341 -0.130136 -0.084506
-
--0.985669 -0.0610751 -0.157244
--0.153263 -0.0651869 0.986033
--0.0704723 0.996002 0.0548922
--0.0578864 -0.130046 -0.0871858
-
--0.981865 -0.107171 -0.156379
--0.147857 -0.0833702 0.985489
--0.118654 0.990739 0.0660124
--0.0567387 -0.129956 -0.0898899
-
--0.977573 -0.144507 -0.153194
--0.139807 -0.0986966 0.985248
--0.157495 0.984569 0.07628
--0.0557854 -0.130291 -0.0927365
-
--0.976365 -0.156564 -0.148993
--0.133317 -0.106311 0.985355
--0.17011 0.98193 0.0829252
--0.0545726 -0.131084 -0.0956326
-
--0.979501 -0.140795 -0.144062
--0.129901 -0.105107 0.98594
--0.153957 0.984444 0.0846629
--0.0530278 -0.132182 -0.0984333
-
--0.984539 -0.107019 -0.138671
--0.12852 -0.0965616 0.986995
--0.119018 0.989557 0.0813145
--0.0513939 -0.13307 -0.101023
-
--0.988914 -0.0629051 -0.134505
--0.129073 -0.0836618 0.9881
--0.0734095 0.994507 0.074615
--0.0495523 -0.1335 -0.103401
-
--0.991285 -0.014173 -0.130973
--0.129706 -0.0689191 0.989154
--0.0230458 0.997522 0.0664801
--0.0476137 -0.13373 -0.105701
-
--0.991234 0.0346574 -0.12749
--0.129246 -0.0543043 0.990124
-0.0273919 0.997923 0.0583076
--0.0456752 -0.13396 -0.108026
-
--0.988758 0.083465 -0.124058
--0.127707 -0.0398876 0.99101
-0.0777663 0.995712 0.0500983
--0.0437366 -0.13419 -0.110375
-
--0.98386 0.132128 -0.120675
--0.125107 -0.0257385 0.991809
-0.12794 0.990898 0.0418532
--0.041798 -0.13442 -0.112748
-
--0.976545 0.180527 -0.117344
--0.121468 -0.011925 0.992524
-0.177778 0.983498 0.0335736
--0.0398594 -0.13465 -0.115145
-
--0.96683 0.228539 -0.114064
--0.116818 0.00148639 0.993152
-0.227143 0.973534 0.0252603
--0.0379208 -0.13488 -0.117566
-
--0.954733 0.276044 -0.110835
--0.111186 0.014431 0.993695
-0.275903 0.961037 0.0169144
--0.0359822 -0.13511 -0.120012
-
--0.940281 0.322925 -0.107659
--0.104607 0.0268463 0.994151
-0.323927 0.946044 0.00853703
--0.0340436 -0.13534 -0.122482
-
--0.923507 0.369063 -0.104535
--0.0971184 0.0386717 0.994521
-0.371084 0.928599 0.000129252
--0.032105 -0.13557 -0.124976
-
--0.904448 0.414342 -0.101463
--0.088763 0.0498494 0.994805
-0.417247 0.908755 -0.00830787
--0.0301664 -0.135801 -0.127494
-
--0.883148 0.458649 -0.0984454
--0.0795855 0.060324 0.995001
-0.462295 0.886568 -0.0167732
--0.0282278 -0.136031 -0.130036
-
--0.859656 0.501871 -0.0954811
--0.0696343 0.0700433 0.995111
-0.506105 0.862102 -0.0252657
--0.0262892 -0.136261 -0.132603
-
--0.834029 0.543899 -0.0925707
--0.0589609 0.0789578 0.995133
-0.548561 0.835428 -0.0337843
--0.0243506 -0.136491 -0.135194
-
--0.806327 0.584627 -0.0897147
--0.0476198 0.0870214 0.995068
-0.589551 0.806622 -0.0423278
--0.0224121 -0.136721 -0.137808
-
--0.776615 0.623952 -0.0869133
--0.0356683 0.0941913 0.994915
-0.628965 0.775766 -0.0508951
--0.0204735 -0.136951 -0.140447
-
--0.744965 0.661773 -0.084167
--0.023166 0.100429 0.994675
-0.666701 0.742947 -0.0594851
--0.0185349 -0.137181 -0.143111
-
--0.711453 0.697994 -0.081476
--0.0101751 0.105697 0.994346
-0.70266 0.70826 -0.0680966
--0.0165963 -0.137411 -0.145798
-
--0.676161 0.732524 -0.0788407
-0.0032402 0.109966 0.99393
-0.736747 0.671801 -0.0767285
--0.0146577 -0.137641 -0.14851
-
--0.639173 0.765273 -0.0762614
-0.0170139 0.113208 0.993426
-0.768875 0.633673 -0.0853796
--0.0127191 -0.137871 -0.151246
-
--0.60058 0.796157 -0.0737384
-0.0310782 0.115398 0.992833
-0.79896 0.593984 -0.0940488
--0.0107805 -0.138101 -0.154006
-
--0.560477 0.825098 -0.071272
-0.0453639 0.116517 0.992152
-0.826927 0.552845 -0.102735
--0.00884191 -0.138332 -0.15679
-
--0.518961 0.85202 -0.0688626
-0.0598008 0.116551 0.991383
-0.852704 0.510371 -0.111437
--0.00690332 -0.138562 -0.159598
-
--0.476135 0.876854 -0.0665104
-0.0743176 0.115487 0.990525
-0.876226 0.46668 -0.120153
--0.00496473 -0.138792 -0.162431
-
--0.432103 0.899535 -0.0642157
-0.0888423 0.11332 0.989578
-0.897437 0.421895 -0.128883
--0.00302614 -0.139022 -0.165288
-
--0.386975 0.920005 -0.0619787
-0.103303 0.110048 0.988543
-0.916285 0.376139 -0.137625
--0.00108754 -0.139252 -0.168168
-
--0.340862 0.938209 -0.0597998
-0.117626 0.105671 0.98742
-0.932726 0.32954 -0.146377
-0.000851048 -0.139482 -0.171074
-
--0.301223 0.951905 -0.0560577
-0.129424 0.099058 0.986629
-0.94473 0.28994 -0.153038
-0.00262781 -0.140104 -0.173928
-
--0.269768 0.961622 -0.0500891
-0.1378 0.0900353 0.986359
-0.953014 0.259186 -0.1568
-0.00417783 -0.141289 -0.176746
-
--0.246876 0.968154 -0.0415926
-0.142487 0.0787213 0.986661
-0.958514 0.237656 -0.157383
-0.00550381 -0.143083 -0.179507
-
--0.232165 0.972192 -0.0306764
-0.143894 0.0655197 0.987422
-0.961974 0.224831 -0.155104
-0.00660755 -0.145437 -0.182222
-
--0.225148 0.974168 -0.0174803
-0.142423 0.0506543 0.988509
-0.963859 0.220071 -0.150149
-0.00749814 -0.148306 -0.184896
-
--0.223334 0.974739 -0.00243456
-0.138689 0.0342486 0.989744
-0.964825 0.220705 -0.142834
-0.00821727 -0.151619 -0.187567
-
--0.221575 0.975062 0.0126141
-0.134896 0.0178377 0.990699
-0.965768 0.221216 -0.135484
-0.0089364 -0.154931 -0.190262
-
--0.219874 0.975136 0.0276614
-0.131045 0.00142614 0.991375
-0.966686 0.221603 -0.128101
-0.00965553 -0.158244 -0.192981
-
--0.218232 0.974962 0.0427031
-0.127138 -0.0149813 0.991772
-0.96758 0.221865 -0.120685
-0.0103747 -0.161556 -0.195724
-
--0.216648 0.974541 0.0577349
-0.123175 -0.0313799 0.991889
-0.968448 0.222003 -0.113241
-0.0110938 -0.164868 -0.198492
-
--0.215126 0.973873 0.0727528
-0.119157 -0.047765 0.991726
-0.96929 0.222015 -0.105769
-0.0118129 -0.168181 -0.201284
-
--0.213665 0.972958 0.0877523
-0.115086 -0.0641319 0.991283
-0.970104 0.221901 -0.0982712
-0.012532 -0.171493 -0.2041
-
--0.212266 0.971797 0.102729
-0.110962 -0.0804758 0.990561
-0.970892 0.221662 -0.0907507
-0.0132512 -0.174805 -0.20694
-
--0.210931 0.970391 0.11768
-0.106787 -0.0967922 0.989559
-0.97165 0.221296 -0.0832092
-0.0139703 -0.178118 -0.209804
-
--0.209661 0.968741 0.132599
-0.102562 -0.113076 0.988279
-0.97238 0.220803 -0.0756487
-0.0146894 -0.18143 -0.212693
-
--0.208456 0.966848 0.147484
-0.0982883 -0.129324 0.986719
-0.97308 0.220184 -0.0680716
-0.0154086 -0.184743 -0.215606
-
--0.207318 0.964712 0.162329
-0.0939665 -0.145529 0.984881
-0.97375 0.219437 -0.0604798
-0.0161277 -0.188055 -0.218542
-
--0.206247 0.962334 0.17713
-0.0895981 -0.161689 0.982766
-0.974389 0.218563 -0.0528755
-0.0168468 -0.191367 -0.221504
-
--0.205244 0.959716 0.191885
-0.0851843 -0.177797 0.980373
-0.974997 0.217562 -0.0452609
-0.0175659 -0.19468 -0.224489
-
--0.204311 0.956859 0.206587
-0.0807265 -0.19385 0.977704
-0.975572 0.216433 -0.0376381
-0.0182851 -0.197992 -0.227498
-
--0.203448 0.953764 0.221233
-0.0762258 -0.209844 0.974759
-0.976114 0.215176 -0.0300093
-0.0190042 -0.201304 -0.230532
-
--0.21053 0.948639 0.236136
-0.0756968 -0.225006 0.971413
-0.974652 0.222386 -0.0244385
-0.0196158 -0.204268 -0.233494
-
--0.2262 0.941116 0.251265
-0.0799555 -0.239142 0.967687
-0.970794 0.238981 -0.0211536
-0.0201132 -0.206838 -0.236363
-
--0.251182 0.93049 0.266637
-0.0899627 -0.251834 0.96358
-0.96375 0.266021 -0.0204532
-0.0204913 -0.208962 -0.239147
-
--0.284953 0.916045 0.282247
-0.10599 -0.262538 0.959083
-0.952663 0.303209 -0.022281
-0.0207566 -0.210641 -0.241842
-
--0.319813 0.899454 0.29783
-0.124009 -0.271898 0.954302
-0.93933 0.342132 -0.024584
-0.0210038 -0.212226 -0.24455
-
--0.353754 0.881295 0.313333
-0.142853 -0.280157 0.949265
-0.924365 0.380567 -0.0267893
-0.021251 -0.21381 -0.247282
-
--0.374454 0.868347 0.325204
-0.157383 -0.286112 0.945183
-0.913791 0.405109 -0.0295268
-0.021653 -0.214891 -0.250338
-
--0.377559 0.864513 0.331763
-0.164865 -0.289797 0.942782
-0.911191 0.410652 -0.0331126
-0.0222568 -0.215229 -0.253865
-
--0.36314 0.870321 0.332672
-0.164543 -0.291531 0.942303
-0.91709 0.396927 -0.0373382
-0.0230364 -0.214777 -0.2579
-
--0.333717 0.883422 0.328936
-0.157585 -0.291749 0.943424
-0.929408 0.366672 -0.0418528
-0.0240052 -0.213709 -0.262327
-
--0.297506 0.898316 0.323292
-0.148059 -0.291116 0.945161
-0.94317 0.329057 -0.0463951
-0.0250514 -0.212401 -0.266927
-
--0.260652 0.911693 0.317611
-0.138797 -0.290178 0.946854
-0.955404 0.290883 -0.0509052
-0.0260976 -0.211093 -0.271552
-
--0.227806 0.922332 0.312102
-0.132814 -0.288101 0.948345
-0.964606 0.25749 -0.0568679
-0.0271029 -0.209548 -0.27616
-
--0.202454 0.929919 0.307023
-0.132125 -0.284711 0.949464
-0.970338 0.232788 -0.0652245
-0.0280361 -0.207622 -0.280762
-
--0.184937 0.935093 0.302322
-0.136653 -0.280171 0.950174
-0.973203 0.217035 -0.0759697
-0.0288935 -0.205316 -0.285359
-
--0.175496 0.938304 0.297972
-0.146304 -0.274451 0.950406
-0.973548 0.210387 -0.0891126
-0.0296726 -0.202631 -0.289954
-
--0.166077 0.941406 0.293554
-0.156027 -0.268852 0.95046
-0.973691 0.203652 -0.102235
-0.0304517 -0.199945 -0.294573
-
--0.156683 0.944399 0.289069
-0.16582 -0.263375 0.950335
-0.973629 0.196835 -0.115334
-0.0312309 -0.19726 -0.299216
-
--0.147314 0.947285 0.284518
-0.175679 -0.258023 0.950032
-0.973363 0.189937 -0.128408
-0.03201 -0.194574 -0.303884
-
--0.137974 0.950062 0.279901
-0.185601 -0.252796 0.949551
-0.97289 0.182963 -0.141453
-0.0327891 -0.191889 -0.308575
-
--0.128664 0.952733 0.27522
-0.195582 -0.247697 0.948891
-0.97221 0.175916 -0.154468
-0.0335683 -0.189203 -0.313291
-
--0.119385 0.955296 0.270475
-0.20562 -0.242728 0.948053
-0.971323 0.168798 -0.16745
-0.0343474 -0.186518 -0.318031
-
--0.11014 0.957752 0.265668
-0.21571 -0.237889 0.947036
-0.970226 0.161614 -0.180396
-0.0351265 -0.183832 -0.322795
-
--0.10093 0.960103 0.260799
-0.22585 -0.233183 0.945842
-0.968919 0.154366 -0.193304
-0.0359057 -0.181147 -0.327583
-
--0.091758 0.962347 0.255869
-0.236035 -0.228611 0.944471
-0.967403 0.147057 -0.206171
-0.0366848 -0.178461 -0.332395
-
--0.0826248 0.964486 0.250879
-0.246263 -0.224173 0.942921
-0.965675 0.139691 -0.218995
-0.0374639 -0.175776 -0.337232
-
--0.0735325 0.96652 0.245831
-0.25653 -0.219873 0.941195
-0.963735 0.132271 -0.231774
-0.0382431 -0.17309 -0.342093
-
--0.0644828 0.968449 0.240724
-0.266833 -0.21571 0.939292
-0.961583 0.124801 -0.244504
-0.0390222 -0.170405 -0.346978
-
--0.0554776 0.970275 0.235561
-0.277167 -0.211686 0.937213
-0.959219 0.117284 -0.257184
-0.0398013 -0.167719 -0.351887
-
--0.0465186 0.971997 0.230341
-0.28753 -0.207803 0.934957
-0.956641 0.109723 -0.269811
-0.0405805 -0.165034 -0.35682
-
--0.0376076 0.973617 0.225067
-0.297917 -0.204061 0.932526
-0.953851 0.102121 -0.282383
-0.0413596 -0.162348 -0.361778
-
--0.0287462 0.975135 0.219739
-0.308326 -0.200461 0.92992
-0.950846 0.0944828 -0.294897
-0.0421387 -0.159663 -0.366759
-
--0.0199362 0.976552 0.214358
-0.318752 -0.197004 0.927139
-0.947628 0.0868106 -0.307351
-0.0429179 -0.156977 -0.371765
-
--0.0100919 0.977739 0.209582
-0.328226 -0.194741 0.924307
-0.944545 0.0781183 -0.318954
-0.0436216 -0.154466 -0.376831
-
-0.00335289 0.978403 0.206679
-0.334769 -0.195852 0.921722
-0.942294 0.0660991 -0.328196
-0.0441257 -0.152464 -0.382012
-
-0.0206299 0.978401 0.205682
-0.33829 -0.200423 0.919451
-0.940816 0.050612 -0.335118
-0.0444395 -0.150972 -0.387296
-
-0.0426871 0.977489 0.206625
-0.338461 -0.208733 0.917537
-0.940012 0.0307676 -0.339752
-0.0445532 -0.150014 -0.392709
-
-0.0693838 0.975332 0.209556
-0.335112 -0.220643 0.915978
-0.93962 0.00667072 -0.342155
-0.0444602 -0.149587 -0.398247
-
-0.0999077 0.971701 0.214045
-0.328676 -0.235275 0.914668
-0.939143 -0.0210311 -0.342881
-0.0441981 -0.149573 -0.403887
-
-0.133505 0.966343 0.219902
-0.319342 -0.252 0.913519
-0.938188 -0.0517352 -0.342237
-0.0437911 -0.149907 -0.40962
-
-0.166863 0.959789 0.225749
-0.309266 -0.268353 0.912327
-0.936222 -0.0824172 -0.341608
-0.0433841 -0.150241 -0.415377
-
-0.199939 0.952047 0.231585
-0.298463 -0.284303 0.911094
-0.933244 -0.113043 -0.340994
-0.0429771 -0.150575 -0.421158
-
-0.232689 0.943129 0.23741
-0.286948 -0.299821 0.909818
-0.929256 -0.14358 -0.340394
-0.0425701 -0.150909 -0.426964
-
-0.26507 0.933049 0.243224
-0.274738 -0.314875 0.9085
-0.92426 -0.173993 -0.339808
-0.0421631 -0.151243 -0.432794
-
-0.297041 0.92182 0.249027
-0.261852 -0.329438 0.907141
-0.91826 -0.20425 -0.339237
-0.0417561 -0.151577 -0.438648
-
-0.328559 0.90946 0.254817
-0.248308 -0.343481 0.90574
-0.911259 -0.234316 -0.33868
-0.0413491 -0.151911 -0.444526
-
-0.359584 0.895985 0.260595
-0.234128 -0.356975 0.904297
-0.903263 -0.264158 -0.338138
-0.0409421 -0.152245 -0.450428
-
-0.390074 0.881416 0.266361
-0.219334 -0.369894 0.902813
-0.894279 -0.293742 -0.33761
-0.0405351 -0.152579 -0.456354
-
-0.419992 0.865772 0.272114
-0.203947 -0.382213 0.901288
-0.884315 -0.323036 -0.337098
-0.0401281 -0.152913 -0.462305
-
-0.449296 0.849076 0.277854
-0.187992 -0.393905 0.899721
-0.873379 -0.352007 -0.3366
-0.0397211 -0.153247 -0.46828
-
-0.477951 0.831352 0.28358
-0.171494 -0.404946 0.898114
-0.861483 -0.380622 -0.336116
-0.0393141 -0.153581 -0.474279
-
-0.505917 0.812624 0.289292
-0.154479 -0.415314 0.896466
-0.848637 -0.408848 -0.335648
-0.0389071 -0.153915 -0.480302
-
-0.53316 0.792919 0.294991
-0.136973 -0.424986 0.894777
-0.834852 -0.436653 -0.335194
-0.0385001 -0.154249 -0.486349
-
-0.559644 0.772265 0.300675
-0.119005 -0.433941 0.893047
-0.820144 -0.464007 -0.334756
-0.0380931 -0.154583 -0.492421
-
-0.585335 0.75069 0.306344
-0.100602 -0.442158 0.891277
-0.804526 -0.490877 -0.334332
-0.0376861 -0.154917 -0.498517
-
-0.6102 0.728226 0.311999
-0.0817953 -0.449619 0.889468
-0.788014 -0.517233 -0.333923
-0.0372791 -0.155251 -0.504637
-
-0.634207 0.704903 0.317638
-0.0626139 -0.456306 0.887617
-0.770624 -0.543045 -0.333529
-0.0368721 -0.155585 -0.510781
-
-0.657325 0.680754 0.323261
-0.0430894 -0.462201 0.885727
-0.752374 -0.568282 -0.33315
-0.0364651 -0.155918 -0.516949
-
-0.679526 0.655812 0.328869
-0.0232533 -0.467291 0.883798
-0.733283 -0.592916 -0.332786
-0.0360581 -0.156252 -0.523141
-
-0.70078 0.630114 0.334461
-0.00313824 -0.47156 0.881828
-0.713371 -0.616918 -0.332437
-0.0356511 -0.156586 -0.529358
-
-0.721061 0.603694 0.340036
--0.0172229 -0.474996 0.87982
-0.692658 -0.64026 -0.332103
-0.0352441 -0.15692 -0.535599
-
-0.740344 0.57659 0.345595
--0.0377965 -0.477586 0.877772
-0.671165 -0.662915 -0.331785
-0.0348371 -0.157254 -0.541864
-
-0.758604 0.548838 0.351137
--0.0585484 -0.479321 0.875684
-0.648917 -0.684856 -0.331481
-0.0344301 -0.157588 -0.548153
-
-0.775818 0.520479 0.356661
--0.0794442 -0.480192 0.873558
-0.625935 -0.706057 -0.331193
-0.0340231 -0.157922 -0.554467
-
-0.791967 0.491551 0.362168
--0.100449 -0.480191 0.871393
-0.602245 -0.726494 -0.33092
-0.0336162 -0.158256 -0.560804
-
-0.807029 0.462095 0.367657
--0.121527 -0.479312 0.86919
-0.577871 -0.746142 -0.330662
-0.0332092 -0.15859 -0.567166
-
-0.820987 0.432152 0.373128
--0.142643 -0.47755 0.866948
-0.552841 -0.764977 -0.330419
-0.0328022 -0.158924 -0.573552
-
-0.833825 0.401763 0.378581
--0.163762 -0.474902 0.864668
-0.52718 -0.782978 -0.330192
-0.0323952 -0.159258 -0.579962
-
-0.845526 0.37097 0.384015
--0.184846 -0.471366 0.862349
-0.500917 -0.800122 -0.32998
-0.0319882 -0.159592 -0.586396
-
-0.856078 0.339817 0.38943
--0.20586 -0.466941 0.859993
-0.474081 -0.816389 -0.329783
-0.0315812 -0.159926 -0.592855
-
-0.865468 0.308346 0.394825
--0.226768 -0.461628 0.857599
-0.4467 -0.831759 -0.329601
-0.0311742 -0.16026 -0.599338
-
-0.873688 0.276601 0.400202
--0.247533 -0.45543 0.855167
-0.418804 -0.846212 -0.329435
-0.0307672 -0.160594 -0.605845
-
-0.880727 0.244627 0.405558
--0.26812 -0.44835 0.852698
-0.390425 -0.859733 -0.329285
-0.0303602 -0.160928 -0.612376
-
-0.886579 0.212467 0.410895
--0.288491 -0.440394 0.850192
-0.361593 -0.872302 -0.329149
-0.0299532 -0.161262 -0.618931
-
-0.89124 0.180166 0.416211
--0.308612 -0.431568 0.847648
-0.332341 -0.883906 -0.329029
-0.0295462 -0.161596 -0.62551
-
-0.894705 0.147768 0.421507
--0.328446 -0.421881 0.845068
-0.3027 -0.894528 -0.328925
-0.0291392 -0.16193 -0.632114
-
-0.896972 0.115319 0.426782
--0.347957 -0.411342 0.842451
-0.272704 -0.904157 -0.328836
-0.0287322 -0.162264 -0.638742
-
-0.898041 0.0828634 0.432036
--0.367111 -0.399962 0.839798
-0.242387 -0.912778 -0.328762
-0.0283252 -0.162598 -0.645394
-
-0.897915 0.0504456 0.437269
--0.385873 -0.387754 0.837108
-0.211781 -0.920382 -0.328704
-0.0279182 -0.162932 -0.65207
-
-0.896595 0.0181105 0.44248
--0.404208 -0.374731 0.834382
-0.180922 -0.926957 -0.328662
-0.0275112 -0.163266 -0.65877
-
-0.894088 -0.0140973 0.447669
--0.422082 -0.360909 0.83162
-0.149844 -0.932495 -0.328635
-0.0271042 -0.1636 -0.665495
-
-0.890399 -0.0461336 0.452837
--0.439463 -0.346304 0.828822
-0.118583 -0.936987 -0.328623
-0.0266972 -0.163934 -0.672244
-
-0.885537 -0.0779543 0.457981
--0.456316 -0.330935 0.825989
-0.0871727 -0.940428 -0.328627
-0.0262902 -0.164268 -0.679017
-
-0.879512 -0.109516 0.463104
--0.472612 -0.31482 0.82312
-0.0556498 -0.942812 -0.328647
-0.0258832 -0.164602 -0.685814
-
-0.872335 -0.140774 0.468203
--0.488317 -0.297981 0.820216
-0.02405 -0.944135 -0.328682
-0.0254762 -0.164935 -0.692635
-
-0.86402 -0.171688 0.473279
--0.503401 -0.280439 0.817277
--0.00759084 -0.944393 -0.328732
-0.0250692 -0.165269 -0.699481
-
-0.854581 -0.202214 0.478332
--0.517835 -0.262217 0.814303
--0.0392366 -0.943585 -0.328799
-0.0246622 -0.165603 -0.70635
-
-0.844034 -0.23231 0.483362
--0.531589 -0.24334 0.811295
--0.0708511 -0.94171 -0.32888
-0.0242552 -0.165937 -0.713244
-
-0.832398 -0.261936 0.488367
--0.544635 -0.223833 0.808252
--0.102398 -0.93877 -0.328978
-0.0238482 -0.166271 -0.720162
-
-0.819693 -0.291052 0.493349
--0.556947 -0.203723 0.805175
--0.133841 -0.934765 -0.329091
-0.0234412 -0.166605 -0.727104
-
-0.805938 -0.319617 0.498306
--0.568499 -0.183038 0.802064
--0.165144 -0.9297 -0.329219
-0.0230342 -0.166939 -0.734071
-
-0.791157 -0.347593 0.503238
--0.579265 -0.161807 0.798919
--0.196271 -0.923578 -0.329363
-0.0226272 -0.167273 -0.741061
-
-0.775374 -0.374943 0.508146
--0.589221 -0.14006 0.79574
--0.227186 -0.916406 -0.329523
-0.0222202 -0.167607 -0.748076
-
-0.758614 -0.401629 0.513029
--0.598344 -0.117828 0.792528
--0.257853 -0.908191 -0.329699
-0.0218132 -0.167941 -0.755115
-
-0.740904 -0.427616 0.517886
--0.606614 -0.0951429 0.789283
--0.288237 -0.89894 -0.32989
-0.0214062 -0.168275 -0.762178
-
-0.722272 -0.452868 0.522718
--0.61401 -0.0720375 0.786004
--0.318301 -0.888662 -0.330096
-0.0209992 -0.168609 -0.769266
-
-0.702746 -0.477353 0.527524
--0.620512 -0.0485457 0.782693
--0.348012 -0.87737 -0.330319
-0.0205922 -0.168943 -0.776377
-
-0.682359 -0.501037 0.532304
--0.626103 -0.0247021 0.779349
--0.377334 -0.865073 -0.330557
-0.0201852 -0.169277 -0.783513
-
-0.661142 -0.523889 0.537058
--0.630766 -0.000542091 0.775973
--0.406232 -0.851786 -0.33081
-0.0197782 -0.169611 -0.790673
-
-0.639128 -0.545879 0.541785
--0.634487 0.0238983 0.772564
--0.434674 -0.837523 -0.331079
-0.0193712 -0.169945 -0.797857
-
-0.616351 -0.566978 0.546486
--0.637251 0.0485823 0.769123
--0.462626 -0.822299 -0.331364
-0.0189642 -0.170279 -0.805065
-
-0.592846 -0.587159 0.55116
--0.639046 0.0734724 0.765651
--0.490054 -0.80613 -0.331664
-0.0185572 -0.170613 -0.812298
-
-0.56865 -0.606396 0.555807
--0.639862 0.0985308 0.762147
--0.516927 -0.789035 -0.33198
-0.0181502 -0.170947 -0.819554
-
-0.5438 -0.624663 0.560426
--0.639689 0.123719 0.758612
--0.543212 -0.771032 -0.332312
-0.0177432 -0.171281 -0.826835
-
-0.518334 -0.641938 0.565018
--0.638519 0.148998 0.755045
--0.568878 -0.752141 -0.332659
-0.0173362 -0.171615 -0.83414
-
-0.492292 -0.658198 0.569582
--0.636346 0.174329 0.751447
--0.593896 -0.732383 -0.333021
-0.0169292 -0.171949 -0.841469
-
-0.465712 -0.673425 0.574118
--0.633165 0.199671 0.747819
--0.618234 -0.71178 -0.3334
-0.0165222 -0.172283 -0.848823
-
-0.438636 -0.687598 0.578626
--0.628973 0.224986 0.74416
--0.641865 -0.690356 -0.333794
-0.0161152 -0.172617 -0.8562
-
-0.411105 -0.700701 0.583105
--0.623768 0.250232 0.740471
--0.66476 -0.668134 -0.334203
-0.0157082 -0.172951 -0.863602
-
-0.383161 -0.712718 0.587555
--0.617551 0.27537 0.736752
--0.686891 -0.64514 -0.334628
-0.0153012 -0.173285 -0.871028
-
-0.354846 -0.723635 0.591977
--0.610321 0.300359 0.733002
--0.708232 -0.621399 -0.335069
-0.0148942 -0.173619 -0.878478
-
-0.326203 -0.733441 0.596369
--0.602084 0.325159 0.729223
--0.728757 -0.596939 -0.335525
-0.0144872 -0.173952 -0.885952
-
-0.297276 -0.742124 0.600733
--0.592843 0.349729 0.725415
--0.748441 -0.571788 -0.335996
-0.0140802 -0.174286 -0.893451
-
-0.268108 -0.749675 0.605066
--0.582604 0.37403 0.721577
--0.767261 -0.545975 -0.336484
-0.0136732 -0.17462 -0.900974
-
-0.238744 -0.756088 0.60937
--0.571377 0.39802 0.717711
--0.785194 -0.519529 -0.336986
-0.0132662 -0.174954 -0.90852
-
-0.209227 -0.761357 0.613644
--0.559169 0.421661 0.713815
--0.802218 -0.49248 -0.337504
-0.0128592 -0.175288 -0.916091
-
-0.179603 -0.765479 0.617888
--0.545992 0.444912 0.709891
--0.818312 -0.464861 -0.338038
-0.0124522 -0.175622 -0.923687
-
-0.149916 -0.76845 0.622101
--0.53186 0.467735 0.705939
--0.833457 -0.436702 -0.338587
-0.0120452 -0.175956 -0.931306
-
-0.12021 -0.770272 0.626284
--0.516785 0.49009 0.701958
--0.847634 -0.408036 -0.339151
-0.0116382 -0.17629 -0.93895
-
-0.0905299 -0.770945 0.630435
--0.500784 0.511939 0.69795
--0.860825 -0.378898 -0.339731
-0.0112312 -0.176624 -0.946618
-
-0.0609206 -0.770472 0.634556
--0.483875 0.533244 0.693914
--0.873014 -0.34932 -0.340326
-0.0108242 -0.176958 -0.95431
-
-0.0314264 -0.768859 0.638646
--0.466076 0.553968 0.68985
--0.884187 -0.319337 -0.340937
-0.0104172 -0.177292 -0.962026
-
-0.00209117 -0.766111 0.642704
--0.447407 0.574074 0.685759
--0.894328 -0.288984 -0.341563
-0.0100102 -0.177626 -0.969766
-
--0.0270411 -0.762239 0.646731
--0.427891 0.593527 0.681641
--0.903426 -0.258298 -0.342205
-0.00960321 -0.17796 -0.977531
-
--0.0559269 -0.75725 0.650726
--0.40755 0.612291 0.677497
--0.911469 -0.227313 -0.342861
-0.00919621 -0.178294 -0.985319
-
--0.0845233 -0.751158 0.654689
--0.38641 0.630333 0.673326
--0.918446 -0.196067 -0.343533
-0.00878921 -0.178628 -0.993132
-
--0.112788 -0.743975 0.658619
--0.364497 0.647618 0.669128
--0.924349 -0.164596 -0.34422
-0.00838221 -0.178962 -1.00097
-
--0.140678 -0.735717 0.662518
--0.341839 0.664114 0.664905
--0.92917 -0.132937 -0.344923
-0.00797521 -0.179296 -1.00883
-
--0.168153 -0.726401 0.666383
--0.318463 0.679791 0.660656
--0.932902 -0.101127 -0.345641
-0.00756822 -0.17963 -1.01672
-
--0.195172 -0.716043 0.670216
--0.294401 0.694617 0.656381
--0.935541 -0.0692049 -0.346374
-0.00716122 -0.179964 -1.02463
-
--0.221695 -0.704666 0.674016
--0.269683 0.708563 0.65208
--0.937082 -0.0372079 -0.347122
-0.00675422 -0.180298 -1.03256
-
--0.247683 -0.692289 0.677783
--0.244344 0.721602 0.647755
--0.937523 -0.00517393 -0.347885
-0.00634722 -0.180632 -1.04052
-
--0.273097 -0.678936 0.681516
--0.218415 0.733706 0.643405
--0.936863 0.0268589 -0.348663
-0.00594022 -0.180966 -1.0485
-
--0.297901 -0.664631 0.685216
--0.191933 0.744851 0.63903
--0.935102 0.0588523 -0.349457
-0.00553322 -0.1813 -1.05651
-
--0.322058 -0.6494 0.688882
--0.164933 0.755011 0.634631
--0.932242 0.0907684 -0.350265
-0.00512622 -0.181634 -1.06454
-
--0.345533 -0.63327 0.692514
--0.137453 0.764163 0.630207
--0.928285 0.122569 -0.351088
-0.00471922 -0.181968 -1.07259
-
--0.368291 -0.616271 0.696112
--0.109531 0.772287 0.62576
--0.923236 0.154216 -0.351927
-0.00431222 -0.182302 -1.08067
-
--0.390299 -0.598431 0.699676
--0.081205 0.779363 0.621289
--0.9171 0.185671 -0.35278
-0.00390522 -0.182636 -1.08877
-
--0.411526 -0.579783 0.703205
--0.0525158 0.785371 0.616794
--0.909884 0.216898 -0.353649
-0.00349823 -0.18297 -1.0969
-
--0.431942 -0.560358 0.7067
--0.023504 0.790294 0.612276
--0.901595 0.247857 -0.354532
-0.00309123 -0.183303 -1.10505
-
--0.451516 -0.540191 0.71016
-0.00578903 0.794118 0.607736
--0.892244 0.278513 -0.35543
-0.00268423 -0.183637 -1.11323
-
--0.470221 -0.519316 0.713585
-0.035321 0.796829 0.603172
--0.881842 0.308829 -0.356343
-0.00227723 -0.183971 -1.12143
-
--0.488031 -0.497769 0.716974
-0.0650492 0.798413 0.598586
--0.870399 0.338767 -0.357271
-0.00187023 -0.184305 -1.12965
-
--0.50492 -0.475587 0.720329
-0.09493 0.79886 0.593978
--0.85793 0.368292 -0.358213
-0.00146323 -0.184639 -1.1379
-
--0.520865 -0.452808 0.723647
-0.12492 0.798163 0.589348
--0.84445 0.397368 -0.35917
-0.00105623 -0.184973 -1.14617
-
--0.535843 -0.42947 0.72693
-0.154974 0.796312 0.584697
--0.829973 0.425961 -0.360142
-0.000649232 -0.185307 -1.15447
-
--0.549835 -0.405614 0.730178
-0.185047 0.793303 0.580023
--0.814518 0.454034 -0.361128
-0.000242233 -0.185641 -1.16279
-
--0.562821 -0.381279 0.733389
-0.215095 0.789133 0.575329
--0.798102 0.481556 -0.362129
--0.000164766 -0.185975 -1.17114
-
--0.574784 -0.356507 0.736564
-0.245072 0.783798 0.570614
--0.780745 0.508491 -0.363145
--0.000571764 -0.186309 -1.1795
-
--0.585709 -0.33134 0.739702
-0.274933 0.777299 0.565878
--0.762468 0.534808 -0.364175
--0.000978763 -0.186643 -1.1879
-
--0.595581 -0.30582 0.742804
-0.304632 0.769638 0.561121
--0.743292 0.560475 -0.365219
--0.00138576 -0.186977 -1.19632
-
--0.604388 -0.279989 0.745869
-0.334123 0.760817 0.556345
--0.723241 0.58546 -0.366278
--0.00179276 -0.187311 -1.20476
-
--0.61212 -0.253892 0.748898
-0.36336 0.750842 0.551548
--0.702338 0.609733 -0.367351
--0.00219976 -0.187645 -1.21322
-
--0.618768 -0.227573 0.751889
-0.392298 0.73972 0.546732
--0.680609 0.633265 -0.368439
--0.00260676 -0.187979 -1.22171
-
--0.624324 -0.201074 0.754843
-0.420892 0.72746 0.541896
--0.65808 0.656027 -0.36954
--0.00301376 -0.188313 -1.23023
-
--0.628784 -0.174441 0.75776
-0.449096 0.714072 0.537041
--0.634778 0.677991 -0.370656
--0.00342076 -0.188647 -1.23877
-
--0.632145 -0.147719 0.760639
-0.476866 0.699569 0.532168
--0.610731 0.69913 -0.371787
--0.00382776 -0.188981 -1.24733
-
--0.634403 -0.120951 0.763481
-0.504157 0.683964 0.527275
--0.585968 0.719419 -0.372931
--0.00423476 -0.189315 -1.25592
-
--0.635561 -0.0941826 0.766285
-0.530924 0.667274 0.522365
--0.56052 0.738834 -0.374089
--0.00464175 -0.189649 -1.26453
-
--0.635618 -0.0674586 0.769051
-0.557125 0.649516 0.517436
--0.534417 0.757349 -0.375262
--0.00504875 -0.189983 -1.27316
-
--0.63458 -0.0408234 0.771778
-0.582717 0.630711 0.512489
--0.50769 0.774943 -0.376448
--0.00545575 -0.190317 -1.28182
-
--0.632452 -0.0143215 0.774468
-0.607656 0.610878 0.507525
--0.480374 0.791595 -0.377648
--0.00586275 -0.190651 -1.2905
-
--0.62924 0.0120031 0.777118
-0.631903 0.590041 0.502544
--0.4525 0.807284 -0.378862
--0.00626975 -0.190985 -1.29921
-
--0.624954 0.0381064 0.779731
-0.655415 0.568225 0.497545
--0.424103 0.82199 -0.38009
--0.00667675 -0.191319 -1.30794
-
--0.619605 0.063945 0.782304
-0.678154 0.545456 0.49253
--0.395218 0.835697 -0.381332
--0.00708375 -0.191653 -1.3167
-
--0.613206 0.089476 0.784839
-0.700079 0.521761 0.487498
--0.365879 0.848387 -0.382587
--0.00749075 -0.191987 -1.32548
-
--0.60577 0.114657 0.787335
-0.721154 0.49717 0.48245
--0.336123 0.860044 -0.383856
--0.00789775 -0.19232 -1.33429
-
--0.597314 0.139446 0.789791
-0.741342 0.471714 0.477387
--0.305986 0.870655 -0.385139
--0.00830475 -0.192654 -1.34311
-
--0.587856 0.163801 0.792209
-0.760606 0.445426 0.472307
--0.275506 0.880207 -0.386435
--0.00871174 -0.192988 -1.35197
-
--0.577415 0.187683 0.794586
-0.778913 0.418339 0.467212
--0.244719 0.888688 -0.387744
--0.00911874 -0.193322 -1.36084
-
--0.566011 0.211052 0.796924
-0.796228 0.39049 0.462102
--0.213663 0.896089 -0.389067
--0.00952574 -0.193656 -1.36975
-
--0.553668 0.233869 0.799223
-0.812521 0.361914 0.456977
--0.182377 0.902399 -0.390403
--0.00993274 -0.19399 -1.37867
-
--0.54041 0.256095 0.801481
-0.82776 0.33265 0.451838
--0.1509 0.907612 -0.391753
--0.0103397 -0.194324 -1.38762
-
--0.526262 0.277695 0.8037
-0.841916 0.302738 0.446684
--0.119268 0.911721 -0.393116
--0.0107467 -0.194658 -1.39659
-
--0.511252 0.298633 0.805878
-0.854963 0.272218 0.441516
--0.0875232 0.914722 -0.394491
--0.0111537 -0.194992 -1.40559
-
--0.495408 0.318873 0.808017
-0.866872 0.241131 0.436335
--0.0557029 0.916611 -0.39588
--0.0115607 -0.195326 -1.41461
-
--0.478761 0.338382 0.810114
-0.877621 0.209522 0.43114
--0.0238467 0.917387 -0.397282
--0.0119677 -0.19566 -1.42366
-
--0.461342 0.357129 0.812172
-0.887186 0.177433 0.425932
-0.00800599 0.917048 -0.398697
--0.0123747 -0.195994 -1.43273
-
--0.443183 0.375081 0.814188
-0.895546 0.144911 0.420711
-0.0398159 0.915595 -0.400125
--0.0127817 -0.196328 -1.44183
-
--0.424319 0.392211 0.816164
-0.902682 0.112001 0.415477
-0.0715437 0.913032 -0.401566
--0.0131887 -0.196662 -1.45094
-
--0.404785 0.408488 0.818099
-0.908575 0.0787489 0.410231
-0.10315 0.90936 -0.403019
--0.0135957 -0.196996 -1.46009
-
--0.384617 0.423888 0.819993
-0.91321 0.0452037 0.404973
-0.134597 0.904586 -0.404485
--0.0140027 -0.19733 -1.46926
-
--0.363853 0.438384 0.821846
-0.916573 0.0114134 0.399704
-0.165844 0.898716 -0.405963
--0.0144097 -0.197664 -1.47845
-
--0.342532 0.451952 0.823657
-0.918652 -0.0225731 0.394423
-0.196853 0.891757 -0.407455
--0.0148167 -0.197998 -1.48766
-
--0.320691 0.464571 0.825427
-0.919436 -0.0567062 0.389131
-0.227586 0.883718 -0.408958
--0.0152237 -0.198332 -1.4969
-
--0.298373 0.476221 0.827156
-0.918916 -0.0909356 0.383828
-0.258005 0.874611 -0.410474
--0.0156307 -0.198666 -1.50617
-
--0.275618 0.486882 0.828843
-0.917087 -0.125211 0.378514
-0.288072 0.864447 -0.412003
--0.0160377 -0.199 -1.51545
-
--0.252468 0.496537 0.830488
-0.913945 -0.159481 0.37319
-0.31775 0.853239 -0.413543
--0.0164447 -0.199334 -1.52477
-
--0.228966 0.505171 0.832092
-0.909486 -0.193695 0.367857
-0.347002 0.841002 -0.415096
--0.0168517 -0.199668 -1.5341
-
--0.205155 0.51277 0.833654
-0.90371 -0.227801 0.362513
-0.375793 0.827752 -0.416661
--0.0172587 -0.200002 -1.54346
-
--0.181079 0.519323 0.835173
-0.896618 -0.261748 0.35716
-0.404086 0.813506 -0.418237
--0.0176657 -0.200336 -1.55285
-
--0.156783 0.524819 0.83665
-0.888216 -0.295484 0.351798
-0.431847 0.798282 -0.419826
--0.0180727 -0.20067 -1.56226
-
--0.13231 0.529251 0.838085
-0.878507 -0.328957 0.346428
-0.459041 0.7821 -0.421427
--0.0184797 -0.201004 -1.57169
-
--0.107706 0.532612 0.839478
-0.867501 -0.362117 0.341049
-0.485636 0.764981 -0.423039
--0.0188867 -0.201338 -1.58115
-
--0.0830171 0.534898 0.840828
-0.855206 -0.394911 0.335661
-0.511597 0.746947 -0.424663
--0.0192937 -0.201671 -1.59063
-
--0.0582878 0.536106 0.842136
-0.841634 -0.427289 0.330266
-0.536893 0.728021 -0.426299
--0.0197007 -0.202005 -1.60014
-
--0.0335642 0.536235 0.843401
-0.8268 -0.459201 0.324864
-0.561494 0.708228 -0.427946
--0.0201077 -0.202339 -1.60967
-
--0.00889178 0.535287 0.844623
-0.810719 -0.490596 0.319454
-0.585368 0.687593 -0.429605
--0.0205147 -0.202673 -1.61922
-
-0.0156838 0.533265 0.845803
-0.793409 -0.521424 0.314037
-0.608487 0.666143 -0.431275
--0.0209217 -0.203007 -1.6288
-
-0.040117 0.530174 0.846939
-0.77489 -0.551636 0.308613
-0.630821 0.643905 -0.432957
--0.0213287 -0.203341 -1.6384
-
-0.0643626 0.526021 0.848033
-0.755184 -0.581185 0.303184
-0.652345 0.620908 -0.434649
--0.0217357 -0.203675 -1.64803
-
-0.0883756 0.520814 0.849083
-0.734315 -0.610022 0.297748
-0.673031 0.597181 -0.436353
--0.0221427 -0.204009 -1.65768
-
-0.112111 0.514565 0.85009
-0.712309 -0.638101 0.292306
-0.692855 0.572756 -0.438068
--0.0225497 -0.204343 -1.66736
-
-0.135526 0.507286 0.851054
-0.689192 -0.665376 0.28686
-0.711791 0.547663 -0.439793
--0.0229567 -0.204677 -1.67705
-
-0.158575 0.498992 0.851975
-0.664995 -0.691803 0.281408
-0.729819 0.521935 -0.44153
--0.0233637 -0.205011 -1.68678
-
-0.181216 0.489698 0.852852
-0.63975 -0.717336 0.275951
-0.746914 0.495605 -0.443277
--0.0237707 -0.205345 -1.69653
-
-0.203407 0.479424 0.853685
-0.613488 -0.741935 0.27049
-0.763058 0.468707 -0.445035
--0.0241777 -0.205679 -1.7063
-
-0.225105 0.468188 0.854475
-0.586246 -0.765557 0.265025
-0.778231 0.441274 -0.446804
--0.0245847 -0.206013 -1.71609
-
-0.246271 0.456012 0.855222
-0.55806 -0.788163 0.259556
-0.792414 0.413344 -0.448583
--0.0249917 -0.206347 -1.72591
-
-0.266863 0.44292 0.855924
-0.528967 -0.809713 0.254083
-0.805592 0.38495 -0.450373
--0.0253987 -0.206681 -1.73576
-
-0.286844 0.428936 0.856583
-0.499009 -0.830171 0.248608
-0.817747 0.356131 -0.452172
--0.0258057 -0.207015 -1.74563
-
-0.306174 0.414089 0.857198
-0.468226 -0.849501 0.24313
-0.828868 0.326922 -0.453982
--0.0262127 -0.207349 -1.75552
-
-0.324818 0.398404 0.857769
-0.436661 -0.867669 0.237649
-0.83894 0.297362 -0.455803
--0.0266197 -0.207683 -1.76544
-
-0.34274 0.381913 0.858296
-0.404359 -0.884643 0.232166
-0.847952 0.267487 -0.457633
--0.0270267 -0.208017 -1.77538
-
-0.359905 0.364647 0.858778
-0.371366 -0.900391 0.226681
-0.855895 0.237337 -0.459473
--0.0274337 -0.208351 -1.78534
-
-0.376281 0.346639 0.859217
-0.337728 -0.914884 0.221194
-0.862759 0.20695 -0.461323
--0.0278407 -0.208685 -1.79533
-
-0.391835 0.327922 0.859612
-0.303494 -0.928096 0.215707
-0.868537 0.176365 -0.463183
--0.0282477 -0.209019 -1.80535
-
-0.406537 0.308533 0.859962
-0.268713 -0.940001 0.210219
-0.873224 0.145621 -0.465052
--0.0286547 -0.209353 -1.81539
-
-0.420359 0.288509 0.860268
-0.233436 -0.950575 0.20473
-0.876816 0.114757 -0.466931
--0.0290617 -0.209687 -1.82545
-
-0.433273 0.267886 0.86053
-0.197714 -0.959798 0.199241
-0.879309 0.0838135 -0.468819
--0.0294687 -0.210021 -1.83553
-
-0.445254 0.246705 0.860747
-0.161601 -0.967649 0.193752
-0.880701 0.0528288 -0.470717
--0.0298757 -0.210355 -1.84564
-
-0.456277 0.225007 0.86092
-0.125149 -0.974112 0.188263
-0.880993 0.0218428 -0.472624
--0.0302827 -0.210688 -1.85578
-
-0.46632 0.202832 0.861049
-0.0884121 -0.979171 0.182776
-0.880187 -0.00910486 -0.47454
--0.0306897 -0.211022 -1.86594
-
-0.475364 0.180222 0.861133
-0.051446 -0.982813 0.177289
-0.878284 -0.0399749 -0.476465
--0.0310967 -0.211356 -1.87612
-
-0.483388 0.157222 0.861172
-0.014306 -0.985027 0.171804
-0.875289 -0.0707281 -0.478399
--0.0315037 -0.21169 -1.88633
-
-0.490376 0.133876 0.861167
--0.0229519 -0.985805 0.166321
-0.871209 -0.101325 -0.480342
--0.0319107 -0.212024 -1.89656
-
-0.496314 0.110227 0.861117
--0.0602713 -0.985138 0.16084
-0.866049 -0.131728 -0.482294
--0.0323177 -0.212358 -1.90682
-
-0.501187 0.0863219 0.861023
--0.0975953 -0.983025 0.155362
-0.859818 -0.161897 -0.484254
--0.0327247 -0.212692 -1.9171
-
-0.504984 0.0622067 0.860884
--0.134867 -0.979462 0.149886
-0.852527 -0.191795 -0.486223
--0.0331317 -0.213026 -1.9274
-
-0.507697 0.0379279 0.8607
--0.172028 -0.974449 0.144414
-0.844186 -0.221383 -0.4882
--0.0335387 -0.21336 -1.93773
-
-0.509318 0.0135326 0.860472
--0.209023 -0.96799 0.138945
-0.834808 -0.250625 -0.490186
--0.0339457 -0.213694 -1.94808
-
-0.509841 -0.0109318 0.860199
--0.245792 -0.960088 0.13348
-0.824408 -0.279484 -0.492179
--0.0343527 -0.214028 -1.95846
-
-0.509264 -0.0354176 0.859881
--0.28228 -0.950752 0.12802
-0.813 -0.307923 -0.494181
--0.0347597 -0.214362 -1.96886
-
-0.507584 -0.059877 0.859519
--0.318429 -0.93999 0.122563
-0.800601 -0.335907 -0.496191
--0.0351667 -0.214696 -1.97928
-
-0.504804 -0.0842621 0.859112
--0.354182 -0.927815 0.117112
-0.787228 -0.3634 -0.498208
--0.0355737 -0.21503 -1.98973
-
-0.500925 -0.108525 0.85866
--0.389482 -0.91424 0.111667
-0.772902 -0.390369 -0.500234
--0.0359807 -0.215364 -2.0002
-
-0.495952 -0.132617 0.858163
--0.424275 -0.899281 0.106226
-0.757643 -0.41678 -0.502266
--0.0363877 -0.215698 -2.0107
-
-0.489893 -0.156492 0.857622
--0.458504 -0.882958 0.100792
-0.741471 -0.4426 -0.504307
--0.0367947 -0.216032 -2.02122
-
-0.482755 -0.180102 0.857036
--0.492114 -0.865291 0.0953642
-0.724411 -0.467797 -0.506355
--0.0372017 -0.216366 -2.03177
-
-0.474552 -0.203398 0.856405
--0.525052 -0.846304 0.089943
-0.706485 -0.49234 -0.50841
--0.0376087 -0.2167 -2.04234
-
-0.465294 -0.226336 0.85573
--0.557265 -0.826021 0.0845289
-0.687718 -0.516199 -0.510472
--0.0380157 -0.217034 -2.05293
-
-0.454998 -0.248869 0.855009
--0.588701 -0.80447 0.0791221
-0.668138 -0.539345 -0.512541
--0.0384227 -0.217368 -2.06355
-
-0.44368 -0.270951 0.854244
--0.619307 -0.78168 0.0737231
-0.647771 -0.561749 -0.514618
--0.0388297 -0.217702 -2.0742
-
-0.43136 -0.292537 0.853435
--0.649035 -0.757684 0.0683321
-0.626644 -0.583384 -0.516701
--0.0392367 -0.218036 -2.08486
-
-0.418057 -0.313583 0.852581
--0.677834 -0.732515 0.0629497
-0.604788 -0.604225 -0.51879
--0.0396437 -0.21837 -2.09555
-
-0.403796 -0.334046 0.851682
--0.705659 -0.706208 0.057576
-0.582232 -0.624246 -0.520887
--0.0400507 -0.218704 -2.10627
-
-0.388601 -0.353884 0.850738
--0.732462 -0.678803 0.0522115
-0.559007 -0.643423 -0.52299
--0.0404577 -0.219038 -2.11701
-
-0.372498 -0.373054 0.84975
--0.758199 -0.650337 0.0468565
-0.535144 -0.661734 -0.525099
--0.0408647 -0.219372 -2.12777
-
-0.355515 -0.391518 0.848718
--0.782827 -0.620854 0.0415114
-0.510677 -0.679157 -0.527214
--0.0412717 -0.219705 -2.13856
-
-0.337684 -0.409236 0.847641
--0.806303 -0.590395 0.0361765
-0.485638 -0.695672 -0.529336
--0.0416787 -0.220039 -2.14937
-
-0.319035 -0.42617 0.846519
--0.828589 -0.559007 0.0308522
-0.460062 -0.71126 -0.531463
--0.0420857 -0.220373 -2.16021
-
-0.299603 -0.442284 0.845354
--0.849646 -0.526735 0.0255388
-0.433982 -0.725903 -0.533596
--0.0424927 -0.220707 -2.17107
-
-0.279421 -0.457543 0.844144
--0.869437 -0.493629 0.0202368
-0.407434 -0.739584 -0.535735
--0.0428997 -0.221041 -2.18195
-
-0.258528 -0.471913 0.842889
--0.887929 -0.459738 0.0149463
-0.380455 -0.75229 -0.53788
--0.0433067 -0.221375 -2.19286
-
-0.23696 -0.485361 0.84159
--0.905089 -0.425113 0.00966796
-0.353079 -0.764005 -0.54003
--0.0437137 -0.221709 -2.20379
-
-0.214758 -0.497859 0.840247
--0.920886 -0.389808 0.00440195
-0.325343 -0.774717 -0.542185
--0.0441207 -0.222043 -2.21475
-
-0.191963 -0.509376 0.83886
--0.935292 -0.353876 -0.000851335
-0.297286 -0.784416 -0.544346
--0.0445277 -0.222377 -2.22573
-
-0.168616 -0.519885 0.837429
--0.948282 -0.317372 -0.00609153
-0.268943 -0.793092 -0.546512
--0.0449347 -0.222711 -2.23674
-
-0.144762 -0.529362 0.835954
--0.95983 -0.280353 -0.0113183
-0.240354 -0.800736 -0.548682
--0.0453417 -0.223045 -2.24777
-
-0.120444 -0.537783 0.834435
--0.969917 -0.242876 -0.0165312
-0.211554 -0.807341 -0.550858
--0.0457487 -0.223379 -2.25882
-
-0.0957082 -0.545127 0.832872
--0.978521 -0.205 -0.02173
-0.182584 -0.812903 -0.553038
--0.0461557 -0.223713 -2.2699
-
-0.0706016 -0.551373 0.831266
--0.985626 -0.166783 -0.0269142
-0.153481 -0.817417 -0.555223
--0.0465627 -0.224047 -2.281
-
-0.0451714 -0.556505 0.829616
--0.991218 -0.128286 -0.0320836
-0.124283 -0.820881 -0.557412
--0.0469696 -0.224381 -2.29213
-
-0.0194661 -0.560506 0.827922
--0.995284 -0.0895695 -0.0372377
-0.0950285 -0.823293 -0.559606
--0.0473766 -0.224715 -2.30328
-
--0.00646536 -0.563363 0.826184
--0.997815 -0.0506945 -0.0423762
-0.0657562 -0.824653 -0.561804
--0.0477836 -0.225049 -2.31445
-
--0.0325732 -0.565064 0.824404
--0.998803 -0.0117226 -0.0474988
-0.0365041 -0.824964 -0.564006
--0.0481906 -0.225383 -2.32565
-
--0.058807 -0.565601 0.82258
--0.998243 0.027284 -0.0526051
-0.00731026 -0.824227 -0.566212
--0.0485976 -0.225717 -2.33687
-
--0.0851162 -0.564966 0.820712
--0.996133 0.066263 -0.0576947
--0.0217873 -0.822449 -0.568421
--0.0490046 -0.226051 -2.34812
-
--0.11145 -0.563154 0.818802
--0.992473 0.105152 -0.0627672
--0.050751 -0.819634 -0.570635
--0.0494116 -0.226385 -2.35939
-
--0.137756 -0.560163 0.816848
--0.987267 0.143888 -0.0678224
--0.0795435 -0.81579 -0.572851
--0.0498186 -0.226719 -2.37069
-
--0.163983 -0.555991 0.814852
--0.980519 0.18241 -0.0728598
--0.108128 -0.810926 -0.575072
--0.0502256 -0.227053 -2.38201
-
--0.190079 -0.55064 0.812813
--0.972238 0.220654 -0.0778792
--0.136467 -0.805051 -0.577295
--0.0506326 -0.227387 -2.39335
-
--0.215993 -0.544116 0.810731
--0.962434 0.258559 -0.0828801
--0.164525 -0.798176 -0.579522
--0.0510396 -0.227721 -2.40472
-
--0.241674 -0.536422 0.808607
--0.951119 0.296062 -0.0878621
--0.192267 -0.790315 -0.581752
--0.0514466 -0.228055 -2.41611
-
--0.267068 -0.527569 0.80644
--0.93831 0.333103 -0.0928251
--0.219656 -0.781482 -0.583984
--0.0518536 -0.228389 -2.42753
-
--0.292126 -0.517566 0.804231
--0.924024 0.369622 -0.0977685
--0.24666 -0.77169 -0.58622
--0.0522606 -0.228723 -2.43897
-
--0.316797 -0.506426 0.80198
--0.908283 0.405557 -0.102692
--0.273242 -0.760957 -0.588458
--0.0526676 -0.229056 -2.45043
-
--0.34103 -0.494165 0.799687
--0.891109 0.440849 -0.107595
--0.299372 -0.749301 -0.590698
--0.0530746 -0.22939 -2.46192
-
--0.364776 -0.4808 0.797352
--0.872527 0.475442 -0.112478
--0.325015 -0.73674 -0.592941
--0.0534816 -0.229724 -2.47344
-
--0.387985 -0.46635 0.794975
--0.852566 0.509276 -0.11734
--0.35014 -0.723295 -0.595186
--0.0538886 -0.230058 -2.48497
-
--0.41061 -0.450836 0.792557
--0.831256 0.542297 -0.12218
--0.374717 -0.708986 -0.597433
--0.0542956 -0.230392 -2.49654
-
--0.432602 -0.434283 0.790097
--0.808629 0.574448 -0.126999
--0.398716 -0.693836 -0.599682
--0.0547026 -0.230726 -2.50812
-
--0.453916 -0.416717 0.787596
--0.784721 0.605676 -0.131796
--0.422106 -0.677867 -0.601932
--0.0551096 -0.23106 -2.51973
-
--0.474506 -0.398164 0.785054
--0.759568 0.635929 -0.136571
--0.44486 -0.661105 -0.604185
--0.0555166 -0.231394 -2.53137
-
--0.494328 -0.378656 0.78247
--0.733209 0.665155 -0.141323
--0.466952 -0.643574 -0.606439
--0.0559236 -0.231728 -2.54302
-
--0.513338 -0.358223 0.779846
--0.705687 0.693307 -0.146052
--0.488354 -0.625302 -0.608694
--0.0563306 -0.232062 -2.55471
-
--0.531495 -0.3369 0.777182
--0.677045 0.720335 -0.150757
--0.509041 -0.606314 -0.610951
--0.0567376 -0.232396 -2.56641
-
--0.548759 -0.314721 0.774477
--0.647328 0.746193 -0.155439
--0.528989 -0.586639 -0.613208
--0.0571446 -0.23273 -2.57814
-
--0.56509 -0.291726 0.771731
--0.616584 0.770839 -0.160097
--0.548176 -0.566307 -0.615467
--0.0575516 -0.233064 -2.5899
-
--0.580452 -0.267952 0.768946
--0.584862 0.794229 -0.164731
--0.56658 -0.545345 -0.617726
--0.0579586 -0.233398 -2.60168
-
--0.594808 -0.24344 0.766121
--0.552213 0.816324 -0.169339
--0.584179 -0.523786 -0.619987
--0.0583656 -0.233732 -2.61348
-
--0.608124 -0.218233 0.763255
--0.518689 0.837086 -0.173923
--0.600954 -0.501659 -0.622247
--0.0587726 -0.234066 -2.62531
-
--0.62037 -0.192375 0.760351
--0.484346 0.856477 -0.178482
--0.616888 -0.478997 -0.624509
--0.0591796 -0.2344 -2.63716
-
--0.631513 -0.165912 0.757407
--0.449239 0.874466 -0.183014
--0.631962 -0.455832 -0.62677
--0.0595866 -0.234734 -2.64904
-
--0.641525 -0.138889 0.754424
--0.413425 0.891019 -0.187521
--0.646162 -0.432197 -0.629032
--0.0599936 -0.235068 -2.66094
-
--0.650381 -0.111356 0.751402
--0.376964 0.906109 -0.192001
--0.659472 -0.408125 -0.631293
--0.0604006 -0.235402 -2.67286
-
--0.658055 -0.0833609 0.748341
--0.339914 0.919709 -0.196454
--0.671879 -0.38365 -0.633555
--0.0608076 -0.235736 -2.68481
-
--0.664526 -0.0549551 0.745242
--0.302338 0.931793 -0.200881
--0.683372 -0.358805 -0.635816
--0.0612146 -0.23607 -2.69678
-
--0.669773 -0.02619 0.742104
--0.264297 0.942342 -0.20528
--0.693939 -0.333626 -0.638077
--0.0616216 -0.236404 -2.70878
-
--0.673778 0.00288213 0.738928
--0.225854 0.951334 -0.209651
--0.703572 -0.308148 -0.640337
--0.0620286 -0.236738 -2.7208
-
--0.676525 0.0322078 0.735715
--0.187073 0.958755 -0.213994
--0.712262 -0.282404 -0.642596
--0.0624356 -0.237072 -2.73285
-
--0.678001 0.0617328 0.732464
--0.148018 0.964589 -0.218309
--0.720003 -0.256432 -0.644855
--0.0628426 -0.237406 -2.74492
-
--0.678196 0.0914025 0.729175
--0.108756 0.968826 -0.222595
--0.726789 -0.230265 -0.647113
--0.0632496 -0.23774 -2.75701
-
--0.677099 0.121161 0.725849
--0.0693511 0.971457 -0.226852
--0.732617 -0.20394 -0.649369
--0.0636566 -0.238073 -2.76913
-
--0.674704 0.150954 0.722487
--0.0298702 0.972476 -0.23108
--0.737483 -0.177492 -0.651625
--0.0640636 -0.238407 -2.78127
-
--0.671009 0.180723 0.719087
-0.00962062 0.97188 -0.235279
--0.741387 -0.150956 -0.653879
--0.0644706 -0.238741 -2.79344
-
--0.66601 0.210413 0.715651
-0.0490547 0.969669 -0.239447
--0.744328 -0.124368 -0.656131
--0.0648776 -0.239075 -2.80563
-
--0.659709 0.239968 0.712179
-0.0883653 0.965846 -0.243585
--0.746308 -0.0977635 -0.658382
--0.0652846 -0.239409 -2.81784
-
--0.65211 0.269329 0.708671
-0.127486 0.960414 -0.247693
--0.747329 -0.0711772 -0.660631
--0.0656916 -0.239743 -2.83008
-
--0.643217 0.298441 0.705127
-0.16635 0.953383 -0.25177
--0.747395 -0.0446443 -0.662878
--0.0660986 -0.240077 -2.84234
-
--0.63304 0.327248 0.701548
-0.204892 0.944763 -0.255815
--0.746512 -0.0181993 -0.665123
--0.0665056 -0.240411 -2.85463
-
--0.621588 0.355692 0.697934
-0.243046 0.934568 -0.259829
--0.744685 0.00812338 -0.667366
--0.0669126 -0.240745 -2.86694
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus1.tris b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus1.tris
deleted file mode 100644
index cfb261e3..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus1.tris
+++ /dev/null
@@ -1,5329 +0,0 @@
-1332
-0.46 0 0
-0.453383 0.0777404 0.033314
-0.453969 0 0.034202
-
-0.447439 0.0767212 0.067516
-0.453969 0 0.034202
-0.453383 0.0777404 0.033314
-
-0.453969 0 0.034202
-0.447439 0.0767212 0.067516
-0.436604 0 0.0642788
-
-0.430324 0.0737865 0.0975927
-0.436604 0 0.0642788
-0.447439 0.0767212 0.067516
-
-0.436604 0 0.0642788
-0.430324 0.0737865 0.0975927
-0.41 0 0.0866025
-
-0.404103 0.0692903 0.119917
-0.41 0 0.0866025
-0.430324 0.0737865 0.0975927
-
-0.41 0 0.0866025
-0.404103 0.0692903 0.119917
-0.377365 0 0.0984808
-
-0.371937 0.063775 0.131795
-0.377365 0 0.0984808
-0.404103 0.0692903 0.119917
-
-0.377365 0 0.0984808
-0.371937 0.063775 0.131795
-0.342635 0 0.0984808
-
-0.337707 0.0579056 0.131795
-0.342635 0 0.0984808
-0.371937 0.063775 0.131795
-
-0.342635 0 0.0984808
-0.337707 0.0579056 0.131795
-0.31 0 0.0866025
-
-0.305541 0.0523903 0.119917
-0.31 0 0.0866025
-0.337707 0.0579056 0.131795
-
-0.31 0 0.0866025
-0.305541 0.0523903 0.119917
-0.283396 0 0.0642788
-
-0.279319 0.0478941 0.0975927
-0.283396 0 0.0642788
-0.305541 0.0523903 0.119917
-
-0.283396 0 0.0642788
-0.279319 0.0478941 0.0975927
-0.266031 0 0.034202
-
-0.262204 0.0449594 0.067516
-0.266031 0 0.034202
-0.279319 0.0478941 0.0975927
-
-0.266031 0 0.034202
-0.262204 0.0449594 0.067516
-0.26 0 0
-
-0.25626 0.0439402 0.033314
-0.26 0 0
-0.262204 0.0449594 0.067516
-
-0.26 0 0
-0.25626 0.0439402 0.033314
-0.266031 0 -0.034202
-
-0.262204 0.0449594 -0.000888035
-0.266031 0 -0.034202
-0.25626 0.0439402 0.033314
-
-0.266031 0 -0.034202
-0.262204 0.0449594 -0.000888035
-0.283396 0 -0.0642788
-
-0.279319 0.0478941 -0.0309648
-0.283396 0 -0.0642788
-0.262204 0.0449594 -0.000888035
-
-0.283396 0 -0.0642788
-0.279319 0.0478941 -0.0309648
-0.31 0 -0.0866025
-
-0.305541 0.0523903 -0.0532886
-0.31 0 -0.0866025
-0.279319 0.0478941 -0.0309648
-
-0.31 0 -0.0866025
-0.305541 0.0523903 -0.0532886
-0.342635 0 -0.0984808
-
-0.337707 0.0579056 -0.0651668
-0.342635 0 -0.0984808
-0.305541 0.0523903 -0.0532886
-
-0.342635 0 -0.0984808
-0.337707 0.0579056 -0.0651668
-0.377365 0 -0.0984808
-
-0.371937 0.063775 -0.0651668
-0.377365 0 -0.0984808
-0.337707 0.0579056 -0.0651668
-
-0.377365 0 -0.0984808
-0.371937 0.063775 -0.0651668
-0.41 0 -0.0866025
-
-0.404103 0.0692903 -0.0532886
-0.41 0 -0.0866025
-0.371937 0.063775 -0.0651668
-
-0.41 0 -0.0866025
-0.404103 0.0692903 -0.0532886
-0.436604 0 -0.0642788
-
-0.430324 0.0737865 -0.0309648
-0.436604 0 -0.0642788
-0.404103 0.0692903 -0.0532886
-
-0.436604 0 -0.0642788
-0.430324 0.0737865 -0.0309648
-0.453969 0 -0.034202
-
-0.447439 0.0767212 -0.000888035
-0.453969 0 -0.034202
-0.430324 0.0737865 -0.0309648
-
-0.453969 0 -0.034202
-0.447439 0.0767212 -0.000888035
-0.46 0 0
-
-0.453383 0.0777404 0.033314
-0.46 0 0
-0.447439 0.0767212 -0.000888035
-
-0.453383 0.0777404 0.033314
-0.433724 0.153244 0.062822
-0.447439 0.0767212 0.067516
-
-0.428037 0.151235 0.097024
-0.447439 0.0767212 0.067516
-0.433724 0.153244 0.062822
-
-0.447439 0.0767212 0.067516
-0.428037 0.151235 0.097024
-0.430324 0.0737865 0.0975927
-
-0.411664 0.14545 0.127101
-0.430324 0.0737865 0.0975927
-0.428037 0.151235 0.097024
-
-0.430324 0.0737865 0.0975927
-0.411664 0.14545 0.127101
-0.404103 0.0692903 0.119917
-
-0.38658 0.136587 0.149425
-0.404103 0.0692903 0.119917
-0.411664 0.14545 0.127101
-
-0.404103 0.0692903 0.119917
-0.38658 0.136587 0.149425
-0.371937 0.063775 0.131795
-
-0.355809 0.125715 0.161303
-0.371937 0.063775 0.131795
-0.38658 0.136587 0.149425
-
-0.371937 0.063775 0.131795
-0.355809 0.125715 0.161303
-0.337707 0.0579056 0.131795
-
-0.323063 0.114145 0.161303
-0.337707 0.0579056 0.131795
-0.355809 0.125715 0.161303
-
-0.337707 0.0579056 0.131795
-0.323063 0.114145 0.161303
-0.305541 0.0523903 0.119917
-
-0.292292 0.103273 0.149425
-0.305541 0.0523903 0.119917
-0.323063 0.114145 0.161303
-
-0.305541 0.0523903 0.119917
-0.292292 0.103273 0.149425
-0.279319 0.0478941 0.0975927
-
-0.267207 0.0944103 0.127101
-0.279319 0.0478941 0.0975927
-0.292292 0.103273 0.149425
-
-0.279319 0.0478941 0.0975927
-0.267207 0.0944103 0.127101
-0.262204 0.0449594 0.067516
-
-0.250834 0.0886254 0.097024
-0.262204 0.0449594 0.067516
-0.267207 0.0944103 0.127101
-
-0.262204 0.0449594 0.067516
-0.250834 0.0886254 0.097024
-0.25626 0.0439402 0.033314
-
-0.245148 0.0866163 0.062822
-0.25626 0.0439402 0.033314
-0.250834 0.0886254 0.097024
-
-0.25626 0.0439402 0.033314
-0.245148 0.0866163 0.062822
-0.262204 0.0449594 -0.000888035
-
-0.250834 0.0886254 0.02862
-0.262204 0.0449594 -0.000888035
-0.245148 0.0866163 0.062822
-
-0.262204 0.0449594 -0.000888035
-0.250834 0.0886254 0.02862
-0.279319 0.0478941 -0.0309648
-
-0.267207 0.0944103 -0.00145676
-0.279319 0.0478941 -0.0309648
-0.250834 0.0886254 0.02862
-
-0.279319 0.0478941 -0.0309648
-0.267207 0.0944103 -0.00145676
-0.305541 0.0523903 -0.0532886
-
-0.292292 0.103273 -0.0237805
-0.305541 0.0523903 -0.0532886
-0.267207 0.0944103 -0.00145676
-
-0.305541 0.0523903 -0.0532886
-0.292292 0.103273 -0.0237805
-0.337707 0.0579056 -0.0651668
-
-0.323063 0.114145 -0.0356588
-0.337707 0.0579056 -0.0651668
-0.292292 0.103273 -0.0237805
-
-0.337707 0.0579056 -0.0651668
-0.323063 0.114145 -0.0356588
-0.371937 0.063775 -0.0651668
-
-0.355809 0.125715 -0.0356588
-0.371937 0.063775 -0.0651668
-0.323063 0.114145 -0.0356588
-
-0.371937 0.063775 -0.0651668
-0.355809 0.125715 -0.0356588
-0.404103 0.0692903 -0.0532886
-
-0.38658 0.136587 -0.0237805
-0.404103 0.0692903 -0.0532886
-0.355809 0.125715 -0.0356588
-
-0.404103 0.0692903 -0.0532886
-0.38658 0.136587 -0.0237805
-0.430324 0.0737865 -0.0309648
-
-0.411664 0.14545 -0.00145676
-0.430324 0.0737865 -0.0309648
-0.38658 0.136587 -0.0237805
-
-0.430324 0.0737865 -0.0309648
-0.411664 0.14545 -0.00145676
-0.447439 0.0767212 -0.000888035
-
-0.428037 0.151235 0.02862
-0.447439 0.0767212 -0.000888035
-0.411664 0.14545 -0.00145676
-
-0.447439 0.0767212 -0.000888035
-0.428037 0.151235 0.02862
-0.453383 0.0777404 0.033314
-
-0.433724 0.153244 0.062822
-0.453383 0.0777404 0.033314
-0.428037 0.151235 0.02862
-
-0.433724 0.153244 0.062822
-0.401586 0.22434 0.0851529
-0.428037 0.151235 0.097024
-
-0.396322 0.221399 0.119355
-0.428037 0.151235 0.097024
-0.401586 0.22434 0.0851529
-
-0.428037 0.151235 0.097024
-0.396322 0.221399 0.119355
-0.411664 0.14545 0.127101
-
-0.381162 0.21293 0.149432
-0.411664 0.14545 0.127101
-0.396322 0.221399 0.119355
-
-0.411664 0.14545 0.127101
-0.381162 0.21293 0.149432
-0.38658 0.136587 0.149425
-
-0.357936 0.199955 0.171755
-0.38658 0.136587 0.149425
-0.381162 0.21293 0.149432
-
-0.38658 0.136587 0.149425
-0.357936 0.199955 0.171755
-0.355809 0.125715 0.161303
-
-0.329445 0.184039 0.183634
-0.355809 0.125715 0.161303
-0.357936 0.199955 0.171755
-
-0.355809 0.125715 0.161303
-0.329445 0.184039 0.183634
-0.323063 0.114145 0.161303
-
-0.299125 0.167101 0.183634
-0.323063 0.114145 0.161303
-0.329445 0.184039 0.183634
-
-0.323063 0.114145 0.161303
-0.299125 0.167101 0.183634
-0.292292 0.103273 0.149425
-
-0.270634 0.151185 0.171755
-0.292292 0.103273 0.149425
-0.299125 0.167101 0.183634
-
-0.292292 0.103273 0.149425
-0.270634 0.151185 0.171755
-0.267207 0.0944103 0.127101
-
-0.247408 0.138211 0.149432
-0.267207 0.0944103 0.127101
-0.270634 0.151185 0.171755
-
-0.267207 0.0944103 0.127101
-0.247408 0.138211 0.149432
-0.250834 0.0886254 0.097024
-
-0.232249 0.129742 0.119355
-0.250834 0.0886254 0.097024
-0.247408 0.138211 0.149432
-
-0.250834 0.0886254 0.097024
-0.232249 0.129742 0.119355
-0.245148 0.0866163 0.062822
-
-0.226984 0.126801 0.0851529
-0.245148 0.0866163 0.062822
-0.232249 0.129742 0.119355
-
-0.245148 0.0866163 0.062822
-0.226984 0.126801 0.0851529
-0.250834 0.0886254 0.02862
-
-0.232249 0.129742 0.0509509
-0.250834 0.0886254 0.02862
-0.226984 0.126801 0.0851529
-
-0.250834 0.0886254 0.02862
-0.232249 0.129742 0.0509509
-0.267207 0.0944103 -0.00145676
-
-0.247408 0.138211 0.0208742
-0.267207 0.0944103 -0.00145676
-0.232249 0.129742 0.0509509
-
-0.267207 0.0944103 -0.00145676
-0.247408 0.138211 0.0208742
-0.292292 0.103273 -0.0237805
-
-0.270634 0.151185 -0.00144963
-0.292292 0.103273 -0.0237805
-0.247408 0.138211 0.0208742
-
-0.292292 0.103273 -0.0237805
-0.270634 0.151185 -0.00144963
-0.323063 0.114145 -0.0356588
-
-0.299125 0.167101 -0.0133279
-0.323063 0.114145 -0.0356588
-0.270634 0.151185 -0.00144963
-
-0.323063 0.114145 -0.0356588
-0.299125 0.167101 -0.0133279
-0.355809 0.125715 -0.0356588
-
-0.329445 0.184039 -0.0133279
-0.355809 0.125715 -0.0356588
-0.299125 0.167101 -0.0133279
-
-0.355809 0.125715 -0.0356588
-0.329445 0.184039 -0.0133279
-0.38658 0.136587 -0.0237805
-
-0.357936 0.199955 -0.00144963
-0.38658 0.136587 -0.0237805
-0.329445 0.184039 -0.0133279
-
-0.38658 0.136587 -0.0237805
-0.357936 0.199955 -0.00144963
-0.411664 0.14545 -0.00145676
-
-0.381162 0.21293 0.0208742
-0.411664 0.14545 -0.00145676
-0.357936 0.199955 -0.00144963
-
-0.411664 0.14545 -0.00145676
-0.381162 0.21293 0.0208742
-0.428037 0.151235 0.02862
-
-0.396322 0.221399 0.0509509
-0.428037 0.151235 0.02862
-0.381162 0.21293 0.0208742
-
-0.428037 0.151235 0.02862
-0.396322 0.221399 0.0509509
-0.433724 0.153244 0.062822
-
-0.401586 0.22434 0.0851529
-0.433724 0.153244 0.062822
-0.396322 0.221399 0.0509509
-
-0.401586 0.22434 0.0851529
-0.357896 0.288981 0.0977555
-0.396322 0.221399 0.119355
-
-0.353204 0.285193 0.131958
-0.396322 0.221399 0.119355
-0.357896 0.288981 0.0977555
-
-0.396322 0.221399 0.119355
-0.353204 0.285193 0.131958
-0.381162 0.21293 0.149432
-
-0.339694 0.274284 0.162034
-0.381162 0.21293 0.149432
-0.353204 0.285193 0.131958
-
-0.381162 0.21293 0.149432
-0.339694 0.274284 0.162034
-0.357936 0.199955 0.171755
-
-0.318995 0.25757 0.184358
-0.357936 0.199955 0.171755
-0.339694 0.274284 0.162034
-
-0.357936 0.199955 0.171755
-0.318995 0.25757 0.184358
-0.329445 0.184039 0.183634
-
-0.293603 0.237068 0.196236
-0.329445 0.184039 0.183634
-0.318995 0.25757 0.184358
-
-0.329445 0.184039 0.183634
-0.293603 0.237068 0.196236
-0.299125 0.167101 0.183634
-
-0.266582 0.21525 0.196236
-0.299125 0.167101 0.183634
-0.293603 0.237068 0.196236
-
-0.299125 0.167101 0.183634
-0.266582 0.21525 0.196236
-0.270634 0.151185 0.171755
-
-0.241191 0.194748 0.184358
-0.270634 0.151185 0.171755
-0.266582 0.21525 0.196236
-
-0.270634 0.151185 0.171755
-0.241191 0.194748 0.184358
-0.247408 0.138211 0.149432
-
-0.220492 0.178035 0.162034
-0.247408 0.138211 0.149432
-0.241191 0.194748 0.184358
-
-0.247408 0.138211 0.149432
-0.220492 0.178035 0.162034
-0.232249 0.129742 0.119355
-
-0.206981 0.167126 0.131958
-0.232249 0.129742 0.119355
-0.220492 0.178035 0.162034
-
-0.232249 0.129742 0.119355
-0.206981 0.167126 0.131958
-0.226984 0.126801 0.0851529
-
-0.202289 0.163337 0.0977555
-0.226984 0.126801 0.0851529
-0.206981 0.167126 0.131958
-
-0.226984 0.126801 0.0851529
-0.202289 0.163337 0.0977555
-0.232249 0.129742 0.0509509
-
-0.206981 0.167126 0.0635535
-0.232249 0.129742 0.0509509
-0.202289 0.163337 0.0977555
-
-0.232249 0.129742 0.0509509
-0.206981 0.167126 0.0635535
-0.247408 0.138211 0.0208742
-
-0.220492 0.178035 0.0334768
-0.247408 0.138211 0.0208742
-0.206981 0.167126 0.0635535
-
-0.247408 0.138211 0.0208742
-0.220492 0.178035 0.0334768
-0.270634 0.151185 -0.00144963
-
-0.241191 0.194748 0.011153
-0.270634 0.151185 -0.00144963
-0.220492 0.178035 0.0334768
-
-0.270634 0.151185 -0.00144963
-0.241191 0.194748 0.011153
-0.299125 0.167101 -0.0133279
-
-0.266582 0.21525 -0.000725251
-0.299125 0.167101 -0.0133279
-0.241191 0.194748 0.011153
-
-0.299125 0.167101 -0.0133279
-0.266582 0.21525 -0.000725251
-0.329445 0.184039 -0.0133279
-
-0.293603 0.237068 -0.000725251
-0.329445 0.184039 -0.0133279
-0.266582 0.21525 -0.000725251
-
-0.329445 0.184039 -0.0133279
-0.293603 0.237068 -0.000725251
-0.357936 0.199955 -0.00144963
-
-0.318995 0.25757 0.011153
-0.357936 0.199955 -0.00144963
-0.293603 0.237068 -0.000725251
-
-0.357936 0.199955 -0.00144963
-0.318995 0.25757 0.011153
-0.381162 0.21293 0.0208742
-
-0.339694 0.274284 0.0334768
-0.381162 0.21293 0.0208742
-0.318995 0.25757 0.011153
-
-0.381162 0.21293 0.0208742
-0.339694 0.274284 0.0334768
-0.396322 0.221399 0.0509509
-
-0.353204 0.285193 0.0635535
-0.396322 0.221399 0.0509509
-0.339694 0.274284 0.0334768
-
-0.396322 0.221399 0.0509509
-0.353204 0.285193 0.0635535
-0.401586 0.22434 0.0851529
-
-0.357896 0.288981 0.0977555
-0.401586 0.22434 0.0851529
-0.353204 0.285193 0.0635535
-
-0.357896 0.288981 0.0977555
-0.30391 0.345309 0.09919
-0.353204 0.285193 0.131958
-
-0.299926 0.340782 0.133392
-0.353204 0.285193 0.131958
-0.30391 0.345309 0.09919
-
-0.353204 0.285193 0.131958
-0.299926 0.340782 0.133392
-0.339694 0.274284 0.162034
-
-0.288454 0.327747 0.163469
-0.339694 0.274284 0.162034
-0.299926 0.340782 0.133392
-
-0.339694 0.274284 0.162034
-0.288454 0.327747 0.163469
-0.318995 0.25757 0.184358
-
-0.270877 0.307776 0.185793
-0.318995 0.25757 0.184358
-0.288454 0.327747 0.163469
-
-0.318995 0.25757 0.184358
-0.270877 0.307776 0.185793
-0.293603 0.237068 0.196236
-
-0.249315 0.283277 0.197671
-0.293603 0.237068 0.196236
-0.270877 0.307776 0.185793
-
-0.293603 0.237068 0.196236
-0.249315 0.283277 0.197671
-0.266582 0.21525 0.196236
-
-0.22637 0.257207 0.197671
-0.266582 0.21525 0.196236
-0.249315 0.283277 0.197671
-
-0.266582 0.21525 0.196236
-0.22637 0.257207 0.197671
-0.241191 0.194748 0.184358
-
-0.204809 0.232708 0.185793
-0.241191 0.194748 0.184358
-0.22637 0.257207 0.197671
-
-0.241191 0.194748 0.184358
-0.204809 0.232708 0.185793
-0.220492 0.178035 0.162034
-
-0.187232 0.212737 0.163469
-0.220492 0.178035 0.162034
-0.204809 0.232708 0.185793
-
-0.220492 0.178035 0.162034
-0.187232 0.212737 0.163469
-0.206981 0.167126 0.131958
-
-0.17576 0.199702 0.133392
-0.206981 0.167126 0.131958
-0.187232 0.212737 0.163469
-
-0.206981 0.167126 0.131958
-0.17576 0.199702 0.133392
-0.202289 0.163337 0.0977555
-
-0.171775 0.195175 0.09919
-0.202289 0.163337 0.0977555
-0.17576 0.199702 0.133392
-
-0.202289 0.163337 0.0977555
-0.171775 0.195175 0.09919
-0.206981 0.167126 0.0635535
-
-0.17576 0.199702 0.064988
-0.206981 0.167126 0.0635535
-0.171775 0.195175 0.09919
-
-0.206981 0.167126 0.0635535
-0.17576 0.199702 0.064988
-0.220492 0.178035 0.0334768
-
-0.187232 0.212737 0.0349113
-0.220492 0.178035 0.0334768
-0.17576 0.199702 0.064988
-
-0.220492 0.178035 0.0334768
-0.187232 0.212737 0.0349113
-0.241191 0.194748 0.011153
-
-0.204809 0.232708 0.0125875
-0.241191 0.194748 0.011153
-0.187232 0.212737 0.0349113
-
-0.241191 0.194748 0.011153
-0.204809 0.232708 0.0125875
-0.266582 0.21525 -0.000725251
-
-0.22637 0.257207 0.000709268
-0.266582 0.21525 -0.000725251
-0.204809 0.232708 0.0125875
-
-0.266582 0.21525 -0.000725251
-0.22637 0.257207 0.000709268
-0.293603 0.237068 -0.000725251
-
-0.249315 0.283277 0.000709268
-0.293603 0.237068 -0.000725251
-0.22637 0.257207 0.000709268
-
-0.293603 0.237068 -0.000725251
-0.249315 0.283277 0.000709268
-0.318995 0.25757 0.011153
-
-0.270877 0.307776 0.0125875
-0.318995 0.25757 0.011153
-0.249315 0.283277 0.000709268
-
-0.318995 0.25757 0.011153
-0.270877 0.307776 0.0125875
-0.339694 0.274284 0.0334768
-
-0.288454 0.327747 0.0349113
-0.339694 0.274284 0.0334768
-0.270877 0.307776 0.0125875
-
-0.339694 0.274284 0.0334768
-0.288454 0.327747 0.0349113
-0.353204 0.285193 0.0635535
-
-0.299926 0.340782 0.064988
-0.353204 0.285193 0.0635535
-0.288454 0.327747 0.0349113
-
-0.353204 0.285193 0.0635535
-0.299926 0.340782 0.064988
-0.357896 0.288981 0.0977555
-
-0.30391 0.345309 0.09919
-0.357896 0.288981 0.0977555
-0.299926 0.340782 0.064988
-
-0.30391 0.345309 0.09919
-0.241181 0.391703 0.0892926
-0.299926 0.340782 0.133392
-
-0.238019 0.386568 0.123495
-0.299926 0.340782 0.133392
-0.241181 0.391703 0.0892926
-
-0.299926 0.340782 0.133392
-0.238019 0.386568 0.123495
-0.288454 0.327747 0.163469
-
-0.228915 0.371781 0.153571
-0.288454 0.327747 0.163469
-0.238019 0.386568 0.123495
-
-0.288454 0.327747 0.163469
-0.228915 0.371781 0.153571
-0.270877 0.307776 0.185793
-
-0.214966 0.349127 0.175895
-0.270877 0.307776 0.185793
-0.228915 0.371781 0.153571
-
-0.270877 0.307776 0.185793
-0.214966 0.349127 0.175895
-0.249315 0.283277 0.197671
-
-0.197855 0.321337 0.187773
-0.249315 0.283277 0.197671
-0.214966 0.349127 0.175895
-
-0.249315 0.283277 0.197671
-0.197855 0.321337 0.187773
-0.22637 0.257207 0.197671
-
-0.179646 0.291764 0.187773
-0.22637 0.257207 0.197671
-0.197855 0.321337 0.187773
-
-0.22637 0.257207 0.197671
-0.179646 0.291764 0.187773
-0.204809 0.232708 0.185793
-
-0.162535 0.263974 0.175895
-0.204809 0.232708 0.185793
-0.179646 0.291764 0.187773
-
-0.204809 0.232708 0.185793
-0.162535 0.263974 0.175895
-0.187232 0.212737 0.163469
-
-0.148586 0.24132 0.153571
-0.187232 0.212737 0.163469
-0.162535 0.263974 0.175895
-
-0.187232 0.212737 0.163469
-0.148586 0.24132 0.153571
-0.17576 0.199702 0.133392
-
-0.139482 0.226533 0.123495
-0.17576 0.199702 0.133392
-0.148586 0.24132 0.153571
-
-0.17576 0.199702 0.133392
-0.139482 0.226533 0.123495
-0.171775 0.195175 0.09919
-
-0.13632 0.221398 0.0892926
-0.171775 0.195175 0.09919
-0.139482 0.226533 0.123495
-
-0.171775 0.195175 0.09919
-0.13632 0.221398 0.0892926
-0.17576 0.199702 0.064988
-
-0.139482 0.226533 0.0550906
-0.17576 0.199702 0.064988
-0.13632 0.221398 0.0892926
-
-0.17576 0.199702 0.064988
-0.139482 0.226533 0.0550906
-0.187232 0.212737 0.0349113
-
-0.148586 0.24132 0.0250138
-0.187232 0.212737 0.0349113
-0.139482 0.226533 0.0550906
-
-0.187232 0.212737 0.0349113
-0.148586 0.24132 0.0250138
-0.204809 0.232708 0.0125875
-
-0.162535 0.263974 0.00269005
-0.204809 0.232708 0.0125875
-0.148586 0.24132 0.0250138
-
-0.204809 0.232708 0.0125875
-0.162535 0.263974 0.00269005
-0.22637 0.257207 0.000709268
-
-0.179646 0.291764 -0.00918819
-0.22637 0.257207 0.000709268
-0.162535 0.263974 0.00269005
-
-0.22637 0.257207 0.000709268
-0.179646 0.291764 -0.00918819
-0.249315 0.283277 0.000709268
-
-0.197855 0.321337 -0.00918819
-0.249315 0.283277 0.000709268
-0.179646 0.291764 -0.00918819
-
-0.249315 0.283277 0.000709268
-0.197855 0.321337 -0.00918819
-0.270877 0.307776 0.0125875
-
-0.214966 0.349127 0.00269005
-0.270877 0.307776 0.0125875
-0.197855 0.321337 -0.00918819
-
-0.270877 0.307776 0.0125875
-0.214966 0.349127 0.00269005
-0.288454 0.327747 0.0349113
-
-0.228915 0.371781 0.0250138
-0.288454 0.327747 0.0349113
-0.214966 0.349127 0.00269005
-
-0.288454 0.327747 0.0349113
-0.228915 0.371781 0.0250138
-0.299926 0.340782 0.064988
-
-0.238019 0.386568 0.0550906
-0.299926 0.340782 0.064988
-0.228915 0.371781 0.0250138
-
-0.299926 0.340782 0.064988
-0.238019 0.386568 0.0550906
-0.30391 0.345309 0.09919
-
-0.241181 0.391703 0.0892926
-0.30391 0.345309 0.09919
-0.238019 0.386568 0.0550906
-
-0.241181 0.391703 0.0892926
-0.171514 0.426829 0.0691939
-0.238019 0.386568 0.123495
-
-0.169265 0.421233 0.103396
-0.238019 0.386568 0.123495
-0.171514 0.426829 0.0691939
-
-0.238019 0.386568 0.123495
-0.169265 0.421233 0.103396
-0.228915 0.371781 0.153571
-
-0.162791 0.40512 0.133473
-0.228915 0.371781 0.153571
-0.169265 0.421233 0.103396
-
-0.228915 0.371781 0.153571
-0.162791 0.40512 0.133473
-0.214966 0.349127 0.175895
-
-0.152871 0.380435 0.155796
-0.214966 0.349127 0.175895
-0.162791 0.40512 0.133473
-
-0.214966 0.349127 0.175895
-0.152871 0.380435 0.155796
-0.197855 0.321337 0.187773
-
-0.140703 0.350153 0.167675
-0.197855 0.321337 0.187773
-0.152871 0.380435 0.155796
-
-0.197855 0.321337 0.187773
-0.140703 0.350153 0.167675
-0.179646 0.291764 0.187773
-
-0.127754 0.317927 0.167675
-0.179646 0.291764 0.187773
-0.140703 0.350153 0.167675
-
-0.179646 0.291764 0.187773
-0.127754 0.317927 0.167675
-0.162535 0.263974 0.175895
-
-0.115586 0.287646 0.155796
-0.162535 0.263974 0.175895
-0.127754 0.317927 0.167675
-
-0.162535 0.263974 0.175895
-0.115586 0.287646 0.155796
-0.148586 0.24132 0.153571
-
-0.105666 0.26296 0.133473
-0.148586 0.24132 0.153571
-0.115586 0.287646 0.155796
-
-0.148586 0.24132 0.153571
-0.105666 0.26296 0.133473
-0.139482 0.226533 0.123495
-
-0.0991913 0.246847 0.103396
-0.139482 0.226533 0.123495
-0.105666 0.26296 0.133473
-
-0.139482 0.226533 0.123495
-0.0991913 0.246847 0.103396
-0.13632 0.221398 0.0892926
-
-0.0969427 0.241251 0.0691939
-0.13632 0.221398 0.0892926
-0.0991913 0.246847 0.103396
-
-0.13632 0.221398 0.0892926
-0.0969427 0.241251 0.0691939
-0.139482 0.226533 0.0550906
-
-0.0991913 0.246847 0.0349919
-0.139482 0.226533 0.0550906
-0.0969427 0.241251 0.0691939
-
-0.139482 0.226533 0.0550906
-0.0991913 0.246847 0.0349919
-0.148586 0.24132 0.0250138
-
-0.105666 0.26296 0.00491513
-0.148586 0.24132 0.0250138
-0.0991913 0.246847 0.0349919
-
-0.148586 0.24132 0.0250138
-0.105666 0.26296 0.00491513
-0.162535 0.263974 0.00269005
-
-0.115586 0.287646 -0.0174087
-0.162535 0.263974 0.00269005
-0.105666 0.26296 0.00491513
-
-0.162535 0.263974 0.00269005
-0.115586 0.287646 -0.0174087
-0.179646 0.291764 -0.00918819
-
-0.127754 0.317927 -0.0292869
-0.179646 0.291764 -0.00918819
-0.115586 0.287646 -0.0174087
-
-0.179646 0.291764 -0.00918819
-0.127754 0.317927 -0.0292869
-0.197855 0.321337 -0.00918819
-
-0.140703 0.350153 -0.0292869
-0.197855 0.321337 -0.00918819
-0.127754 0.317927 -0.0292869
-
-0.197855 0.321337 -0.00918819
-0.140703 0.350153 -0.0292869
-0.214966 0.349127 0.00269005
-
-0.152871 0.380435 -0.0174087
-0.214966 0.349127 0.00269005
-0.140703 0.350153 -0.0292869
-
-0.214966 0.349127 0.00269005
-0.152871 0.380435 -0.0174087
-0.228915 0.371781 0.0250138
-
-0.162791 0.40512 0.00491513
-0.228915 0.371781 0.0250138
-0.152871 0.380435 -0.0174087
-
-0.228915 0.371781 0.0250138
-0.162791 0.40512 0.00491513
-0.238019 0.386568 0.0550906
-
-0.169265 0.421233 0.0349919
-0.238019 0.386568 0.0550906
-0.162791 0.40512 0.00491513
-
-0.238019 0.386568 0.0550906
-0.169265 0.421233 0.0349919
-0.241181 0.391703 0.0892926
-
-0.171514 0.426829 0.0691939
-0.241181 0.391703 0.0892926
-0.169265 0.421233 0.0349919
-
-0.171514 0.426829 0.0691939
-0.0969125 0.449675 0.0411901
-0.169265 0.421233 0.103396
-
-0.0956419 0.44378 0.0753921
-0.169265 0.421233 0.103396
-0.0969125 0.449675 0.0411901
-
-0.169265 0.421233 0.103396
-0.0956419 0.44378 0.0753921
-0.162791 0.40512 0.133473
-
-0.0919835 0.426805 0.105469
-0.162791 0.40512 0.133473
-0.0956419 0.44378 0.0753921
-
-0.162791 0.40512 0.133473
-0.0919835 0.426805 0.105469
-0.152871 0.380435 0.155796
-
-0.0863785 0.400798 0.127793
-0.152871 0.380435 0.155796
-0.0919835 0.426805 0.105469
-
-0.152871 0.380435 0.155796
-0.0863785 0.400798 0.127793
-0.140703 0.350153 0.167675
-
-0.0795029 0.368895 0.139671
-0.140703 0.350153 0.167675
-0.0863785 0.400798 0.127793
-
-0.140703 0.350153 0.167675
-0.0795029 0.368895 0.139671
-0.127754 0.317927 0.167675
-
-0.0721861 0.334945 0.139671
-0.127754 0.317927 0.167675
-0.0795029 0.368895 0.139671
-
-0.127754 0.317927 0.167675
-0.0721861 0.334945 0.139671
-0.115586 0.287646 0.155796
-
-0.0653106 0.303042 0.127793
-0.115586 0.287646 0.155796
-0.0721861 0.334945 0.139671
-
-0.115586 0.287646 0.155796
-0.0653106 0.303042 0.127793
-0.105666 0.26296 0.133473
-
-0.0597056 0.277035 0.105469
-0.105666 0.26296 0.133473
-0.0653106 0.303042 0.127793
-
-0.105666 0.26296 0.133473
-0.0597056 0.277035 0.105469
-0.0991913 0.246847 0.103396
-
-0.0560472 0.26006 0.0753921
-0.0991913 0.246847 0.103396
-0.0597056 0.277035 0.105469
-
-0.0991913 0.246847 0.103396
-0.0560472 0.26006 0.0753921
-0.0969427 0.241251 0.0691939
-
-0.0547766 0.254164 0.0411901
-0.0969427 0.241251 0.0691939
-0.0560472 0.26006 0.0753921
-
-0.0969427 0.241251 0.0691939
-0.0547766 0.254164 0.0411901
-0.0991913 0.246847 0.0349919
-
-0.0560472 0.26006 0.00698811
-0.0991913 0.246847 0.0349919
-0.0547766 0.254164 0.0411901
-
-0.0991913 0.246847 0.0349919
-0.0560472 0.26006 0.00698811
-0.105666 0.26296 0.00491513
-
-0.0597056 0.277035 -0.0230886
-0.105666 0.26296 0.00491513
-0.0560472 0.26006 0.00698811
-
-0.105666 0.26296 0.00491513
-0.0597056 0.277035 -0.0230886
-0.115586 0.287646 -0.0174087
-
-0.0653106 0.303042 -0.0454124
-0.115586 0.287646 -0.0174087
-0.0597056 0.277035 -0.0230886
-
-0.115586 0.287646 -0.0174087
-0.0653106 0.303042 -0.0454124
-0.127754 0.317927 -0.0292869
-
-0.0721861 0.334945 -0.0572907
-0.127754 0.317927 -0.0292869
-0.0653106 0.303042 -0.0454124
-
-0.127754 0.317927 -0.0292869
-0.0721861 0.334945 -0.0572907
-0.140703 0.350153 -0.0292869
-
-0.0795029 0.368895 -0.0572907
-0.140703 0.350153 -0.0292869
-0.0721861 0.334945 -0.0572907
-
-0.140703 0.350153 -0.0292869
-0.0795029 0.368895 -0.0572907
-0.152871 0.380435 -0.0174087
-
-0.0863785 0.400798 -0.0454124
-0.152871 0.380435 -0.0174087
-0.0795029 0.368895 -0.0572907
-
-0.152871 0.380435 -0.0174087
-0.0863785 0.400798 -0.0454124
-0.162791 0.40512 0.00491513
-
-0.0919835 0.426805 -0.0230886
-0.162791 0.40512 0.00491513
-0.0863785 0.400798 -0.0454124
-
-0.162791 0.40512 0.00491513
-0.0919835 0.426805 -0.0230886
-0.169265 0.421233 0.0349919
-
-0.0956419 0.44378 0.00698811
-0.169265 0.421233 0.0349919
-0.0919835 0.426805 -0.0230886
-
-0.169265 0.421233 0.0349919
-0.0956419 0.44378 0.00698811
-0.171514 0.426829 0.0691939
-
-0.0969125 0.449675 0.0411901
-0.171514 0.426829 0.0691939
-0.0956419 0.44378 0.00698811
-
-0.0969125 0.449675 0.0411901
-0.019523 0.459586 0.00848059
-0.0956419 0.44378 0.0753921
-
-0.019267 0.45356 0.0426826
-0.0956419 0.44378 0.0753921
-0.019523 0.459586 0.00848059
-
-0.0956419 0.44378 0.0753921
-0.019267 0.45356 0.0426826
-0.0919835 0.426805 0.105469
-
-0.01853 0.436211 0.0727594
-0.0919835 0.426805 0.105469
-0.019267 0.45356 0.0426826
-
-0.0919835 0.426805 0.105469
-0.01853 0.436211 0.0727594
-0.0863785 0.400798 0.127793
-
-0.0174009 0.409631 0.0950831
-0.0863785 0.400798 0.127793
-0.01853 0.436211 0.0727594
-
-0.0863785 0.400798 0.127793
-0.0174009 0.409631 0.0950831
-0.0795029 0.368895 0.139671
-
-0.0160158 0.377025 0.106961
-0.0795029 0.368895 0.139671
-0.0174009 0.409631 0.0950831
-
-0.0795029 0.368895 0.139671
-0.0160158 0.377025 0.106961
-0.0721861 0.334945 0.139671
-
-0.0145418 0.342326 0.106961
-0.0721861 0.334945 0.139671
-0.0160158 0.377025 0.106961
-
-0.0721861 0.334945 0.139671
-0.0145418 0.342326 0.106961
-0.0653106 0.303042 0.127793
-
-0.0131568 0.309721 0.0950831
-0.0653106 0.303042 0.127793
-0.0145418 0.342326 0.106961
-
-0.0653106 0.303042 0.127793
-0.0131568 0.309721 0.0950831
-0.0597056 0.277035 0.105469
-
-0.0120276 0.28314 0.0727594
-0.0597056 0.277035 0.105469
-0.0131568 0.309721 0.0950831
-
-0.0597056 0.277035 0.105469
-0.0120276 0.28314 0.0727594
-0.0560472 0.26006 0.0753921
-
-0.0112907 0.265791 0.0426826
-0.0560472 0.26006 0.0753921
-0.0120276 0.28314 0.0727594
-
-0.0560472 0.26006 0.0753921
-0.0112907 0.265791 0.0426826
-0.0547766 0.254164 0.0411901
-
-0.0110347 0.259766 0.00848059
-0.0547766 0.254164 0.0411901
-0.0112907 0.265791 0.0426826
-
-0.0547766 0.254164 0.0411901
-0.0110347 0.259766 0.00848059
-0.0560472 0.26006 0.00698811
-
-0.0112907 0.265791 -0.0257214
-0.0560472 0.26006 0.00698811
-0.0110347 0.259766 0.00848059
-
-0.0560472 0.26006 0.00698811
-0.0112907 0.265791 -0.0257214
-0.0597056 0.277035 -0.0230886
-
-0.0120276 0.28314 -0.0557982
-0.0597056 0.277035 -0.0230886
-0.0112907 0.265791 -0.0257214
-
-0.0597056 0.277035 -0.0230886
-0.0120276 0.28314 -0.0557982
-0.0653106 0.303042 -0.0454124
-
-0.0131568 0.309721 -0.0781219
-0.0653106 0.303042 -0.0454124
-0.0120276 0.28314 -0.0557982
-
-0.0653106 0.303042 -0.0454124
-0.0131568 0.309721 -0.0781219
-0.0721861 0.334945 -0.0572907
-
-0.0145418 0.342326 -0.0900002
-0.0721861 0.334945 -0.0572907
-0.0131568 0.309721 -0.0781219
-
-0.0721861 0.334945 -0.0572907
-0.0145418 0.342326 -0.0900002
-0.0795029 0.368895 -0.0572907
-
-0.0160158 0.377025 -0.0900002
-0.0795029 0.368895 -0.0572907
-0.0145418 0.342326 -0.0900002
-
-0.0795029 0.368895 -0.0572907
-0.0160158 0.377025 -0.0900002
-0.0863785 0.400798 -0.0454124
-
-0.0174009 0.409631 -0.0781219
-0.0863785 0.400798 -0.0454124
-0.0160158 0.377025 -0.0900002
-
-0.0863785 0.400798 -0.0454124
-0.0174009 0.409631 -0.0781219
-0.0919835 0.426805 -0.0230886
-
-0.01853 0.436211 -0.0557982
-0.0919835 0.426805 -0.0230886
-0.0174009 0.409631 -0.0781219
-
-0.0919835 0.426805 -0.0230886
-0.01853 0.436211 -0.0557982
-0.0956419 0.44378 0.00698811
-
-0.019267 0.45356 -0.0257214
-0.0956419 0.44378 0.00698811
-0.01853 0.436211 -0.0557982
-
-0.0956419 0.44378 0.00698811
-0.019267 0.45356 -0.0257214
-0.0969125 0.449675 0.0411901
-
-0.019523 0.459586 0.00848059
-0.0969125 0.449675 0.0411901
-0.019267 0.45356 -0.0257214
-
-0.019523 0.459586 0.00848059
--0.0584282 0.456274 -0.0251978
-0.019267 0.45356 0.0426826
-
--0.0576622 0.450292 0.00900421
-0.019267 0.45356 0.0426826
--0.0584282 0.456274 -0.0251978
-
-0.019267 0.45356 0.0426826
--0.0576622 0.450292 0.00900421
-0.01853 0.436211 0.0727594
-
--0.0554565 0.433068 0.039081
-0.01853 0.436211 0.0727594
--0.0576622 0.450292 0.00900421
-
-0.01853 0.436211 0.0727594
--0.0554565 0.433068 0.039081
-0.0174009 0.409631 0.0950831
-
--0.0520773 0.406679 0.0614047
-0.0174009 0.409631 0.0950831
--0.0554565 0.433068 0.039081
-
-0.0174009 0.409631 0.0950831
--0.0520773 0.406679 0.0614047
-0.0160158 0.377025 0.106961
-
--0.0479321 0.374308 0.073283
-0.0160158 0.377025 0.106961
--0.0520773 0.406679 0.0614047
-
-0.0160158 0.377025 0.106961
--0.0479321 0.374308 0.073283
-0.0145418 0.342326 0.106961
-
--0.0435208 0.33986 0.073283
-0.0145418 0.342326 0.106961
--0.0479321 0.374308 0.073283
-
-0.0145418 0.342326 0.106961
--0.0435208 0.33986 0.073283
-0.0131568 0.309721 0.0950831
-
--0.0393755 0.307489 0.0614047
-0.0131568 0.309721 0.0950831
--0.0435208 0.33986 0.073283
-
-0.0131568 0.309721 0.0950831
--0.0393755 0.307489 0.0614047
-0.0120276 0.28314 0.0727594
-
--0.0359963 0.2811 0.039081
-0.0120276 0.28314 0.0727594
--0.0393755 0.307489 0.0614047
-
-0.0120276 0.28314 0.0727594
--0.0359963 0.2811 0.039081
-0.0112907 0.265791 0.0426826
-
--0.0337906 0.263876 0.00900421
-0.0112907 0.265791 0.0426826
--0.0359963 0.2811 0.039081
-
-0.0112907 0.265791 0.0426826
--0.0337906 0.263876 0.00900421
-0.0110347 0.259766 0.00848059
-
--0.0330246 0.257894 -0.0251978
-0.0110347 0.259766 0.00848059
--0.0337906 0.263876 0.00900421
-
-0.0110347 0.259766 0.00848059
--0.0330246 0.257894 -0.0251978
-0.0112907 0.265791 -0.0257214
-
--0.0337906 0.263876 -0.0593998
-0.0112907 0.265791 -0.0257214
--0.0330246 0.257894 -0.0251978
-
-0.0112907 0.265791 -0.0257214
--0.0337906 0.263876 -0.0593998
-0.0120276 0.28314 -0.0557982
-
--0.0359963 0.2811 -0.0894766
-0.0120276 0.28314 -0.0557982
--0.0337906 0.263876 -0.0593998
-
-0.0120276 0.28314 -0.0557982
--0.0359963 0.2811 -0.0894766
-0.0131568 0.309721 -0.0781219
-
--0.0393755 0.307489 -0.1118
-0.0131568 0.309721 -0.0781219
--0.0359963 0.2811 -0.0894766
-
-0.0131568 0.309721 -0.0781219
--0.0393755 0.307489 -0.1118
-0.0145418 0.342326 -0.0900002
-
--0.0435208 0.33986 -0.123679
-0.0145418 0.342326 -0.0900002
--0.0393755 0.307489 -0.1118
-
-0.0145418 0.342326 -0.0900002
--0.0435208 0.33986 -0.123679
-0.0160158 0.377025 -0.0900002
-
--0.0479321 0.374308 -0.123679
-0.0160158 0.377025 -0.0900002
--0.0435208 0.33986 -0.123679
-
-0.0160158 0.377025 -0.0900002
--0.0479321 0.374308 -0.123679
-0.0174009 0.409631 -0.0781219
-
--0.0520773 0.406679 -0.1118
-0.0174009 0.409631 -0.0781219
--0.0479321 0.374308 -0.123679
-
-0.0174009 0.409631 -0.0781219
--0.0520773 0.406679 -0.1118
-0.01853 0.436211 -0.0557982
-
--0.0554565 0.433068 -0.0894766
-0.01853 0.436211 -0.0557982
--0.0520773 0.406679 -0.1118
-
-0.01853 0.436211 -0.0557982
--0.0554565 0.433068 -0.0894766
-0.019267 0.45356 -0.0257214
-
--0.0576622 0.450292 -0.0593998
-0.019267 0.45356 -0.0257214
--0.0554565 0.433068 -0.0894766
-
-0.019267 0.45356 -0.0257214
--0.0576622 0.450292 -0.0593998
-0.019523 0.459586 0.00848059
-
--0.0584282 0.456274 -0.0251978
-0.019523 0.459586 0.00848059
--0.0576622 0.450292 -0.0593998
-
--0.0584282 0.456274 -0.0251978
--0.134698 0.439837 -0.0559975
--0.0576622 0.450292 0.00900421
-
--0.132933 0.43407 -0.0217955
--0.0576622 0.450292 0.00900421
--0.134698 0.439837 -0.0559975
-
--0.0576622 0.450292 0.00900421
--0.132933 0.43407 -0.0217955
--0.0554565 0.433068 0.039081
-
--0.127848 0.417467 0.00828128
--0.0554565 0.433068 0.039081
--0.132933 0.43407 -0.0217955
-
--0.0554565 0.433068 0.039081
--0.127848 0.417467 0.00828128
--0.0520773 0.406679 0.0614047
-
--0.120057 0.392028 0.0306051
--0.0520773 0.406679 0.0614047
--0.127848 0.417467 0.00828128
-
--0.0520773 0.406679 0.0614047
--0.120057 0.392028 0.0306051
--0.0479321 0.374308 0.073283
-
--0.110501 0.360824 0.0424833
--0.0479321 0.374308 0.073283
--0.120057 0.392028 0.0306051
-
--0.0479321 0.374308 0.073283
--0.110501 0.360824 0.0424833
--0.0435208 0.33986 0.073283
-
--0.100331 0.327616 0.0424833
--0.0435208 0.33986 0.073283
--0.110501 0.360824 0.0424833
-
--0.0435208 0.33986 0.073283
--0.100331 0.327616 0.0424833
--0.0393755 0.307489 0.0614047
-
--0.0907751 0.296412 0.0306051
--0.0393755 0.307489 0.0614047
--0.100331 0.327616 0.0424833
-
--0.0393755 0.307489 0.0614047
--0.0907751 0.296412 0.0306051
--0.0359963 0.2811 0.039081
-
--0.0829847 0.270973 0.00828128
--0.0359963 0.2811 0.039081
--0.0907751 0.296412 0.0306051
-
--0.0359963 0.2811 0.039081
--0.0829847 0.270973 0.00828128
--0.0337906 0.263876 0.00900421
-
--0.0778999 0.25437 -0.0217955
--0.0337906 0.263876 0.00900421
--0.0829847 0.270973 0.00828128
-
--0.0337906 0.263876 0.00900421
--0.0778999 0.25437 -0.0217955
--0.0330246 0.257894 -0.0251978
-
--0.0761339 0.248603 -0.0559975
--0.0330246 0.257894 -0.0251978
--0.0778999 0.25437 -0.0217955
-
--0.0330246 0.257894 -0.0251978
--0.0761339 0.248603 -0.0559975
--0.0337906 0.263876 -0.0593998
-
--0.0778999 0.25437 -0.0901995
--0.0337906 0.263876 -0.0593998
--0.0761339 0.248603 -0.0559975
-
--0.0337906 0.263876 -0.0593998
--0.0778999 0.25437 -0.0901995
--0.0359963 0.2811 -0.0894766
-
--0.0829847 0.270973 -0.120276
--0.0359963 0.2811 -0.0894766
--0.0778999 0.25437 -0.0901995
-
--0.0359963 0.2811 -0.0894766
--0.0829847 0.270973 -0.120276
--0.0393755 0.307489 -0.1118
-
--0.0907751 0.296412 -0.1426
--0.0393755 0.307489 -0.1118
--0.0829847 0.270973 -0.120276
-
--0.0393755 0.307489 -0.1118
--0.0907751 0.296412 -0.1426
--0.0435208 0.33986 -0.123679
-
--0.100331 0.327616 -0.154478
--0.0435208 0.33986 -0.123679
--0.0907751 0.296412 -0.1426
-
--0.0435208 0.33986 -0.123679
--0.100331 0.327616 -0.154478
--0.0479321 0.374308 -0.123679
-
--0.110501 0.360824 -0.154478
--0.0479321 0.374308 -0.123679
--0.100331 0.327616 -0.154478
-
--0.0479321 0.374308 -0.123679
--0.110501 0.360824 -0.154478
--0.0520773 0.406679 -0.1118
-
--0.120057 0.392028 -0.1426
--0.0520773 0.406679 -0.1118
--0.110501 0.360824 -0.154478
-
--0.0520773 0.406679 -0.1118
--0.120057 0.392028 -0.1426
--0.0554565 0.433068 -0.0894766
-
--0.127848 0.417467 -0.120276
--0.0554565 0.433068 -0.0894766
--0.120057 0.392028 -0.1426
-
--0.0554565 0.433068 -0.0894766
--0.127848 0.417467 -0.120276
--0.0576622 0.450292 -0.0593998
-
--0.132933 0.43407 -0.0901995
--0.0576622 0.450292 -0.0593998
--0.127848 0.417467 -0.120276
-
--0.0576622 0.450292 -0.0593998
--0.132933 0.43407 -0.0901995
--0.0584282 0.456274 -0.0251978
-
--0.134698 0.439837 -0.0559975
--0.0584282 0.456274 -0.0251978
--0.132933 0.43407 -0.0901995
-
--0.134698 0.439837 -0.0559975
--0.207094 0.410746 -0.0803997
--0.132933 0.43407 -0.0217955
-
--0.204379 0.405361 -0.0461977
--0.132933 0.43407 -0.0217955
--0.207094 0.410746 -0.0803997
-
--0.132933 0.43407 -0.0217955
--0.204379 0.405361 -0.0461977
--0.127848 0.417467 0.00828128
-
--0.196561 0.389855 -0.016121
--0.127848 0.417467 0.00828128
--0.204379 0.405361 -0.0461977
-
--0.127848 0.417467 0.00828128
--0.196561 0.389855 -0.016121
--0.120057 0.392028 0.0306051
-
--0.184584 0.3661 0.00620283
--0.120057 0.392028 0.0306051
--0.196561 0.389855 -0.016121
-
--0.120057 0.392028 0.0306051
--0.184584 0.3661 0.00620283
--0.110501 0.360824 0.0424833
-
--0.169891 0.336959 0.0180811
--0.110501 0.360824 0.0424833
--0.184584 0.3661 0.00620283
-
--0.110501 0.360824 0.0424833
--0.169891 0.336959 0.0180811
--0.100331 0.327616 0.0424833
-
--0.154256 0.305948 0.0180811
--0.100331 0.327616 0.0424833
--0.169891 0.336959 0.0180811
-
--0.100331 0.327616 0.0424833
--0.154256 0.305948 0.0180811
--0.0907751 0.296412 0.0306051
-
--0.139563 0.276807 0.00620283
--0.0907751 0.296412 0.0306051
--0.154256 0.305948 0.0180811
-
--0.0907751 0.296412 0.0306051
--0.139563 0.276807 0.00620283
--0.0829847 0.270973 0.00828128
-
--0.127586 0.253051 -0.016121
--0.0829847 0.270973 0.00828128
--0.139563 0.276807 0.00620283
-
--0.0829847 0.270973 0.00828128
--0.127586 0.253051 -0.016121
--0.0778999 0.25437 -0.0217955
-
--0.119768 0.237546 -0.0461977
--0.0778999 0.25437 -0.0217955
--0.127586 0.253051 -0.016121
-
--0.0778999 0.25437 -0.0217955
--0.119768 0.237546 -0.0461977
--0.0761339 0.248603 -0.0559975
-
--0.117053 0.232161 -0.0803997
--0.0761339 0.248603 -0.0559975
--0.119768 0.237546 -0.0461977
-
--0.0761339 0.248603 -0.0559975
--0.117053 0.232161 -0.0803997
--0.0778999 0.25437 -0.0901995
-
--0.119768 0.237546 -0.114602
--0.0778999 0.25437 -0.0901995
--0.117053 0.232161 -0.0803997
-
--0.0778999 0.25437 -0.0901995
--0.119768 0.237546 -0.114602
--0.0829847 0.270973 -0.120276
-
--0.127586 0.253051 -0.144678
--0.0829847 0.270973 -0.120276
--0.119768 0.237546 -0.114602
-
--0.0829847 0.270973 -0.120276
--0.127586 0.253051 -0.144678
--0.0907751 0.296412 -0.1426
-
--0.139563 0.276807 -0.167002
--0.0907751 0.296412 -0.1426
--0.127586 0.253051 -0.144678
-
--0.0907751 0.296412 -0.1426
--0.139563 0.276807 -0.167002
--0.100331 0.327616 -0.154478
-
--0.154256 0.305948 -0.17888
--0.100331 0.327616 -0.154478
--0.139563 0.276807 -0.167002
-
--0.100331 0.327616 -0.154478
--0.154256 0.305948 -0.17888
--0.110501 0.360824 -0.154478
-
--0.169891 0.336959 -0.17888
--0.110501 0.360824 -0.154478
--0.154256 0.305948 -0.17888
-
--0.110501 0.360824 -0.154478
--0.169891 0.336959 -0.17888
--0.120057 0.392028 -0.1426
-
--0.184584 0.3661 -0.167002
--0.120057 0.392028 -0.1426
--0.169891 0.336959 -0.17888
-
--0.120057 0.392028 -0.1426
--0.184584 0.3661 -0.167002
--0.127848 0.417467 -0.120276
-
--0.196561 0.389855 -0.144678
--0.127848 0.417467 -0.120276
--0.184584 0.3661 -0.167002
-
--0.127848 0.417467 -0.120276
--0.196561 0.389855 -0.144678
--0.132933 0.43407 -0.0901995
-
--0.204379 0.405361 -0.114602
--0.132933 0.43407 -0.0901995
--0.196561 0.389855 -0.144678
-
--0.132933 0.43407 -0.0901995
--0.204379 0.405361 -0.114602
--0.134698 0.439837 -0.0559975
-
--0.207094 0.410746 -0.0803997
--0.134698 0.439837 -0.0559975
--0.204379 0.405361 -0.114602
-
--0.207094 0.410746 -0.0803997
--0.273531 0.369839 -0.0956167
--0.204379 0.405361 -0.0461977
-
--0.269945 0.36499 -0.0614147
--0.204379 0.405361 -0.0461977
--0.273531 0.369839 -0.0956167
-
--0.204379 0.405361 -0.0461977
--0.269945 0.36499 -0.0614147
--0.196561 0.389855 -0.016121
-
--0.259619 0.351029 -0.0313379
--0.196561 0.389855 -0.016121
--0.269945 0.36499 -0.0614147
-
--0.196561 0.389855 -0.016121
--0.259619 0.351029 -0.0313379
--0.184584 0.3661 0.00620283
-
--0.2438 0.329639 -0.00901413
--0.184584 0.3661 0.00620283
--0.259619 0.351029 -0.0313379
-
--0.184584 0.3661 0.00620283
--0.2438 0.329639 -0.00901413
--0.169891 0.336959 0.0180811
-
--0.224394 0.3034 0.0028641
--0.169891 0.336959 0.0180811
--0.2438 0.329639 -0.00901413
-
--0.169891 0.336959 0.0180811
--0.224394 0.3034 0.0028641
--0.154256 0.305948 0.0180811
-
--0.203742 0.275478 0.0028641
--0.154256 0.305948 0.0180811
--0.224394 0.3034 0.0028641
-
--0.154256 0.305948 0.0180811
--0.203742 0.275478 0.0028641
--0.139563 0.276807 0.00620283
-
--0.184336 0.249239 -0.00901413
--0.139563 0.276807 0.00620283
--0.203742 0.275478 0.0028641
-
--0.139563 0.276807 0.00620283
--0.184336 0.249239 -0.00901413
--0.127586 0.253051 -0.016121
-
--0.168516 0.227849 -0.0313379
--0.127586 0.253051 -0.016121
--0.184336 0.249239 -0.00901413
-
--0.127586 0.253051 -0.016121
--0.168516 0.227849 -0.0313379
--0.119768 0.237546 -0.0461977
-
--0.158191 0.213888 -0.0614147
--0.119768 0.237546 -0.0461977
--0.168516 0.227849 -0.0313379
-
--0.119768 0.237546 -0.0461977
--0.158191 0.213888 -0.0614147
--0.117053 0.232161 -0.0803997
-
--0.154605 0.209039 -0.0956167
--0.117053 0.232161 -0.0803997
--0.158191 0.213888 -0.0614147
-
--0.117053 0.232161 -0.0803997
--0.154605 0.209039 -0.0956167
--0.119768 0.237546 -0.114602
-
--0.158191 0.213888 -0.129819
--0.119768 0.237546 -0.114602
--0.154605 0.209039 -0.0956167
-
--0.119768 0.237546 -0.114602
--0.158191 0.213888 -0.129819
--0.127586 0.253051 -0.144678
-
--0.168516 0.227849 -0.159895
--0.127586 0.253051 -0.144678
--0.158191 0.213888 -0.129819
-
--0.127586 0.253051 -0.144678
--0.168516 0.227849 -0.159895
--0.139563 0.276807 -0.167002
-
--0.184336 0.249239 -0.182219
--0.139563 0.276807 -0.167002
--0.168516 0.227849 -0.159895
-
--0.139563 0.276807 -0.167002
--0.184336 0.249239 -0.182219
--0.154256 0.305948 -0.17888
-
--0.203742 0.275478 -0.194097
--0.154256 0.305948 -0.17888
--0.184336 0.249239 -0.182219
-
--0.154256 0.305948 -0.17888
--0.203742 0.275478 -0.194097
--0.169891 0.336959 -0.17888
-
--0.224394 0.3034 -0.194097
--0.169891 0.336959 -0.17888
--0.203742 0.275478 -0.194097
-
--0.169891 0.336959 -0.17888
--0.224394 0.3034 -0.194097
--0.184584 0.3661 -0.167002
-
--0.2438 0.329639 -0.182219
--0.184584 0.3661 -0.167002
--0.224394 0.3034 -0.194097
-
--0.184584 0.3661 -0.167002
--0.2438 0.329639 -0.182219
--0.196561 0.389855 -0.144678
-
--0.259619 0.351029 -0.159895
--0.196561 0.389855 -0.144678
--0.2438 0.329639 -0.182219
-
--0.196561 0.389855 -0.144678
--0.259619 0.351029 -0.159895
--0.204379 0.405361 -0.114602
-
--0.269945 0.36499 -0.129819
--0.204379 0.405361 -0.114602
--0.259619 0.351029 -0.159895
-
--0.204379 0.405361 -0.114602
--0.269945 0.36499 -0.129819
--0.207094 0.410746 -0.0803997
-
--0.273531 0.369839 -0.0956167
--0.207094 0.410746 -0.0803997
--0.269945 0.36499 -0.129819
-
--0.273531 0.369839 -0.0956167
--0.3321 0.318292 -0.0999099
--0.269945 0.36499 -0.0614147
-
--0.327746 0.314119 -0.0657079
--0.269945 0.36499 -0.0614147
--0.3321 0.318292 -0.0999099
-
--0.269945 0.36499 -0.0614147
--0.327746 0.314119 -0.0657079
--0.259619 0.351029 -0.0313379
-
--0.315209 0.302104 -0.0356311
--0.259619 0.351029 -0.0313379
--0.327746 0.314119 -0.0657079
-
--0.259619 0.351029 -0.0313379
--0.315209 0.302104 -0.0356311
--0.2438 0.329639 -0.00901413
-
--0.296002 0.283695 -0.0133074
--0.2438 0.329639 -0.00901413
--0.315209 0.302104 -0.0356311
-
--0.2438 0.329639 -0.00901413
--0.296002 0.283695 -0.0133074
--0.224394 0.3034 0.0028641
-
--0.272441 0.261113 -0.00142912
--0.224394 0.3034 0.0028641
--0.296002 0.283695 -0.0133074
-
--0.224394 0.3034 0.0028641
--0.272441 0.261113 -0.00142912
--0.203742 0.275478 0.0028641
-
--0.247368 0.237083 -0.00142912
--0.203742 0.275478 0.0028641
--0.272441 0.261113 -0.00142912
-
--0.203742 0.275478 0.0028641
--0.247368 0.237083 -0.00142912
--0.184336 0.249239 -0.00901413
-
--0.223806 0.214501 -0.0133074
--0.184336 0.249239 -0.00901413
--0.247368 0.237083 -0.00142912
-
--0.184336 0.249239 -0.00901413
--0.223806 0.214501 -0.0133074
--0.168516 0.227849 -0.0313379
-
--0.204599 0.196092 -0.0356311
--0.168516 0.227849 -0.0313379
--0.223806 0.214501 -0.0133074
-
--0.168516 0.227849 -0.0313379
--0.204599 0.196092 -0.0356311
--0.158191 0.213888 -0.0614147
-
--0.192063 0.184077 -0.0657079
--0.158191 0.213888 -0.0614147
--0.204599 0.196092 -0.0356311
-
--0.158191 0.213888 -0.0614147
--0.192063 0.184077 -0.0657079
--0.154605 0.209039 -0.0956167
-
--0.187709 0.179904 -0.0999099
--0.154605 0.209039 -0.0956167
--0.192063 0.184077 -0.0657079
-
--0.154605 0.209039 -0.0956167
--0.187709 0.179904 -0.0999099
--0.158191 0.213888 -0.129819
-
--0.192063 0.184077 -0.134112
--0.158191 0.213888 -0.129819
--0.187709 0.179904 -0.0999099
-
--0.158191 0.213888 -0.129819
--0.192063 0.184077 -0.134112
--0.168516 0.227849 -0.159895
-
--0.204599 0.196092 -0.164189
--0.168516 0.227849 -0.159895
--0.192063 0.184077 -0.134112
-
--0.168516 0.227849 -0.159895
--0.204599 0.196092 -0.164189
--0.184336 0.249239 -0.182219
-
--0.223806 0.214501 -0.186512
--0.184336 0.249239 -0.182219
--0.204599 0.196092 -0.164189
-
--0.184336 0.249239 -0.182219
--0.223806 0.214501 -0.186512
--0.203742 0.275478 -0.194097
-
--0.247368 0.237083 -0.198391
--0.203742 0.275478 -0.194097
--0.223806 0.214501 -0.186512
-
--0.203742 0.275478 -0.194097
--0.247368 0.237083 -0.198391
--0.224394 0.3034 -0.194097
-
--0.272441 0.261113 -0.198391
--0.224394 0.3034 -0.194097
--0.247368 0.237083 -0.198391
-
--0.224394 0.3034 -0.194097
--0.272441 0.261113 -0.198391
--0.2438 0.329639 -0.182219
-
--0.296002 0.283695 -0.186512
--0.2438 0.329639 -0.182219
--0.272441 0.261113 -0.198391
-
--0.2438 0.329639 -0.182219
--0.296002 0.283695 -0.186512
--0.259619 0.351029 -0.159895
-
--0.315209 0.302104 -0.164189
--0.259619 0.351029 -0.159895
--0.296002 0.283695 -0.186512
-
--0.259619 0.351029 -0.159895
--0.315209 0.302104 -0.164189
--0.269945 0.36499 -0.129819
-
--0.327746 0.314119 -0.134112
--0.269945 0.36499 -0.129819
--0.315209 0.302104 -0.164189
-
--0.269945 0.36499 -0.129819
--0.327746 0.314119 -0.134112
--0.273531 0.369839 -0.0956167
-
--0.3321 0.318292 -0.0999099
--0.273531 0.369839 -0.0956167
--0.327746 0.314119 -0.134112
-
--0.3321 0.318292 -0.0999099
--0.381114 0.257588 -0.0927889
--0.327746 0.314119 -0.0657079
-
--0.376118 0.254211 -0.0585869
--0.327746 0.314119 -0.0657079
--0.381114 0.257588 -0.0927889
-
--0.327746 0.314119 -0.0657079
--0.376118 0.254211 -0.0585869
--0.315209 0.302104 -0.0356311
-
--0.361731 0.244487 -0.0285101
--0.315209 0.302104 -0.0356311
--0.376118 0.254211 -0.0585869
-
--0.315209 0.302104 -0.0356311
--0.361731 0.244487 -0.0285101
--0.296002 0.283695 -0.0133074
-
--0.339689 0.22959 -0.00618636
--0.296002 0.283695 -0.0133074
--0.361731 0.244487 -0.0285101
-
--0.296002 0.283695 -0.0133074
--0.339689 0.22959 -0.00618636
--0.272441 0.261113 -0.00142912
-
--0.31265 0.211315 0.00569187
--0.272441 0.261113 -0.00142912
--0.339689 0.22959 -0.00618636
-
--0.272441 0.261113 -0.00142912
--0.31265 0.211315 0.00569187
--0.247368 0.237083 -0.00142912
-
--0.283877 0.191867 0.00569187
--0.247368 0.237083 -0.00142912
--0.31265 0.211315 0.00569187
-
--0.247368 0.237083 -0.00142912
--0.283877 0.191867 0.00569187
--0.223806 0.214501 -0.0133074
-
--0.256838 0.173592 -0.00618636
--0.223806 0.214501 -0.0133074
--0.283877 0.191867 0.00569187
-
--0.223806 0.214501 -0.0133074
--0.256838 0.173592 -0.00618636
--0.204599 0.196092 -0.0356311
-
--0.234796 0.158694 -0.0285101
--0.204599 0.196092 -0.0356311
--0.256838 0.173592 -0.00618636
-
--0.204599 0.196092 -0.0356311
--0.234796 0.158694 -0.0285101
--0.192063 0.184077 -0.0657079
-
--0.220409 0.148971 -0.0585869
--0.192063 0.184077 -0.0657079
--0.234796 0.158694 -0.0285101
-
--0.192063 0.184077 -0.0657079
--0.220409 0.148971 -0.0585869
--0.187709 0.179904 -0.0999099
-
--0.215413 0.145593 -0.0927889
--0.187709 0.179904 -0.0999099
--0.220409 0.148971 -0.0585869
-
--0.187709 0.179904 -0.0999099
--0.215413 0.145593 -0.0927889
--0.192063 0.184077 -0.134112
-
--0.220409 0.148971 -0.126991
--0.192063 0.184077 -0.134112
--0.215413 0.145593 -0.0927889
-
--0.192063 0.184077 -0.134112
--0.220409 0.148971 -0.126991
--0.204599 0.196092 -0.164189
-
--0.234796 0.158694 -0.157068
--0.204599 0.196092 -0.164189
--0.220409 0.148971 -0.126991
-
--0.204599 0.196092 -0.164189
--0.234796 0.158694 -0.157068
--0.223806 0.214501 -0.186512
-
--0.256838 0.173592 -0.179391
--0.223806 0.214501 -0.186512
--0.234796 0.158694 -0.157068
-
--0.223806 0.214501 -0.186512
--0.256838 0.173592 -0.179391
--0.247368 0.237083 -0.198391
-
--0.283877 0.191867 -0.19127
--0.247368 0.237083 -0.198391
--0.256838 0.173592 -0.179391
-
--0.247368 0.237083 -0.198391
--0.283877 0.191867 -0.19127
--0.272441 0.261113 -0.198391
-
--0.31265 0.211315 -0.19127
--0.272441 0.261113 -0.198391
--0.283877 0.191867 -0.19127
-
--0.272441 0.261113 -0.198391
--0.31265 0.211315 -0.19127
--0.296002 0.283695 -0.186512
-
--0.339689 0.22959 -0.179391
--0.296002 0.283695 -0.186512
--0.31265 0.211315 -0.19127
-
--0.296002 0.283695 -0.186512
--0.339689 0.22959 -0.179391
--0.315209 0.302104 -0.164189
-
--0.361731 0.244487 -0.157068
--0.315209 0.302104 -0.164189
--0.339689 0.22959 -0.179391
-
--0.315209 0.302104 -0.164189
--0.361731 0.244487 -0.157068
--0.327746 0.314119 -0.134112
-
--0.376118 0.254211 -0.126991
--0.327746 0.314119 -0.134112
--0.361731 0.244487 -0.157068
-
--0.327746 0.314119 -0.134112
--0.376118 0.254211 -0.126991
--0.3321 0.318292 -0.0999099
-
--0.381114 0.257588 -0.0927889
--0.3321 0.318292 -0.0999099
--0.376118 0.254211 -0.126991
-
--0.381114 0.257588 -0.0927889
--0.419165 0.189475 -0.0750672
--0.376118 0.254211 -0.0585869
-
--0.41367 0.186991 -0.0408652
--0.376118 0.254211 -0.0585869
--0.419165 0.189475 -0.0750672
-
--0.376118 0.254211 -0.0585869
--0.41367 0.186991 -0.0408652
--0.361731 0.244487 -0.0285101
-
--0.397846 0.179838 -0.0107885
--0.361731 0.244487 -0.0285101
--0.41367 0.186991 -0.0408652
-
--0.361731 0.244487 -0.0285101
--0.397846 0.179838 -0.0107885
--0.339689 0.22959 -0.00618636
-
--0.373604 0.16888 0.0115353
--0.339689 0.22959 -0.00618636
--0.397846 0.179838 -0.0107885
-
--0.339689 0.22959 -0.00618636
--0.373604 0.16888 0.0115353
--0.31265 0.211315 0.00569187
-
--0.343866 0.155437 0.0234135
--0.31265 0.211315 0.00569187
--0.373604 0.16888 0.0115353
-
--0.31265 0.211315 0.00569187
--0.343866 0.155437 0.0234135
--0.283877 0.191867 0.00569187
-
--0.312219 0.141132 0.0234135
--0.283877 0.191867 0.00569187
--0.343866 0.155437 0.0234135
-
--0.283877 0.191867 0.00569187
--0.312219 0.141132 0.0234135
--0.256838 0.173592 -0.00618636
-
--0.282481 0.127689 0.0115353
--0.256838 0.173592 -0.00618636
--0.312219 0.141132 0.0234135
-
--0.256838 0.173592 -0.00618636
--0.282481 0.127689 0.0115353
--0.234796 0.158694 -0.0285101
-
--0.258238 0.116731 -0.0107885
--0.234796 0.158694 -0.0285101
--0.282481 0.127689 0.0115353
-
--0.234796 0.158694 -0.0285101
--0.258238 0.116731 -0.0107885
--0.220409 0.148971 -0.0585869
-
--0.242415 0.109578 -0.0408652
--0.220409 0.148971 -0.0585869
--0.258238 0.116731 -0.0107885
-
--0.220409 0.148971 -0.0585869
--0.242415 0.109578 -0.0408652
--0.215413 0.145593 -0.0927889
-
--0.236919 0.107094 -0.0750672
--0.215413 0.145593 -0.0927889
--0.242415 0.109578 -0.0408652
-
--0.215413 0.145593 -0.0927889
--0.236919 0.107094 -0.0750672
--0.220409 0.148971 -0.126991
-
--0.242415 0.109578 -0.109269
--0.220409 0.148971 -0.126991
--0.236919 0.107094 -0.0750672
-
--0.220409 0.148971 -0.126991
--0.242415 0.109578 -0.109269
--0.234796 0.158694 -0.157068
-
--0.258238 0.116731 -0.139346
--0.234796 0.158694 -0.157068
--0.242415 0.109578 -0.109269
-
--0.234796 0.158694 -0.157068
--0.258238 0.116731 -0.139346
--0.256838 0.173592 -0.179391
-
--0.282481 0.127689 -0.16167
--0.256838 0.173592 -0.179391
--0.258238 0.116731 -0.139346
-
--0.256838 0.173592 -0.179391
--0.282481 0.127689 -0.16167
--0.283877 0.191867 -0.19127
-
--0.312219 0.141132 -0.173548
--0.283877 0.191867 -0.19127
--0.282481 0.127689 -0.16167
-
--0.283877 0.191867 -0.19127
--0.312219 0.141132 -0.173548
--0.31265 0.211315 -0.19127
-
--0.343866 0.155437 -0.173548
--0.31265 0.211315 -0.19127
--0.312219 0.141132 -0.173548
-
--0.31265 0.211315 -0.19127
--0.343866 0.155437 -0.173548
--0.339689 0.22959 -0.179391
-
--0.373604 0.16888 -0.16167
--0.339689 0.22959 -0.179391
--0.343866 0.155437 -0.173548
-
--0.339689 0.22959 -0.179391
--0.373604 0.16888 -0.16167
--0.361731 0.244487 -0.157068
-
--0.397846 0.179838 -0.139346
--0.361731 0.244487 -0.157068
--0.373604 0.16888 -0.16167
-
--0.361731 0.244487 -0.157068
--0.397846 0.179838 -0.139346
--0.376118 0.254211 -0.126991
-
--0.41367 0.186991 -0.109269
--0.376118 0.254211 -0.126991
--0.397846 0.179838 -0.139346
-
--0.376118 0.254211 -0.126991
--0.41367 0.186991 -0.109269
--0.381114 0.257588 -0.0927889
-
--0.419165 0.189475 -0.0750672
--0.381114 0.257588 -0.0927889
--0.41367 0.186991 -0.109269
-
--0.419165 0.189475 -0.0750672
--0.445157 0.11591 -0.0487695
--0.41367 0.186991 -0.0408652
-
--0.439321 0.11439 -0.0145675
--0.41367 0.186991 -0.0408652
--0.445157 0.11591 -0.0487695
-
--0.41367 0.186991 -0.0408652
--0.439321 0.11439 -0.0145675
--0.397846 0.179838 -0.0107885
-
--0.422517 0.110015 0.0155093
--0.397846 0.179838 -0.0107885
--0.439321 0.11439 -0.0145675
-
--0.397846 0.179838 -0.0107885
--0.422517 0.110015 0.0155093
--0.373604 0.16888 0.0115353
-
--0.396771 0.103311 0.037833
--0.373604 0.16888 0.0115353
--0.422517 0.110015 0.0155093
-
--0.373604 0.16888 0.0115353
--0.396771 0.103311 0.037833
--0.343866 0.155437 0.0234135
-
--0.365188 0.0950877 0.0497113
--0.343866 0.155437 0.0234135
--0.396771 0.103311 0.037833
-
--0.343866 0.155437 0.0234135
--0.365188 0.0950877 0.0497113
--0.312219 0.141132 0.0234135
-
--0.331579 0.0863365 0.0497113
--0.312219 0.141132 0.0234135
--0.365188 0.0950877 0.0497113
-
--0.312219 0.141132 0.0234135
--0.331579 0.0863365 0.0497113
--0.282481 0.127689 0.0115353
-
--0.299997 0.0781132 0.037833
--0.282481 0.127689 0.0115353
--0.331579 0.0863365 0.0497113
-
--0.282481 0.127689 0.0115353
--0.299997 0.0781132 0.037833
--0.258238 0.116731 -0.0107885
-
--0.274251 0.0714095 0.0155093
--0.258238 0.116731 -0.0107885
--0.299997 0.0781132 0.037833
-
--0.258238 0.116731 -0.0107885
--0.274251 0.0714095 0.0155093
--0.242415 0.109578 -0.0408652
-
--0.257447 0.0670339 -0.0145675
--0.242415 0.109578 -0.0408652
--0.274251 0.0714095 0.0155093
-
--0.242415 0.109578 -0.0408652
--0.257447 0.0670339 -0.0145675
--0.236919 0.107094 -0.0750672
-
--0.251611 0.0655143 -0.0487695
--0.236919 0.107094 -0.0750672
--0.257447 0.0670339 -0.0145675
-
--0.236919 0.107094 -0.0750672
--0.251611 0.0655143 -0.0487695
--0.242415 0.109578 -0.109269
-
--0.257447 0.0670339 -0.0829715
--0.242415 0.109578 -0.109269
--0.251611 0.0655143 -0.0487695
-
--0.242415 0.109578 -0.109269
--0.257447 0.0670339 -0.0829715
--0.258238 0.116731 -0.139346
-
--0.274251 0.0714095 -0.113048
--0.258238 0.116731 -0.139346
--0.257447 0.0670339 -0.0829715
-
--0.258238 0.116731 -0.139346
--0.274251 0.0714095 -0.113048
--0.282481 0.127689 -0.16167
-
--0.299997 0.0781132 -0.135372
--0.282481 0.127689 -0.16167
--0.274251 0.0714095 -0.113048
-
--0.282481 0.127689 -0.16167
--0.299997 0.0781132 -0.135372
--0.312219 0.141132 -0.173548
-
--0.331579 0.0863365 -0.14725
--0.312219 0.141132 -0.173548
--0.299997 0.0781132 -0.135372
-
--0.312219 0.141132 -0.173548
--0.331579 0.0863365 -0.14725
--0.343866 0.155437 -0.173548
-
--0.365188 0.0950877 -0.14725
--0.343866 0.155437 -0.173548
--0.331579 0.0863365 -0.14725
-
--0.343866 0.155437 -0.173548
--0.365188 0.0950877 -0.14725
--0.373604 0.16888 -0.16167
-
--0.396771 0.103311 -0.135372
--0.373604 0.16888 -0.16167
--0.365188 0.0950877 -0.14725
-
--0.373604 0.16888 -0.16167
--0.396771 0.103311 -0.135372
--0.397846 0.179838 -0.139346
-
--0.422517 0.110015 -0.113048
--0.397846 0.179838 -0.139346
--0.396771 0.103311 -0.135372
-
--0.397846 0.179838 -0.139346
--0.422517 0.110015 -0.113048
--0.41367 0.186991 -0.109269
-
--0.439321 0.11439 -0.0829715
--0.41367 0.186991 -0.109269
--0.422517 0.110015 -0.113048
-
--0.41367 0.186991 -0.109269
--0.439321 0.11439 -0.0829715
--0.419165 0.189475 -0.0750672
-
--0.445157 0.11591 -0.0487695
--0.419165 0.189475 -0.0750672
--0.439321 0.11439 -0.0829715
-
--0.445157 0.11591 -0.0487695
--0.458343 0.0390107 -0.0169001
--0.439321 0.11439 -0.0145675
-
--0.452334 0.0384993 0.0173019
--0.439321 0.11439 -0.0145675
--0.458343 0.0390107 -0.0169001
-
--0.439321 0.11439 -0.0145675
--0.452334 0.0384993 0.0173019
--0.422517 0.110015 0.0155093
-
--0.435032 0.0370266 0.0473787
--0.422517 0.110015 0.0155093
--0.452334 0.0384993 0.0173019
-
--0.422517 0.110015 0.0155093
--0.435032 0.0370266 0.0473787
--0.396771 0.103311 0.037833
-
--0.408523 0.0347704 0.0697025
--0.396771 0.103311 0.037833
--0.435032 0.0370266 0.0473787
-
--0.396771 0.103311 0.037833
--0.408523 0.0347704 0.0697025
--0.365188 0.0950877 0.0497113
-
--0.376005 0.0320028 0.0815807
--0.365188 0.0950877 0.0497113
--0.408523 0.0347704 0.0697025
-
--0.365188 0.0950877 0.0497113
--0.376005 0.0320028 0.0815807
--0.331579 0.0863365 0.0497113
-
--0.341401 0.0290575 0.0815807
--0.331579 0.0863365 0.0497113
--0.376005 0.0320028 0.0815807
-
--0.331579 0.0863365 0.0497113
--0.341401 0.0290575 0.0815807
--0.299997 0.0781132 0.037833
-
--0.308883 0.0262898 0.0697025
--0.299997 0.0781132 0.037833
--0.341401 0.0290575 0.0815807
-
--0.299997 0.0781132 0.037833
--0.308883 0.0262898 0.0697025
--0.274251 0.0714095 0.0155093
-
--0.282375 0.0240336 0.0473787
--0.274251 0.0714095 0.0155093
--0.308883 0.0262898 0.0697025
-
--0.274251 0.0714095 0.0155093
--0.282375 0.0240336 0.0473787
--0.257447 0.0670339 -0.0145675
-
--0.265072 0.022561 0.0173019
--0.257447 0.0670339 -0.0145675
--0.282375 0.0240336 0.0473787
-
--0.257447 0.0670339 -0.0145675
--0.265072 0.022561 0.0173019
--0.251611 0.0655143 -0.0487695
-
--0.259063 0.0220495 -0.0169001
--0.251611 0.0655143 -0.0487695
--0.265072 0.022561 0.0173019
-
--0.251611 0.0655143 -0.0487695
--0.259063 0.0220495 -0.0169001
--0.257447 0.0670339 -0.0829715
-
--0.265072 0.022561 -0.0511021
--0.257447 0.0670339 -0.0829715
--0.259063 0.0220495 -0.0169001
-
--0.257447 0.0670339 -0.0829715
--0.265072 0.022561 -0.0511021
--0.274251 0.0714095 -0.113048
-
--0.282375 0.0240336 -0.0811788
--0.274251 0.0714095 -0.113048
--0.265072 0.022561 -0.0511021
-
--0.274251 0.0714095 -0.113048
--0.282375 0.0240336 -0.0811788
--0.299997 0.0781132 -0.135372
-
--0.308883 0.0262898 -0.103503
--0.299997 0.0781132 -0.135372
--0.282375 0.0240336 -0.0811788
-
--0.299997 0.0781132 -0.135372
--0.308883 0.0262898 -0.103503
--0.331579 0.0863365 -0.14725
-
--0.341401 0.0290575 -0.115381
--0.331579 0.0863365 -0.14725
--0.308883 0.0262898 -0.103503
-
--0.331579 0.0863365 -0.14725
--0.341401 0.0290575 -0.115381
--0.365188 0.0950877 -0.14725
-
--0.376005 0.0320028 -0.115381
--0.365188 0.0950877 -0.14725
--0.341401 0.0290575 -0.115381
-
--0.365188 0.0950877 -0.14725
--0.376005 0.0320028 -0.115381
--0.396771 0.103311 -0.135372
-
--0.408523 0.0347704 -0.103503
--0.396771 0.103311 -0.135372
--0.376005 0.0320028 -0.115381
-
--0.396771 0.103311 -0.135372
--0.408523 0.0347704 -0.103503
--0.422517 0.110015 -0.113048
-
--0.435032 0.0370266 -0.0811788
--0.422517 0.110015 -0.113048
--0.408523 0.0347704 -0.103503
-
--0.422517 0.110015 -0.113048
--0.435032 0.0370266 -0.0811788
--0.439321 0.11439 -0.0829715
-
--0.452334 0.0384993 -0.0511021
--0.439321 0.11439 -0.0829715
--0.435032 0.0370266 -0.0811788
-
--0.439321 0.11439 -0.0829715
--0.452334 0.0384993 -0.0511021
--0.445157 0.11591 -0.0487695
-
--0.458343 0.0390107 -0.0169001
--0.445157 0.11591 -0.0487695
--0.452334 0.0384993 -0.0511021
-
--0.458343 0.0390107 -0.0169001
--0.458343 -0.0390107 0.0169001
--0.452334 0.0384993 0.0173019
-
--0.452334 -0.0384993 0.0511021
--0.452334 0.0384993 0.0173019
--0.458343 -0.0390107 0.0169001
-
--0.452334 0.0384993 0.0173019
--0.452334 -0.0384993 0.0511021
--0.435032 0.0370266 0.0473787
-
--0.435032 -0.0370266 0.0811788
--0.435032 0.0370266 0.0473787
--0.452334 -0.0384993 0.0511021
-
--0.435032 0.0370266 0.0473787
--0.435032 -0.0370266 0.0811788
--0.408523 0.0347704 0.0697025
-
--0.408523 -0.0347704 0.103503
--0.408523 0.0347704 0.0697025
--0.435032 -0.0370266 0.0811788
-
--0.408523 0.0347704 0.0697025
--0.408523 -0.0347704 0.103503
--0.376005 0.0320028 0.0815807
-
--0.376005 -0.0320028 0.115381
--0.376005 0.0320028 0.0815807
--0.408523 -0.0347704 0.103503
-
--0.376005 0.0320028 0.0815807
--0.376005 -0.0320028 0.115381
--0.341401 0.0290575 0.0815807
-
--0.341401 -0.0290575 0.115381
--0.341401 0.0290575 0.0815807
--0.376005 -0.0320028 0.115381
-
--0.341401 0.0290575 0.0815807
--0.341401 -0.0290575 0.115381
--0.308883 0.0262898 0.0697025
-
--0.308883 -0.0262898 0.103503
--0.308883 0.0262898 0.0697025
--0.341401 -0.0290575 0.115381
-
--0.308883 0.0262898 0.0697025
--0.308883 -0.0262898 0.103503
--0.282375 0.0240336 0.0473787
-
--0.282375 -0.0240336 0.0811788
--0.282375 0.0240336 0.0473787
--0.308883 -0.0262898 0.103503
-
--0.282375 0.0240336 0.0473787
--0.282375 -0.0240336 0.0811788
--0.265072 0.022561 0.0173019
-
--0.265072 -0.022561 0.0511021
--0.265072 0.022561 0.0173019
--0.282375 -0.0240336 0.0811788
-
--0.265072 0.022561 0.0173019
--0.265072 -0.022561 0.0511021
--0.259063 0.0220495 -0.0169001
-
--0.259063 -0.0220495 0.0169001
--0.259063 0.0220495 -0.0169001
--0.265072 -0.022561 0.0511021
-
--0.259063 0.0220495 -0.0169001
--0.259063 -0.0220495 0.0169001
--0.265072 0.022561 -0.0511021
-
--0.265072 -0.022561 -0.0173019
--0.265072 0.022561 -0.0511021
--0.259063 -0.0220495 0.0169001
-
--0.265072 0.022561 -0.0511021
--0.265072 -0.022561 -0.0173019
--0.282375 0.0240336 -0.0811788
-
--0.282375 -0.0240336 -0.0473787
--0.282375 0.0240336 -0.0811788
--0.265072 -0.022561 -0.0173019
-
--0.282375 0.0240336 -0.0811788
--0.282375 -0.0240336 -0.0473787
--0.308883 0.0262898 -0.103503
-
--0.308883 -0.0262898 -0.0697025
--0.308883 0.0262898 -0.103503
--0.282375 -0.0240336 -0.0473787
-
--0.308883 0.0262898 -0.103503
--0.308883 -0.0262898 -0.0697025
--0.341401 0.0290575 -0.115381
-
--0.341401 -0.0290575 -0.0815807
--0.341401 0.0290575 -0.115381
--0.308883 -0.0262898 -0.0697025
-
--0.341401 0.0290575 -0.115381
--0.341401 -0.0290575 -0.0815807
--0.376005 0.0320028 -0.115381
-
--0.376005 -0.0320028 -0.0815807
--0.376005 0.0320028 -0.115381
--0.341401 -0.0290575 -0.0815807
-
--0.376005 0.0320028 -0.115381
--0.376005 -0.0320028 -0.0815807
--0.408523 0.0347704 -0.103503
-
--0.408523 -0.0347704 -0.0697025
--0.408523 0.0347704 -0.103503
--0.376005 -0.0320028 -0.0815807
-
--0.408523 0.0347704 -0.103503
--0.408523 -0.0347704 -0.0697025
--0.435032 0.0370266 -0.0811788
-
--0.435032 -0.0370266 -0.0473787
--0.435032 0.0370266 -0.0811788
--0.408523 -0.0347704 -0.0697025
-
--0.435032 0.0370266 -0.0811788
--0.435032 -0.0370266 -0.0473787
--0.452334 0.0384993 -0.0511021
-
--0.452334 -0.0384993 -0.0173019
--0.452334 0.0384993 -0.0511021
--0.435032 -0.0370266 -0.0473787
-
--0.452334 0.0384993 -0.0511021
--0.452334 -0.0384993 -0.0173019
--0.458343 0.0390107 -0.0169001
-
--0.458343 -0.0390107 0.0169001
--0.458343 0.0390107 -0.0169001
--0.452334 -0.0384993 -0.0173019
-
--0.458343 -0.0390107 0.0169001
--0.445157 -0.11591 0.0487695
--0.452334 -0.0384993 0.0511021
-
--0.439321 -0.11439 0.0829715
--0.452334 -0.0384993 0.0511021
--0.445157 -0.11591 0.0487695
-
--0.452334 -0.0384993 0.0511021
--0.439321 -0.11439 0.0829715
--0.435032 -0.0370266 0.0811788
-
--0.422517 -0.110015 0.113048
--0.435032 -0.0370266 0.0811788
--0.439321 -0.11439 0.0829715
-
--0.435032 -0.0370266 0.0811788
--0.422517 -0.110015 0.113048
--0.408523 -0.0347704 0.103503
-
--0.396771 -0.103311 0.135372
--0.408523 -0.0347704 0.103503
--0.422517 -0.110015 0.113048
-
--0.408523 -0.0347704 0.103503
--0.396771 -0.103311 0.135372
--0.376005 -0.0320028 0.115381
-
--0.365188 -0.0950877 0.14725
--0.376005 -0.0320028 0.115381
--0.396771 -0.103311 0.135372
-
--0.376005 -0.0320028 0.115381
--0.365188 -0.0950877 0.14725
--0.341401 -0.0290575 0.115381
-
--0.331579 -0.0863365 0.14725
--0.341401 -0.0290575 0.115381
--0.365188 -0.0950877 0.14725
-
--0.341401 -0.0290575 0.115381
--0.331579 -0.0863365 0.14725
--0.308883 -0.0262898 0.103503
-
--0.299997 -0.0781132 0.135372
--0.308883 -0.0262898 0.103503
--0.331579 -0.0863365 0.14725
-
--0.308883 -0.0262898 0.103503
--0.299997 -0.0781132 0.135372
--0.282375 -0.0240336 0.0811788
-
--0.274251 -0.0714095 0.113048
--0.282375 -0.0240336 0.0811788
--0.299997 -0.0781132 0.135372
-
--0.282375 -0.0240336 0.0811788
--0.274251 -0.0714095 0.113048
--0.265072 -0.022561 0.0511021
-
--0.257447 -0.0670339 0.0829715
--0.265072 -0.022561 0.0511021
--0.274251 -0.0714095 0.113048
-
--0.265072 -0.022561 0.0511021
--0.257447 -0.0670339 0.0829715
--0.259063 -0.0220495 0.0169001
-
--0.251611 -0.0655143 0.0487695
--0.259063 -0.0220495 0.0169001
--0.257447 -0.0670339 0.0829715
-
--0.259063 -0.0220495 0.0169001
--0.251611 -0.0655143 0.0487695
--0.265072 -0.022561 -0.0173019
-
--0.257447 -0.0670339 0.0145675
--0.265072 -0.022561 -0.0173019
--0.251611 -0.0655143 0.0487695
-
--0.265072 -0.022561 -0.0173019
--0.257447 -0.0670339 0.0145675
--0.282375 -0.0240336 -0.0473787
-
--0.274251 -0.0714095 -0.0155093
--0.282375 -0.0240336 -0.0473787
--0.257447 -0.0670339 0.0145675
-
--0.282375 -0.0240336 -0.0473787
--0.274251 -0.0714095 -0.0155093
--0.308883 -0.0262898 -0.0697025
-
--0.299997 -0.0781132 -0.037833
--0.308883 -0.0262898 -0.0697025
--0.274251 -0.0714095 -0.0155093
-
--0.308883 -0.0262898 -0.0697025
--0.299997 -0.0781132 -0.037833
--0.341401 -0.0290575 -0.0815807
-
--0.331579 -0.0863365 -0.0497113
--0.341401 -0.0290575 -0.0815807
--0.299997 -0.0781132 -0.037833
-
--0.341401 -0.0290575 -0.0815807
--0.331579 -0.0863365 -0.0497113
--0.376005 -0.0320028 -0.0815807
-
--0.365188 -0.0950877 -0.0497113
--0.376005 -0.0320028 -0.0815807
--0.331579 -0.0863365 -0.0497113
-
--0.376005 -0.0320028 -0.0815807
--0.365188 -0.0950877 -0.0497113
--0.408523 -0.0347704 -0.0697025
-
--0.396771 -0.103311 -0.037833
--0.408523 -0.0347704 -0.0697025
--0.365188 -0.0950877 -0.0497113
-
--0.408523 -0.0347704 -0.0697025
--0.396771 -0.103311 -0.037833
--0.435032 -0.0370266 -0.0473787
-
--0.422517 -0.110015 -0.0155093
--0.435032 -0.0370266 -0.0473787
--0.396771 -0.103311 -0.037833
-
--0.435032 -0.0370266 -0.0473787
--0.422517 -0.110015 -0.0155093
--0.452334 -0.0384993 -0.0173019
-
--0.439321 -0.11439 0.0145675
--0.452334 -0.0384993 -0.0173019
--0.422517 -0.110015 -0.0155093
-
--0.452334 -0.0384993 -0.0173019
--0.439321 -0.11439 0.0145675
--0.458343 -0.0390107 0.0169001
-
--0.445157 -0.11591 0.0487695
--0.458343 -0.0390107 0.0169001
--0.439321 -0.11439 0.0145675
-
--0.445157 -0.11591 0.0487695
--0.419165 -0.189475 0.0750672
--0.439321 -0.11439 0.0829715
-
--0.41367 -0.186991 0.109269
--0.439321 -0.11439 0.0829715
--0.419165 -0.189475 0.0750672
-
--0.439321 -0.11439 0.0829715
--0.41367 -0.186991 0.109269
--0.422517 -0.110015 0.113048
-
--0.397846 -0.179838 0.139346
--0.422517 -0.110015 0.113048
--0.41367 -0.186991 0.109269
-
--0.422517 -0.110015 0.113048
--0.397846 -0.179838 0.139346
--0.396771 -0.103311 0.135372
-
--0.373604 -0.16888 0.16167
--0.396771 -0.103311 0.135372
--0.397846 -0.179838 0.139346
-
--0.396771 -0.103311 0.135372
--0.373604 -0.16888 0.16167
--0.365188 -0.0950877 0.14725
-
--0.343866 -0.155437 0.173548
--0.365188 -0.0950877 0.14725
--0.373604 -0.16888 0.16167
-
--0.365188 -0.0950877 0.14725
--0.343866 -0.155437 0.173548
--0.331579 -0.0863365 0.14725
-
--0.312219 -0.141132 0.173548
--0.331579 -0.0863365 0.14725
--0.343866 -0.155437 0.173548
-
--0.331579 -0.0863365 0.14725
--0.312219 -0.141132 0.173548
--0.299997 -0.0781132 0.135372
-
--0.282481 -0.127689 0.16167
--0.299997 -0.0781132 0.135372
--0.312219 -0.141132 0.173548
-
--0.299997 -0.0781132 0.135372
--0.282481 -0.127689 0.16167
--0.274251 -0.0714095 0.113048
-
--0.258238 -0.116731 0.139346
--0.274251 -0.0714095 0.113048
--0.282481 -0.127689 0.16167
-
--0.274251 -0.0714095 0.113048
--0.258238 -0.116731 0.139346
--0.257447 -0.0670339 0.0829715
-
--0.242415 -0.109578 0.109269
--0.257447 -0.0670339 0.0829715
--0.258238 -0.116731 0.139346
-
--0.257447 -0.0670339 0.0829715
--0.242415 -0.109578 0.109269
--0.251611 -0.0655143 0.0487695
-
--0.236919 -0.107094 0.0750672
--0.251611 -0.0655143 0.0487695
--0.242415 -0.109578 0.109269
-
--0.251611 -0.0655143 0.0487695
--0.236919 -0.107094 0.0750672
--0.257447 -0.0670339 0.0145675
-
--0.242415 -0.109578 0.0408652
--0.257447 -0.0670339 0.0145675
--0.236919 -0.107094 0.0750672
-
--0.257447 -0.0670339 0.0145675
--0.242415 -0.109578 0.0408652
--0.274251 -0.0714095 -0.0155093
-
--0.258238 -0.116731 0.0107885
--0.274251 -0.0714095 -0.0155093
--0.242415 -0.109578 0.0408652
-
--0.274251 -0.0714095 -0.0155093
--0.258238 -0.116731 0.0107885
--0.299997 -0.0781132 -0.037833
-
--0.282481 -0.127689 -0.0115353
--0.299997 -0.0781132 -0.037833
--0.258238 -0.116731 0.0107885
-
--0.299997 -0.0781132 -0.037833
--0.282481 -0.127689 -0.0115353
--0.331579 -0.0863365 -0.0497113
-
--0.312219 -0.141132 -0.0234135
--0.331579 -0.0863365 -0.0497113
--0.282481 -0.127689 -0.0115353
-
--0.331579 -0.0863365 -0.0497113
--0.312219 -0.141132 -0.0234135
--0.365188 -0.0950877 -0.0497113
-
--0.343866 -0.155437 -0.0234135
--0.365188 -0.0950877 -0.0497113
--0.312219 -0.141132 -0.0234135
-
--0.365188 -0.0950877 -0.0497113
--0.343866 -0.155437 -0.0234135
--0.396771 -0.103311 -0.037833
-
--0.373604 -0.16888 -0.0115353
--0.396771 -0.103311 -0.037833
--0.343866 -0.155437 -0.0234135
-
--0.396771 -0.103311 -0.037833
--0.373604 -0.16888 -0.0115353
--0.422517 -0.110015 -0.0155093
-
--0.397846 -0.179838 0.0107885
--0.422517 -0.110015 -0.0155093
--0.373604 -0.16888 -0.0115353
-
--0.422517 -0.110015 -0.0155093
--0.397846 -0.179838 0.0107885
--0.439321 -0.11439 0.0145675
-
--0.41367 -0.186991 0.0408652
--0.439321 -0.11439 0.0145675
--0.397846 -0.179838 0.0107885
-
--0.439321 -0.11439 0.0145675
--0.41367 -0.186991 0.0408652
--0.445157 -0.11591 0.0487695
-
--0.419165 -0.189475 0.0750672
--0.445157 -0.11591 0.0487695
--0.41367 -0.186991 0.0408652
-
--0.419165 -0.189475 0.0750672
--0.381114 -0.257588 0.0927889
--0.41367 -0.186991 0.109269
-
--0.376118 -0.254211 0.126991
--0.41367 -0.186991 0.109269
--0.381114 -0.257588 0.0927889
-
--0.41367 -0.186991 0.109269
--0.376118 -0.254211 0.126991
--0.397846 -0.179838 0.139346
-
--0.361731 -0.244487 0.157068
--0.397846 -0.179838 0.139346
--0.376118 -0.254211 0.126991
-
--0.397846 -0.179838 0.139346
--0.361731 -0.244487 0.157068
--0.373604 -0.16888 0.16167
-
--0.339689 -0.22959 0.179391
--0.373604 -0.16888 0.16167
--0.361731 -0.244487 0.157068
-
--0.373604 -0.16888 0.16167
--0.339689 -0.22959 0.179391
--0.343866 -0.155437 0.173548
-
--0.31265 -0.211315 0.19127
--0.343866 -0.155437 0.173548
--0.339689 -0.22959 0.179391
-
--0.343866 -0.155437 0.173548
--0.31265 -0.211315 0.19127
--0.312219 -0.141132 0.173548
-
--0.283877 -0.191867 0.19127
--0.312219 -0.141132 0.173548
--0.31265 -0.211315 0.19127
-
--0.312219 -0.141132 0.173548
--0.283877 -0.191867 0.19127
--0.282481 -0.127689 0.16167
-
--0.256838 -0.173592 0.179391
--0.282481 -0.127689 0.16167
--0.283877 -0.191867 0.19127
-
--0.282481 -0.127689 0.16167
--0.256838 -0.173592 0.179391
--0.258238 -0.116731 0.139346
-
--0.234796 -0.158694 0.157068
--0.258238 -0.116731 0.139346
--0.256838 -0.173592 0.179391
-
--0.258238 -0.116731 0.139346
--0.234796 -0.158694 0.157068
--0.242415 -0.109578 0.109269
-
--0.220409 -0.148971 0.126991
--0.242415 -0.109578 0.109269
--0.234796 -0.158694 0.157068
-
--0.242415 -0.109578 0.109269
--0.220409 -0.148971 0.126991
--0.236919 -0.107094 0.0750672
-
--0.215413 -0.145593 0.0927889
--0.236919 -0.107094 0.0750672
--0.220409 -0.148971 0.126991
-
--0.236919 -0.107094 0.0750672
--0.215413 -0.145593 0.0927889
--0.242415 -0.109578 0.0408652
-
--0.220409 -0.148971 0.0585869
--0.242415 -0.109578 0.0408652
--0.215413 -0.145593 0.0927889
-
--0.242415 -0.109578 0.0408652
--0.220409 -0.148971 0.0585869
--0.258238 -0.116731 0.0107885
-
--0.234796 -0.158694 0.0285101
--0.258238 -0.116731 0.0107885
--0.220409 -0.148971 0.0585869
-
--0.258238 -0.116731 0.0107885
--0.234796 -0.158694 0.0285101
--0.282481 -0.127689 -0.0115353
-
--0.256838 -0.173592 0.00618636
--0.282481 -0.127689 -0.0115353
--0.234796 -0.158694 0.0285101
-
--0.282481 -0.127689 -0.0115353
--0.256838 -0.173592 0.00618636
--0.312219 -0.141132 -0.0234135
-
--0.283877 -0.191867 -0.00569187
--0.312219 -0.141132 -0.0234135
--0.256838 -0.173592 0.00618636
-
--0.312219 -0.141132 -0.0234135
--0.283877 -0.191867 -0.00569187
--0.343866 -0.155437 -0.0234135
-
--0.31265 -0.211315 -0.00569187
--0.343866 -0.155437 -0.0234135
--0.283877 -0.191867 -0.00569187
-
--0.343866 -0.155437 -0.0234135
--0.31265 -0.211315 -0.00569187
--0.373604 -0.16888 -0.0115353
-
--0.339689 -0.22959 0.00618636
--0.373604 -0.16888 -0.0115353
--0.31265 -0.211315 -0.00569187
-
--0.373604 -0.16888 -0.0115353
--0.339689 -0.22959 0.00618636
--0.397846 -0.179838 0.0107885
-
--0.361731 -0.244487 0.0285101
--0.397846 -0.179838 0.0107885
--0.339689 -0.22959 0.00618636
-
--0.397846 -0.179838 0.0107885
--0.361731 -0.244487 0.0285101
--0.41367 -0.186991 0.0408652
-
--0.376118 -0.254211 0.0585869
--0.41367 -0.186991 0.0408652
--0.361731 -0.244487 0.0285101
-
--0.41367 -0.186991 0.0408652
--0.376118 -0.254211 0.0585869
--0.419165 -0.189475 0.0750672
-
--0.381114 -0.257588 0.0927889
--0.419165 -0.189475 0.0750672
--0.376118 -0.254211 0.0585869
-
--0.381114 -0.257588 0.0927889
--0.3321 -0.318292 0.0999099
--0.376118 -0.254211 0.126991
-
--0.327746 -0.314119 0.134112
--0.376118 -0.254211 0.126991
--0.3321 -0.318292 0.0999099
-
--0.376118 -0.254211 0.126991
--0.327746 -0.314119 0.134112
--0.361731 -0.244487 0.157068
-
--0.315209 -0.302104 0.164189
--0.361731 -0.244487 0.157068
--0.327746 -0.314119 0.134112
-
--0.361731 -0.244487 0.157068
--0.315209 -0.302104 0.164189
--0.339689 -0.22959 0.179391
-
--0.296002 -0.283695 0.186512
--0.339689 -0.22959 0.179391
--0.315209 -0.302104 0.164189
-
--0.339689 -0.22959 0.179391
--0.296002 -0.283695 0.186512
--0.31265 -0.211315 0.19127
-
--0.272441 -0.261113 0.198391
--0.31265 -0.211315 0.19127
--0.296002 -0.283695 0.186512
-
--0.31265 -0.211315 0.19127
--0.272441 -0.261113 0.198391
--0.283877 -0.191867 0.19127
-
--0.247368 -0.237083 0.198391
--0.283877 -0.191867 0.19127
--0.272441 -0.261113 0.198391
-
--0.283877 -0.191867 0.19127
--0.247368 -0.237083 0.198391
--0.256838 -0.173592 0.179391
-
--0.223806 -0.214501 0.186512
--0.256838 -0.173592 0.179391
--0.247368 -0.237083 0.198391
-
--0.256838 -0.173592 0.179391
--0.223806 -0.214501 0.186512
--0.234796 -0.158694 0.157068
-
--0.204599 -0.196092 0.164189
--0.234796 -0.158694 0.157068
--0.223806 -0.214501 0.186512
-
--0.234796 -0.158694 0.157068
--0.204599 -0.196092 0.164189
--0.220409 -0.148971 0.126991
-
--0.192063 -0.184077 0.134112
--0.220409 -0.148971 0.126991
--0.204599 -0.196092 0.164189
-
--0.220409 -0.148971 0.126991
--0.192063 -0.184077 0.134112
--0.215413 -0.145593 0.0927889
-
--0.187709 -0.179904 0.0999099
--0.215413 -0.145593 0.0927889
--0.192063 -0.184077 0.134112
-
--0.215413 -0.145593 0.0927889
--0.187709 -0.179904 0.0999099
--0.220409 -0.148971 0.0585869
-
--0.192063 -0.184077 0.0657079
--0.220409 -0.148971 0.0585869
--0.187709 -0.179904 0.0999099
-
--0.220409 -0.148971 0.0585869
--0.192063 -0.184077 0.0657079
--0.234796 -0.158694 0.0285101
-
--0.204599 -0.196092 0.0356311
--0.234796 -0.158694 0.0285101
--0.192063 -0.184077 0.0657079
-
--0.234796 -0.158694 0.0285101
--0.204599 -0.196092 0.0356311
--0.256838 -0.173592 0.00618636
-
--0.223806 -0.214501 0.0133074
--0.256838 -0.173592 0.00618636
--0.204599 -0.196092 0.0356311
-
--0.256838 -0.173592 0.00618636
--0.223806 -0.214501 0.0133074
--0.283877 -0.191867 -0.00569187
-
--0.247368 -0.237083 0.00142912
--0.283877 -0.191867 -0.00569187
--0.223806 -0.214501 0.0133074
-
--0.283877 -0.191867 -0.00569187
--0.247368 -0.237083 0.00142912
--0.31265 -0.211315 -0.00569187
-
--0.272441 -0.261113 0.00142912
--0.31265 -0.211315 -0.00569187
--0.247368 -0.237083 0.00142912
-
--0.31265 -0.211315 -0.00569187
--0.272441 -0.261113 0.00142912
--0.339689 -0.22959 0.00618636
-
--0.296002 -0.283695 0.0133074
--0.339689 -0.22959 0.00618636
--0.272441 -0.261113 0.00142912
-
--0.339689 -0.22959 0.00618636
--0.296002 -0.283695 0.0133074
--0.361731 -0.244487 0.0285101
-
--0.315209 -0.302104 0.0356311
--0.361731 -0.244487 0.0285101
--0.296002 -0.283695 0.0133074
-
--0.361731 -0.244487 0.0285101
--0.315209 -0.302104 0.0356311
--0.376118 -0.254211 0.0585869
-
--0.327746 -0.314119 0.0657079
--0.376118 -0.254211 0.0585869
--0.315209 -0.302104 0.0356311
-
--0.376118 -0.254211 0.0585869
--0.327746 -0.314119 0.0657079
--0.381114 -0.257588 0.0927889
-
--0.3321 -0.318292 0.0999099
--0.381114 -0.257588 0.0927889
--0.327746 -0.314119 0.0657079
-
--0.3321 -0.318292 0.0999099
--0.273531 -0.369839 0.0956167
--0.327746 -0.314119 0.134112
-
--0.269945 -0.36499 0.129819
--0.327746 -0.314119 0.134112
--0.273531 -0.369839 0.0956167
-
--0.327746 -0.314119 0.134112
--0.269945 -0.36499 0.129819
--0.315209 -0.302104 0.164189
-
--0.259619 -0.351029 0.159895
--0.315209 -0.302104 0.164189
--0.269945 -0.36499 0.129819
-
--0.315209 -0.302104 0.164189
--0.259619 -0.351029 0.159895
--0.296002 -0.283695 0.186512
-
--0.2438 -0.329639 0.182219
--0.296002 -0.283695 0.186512
--0.259619 -0.351029 0.159895
-
--0.296002 -0.283695 0.186512
--0.2438 -0.329639 0.182219
--0.272441 -0.261113 0.198391
-
--0.224394 -0.3034 0.194097
--0.272441 -0.261113 0.198391
--0.2438 -0.329639 0.182219
-
--0.272441 -0.261113 0.198391
--0.224394 -0.3034 0.194097
--0.247368 -0.237083 0.198391
-
--0.203742 -0.275478 0.194097
--0.247368 -0.237083 0.198391
--0.224394 -0.3034 0.194097
-
--0.247368 -0.237083 0.198391
--0.203742 -0.275478 0.194097
--0.223806 -0.214501 0.186512
-
--0.184336 -0.249239 0.182219
--0.223806 -0.214501 0.186512
--0.203742 -0.275478 0.194097
-
--0.223806 -0.214501 0.186512
--0.184336 -0.249239 0.182219
--0.204599 -0.196092 0.164189
-
--0.168516 -0.227849 0.159895
--0.204599 -0.196092 0.164189
--0.184336 -0.249239 0.182219
-
--0.204599 -0.196092 0.164189
--0.168516 -0.227849 0.159895
--0.192063 -0.184077 0.134112
-
--0.158191 -0.213888 0.129819
--0.192063 -0.184077 0.134112
--0.168516 -0.227849 0.159895
-
--0.192063 -0.184077 0.134112
--0.158191 -0.213888 0.129819
--0.187709 -0.179904 0.0999099
-
--0.154605 -0.209039 0.0956167
--0.187709 -0.179904 0.0999099
--0.158191 -0.213888 0.129819
-
--0.187709 -0.179904 0.0999099
--0.154605 -0.209039 0.0956167
--0.192063 -0.184077 0.0657079
-
--0.158191 -0.213888 0.0614147
--0.192063 -0.184077 0.0657079
--0.154605 -0.209039 0.0956167
-
--0.192063 -0.184077 0.0657079
--0.158191 -0.213888 0.0614147
--0.204599 -0.196092 0.0356311
-
--0.168516 -0.227849 0.0313379
--0.204599 -0.196092 0.0356311
--0.158191 -0.213888 0.0614147
-
--0.204599 -0.196092 0.0356311
--0.168516 -0.227849 0.0313379
--0.223806 -0.214501 0.0133074
-
--0.184336 -0.249239 0.00901413
--0.223806 -0.214501 0.0133074
--0.168516 -0.227849 0.0313379
-
--0.223806 -0.214501 0.0133074
--0.184336 -0.249239 0.00901413
--0.247368 -0.237083 0.00142912
-
--0.203742 -0.275478 -0.0028641
--0.247368 -0.237083 0.00142912
--0.184336 -0.249239 0.00901413
-
--0.247368 -0.237083 0.00142912
--0.203742 -0.275478 -0.0028641
--0.272441 -0.261113 0.00142912
-
--0.224394 -0.3034 -0.0028641
--0.272441 -0.261113 0.00142912
--0.203742 -0.275478 -0.0028641
-
--0.272441 -0.261113 0.00142912
--0.224394 -0.3034 -0.0028641
--0.296002 -0.283695 0.0133074
-
--0.2438 -0.329639 0.00901413
--0.296002 -0.283695 0.0133074
--0.224394 -0.3034 -0.0028641
-
--0.296002 -0.283695 0.0133074
--0.2438 -0.329639 0.00901413
--0.315209 -0.302104 0.0356311
-
--0.259619 -0.351029 0.0313379
--0.315209 -0.302104 0.0356311
--0.2438 -0.329639 0.00901413
-
--0.315209 -0.302104 0.0356311
--0.259619 -0.351029 0.0313379
--0.327746 -0.314119 0.0657079
-
--0.269945 -0.36499 0.0614147
--0.327746 -0.314119 0.0657079
--0.259619 -0.351029 0.0313379
-
--0.327746 -0.314119 0.0657079
--0.269945 -0.36499 0.0614147
--0.3321 -0.318292 0.0999099
-
--0.273531 -0.369839 0.0956167
--0.3321 -0.318292 0.0999099
--0.269945 -0.36499 0.0614147
-
--0.273531 -0.369839 0.0956167
--0.207094 -0.410746 0.0803997
--0.269945 -0.36499 0.129819
-
--0.204379 -0.405361 0.114602
--0.269945 -0.36499 0.129819
--0.207094 -0.410746 0.0803997
-
--0.269945 -0.36499 0.129819
--0.204379 -0.405361 0.114602
--0.259619 -0.351029 0.159895
-
--0.196561 -0.389855 0.144678
--0.259619 -0.351029 0.159895
--0.204379 -0.405361 0.114602
-
--0.259619 -0.351029 0.159895
--0.196561 -0.389855 0.144678
--0.2438 -0.329639 0.182219
-
--0.184584 -0.3661 0.167002
--0.2438 -0.329639 0.182219
--0.196561 -0.389855 0.144678
-
--0.2438 -0.329639 0.182219
--0.184584 -0.3661 0.167002
--0.224394 -0.3034 0.194097
-
--0.169891 -0.336959 0.17888
--0.224394 -0.3034 0.194097
--0.184584 -0.3661 0.167002
-
--0.224394 -0.3034 0.194097
--0.169891 -0.336959 0.17888
--0.203742 -0.275478 0.194097
-
--0.154256 -0.305948 0.17888
--0.203742 -0.275478 0.194097
--0.169891 -0.336959 0.17888
-
--0.203742 -0.275478 0.194097
--0.154256 -0.305948 0.17888
--0.184336 -0.249239 0.182219
-
--0.139563 -0.276807 0.167002
--0.184336 -0.249239 0.182219
--0.154256 -0.305948 0.17888
-
--0.184336 -0.249239 0.182219
--0.139563 -0.276807 0.167002
--0.168516 -0.227849 0.159895
-
--0.127586 -0.253051 0.144678
--0.168516 -0.227849 0.159895
--0.139563 -0.276807 0.167002
-
--0.168516 -0.227849 0.159895
--0.127586 -0.253051 0.144678
--0.158191 -0.213888 0.129819
-
--0.119768 -0.237546 0.114602
--0.158191 -0.213888 0.129819
--0.127586 -0.253051 0.144678
-
--0.158191 -0.213888 0.129819
--0.119768 -0.237546 0.114602
--0.154605 -0.209039 0.0956167
-
--0.117053 -0.232161 0.0803997
--0.154605 -0.209039 0.0956167
--0.119768 -0.237546 0.114602
-
--0.154605 -0.209039 0.0956167
--0.117053 -0.232161 0.0803997
--0.158191 -0.213888 0.0614147
-
--0.119768 -0.237546 0.0461977
--0.158191 -0.213888 0.0614147
--0.117053 -0.232161 0.0803997
-
--0.158191 -0.213888 0.0614147
--0.119768 -0.237546 0.0461977
--0.168516 -0.227849 0.0313379
-
--0.127586 -0.253051 0.016121
--0.168516 -0.227849 0.0313379
--0.119768 -0.237546 0.0461977
-
--0.168516 -0.227849 0.0313379
--0.127586 -0.253051 0.016121
--0.184336 -0.249239 0.00901413
-
--0.139563 -0.276807 -0.00620283
--0.184336 -0.249239 0.00901413
--0.127586 -0.253051 0.016121
-
--0.184336 -0.249239 0.00901413
--0.139563 -0.276807 -0.00620283
--0.203742 -0.275478 -0.0028641
-
--0.154256 -0.305948 -0.0180811
--0.203742 -0.275478 -0.0028641
--0.139563 -0.276807 -0.00620283
-
--0.203742 -0.275478 -0.0028641
--0.154256 -0.305948 -0.0180811
--0.224394 -0.3034 -0.0028641
-
--0.169891 -0.336959 -0.0180811
--0.224394 -0.3034 -0.0028641
--0.154256 -0.305948 -0.0180811
-
--0.224394 -0.3034 -0.0028641
--0.169891 -0.336959 -0.0180811
--0.2438 -0.329639 0.00901413
-
--0.184584 -0.3661 -0.00620283
--0.2438 -0.329639 0.00901413
--0.169891 -0.336959 -0.0180811
-
--0.2438 -0.329639 0.00901413
--0.184584 -0.3661 -0.00620283
--0.259619 -0.351029 0.0313379
-
--0.196561 -0.389855 0.016121
--0.259619 -0.351029 0.0313379
--0.184584 -0.3661 -0.00620283
-
--0.259619 -0.351029 0.0313379
--0.196561 -0.389855 0.016121
--0.269945 -0.36499 0.0614147
-
--0.204379 -0.405361 0.0461977
--0.269945 -0.36499 0.0614147
--0.196561 -0.389855 0.016121
-
--0.269945 -0.36499 0.0614147
--0.204379 -0.405361 0.0461977
--0.273531 -0.369839 0.0956167
-
--0.207094 -0.410746 0.0803997
--0.273531 -0.369839 0.0956167
--0.204379 -0.405361 0.0461977
-
--0.207094 -0.410746 0.0803997
--0.134698 -0.439837 0.0559975
--0.204379 -0.405361 0.114602
-
--0.132933 -0.43407 0.0901995
--0.204379 -0.405361 0.114602
--0.134698 -0.439837 0.0559975
-
--0.204379 -0.405361 0.114602
--0.132933 -0.43407 0.0901995
--0.196561 -0.389855 0.144678
-
--0.127848 -0.417467 0.120276
--0.196561 -0.389855 0.144678
--0.132933 -0.43407 0.0901995
-
--0.196561 -0.389855 0.144678
--0.127848 -0.417467 0.120276
--0.184584 -0.3661 0.167002
-
--0.120057 -0.392028 0.1426
--0.184584 -0.3661 0.167002
--0.127848 -0.417467 0.120276
-
--0.184584 -0.3661 0.167002
--0.120057 -0.392028 0.1426
--0.169891 -0.336959 0.17888
-
--0.110501 -0.360824 0.154478
--0.169891 -0.336959 0.17888
--0.120057 -0.392028 0.1426
-
--0.169891 -0.336959 0.17888
--0.110501 -0.360824 0.154478
--0.154256 -0.305948 0.17888
-
--0.100331 -0.327616 0.154478
--0.154256 -0.305948 0.17888
--0.110501 -0.360824 0.154478
-
--0.154256 -0.305948 0.17888
--0.100331 -0.327616 0.154478
--0.139563 -0.276807 0.167002
-
--0.0907751 -0.296412 0.1426
--0.139563 -0.276807 0.167002
--0.100331 -0.327616 0.154478
-
--0.139563 -0.276807 0.167002
--0.0907751 -0.296412 0.1426
--0.127586 -0.253051 0.144678
-
--0.0829847 -0.270973 0.120276
--0.127586 -0.253051 0.144678
--0.0907751 -0.296412 0.1426
-
--0.127586 -0.253051 0.144678
--0.0829847 -0.270973 0.120276
--0.119768 -0.237546 0.114602
-
--0.0778999 -0.25437 0.0901995
--0.119768 -0.237546 0.114602
--0.0829847 -0.270973 0.120276
-
--0.119768 -0.237546 0.114602
--0.0778999 -0.25437 0.0901995
--0.117053 -0.232161 0.0803997
-
--0.0761339 -0.248603 0.0559975
--0.117053 -0.232161 0.0803997
--0.0778999 -0.25437 0.0901995
-
--0.117053 -0.232161 0.0803997
--0.0761339 -0.248603 0.0559975
--0.119768 -0.237546 0.0461977
-
--0.0778999 -0.25437 0.0217955
--0.119768 -0.237546 0.0461977
--0.0761339 -0.248603 0.0559975
-
--0.119768 -0.237546 0.0461977
--0.0778999 -0.25437 0.0217955
--0.127586 -0.253051 0.016121
-
--0.0829847 -0.270973 -0.00828128
--0.127586 -0.253051 0.016121
--0.0778999 -0.25437 0.0217955
-
--0.127586 -0.253051 0.016121
--0.0829847 -0.270973 -0.00828128
--0.139563 -0.276807 -0.00620283
-
--0.0907751 -0.296412 -0.0306051
--0.139563 -0.276807 -0.00620283
--0.0829847 -0.270973 -0.00828128
-
--0.139563 -0.276807 -0.00620283
--0.0907751 -0.296412 -0.0306051
--0.154256 -0.305948 -0.0180811
-
--0.100331 -0.327616 -0.0424833
--0.154256 -0.305948 -0.0180811
--0.0907751 -0.296412 -0.0306051
-
--0.154256 -0.305948 -0.0180811
--0.100331 -0.327616 -0.0424833
--0.169891 -0.336959 -0.0180811
-
--0.110501 -0.360824 -0.0424833
--0.169891 -0.336959 -0.0180811
--0.100331 -0.327616 -0.0424833
-
--0.169891 -0.336959 -0.0180811
--0.110501 -0.360824 -0.0424833
--0.184584 -0.3661 -0.00620283
-
--0.120057 -0.392028 -0.0306051
--0.184584 -0.3661 -0.00620283
--0.110501 -0.360824 -0.0424833
-
--0.184584 -0.3661 -0.00620283
--0.120057 -0.392028 -0.0306051
--0.196561 -0.389855 0.016121
-
--0.127848 -0.417467 -0.00828128
--0.196561 -0.389855 0.016121
--0.120057 -0.392028 -0.0306051
-
--0.196561 -0.389855 0.016121
--0.127848 -0.417467 -0.00828128
--0.204379 -0.405361 0.0461977
-
--0.132933 -0.43407 0.0217955
--0.204379 -0.405361 0.0461977
--0.127848 -0.417467 -0.00828128
-
--0.204379 -0.405361 0.0461977
--0.132933 -0.43407 0.0217955
--0.207094 -0.410746 0.0803997
-
--0.134698 -0.439837 0.0559975
--0.207094 -0.410746 0.0803997
--0.132933 -0.43407 0.0217955
-
--0.134698 -0.439837 0.0559975
--0.0584282 -0.456274 0.0251978
--0.132933 -0.43407 0.0901995
-
--0.0576622 -0.450292 0.0593998
--0.132933 -0.43407 0.0901995
--0.0584282 -0.456274 0.0251978
-
--0.132933 -0.43407 0.0901995
--0.0576622 -0.450292 0.0593998
--0.127848 -0.417467 0.120276
-
--0.0554565 -0.433068 0.0894766
--0.127848 -0.417467 0.120276
--0.0576622 -0.450292 0.0593998
-
--0.127848 -0.417467 0.120276
--0.0554565 -0.433068 0.0894766
--0.120057 -0.392028 0.1426
-
--0.0520773 -0.406679 0.1118
--0.120057 -0.392028 0.1426
--0.0554565 -0.433068 0.0894766
-
--0.120057 -0.392028 0.1426
--0.0520773 -0.406679 0.1118
--0.110501 -0.360824 0.154478
-
--0.0479321 -0.374308 0.123679
--0.110501 -0.360824 0.154478
--0.0520773 -0.406679 0.1118
-
--0.110501 -0.360824 0.154478
--0.0479321 -0.374308 0.123679
--0.100331 -0.327616 0.154478
-
--0.0435208 -0.33986 0.123679
--0.100331 -0.327616 0.154478
--0.0479321 -0.374308 0.123679
-
--0.100331 -0.327616 0.154478
--0.0435208 -0.33986 0.123679
--0.0907751 -0.296412 0.1426
-
--0.0393755 -0.307489 0.1118
--0.0907751 -0.296412 0.1426
--0.0435208 -0.33986 0.123679
-
--0.0907751 -0.296412 0.1426
--0.0393755 -0.307489 0.1118
--0.0829847 -0.270973 0.120276
-
--0.0359963 -0.2811 0.0894766
--0.0829847 -0.270973 0.120276
--0.0393755 -0.307489 0.1118
-
--0.0829847 -0.270973 0.120276
--0.0359963 -0.2811 0.0894766
--0.0778999 -0.25437 0.0901995
-
--0.0337906 -0.263876 0.0593998
--0.0778999 -0.25437 0.0901995
--0.0359963 -0.2811 0.0894766
-
--0.0778999 -0.25437 0.0901995
--0.0337906 -0.263876 0.0593998
--0.0761339 -0.248603 0.0559975
-
--0.0330246 -0.257894 0.0251978
--0.0761339 -0.248603 0.0559975
--0.0337906 -0.263876 0.0593998
-
--0.0761339 -0.248603 0.0559975
--0.0330246 -0.257894 0.0251978
--0.0778999 -0.25437 0.0217955
-
--0.0337906 -0.263876 -0.00900421
--0.0778999 -0.25437 0.0217955
--0.0330246 -0.257894 0.0251978
-
--0.0778999 -0.25437 0.0217955
--0.0337906 -0.263876 -0.00900421
--0.0829847 -0.270973 -0.00828128
-
--0.0359963 -0.2811 -0.039081
--0.0829847 -0.270973 -0.00828128
--0.0337906 -0.263876 -0.00900421
-
--0.0829847 -0.270973 -0.00828128
--0.0359963 -0.2811 -0.039081
--0.0907751 -0.296412 -0.0306051
-
--0.0393755 -0.307489 -0.0614047
--0.0907751 -0.296412 -0.0306051
--0.0359963 -0.2811 -0.039081
-
--0.0907751 -0.296412 -0.0306051
--0.0393755 -0.307489 -0.0614047
--0.100331 -0.327616 -0.0424833
-
--0.0435208 -0.33986 -0.073283
--0.100331 -0.327616 -0.0424833
--0.0393755 -0.307489 -0.0614047
-
--0.100331 -0.327616 -0.0424833
--0.0435208 -0.33986 -0.073283
--0.110501 -0.360824 -0.0424833
-
--0.0479321 -0.374308 -0.073283
--0.110501 -0.360824 -0.0424833
--0.0435208 -0.33986 -0.073283
-
--0.110501 -0.360824 -0.0424833
--0.0479321 -0.374308 -0.073283
--0.120057 -0.392028 -0.0306051
-
--0.0520773 -0.406679 -0.0614047
--0.120057 -0.392028 -0.0306051
--0.0479321 -0.374308 -0.073283
-
--0.120057 -0.392028 -0.0306051
--0.0520773 -0.406679 -0.0614047
--0.127848 -0.417467 -0.00828128
-
--0.0554565 -0.433068 -0.039081
--0.127848 -0.417467 -0.00828128
--0.0520773 -0.406679 -0.0614047
-
--0.127848 -0.417467 -0.00828128
--0.0554565 -0.433068 -0.039081
--0.132933 -0.43407 0.0217955
-
--0.0576622 -0.450292 -0.00900421
--0.132933 -0.43407 0.0217955
--0.0554565 -0.433068 -0.039081
-
--0.132933 -0.43407 0.0217955
--0.0576622 -0.450292 -0.00900421
--0.134698 -0.439837 0.0559975
-
--0.0584282 -0.456274 0.0251978
--0.134698 -0.439837 0.0559975
--0.0576622 -0.450292 -0.00900421
-
--0.0584282 -0.456274 0.0251978
-0.019523 -0.459586 -0.00848059
--0.0576622 -0.450292 0.0593998
-
-0.019267 -0.45356 0.0257214
--0.0576622 -0.450292 0.0593998
-0.019523 -0.459586 -0.00848059
-
--0.0576622 -0.450292 0.0593998
-0.019267 -0.45356 0.0257214
--0.0554565 -0.433068 0.0894766
-
-0.01853 -0.436211 0.0557982
--0.0554565 -0.433068 0.0894766
-0.019267 -0.45356 0.0257214
-
--0.0554565 -0.433068 0.0894766
-0.01853 -0.436211 0.0557982
--0.0520773 -0.406679 0.1118
-
-0.0174009 -0.409631 0.0781219
--0.0520773 -0.406679 0.1118
-0.01853 -0.436211 0.0557982
-
--0.0520773 -0.406679 0.1118
-0.0174009 -0.409631 0.0781219
--0.0479321 -0.374308 0.123679
-
-0.0160158 -0.377025 0.0900002
--0.0479321 -0.374308 0.123679
-0.0174009 -0.409631 0.0781219
-
--0.0479321 -0.374308 0.123679
-0.0160158 -0.377025 0.0900002
--0.0435208 -0.33986 0.123679
-
-0.0145418 -0.342326 0.0900002
--0.0435208 -0.33986 0.123679
-0.0160158 -0.377025 0.0900002
-
--0.0435208 -0.33986 0.123679
-0.0145418 -0.342326 0.0900002
--0.0393755 -0.307489 0.1118
-
-0.0131568 -0.309721 0.0781219
--0.0393755 -0.307489 0.1118
-0.0145418 -0.342326 0.0900002
-
--0.0393755 -0.307489 0.1118
-0.0131568 -0.309721 0.0781219
--0.0359963 -0.2811 0.0894766
-
-0.0120276 -0.28314 0.0557982
--0.0359963 -0.2811 0.0894766
-0.0131568 -0.309721 0.0781219
-
--0.0359963 -0.2811 0.0894766
-0.0120276 -0.28314 0.0557982
--0.0337906 -0.263876 0.0593998
-
-0.0112907 -0.265791 0.0257214
--0.0337906 -0.263876 0.0593998
-0.0120276 -0.28314 0.0557982
-
--0.0337906 -0.263876 0.0593998
-0.0112907 -0.265791 0.0257214
--0.0330246 -0.257894 0.0251978
-
-0.0110347 -0.259766 -0.00848059
--0.0330246 -0.257894 0.0251978
-0.0112907 -0.265791 0.0257214
-
--0.0330246 -0.257894 0.0251978
-0.0110347 -0.259766 -0.00848059
--0.0337906 -0.263876 -0.00900421
-
-0.0112907 -0.265791 -0.0426826
--0.0337906 -0.263876 -0.00900421
-0.0110347 -0.259766 -0.00848059
-
--0.0337906 -0.263876 -0.00900421
-0.0112907 -0.265791 -0.0426826
--0.0359963 -0.2811 -0.039081
-
-0.0120276 -0.28314 -0.0727594
--0.0359963 -0.2811 -0.039081
-0.0112907 -0.265791 -0.0426826
-
--0.0359963 -0.2811 -0.039081
-0.0120276 -0.28314 -0.0727594
--0.0393755 -0.307489 -0.0614047
-
-0.0131568 -0.309721 -0.0950831
--0.0393755 -0.307489 -0.0614047
-0.0120276 -0.28314 -0.0727594
-
--0.0393755 -0.307489 -0.0614047
-0.0131568 -0.309721 -0.0950831
--0.0435208 -0.33986 -0.073283
-
-0.0145418 -0.342326 -0.106961
--0.0435208 -0.33986 -0.073283
-0.0131568 -0.309721 -0.0950831
-
--0.0435208 -0.33986 -0.073283
-0.0145418 -0.342326 -0.106961
--0.0479321 -0.374308 -0.073283
-
-0.0160158 -0.377025 -0.106961
--0.0479321 -0.374308 -0.073283
-0.0145418 -0.342326 -0.106961
-
--0.0479321 -0.374308 -0.073283
-0.0160158 -0.377025 -0.106961
--0.0520773 -0.406679 -0.0614047
-
-0.0174009 -0.409631 -0.0950831
--0.0520773 -0.406679 -0.0614047
-0.0160158 -0.377025 -0.106961
-
--0.0520773 -0.406679 -0.0614047
-0.0174009 -0.409631 -0.0950831
--0.0554565 -0.433068 -0.039081
-
-0.01853 -0.436211 -0.0727594
--0.0554565 -0.433068 -0.039081
-0.0174009 -0.409631 -0.0950831
-
--0.0554565 -0.433068 -0.039081
-0.01853 -0.436211 -0.0727594
--0.0576622 -0.450292 -0.00900421
-
-0.019267 -0.45356 -0.0426826
--0.0576622 -0.450292 -0.00900421
-0.01853 -0.436211 -0.0727594
-
--0.0576622 -0.450292 -0.00900421
-0.019267 -0.45356 -0.0426826
--0.0584282 -0.456274 0.0251978
-
-0.019523 -0.459586 -0.00848059
--0.0584282 -0.456274 0.0251978
-0.019267 -0.45356 -0.0426826
-
-0.019523 -0.459586 -0.00848059
-0.0969125 -0.449675 -0.0411901
-0.019267 -0.45356 0.0257214
-
-0.0956419 -0.44378 -0.00698811
-0.019267 -0.45356 0.0257214
-0.0969125 -0.449675 -0.0411901
-
-0.019267 -0.45356 0.0257214
-0.0956419 -0.44378 -0.00698811
-0.01853 -0.436211 0.0557982
-
-0.0919835 -0.426805 0.0230886
-0.01853 -0.436211 0.0557982
-0.0956419 -0.44378 -0.00698811
-
-0.01853 -0.436211 0.0557982
-0.0919835 -0.426805 0.0230886
-0.0174009 -0.409631 0.0781219
-
-0.0863785 -0.400798 0.0454124
-0.0174009 -0.409631 0.0781219
-0.0919835 -0.426805 0.0230886
-
-0.0174009 -0.409631 0.0781219
-0.0863785 -0.400798 0.0454124
-0.0160158 -0.377025 0.0900002
-
-0.0795029 -0.368895 0.0572907
-0.0160158 -0.377025 0.0900002
-0.0863785 -0.400798 0.0454124
-
-0.0160158 -0.377025 0.0900002
-0.0795029 -0.368895 0.0572907
-0.0145418 -0.342326 0.0900002
-
-0.0721861 -0.334945 0.0572907
-0.0145418 -0.342326 0.0900002
-0.0795029 -0.368895 0.0572907
-
-0.0145418 -0.342326 0.0900002
-0.0721861 -0.334945 0.0572907
-0.0131568 -0.309721 0.0781219
-
-0.0653106 -0.303042 0.0454124
-0.0131568 -0.309721 0.0781219
-0.0721861 -0.334945 0.0572907
-
-0.0131568 -0.309721 0.0781219
-0.0653106 -0.303042 0.0454124
-0.0120276 -0.28314 0.0557982
-
-0.0597056 -0.277035 0.0230886
-0.0120276 -0.28314 0.0557982
-0.0653106 -0.303042 0.0454124
-
-0.0120276 -0.28314 0.0557982
-0.0597056 -0.277035 0.0230886
-0.0112907 -0.265791 0.0257214
-
-0.0560472 -0.26006 -0.00698811
-0.0112907 -0.265791 0.0257214
-0.0597056 -0.277035 0.0230886
-
-0.0112907 -0.265791 0.0257214
-0.0560472 -0.26006 -0.00698811
-0.0110347 -0.259766 -0.00848059
-
-0.0547766 -0.254164 -0.0411901
-0.0110347 -0.259766 -0.00848059
-0.0560472 -0.26006 -0.00698811
-
-0.0110347 -0.259766 -0.00848059
-0.0547766 -0.254164 -0.0411901
-0.0112907 -0.265791 -0.0426826
-
-0.0560472 -0.26006 -0.0753921
-0.0112907 -0.265791 -0.0426826
-0.0547766 -0.254164 -0.0411901
-
-0.0112907 -0.265791 -0.0426826
-0.0560472 -0.26006 -0.0753921
-0.0120276 -0.28314 -0.0727594
-
-0.0597056 -0.277035 -0.105469
-0.0120276 -0.28314 -0.0727594
-0.0560472 -0.26006 -0.0753921
-
-0.0120276 -0.28314 -0.0727594
-0.0597056 -0.277035 -0.105469
-0.0131568 -0.309721 -0.0950831
-
-0.0653106 -0.303042 -0.127793
-0.0131568 -0.309721 -0.0950831
-0.0597056 -0.277035 -0.105469
-
-0.0131568 -0.309721 -0.0950831
-0.0653106 -0.303042 -0.127793
-0.0145418 -0.342326 -0.106961
-
-0.0721861 -0.334945 -0.139671
-0.0145418 -0.342326 -0.106961
-0.0653106 -0.303042 -0.127793
-
-0.0145418 -0.342326 -0.106961
-0.0721861 -0.334945 -0.139671
-0.0160158 -0.377025 -0.106961
-
-0.0795029 -0.368895 -0.139671
-0.0160158 -0.377025 -0.106961
-0.0721861 -0.334945 -0.139671
-
-0.0160158 -0.377025 -0.106961
-0.0795029 -0.368895 -0.139671
-0.0174009 -0.409631 -0.0950831
-
-0.0863785 -0.400798 -0.127793
-0.0174009 -0.409631 -0.0950831
-0.0795029 -0.368895 -0.139671
-
-0.0174009 -0.409631 -0.0950831
-0.0863785 -0.400798 -0.127793
-0.01853 -0.436211 -0.0727594
-
-0.0919835 -0.426805 -0.105469
-0.01853 -0.436211 -0.0727594
-0.0863785 -0.400798 -0.127793
-
-0.01853 -0.436211 -0.0727594
-0.0919835 -0.426805 -0.105469
-0.019267 -0.45356 -0.0426826
-
-0.0956419 -0.44378 -0.0753921
-0.019267 -0.45356 -0.0426826
-0.0919835 -0.426805 -0.105469
-
-0.019267 -0.45356 -0.0426826
-0.0956419 -0.44378 -0.0753921
-0.019523 -0.459586 -0.00848059
-
-0.0969125 -0.449675 -0.0411901
-0.019523 -0.459586 -0.00848059
-0.0956419 -0.44378 -0.0753921
-
-0.0969125 -0.449675 -0.0411901
-0.171514 -0.426829 -0.0691939
-0.0956419 -0.44378 -0.00698811
-
-0.169265 -0.421233 -0.0349919
-0.0956419 -0.44378 -0.00698811
-0.171514 -0.426829 -0.0691939
-
-0.0956419 -0.44378 -0.00698811
-0.169265 -0.421233 -0.0349919
-0.0919835 -0.426805 0.0230886
-
-0.162791 -0.40512 -0.00491513
-0.0919835 -0.426805 0.0230886
-0.169265 -0.421233 -0.0349919
-
-0.0919835 -0.426805 0.0230886
-0.162791 -0.40512 -0.00491513
-0.0863785 -0.400798 0.0454124
-
-0.152871 -0.380435 0.0174087
-0.0863785 -0.400798 0.0454124
-0.162791 -0.40512 -0.00491513
-
-0.0863785 -0.400798 0.0454124
-0.152871 -0.380435 0.0174087
-0.0795029 -0.368895 0.0572907
-
-0.140703 -0.350153 0.0292869
-0.0795029 -0.368895 0.0572907
-0.152871 -0.380435 0.0174087
-
-0.0795029 -0.368895 0.0572907
-0.140703 -0.350153 0.0292869
-0.0721861 -0.334945 0.0572907
-
-0.127754 -0.317927 0.0292869
-0.0721861 -0.334945 0.0572907
-0.140703 -0.350153 0.0292869
-
-0.0721861 -0.334945 0.0572907
-0.127754 -0.317927 0.0292869
-0.0653106 -0.303042 0.0454124
-
-0.115586 -0.287646 0.0174087
-0.0653106 -0.303042 0.0454124
-0.127754 -0.317927 0.0292869
-
-0.0653106 -0.303042 0.0454124
-0.115586 -0.287646 0.0174087
-0.0597056 -0.277035 0.0230886
-
-0.105666 -0.26296 -0.00491513
-0.0597056 -0.277035 0.0230886
-0.115586 -0.287646 0.0174087
-
-0.0597056 -0.277035 0.0230886
-0.105666 -0.26296 -0.00491513
-0.0560472 -0.26006 -0.00698811
-
-0.0991913 -0.246847 -0.0349919
-0.0560472 -0.26006 -0.00698811
-0.105666 -0.26296 -0.00491513
-
-0.0560472 -0.26006 -0.00698811
-0.0991913 -0.246847 -0.0349919
-0.0547766 -0.254164 -0.0411901
-
-0.0969427 -0.241251 -0.0691939
-0.0547766 -0.254164 -0.0411901
-0.0991913 -0.246847 -0.0349919
-
-0.0547766 -0.254164 -0.0411901
-0.0969427 -0.241251 -0.0691939
-0.0560472 -0.26006 -0.0753921
-
-0.0991913 -0.246847 -0.103396
-0.0560472 -0.26006 -0.0753921
-0.0969427 -0.241251 -0.0691939
-
-0.0560472 -0.26006 -0.0753921
-0.0991913 -0.246847 -0.103396
-0.0597056 -0.277035 -0.105469
-
-0.105666 -0.26296 -0.133473
-0.0597056 -0.277035 -0.105469
-0.0991913 -0.246847 -0.103396
-
-0.0597056 -0.277035 -0.105469
-0.105666 -0.26296 -0.133473
-0.0653106 -0.303042 -0.127793
-
-0.115586 -0.287646 -0.155796
-0.0653106 -0.303042 -0.127793
-0.105666 -0.26296 -0.133473
-
-0.0653106 -0.303042 -0.127793
-0.115586 -0.287646 -0.155796
-0.0721861 -0.334945 -0.139671
-
-0.127754 -0.317927 -0.167675
-0.0721861 -0.334945 -0.139671
-0.115586 -0.287646 -0.155796
-
-0.0721861 -0.334945 -0.139671
-0.127754 -0.317927 -0.167675
-0.0795029 -0.368895 -0.139671
-
-0.140703 -0.350153 -0.167675
-0.0795029 -0.368895 -0.139671
-0.127754 -0.317927 -0.167675
-
-0.0795029 -0.368895 -0.139671
-0.140703 -0.350153 -0.167675
-0.0863785 -0.400798 -0.127793
-
-0.152871 -0.380435 -0.155796
-0.0863785 -0.400798 -0.127793
-0.140703 -0.350153 -0.167675
-
-0.0863785 -0.400798 -0.127793
-0.152871 -0.380435 -0.155796
-0.0919835 -0.426805 -0.105469
-
-0.162791 -0.40512 -0.133473
-0.0919835 -0.426805 -0.105469
-0.152871 -0.380435 -0.155796
-
-0.0919835 -0.426805 -0.105469
-0.162791 -0.40512 -0.133473
-0.0956419 -0.44378 -0.0753921
-
-0.169265 -0.421233 -0.103396
-0.0956419 -0.44378 -0.0753921
-0.162791 -0.40512 -0.133473
-
-0.0956419 -0.44378 -0.0753921
-0.169265 -0.421233 -0.103396
-0.0969125 -0.449675 -0.0411901
-
-0.171514 -0.426829 -0.0691939
-0.0969125 -0.449675 -0.0411901
-0.169265 -0.421233 -0.103396
-
-0.171514 -0.426829 -0.0691939
-0.241181 -0.391703 -0.0892926
-0.169265 -0.421233 -0.0349919
-
-0.238019 -0.386568 -0.0550906
-0.169265 -0.421233 -0.0349919
-0.241181 -0.391703 -0.0892926
-
-0.169265 -0.421233 -0.0349919
-0.238019 -0.386568 -0.0550906
-0.162791 -0.40512 -0.00491513
-
-0.228915 -0.371781 -0.0250138
-0.162791 -0.40512 -0.00491513
-0.238019 -0.386568 -0.0550906
-
-0.162791 -0.40512 -0.00491513
-0.228915 -0.371781 -0.0250138
-0.152871 -0.380435 0.0174087
-
-0.214966 -0.349127 -0.00269005
-0.152871 -0.380435 0.0174087
-0.228915 -0.371781 -0.0250138
-
-0.152871 -0.380435 0.0174087
-0.214966 -0.349127 -0.00269005
-0.140703 -0.350153 0.0292869
-
-0.197855 -0.321337 0.00918819
-0.140703 -0.350153 0.0292869
-0.214966 -0.349127 -0.00269005
-
-0.140703 -0.350153 0.0292869
-0.197855 -0.321337 0.00918819
-0.127754 -0.317927 0.0292869
-
-0.179646 -0.291764 0.00918819
-0.127754 -0.317927 0.0292869
-0.197855 -0.321337 0.00918819
-
-0.127754 -0.317927 0.0292869
-0.179646 -0.291764 0.00918819
-0.115586 -0.287646 0.0174087
-
-0.162535 -0.263974 -0.00269005
-0.115586 -0.287646 0.0174087
-0.179646 -0.291764 0.00918819
-
-0.115586 -0.287646 0.0174087
-0.162535 -0.263974 -0.00269005
-0.105666 -0.26296 -0.00491513
-
-0.148586 -0.24132 -0.0250138
-0.105666 -0.26296 -0.00491513
-0.162535 -0.263974 -0.00269005
-
-0.105666 -0.26296 -0.00491513
-0.148586 -0.24132 -0.0250138
-0.0991913 -0.246847 -0.0349919
-
-0.139482 -0.226533 -0.0550906
-0.0991913 -0.246847 -0.0349919
-0.148586 -0.24132 -0.0250138
-
-0.0991913 -0.246847 -0.0349919
-0.139482 -0.226533 -0.0550906
-0.0969427 -0.241251 -0.0691939
-
-0.13632 -0.221398 -0.0892926
-0.0969427 -0.241251 -0.0691939
-0.139482 -0.226533 -0.0550906
-
-0.0969427 -0.241251 -0.0691939
-0.13632 -0.221398 -0.0892926
-0.0991913 -0.246847 -0.103396
-
-0.139482 -0.226533 -0.123495
-0.0991913 -0.246847 -0.103396
-0.13632 -0.221398 -0.0892926
-
-0.0991913 -0.246847 -0.103396
-0.139482 -0.226533 -0.123495
-0.105666 -0.26296 -0.133473
-
-0.148586 -0.24132 -0.153571
-0.105666 -0.26296 -0.133473
-0.139482 -0.226533 -0.123495
-
-0.105666 -0.26296 -0.133473
-0.148586 -0.24132 -0.153571
-0.115586 -0.287646 -0.155796
-
-0.162535 -0.263974 -0.175895
-0.115586 -0.287646 -0.155796
-0.148586 -0.24132 -0.153571
-
-0.115586 -0.287646 -0.155796
-0.162535 -0.263974 -0.175895
-0.127754 -0.317927 -0.167675
-
-0.179646 -0.291764 -0.187773
-0.127754 -0.317927 -0.167675
-0.162535 -0.263974 -0.175895
-
-0.127754 -0.317927 -0.167675
-0.179646 -0.291764 -0.187773
-0.140703 -0.350153 -0.167675
-
-0.197855 -0.321337 -0.187773
-0.140703 -0.350153 -0.167675
-0.179646 -0.291764 -0.187773
-
-0.140703 -0.350153 -0.167675
-0.197855 -0.321337 -0.187773
-0.152871 -0.380435 -0.155796
-
-0.214966 -0.349127 -0.175895
-0.152871 -0.380435 -0.155796
-0.197855 -0.321337 -0.187773
-
-0.152871 -0.380435 -0.155796
-0.214966 -0.349127 -0.175895
-0.162791 -0.40512 -0.133473
-
-0.228915 -0.371781 -0.153571
-0.162791 -0.40512 -0.133473
-0.214966 -0.349127 -0.175895
-
-0.162791 -0.40512 -0.133473
-0.228915 -0.371781 -0.153571
-0.169265 -0.421233 -0.103396
-
-0.238019 -0.386568 -0.123495
-0.169265 -0.421233 -0.103396
-0.228915 -0.371781 -0.153571
-
-0.169265 -0.421233 -0.103396
-0.238019 -0.386568 -0.123495
-0.171514 -0.426829 -0.0691939
-
-0.241181 -0.391703 -0.0892926
-0.171514 -0.426829 -0.0691939
-0.238019 -0.386568 -0.123495
-
-0.241181 -0.391703 -0.0892926
-0.30391 -0.345309 -0.09919
-0.238019 -0.386568 -0.0550906
-
-0.299926 -0.340782 -0.064988
-0.238019 -0.386568 -0.0550906
-0.30391 -0.345309 -0.09919
-
-0.238019 -0.386568 -0.0550906
-0.299926 -0.340782 -0.064988
-0.228915 -0.371781 -0.0250138
-
-0.288454 -0.327747 -0.0349113
-0.228915 -0.371781 -0.0250138
-0.299926 -0.340782 -0.064988
-
-0.228915 -0.371781 -0.0250138
-0.288454 -0.327747 -0.0349113
-0.214966 -0.349127 -0.00269005
-
-0.270877 -0.307776 -0.0125875
-0.214966 -0.349127 -0.00269005
-0.288454 -0.327747 -0.0349113
-
-0.214966 -0.349127 -0.00269005
-0.270877 -0.307776 -0.0125875
-0.197855 -0.321337 0.00918819
-
-0.249315 -0.283277 -0.000709268
-0.197855 -0.321337 0.00918819
-0.270877 -0.307776 -0.0125875
-
-0.197855 -0.321337 0.00918819
-0.249315 -0.283277 -0.000709268
-0.179646 -0.291764 0.00918819
-
-0.22637 -0.257207 -0.000709268
-0.179646 -0.291764 0.00918819
-0.249315 -0.283277 -0.000709268
-
-0.179646 -0.291764 0.00918819
-0.22637 -0.257207 -0.000709268
-0.162535 -0.263974 -0.00269005
-
-0.204809 -0.232708 -0.0125875
-0.162535 -0.263974 -0.00269005
-0.22637 -0.257207 -0.000709268
-
-0.162535 -0.263974 -0.00269005
-0.204809 -0.232708 -0.0125875
-0.148586 -0.24132 -0.0250138
-
-0.187232 -0.212737 -0.0349113
-0.148586 -0.24132 -0.0250138
-0.204809 -0.232708 -0.0125875
-
-0.148586 -0.24132 -0.0250138
-0.187232 -0.212737 -0.0349113
-0.139482 -0.226533 -0.0550906
-
-0.17576 -0.199702 -0.064988
-0.139482 -0.226533 -0.0550906
-0.187232 -0.212737 -0.0349113
-
-0.139482 -0.226533 -0.0550906
-0.17576 -0.199702 -0.064988
-0.13632 -0.221398 -0.0892926
-
-0.171775 -0.195175 -0.09919
-0.13632 -0.221398 -0.0892926
-0.17576 -0.199702 -0.064988
-
-0.13632 -0.221398 -0.0892926
-0.171775 -0.195175 -0.09919
-0.139482 -0.226533 -0.123495
-
-0.17576 -0.199702 -0.133392
-0.139482 -0.226533 -0.123495
-0.171775 -0.195175 -0.09919
-
-0.139482 -0.226533 -0.123495
-0.17576 -0.199702 -0.133392
-0.148586 -0.24132 -0.153571
-
-0.187232 -0.212737 -0.163469
-0.148586 -0.24132 -0.153571
-0.17576 -0.199702 -0.133392
-
-0.148586 -0.24132 -0.153571
-0.187232 -0.212737 -0.163469
-0.162535 -0.263974 -0.175895
-
-0.204809 -0.232708 -0.185793
-0.162535 -0.263974 -0.175895
-0.187232 -0.212737 -0.163469
-
-0.162535 -0.263974 -0.175895
-0.204809 -0.232708 -0.185793
-0.179646 -0.291764 -0.187773
-
-0.22637 -0.257207 -0.197671
-0.179646 -0.291764 -0.187773
-0.204809 -0.232708 -0.185793
-
-0.179646 -0.291764 -0.187773
-0.22637 -0.257207 -0.197671
-0.197855 -0.321337 -0.187773
-
-0.249315 -0.283277 -0.197671
-0.197855 -0.321337 -0.187773
-0.22637 -0.257207 -0.197671
-
-0.197855 -0.321337 -0.187773
-0.249315 -0.283277 -0.197671
-0.214966 -0.349127 -0.175895
-
-0.270877 -0.307776 -0.185793
-0.214966 -0.349127 -0.175895
-0.249315 -0.283277 -0.197671
-
-0.214966 -0.349127 -0.175895
-0.270877 -0.307776 -0.185793
-0.228915 -0.371781 -0.153571
-
-0.288454 -0.327747 -0.163469
-0.228915 -0.371781 -0.153571
-0.270877 -0.307776 -0.185793
-
-0.228915 -0.371781 -0.153571
-0.288454 -0.327747 -0.163469
-0.238019 -0.386568 -0.123495
-
-0.299926 -0.340782 -0.133392
-0.238019 -0.386568 -0.123495
-0.288454 -0.327747 -0.163469
-
-0.238019 -0.386568 -0.123495
-0.299926 -0.340782 -0.133392
-0.241181 -0.391703 -0.0892926
-
-0.30391 -0.345309 -0.09919
-0.241181 -0.391703 -0.0892926
-0.299926 -0.340782 -0.133392
-
-0.30391 -0.345309 -0.09919
-0.357896 -0.288981 -0.0977555
-0.299926 -0.340782 -0.064988
-
-0.353204 -0.285193 -0.0635535
-0.299926 -0.340782 -0.064988
-0.357896 -0.288981 -0.0977555
-
-0.299926 -0.340782 -0.064988
-0.353204 -0.285193 -0.0635535
-0.288454 -0.327747 -0.0349113
-
-0.339694 -0.274284 -0.0334768
-0.288454 -0.327747 -0.0349113
-0.353204 -0.285193 -0.0635535
-
-0.288454 -0.327747 -0.0349113
-0.339694 -0.274284 -0.0334768
-0.270877 -0.307776 -0.0125875
-
-0.318995 -0.25757 -0.011153
-0.270877 -0.307776 -0.0125875
-0.339694 -0.274284 -0.0334768
-
-0.270877 -0.307776 -0.0125875
-0.318995 -0.25757 -0.011153
-0.249315 -0.283277 -0.000709268
-
-0.293603 -0.237068 0.000725251
-0.249315 -0.283277 -0.000709268
-0.318995 -0.25757 -0.011153
-
-0.249315 -0.283277 -0.000709268
-0.293603 -0.237068 0.000725251
-0.22637 -0.257207 -0.000709268
-
-0.266582 -0.21525 0.000725251
-0.22637 -0.257207 -0.000709268
-0.293603 -0.237068 0.000725251
-
-0.22637 -0.257207 -0.000709268
-0.266582 -0.21525 0.000725251
-0.204809 -0.232708 -0.0125875
-
-0.241191 -0.194748 -0.011153
-0.204809 -0.232708 -0.0125875
-0.266582 -0.21525 0.000725251
-
-0.204809 -0.232708 -0.0125875
-0.241191 -0.194748 -0.011153
-0.187232 -0.212737 -0.0349113
-
-0.220492 -0.178035 -0.0334768
-0.187232 -0.212737 -0.0349113
-0.241191 -0.194748 -0.011153
-
-0.187232 -0.212737 -0.0349113
-0.220492 -0.178035 -0.0334768
-0.17576 -0.199702 -0.064988
-
-0.206981 -0.167126 -0.0635535
-0.17576 -0.199702 -0.064988
-0.220492 -0.178035 -0.0334768
-
-0.17576 -0.199702 -0.064988
-0.206981 -0.167126 -0.0635535
-0.171775 -0.195175 -0.09919
-
-0.202289 -0.163337 -0.0977555
-0.171775 -0.195175 -0.09919
-0.206981 -0.167126 -0.0635535
-
-0.171775 -0.195175 -0.09919
-0.202289 -0.163337 -0.0977555
-0.17576 -0.199702 -0.133392
-
-0.206981 -0.167126 -0.131958
-0.17576 -0.199702 -0.133392
-0.202289 -0.163337 -0.0977555
-
-0.17576 -0.199702 -0.133392
-0.206981 -0.167126 -0.131958
-0.187232 -0.212737 -0.163469
-
-0.220492 -0.178035 -0.162034
-0.187232 -0.212737 -0.163469
-0.206981 -0.167126 -0.131958
-
-0.187232 -0.212737 -0.163469
-0.220492 -0.178035 -0.162034
-0.204809 -0.232708 -0.185793
-
-0.241191 -0.194748 -0.184358
-0.204809 -0.232708 -0.185793
-0.220492 -0.178035 -0.162034
-
-0.204809 -0.232708 -0.185793
-0.241191 -0.194748 -0.184358
-0.22637 -0.257207 -0.197671
-
-0.266582 -0.21525 -0.196236
-0.22637 -0.257207 -0.197671
-0.241191 -0.194748 -0.184358
-
-0.22637 -0.257207 -0.197671
-0.266582 -0.21525 -0.196236
-0.249315 -0.283277 -0.197671
-
-0.293603 -0.237068 -0.196236
-0.249315 -0.283277 -0.197671
-0.266582 -0.21525 -0.196236
-
-0.249315 -0.283277 -0.197671
-0.293603 -0.237068 -0.196236
-0.270877 -0.307776 -0.185793
-
-0.318995 -0.25757 -0.184358
-0.270877 -0.307776 -0.185793
-0.293603 -0.237068 -0.196236
-
-0.270877 -0.307776 -0.185793
-0.318995 -0.25757 -0.184358
-0.288454 -0.327747 -0.163469
-
-0.339694 -0.274284 -0.162034
-0.288454 -0.327747 -0.163469
-0.318995 -0.25757 -0.184358
-
-0.288454 -0.327747 -0.163469
-0.339694 -0.274284 -0.162034
-0.299926 -0.340782 -0.133392
-
-0.353204 -0.285193 -0.131958
-0.299926 -0.340782 -0.133392
-0.339694 -0.274284 -0.162034
-
-0.299926 -0.340782 -0.133392
-0.353204 -0.285193 -0.131958
-0.30391 -0.345309 -0.09919
-
-0.357896 -0.288981 -0.0977555
-0.30391 -0.345309 -0.09919
-0.353204 -0.285193 -0.131958
-
-0.357896 -0.288981 -0.0977555
-0.401586 -0.22434 -0.0851529
-0.353204 -0.285193 -0.0635535
-
-0.396322 -0.221399 -0.0509509
-0.353204 -0.285193 -0.0635535
-0.401586 -0.22434 -0.0851529
-
-0.353204 -0.285193 -0.0635535
-0.396322 -0.221399 -0.0509509
-0.339694 -0.274284 -0.0334768
-
-0.381162 -0.21293 -0.0208742
-0.339694 -0.274284 -0.0334768
-0.396322 -0.221399 -0.0509509
-
-0.339694 -0.274284 -0.0334768
-0.381162 -0.21293 -0.0208742
-0.318995 -0.25757 -0.011153
-
-0.357936 -0.199955 0.00144963
-0.318995 -0.25757 -0.011153
-0.381162 -0.21293 -0.0208742
-
-0.318995 -0.25757 -0.011153
-0.357936 -0.199955 0.00144963
-0.293603 -0.237068 0.000725251
-
-0.329445 -0.184039 0.0133279
-0.293603 -0.237068 0.000725251
-0.357936 -0.199955 0.00144963
-
-0.293603 -0.237068 0.000725251
-0.329445 -0.184039 0.0133279
-0.266582 -0.21525 0.000725251
-
-0.299125 -0.167101 0.0133279
-0.266582 -0.21525 0.000725251
-0.329445 -0.184039 0.0133279
-
-0.266582 -0.21525 0.000725251
-0.299125 -0.167101 0.0133279
-0.241191 -0.194748 -0.011153
-
-0.270634 -0.151185 0.00144963
-0.241191 -0.194748 -0.011153
-0.299125 -0.167101 0.0133279
-
-0.241191 -0.194748 -0.011153
-0.270634 -0.151185 0.00144963
-0.220492 -0.178035 -0.0334768
-
-0.247408 -0.138211 -0.0208742
-0.220492 -0.178035 -0.0334768
-0.270634 -0.151185 0.00144963
-
-0.220492 -0.178035 -0.0334768
-0.247408 -0.138211 -0.0208742
-0.206981 -0.167126 -0.0635535
-
-0.232249 -0.129742 -0.0509509
-0.206981 -0.167126 -0.0635535
-0.247408 -0.138211 -0.0208742
-
-0.206981 -0.167126 -0.0635535
-0.232249 -0.129742 -0.0509509
-0.202289 -0.163337 -0.0977555
-
-0.226984 -0.126801 -0.0851529
-0.202289 -0.163337 -0.0977555
-0.232249 -0.129742 -0.0509509
-
-0.202289 -0.163337 -0.0977555
-0.226984 -0.126801 -0.0851529
-0.206981 -0.167126 -0.131958
-
-0.232249 -0.129742 -0.119355
-0.206981 -0.167126 -0.131958
-0.226984 -0.126801 -0.0851529
-
-0.206981 -0.167126 -0.131958
-0.232249 -0.129742 -0.119355
-0.220492 -0.178035 -0.162034
-
-0.247408 -0.138211 -0.149432
-0.220492 -0.178035 -0.162034
-0.232249 -0.129742 -0.119355
-
-0.220492 -0.178035 -0.162034
-0.247408 -0.138211 -0.149432
-0.241191 -0.194748 -0.184358
-
-0.270634 -0.151185 -0.171755
-0.241191 -0.194748 -0.184358
-0.247408 -0.138211 -0.149432
-
-0.241191 -0.194748 -0.184358
-0.270634 -0.151185 -0.171755
-0.266582 -0.21525 -0.196236
-
-0.299125 -0.167101 -0.183634
-0.266582 -0.21525 -0.196236
-0.270634 -0.151185 -0.171755
-
-0.266582 -0.21525 -0.196236
-0.299125 -0.167101 -0.183634
-0.293603 -0.237068 -0.196236
-
-0.329445 -0.184039 -0.183634
-0.293603 -0.237068 -0.196236
-0.299125 -0.167101 -0.183634
-
-0.293603 -0.237068 -0.196236
-0.329445 -0.184039 -0.183634
-0.318995 -0.25757 -0.184358
-
-0.357936 -0.199955 -0.171755
-0.318995 -0.25757 -0.184358
-0.329445 -0.184039 -0.183634
-
-0.318995 -0.25757 -0.184358
-0.357936 -0.199955 -0.171755
-0.339694 -0.274284 -0.162034
-
-0.381162 -0.21293 -0.149432
-0.339694 -0.274284 -0.162034
-0.357936 -0.199955 -0.171755
-
-0.339694 -0.274284 -0.162034
-0.381162 -0.21293 -0.149432
-0.353204 -0.285193 -0.131958
-
-0.396322 -0.221399 -0.119355
-0.353204 -0.285193 -0.131958
-0.381162 -0.21293 -0.149432
-
-0.353204 -0.285193 -0.131958
-0.396322 -0.221399 -0.119355
-0.357896 -0.288981 -0.0977555
-
-0.401586 -0.22434 -0.0851529
-0.357896 -0.288981 -0.0977555
-0.396322 -0.221399 -0.119355
-
-0.401586 -0.22434 -0.0851529
-0.433724 -0.153244 -0.062822
-0.396322 -0.221399 -0.0509509
-
-0.428037 -0.151235 -0.02862
-0.396322 -0.221399 -0.0509509
-0.433724 -0.153244 -0.062822
-
-0.396322 -0.221399 -0.0509509
-0.428037 -0.151235 -0.02862
-0.381162 -0.21293 -0.0208742
-
-0.411664 -0.14545 0.00145676
-0.381162 -0.21293 -0.0208742
-0.428037 -0.151235 -0.02862
-
-0.381162 -0.21293 -0.0208742
-0.411664 -0.14545 0.00145676
-0.357936 -0.199955 0.00144963
-
-0.38658 -0.136587 0.0237805
-0.357936 -0.199955 0.00144963
-0.411664 -0.14545 0.00145676
-
-0.357936 -0.199955 0.00144963
-0.38658 -0.136587 0.0237805
-0.329445 -0.184039 0.0133279
-
-0.355809 -0.125715 0.0356588
-0.329445 -0.184039 0.0133279
-0.38658 -0.136587 0.0237805
-
-0.329445 -0.184039 0.0133279
-0.355809 -0.125715 0.0356588
-0.299125 -0.167101 0.0133279
-
-0.323063 -0.114145 0.0356588
-0.299125 -0.167101 0.0133279
-0.355809 -0.125715 0.0356588
-
-0.299125 -0.167101 0.0133279
-0.323063 -0.114145 0.0356588
-0.270634 -0.151185 0.00144963
-
-0.292292 -0.103273 0.0237805
-0.270634 -0.151185 0.00144963
-0.323063 -0.114145 0.0356588
-
-0.270634 -0.151185 0.00144963
-0.292292 -0.103273 0.0237805
-0.247408 -0.138211 -0.0208742
-
-0.267207 -0.0944103 0.00145676
-0.247408 -0.138211 -0.0208742
-0.292292 -0.103273 0.0237805
-
-0.247408 -0.138211 -0.0208742
-0.267207 -0.0944103 0.00145676
-0.232249 -0.129742 -0.0509509
-
-0.250834 -0.0886254 -0.02862
-0.232249 -0.129742 -0.0509509
-0.267207 -0.0944103 0.00145676
-
-0.232249 -0.129742 -0.0509509
-0.250834 -0.0886254 -0.02862
-0.226984 -0.126801 -0.0851529
-
-0.245148 -0.0866163 -0.062822
-0.226984 -0.126801 -0.0851529
-0.250834 -0.0886254 -0.02862
-
-0.226984 -0.126801 -0.0851529
-0.245148 -0.0866163 -0.062822
-0.232249 -0.129742 -0.119355
-
-0.250834 -0.0886254 -0.097024
-0.232249 -0.129742 -0.119355
-0.245148 -0.0866163 -0.062822
-
-0.232249 -0.129742 -0.119355
-0.250834 -0.0886254 -0.097024
-0.247408 -0.138211 -0.149432
-
-0.267207 -0.0944103 -0.127101
-0.247408 -0.138211 -0.149432
-0.250834 -0.0886254 -0.097024
-
-0.247408 -0.138211 -0.149432
-0.267207 -0.0944103 -0.127101
-0.270634 -0.151185 -0.171755
-
-0.292292 -0.103273 -0.149425
-0.270634 -0.151185 -0.171755
-0.267207 -0.0944103 -0.127101
-
-0.270634 -0.151185 -0.171755
-0.292292 -0.103273 -0.149425
-0.299125 -0.167101 -0.183634
-
-0.323063 -0.114145 -0.161303
-0.299125 -0.167101 -0.183634
-0.292292 -0.103273 -0.149425
-
-0.299125 -0.167101 -0.183634
-0.323063 -0.114145 -0.161303
-0.329445 -0.184039 -0.183634
-
-0.355809 -0.125715 -0.161303
-0.329445 -0.184039 -0.183634
-0.323063 -0.114145 -0.161303
-
-0.329445 -0.184039 -0.183634
-0.355809 -0.125715 -0.161303
-0.357936 -0.199955 -0.171755
-
-0.38658 -0.136587 -0.149425
-0.357936 -0.199955 -0.171755
-0.355809 -0.125715 -0.161303
-
-0.357936 -0.199955 -0.171755
-0.38658 -0.136587 -0.149425
-0.381162 -0.21293 -0.149432
-
-0.411664 -0.14545 -0.127101
-0.381162 -0.21293 -0.149432
-0.38658 -0.136587 -0.149425
-
-0.381162 -0.21293 -0.149432
-0.411664 -0.14545 -0.127101
-0.396322 -0.221399 -0.119355
-
-0.428037 -0.151235 -0.097024
-0.396322 -0.221399 -0.119355
-0.411664 -0.14545 -0.127101
-
-0.396322 -0.221399 -0.119355
-0.428037 -0.151235 -0.097024
-0.401586 -0.22434 -0.0851529
-
-0.433724 -0.153244 -0.062822
-0.401586 -0.22434 -0.0851529
-0.428037 -0.151235 -0.097024
-
-0.433724 -0.153244 -0.062822
-0.453383 -0.0777404 -0.033314
-0.428037 -0.151235 -0.02862
-
-0.447439 -0.0767212 0.000888035
-0.428037 -0.151235 -0.02862
-0.453383 -0.0777404 -0.033314
-
-0.428037 -0.151235 -0.02862
-0.447439 -0.0767212 0.000888035
-0.411664 -0.14545 0.00145676
-
-0.430324 -0.0737865 0.0309648
-0.411664 -0.14545 0.00145676
-0.447439 -0.0767212 0.000888035
-
-0.411664 -0.14545 0.00145676
-0.430324 -0.0737865 0.0309648
-0.38658 -0.136587 0.0237805
-
-0.404103 -0.0692903 0.0532886
-0.38658 -0.136587 0.0237805
-0.430324 -0.0737865 0.0309648
-
-0.38658 -0.136587 0.0237805
-0.404103 -0.0692903 0.0532886
-0.355809 -0.125715 0.0356588
-
-0.371937 -0.063775 0.0651668
-0.355809 -0.125715 0.0356588
-0.404103 -0.0692903 0.0532886
-
-0.355809 -0.125715 0.0356588
-0.371937 -0.063775 0.0651668
-0.323063 -0.114145 0.0356588
-
-0.337707 -0.0579056 0.0651668
-0.323063 -0.114145 0.0356588
-0.371937 -0.063775 0.0651668
-
-0.323063 -0.114145 0.0356588
-0.337707 -0.0579056 0.0651668
-0.292292 -0.103273 0.0237805
-
-0.305541 -0.0523903 0.0532886
-0.292292 -0.103273 0.0237805
-0.337707 -0.0579056 0.0651668
-
-0.292292 -0.103273 0.0237805
-0.305541 -0.0523903 0.0532886
-0.267207 -0.0944103 0.00145676
-
-0.279319 -0.0478941 0.0309648
-0.267207 -0.0944103 0.00145676
-0.305541 -0.0523903 0.0532886
-
-0.267207 -0.0944103 0.00145676
-0.279319 -0.0478941 0.0309648
-0.250834 -0.0886254 -0.02862
-
-0.262204 -0.0449594 0.000888035
-0.250834 -0.0886254 -0.02862
-0.279319 -0.0478941 0.0309648
-
-0.250834 -0.0886254 -0.02862
-0.262204 -0.0449594 0.000888035
-0.245148 -0.0866163 -0.062822
-
-0.25626 -0.0439402 -0.033314
-0.245148 -0.0866163 -0.062822
-0.262204 -0.0449594 0.000888035
-
-0.245148 -0.0866163 -0.062822
-0.25626 -0.0439402 -0.033314
-0.250834 -0.0886254 -0.097024
-
-0.262204 -0.0449594 -0.067516
-0.250834 -0.0886254 -0.097024
-0.25626 -0.0439402 -0.033314
-
-0.250834 -0.0886254 -0.097024
-0.262204 -0.0449594 -0.067516
-0.267207 -0.0944103 -0.127101
-
-0.279319 -0.0478941 -0.0975927
-0.267207 -0.0944103 -0.127101
-0.262204 -0.0449594 -0.067516
-
-0.267207 -0.0944103 -0.127101
-0.279319 -0.0478941 -0.0975927
-0.292292 -0.103273 -0.149425
-
-0.305541 -0.0523903 -0.119917
-0.292292 -0.103273 -0.149425
-0.279319 -0.0478941 -0.0975927
-
-0.292292 -0.103273 -0.149425
-0.305541 -0.0523903 -0.119917
-0.323063 -0.114145 -0.161303
-
-0.337707 -0.0579056 -0.131795
-0.323063 -0.114145 -0.161303
-0.305541 -0.0523903 -0.119917
-
-0.323063 -0.114145 -0.161303
-0.337707 -0.0579056 -0.131795
-0.355809 -0.125715 -0.161303
-
-0.371937 -0.063775 -0.131795
-0.355809 -0.125715 -0.161303
-0.337707 -0.0579056 -0.131795
-
-0.355809 -0.125715 -0.161303
-0.371937 -0.063775 -0.131795
-0.38658 -0.136587 -0.149425
-
-0.404103 -0.0692903 -0.119917
-0.38658 -0.136587 -0.149425
-0.371937 -0.063775 -0.131795
-
-0.38658 -0.136587 -0.149425
-0.404103 -0.0692903 -0.119917
-0.411664 -0.14545 -0.127101
-
-0.430324 -0.0737865 -0.0975927
-0.411664 -0.14545 -0.127101
-0.404103 -0.0692903 -0.119917
-
-0.411664 -0.14545 -0.127101
-0.430324 -0.0737865 -0.0975927
-0.428037 -0.151235 -0.097024
-
-0.447439 -0.0767212 -0.067516
-0.428037 -0.151235 -0.097024
-0.430324 -0.0737865 -0.0975927
-
-0.428037 -0.151235 -0.097024
-0.447439 -0.0767212 -0.067516
-0.433724 -0.153244 -0.062822
-
-0.453383 -0.0777404 -0.033314
-0.433724 -0.153244 -0.062822
-0.447439 -0.0767212 -0.067516
-
-0.453383 -0.0777404 -0.033314
-0.46 0 0
-0.447439 -0.0767212 0.000888035
-
-0.453969 0 0.034202
-0.447439 -0.0767212 0.000888035
-0.46 0 0
-
-0.447439 -0.0767212 0.000888035
-0.453969 0 0.034202
-0.430324 -0.0737865 0.0309648
-
-0.436604 0 0.0642788
-0.430324 -0.0737865 0.0309648
-0.453969 0 0.034202
-
-0.430324 -0.0737865 0.0309648
-0.436604 0 0.0642788
-0.404103 -0.0692903 0.0532886
-
-0.41 0 0.0866025
-0.404103 -0.0692903 0.0532886
-0.436604 0 0.0642788
-
-0.404103 -0.0692903 0.0532886
-0.41 0 0.0866025
-0.371937 -0.063775 0.0651668
-
-0.377365 0 0.0984808
-0.371937 -0.063775 0.0651668
-0.41 0 0.0866025
-
-0.371937 -0.063775 0.0651668
-0.377365 0 0.0984808
-0.337707 -0.0579056 0.0651668
-
-0.342635 0 0.0984808
-0.337707 -0.0579056 0.0651668
-0.377365 0 0.0984808
-
-0.337707 -0.0579056 0.0651668
-0.342635 0 0.0984808
-0.305541 -0.0523903 0.0532886
-
-0.31 0 0.0866025
-0.305541 -0.0523903 0.0532886
-0.342635 0 0.0984808
-
-0.305541 -0.0523903 0.0532886
-0.31 0 0.0866025
-0.279319 -0.0478941 0.0309648
-
-0.283396 0 0.0642788
-0.279319 -0.0478941 0.0309648
-0.31 0 0.0866025
-
-0.279319 -0.0478941 0.0309648
-0.283396 0 0.0642788
-0.262204 -0.0449594 0.000888035
-
-0.266031 0 0.034202
-0.262204 -0.0449594 0.000888035
-0.283396 0 0.0642788
-
-0.262204 -0.0449594 0.000888035
-0.266031 0 0.034202
-0.25626 -0.0439402 -0.033314
-
-0.26 0 0
-0.25626 -0.0439402 -0.033314
-0.266031 0 0.034202
-
-0.25626 -0.0439402 -0.033314
-0.26 0 0
-0.262204 -0.0449594 -0.067516
-
-0.266031 0 -0.034202
-0.262204 -0.0449594 -0.067516
-0.26 0 0
-
-0.262204 -0.0449594 -0.067516
-0.266031 0 -0.034202
-0.279319 -0.0478941 -0.0975927
-
-0.283396 0 -0.0642788
-0.279319 -0.0478941 -0.0975927
-0.266031 0 -0.034202
-
-0.279319 -0.0478941 -0.0975927
-0.283396 0 -0.0642788
-0.305541 -0.0523903 -0.119917
-
-0.31 0 -0.0866025
-0.305541 -0.0523903 -0.119917
-0.283396 0 -0.0642788
-
-0.305541 -0.0523903 -0.119917
-0.31 0 -0.0866025
-0.337707 -0.0579056 -0.131795
-
-0.342635 0 -0.0984808
-0.337707 -0.0579056 -0.131795
-0.31 0 -0.0866025
-
-0.337707 -0.0579056 -0.131795
-0.342635 0 -0.0984808
-0.371937 -0.063775 -0.131795
-
-0.377365 0 -0.0984808
-0.371937 -0.063775 -0.131795
-0.342635 0 -0.0984808
-
-0.371937 -0.063775 -0.131795
-0.377365 0 -0.0984808
-0.404103 -0.0692903 -0.119917
-
-0.41 0 -0.0866025
-0.404103 -0.0692903 -0.119917
-0.377365 0 -0.0984808
-
-0.404103 -0.0692903 -0.119917
-0.41 0 -0.0866025
-0.430324 -0.0737865 -0.0975927
-
-0.436604 0 -0.0642788
-0.430324 -0.0737865 -0.0975927
-0.41 0 -0.0866025
-
-0.430324 -0.0737865 -0.0975927
-0.436604 0 -0.0642788
-0.447439 -0.0767212 -0.067516
-
-0.453969 0 -0.034202
-0.447439 -0.0767212 -0.067516
-0.436604 0 -0.0642788
-
-0.447439 -0.0767212 -0.067516
-0.453969 0 -0.034202
-0.453383 -0.0777404 -0.033314
-
-0.46 0 0
-0.453383 -0.0777404 -0.033314
-0.453969 0 -0.034202
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus2.path b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus2.path
deleted file mode 100644
index 54752acc..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus2.path
+++ /dev/null
@@ -1,11991 +0,0 @@
-2398
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
-1 0 0
-0 1 0
-0 0 1
-0 0 0
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus2.tris b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus2.tris
deleted file mode 100644
index 115e4e2d..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/falling/torus2.tris
+++ /dev/null
@@ -1,12961 +0,0 @@
-3240
-1 0 0
-1.05291 0.110666 0
-0.992183 0 0.0668786
-
-1.04357 0.109683 0.0804188
-0.992183 0 0.0668786
-1.05291 0.110666 0
-
-0.992183 0 0.0668786
-1.04357 0.109683 0.0804188
-0.969153 0 0.130152
-
-1.01602 0.106789 0.156502
-0.969153 0 0.130152
-1.04357 0.109683 0.0804188
-
-0.969153 0 0.130152
-1.01602 0.106789 0.156502
-0.932153 0 0.186408
-
-0.971777 0.102138 0.224149
-0.932153 0 0.186408
-1.01602 0.106789 0.156502
-
-0.932153 0 0.186408
-0.971777 0.102138 0.224149
-0.883176 0 0.232616
-
-0.913207 0.0959819 0.279711
-0.883176 0 0.232616
-0.971777 0.102138 0.224149
-
-0.883176 0 0.232616
-0.913207 0.0959819 0.279711
-0.824863 0 0.266283
-
-0.843472 0.0886525 0.320194
-0.824863 0 0.266283
-0.913207 0.0959819 0.279711
-
-0.824863 0 0.266283
-0.843472 0.0886525 0.320194
-0.760358 0 0.285594
-
-0.766332 0.0805448 0.343415
-0.760358 0 0.285594
-0.843472 0.0886525 0.320194
-
-0.760358 0 0.285594
-0.766332 0.0805448 0.343415
-0.693138 0 0.289509
-
-0.685946 0.0720958 0.348123
-0.693138 0 0.289509
-0.766332 0.0805448 0.343415
-
-0.693138 0 0.289509
-0.685946 0.0720958 0.348123
-0.626827 0 0.277817
-
-0.606646 0.0637611 0.334064
-0.626827 0 0.277817
-0.685946 0.0720958 0.348123
-
-0.626827 0 0.277817
-0.606646 0.0637611 0.334064
-0.565 0 0.251147
-
-0.532709 0.05599 0.301995
-0.565 0 0.251147
-0.606646 0.0637611 0.334064
-
-0.565 0 0.251147
-0.532709 0.05599 0.301995
-0.51099 0 0.210938
-
-0.46812 0.0492014 0.253645
-0.51099 0 0.210938
-0.532709 0.05599 0.301995
-
-0.51099 0 0.210938
-0.46812 0.0492014 0.253645
-0.467709 0 0.159358
-
-0.416361 0.0437613 0.191621
-0.467709 0 0.159358
-0.46812 0.0492014 0.253645
-
-0.467709 0 0.159358
-0.416361 0.0437613 0.191621
-0.437489 0 0.0991858
-
-0.380222 0.039963 0.119267
-0.437489 0 0.0991858
-0.416361 0.0437613 0.191621
-
-0.437489 0 0.0991858
-0.380222 0.039963 0.119267
-0.421961 0 0.0336669
-
-0.361653 0.0380112 0.0404831
-0.421961 0 0.0336669
-0.380222 0.039963 0.119267
-
-0.421961 0 0.0336669
-0.361653 0.0380112 0.0404831
-0.421961 0 -0.0336669
-
-0.361653 0.0380112 -0.0404831
-0.421961 0 -0.0336669
-0.361653 0.0380112 0.0404831
-
-0.421961 0 -0.0336669
-0.361653 0.0380112 -0.0404831
-0.437489 0 -0.0991858
-
-0.380222 0.039963 -0.119267
-0.437489 0 -0.0991858
-0.361653 0.0380112 -0.0404831
-
-0.437489 0 -0.0991858
-0.380222 0.039963 -0.119267
-0.467709 0 -0.159358
-
-0.416361 0.0437613 -0.191621
-0.467709 0 -0.159358
-0.380222 0.039963 -0.119267
-
-0.467709 0 -0.159358
-0.416361 0.0437613 -0.191621
-0.51099 0 -0.210938
-
-0.46812 0.0492014 -0.253645
-0.51099 0 -0.210938
-0.416361 0.0437613 -0.191621
-
-0.51099 0 -0.210938
-0.46812 0.0492014 -0.253645
-0.565 0 -0.251147
-
-0.532709 0.05599 -0.301995
-0.565 0 -0.251147
-0.46812 0.0492014 -0.253645
-
-0.565 0 -0.251147
-0.532709 0.05599 -0.301995
-0.626827 0 -0.277817
-
-0.606646 0.0637611 -0.334064
-0.626827 0 -0.277817
-0.532709 0.05599 -0.301995
-
-0.626827 0 -0.277817
-0.606646 0.0637611 -0.334064
-0.693138 0 -0.289509
-
-0.685946 0.0720958 -0.348123
-0.693138 0 -0.289509
-0.606646 0.0637611 -0.334064
-
-0.693138 0 -0.289509
-0.685946 0.0720958 -0.348123
-0.760358 0 -0.285594
-
-0.766332 0.0805448 -0.343415
-0.760358 0 -0.285594
-0.685946 0.0720958 -0.348123
-
-0.760358 0 -0.285594
-0.766332 0.0805448 -0.343415
-0.824863 0 -0.266283
-
-0.843472 0.0886525 -0.320194
-0.824863 0 -0.266283
-0.766332 0.0805448 -0.343415
-
-0.824863 0 -0.266283
-0.843472 0.0886525 -0.320194
-0.883176 0 -0.232616
-
-0.913207 0.0959819 -0.279711
-0.883176 0 -0.232616
-0.843472 0.0886525 -0.320194
-
-0.883176 0 -0.232616
-0.913207 0.0959819 -0.279711
-0.932153 0 -0.186408
-
-0.971777 0.102138 -0.224149
-0.932153 0 -0.186408
-0.913207 0.0959819 -0.279711
-
-0.932153 0 -0.186408
-0.971777 0.102138 -0.224149
-0.969153 0 -0.130152
-
-1.01602 0.106789 -0.156502
-0.969153 0 -0.130152
-0.971777 0.102138 -0.224149
-
-0.969153 0 -0.130152
-1.01602 0.106789 -0.156502
-0.992183 0 -0.0668786
-
-1.04357 0.109683 -0.0804188
-0.992183 0 -0.0668786
-1.01602 0.106789 -0.156502
-
-0.992183 0 -0.0668786
-1.04357 0.109683 -0.0804188
-1 0 0
-
-1.05291 0.110666 0
-1 0 0
-1.04357 0.109683 -0.0804188
-
-1.05291 0.110666 0
-1.08739 0.231131 0
-1.04357 0.109683 0.0804188
-
-1.0768 0.22888 0.0926336
-1.04357 0.109683 0.0804188
-1.08739 0.231131 0
-
-1.04357 0.109683 0.0804188
-1.0768 0.22888 0.0926336
-1.01602 0.106789 0.156502
-
-1.04559 0.222248 0.180273
-1.01602 0.106789 0.156502
-1.0768 0.22888 0.0926336
-
-1.01602 0.106789 0.156502
-1.04559 0.222248 0.180273
-0.971777 0.102138 0.224149
-
-0.995465 0.211593 0.258194
-0.971777 0.102138 0.224149
-1.04559 0.222248 0.180273
-
-0.971777 0.102138 0.224149
-0.995465 0.211593 0.258194
-0.913207 0.0959819 0.279711
-
-0.929109 0.197488 0.322196
-0.913207 0.0959819 0.279711
-0.995465 0.211593 0.258194
-
-0.913207 0.0959819 0.279711
-0.929109 0.197488 0.322196
-0.843472 0.0886525 0.320194
-
-0.850105 0.180695 0.368828
-0.843472 0.0886525 0.320194
-0.929109 0.197488 0.322196
-
-0.843472 0.0886525 0.320194
-0.850105 0.180695 0.368828
-0.766332 0.0805448 0.343415
-
-0.762711 0.162119 0.395577
-0.766332 0.0805448 0.343415
-0.850105 0.180695 0.368828
-
-0.766332 0.0805448 0.343415
-0.762711 0.162119 0.395577
-0.685946 0.0720958 0.348123
-
-0.67164 0.142761 0.401
-0.685946 0.0720958 0.348123
-0.762711 0.162119 0.395577
-
-0.685946 0.0720958 0.348123
-0.67164 0.142761 0.401
-0.606646 0.0637611 0.334064
-
-0.581799 0.123665 0.384804
-0.606646 0.0637611 0.334064
-0.67164 0.142761 0.401
-
-0.606646 0.0637611 0.334064
-0.581799 0.123665 0.384804
-0.532709 0.05599 0.301995
-
-0.498034 0.10586 0.347864
-0.532709 0.05599 0.301995
-0.581799 0.123665 0.384804
-
-0.532709 0.05599 0.301995
-0.498034 0.10586 0.347864
-0.46812 0.0492014 0.253645
-
-0.424859 0.0903067 0.292171
-0.46812 0.0492014 0.253645
-0.498034 0.10586 0.347864
-
-0.46812 0.0492014 0.253645
-0.424859 0.0903067 0.292171
-0.416361 0.0437613 0.191621
-
-0.36622 0.0778425 0.220726
-0.416361 0.0437613 0.191621
-0.424859 0.0903067 0.292171
-
-0.416361 0.0437613 0.191621
-0.36622 0.0778425 0.220726
-0.380222 0.039963 0.119267
-
-0.325278 0.06914 0.137382
-0.380222 0.039963 0.119267
-0.36622 0.0778425 0.220726
-
-0.380222 0.039963 0.119267
-0.325278 0.06914 0.137382
-0.361653 0.0380112 0.0404831
-
-0.30424 0.0646682 0.0466321
-0.361653 0.0380112 0.0404831
-0.325278 0.06914 0.137382
-
-0.361653 0.0380112 0.0404831
-0.30424 0.0646682 0.0466321
-0.361653 0.0380112 -0.0404831
-
-0.30424 0.0646682 -0.0466321
-0.361653 0.0380112 -0.0404831
-0.30424 0.0646682 0.0466321
-
-0.361653 0.0380112 -0.0404831
-0.30424 0.0646682 -0.0466321
-0.380222 0.039963 -0.119267
-
-0.325278 0.06914 -0.137382
-0.380222 0.039963 -0.119267
-0.30424 0.0646682 -0.0466321
-
-0.380222 0.039963 -0.119267
-0.325278 0.06914 -0.137382
-0.416361 0.0437613 -0.191621
-
-0.36622 0.0778425 -0.220726
-0.416361 0.0437613 -0.191621
-0.325278 0.06914 -0.137382
-
-0.416361 0.0437613 -0.191621
-0.36622 0.0778425 -0.220726
-0.46812 0.0492014 -0.253645
-
-0.424859 0.0903067 -0.292171
-0.46812 0.0492014 -0.253645
-0.36622 0.0778425 -0.220726
-
-0.46812 0.0492014 -0.253645
-0.424859 0.0903067 -0.292171
-0.532709 0.05599 -0.301995
-
-0.498034 0.10586 -0.347864
-0.532709 0.05599 -0.301995
-0.424859 0.0903067 -0.292171
-
-0.532709 0.05599 -0.301995
-0.498034 0.10586 -0.347864
-0.606646 0.0637611 -0.334064
-
-0.581799 0.123665 -0.384804
-0.606646 0.0637611 -0.334064
-0.498034 0.10586 -0.347864
-
-0.606646 0.0637611 -0.334064
-0.581799 0.123665 -0.384804
-0.685946 0.0720958 -0.348123
-
-0.67164 0.142761 -0.401
-0.685946 0.0720958 -0.348123
-0.581799 0.123665 -0.384804
-
-0.685946 0.0720958 -0.348123
-0.67164 0.142761 -0.401
-0.766332 0.0805448 -0.343415
-
-0.762711 0.162119 -0.395577
-0.766332 0.0805448 -0.343415
-0.67164 0.142761 -0.401
-
-0.766332 0.0805448 -0.343415
-0.762711 0.162119 -0.395577
-0.843472 0.0886525 -0.320194
-
-0.850105 0.180695 -0.368828
-0.843472 0.0886525 -0.320194
-0.762711 0.162119 -0.395577
-
-0.843472 0.0886525 -0.320194
-0.850105 0.180695 -0.368828
-0.913207 0.0959819 -0.279711
-
-0.929109 0.197488 -0.322196
-0.913207 0.0959819 -0.279711
-0.850105 0.180695 -0.368828
-
-0.913207 0.0959819 -0.279711
-0.929109 0.197488 -0.322196
-0.971777 0.102138 -0.224149
-
-0.995465 0.211593 -0.258194
-0.971777 0.102138 -0.224149
-0.929109 0.197488 -0.322196
-
-0.971777 0.102138 -0.224149
-0.995465 0.211593 -0.258194
-1.01602 0.106789 -0.156502
-
-1.04559 0.222248 -0.180273
-1.01602 0.106789 -0.156502
-0.995465 0.211593 -0.258194
-
-1.01602 0.106789 -0.156502
-1.04559 0.222248 -0.180273
-1.04357 0.109683 -0.0804188
-
-1.0768 0.22888 -0.0926336
-1.04357 0.109683 -0.0804188
-1.04559 0.222248 -0.180273
-
-1.04357 0.109683 -0.0804188
-1.0768 0.22888 -0.0926336
-1.05291 0.110666 0
-
-1.08739 0.231131 0
-1.05291 0.110666 0
-1.0768 0.22888 -0.0926336
-
-1.08739 0.231131 0
-1.09725 0.356517 0
-1.0768 0.22888 0.0926336
-
-1.08587 0.352821 0.102327
-1.0768 0.22888 0.0926336
-1.09725 0.356517 0
-
-1.0768 0.22888 0.0926336
-1.08587 0.352821 0.102327
-1.04559 0.222248 0.180273
-
-1.05236 0.341932 0.199138
-1.04559 0.222248 0.180273
-1.08587 0.352821 0.102327
-
-1.04559 0.222248 0.180273
-1.05236 0.341932 0.199138
-0.995465 0.211593 0.258194
-
-0.998518 0.324438 0.285213
-0.995465 0.211593 0.258194
-1.05236 0.341932 0.199138
-
-0.995465 0.211593 0.258194
-0.998518 0.324438 0.285213
-0.929109 0.197488 0.322196
-
-0.927249 0.301281 0.355913
-0.929109 0.197488 0.322196
-0.998518 0.324438 0.285213
-
-0.929109 0.197488 0.322196
-0.927249 0.301281 0.355913
-0.850105 0.180695 0.368828
-
-0.842394 0.273711 0.407425
-0.850105 0.180695 0.368828
-0.927249 0.301281 0.355913
-
-0.850105 0.180695 0.368828
-0.842394 0.273711 0.407425
-0.762711 0.162119 0.395577
-
-0.748529 0.243212 0.436972
-0.762711 0.162119 0.395577
-0.842394 0.273711 0.407425
-
-0.762711 0.162119 0.395577
-0.748529 0.243212 0.436972
-0.67164 0.142761 0.401
-
-0.650713 0.21143 0.442963
-0.67164 0.142761 0.401
-0.748529 0.243212 0.436972
-
-0.67164 0.142761 0.401
-0.650713 0.21143 0.442963
-0.581799 0.123665 0.384804
-
-0.55422 0.180077 0.425073
-0.581799 0.123665 0.384804
-0.650713 0.21143 0.442963
-
-0.581799 0.123665 0.384804
-0.55422 0.180077 0.425073
-0.498034 0.10586 0.347864
-
-0.464252 0.150845 0.384267
-0.498034 0.10586 0.347864
-0.55422 0.180077 0.425073
-
-0.498034 0.10586 0.347864
-0.464252 0.150845 0.384267
-0.424859 0.0903067 0.292171
-
-0.385659 0.125308 0.322745
-0.424859 0.0903067 0.292171
-0.464252 0.150845 0.384267
-
-0.424859 0.0903067 0.292171
-0.385659 0.125308 0.322745
-0.36622 0.0778425 0.220726
-
-0.322677 0.104844 0.243824
-0.36622 0.0778425 0.220726
-0.385659 0.125308 0.322745
-
-0.36622 0.0778425 0.220726
-0.322677 0.104844 0.243824
-0.325278 0.06914 0.137382
-
-0.278703 0.0905562 0.151759
-0.325278 0.06914 0.137382
-0.322677 0.104844 0.243824
-
-0.325278 0.06914 0.137382
-0.278703 0.0905562 0.151759
-0.30424 0.0646682 0.0466321
-
-0.256107 0.0832143 0.051512
-0.30424 0.0646682 0.0466321
-0.278703 0.0905562 0.151759
-
-0.30424 0.0646682 0.0466321
-0.256107 0.0832143 0.051512
-0.30424 0.0646682 -0.0466321
-
-0.256107 0.0832143 -0.051512
-0.30424 0.0646682 -0.0466321
-0.256107 0.0832143 0.051512
-
-0.30424 0.0646682 -0.0466321
-0.256107 0.0832143 -0.051512
-0.325278 0.06914 -0.137382
-
-0.278703 0.0905562 -0.151759
-0.325278 0.06914 -0.137382
-0.256107 0.0832143 -0.051512
-
-0.325278 0.06914 -0.137382
-0.278703 0.0905562 -0.151759
-0.36622 0.0778425 -0.220726
-
-0.322677 0.104844 -0.243824
-0.36622 0.0778425 -0.220726
-0.278703 0.0905562 -0.151759
-
-0.36622 0.0778425 -0.220726
-0.322677 0.104844 -0.243824
-0.424859 0.0903067 -0.292171
-
-0.385659 0.125308 -0.322745
-0.424859 0.0903067 -0.292171
-0.322677 0.104844 -0.243824
-
-0.424859 0.0903067 -0.292171
-0.385659 0.125308 -0.322745
-0.498034 0.10586 -0.347864
-
-0.464252 0.150845 -0.384267
-0.498034 0.10586 -0.347864
-0.385659 0.125308 -0.322745
-
-0.498034 0.10586 -0.347864
-0.464252 0.150845 -0.384267
-0.581799 0.123665 -0.384804
-
-0.55422 0.180077 -0.425073
-0.581799 0.123665 -0.384804
-0.464252 0.150845 -0.384267
-
-0.581799 0.123665 -0.384804
-0.55422 0.180077 -0.425073
-0.67164 0.142761 -0.401
-
-0.650713 0.21143 -0.442963
-0.67164 0.142761 -0.401
-0.55422 0.180077 -0.425073
-
-0.67164 0.142761 -0.401
-0.650713 0.21143 -0.442963
-0.762711 0.162119 -0.395577
-
-0.748529 0.243212 -0.436972
-0.762711 0.162119 -0.395577
-0.650713 0.21143 -0.442963
-
-0.762711 0.162119 -0.395577
-0.748529 0.243212 -0.436972
-0.850105 0.180695 -0.368828
-
-0.842394 0.273711 -0.407425
-0.850105 0.180695 -0.368828
-0.748529 0.243212 -0.436972
-
-0.850105 0.180695 -0.368828
-0.842394 0.273711 -0.407425
-0.929109 0.197488 -0.322196
-
-0.927249 0.301281 -0.355913
-0.929109 0.197488 -0.322196
-0.842394 0.273711 -0.407425
-
-0.929109 0.197488 -0.322196
-0.927249 0.301281 -0.355913
-0.995465 0.211593 -0.258194
-
-0.998518 0.324438 -0.285213
-0.995465 0.211593 -0.258194
-0.927249 0.301281 -0.355913
-
-0.995465 0.211593 -0.258194
-0.998518 0.324438 -0.285213
-1.04559 0.222248 -0.180273
-
-1.05236 0.341932 -0.199138
-1.04559 0.222248 -0.180273
-0.998518 0.324438 -0.285213
-
-1.04559 0.222248 -0.180273
-1.05236 0.341932 -0.199138
-1.0768 0.22888 -0.0926336
-
-1.08587 0.352821 -0.102327
-1.0768 0.22888 -0.0926336
-1.05236 0.341932 -0.199138
-
-1.0768 0.22888 -0.0926336
-1.08587 0.352821 -0.102327
-1.08739 0.231131 0
-
-1.09725 0.356517 0
-1.08739 0.231131 0
-1.08587 0.352821 -0.102327
-
-1.09725 0.356517 0
-1.07862 0.480234 0
-1.08587 0.352821 0.102327
-
-1.06703 0.475074 0.108551
-1.08587 0.352821 0.102327
-1.07862 0.480234 0
-
-1.08587 0.352821 0.102327
-1.06703 0.475074 0.108551
-1.05236 0.341932 0.199138
-
-1.03289 0.45987 0.21125
-1.05236 0.341932 0.199138
-1.06703 0.475074 0.108551
-
-1.05236 0.341932 0.199138
-1.03289 0.45987 0.21125
-0.998518 0.324438 0.285213
-
-0.978021 0.435443 0.302561
-0.998518 0.324438 0.285213
-1.03289 0.45987 0.21125
-
-0.998518 0.324438 0.285213
-0.978021 0.435443 0.302561
-0.927249 0.301281 0.355913
-
-0.905399 0.40311 0.37756
-0.927249 0.301281 0.355913
-0.978021 0.435443 0.302561
-
-0.927249 0.301281 0.355913
-0.905399 0.40311 0.37756
-0.842394 0.273711 0.407425
-
-0.818934 0.364613 0.432205
-0.842394 0.273711 0.407425
-0.905399 0.40311 0.37756
-
-0.842394 0.273711 0.407425
-0.818934 0.364613 0.432205
-0.748529 0.243212 0.436972
-
-0.723287 0.322028 0.46355
-0.748529 0.243212 0.436972
-0.818934 0.364613 0.432205
-
-0.748529 0.243212 0.436972
-0.723287 0.322028 0.46355
-0.650713 0.21143 0.442963
-
-0.623615 0.277651 0.469904
-0.650713 0.21143 0.442963
-0.723287 0.322028 0.46355
-
-0.650713 0.21143 0.442963
-0.623615 0.277651 0.469904
-0.55422 0.180077 0.425073
-
-0.52529 0.233874 0.450926
-0.55422 0.180077 0.425073
-0.623615 0.277651 0.469904
-
-0.55422 0.180077 0.425073
-0.52529 0.233874 0.450926
-0.464252 0.150845 0.384267
-
-0.433614 0.193057 0.407639
-0.464252 0.150845 0.384267
-0.52529 0.233874 0.450926
-
-0.464252 0.150845 0.384267
-0.433614 0.193057 0.407639
-0.385659 0.125308 0.322745
-
-0.353529 0.157401 0.342375
-0.385659 0.125308 0.322745
-0.433614 0.193057 0.407639
-
-0.385659 0.125308 0.322745
-0.353529 0.157401 0.342375
-0.322677 0.104844 0.243824
-
-0.289352 0.128828 0.258654
-0.322677 0.104844 0.243824
-0.353529 0.157401 0.342375
-
-0.322677 0.104844 0.243824
-0.289352 0.128828 0.258654
-0.278703 0.0905562 0.151759
-
-0.244543 0.108878 0.160989
-0.278703 0.0905562 0.151759
-0.289352 0.128828 0.258654
-
-0.278703 0.0905562 0.151759
-0.244543 0.108878 0.160989
-0.256107 0.0832143 0.051512
-
-0.221518 0.0986263 0.054645
-0.256107 0.0832143 0.051512
-0.244543 0.108878 0.160989
-
-0.256107 0.0832143 0.051512
-0.221518 0.0986263 0.054645
-0.256107 0.0832143 -0.051512
-
-0.221518 0.0986263 -0.054645
-0.256107 0.0832143 -0.051512
-0.221518 0.0986263 0.054645
-
-0.256107 0.0832143 -0.051512
-0.221518 0.0986263 -0.054645
-0.278703 0.0905562 -0.151759
-
-0.244543 0.108878 -0.160989
-0.278703 0.0905562 -0.151759
-0.221518 0.0986263 -0.054645
-
-0.278703 0.0905562 -0.151759
-0.244543 0.108878 -0.160989
-0.322677 0.104844 -0.243824
-
-0.289352 0.128828 -0.258654
-0.322677 0.104844 -0.243824
-0.244543 0.108878 -0.160989
-
-0.322677 0.104844 -0.243824
-0.289352 0.128828 -0.258654
-0.385659 0.125308 -0.322745
-
-0.353529 0.157401 -0.342375
-0.385659 0.125308 -0.322745
-0.289352 0.128828 -0.258654
-
-0.385659 0.125308 -0.322745
-0.353529 0.157401 -0.342375
-0.464252 0.150845 -0.384267
-
-0.433614 0.193057 -0.407639
-0.464252 0.150845 -0.384267
-0.353529 0.157401 -0.342375
-
-0.464252 0.150845 -0.384267
-0.433614 0.193057 -0.407639
-0.55422 0.180077 -0.425073
-
-0.52529 0.233874 -0.450926
-0.55422 0.180077 -0.425073
-0.433614 0.193057 -0.407639
-
-0.55422 0.180077 -0.425073
-0.52529 0.233874 -0.450926
-0.650713 0.21143 -0.442963
-
-0.623615 0.277651 -0.469904
-0.650713 0.21143 -0.442963
-0.52529 0.233874 -0.450926
-
-0.650713 0.21143 -0.442963
-0.623615 0.277651 -0.469904
-0.748529 0.243212 -0.436972
-
-0.723287 0.322028 -0.46355
-0.748529 0.243212 -0.436972
-0.623615 0.277651 -0.469904
-
-0.748529 0.243212 -0.436972
-0.723287 0.322028 -0.46355
-0.842394 0.273711 -0.407425
-
-0.818934 0.364613 -0.432205
-0.842394 0.273711 -0.407425
-0.723287 0.322028 -0.46355
-
-0.842394 0.273711 -0.407425
-0.818934 0.364613 -0.432205
-0.927249 0.301281 -0.355913
-
-0.905399 0.40311 -0.37756
-0.927249 0.301281 -0.355913
-0.818934 0.364613 -0.432205
-
-0.927249 0.301281 -0.355913
-0.905399 0.40311 -0.37756
-0.998518 0.324438 -0.285213
-
-0.978021 0.435443 -0.302561
-0.998518 0.324438 -0.285213
-0.905399 0.40311 -0.37756
-
-0.998518 0.324438 -0.285213
-0.978021 0.435443 -0.302561
-1.05236 0.341932 -0.199138
-
-1.03289 0.45987 -0.21125
-1.05236 0.341932 -0.199138
-0.978021 0.435443 -0.302561
-
-1.05236 0.341932 -0.199138
-1.03289 0.45987 -0.21125
-1.08587 0.352821 -0.102327
-
-1.06703 0.475074 -0.108551
-1.08587 0.352821 -0.102327
-1.03289 0.45987 -0.21125
-
-1.08587 0.352821 -0.102327
-1.06703 0.475074 -0.108551
-1.09725 0.356517 0
-
-1.07862 0.480234 0
-1.09725 0.356517 0
-1.06703 0.475074 -0.108551
-
-1.07862 0.480234 0
-1.03057 0.595 0
-1.06703 0.475074 0.108551
-
-1.01937 0.588531 0.110696
-1.06703 0.475074 0.108551
-1.03057 0.595 0
-
-1.06703 0.475074 0.108551
-1.01937 0.588531 0.110696
-1.03289 0.45987 0.21125
-
-0.986354 0.569472 0.215424
-1.03289 0.45987 0.21125
-1.01937 0.588531 0.110696
-
-1.03289 0.45987 0.21125
-0.986354 0.569472 0.215424
-0.978021 0.435443 0.302561
-
-0.933317 0.538851 0.308538
-0.978021 0.435443 0.302561
-0.986354 0.569472 0.215424
-
-0.978021 0.435443 0.302561
-0.933317 0.538851 0.308538
-0.905399 0.40311 0.37756
-
-0.863112 0.498318 0.385019
-0.905399 0.40311 0.37756
-0.933317 0.538851 0.308538
-
-0.905399 0.40311 0.37756
-0.863112 0.498318 0.385019
-0.818934 0.364613 0.432205
-
-0.779525 0.450059 0.440744
-0.818934 0.364613 0.432205
-0.863112 0.498318 0.385019
-
-0.818934 0.364613 0.432205
-0.779525 0.450059 0.440744
-0.723287 0.322028 0.46355
-
-0.687062 0.396676 0.472708
-0.723287 0.322028 0.46355
-0.779525 0.450059 0.440744
-
-0.723287 0.322028 0.46355
-0.687062 0.396676 0.472708
-0.623615 0.277651 0.469904
-
-0.590708 0.341045 0.479188
-0.623615 0.277651 0.469904
-0.687062 0.396676 0.472708
-
-0.623615 0.277651 0.469904
-0.590708 0.341045 0.479188
-0.52529 0.233874 0.450926
-
-0.495656 0.286167 0.459835
-0.52529 0.233874 0.450926
-0.590708 0.341045 0.479188
-
-0.52529 0.233874 0.450926
-0.495656 0.286167 0.459835
-0.433614 0.193057 0.407639
-
-0.407032 0.235 0.415692
-0.433614 0.193057 0.407639
-0.495656 0.286167 0.459835
-
-0.433614 0.193057 0.407639
-0.407032 0.235 0.415692
-0.353529 0.157401 0.342375
-
-0.329613 0.190302 0.349139
-0.353529 0.157401 0.342375
-0.407032 0.235 0.415692
-
-0.353529 0.157401 0.342375
-0.329613 0.190302 0.349139
-0.289352 0.128828 0.258654
-
-0.267572 0.154483 0.263764
-0.289352 0.128828 0.258654
-0.329613 0.190302 0.349139
-
-0.289352 0.128828 0.258654
-0.267572 0.154483 0.263764
-0.244543 0.108878 0.160989
-
-0.224255 0.129474 0.16417
-0.244543 0.108878 0.160989
-0.267572 0.154483 0.263764
-
-0.244543 0.108878 0.160989
-0.224255 0.129474 0.16417
-0.221518 0.0986263 0.054645
-
-0.201997 0.116623 0.0557246
-0.221518 0.0986263 0.054645
-0.224255 0.129474 0.16417
-
-0.221518 0.0986263 0.054645
-0.201997 0.116623 0.0557246
-0.221518 0.0986263 -0.054645
-
-0.201997 0.116623 -0.0557246
-0.221518 0.0986263 -0.054645
-0.201997 0.116623 0.0557246
-
-0.221518 0.0986263 -0.054645
-0.201997 0.116623 -0.0557246
-0.244543 0.108878 -0.160989
-
-0.224255 0.129474 -0.16417
-0.244543 0.108878 -0.160989
-0.201997 0.116623 -0.0557246
-
-0.244543 0.108878 -0.160989
-0.224255 0.129474 -0.16417
-0.289352 0.128828 -0.258654
-
-0.267572 0.154483 -0.263764
-0.289352 0.128828 -0.258654
-0.224255 0.129474 -0.16417
-
-0.289352 0.128828 -0.258654
-0.267572 0.154483 -0.263764
-0.353529 0.157401 -0.342375
-
-0.329613 0.190302 -0.349139
-0.353529 0.157401 -0.342375
-0.267572 0.154483 -0.263764
-
-0.353529 0.157401 -0.342375
-0.329613 0.190302 -0.349139
-0.433614 0.193057 -0.407639
-
-0.407032 0.235 -0.415692
-0.433614 0.193057 -0.407639
-0.329613 0.190302 -0.349139
-
-0.433614 0.193057 -0.407639
-0.407032 0.235 -0.415692
-0.52529 0.233874 -0.450926
-
-0.495656 0.286167 -0.459835
-0.52529 0.233874 -0.450926
-0.407032 0.235 -0.415692
-
-0.52529 0.233874 -0.450926
-0.495656 0.286167 -0.459835
-0.623615 0.277651 -0.469904
-
-0.590708 0.341045 -0.479188
-0.623615 0.277651 -0.469904
-0.495656 0.286167 -0.459835
-
-0.623615 0.277651 -0.469904
-0.590708 0.341045 -0.479188
-0.723287 0.322028 -0.46355
-
-0.687062 0.396676 -0.472708
-0.723287 0.322028 -0.46355
-0.590708 0.341045 -0.479188
-
-0.723287 0.322028 -0.46355
-0.687062 0.396676 -0.472708
-0.818934 0.364613 -0.432205
-
-0.779525 0.450059 -0.440744
-0.818934 0.364613 -0.432205
-0.687062 0.396676 -0.472708
-
-0.818934 0.364613 -0.432205
-0.779525 0.450059 -0.440744
-0.905399 0.40311 -0.37756
-
-0.863112 0.498318 -0.385019
-0.905399 0.40311 -0.37756
-0.779525 0.450059 -0.440744
-
-0.905399 0.40311 -0.37756
-0.863112 0.498318 -0.385019
-0.978021 0.435443 -0.302561
-
-0.933317 0.538851 -0.308538
-0.978021 0.435443 -0.302561
-0.863112 0.498318 -0.385019
-
-0.978021 0.435443 -0.302561
-0.933317 0.538851 -0.308538
-1.03289 0.45987 -0.21125
-
-0.986354 0.569472 -0.215424
-1.03289 0.45987 -0.21125
-0.933317 0.538851 -0.308538
-
-1.03289 0.45987 -0.21125
-0.986354 0.569472 -0.215424
-1.06703 0.475074 -0.108551
-
-1.01937 0.588531 -0.110696
-1.06703 0.475074 -0.108551
-0.986354 0.569472 -0.215424
-
-1.06703 0.475074 -0.108551
-1.01937 0.588531 -0.110696
-1.07862 0.480234 0
-
-1.03057 0.595 0
-1.07862 0.480234 0
-1.01937 0.588531 -0.110696
-
-1.03057 0.595 0
-0.955207 0.693998 0
-1.01937 0.588531 0.110696
-
-0.944942 0.686541 0.108551
-1.01937 0.588531 0.110696
-0.955207 0.693998 0
-
-1.01937 0.588531 0.110696
-0.944942 0.686541 0.108551
-0.986354 0.569472 0.215424
-
-0.914702 0.66457 0.21125
-0.986354 0.569472 0.215424
-0.944942 0.686541 0.108551
-
-0.986354 0.569472 0.215424
-0.914702 0.66457 0.21125
-0.933317 0.538851 0.308538
-
-0.866116 0.62927 0.302561
-0.933317 0.538851 0.308538
-0.914702 0.66457 0.21125
-
-0.933317 0.538851 0.308538
-0.866116 0.62927 0.302561
-0.863112 0.498318 0.385019
-
-0.801803 0.582544 0.37756
-0.863112 0.498318 0.385019
-0.866116 0.62927 0.302561
-
-0.863112 0.498318 0.385019
-0.801803 0.582544 0.37756
-0.779525 0.450059 0.440744
-
-0.725231 0.526911 0.432205
-0.779525 0.450059 0.440744
-0.801803 0.582544 0.37756
-
-0.779525 0.450059 0.440744
-0.725231 0.526911 0.432205
-0.687062 0.396676 0.472708
-
-0.640528 0.465371 0.46355
-0.687062 0.396676 0.472708
-0.725231 0.526911 0.432205
-
-0.687062 0.396676 0.472708
-0.640528 0.465371 0.46355
-0.590708 0.341045 0.479188
-
-0.55226 0.401241 0.469904
-0.590708 0.341045 0.479188
-0.640528 0.465371 0.46355
-
-0.590708 0.341045 0.479188
-0.55226 0.401241 0.469904
-0.495656 0.286167 0.459835
-
-0.465186 0.337977 0.450926
-0.495656 0.286167 0.459835
-0.55226 0.401241 0.469904
-
-0.495656 0.286167 0.459835
-0.465186 0.337977 0.450926
-0.407032 0.235 0.415692
-
-0.384 0.278992 0.407639
-0.407032 0.235 0.415692
-0.465186 0.337977 0.450926
-
-0.407032 0.235 0.415692
-0.384 0.278992 0.407639
-0.329613 0.190302 0.349139
-
-0.313078 0.227464 0.342375
-0.329613 0.190302 0.349139
-0.384 0.278992 0.407639
-
-0.329613 0.190302 0.349139
-0.313078 0.227464 0.342375
-0.267572 0.154483 0.263764
-
-0.256244 0.186172 0.258654
-0.267572 0.154483 0.263764
-0.313078 0.227464 0.342375
-
-0.267572 0.154483 0.263764
-0.256244 0.186172 0.258654
-0.224255 0.129474 0.16417
-
-0.216563 0.157342 0.160989
-0.224255 0.129474 0.16417
-0.256244 0.186172 0.258654
-
-0.224255 0.129474 0.16417
-0.216563 0.157342 0.160989
-0.201997 0.116623 0.0557246
-
-0.196172 0.142527 0.054645
-0.201997 0.116623 0.0557246
-0.216563 0.157342 0.160989
-
-0.201997 0.116623 0.0557246
-0.196172 0.142527 0.054645
-0.201997 0.116623 -0.0557246
-
-0.196172 0.142527 -0.054645
-0.201997 0.116623 -0.0557246
-0.196172 0.142527 0.054645
-
-0.201997 0.116623 -0.0557246
-0.196172 0.142527 -0.054645
-0.224255 0.129474 -0.16417
-
-0.216563 0.157342 -0.160989
-0.224255 0.129474 -0.16417
-0.196172 0.142527 -0.054645
-
-0.224255 0.129474 -0.16417
-0.216563 0.157342 -0.160989
-0.267572 0.154483 -0.263764
-
-0.256244 0.186172 -0.258654
-0.267572 0.154483 -0.263764
-0.216563 0.157342 -0.160989
-
-0.267572 0.154483 -0.263764
-0.256244 0.186172 -0.258654
-0.329613 0.190302 -0.349139
-
-0.313078 0.227464 -0.342375
-0.329613 0.190302 -0.349139
-0.256244 0.186172 -0.258654
-
-0.329613 0.190302 -0.349139
-0.313078 0.227464 -0.342375
-0.407032 0.235 -0.415692
-
-0.384 0.278992 -0.407639
-0.407032 0.235 -0.415692
-0.313078 0.227464 -0.342375
-
-0.407032 0.235 -0.415692
-0.384 0.278992 -0.407639
-0.495656 0.286167 -0.459835
-
-0.465186 0.337977 -0.450926
-0.495656 0.286167 -0.459835
-0.384 0.278992 -0.407639
-
-0.495656 0.286167 -0.459835
-0.465186 0.337977 -0.450926
-0.590708 0.341045 -0.479188
-
-0.55226 0.401241 -0.469904
-0.590708 0.341045 -0.479188
-0.465186 0.337977 -0.450926
-
-0.590708 0.341045 -0.479188
-0.55226 0.401241 -0.469904
-0.687062 0.396676 -0.472708
-
-0.640528 0.465371 -0.46355
-0.687062 0.396676 -0.472708
-0.55226 0.401241 -0.469904
-
-0.687062 0.396676 -0.472708
-0.640528 0.465371 -0.46355
-0.779525 0.450059 -0.440744
-
-0.725231 0.526911 -0.432205
-0.779525 0.450059 -0.440744
-0.640528 0.465371 -0.46355
-
-0.779525 0.450059 -0.440744
-0.725231 0.526911 -0.432205
-0.863112 0.498318 -0.385019
-
-0.801803 0.582544 -0.37756
-0.863112 0.498318 -0.385019
-0.725231 0.526911 -0.432205
-
-0.863112 0.498318 -0.385019
-0.801803 0.582544 -0.37756
-0.933317 0.538851 -0.308538
-
-0.866116 0.62927 -0.302561
-0.933317 0.538851 -0.308538
-0.801803 0.582544 -0.37756
-
-0.933317 0.538851 -0.308538
-0.866116 0.62927 -0.302561
-0.986354 0.569472 -0.215424
-
-0.914702 0.66457 -0.21125
-0.986354 0.569472 -0.215424
-0.866116 0.62927 -0.302561
-
-0.986354 0.569472 -0.215424
-0.914702 0.66457 -0.21125
-1.01937 0.588531 -0.110696
-
-0.944942 0.686541 -0.108551
-1.01937 0.588531 -0.110696
-0.914702 0.66457 -0.21125
-
-1.01937 0.588531 -0.110696
-0.944942 0.686541 -0.108551
-1.03057 0.595 0
-
-0.955207 0.693998 0
-1.03057 0.595 0
-0.944942 0.686541 -0.108551
-
-0.955207 0.693998 0
-0.857376 0.771985 0
-0.944942 0.686541 0.108551
-
-0.848488 0.763982 0.102327
-0.944942 0.686541 0.108551
-0.857376 0.771985 0
-
-0.944942 0.686541 0.108551
-0.848488 0.763982 0.102327
-0.914702 0.66457 0.21125
-
-0.822302 0.740404 0.199138
-0.914702 0.66457 0.21125
-0.848488 0.763982 0.102327
-
-0.914702 0.66457 0.21125
-0.822302 0.740404 0.199138
-0.866116 0.62927 0.302561
-
-0.780231 0.702523 0.285213
-0.866116 0.62927 0.302561
-0.822302 0.740404 0.199138
-
-0.866116 0.62927 0.302561
-0.780231 0.702523 0.285213
-0.801803 0.582544 0.37756
-
-0.724542 0.65238 0.355913
-0.801803 0.582544 0.37756
-0.780231 0.702523 0.285213
-
-0.801803 0.582544 0.37756
-0.724542 0.65238 0.355913
-0.725231 0.526911 0.432205
-
-0.658237 0.59268 0.407425
-0.725231 0.526911 0.432205
-0.724542 0.65238 0.355913
-
-0.725231 0.526911 0.432205
-0.658237 0.59268 0.407425
-0.640528 0.465371 0.46355
-
-0.584892 0.526639 0.436972
-0.640528 0.465371 0.46355
-0.658237 0.59268 0.407425
-
-0.640528 0.465371 0.46355
-0.584892 0.526639 0.436972
-0.55226 0.401241 0.469904
-
-0.50846 0.457819 0.442963
-0.55226 0.401241 0.469904
-0.584892 0.526639 0.436972
-
-0.55226 0.401241 0.469904
-0.50846 0.457819 0.442963
-0.465186 0.337977 0.450926
-
-0.433061 0.38993 0.425073
-0.465186 0.337977 0.450926
-0.50846 0.457819 0.442963
-
-0.465186 0.337977 0.450926
-0.433061 0.38993 0.425073
-0.384 0.278992 0.407639
-
-0.362761 0.326632 0.384267
-0.384 0.278992 0.407639
-0.433061 0.38993 0.425073
-
-0.384 0.278992 0.407639
-0.362761 0.326632 0.384267
-0.313078 0.227464 0.342375
-
-0.301349 0.271336 0.322745
-0.313078 0.227464 0.342375
-0.362761 0.326632 0.384267
-
-0.313078 0.227464 0.342375
-0.301349 0.271336 0.322745
-0.256244 0.186172 0.258654
-
-0.252136 0.227025 0.243824
-0.256244 0.186172 0.258654
-0.301349 0.271336 0.322745
-
-0.256244 0.186172 0.258654
-0.252136 0.227025 0.243824
-0.216563 0.157342 0.160989
-
-0.217776 0.196086 0.151759
-0.216563 0.157342 0.160989
-0.252136 0.227025 0.243824
-
-0.216563 0.157342 0.160989
-0.217776 0.196086 0.151759
-0.196172 0.142527 0.054645
-
-0.200119 0.180188 0.051512
-0.196172 0.142527 0.054645
-0.217776 0.196086 0.151759
-
-0.196172 0.142527 0.054645
-0.200119 0.180188 0.051512
-0.196172 0.142527 -0.054645
-
-0.200119 0.180188 -0.051512
-0.196172 0.142527 -0.054645
-0.200119 0.180188 0.051512
-
-0.196172 0.142527 -0.054645
-0.200119 0.180188 -0.051512
-0.216563 0.157342 -0.160989
-
-0.217776 0.196086 -0.151759
-0.216563 0.157342 -0.160989
-0.200119 0.180188 -0.051512
-
-0.216563 0.157342 -0.160989
-0.217776 0.196086 -0.151759
-0.256244 0.186172 -0.258654
-
-0.252136 0.227025 -0.243824
-0.256244 0.186172 -0.258654
-0.217776 0.196086 -0.151759
-
-0.256244 0.186172 -0.258654
-0.252136 0.227025 -0.243824
-0.313078 0.227464 -0.342375
-
-0.301349 0.271336 -0.322745
-0.313078 0.227464 -0.342375
-0.252136 0.227025 -0.243824
-
-0.313078 0.227464 -0.342375
-0.301349 0.271336 -0.322745
-0.384 0.278992 -0.407639
-
-0.362761 0.326632 -0.384267
-0.384 0.278992 -0.407639
-0.301349 0.271336 -0.322745
-
-0.384 0.278992 -0.407639
-0.362761 0.326632 -0.384267
-0.465186 0.337977 -0.450926
-
-0.433061 0.38993 -0.425073
-0.465186 0.337977 -0.450926
-0.362761 0.326632 -0.384267
-
-0.465186 0.337977 -0.450926
-0.433061 0.38993 -0.425073
-0.55226 0.401241 -0.469904
-
-0.50846 0.457819 -0.442963
-0.55226 0.401241 -0.469904
-0.433061 0.38993 -0.425073
-
-0.55226 0.401241 -0.469904
-0.50846 0.457819 -0.442963
-0.640528 0.465371 -0.46355
-
-0.584892 0.526639 -0.436972
-0.640528 0.465371 -0.46355
-0.50846 0.457819 -0.442963
-
-0.640528 0.465371 -0.46355
-0.584892 0.526639 -0.436972
-0.725231 0.526911 -0.432205
-
-0.658237 0.59268 -0.407425
-0.725231 0.526911 -0.432205
-0.584892 0.526639 -0.436972
-
-0.725231 0.526911 -0.432205
-0.658237 0.59268 -0.407425
-0.801803 0.582544 -0.37756
-
-0.724542 0.65238 -0.355913
-0.801803 0.582544 -0.37756
-0.658237 0.59268 -0.407425
-
-0.801803 0.582544 -0.37756
-0.724542 0.65238 -0.355913
-0.866116 0.62927 -0.302561
-
-0.780231 0.702523 -0.285213
-0.866116 0.62927 -0.302561
-0.724542 0.65238 -0.355913
-
-0.866116 0.62927 -0.302561
-0.780231 0.702523 -0.285213
-0.914702 0.66457 -0.21125
-
-0.822302 0.740404 -0.199138
-0.914702 0.66457 -0.21125
-0.780231 0.702523 -0.285213
-
-0.914702 0.66457 -0.21125
-0.822302 0.740404 -0.199138
-0.944942 0.686541 -0.108551
-
-0.848488 0.763982 -0.102327
-0.944942 0.686541 -0.108551
-0.822302 0.740404 -0.199138
-
-0.944942 0.686541 -0.108551
-0.848488 0.763982 -0.102327
-0.955207 0.693998 0
-
-0.857376 0.771985 0
-0.955207 0.693998 0
-0.848488 0.763982 -0.102327
-
-0.857376 0.771985 0
-0.743859 0.826139 0
-0.848488 0.763982 0.102327
-
-0.736614 0.818092 0.0926336
-0.848488 0.763982 0.102327
-0.743859 0.826139 0
-
-0.848488 0.763982 0.102327
-0.736614 0.818092 0.0926336
-0.822302 0.740404 0.199138
-
-0.71527 0.794387 0.180273
-0.822302 0.740404 0.199138
-0.736614 0.818092 0.0926336
-
-0.822302 0.740404 0.199138
-0.71527 0.794387 0.180273
-0.780231 0.702523 0.285213
-
-0.680977 0.756302 0.258194
-0.780231 0.702523 0.285213
-0.71527 0.794387 0.180273
-
-0.780231 0.702523 0.285213
-0.680977 0.756302 0.258194
-0.724542 0.65238 0.355913
-
-0.635585 0.705888 0.322196
-0.724542 0.65238 0.355913
-0.680977 0.756302 0.258194
-
-0.724542 0.65238 0.355913
-0.635585 0.705888 0.322196
-0.658237 0.59268 0.407425
-
-0.581539 0.645865 0.368828
-0.658237 0.59268 0.407425
-0.635585 0.705888 0.322196
-
-0.658237 0.59268 0.407425
-0.581539 0.645865 0.368828
-0.584892 0.526639 0.436972
-
-0.521755 0.579468 0.395577
-0.584892 0.526639 0.436972
-0.581539 0.645865 0.368828
-
-0.584892 0.526639 0.436972
-0.521755 0.579468 0.395577
-0.50846 0.457819 0.442963
-
-0.459455 0.510276 0.401
-0.50846 0.457819 0.442963
-0.521755 0.579468 0.395577
-
-0.50846 0.457819 0.442963
-0.459455 0.510276 0.401
-0.433061 0.38993 0.425073
-
-0.397997 0.44202 0.384804
-0.433061 0.38993 0.425073
-0.459455 0.510276 0.401
-
-0.433061 0.38993 0.425073
-0.397997 0.44202 0.384804
-0.362761 0.326632 0.384267
-
-0.340695 0.37838 0.347864
-0.362761 0.326632 0.384267
-0.397997 0.44202 0.384804
-
-0.362761 0.326632 0.384267
-0.340695 0.37838 0.347864
-0.301349 0.271336 0.322745
-
-0.290638 0.322786 0.292171
-0.301349 0.271336 0.322745
-0.340695 0.37838 0.347864
-
-0.301349 0.271336 0.322745
-0.290638 0.322786 0.292171
-0.252136 0.227025 0.243824
-
-0.250524 0.278235 0.220726
-0.252136 0.227025 0.243824
-0.290638 0.322786 0.292171
-
-0.252136 0.227025 0.243824
-0.250524 0.278235 0.220726
-0.217776 0.196086 0.151759
-
-0.222516 0.247129 0.137382
-0.217776 0.196086 0.151759
-0.250524 0.278235 0.220726
-
-0.217776 0.196086 0.151759
-0.222516 0.247129 0.137382
-0.200119 0.180188 0.051512
-
-0.208124 0.231145 0.0466321
-0.200119 0.180188 0.051512
-0.222516 0.247129 0.137382
-
-0.200119 0.180188 0.051512
-0.208124 0.231145 0.0466321
-0.200119 0.180188 -0.051512
-
-0.208124 0.231145 -0.0466321
-0.200119 0.180188 -0.051512
-0.208124 0.231145 0.0466321
-
-0.200119 0.180188 -0.051512
-0.208124 0.231145 -0.0466321
-0.217776 0.196086 -0.151759
-
-0.222516 0.247129 -0.137382
-0.217776 0.196086 -0.151759
-0.208124 0.231145 -0.0466321
-
-0.217776 0.196086 -0.151759
-0.222516 0.247129 -0.137382
-0.252136 0.227025 -0.243824
-
-0.250524 0.278235 -0.220726
-0.252136 0.227025 -0.243824
-0.222516 0.247129 -0.137382
-
-0.252136 0.227025 -0.243824
-0.250524 0.278235 -0.220726
-0.301349 0.271336 -0.322745
-
-0.290638 0.322786 -0.292171
-0.301349 0.271336 -0.322745
-0.250524 0.278235 -0.220726
-
-0.301349 0.271336 -0.322745
-0.290638 0.322786 -0.292171
-0.362761 0.326632 -0.384267
-
-0.340695 0.37838 -0.347864
-0.362761 0.326632 -0.384267
-0.290638 0.322786 -0.292171
-
-0.362761 0.326632 -0.384267
-0.340695 0.37838 -0.347864
-0.433061 0.38993 -0.425073
-
-0.397997 0.44202 -0.384804
-0.433061 0.38993 -0.425073
-0.340695 0.37838 -0.347864
-
-0.433061 0.38993 -0.425073
-0.397997 0.44202 -0.384804
-0.50846 0.457819 -0.442963
-
-0.459455 0.510276 -0.401
-0.50846 0.457819 -0.442963
-0.397997 0.44202 -0.384804
-
-0.50846 0.457819 -0.442963
-0.459455 0.510276 -0.401
-0.584892 0.526639 -0.436972
-
-0.521755 0.579468 -0.395577
-0.584892 0.526639 -0.436972
-0.459455 0.510276 -0.401
-
-0.584892 0.526639 -0.436972
-0.521755 0.579468 -0.395577
-0.658237 0.59268 -0.407425
-
-0.581539 0.645865 -0.368828
-0.658237 0.59268 -0.407425
-0.521755 0.579468 -0.395577
-
-0.658237 0.59268 -0.407425
-0.581539 0.645865 -0.368828
-0.724542 0.65238 -0.355913
-
-0.635585 0.705888 -0.322196
-0.724542 0.65238 -0.355913
-0.581539 0.645865 -0.368828
-
-0.724542 0.65238 -0.355913
-0.635585 0.705888 -0.322196
-0.780231 0.702523 -0.285213
-
-0.680977 0.756302 -0.258194
-0.780231 0.702523 -0.285213
-0.635585 0.705888 -0.322196
-
-0.780231 0.702523 -0.285213
-0.680977 0.756302 -0.258194
-0.822302 0.740404 -0.199138
-
-0.71527 0.794387 -0.180273
-0.822302 0.740404 -0.199138
-0.680977 0.756302 -0.258194
-
-0.822302 0.740404 -0.199138
-0.71527 0.794387 -0.180273
-0.848488 0.763982 -0.102327
-
-0.736614 0.818092 -0.0926336
-0.848488 0.763982 -0.102327
-0.71527 0.794387 -0.180273
-
-0.848488 0.763982 -0.102327
-0.736614 0.818092 -0.0926336
-0.857376 0.771985 0
-
-0.743859 0.826139 0
-0.857376 0.771985 0
-0.736614 0.818092 -0.0926336
-
-0.743859 0.826139 0
-0.622296 0.856517 0
-0.736614 0.818092 0.0926336
-
-0.616771 0.848913 0.0804188
-0.736614 0.818092 0.0926336
-0.622296 0.856517 0
-
-0.736614 0.818092 0.0926336
-0.616771 0.848913 0.0804188
-0.71527 0.794387 0.180273
-
-0.600494 0.826509 0.156502
-0.71527 0.794387 0.180273
-0.616771 0.848913 0.0804188
-
-0.71527 0.794387 0.180273
-0.600494 0.826509 0.156502
-0.680977 0.756302 0.258194
-
-0.574343 0.790515 0.224149
-0.680977 0.756302 0.258194
-0.600494 0.826509 0.156502
-
-0.680977 0.756302 0.258194
-0.574343 0.790515 0.224149
-0.635585 0.705888 0.322196
-
-0.539726 0.742869 0.279711
-0.635585 0.705888 0.322196
-0.574343 0.790515 0.224149
-
-0.635585 0.705888 0.322196
-0.539726 0.742869 0.279711
-0.581539 0.645865 0.368828
-
-0.498511 0.686142 0.320194
-0.581539 0.645865 0.368828
-0.539726 0.742869 0.279711
-
-0.581539 0.645865 0.368828
-0.498511 0.686142 0.320194
-0.521755 0.579468 0.395577
-
-0.45292 0.623391 0.343415
-0.521755 0.579468 0.395577
-0.498511 0.686142 0.320194
-
-0.521755 0.579468 0.395577
-0.45292 0.623391 0.343415
-0.459455 0.510276 0.401
-
-0.40541 0.557999 0.348123
-0.459455 0.510276 0.401
-0.45292 0.623391 0.343415
-
-0.459455 0.510276 0.401
-0.40541 0.557999 0.348123
-0.397997 0.44202 0.384804
-
-0.358542 0.493491 0.334064
-0.397997 0.44202 0.384804
-0.40541 0.557999 0.348123
-
-0.397997 0.44202 0.384804
-0.358542 0.493491 0.334064
-0.340695 0.37838 0.347864
-
-0.314843 0.433345 0.301995
-0.340695 0.37838 0.347864
-0.358542 0.493491 0.334064
-
-0.340695 0.37838 0.347864
-0.314843 0.433345 0.301995
-0.290638 0.322786 0.292171
-
-0.27667 0.380803 0.253645
-0.290638 0.322786 0.292171
-0.314843 0.433345 0.301995
-
-0.290638 0.322786 0.292171
-0.27667 0.380803 0.253645
-0.250524 0.278235 0.220726
-
-0.246079 0.338698 0.191621
-0.250524 0.278235 0.220726
-0.27667 0.380803 0.253645
-
-0.250524 0.278235 0.220726
-0.246079 0.338698 0.191621
-0.222516 0.247129 0.137382
-
-0.22472 0.309301 0.119267
-0.222516 0.247129 0.137382
-0.246079 0.338698 0.191621
-
-0.222516 0.247129 0.137382
-0.22472 0.309301 0.119267
-0.208124 0.231145 0.0466321
-
-0.213745 0.294195 0.0404831
-0.208124 0.231145 0.0466321
-0.22472 0.309301 0.119267
-
-0.208124 0.231145 0.0466321
-0.213745 0.294195 0.0404831
-0.208124 0.231145 -0.0466321
-
-0.213745 0.294195 -0.0404831
-0.208124 0.231145 -0.0466321
-0.213745 0.294195 0.0404831
-
-0.208124 0.231145 -0.0466321
-0.213745 0.294195 -0.0404831
-0.222516 0.247129 -0.137382
-
-0.22472 0.309301 -0.119267
-0.222516 0.247129 -0.137382
-0.213745 0.294195 -0.0404831
-
-0.222516 0.247129 -0.137382
-0.22472 0.309301 -0.119267
-0.250524 0.278235 -0.220726
-
-0.246079 0.338698 -0.191621
-0.250524 0.278235 -0.220726
-0.22472 0.309301 -0.119267
-
-0.250524 0.278235 -0.220726
-0.246079 0.338698 -0.191621
-0.290638 0.322786 -0.292171
-
-0.27667 0.380803 -0.253645
-0.290638 0.322786 -0.292171
-0.246079 0.338698 -0.191621
-
-0.290638 0.322786 -0.292171
-0.27667 0.380803 -0.253645
-0.340695 0.37838 -0.347864
-
-0.314843 0.433345 -0.301995
-0.340695 0.37838 -0.347864
-0.27667 0.380803 -0.253645
-
-0.340695 0.37838 -0.347864
-0.314843 0.433345 -0.301995
-0.397997 0.44202 -0.384804
-
-0.358542 0.493491 -0.334064
-0.397997 0.44202 -0.384804
-0.314843 0.433345 -0.301995
-
-0.397997 0.44202 -0.384804
-0.358542 0.493491 -0.334064
-0.459455 0.510276 -0.401
-
-0.40541 0.557999 -0.348123
-0.459455 0.510276 -0.401
-0.358542 0.493491 -0.334064
-
-0.459455 0.510276 -0.401
-0.40541 0.557999 -0.348123
-0.521755 0.579468 -0.395577
-
-0.45292 0.623391 -0.343415
-0.521755 0.579468 -0.395577
-0.40541 0.557999 -0.348123
-
-0.521755 0.579468 -0.395577
-0.45292 0.623391 -0.343415
-0.581539 0.645865 -0.368828
-
-0.498511 0.686142 -0.320194
-0.581539 0.645865 -0.368828
-0.45292 0.623391 -0.343415
-
-0.581539 0.645865 -0.368828
-0.498511 0.686142 -0.320194
-0.635585 0.705888 -0.322196
-
-0.539726 0.742869 -0.279711
-0.635585 0.705888 -0.322196
-0.498511 0.686142 -0.320194
-
-0.635585 0.705888 -0.322196
-0.539726 0.742869 -0.279711
-0.680977 0.756302 -0.258194
-
-0.574343 0.790515 -0.224149
-0.680977 0.756302 -0.258194
-0.539726 0.742869 -0.279711
-
-0.680977 0.756302 -0.258194
-0.574343 0.790515 -0.224149
-0.71527 0.794387 -0.180273
-
-0.600494 0.826509 -0.156502
-0.71527 0.794387 -0.180273
-0.574343 0.790515 -0.224149
-
-0.71527 0.794387 -0.180273
-0.600494 0.826509 -0.156502
-0.736614 0.818092 -0.0926336
-
-0.616771 0.848913 -0.0804188
-0.736614 0.818092 -0.0926336
-0.600494 0.826509 -0.156502
-
-0.736614 0.818092 -0.0926336
-0.616771 0.848913 -0.0804188
-0.743859 0.826139 0
-
-0.622296 0.856517 0
-0.743859 0.826139 0
-0.616771 0.848913 -0.0804188
-
-0.622296 0.856517 0
-0.5 0.866025 0
-0.616771 0.848913 0.0804188
-
-0.496092 0.859256 0.0668786
-0.616771 0.848913 0.0804188
-0.5 0.866025 0
-
-0.616771 0.848913 0.0804188
-0.496092 0.859256 0.0668786
-0.600494 0.826509 0.156502
-
-0.484577 0.839312 0.130152
-0.600494 0.826509 0.156502
-0.496092 0.859256 0.0668786
-
-0.600494 0.826509 0.156502
-0.484577 0.839312 0.130152
-0.574343 0.790515 0.224149
-
-0.466076 0.807268 0.186408
-0.574343 0.790515 0.224149
-0.484577 0.839312 0.130152
-
-0.574343 0.790515 0.224149
-0.466076 0.807268 0.186408
-0.539726 0.742869 0.279711
-
-0.441588 0.764853 0.232616
-0.539726 0.742869 0.279711
-0.466076 0.807268 0.186408
-
-0.539726 0.742869 0.279711
-0.441588 0.764853 0.232616
-0.498511 0.686142 0.320194
-
-0.412432 0.714352 0.266283
-0.498511 0.686142 0.320194
-0.441588 0.764853 0.232616
-
-0.498511 0.686142 0.320194
-0.412432 0.714352 0.266283
-0.45292 0.623391 0.343415
-
-0.380179 0.658489 0.285594
-0.45292 0.623391 0.343415
-0.412432 0.714352 0.266283
-
-0.45292 0.623391 0.343415
-0.380179 0.658489 0.285594
-0.40541 0.557999 0.348123
-
-0.346569 0.600275 0.289509
-0.40541 0.557999 0.348123
-0.380179 0.658489 0.285594
-
-0.40541 0.557999 0.348123
-0.346569 0.600275 0.289509
-0.358542 0.493491 0.334064
-
-0.313414 0.542848 0.277817
-0.358542 0.493491 0.334064
-0.346569 0.600275 0.289509
-
-0.358542 0.493491 0.334064
-0.313414 0.542848 0.277817
-0.314843 0.433345 0.301995
-
-0.2825 0.489304 0.251147
-0.314843 0.433345 0.301995
-0.313414 0.542848 0.277817
-
-0.314843 0.433345 0.301995
-0.2825 0.489304 0.251147
-0.27667 0.380803 0.253645
-
-0.255495 0.44253 0.210938
-0.27667 0.380803 0.253645
-0.2825 0.489304 0.251147
-
-0.27667 0.380803 0.253645
-0.255495 0.44253 0.210938
-0.246079 0.338698 0.191621
-
-0.233854 0.405047 0.159358
-0.246079 0.338698 0.191621
-0.255495 0.44253 0.210938
-
-0.246079 0.338698 0.191621
-0.233854 0.405047 0.159358
-0.22472 0.309301 0.119267
-
-0.218745 0.378877 0.0991858
-0.22472 0.309301 0.119267
-0.233854 0.405047 0.159358
-
-0.22472 0.309301 0.119267
-0.218745 0.378877 0.0991858
-0.213745 0.294195 0.0404831
-
-0.21098 0.365429 0.0336669
-0.213745 0.294195 0.0404831
-0.218745 0.378877 0.0991858
-
-0.213745 0.294195 0.0404831
-0.21098 0.365429 0.0336669
-0.213745 0.294195 -0.0404831
-
-0.21098 0.365429 -0.0336669
-0.213745 0.294195 -0.0404831
-0.21098 0.365429 0.0336669
-
-0.213745 0.294195 -0.0404831
-0.21098 0.365429 -0.0336669
-0.22472 0.309301 -0.119267
-
-0.218745 0.378877 -0.0991858
-0.22472 0.309301 -0.119267
-0.21098 0.365429 -0.0336669
-
-0.22472 0.309301 -0.119267
-0.218745 0.378877 -0.0991858
-0.246079 0.338698 -0.191621
-
-0.233854 0.405047 -0.159358
-0.246079 0.338698 -0.191621
-0.218745 0.378877 -0.0991858
-
-0.246079 0.338698 -0.191621
-0.233854 0.405047 -0.159358
-0.27667 0.380803 -0.253645
-
-0.255495 0.44253 -0.210938
-0.27667 0.380803 -0.253645
-0.233854 0.405047 -0.159358
-
-0.27667 0.380803 -0.253645
-0.255495 0.44253 -0.210938
-0.314843 0.433345 -0.301995
-
-0.2825 0.489304 -0.251147
-0.314843 0.433345 -0.301995
-0.255495 0.44253 -0.210938
-
-0.314843 0.433345 -0.301995
-0.2825 0.489304 -0.251147
-0.358542 0.493491 -0.334064
-
-0.313414 0.542848 -0.277817
-0.358542 0.493491 -0.334064
-0.2825 0.489304 -0.251147
-
-0.358542 0.493491 -0.334064
-0.313414 0.542848 -0.277817
-0.40541 0.557999 -0.348123
-
-0.346569 0.600275 -0.289509
-0.40541 0.557999 -0.348123
-0.313414 0.542848 -0.277817
-
-0.40541 0.557999 -0.348123
-0.346569 0.600275 -0.289509
-0.45292 0.623391 -0.343415
-
-0.380179 0.658489 -0.285594
-0.45292 0.623391 -0.343415
-0.346569 0.600275 -0.289509
-
-0.45292 0.623391 -0.343415
-0.380179 0.658489 -0.285594
-0.498511 0.686142 -0.320194
-
-0.412432 0.714352 -0.266283
-0.498511 0.686142 -0.320194
-0.380179 0.658489 -0.285594
-
-0.498511 0.686142 -0.320194
-0.412432 0.714352 -0.266283
-0.539726 0.742869 -0.279711
-
-0.441588 0.764853 -0.232616
-0.539726 0.742869 -0.279711
-0.412432 0.714352 -0.266283
-
-0.539726 0.742869 -0.279711
-0.441588 0.764853 -0.232616
-0.574343 0.790515 -0.224149
-
-0.466076 0.807268 -0.186408
-0.574343 0.790515 -0.224149
-0.441588 0.764853 -0.232616
-
-0.574343 0.790515 -0.224149
-0.466076 0.807268 -0.186408
-0.600494 0.826509 -0.156502
-
-0.484577 0.839312 -0.130152
-0.600494 0.826509 -0.156502
-0.466076 0.807268 -0.186408
-
-0.600494 0.826509 -0.156502
-0.484577 0.839312 -0.130152
-0.616771 0.848913 -0.0804188
-
-0.496092 0.859256 -0.0668786
-0.616771 0.848913 -0.0804188
-0.484577 0.839312 -0.130152
-
-0.616771 0.848913 -0.0804188
-0.496092 0.859256 -0.0668786
-0.622296 0.856517 0
-
-0.5 0.866025 0
-0.622296 0.856517 0
-0.496092 0.859256 -0.0668786
-
-0.5 0.866025 0
-0.382856 0.859908 0
-0.496092 0.859256 0.0668786
-
-0.38032 0.854213 0.0533384
-0.496092 0.859256 0.0668786
-0.382856 0.859908 0
-
-0.496092 0.859256 0.0668786
-0.38032 0.854213 0.0533384
-0.484577 0.839312 0.130152
-
-0.37285 0.837434 0.103801
-0.484577 0.839312 0.130152
-0.38032 0.854213 0.0533384
-
-0.484577 0.839312 0.130152
-0.37285 0.837434 0.103801
-0.466076 0.807268 0.186408
-
-0.360847 0.810476 0.148668
-0.466076 0.807268 0.186408
-0.37285 0.837434 0.103801
-
-0.466076 0.807268 0.186408
-0.360847 0.810476 0.148668
-0.441588 0.764853 0.232616
-
-0.344959 0.774791 0.18552
-0.441588 0.764853 0.232616
-0.360847 0.810476 0.148668
-
-0.441588 0.764853 0.232616
-0.344959 0.774791 0.18552
-0.412432 0.714352 0.266283
-
-0.326043 0.732305 0.212371
-0.412432 0.714352 0.266283
-0.344959 0.774791 0.18552
-
-0.412432 0.714352 0.266283
-0.326043 0.732305 0.212371
-0.380179 0.658489 0.285594
-
-0.305119 0.685308 0.227773
-0.380179 0.658489 0.285594
-0.326043 0.732305 0.212371
-
-0.380179 0.658489 0.285594
-0.305119 0.685308 0.227773
-0.346569 0.600275 0.289509
-
-0.283313 0.636332 0.230895
-0.346569 0.600275 0.289509
-0.305119 0.685308 0.227773
-
-0.346569 0.600275 0.289509
-0.283313 0.636332 0.230895
-0.313414 0.542848 0.277817
-
-0.261803 0.588018 0.22157
-0.313414 0.542848 0.277817
-0.283313 0.636332 0.230895
-
-0.313414 0.542848 0.277817
-0.261803 0.588018 0.22157
-0.2825 0.489304 0.251147
-
-0.241747 0.542972 0.2003
-0.2825 0.489304 0.251147
-0.261803 0.588018 0.22157
-
-0.2825 0.489304 0.251147
-0.241747 0.542972 0.2003
-0.255495 0.44253 0.210938
-
-0.224226 0.503621 0.168232
-0.255495 0.44253 0.210938
-0.241747 0.542972 0.2003
-
-0.255495 0.44253 0.210938
-0.224226 0.503621 0.168232
-0.233854 0.405047 0.159358
-
-0.210186 0.472086 0.127094
-0.233854 0.405047 0.159358
-0.224226 0.503621 0.168232
-
-0.233854 0.405047 0.159358
-0.210186 0.472086 0.127094
-0.218745 0.378877 0.0991858
-
-0.200383 0.450069 0.0791047
-0.218745 0.378877 0.0991858
-0.210186 0.472086 0.127094
-
-0.218745 0.378877 0.0991858
-0.200383 0.450069 0.0791047
-0.21098 0.365429 0.0336669
-
-0.195346 0.438755 0.0268508
-0.21098 0.365429 0.0336669
-0.200383 0.450069 0.0791047
-
-0.21098 0.365429 0.0336669
-0.195346 0.438755 0.0268508
-0.21098 0.365429 -0.0336669
-
-0.195346 0.438755 -0.0268508
-0.21098 0.365429 -0.0336669
-0.195346 0.438755 0.0268508
-
-0.21098 0.365429 -0.0336669
-0.195346 0.438755 -0.0268508
-0.218745 0.378877 -0.0991858
-
-0.200383 0.450069 -0.0791047
-0.218745 0.378877 -0.0991858
-0.195346 0.438755 -0.0268508
-
-0.218745 0.378877 -0.0991858
-0.200383 0.450069 -0.0791047
-0.233854 0.405047 -0.159358
-
-0.210186 0.472086 -0.127094
-0.233854 0.405047 -0.159358
-0.200383 0.450069 -0.0791047
-
-0.233854 0.405047 -0.159358
-0.210186 0.472086 -0.127094
-0.255495 0.44253 -0.210938
-
-0.224226 0.503621 -0.168232
-0.255495 0.44253 -0.210938
-0.210186 0.472086 -0.127094
-
-0.255495 0.44253 -0.210938
-0.224226 0.503621 -0.168232
-0.2825 0.489304 -0.251147
-
-0.241747 0.542972 -0.2003
-0.2825 0.489304 -0.251147
-0.224226 0.503621 -0.168232
-
-0.2825 0.489304 -0.251147
-0.241747 0.542972 -0.2003
-0.313414 0.542848 -0.277817
-
-0.261803 0.588018 -0.22157
-0.313414 0.542848 -0.277817
-0.241747 0.542972 -0.2003
-
-0.313414 0.542848 -0.277817
-0.261803 0.588018 -0.22157
-0.346569 0.600275 -0.289509
-
-0.283313 0.636332 -0.230895
-0.346569 0.600275 -0.289509
-0.261803 0.588018 -0.22157
-
-0.346569 0.600275 -0.289509
-0.283313 0.636332 -0.230895
-0.380179 0.658489 -0.285594
-
-0.305119 0.685308 -0.227773
-0.380179 0.658489 -0.285594
-0.283313 0.636332 -0.230895
-
-0.380179 0.658489 -0.285594
-0.305119 0.685308 -0.227773
-0.412432 0.714352 -0.266283
-
-0.326043 0.732305 -0.212371
-0.412432 0.714352 -0.266283
-0.305119 0.685308 -0.227773
-
-0.412432 0.714352 -0.266283
-0.326043 0.732305 -0.212371
-0.441588 0.764853 -0.232616
-
-0.344959 0.774791 -0.18552
-0.441588 0.764853 -0.232616
-0.326043 0.732305 -0.212371
-
-0.441588 0.764853 -0.232616
-0.344959 0.774791 -0.18552
-0.466076 0.807268 -0.186408
-
-0.360847 0.810476 -0.148668
-0.466076 0.807268 -0.186408
-0.344959 0.774791 -0.18552
-
-0.466076 0.807268 -0.186408
-0.360847 0.810476 -0.148668
-0.484577 0.839312 -0.130152
-
-0.37285 0.837434 -0.103801
-0.484577 0.839312 -0.130152
-0.360847 0.810476 -0.148668
-
-0.484577 0.839312 -0.130152
-0.37285 0.837434 -0.103801
-0.496092 0.859256 -0.0668786
-
-0.38032 0.854213 -0.0533384
-0.496092 0.859256 -0.0668786
-0.37285 0.837434 -0.103801
-
-0.496092 0.859256 -0.0668786
-0.38032 0.854213 -0.0533384
-0.5 0.866025 0
-
-0.382856 0.859908 0
-0.5 0.866025 0
-0.38032 0.854213 -0.0533384
-
-0.382856 0.859908 0
-0.274506 0.844843 0
-0.38032 0.854213 0.0533384
-
-0.273021 0.840272 0.0411236
-0.38032 0.854213 0.0533384
-0.274506 0.844843 0
-
-0.38032 0.854213 0.0533384
-0.273021 0.840272 0.0411236
-0.37285 0.837434 0.103801
-
-0.268645 0.826804 0.0800302
-0.37285 0.837434 0.103801
-0.273021 0.840272 0.0411236
-
-0.37285 0.837434 0.103801
-0.268645 0.826804 0.0800302
-0.360847 0.810476 0.148668
-
-0.261614 0.805166 0.114622
-0.360847 0.810476 0.148668
-0.268645 0.826804 0.0800302
-
-0.360847 0.810476 0.148668
-0.261614 0.805166 0.114622
-0.344959 0.774791 0.18552
-
-0.252308 0.776524 0.143035
-0.344959 0.774791 0.18552
-0.261614 0.805166 0.114622
-
-0.344959 0.774791 0.18552
-0.252308 0.776524 0.143035
-0.326043 0.732305 0.212371
-
-0.241228 0.742423 0.163737
-0.326043 0.732305 0.212371
-0.252308 0.776524 0.143035
-
-0.326043 0.732305 0.212371
-0.241228 0.742423 0.163737
-0.305119 0.685308 0.227773
-
-0.228971 0.7047 0.175612
-0.305119 0.685308 0.227773
-0.241228 0.742423 0.163737
-
-0.305119 0.685308 0.227773
-0.228971 0.7047 0.175612
-0.283313 0.636332 0.230895
-
-0.216198 0.665389 0.178019
-0.283313 0.636332 0.230895
-0.228971 0.7047 0.175612
-
-0.283313 0.636332 0.230895
-0.216198 0.665389 0.178019
-0.261803 0.588018 0.22157
-
-0.203598 0.62661 0.170829
-0.261803 0.588018 0.22157
-0.216198 0.665389 0.178019
-
-0.261803 0.588018 0.22157
-0.203598 0.62661 0.170829
-0.241747 0.542972 0.2003
-
-0.19185 0.590454 0.15443
-0.241747 0.542972 0.2003
-0.203598 0.62661 0.170829
-
-0.241747 0.542972 0.2003
-0.19185 0.590454 0.15443
-0.224226 0.503621 0.168232
-
-0.181587 0.558868 0.129706
-0.224226 0.503621 0.168232
-0.19185 0.590454 0.15443
-
-0.224226 0.503621 0.168232
-0.181587 0.558868 0.129706
-0.210186 0.472086 0.127094
-
-0.173363 0.533557 0.0979889
-0.210186 0.472086 0.127094
-0.181587 0.558868 0.129706
-
-0.210186 0.472086 0.127094
-0.173363 0.533557 0.0979889
-0.200383 0.450069 0.0791047
-
-0.167621 0.515885 0.0609893
-0.200383 0.450069 0.0791047
-0.173363 0.533557 0.0979889
-
-0.200383 0.450069 0.0791047
-0.167621 0.515885 0.0609893
-0.195346 0.438755 0.0268508
-
-0.164671 0.506804 0.0207018
-0.195346 0.438755 0.0268508
-0.167621 0.515885 0.0609893
-
-0.195346 0.438755 0.0268508
-0.164671 0.506804 0.0207018
-0.195346 0.438755 -0.0268508
-
-0.164671 0.506804 -0.0207018
-0.195346 0.438755 -0.0268508
-0.164671 0.506804 0.0207018
-
-0.195346 0.438755 -0.0268508
-0.164671 0.506804 -0.0207018
-0.200383 0.450069 -0.0791047
-
-0.167621 0.515885 -0.0609893
-0.200383 0.450069 -0.0791047
-0.164671 0.506804 -0.0207018
-
-0.200383 0.450069 -0.0791047
-0.167621 0.515885 -0.0609893
-0.210186 0.472086 -0.127094
-
-0.173363 0.533557 -0.0979889
-0.210186 0.472086 -0.127094
-0.167621 0.515885 -0.0609893
-
-0.210186 0.472086 -0.127094
-0.173363 0.533557 -0.0979889
-0.224226 0.503621 -0.168232
-
-0.181587 0.558868 -0.129706
-0.224226 0.503621 -0.168232
-0.173363 0.533557 -0.0979889
-
-0.224226 0.503621 -0.168232
-0.181587 0.558868 -0.129706
-0.241747 0.542972 -0.2003
-
-0.19185 0.590454 -0.15443
-0.241747 0.542972 -0.2003
-0.181587 0.558868 -0.129706
-
-0.241747 0.542972 -0.2003
-0.19185 0.590454 -0.15443
-0.261803 0.588018 -0.22157
-
-0.203598 0.62661 -0.170829
-0.261803 0.588018 -0.22157
-0.19185 0.590454 -0.15443
-
-0.261803 0.588018 -0.22157
-0.203598 0.62661 -0.170829
-0.283313 0.636332 -0.230895
-
-0.216198 0.665389 -0.178019
-0.283313 0.636332 -0.230895
-0.203598 0.62661 -0.170829
-
-0.283313 0.636332 -0.230895
-0.216198 0.665389 -0.178019
-0.305119 0.685308 -0.227773
-
-0.228971 0.7047 -0.175612
-0.305119 0.685308 -0.227773
-0.216198 0.665389 -0.178019
-
-0.305119 0.685308 -0.227773
-0.228971 0.7047 -0.175612
-0.326043 0.732305 -0.212371
-
-0.241228 0.742423 -0.163737
-0.326043 0.732305 -0.212371
-0.228971 0.7047 -0.175612
-
-0.326043 0.732305 -0.212371
-0.241228 0.742423 -0.163737
-0.344959 0.774791 -0.18552
-
-0.252308 0.776524 -0.143035
-0.344959 0.774791 -0.18552
-0.241228 0.742423 -0.163737
-
-0.344959 0.774791 -0.18552
-0.252308 0.776524 -0.143035
-0.360847 0.810476 -0.148668
-
-0.261614 0.805166 -0.114622
-0.360847 0.810476 -0.148668
-0.252308 0.776524 -0.143035
-
-0.360847 0.810476 -0.148668
-0.261614 0.805166 -0.114622
-0.37285 0.837434 -0.103801
-
-0.268645 0.826804 -0.0800302
-0.37285 0.837434 -0.103801
-0.261614 0.805166 -0.114622
-
-0.37285 0.837434 -0.103801
-0.268645 0.826804 -0.0800302
-0.38032 0.854213 -0.0533384
-
-0.273021 0.840272 -0.0411236
-0.38032 0.854213 -0.0533384
-0.268645 0.826804 -0.0800302
-
-0.38032 0.854213 -0.0533384
-0.273021 0.840272 -0.0411236
-0.382856 0.859908 0
-
-0.274506 0.844843 0
-0.382856 0.859908 0
-0.273021 0.840272 -0.0411236
-
-0.274506 0.844843 0
-0.175953 0.827793 0
-0.273021 0.840272 0.0411236
-
-0.175189 0.8242 0.0314299
-0.273021 0.840272 0.0411236
-0.175953 0.827793 0
-
-0.273021 0.840272 0.0411236
-0.175189 0.8242 0.0314299
-0.268645 0.826804 0.0800302
-
-0.172939 0.813614 0.0611654
-0.268645 0.826804 0.0800302
-0.175189 0.8242 0.0314299
-
-0.268645 0.826804 0.0800302
-0.172939 0.813614 0.0611654
-0.261614 0.805166 0.114622
-
-0.169324 0.796605 0.0876034
-0.261614 0.805166 0.114622
-0.172939 0.813614 0.0611654
-
-0.261614 0.805166 0.114622
-0.169324 0.796605 0.0876034
-0.252308 0.776524 0.143035
-
-0.164538 0.774091 0.109319
-0.252308 0.776524 0.143035
-0.169324 0.796605 0.0876034
-
-0.252308 0.776524 0.143035
-0.164538 0.774091 0.109319
-0.241228 0.742423 0.163737
-
-0.15884 0.747286 0.125141
-0.241228 0.742423 0.163737
-0.164538 0.774091 0.109319
-
-0.241228 0.742423 0.163737
-0.15884 0.747286 0.125141
-0.228971 0.7047 0.175612
-
-0.152538 0.717634 0.134216
-0.228971 0.7047 0.175612
-0.15884 0.747286 0.125141
-
-0.228971 0.7047 0.175612
-0.152538 0.717634 0.134216
-0.216198 0.665389 0.178019
-
-0.14597 0.686734 0.136056
-0.216198 0.665389 0.178019
-0.152538 0.717634 0.134216
-
-0.216198 0.665389 0.178019
-0.14597 0.686734 0.136056
-0.203598 0.62661 0.170829
-
-0.139491 0.656251 0.130561
-0.203598 0.62661 0.170829
-0.14597 0.686734 0.136056
-
-0.203598 0.62661 0.170829
-0.139491 0.656251 0.130561
-0.19185 0.590454 0.15443
-
-0.133449 0.627831 0.118028
-0.19185 0.590454 0.15443
-0.139491 0.656251 0.130561
-
-0.19185 0.590454 0.15443
-0.133449 0.627831 0.118028
-0.181587 0.558868 0.129706
-
-0.128172 0.603003 0.0991314
-0.181587 0.558868 0.129706
-0.133449 0.627831 0.118028
-
-0.181587 0.558868 0.129706
-0.128172 0.603003 0.0991314
-0.173363 0.533557 0.0979889
-
-0.123943 0.583107 0.0748908
-0.173363 0.533557 0.0979889
-0.128172 0.603003 0.0991314
-
-0.173363 0.533557 0.0979889
-0.123943 0.583107 0.0748908
-0.167621 0.515885 0.0609893
-
-0.120991 0.569216 0.0466128
-0.167621 0.515885 0.0609893
-0.123943 0.583107 0.0748908
-
-0.167621 0.515885 0.0609893
-0.120991 0.569216 0.0466128
-0.164671 0.506804 0.0207018
-
-0.119473 0.562078 0.0158219
-0.164671 0.506804 0.0207018
-0.120991 0.569216 0.0466128
-
-0.164671 0.506804 0.0207018
-0.119473 0.562078 0.0158219
-0.164671 0.506804 -0.0207018
-
-0.119473 0.562078 -0.0158219
-0.164671 0.506804 -0.0207018
-0.119473 0.562078 0.0158219
-
-0.164671 0.506804 -0.0207018
-0.119473 0.562078 -0.0158219
-0.167621 0.515885 -0.0609893
-
-0.120991 0.569216 -0.0466128
-0.167621 0.515885 -0.0609893
-0.119473 0.562078 -0.0158219
-
-0.167621 0.515885 -0.0609893
-0.120991 0.569216 -0.0466128
-0.173363 0.533557 -0.0979889
-
-0.123943 0.583107 -0.0748908
-0.173363 0.533557 -0.0979889
-0.120991 0.569216 -0.0466128
-
-0.173363 0.533557 -0.0979889
-0.123943 0.583107 -0.0748908
-0.181587 0.558868 -0.129706
-
-0.128172 0.603003 -0.0991314
-0.181587 0.558868 -0.129706
-0.123943 0.583107 -0.0748908
-
-0.181587 0.558868 -0.129706
-0.128172 0.603003 -0.0991314
-0.19185 0.590454 -0.15443
-
-0.133449 0.627831 -0.118028
-0.19185 0.590454 -0.15443
-0.128172 0.603003 -0.0991314
-
-0.19185 0.590454 -0.15443
-0.133449 0.627831 -0.118028
-0.203598 0.62661 -0.170829
-
-0.139491 0.656251 -0.130561
-0.203598 0.62661 -0.170829
-0.133449 0.627831 -0.118028
-
-0.203598 0.62661 -0.170829
-0.139491 0.656251 -0.130561
-0.216198 0.665389 -0.178019
-
-0.14597 0.686734 -0.136056
-0.216198 0.665389 -0.178019
-0.139491 0.656251 -0.130561
-
-0.216198 0.665389 -0.178019
-0.14597 0.686734 -0.136056
-0.228971 0.7047 -0.175612
-
-0.152538 0.717634 -0.134216
-0.228971 0.7047 -0.175612
-0.14597 0.686734 -0.136056
-
-0.228971 0.7047 -0.175612
-0.152538 0.717634 -0.134216
-0.241228 0.742423 -0.163737
-
-0.15884 0.747286 -0.125141
-0.241228 0.742423 -0.163737
-0.152538 0.717634 -0.134216
-
-0.241228 0.742423 -0.163737
-0.15884 0.747286 -0.125141
-0.252308 0.776524 -0.143035
-
-0.164538 0.774091 -0.109319
-0.252308 0.776524 -0.143035
-0.15884 0.747286 -0.125141
-
-0.252308 0.776524 -0.143035
-0.164538 0.774091 -0.109319
-0.261614 0.805166 -0.114622
-
-0.169324 0.796605 -0.0876034
-0.261614 0.805166 -0.114622
-0.164538 0.774091 -0.109319
-
-0.261614 0.805166 -0.114622
-0.169324 0.796605 -0.0876034
-0.268645 0.826804 -0.0800302
-
-0.172939 0.813614 -0.0611654
-0.268645 0.826804 -0.0800302
-0.169324 0.796605 -0.0876034
-
-0.268645 0.826804 -0.0800302
-0.172939 0.813614 -0.0611654
-0.273021 0.840272 -0.0411236
-
-0.175189 0.8242 -0.0314299
-0.273021 0.840272 -0.0411236
-0.172939 0.813614 -0.0611654
-
-0.273021 0.840272 -0.0411236
-0.175189 0.8242 -0.0314299
-0.274506 0.844843 0
-
-0.175953 0.827793 0
-0.274506 0.844843 0
-0.175189 0.8242 -0.0314299
-
-0.175953 0.827793 0
-0.0856401 0.814811 0
-0.175189 0.8242 0.0314299
-
-0.0853321 0.811881 0.0252061
-0.175189 0.8242 0.0314299
-0.0856401 0.814811 0
-
-0.175189 0.8242 0.0314299
-0.0853321 0.811881 0.0252061
-0.172939 0.813614 0.0611654
-
-0.0844249 0.803249 0.0490534
-0.172939 0.813614 0.0611654
-0.0853321 0.811881 0.0252061
-
-0.172939 0.813614 0.0611654
-0.0844249 0.803249 0.0490534
-0.169324 0.796605 0.0876034
-
-0.0829672 0.78938 0.0702562
-0.169324 0.796605 0.0876034
-0.0844249 0.803249 0.0490534
-
-0.169324 0.796605 0.0876034
-0.0829672 0.78938 0.0702562
-0.164538 0.774091 0.109319
-
-0.0810377 0.771022 0.0876715
-0.164538 0.774091 0.109319
-0.0829672 0.78938 0.0702562
-
-0.164538 0.774091 0.109319
-0.0810377 0.771022 0.0876715
-0.15884 0.747286 0.125141
-
-0.0787404 0.749165 0.10036
-0.15884 0.747286 0.125141
-0.0810377 0.771022 0.0876715
-
-0.15884 0.747286 0.125141
-0.0787404 0.749165 0.10036
-0.152538 0.717634 0.134216
-
-0.0761991 0.724986 0.107639
-0.152538 0.717634 0.134216
-0.0787404 0.749165 0.10036
-
-0.152538 0.717634 0.134216
-0.0761991 0.724986 0.107639
-0.14597 0.686734 0.136056
-
-0.0735509 0.69979 0.109114
-0.14597 0.686734 0.136056
-0.0761991 0.724986 0.107639
-
-0.14597 0.686734 0.136056
-0.0735509 0.69979 0.109114
-0.139491 0.656251 0.130561
-
-0.0709385 0.674935 0.104708
-0.139491 0.656251 0.130561
-0.0735509 0.69979 0.109114
-
-0.139491 0.656251 0.130561
-0.0709385 0.674935 0.104708
-0.133449 0.627831 0.118028
-
-0.0685028 0.65176 0.0946559
-0.133449 0.627831 0.118028
-0.0709385 0.674935 0.104708
-
-0.133449 0.627831 0.118028
-0.0685028 0.65176 0.0946559
-0.128172 0.603003 0.0991314
-
-0.066375 0.631516 0.0795014
-0.128172 0.603003 0.0991314
-0.0685028 0.65176 0.0946559
-
-0.128172 0.603003 0.0991314
-0.066375 0.631516 0.0795014
-0.123943 0.583107 0.0748908
-
-0.0646699 0.615293 0.0600609
-0.123943 0.583107 0.0748908
-0.066375 0.631516 0.0795014
-
-0.123943 0.583107 0.0748908
-0.0646699 0.615293 0.0600609
-0.120991 0.569216 0.0466128
-
-0.0634793 0.603965 0.0373825
-0.120991 0.569216 0.0466128
-0.0646699 0.615293 0.0600609
-
-0.120991 0.569216 0.0466128
-0.0634793 0.603965 0.0373825
-0.119473 0.562078 0.0158219
-
-0.0628676 0.598145 0.0126889
-0.119473 0.562078 0.0158219
-0.0634793 0.603965 0.0373825
-
-0.119473 0.562078 0.0158219
-0.0628676 0.598145 0.0126889
-0.119473 0.562078 -0.0158219
-
-0.0628676 0.598145 -0.0126889
-0.119473 0.562078 -0.0158219
-0.0628676 0.598145 0.0126889
-
-0.119473 0.562078 -0.0158219
-0.0628676 0.598145 -0.0126889
-0.120991 0.569216 -0.0466128
-
-0.0634793 0.603965 -0.0373825
-0.120991 0.569216 -0.0466128
-0.0628676 0.598145 -0.0126889
-
-0.120991 0.569216 -0.0466128
-0.0634793 0.603965 -0.0373825
-0.123943 0.583107 -0.0748908
-
-0.0646699 0.615293 -0.0600609
-0.123943 0.583107 -0.0748908
-0.0634793 0.603965 -0.0373825
-
-0.123943 0.583107 -0.0748908
-0.0646699 0.615293 -0.0600609
-0.128172 0.603003 -0.0991314
-
-0.066375 0.631516 -0.0795014
-0.128172 0.603003 -0.0991314
-0.0646699 0.615293 -0.0600609
-
-0.128172 0.603003 -0.0991314
-0.066375 0.631516 -0.0795014
-0.133449 0.627831 -0.118028
-
-0.0685028 0.65176 -0.0946559
-0.133449 0.627831 -0.118028
-0.066375 0.631516 -0.0795014
-
-0.133449 0.627831 -0.118028
-0.0685028 0.65176 -0.0946559
-0.139491 0.656251 -0.130561
-
-0.0709385 0.674935 -0.104708
-0.139491 0.656251 -0.130561
-0.0685028 0.65176 -0.0946559
-
-0.139491 0.656251 -0.130561
-0.0709385 0.674935 -0.104708
-0.14597 0.686734 -0.136056
-
-0.0735509 0.69979 -0.109114
-0.14597 0.686734 -0.136056
-0.0709385 0.674935 -0.104708
-
-0.14597 0.686734 -0.136056
-0.0735509 0.69979 -0.109114
-0.152538 0.717634 -0.134216
-
-0.0761991 0.724986 -0.107639
-0.152538 0.717634 -0.134216
-0.0735509 0.69979 -0.109114
-
-0.152538 0.717634 -0.134216
-0.0761991 0.724986 -0.107639
-0.15884 0.747286 -0.125141
-
-0.0787404 0.749165 -0.10036
-0.15884 0.747286 -0.125141
-0.0761991 0.724986 -0.107639
-
-0.15884 0.747286 -0.125141
-0.0787404 0.749165 -0.10036
-0.164538 0.774091 -0.109319
-
-0.0810377 0.771022 -0.0876715
-0.164538 0.774091 -0.109319
-0.0787404 0.749165 -0.10036
-
-0.164538 0.774091 -0.109319
-0.0810377 0.771022 -0.0876715
-0.169324 0.796605 -0.0876034
-
-0.0829672 0.78938 -0.0702562
-0.169324 0.796605 -0.0876034
-0.0810377 0.771022 -0.0876715
-
-0.169324 0.796605 -0.0876034
-0.0829672 0.78938 -0.0702562
-0.172939 0.813614 -0.0611654
-
-0.0844249 0.803249 -0.0490534
-0.172939 0.813614 -0.0611654
-0.0829672 0.78938 -0.0702562
-
-0.172939 0.813614 -0.0611654
-0.0844249 0.803249 -0.0490534
-0.175189 0.8242 -0.0314299
-
-0.0853321 0.811881 -0.0252061
-0.175189 0.8242 -0.0314299
-0.0844249 0.803249 -0.0490534
-
-0.175189 0.8242 -0.0314299
-0.0853321 0.811881 -0.0252061
-0.175953 0.827793 0
-
-0.0856401 0.814811 0
-0.175953 0.827793 0
-0.0853321 0.811881 -0.0252061
-
-0.0856401 0.814811 0
-1.79856e-16 0.81 0
-0.0853321 0.811881 0.0252061
-
-1.79258e-16 0.807304 0.0230616
-0.0853321 0.811881 0.0252061
-1.79856e-16 0.81 0
-
-0.0853321 0.811881 0.0252061
-1.79258e-16 0.807304 0.0230616
-0.0844249 0.803249 0.0490534
-
-1.77494e-16 0.799363 0.0448799
-0.0844249 0.803249 0.0490534
-1.79258e-16 0.807304 0.0230616
-
-0.0844249 0.803249 0.0490534
-1.77494e-16 0.799363 0.0448799
-0.0829672 0.78938 0.0702562
-
-1.74661e-16 0.786604 0.0642788
-0.0829672 0.78938 0.0702562
-1.77494e-16 0.799363 0.0448799
-
-0.0829672 0.78938 0.0702562
-1.74661e-16 0.786604 0.0642788
-0.0810377 0.771022 0.0876715
-
-1.70911e-16 0.769716 0.0802123
-0.0810377 0.771022 0.0876715
-1.74661e-16 0.786604 0.0642788
-
-0.0810377 0.771022 0.0876715
-1.70911e-16 0.769716 0.0802123
-0.0787404 0.749165 0.10036
-
-1.66446e-16 0.749608 0.0918216
-0.0787404 0.749165 0.10036
-1.70911e-16 0.769716 0.0802123
-
-0.0787404 0.749165 0.10036
-1.66446e-16 0.749608 0.0918216
-0.0761991 0.724986 0.107639
-
-1.61507e-16 0.727365 0.0984808
-0.0761991 0.724986 0.107639
-1.66446e-16 0.749608 0.0918216
-
-0.0761991 0.724986 0.107639
-1.61507e-16 0.727365 0.0984808
-0.0735509 0.69979 0.109114
-
-1.56361e-16 0.704186 0.0998308
-0.0735509 0.69979 0.109114
-1.61507e-16 0.727365 0.0984808
-
-0.0735509 0.69979 0.109114
-1.56361e-16 0.704186 0.0998308
-0.0709385 0.674935 0.104708
-
-1.51283e-16 0.68132 0.095799
-0.0709385 0.674935 0.104708
-1.56361e-16 0.704186 0.0998308
-
-0.0709385 0.674935 0.104708
-1.51283e-16 0.68132 0.095799
-0.0685028 0.65176 0.0946559
-
-1.46549e-16 0.66 0.0866025
-0.0685028 0.65176 0.0946559
-1.51283e-16 0.68132 0.095799
-
-0.0685028 0.65176 0.0946559
-1.46549e-16 0.66 0.0866025
-0.066375 0.631516 0.0795014
-
-1.42414e-16 0.641376 0.0727374
-0.066375 0.631516 0.0795014
-1.46549e-16 0.66 0.0866025
-
-0.066375 0.631516 0.0795014
-1.42414e-16 0.641376 0.0727374
-0.0646699 0.615293 0.0600609
-
-1.391e-16 0.626451 0.0549509
-0.0646699 0.615293 0.0600609
-1.42414e-16 0.641376 0.0727374
-
-0.0646699 0.615293 0.0600609
-1.391e-16 0.626451 0.0549509
-0.0634793 0.603965 0.0373825
-
-1.36786e-16 0.616031 0.034202
-0.0634793 0.603965 0.0373825
-1.391e-16 0.626451 0.0549509
-
-0.0634793 0.603965 0.0373825
-1.36786e-16 0.616031 0.034202
-0.0628676 0.598145 0.0126889
-
-1.35597e-16 0.610676 0.0116093
-0.0628676 0.598145 0.0126889
-1.36786e-16 0.616031 0.034202
-
-0.0628676 0.598145 0.0126889
-1.35597e-16 0.610676 0.0116093
-0.0628676 0.598145 -0.0126889
-
-1.35597e-16 0.610676 -0.0116093
-0.0628676 0.598145 -0.0126889
-1.35597e-16 0.610676 0.0116093
-
-0.0628676 0.598145 -0.0126889
-1.35597e-16 0.610676 -0.0116093
-0.0634793 0.603965 -0.0373825
-
-1.36786e-16 0.616031 -0.034202
-0.0634793 0.603965 -0.0373825
-1.35597e-16 0.610676 -0.0116093
-
-0.0634793 0.603965 -0.0373825
-1.36786e-16 0.616031 -0.034202
-0.0646699 0.615293 -0.0600609
-
-1.391e-16 0.626451 -0.0549509
-0.0646699 0.615293 -0.0600609
-1.36786e-16 0.616031 -0.034202
-
-0.0646699 0.615293 -0.0600609
-1.391e-16 0.626451 -0.0549509
-0.066375 0.631516 -0.0795014
-
-1.42414e-16 0.641376 -0.0727374
-0.066375 0.631516 -0.0795014
-1.391e-16 0.626451 -0.0549509
-
-0.066375 0.631516 -0.0795014
-1.42414e-16 0.641376 -0.0727374
-0.0685028 0.65176 -0.0946559
-
-1.46549e-16 0.66 -0.0866025
-0.0685028 0.65176 -0.0946559
-1.42414e-16 0.641376 -0.0727374
-
-0.0685028 0.65176 -0.0946559
-1.46549e-16 0.66 -0.0866025
-0.0709385 0.674935 -0.104708
-
-1.51283e-16 0.68132 -0.095799
-0.0709385 0.674935 -0.104708
-1.46549e-16 0.66 -0.0866025
-
-0.0709385 0.674935 -0.104708
-1.51283e-16 0.68132 -0.095799
-0.0735509 0.69979 -0.109114
-
-1.56361e-16 0.704186 -0.0998308
-0.0735509 0.69979 -0.109114
-1.51283e-16 0.68132 -0.095799
-
-0.0735509 0.69979 -0.109114
-1.56361e-16 0.704186 -0.0998308
-0.0761991 0.724986 -0.107639
-
-1.61507e-16 0.727365 -0.0984808
-0.0761991 0.724986 -0.107639
-1.56361e-16 0.704186 -0.0998308
-
-0.0761991 0.724986 -0.107639
-1.61507e-16 0.727365 -0.0984808
-0.0787404 0.749165 -0.10036
-
-1.66446e-16 0.749608 -0.0918216
-0.0787404 0.749165 -0.10036
-1.61507e-16 0.727365 -0.0984808
-
-0.0787404 0.749165 -0.10036
-1.66446e-16 0.749608 -0.0918216
-0.0810377 0.771022 -0.0876715
-
-1.70911e-16 0.769716 -0.0802123
-0.0810377 0.771022 -0.0876715
-1.66446e-16 0.749608 -0.0918216
-
-0.0810377 0.771022 -0.0876715
-1.70911e-16 0.769716 -0.0802123
-0.0829672 0.78938 -0.0702562
-
-1.74661e-16 0.786604 -0.0642788
-0.0829672 0.78938 -0.0702562
-1.70911e-16 0.769716 -0.0802123
-
-0.0829672 0.78938 -0.0702562
-1.74661e-16 0.786604 -0.0642788
-0.0844249 0.803249 -0.0490534
-
-1.77494e-16 0.799363 -0.0448799
-0.0844249 0.803249 -0.0490534
-1.74661e-16 0.786604 -0.0642788
-
-0.0844249 0.803249 -0.0490534
-1.77494e-16 0.799363 -0.0448799
-0.0853321 0.811881 -0.0252061
-
-1.79258e-16 0.807304 -0.0230616
-0.0853321 0.811881 -0.0252061
-1.77494e-16 0.799363 -0.0448799
-
-0.0853321 0.811881 -0.0252061
-1.79258e-16 0.807304 -0.0230616
-0.0856401 0.814811 0
-
-1.79856e-16 0.81 0
-0.0856401 0.814811 0
-1.79258e-16 0.807304 -0.0230616
-
-1.79856e-16 0.81 0
--0.0856401 0.814811 0
-1.79258e-16 0.807304 0.0230616
-
--0.0853321 0.811881 0.0252061
-1.79258e-16 0.807304 0.0230616
--0.0856401 0.814811 0
-
-1.79258e-16 0.807304 0.0230616
--0.0853321 0.811881 0.0252061
-1.77494e-16 0.799363 0.0448799
-
--0.0844249 0.803249 0.0490534
-1.77494e-16 0.799363 0.0448799
--0.0853321 0.811881 0.0252061
-
-1.77494e-16 0.799363 0.0448799
--0.0844249 0.803249 0.0490534
-1.74661e-16 0.786604 0.0642788
-
--0.0829672 0.78938 0.0702562
-1.74661e-16 0.786604 0.0642788
--0.0844249 0.803249 0.0490534
-
-1.74661e-16 0.786604 0.0642788
--0.0829672 0.78938 0.0702562
-1.70911e-16 0.769716 0.0802123
-
--0.0810377 0.771022 0.0876715
-1.70911e-16 0.769716 0.0802123
--0.0829672 0.78938 0.0702562
-
-1.70911e-16 0.769716 0.0802123
--0.0810377 0.771022 0.0876715
-1.66446e-16 0.749608 0.0918216
-
--0.0787404 0.749165 0.10036
-1.66446e-16 0.749608 0.0918216
--0.0810377 0.771022 0.0876715
-
-1.66446e-16 0.749608 0.0918216
--0.0787404 0.749165 0.10036
-1.61507e-16 0.727365 0.0984808
-
--0.0761991 0.724986 0.107639
-1.61507e-16 0.727365 0.0984808
--0.0787404 0.749165 0.10036
-
-1.61507e-16 0.727365 0.0984808
--0.0761991 0.724986 0.107639
-1.56361e-16 0.704186 0.0998308
-
--0.0735509 0.69979 0.109114
-1.56361e-16 0.704186 0.0998308
--0.0761991 0.724986 0.107639
-
-1.56361e-16 0.704186 0.0998308
--0.0735509 0.69979 0.109114
-1.51283e-16 0.68132 0.095799
-
--0.0709385 0.674935 0.104708
-1.51283e-16 0.68132 0.095799
--0.0735509 0.69979 0.109114
-
-1.51283e-16 0.68132 0.095799
--0.0709385 0.674935 0.104708
-1.46549e-16 0.66 0.0866025
-
--0.0685028 0.65176 0.0946559
-1.46549e-16 0.66 0.0866025
--0.0709385 0.674935 0.104708
-
-1.46549e-16 0.66 0.0866025
--0.0685028 0.65176 0.0946559
-1.42414e-16 0.641376 0.0727374
-
--0.066375 0.631516 0.0795014
-1.42414e-16 0.641376 0.0727374
--0.0685028 0.65176 0.0946559
-
-1.42414e-16 0.641376 0.0727374
--0.066375 0.631516 0.0795014
-1.391e-16 0.626451 0.0549509
-
--0.0646699 0.615293 0.0600609
-1.391e-16 0.626451 0.0549509
--0.066375 0.631516 0.0795014
-
-1.391e-16 0.626451 0.0549509
--0.0646699 0.615293 0.0600609
-1.36786e-16 0.616031 0.034202
-
--0.0634793 0.603965 0.0373825
-1.36786e-16 0.616031 0.034202
--0.0646699 0.615293 0.0600609
-
-1.36786e-16 0.616031 0.034202
--0.0634793 0.603965 0.0373825
-1.35597e-16 0.610676 0.0116093
-
--0.0628676 0.598145 0.0126889
-1.35597e-16 0.610676 0.0116093
--0.0634793 0.603965 0.0373825
-
-1.35597e-16 0.610676 0.0116093
--0.0628676 0.598145 0.0126889
-1.35597e-16 0.610676 -0.0116093
-
--0.0628676 0.598145 -0.0126889
-1.35597e-16 0.610676 -0.0116093
--0.0628676 0.598145 0.0126889
-
-1.35597e-16 0.610676 -0.0116093
--0.0628676 0.598145 -0.0126889
-1.36786e-16 0.616031 -0.034202
-
--0.0634793 0.603965 -0.0373825
-1.36786e-16 0.616031 -0.034202
--0.0628676 0.598145 -0.0126889
-
-1.36786e-16 0.616031 -0.034202
--0.0634793 0.603965 -0.0373825
-1.391e-16 0.626451 -0.0549509
-
--0.0646699 0.615293 -0.0600609
-1.391e-16 0.626451 -0.0549509
--0.0634793 0.603965 -0.0373825
-
-1.391e-16 0.626451 -0.0549509
--0.0646699 0.615293 -0.0600609
-1.42414e-16 0.641376 -0.0727374
-
--0.066375 0.631516 -0.0795014
-1.42414e-16 0.641376 -0.0727374
--0.0646699 0.615293 -0.0600609
-
-1.42414e-16 0.641376 -0.0727374
--0.066375 0.631516 -0.0795014
-1.46549e-16 0.66 -0.0866025
-
--0.0685028 0.65176 -0.0946559
-1.46549e-16 0.66 -0.0866025
--0.066375 0.631516 -0.0795014
-
-1.46549e-16 0.66 -0.0866025
--0.0685028 0.65176 -0.0946559
-1.51283e-16 0.68132 -0.095799
-
--0.0709385 0.674935 -0.104708
-1.51283e-16 0.68132 -0.095799
--0.0685028 0.65176 -0.0946559
-
-1.51283e-16 0.68132 -0.095799
--0.0709385 0.674935 -0.104708
-1.56361e-16 0.704186 -0.0998308
-
--0.0735509 0.69979 -0.109114
-1.56361e-16 0.704186 -0.0998308
--0.0709385 0.674935 -0.104708
-
-1.56361e-16 0.704186 -0.0998308
--0.0735509 0.69979 -0.109114
-1.61507e-16 0.727365 -0.0984808
-
--0.0761991 0.724986 -0.107639
-1.61507e-16 0.727365 -0.0984808
--0.0735509 0.69979 -0.109114
-
-1.61507e-16 0.727365 -0.0984808
--0.0761991 0.724986 -0.107639
-1.66446e-16 0.749608 -0.0918216
-
--0.0787404 0.749165 -0.10036
-1.66446e-16 0.749608 -0.0918216
--0.0761991 0.724986 -0.107639
-
-1.66446e-16 0.749608 -0.0918216
--0.0787404 0.749165 -0.10036
-1.70911e-16 0.769716 -0.0802123
-
--0.0810377 0.771022 -0.0876715
-1.70911e-16 0.769716 -0.0802123
--0.0787404 0.749165 -0.10036
-
-1.70911e-16 0.769716 -0.0802123
--0.0810377 0.771022 -0.0876715
-1.74661e-16 0.786604 -0.0642788
-
--0.0829672 0.78938 -0.0702562
-1.74661e-16 0.786604 -0.0642788
--0.0810377 0.771022 -0.0876715
-
-1.74661e-16 0.786604 -0.0642788
--0.0829672 0.78938 -0.0702562
-1.77494e-16 0.799363 -0.0448799
-
--0.0844249 0.803249 -0.0490534
-1.77494e-16 0.799363 -0.0448799
--0.0829672 0.78938 -0.0702562
-
-1.77494e-16 0.799363 -0.0448799
--0.0844249 0.803249 -0.0490534
-1.79258e-16 0.807304 -0.0230616
-
--0.0853321 0.811881 -0.0252061
-1.79258e-16 0.807304 -0.0230616
--0.0844249 0.803249 -0.0490534
-
-1.79258e-16 0.807304 -0.0230616
--0.0853321 0.811881 -0.0252061
-1.79856e-16 0.81 0
-
--0.0856401 0.814811 0
-1.79856e-16 0.81 0
--0.0853321 0.811881 -0.0252061
-
--0.0856401 0.814811 0
--0.175953 0.827793 0
--0.0853321 0.811881 0.0252061
-
--0.175189 0.8242 0.0314299
--0.0853321 0.811881 0.0252061
--0.175953 0.827793 0
-
--0.0853321 0.811881 0.0252061
--0.175189 0.8242 0.0314299
--0.0844249 0.803249 0.0490534
-
--0.172939 0.813614 0.0611654
--0.0844249 0.803249 0.0490534
--0.175189 0.8242 0.0314299
-
--0.0844249 0.803249 0.0490534
--0.172939 0.813614 0.0611654
--0.0829672 0.78938 0.0702562
-
--0.169324 0.796605 0.0876034
--0.0829672 0.78938 0.0702562
--0.172939 0.813614 0.0611654
-
--0.0829672 0.78938 0.0702562
--0.169324 0.796605 0.0876034
--0.0810377 0.771022 0.0876715
-
--0.164538 0.774091 0.109319
--0.0810377 0.771022 0.0876715
--0.169324 0.796605 0.0876034
-
--0.0810377 0.771022 0.0876715
--0.164538 0.774091 0.109319
--0.0787404 0.749165 0.10036
-
--0.15884 0.747286 0.125141
--0.0787404 0.749165 0.10036
--0.164538 0.774091 0.109319
-
--0.0787404 0.749165 0.10036
--0.15884 0.747286 0.125141
--0.0761991 0.724986 0.107639
-
--0.152538 0.717634 0.134216
--0.0761991 0.724986 0.107639
--0.15884 0.747286 0.125141
-
--0.0761991 0.724986 0.107639
--0.152538 0.717634 0.134216
--0.0735509 0.69979 0.109114
-
--0.14597 0.686734 0.136056
--0.0735509 0.69979 0.109114
--0.152538 0.717634 0.134216
-
--0.0735509 0.69979 0.109114
--0.14597 0.686734 0.136056
--0.0709385 0.674935 0.104708
-
--0.139491 0.656251 0.130561
--0.0709385 0.674935 0.104708
--0.14597 0.686734 0.136056
-
--0.0709385 0.674935 0.104708
--0.139491 0.656251 0.130561
--0.0685028 0.65176 0.0946559
-
--0.133449 0.627831 0.118028
--0.0685028 0.65176 0.0946559
--0.139491 0.656251 0.130561
-
--0.0685028 0.65176 0.0946559
--0.133449 0.627831 0.118028
--0.066375 0.631516 0.0795014
-
--0.128172 0.603003 0.0991314
--0.066375 0.631516 0.0795014
--0.133449 0.627831 0.118028
-
--0.066375 0.631516 0.0795014
--0.128172 0.603003 0.0991314
--0.0646699 0.615293 0.0600609
-
--0.123943 0.583107 0.0748908
--0.0646699 0.615293 0.0600609
--0.128172 0.603003 0.0991314
-
--0.0646699 0.615293 0.0600609
--0.123943 0.583107 0.0748908
--0.0634793 0.603965 0.0373825
-
--0.120991 0.569216 0.0466128
--0.0634793 0.603965 0.0373825
--0.123943 0.583107 0.0748908
-
--0.0634793 0.603965 0.0373825
--0.120991 0.569216 0.0466128
--0.0628676 0.598145 0.0126889
-
--0.119473 0.562078 0.0158219
--0.0628676 0.598145 0.0126889
--0.120991 0.569216 0.0466128
-
--0.0628676 0.598145 0.0126889
--0.119473 0.562078 0.0158219
--0.0628676 0.598145 -0.0126889
-
--0.119473 0.562078 -0.0158219
--0.0628676 0.598145 -0.0126889
--0.119473 0.562078 0.0158219
-
--0.0628676 0.598145 -0.0126889
--0.119473 0.562078 -0.0158219
--0.0634793 0.603965 -0.0373825
-
--0.120991 0.569216 -0.0466128
--0.0634793 0.603965 -0.0373825
--0.119473 0.562078 -0.0158219
-
--0.0634793 0.603965 -0.0373825
--0.120991 0.569216 -0.0466128
--0.0646699 0.615293 -0.0600609
-
--0.123943 0.583107 -0.0748908
--0.0646699 0.615293 -0.0600609
--0.120991 0.569216 -0.0466128
-
--0.0646699 0.615293 -0.0600609
--0.123943 0.583107 -0.0748908
--0.066375 0.631516 -0.0795014
-
--0.128172 0.603003 -0.0991314
--0.066375 0.631516 -0.0795014
--0.123943 0.583107 -0.0748908
-
--0.066375 0.631516 -0.0795014
--0.128172 0.603003 -0.0991314
--0.0685028 0.65176 -0.0946559
-
--0.133449 0.627831 -0.118028
--0.0685028 0.65176 -0.0946559
--0.128172 0.603003 -0.0991314
-
--0.0685028 0.65176 -0.0946559
--0.133449 0.627831 -0.118028
--0.0709385 0.674935 -0.104708
-
--0.139491 0.656251 -0.130561
--0.0709385 0.674935 -0.104708
--0.133449 0.627831 -0.118028
-
--0.0709385 0.674935 -0.104708
--0.139491 0.656251 -0.130561
--0.0735509 0.69979 -0.109114
-
--0.14597 0.686734 -0.136056
--0.0735509 0.69979 -0.109114
--0.139491 0.656251 -0.130561
-
--0.0735509 0.69979 -0.109114
--0.14597 0.686734 -0.136056
--0.0761991 0.724986 -0.107639
-
--0.152538 0.717634 -0.134216
--0.0761991 0.724986 -0.107639
--0.14597 0.686734 -0.136056
-
--0.0761991 0.724986 -0.107639
--0.152538 0.717634 -0.134216
--0.0787404 0.749165 -0.10036
-
--0.15884 0.747286 -0.125141
--0.0787404 0.749165 -0.10036
--0.152538 0.717634 -0.134216
-
--0.0787404 0.749165 -0.10036
--0.15884 0.747286 -0.125141
--0.0810377 0.771022 -0.0876715
-
--0.164538 0.774091 -0.109319
--0.0810377 0.771022 -0.0876715
--0.15884 0.747286 -0.125141
-
--0.0810377 0.771022 -0.0876715
--0.164538 0.774091 -0.109319
--0.0829672 0.78938 -0.0702562
-
--0.169324 0.796605 -0.0876034
--0.0829672 0.78938 -0.0702562
--0.164538 0.774091 -0.109319
-
--0.0829672 0.78938 -0.0702562
--0.169324 0.796605 -0.0876034
--0.0844249 0.803249 -0.0490534
-
--0.172939 0.813614 -0.0611654
--0.0844249 0.803249 -0.0490534
--0.169324 0.796605 -0.0876034
-
--0.0844249 0.803249 -0.0490534
--0.172939 0.813614 -0.0611654
--0.0853321 0.811881 -0.0252061
-
--0.175189 0.8242 -0.0314299
--0.0853321 0.811881 -0.0252061
--0.172939 0.813614 -0.0611654
-
--0.0853321 0.811881 -0.0252061
--0.175189 0.8242 -0.0314299
--0.0856401 0.814811 0
-
--0.175953 0.827793 0
--0.0856401 0.814811 0
--0.175189 0.8242 -0.0314299
-
--0.175953 0.827793 0
--0.274506 0.844843 0
--0.175189 0.8242 0.0314299
-
--0.273021 0.840272 0.0411236
--0.175189 0.8242 0.0314299
--0.274506 0.844843 0
-
--0.175189 0.8242 0.0314299
--0.273021 0.840272 0.0411236
--0.172939 0.813614 0.0611654
-
--0.268645 0.826804 0.0800302
--0.172939 0.813614 0.0611654
--0.273021 0.840272 0.0411236
-
--0.172939 0.813614 0.0611654
--0.268645 0.826804 0.0800302
--0.169324 0.796605 0.0876034
-
--0.261614 0.805166 0.114622
--0.169324 0.796605 0.0876034
--0.268645 0.826804 0.0800302
-
--0.169324 0.796605 0.0876034
--0.261614 0.805166 0.114622
--0.164538 0.774091 0.109319
-
--0.252308 0.776524 0.143035
--0.164538 0.774091 0.109319
--0.261614 0.805166 0.114622
-
--0.164538 0.774091 0.109319
--0.252308 0.776524 0.143035
--0.15884 0.747286 0.125141
-
--0.241228 0.742423 0.163737
--0.15884 0.747286 0.125141
--0.252308 0.776524 0.143035
-
--0.15884 0.747286 0.125141
--0.241228 0.742423 0.163737
--0.152538 0.717634 0.134216
-
--0.228971 0.7047 0.175612
--0.152538 0.717634 0.134216
--0.241228 0.742423 0.163737
-
--0.152538 0.717634 0.134216
--0.228971 0.7047 0.175612
--0.14597 0.686734 0.136056
-
--0.216198 0.665389 0.178019
--0.14597 0.686734 0.136056
--0.228971 0.7047 0.175612
-
--0.14597 0.686734 0.136056
--0.216198 0.665389 0.178019
--0.139491 0.656251 0.130561
-
--0.203598 0.62661 0.170829
--0.139491 0.656251 0.130561
--0.216198 0.665389 0.178019
-
--0.139491 0.656251 0.130561
--0.203598 0.62661 0.170829
--0.133449 0.627831 0.118028
-
--0.19185 0.590454 0.15443
--0.133449 0.627831 0.118028
--0.203598 0.62661 0.170829
-
--0.133449 0.627831 0.118028
--0.19185 0.590454 0.15443
--0.128172 0.603003 0.0991314
-
--0.181587 0.558868 0.129706
--0.128172 0.603003 0.0991314
--0.19185 0.590454 0.15443
-
--0.128172 0.603003 0.0991314
--0.181587 0.558868 0.129706
--0.123943 0.583107 0.0748908
-
--0.173363 0.533557 0.0979889
--0.123943 0.583107 0.0748908
--0.181587 0.558868 0.129706
-
--0.123943 0.583107 0.0748908
--0.173363 0.533557 0.0979889
--0.120991 0.569216 0.0466128
-
--0.167621 0.515885 0.0609893
--0.120991 0.569216 0.0466128
--0.173363 0.533557 0.0979889
-
--0.120991 0.569216 0.0466128
--0.167621 0.515885 0.0609893
--0.119473 0.562078 0.0158219
-
--0.164671 0.506804 0.0207018
--0.119473 0.562078 0.0158219
--0.167621 0.515885 0.0609893
-
--0.119473 0.562078 0.0158219
--0.164671 0.506804 0.0207018
--0.119473 0.562078 -0.0158219
-
--0.164671 0.506804 -0.0207018
--0.119473 0.562078 -0.0158219
--0.164671 0.506804 0.0207018
-
--0.119473 0.562078 -0.0158219
--0.164671 0.506804 -0.0207018
--0.120991 0.569216 -0.0466128
-
--0.167621 0.515885 -0.0609893
--0.120991 0.569216 -0.0466128
--0.164671 0.506804 -0.0207018
-
--0.120991 0.569216 -0.0466128
--0.167621 0.515885 -0.0609893
--0.123943 0.583107 -0.0748908
-
--0.173363 0.533557 -0.0979889
--0.123943 0.583107 -0.0748908
--0.167621 0.515885 -0.0609893
-
--0.123943 0.583107 -0.0748908
--0.173363 0.533557 -0.0979889
--0.128172 0.603003 -0.0991314
-
--0.181587 0.558868 -0.129706
--0.128172 0.603003 -0.0991314
--0.173363 0.533557 -0.0979889
-
--0.128172 0.603003 -0.0991314
--0.181587 0.558868 -0.129706
--0.133449 0.627831 -0.118028
-
--0.19185 0.590454 -0.15443
--0.133449 0.627831 -0.118028
--0.181587 0.558868 -0.129706
-
--0.133449 0.627831 -0.118028
--0.19185 0.590454 -0.15443
--0.139491 0.656251 -0.130561
-
--0.203598 0.62661 -0.170829
--0.139491 0.656251 -0.130561
--0.19185 0.590454 -0.15443
-
--0.139491 0.656251 -0.130561
--0.203598 0.62661 -0.170829
--0.14597 0.686734 -0.136056
-
--0.216198 0.665389 -0.178019
--0.14597 0.686734 -0.136056
--0.203598 0.62661 -0.170829
-
--0.14597 0.686734 -0.136056
--0.216198 0.665389 -0.178019
--0.152538 0.717634 -0.134216
-
--0.228971 0.7047 -0.175612
--0.152538 0.717634 -0.134216
--0.216198 0.665389 -0.178019
-
--0.152538 0.717634 -0.134216
--0.228971 0.7047 -0.175612
--0.15884 0.747286 -0.125141
-
--0.241228 0.742423 -0.163737
--0.15884 0.747286 -0.125141
--0.228971 0.7047 -0.175612
-
--0.15884 0.747286 -0.125141
--0.241228 0.742423 -0.163737
--0.164538 0.774091 -0.109319
-
--0.252308 0.776524 -0.143035
--0.164538 0.774091 -0.109319
--0.241228 0.742423 -0.163737
-
--0.164538 0.774091 -0.109319
--0.252308 0.776524 -0.143035
--0.169324 0.796605 -0.0876034
-
--0.261614 0.805166 -0.114622
--0.169324 0.796605 -0.0876034
--0.252308 0.776524 -0.143035
-
--0.169324 0.796605 -0.0876034
--0.261614 0.805166 -0.114622
--0.172939 0.813614 -0.0611654
-
--0.268645 0.826804 -0.0800302
--0.172939 0.813614 -0.0611654
--0.261614 0.805166 -0.114622
-
--0.172939 0.813614 -0.0611654
--0.268645 0.826804 -0.0800302
--0.175189 0.8242 -0.0314299
-
--0.273021 0.840272 -0.0411236
--0.175189 0.8242 -0.0314299
--0.268645 0.826804 -0.0800302
-
--0.175189 0.8242 -0.0314299
--0.273021 0.840272 -0.0411236
--0.175953 0.827793 0
-
--0.274506 0.844843 0
--0.175953 0.827793 0
--0.273021 0.840272 -0.0411236
-
--0.274506 0.844843 0
--0.382856 0.859908 0
--0.273021 0.840272 0.0411236
-
--0.38032 0.854213 0.0533384
--0.273021 0.840272 0.0411236
--0.382856 0.859908 0
-
--0.273021 0.840272 0.0411236
--0.38032 0.854213 0.0533384
--0.268645 0.826804 0.0800302
-
--0.37285 0.837434 0.103801
--0.268645 0.826804 0.0800302
--0.38032 0.854213 0.0533384
-
--0.268645 0.826804 0.0800302
--0.37285 0.837434 0.103801
--0.261614 0.805166 0.114622
-
--0.360847 0.810476 0.148668
--0.261614 0.805166 0.114622
--0.37285 0.837434 0.103801
-
--0.261614 0.805166 0.114622
--0.360847 0.810476 0.148668
--0.252308 0.776524 0.143035
-
--0.344959 0.774791 0.18552
--0.252308 0.776524 0.143035
--0.360847 0.810476 0.148668
-
--0.252308 0.776524 0.143035
--0.344959 0.774791 0.18552
--0.241228 0.742423 0.163737
-
--0.326043 0.732305 0.212371
--0.241228 0.742423 0.163737
--0.344959 0.774791 0.18552
-
--0.241228 0.742423 0.163737
--0.326043 0.732305 0.212371
--0.228971 0.7047 0.175612
-
--0.305119 0.685308 0.227773
--0.228971 0.7047 0.175612
--0.326043 0.732305 0.212371
-
--0.228971 0.7047 0.175612
--0.305119 0.685308 0.227773
--0.216198 0.665389 0.178019
-
--0.283313 0.636332 0.230895
--0.216198 0.665389 0.178019
--0.305119 0.685308 0.227773
-
--0.216198 0.665389 0.178019
--0.283313 0.636332 0.230895
--0.203598 0.62661 0.170829
-
--0.261803 0.588018 0.22157
--0.203598 0.62661 0.170829
--0.283313 0.636332 0.230895
-
--0.203598 0.62661 0.170829
--0.261803 0.588018 0.22157
--0.19185 0.590454 0.15443
-
--0.241747 0.542972 0.2003
--0.19185 0.590454 0.15443
--0.261803 0.588018 0.22157
-
--0.19185 0.590454 0.15443
--0.241747 0.542972 0.2003
--0.181587 0.558868 0.129706
-
--0.224226 0.503621 0.168232
--0.181587 0.558868 0.129706
--0.241747 0.542972 0.2003
-
--0.181587 0.558868 0.129706
--0.224226 0.503621 0.168232
--0.173363 0.533557 0.0979889
-
--0.210186 0.472086 0.127094
--0.173363 0.533557 0.0979889
--0.224226 0.503621 0.168232
-
--0.173363 0.533557 0.0979889
--0.210186 0.472086 0.127094
--0.167621 0.515885 0.0609893
-
--0.200383 0.450069 0.0791047
--0.167621 0.515885 0.0609893
--0.210186 0.472086 0.127094
-
--0.167621 0.515885 0.0609893
--0.200383 0.450069 0.0791047
--0.164671 0.506804 0.0207018
-
--0.195346 0.438755 0.0268508
--0.164671 0.506804 0.0207018
--0.200383 0.450069 0.0791047
-
--0.164671 0.506804 0.0207018
--0.195346 0.438755 0.0268508
--0.164671 0.506804 -0.0207018
-
--0.195346 0.438755 -0.0268508
--0.164671 0.506804 -0.0207018
--0.195346 0.438755 0.0268508
-
--0.164671 0.506804 -0.0207018
--0.195346 0.438755 -0.0268508
--0.167621 0.515885 -0.0609893
-
--0.200383 0.450069 -0.0791047
--0.167621 0.515885 -0.0609893
--0.195346 0.438755 -0.0268508
-
--0.167621 0.515885 -0.0609893
--0.200383 0.450069 -0.0791047
--0.173363 0.533557 -0.0979889
-
--0.210186 0.472086 -0.127094
--0.173363 0.533557 -0.0979889
--0.200383 0.450069 -0.0791047
-
--0.173363 0.533557 -0.0979889
--0.210186 0.472086 -0.127094
--0.181587 0.558868 -0.129706
-
--0.224226 0.503621 -0.168232
--0.181587 0.558868 -0.129706
--0.210186 0.472086 -0.127094
-
--0.181587 0.558868 -0.129706
--0.224226 0.503621 -0.168232
--0.19185 0.590454 -0.15443
-
--0.241747 0.542972 -0.2003
--0.19185 0.590454 -0.15443
--0.224226 0.503621 -0.168232
-
--0.19185 0.590454 -0.15443
--0.241747 0.542972 -0.2003
--0.203598 0.62661 -0.170829
-
--0.261803 0.588018 -0.22157
--0.203598 0.62661 -0.170829
--0.241747 0.542972 -0.2003
-
--0.203598 0.62661 -0.170829
--0.261803 0.588018 -0.22157
--0.216198 0.665389 -0.178019
-
--0.283313 0.636332 -0.230895
--0.216198 0.665389 -0.178019
--0.261803 0.588018 -0.22157
-
--0.216198 0.665389 -0.178019
--0.283313 0.636332 -0.230895
--0.228971 0.7047 -0.175612
-
--0.305119 0.685308 -0.227773
--0.228971 0.7047 -0.175612
--0.283313 0.636332 -0.230895
-
--0.228971 0.7047 -0.175612
--0.305119 0.685308 -0.227773
--0.241228 0.742423 -0.163737
-
--0.326043 0.732305 -0.212371
--0.241228 0.742423 -0.163737
--0.305119 0.685308 -0.227773
-
--0.241228 0.742423 -0.163737
--0.326043 0.732305 -0.212371
--0.252308 0.776524 -0.143035
-
--0.344959 0.774791 -0.18552
--0.252308 0.776524 -0.143035
--0.326043 0.732305 -0.212371
-
--0.252308 0.776524 -0.143035
--0.344959 0.774791 -0.18552
--0.261614 0.805166 -0.114622
-
--0.360847 0.810476 -0.148668
--0.261614 0.805166 -0.114622
--0.344959 0.774791 -0.18552
-
--0.261614 0.805166 -0.114622
--0.360847 0.810476 -0.148668
--0.268645 0.826804 -0.0800302
-
--0.37285 0.837434 -0.103801
--0.268645 0.826804 -0.0800302
--0.360847 0.810476 -0.148668
-
--0.268645 0.826804 -0.0800302
--0.37285 0.837434 -0.103801
--0.273021 0.840272 -0.0411236
-
--0.38032 0.854213 -0.0533384
--0.273021 0.840272 -0.0411236
--0.37285 0.837434 -0.103801
-
--0.273021 0.840272 -0.0411236
--0.38032 0.854213 -0.0533384
--0.274506 0.844843 0
-
--0.382856 0.859908 0
--0.274506 0.844843 0
--0.38032 0.854213 -0.0533384
-
--0.382856 0.859908 0
--0.5 0.866025 0
--0.38032 0.854213 0.0533384
-
--0.496092 0.859256 0.0668786
--0.38032 0.854213 0.0533384
--0.5 0.866025 0
-
--0.38032 0.854213 0.0533384
--0.496092 0.859256 0.0668786
--0.37285 0.837434 0.103801
-
--0.484577 0.839312 0.130152
--0.37285 0.837434 0.103801
--0.496092 0.859256 0.0668786
-
--0.37285 0.837434 0.103801
--0.484577 0.839312 0.130152
--0.360847 0.810476 0.148668
-
--0.466076 0.807268 0.186408
--0.360847 0.810476 0.148668
--0.484577 0.839312 0.130152
-
--0.360847 0.810476 0.148668
--0.466076 0.807268 0.186408
--0.344959 0.774791 0.18552
-
--0.441588 0.764853 0.232616
--0.344959 0.774791 0.18552
--0.466076 0.807268 0.186408
-
--0.344959 0.774791 0.18552
--0.441588 0.764853 0.232616
--0.326043 0.732305 0.212371
-
--0.412432 0.714352 0.266283
--0.326043 0.732305 0.212371
--0.441588 0.764853 0.232616
-
--0.326043 0.732305 0.212371
--0.412432 0.714352 0.266283
--0.305119 0.685308 0.227773
-
--0.380179 0.658489 0.285594
--0.305119 0.685308 0.227773
--0.412432 0.714352 0.266283
-
--0.305119 0.685308 0.227773
--0.380179 0.658489 0.285594
--0.283313 0.636332 0.230895
-
--0.346569 0.600275 0.289509
--0.283313 0.636332 0.230895
--0.380179 0.658489 0.285594
-
--0.283313 0.636332 0.230895
--0.346569 0.600275 0.289509
--0.261803 0.588018 0.22157
-
--0.313414 0.542848 0.277817
--0.261803 0.588018 0.22157
--0.346569 0.600275 0.289509
-
--0.261803 0.588018 0.22157
--0.313414 0.542848 0.277817
--0.241747 0.542972 0.2003
-
--0.2825 0.489304 0.251147
--0.241747 0.542972 0.2003
--0.313414 0.542848 0.277817
-
--0.241747 0.542972 0.2003
--0.2825 0.489304 0.251147
--0.224226 0.503621 0.168232
-
--0.255495 0.44253 0.210938
--0.224226 0.503621 0.168232
--0.2825 0.489304 0.251147
-
--0.224226 0.503621 0.168232
--0.255495 0.44253 0.210938
--0.210186 0.472086 0.127094
-
--0.233854 0.405047 0.159358
--0.210186 0.472086 0.127094
--0.255495 0.44253 0.210938
-
--0.210186 0.472086 0.127094
--0.233854 0.405047 0.159358
--0.200383 0.450069 0.0791047
-
--0.218745 0.378877 0.0991858
--0.200383 0.450069 0.0791047
--0.233854 0.405047 0.159358
-
--0.200383 0.450069 0.0791047
--0.218745 0.378877 0.0991858
--0.195346 0.438755 0.0268508
-
--0.21098 0.365429 0.0336669
--0.195346 0.438755 0.0268508
--0.218745 0.378877 0.0991858
-
--0.195346 0.438755 0.0268508
--0.21098 0.365429 0.0336669
--0.195346 0.438755 -0.0268508
-
--0.21098 0.365429 -0.0336669
--0.195346 0.438755 -0.0268508
--0.21098 0.365429 0.0336669
-
--0.195346 0.438755 -0.0268508
--0.21098 0.365429 -0.0336669
--0.200383 0.450069 -0.0791047
-
--0.218745 0.378877 -0.0991858
--0.200383 0.450069 -0.0791047
--0.21098 0.365429 -0.0336669
-
--0.200383 0.450069 -0.0791047
--0.218745 0.378877 -0.0991858
--0.210186 0.472086 -0.127094
-
--0.233854 0.405047 -0.159358
--0.210186 0.472086 -0.127094
--0.218745 0.378877 -0.0991858
-
--0.210186 0.472086 -0.127094
--0.233854 0.405047 -0.159358
--0.224226 0.503621 -0.168232
-
--0.255495 0.44253 -0.210938
--0.224226 0.503621 -0.168232
--0.233854 0.405047 -0.159358
-
--0.224226 0.503621 -0.168232
--0.255495 0.44253 -0.210938
--0.241747 0.542972 -0.2003
-
--0.2825 0.489304 -0.251147
--0.241747 0.542972 -0.2003
--0.255495 0.44253 -0.210938
-
--0.241747 0.542972 -0.2003
--0.2825 0.489304 -0.251147
--0.261803 0.588018 -0.22157
-
--0.313414 0.542848 -0.277817
--0.261803 0.588018 -0.22157
--0.2825 0.489304 -0.251147
-
--0.261803 0.588018 -0.22157
--0.313414 0.542848 -0.277817
--0.283313 0.636332 -0.230895
-
--0.346569 0.600275 -0.289509
--0.283313 0.636332 -0.230895
--0.313414 0.542848 -0.277817
-
--0.283313 0.636332 -0.230895
--0.346569 0.600275 -0.289509
--0.305119 0.685308 -0.227773
-
--0.380179 0.658489 -0.285594
--0.305119 0.685308 -0.227773
--0.346569 0.600275 -0.289509
-
--0.305119 0.685308 -0.227773
--0.380179 0.658489 -0.285594
--0.326043 0.732305 -0.212371
-
--0.412432 0.714352 -0.266283
--0.326043 0.732305 -0.212371
--0.380179 0.658489 -0.285594
-
--0.326043 0.732305 -0.212371
--0.412432 0.714352 -0.266283
--0.344959 0.774791 -0.18552
-
--0.441588 0.764853 -0.232616
--0.344959 0.774791 -0.18552
--0.412432 0.714352 -0.266283
-
--0.344959 0.774791 -0.18552
--0.441588 0.764853 -0.232616
--0.360847 0.810476 -0.148668
-
--0.466076 0.807268 -0.186408
--0.360847 0.810476 -0.148668
--0.441588 0.764853 -0.232616
-
--0.360847 0.810476 -0.148668
--0.466076 0.807268 -0.186408
--0.37285 0.837434 -0.103801
-
--0.484577 0.839312 -0.130152
--0.37285 0.837434 -0.103801
--0.466076 0.807268 -0.186408
-
--0.37285 0.837434 -0.103801
--0.484577 0.839312 -0.130152
--0.38032 0.854213 -0.0533384
-
--0.496092 0.859256 -0.0668786
--0.38032 0.854213 -0.0533384
--0.484577 0.839312 -0.130152
-
--0.38032 0.854213 -0.0533384
--0.496092 0.859256 -0.0668786
--0.382856 0.859908 0
-
--0.5 0.866025 0
--0.382856 0.859908 0
--0.496092 0.859256 -0.0668786
-
--0.5 0.866025 0
--0.622296 0.856517 0
--0.496092 0.859256 0.0668786
-
--0.616771 0.848913 0.0804188
--0.496092 0.859256 0.0668786
--0.622296 0.856517 0
-
--0.496092 0.859256 0.0668786
--0.616771 0.848913 0.0804188
--0.484577 0.839312 0.130152
-
--0.600494 0.826509 0.156502
--0.484577 0.839312 0.130152
--0.616771 0.848913 0.0804188
-
--0.484577 0.839312 0.130152
--0.600494 0.826509 0.156502
--0.466076 0.807268 0.186408
-
--0.574343 0.790515 0.224149
--0.466076 0.807268 0.186408
--0.600494 0.826509 0.156502
-
--0.466076 0.807268 0.186408
--0.574343 0.790515 0.224149
--0.441588 0.764853 0.232616
-
--0.539726 0.742869 0.279711
--0.441588 0.764853 0.232616
--0.574343 0.790515 0.224149
-
--0.441588 0.764853 0.232616
--0.539726 0.742869 0.279711
--0.412432 0.714352 0.266283
-
--0.498511 0.686142 0.320194
--0.412432 0.714352 0.266283
--0.539726 0.742869 0.279711
-
--0.412432 0.714352 0.266283
--0.498511 0.686142 0.320194
--0.380179 0.658489 0.285594
-
--0.45292 0.623391 0.343415
--0.380179 0.658489 0.285594
--0.498511 0.686142 0.320194
-
--0.380179 0.658489 0.285594
--0.45292 0.623391 0.343415
--0.346569 0.600275 0.289509
-
--0.40541 0.557999 0.348123
--0.346569 0.600275 0.289509
--0.45292 0.623391 0.343415
-
--0.346569 0.600275 0.289509
--0.40541 0.557999 0.348123
--0.313414 0.542848 0.277817
-
--0.358542 0.493491 0.334064
--0.313414 0.542848 0.277817
--0.40541 0.557999 0.348123
-
--0.313414 0.542848 0.277817
--0.358542 0.493491 0.334064
--0.2825 0.489304 0.251147
-
--0.314843 0.433345 0.301995
--0.2825 0.489304 0.251147
--0.358542 0.493491 0.334064
-
--0.2825 0.489304 0.251147
--0.314843 0.433345 0.301995
--0.255495 0.44253 0.210938
-
--0.27667 0.380803 0.253645
--0.255495 0.44253 0.210938
--0.314843 0.433345 0.301995
-
--0.255495 0.44253 0.210938
--0.27667 0.380803 0.253645
--0.233854 0.405047 0.159358
-
--0.246079 0.338698 0.191621
--0.233854 0.405047 0.159358
--0.27667 0.380803 0.253645
-
--0.233854 0.405047 0.159358
--0.246079 0.338698 0.191621
--0.218745 0.378877 0.0991858
-
--0.22472 0.309301 0.119267
--0.218745 0.378877 0.0991858
--0.246079 0.338698 0.191621
-
--0.218745 0.378877 0.0991858
--0.22472 0.309301 0.119267
--0.21098 0.365429 0.0336669
-
--0.213745 0.294195 0.0404831
--0.21098 0.365429 0.0336669
--0.22472 0.309301 0.119267
-
--0.21098 0.365429 0.0336669
--0.213745 0.294195 0.0404831
--0.21098 0.365429 -0.0336669
-
--0.213745 0.294195 -0.0404831
--0.21098 0.365429 -0.0336669
--0.213745 0.294195 0.0404831
-
--0.21098 0.365429 -0.0336669
--0.213745 0.294195 -0.0404831
--0.218745 0.378877 -0.0991858
-
--0.22472 0.309301 -0.119267
--0.218745 0.378877 -0.0991858
--0.213745 0.294195 -0.0404831
-
--0.218745 0.378877 -0.0991858
--0.22472 0.309301 -0.119267
--0.233854 0.405047 -0.159358
-
--0.246079 0.338698 -0.191621
--0.233854 0.405047 -0.159358
--0.22472 0.309301 -0.119267
-
--0.233854 0.405047 -0.159358
--0.246079 0.338698 -0.191621
--0.255495 0.44253 -0.210938
-
--0.27667 0.380803 -0.253645
--0.255495 0.44253 -0.210938
--0.246079 0.338698 -0.191621
-
--0.255495 0.44253 -0.210938
--0.27667 0.380803 -0.253645
--0.2825 0.489304 -0.251147
-
--0.314843 0.433345 -0.301995
--0.2825 0.489304 -0.251147
--0.27667 0.380803 -0.253645
-
--0.2825 0.489304 -0.251147
--0.314843 0.433345 -0.301995
--0.313414 0.542848 -0.277817
-
--0.358542 0.493491 -0.334064
--0.313414 0.542848 -0.277817
--0.314843 0.433345 -0.301995
-
--0.313414 0.542848 -0.277817
--0.358542 0.493491 -0.334064
--0.346569 0.600275 -0.289509
-
--0.40541 0.557999 -0.348123
--0.346569 0.600275 -0.289509
--0.358542 0.493491 -0.334064
-
--0.346569 0.600275 -0.289509
--0.40541 0.557999 -0.348123
--0.380179 0.658489 -0.285594
-
--0.45292 0.623391 -0.343415
--0.380179 0.658489 -0.285594
--0.40541 0.557999 -0.348123
-
--0.380179 0.658489 -0.285594
--0.45292 0.623391 -0.343415
--0.412432 0.714352 -0.266283
-
--0.498511 0.686142 -0.320194
--0.412432 0.714352 -0.266283
--0.45292 0.623391 -0.343415
-
--0.412432 0.714352 -0.266283
--0.498511 0.686142 -0.320194
--0.441588 0.764853 -0.232616
-
--0.539726 0.742869 -0.279711
--0.441588 0.764853 -0.232616
--0.498511 0.686142 -0.320194
-
--0.441588 0.764853 -0.232616
--0.539726 0.742869 -0.279711
--0.466076 0.807268 -0.186408
-
--0.574343 0.790515 -0.224149
--0.466076 0.807268 -0.186408
--0.539726 0.742869 -0.279711
-
--0.466076 0.807268 -0.186408
--0.574343 0.790515 -0.224149
--0.484577 0.839312 -0.130152
-
--0.600494 0.826509 -0.156502
--0.484577 0.839312 -0.130152
--0.574343 0.790515 -0.224149
-
--0.484577 0.839312 -0.130152
--0.600494 0.826509 -0.156502
--0.496092 0.859256 -0.0668786
-
--0.616771 0.848913 -0.0804188
--0.496092 0.859256 -0.0668786
--0.600494 0.826509 -0.156502
-
--0.496092 0.859256 -0.0668786
--0.616771 0.848913 -0.0804188
--0.5 0.866025 0
-
--0.622296 0.856517 0
--0.5 0.866025 0
--0.616771 0.848913 -0.0804188
-
--0.622296 0.856517 0
--0.743859 0.826139 0
--0.616771 0.848913 0.0804188
-
--0.736614 0.818092 0.0926336
--0.616771 0.848913 0.0804188
--0.743859 0.826139 0
-
--0.616771 0.848913 0.0804188
--0.736614 0.818092 0.0926336
--0.600494 0.826509 0.156502
-
--0.71527 0.794387 0.180273
--0.600494 0.826509 0.156502
--0.736614 0.818092 0.0926336
-
--0.600494 0.826509 0.156502
--0.71527 0.794387 0.180273
--0.574343 0.790515 0.224149
-
--0.680977 0.756302 0.258194
--0.574343 0.790515 0.224149
--0.71527 0.794387 0.180273
-
--0.574343 0.790515 0.224149
--0.680977 0.756302 0.258194
--0.539726 0.742869 0.279711
-
--0.635585 0.705888 0.322196
--0.539726 0.742869 0.279711
--0.680977 0.756302 0.258194
-
--0.539726 0.742869 0.279711
--0.635585 0.705888 0.322196
--0.498511 0.686142 0.320194
-
--0.581539 0.645865 0.368828
--0.498511 0.686142 0.320194
--0.635585 0.705888 0.322196
-
--0.498511 0.686142 0.320194
--0.581539 0.645865 0.368828
--0.45292 0.623391 0.343415
-
--0.521755 0.579468 0.395577
--0.45292 0.623391 0.343415
--0.581539 0.645865 0.368828
-
--0.45292 0.623391 0.343415
--0.521755 0.579468 0.395577
--0.40541 0.557999 0.348123
-
--0.459455 0.510276 0.401
--0.40541 0.557999 0.348123
--0.521755 0.579468 0.395577
-
--0.40541 0.557999 0.348123
--0.459455 0.510276 0.401
--0.358542 0.493491 0.334064
-
--0.397997 0.44202 0.384804
--0.358542 0.493491 0.334064
--0.459455 0.510276 0.401
-
--0.358542 0.493491 0.334064
--0.397997 0.44202 0.384804
--0.314843 0.433345 0.301995
-
--0.340695 0.37838 0.347864
--0.314843 0.433345 0.301995
--0.397997 0.44202 0.384804
-
--0.314843 0.433345 0.301995
--0.340695 0.37838 0.347864
--0.27667 0.380803 0.253645
-
--0.290638 0.322786 0.292171
--0.27667 0.380803 0.253645
--0.340695 0.37838 0.347864
-
--0.27667 0.380803 0.253645
--0.290638 0.322786 0.292171
--0.246079 0.338698 0.191621
-
--0.250524 0.278235 0.220726
--0.246079 0.338698 0.191621
--0.290638 0.322786 0.292171
-
--0.246079 0.338698 0.191621
--0.250524 0.278235 0.220726
--0.22472 0.309301 0.119267
-
--0.222516 0.247129 0.137382
--0.22472 0.309301 0.119267
--0.250524 0.278235 0.220726
-
--0.22472 0.309301 0.119267
--0.222516 0.247129 0.137382
--0.213745 0.294195 0.0404831
-
--0.208124 0.231145 0.0466321
--0.213745 0.294195 0.0404831
--0.222516 0.247129 0.137382
-
--0.213745 0.294195 0.0404831
--0.208124 0.231145 0.0466321
--0.213745 0.294195 -0.0404831
-
--0.208124 0.231145 -0.0466321
--0.213745 0.294195 -0.0404831
--0.208124 0.231145 0.0466321
-
--0.213745 0.294195 -0.0404831
--0.208124 0.231145 -0.0466321
--0.22472 0.309301 -0.119267
-
--0.222516 0.247129 -0.137382
--0.22472 0.309301 -0.119267
--0.208124 0.231145 -0.0466321
-
--0.22472 0.309301 -0.119267
--0.222516 0.247129 -0.137382
--0.246079 0.338698 -0.191621
-
--0.250524 0.278235 -0.220726
--0.246079 0.338698 -0.191621
--0.222516 0.247129 -0.137382
-
--0.246079 0.338698 -0.191621
--0.250524 0.278235 -0.220726
--0.27667 0.380803 -0.253645
-
--0.290638 0.322786 -0.292171
--0.27667 0.380803 -0.253645
--0.250524 0.278235 -0.220726
-
--0.27667 0.380803 -0.253645
--0.290638 0.322786 -0.292171
--0.314843 0.433345 -0.301995
-
--0.340695 0.37838 -0.347864
--0.314843 0.433345 -0.301995
--0.290638 0.322786 -0.292171
-
--0.314843 0.433345 -0.301995
--0.340695 0.37838 -0.347864
--0.358542 0.493491 -0.334064
-
--0.397997 0.44202 -0.384804
--0.358542 0.493491 -0.334064
--0.340695 0.37838 -0.347864
-
--0.358542 0.493491 -0.334064
--0.397997 0.44202 -0.384804
--0.40541 0.557999 -0.348123
-
--0.459455 0.510276 -0.401
--0.40541 0.557999 -0.348123
--0.397997 0.44202 -0.384804
-
--0.40541 0.557999 -0.348123
--0.459455 0.510276 -0.401
--0.45292 0.623391 -0.343415
-
--0.521755 0.579468 -0.395577
--0.45292 0.623391 -0.343415
--0.459455 0.510276 -0.401
-
--0.45292 0.623391 -0.343415
--0.521755 0.579468 -0.395577
--0.498511 0.686142 -0.320194
-
--0.581539 0.645865 -0.368828
--0.498511 0.686142 -0.320194
--0.521755 0.579468 -0.395577
-
--0.498511 0.686142 -0.320194
--0.581539 0.645865 -0.368828
--0.539726 0.742869 -0.279711
-
--0.635585 0.705888 -0.322196
--0.539726 0.742869 -0.279711
--0.581539 0.645865 -0.368828
-
--0.539726 0.742869 -0.279711
--0.635585 0.705888 -0.322196
--0.574343 0.790515 -0.224149
-
--0.680977 0.756302 -0.258194
--0.574343 0.790515 -0.224149
--0.635585 0.705888 -0.322196
-
--0.574343 0.790515 -0.224149
--0.680977 0.756302 -0.258194
--0.600494 0.826509 -0.156502
-
--0.71527 0.794387 -0.180273
--0.600494 0.826509 -0.156502
--0.680977 0.756302 -0.258194
-
--0.600494 0.826509 -0.156502
--0.71527 0.794387 -0.180273
--0.616771 0.848913 -0.0804188
-
--0.736614 0.818092 -0.0926336
--0.616771 0.848913 -0.0804188
--0.71527 0.794387 -0.180273
-
--0.616771 0.848913 -0.0804188
--0.736614 0.818092 -0.0926336
--0.622296 0.856517 0
-
--0.743859 0.826139 0
--0.622296 0.856517 0
--0.736614 0.818092 -0.0926336
-
--0.743859 0.826139 0
--0.857376 0.771985 0
--0.736614 0.818092 0.0926336
-
--0.848488 0.763982 0.102327
--0.736614 0.818092 0.0926336
--0.857376 0.771985 0
-
--0.736614 0.818092 0.0926336
--0.848488 0.763982 0.102327
--0.71527 0.794387 0.180273
-
--0.822302 0.740404 0.199138
--0.71527 0.794387 0.180273
--0.848488 0.763982 0.102327
-
--0.71527 0.794387 0.180273
--0.822302 0.740404 0.199138
--0.680977 0.756302 0.258194
-
--0.780231 0.702523 0.285213
--0.680977 0.756302 0.258194
--0.822302 0.740404 0.199138
-
--0.680977 0.756302 0.258194
--0.780231 0.702523 0.285213
--0.635585 0.705888 0.322196
-
--0.724542 0.65238 0.355913
--0.635585 0.705888 0.322196
--0.780231 0.702523 0.285213
-
--0.635585 0.705888 0.322196
--0.724542 0.65238 0.355913
--0.581539 0.645865 0.368828
-
--0.658237 0.59268 0.407425
--0.581539 0.645865 0.368828
--0.724542 0.65238 0.355913
-
--0.581539 0.645865 0.368828
--0.658237 0.59268 0.407425
--0.521755 0.579468 0.395577
-
--0.584892 0.526639 0.436972
--0.521755 0.579468 0.395577
--0.658237 0.59268 0.407425
-
--0.521755 0.579468 0.395577
--0.584892 0.526639 0.436972
--0.459455 0.510276 0.401
-
--0.50846 0.457819 0.442963
--0.459455 0.510276 0.401
--0.584892 0.526639 0.436972
-
--0.459455 0.510276 0.401
--0.50846 0.457819 0.442963
--0.397997 0.44202 0.384804
-
--0.433061 0.38993 0.425073
--0.397997 0.44202 0.384804
--0.50846 0.457819 0.442963
-
--0.397997 0.44202 0.384804
--0.433061 0.38993 0.425073
--0.340695 0.37838 0.347864
-
--0.362761 0.326632 0.384267
--0.340695 0.37838 0.347864
--0.433061 0.38993 0.425073
-
--0.340695 0.37838 0.347864
--0.362761 0.326632 0.384267
--0.290638 0.322786 0.292171
-
--0.301349 0.271336 0.322745
--0.290638 0.322786 0.292171
--0.362761 0.326632 0.384267
-
--0.290638 0.322786 0.292171
--0.301349 0.271336 0.322745
--0.250524 0.278235 0.220726
-
--0.252136 0.227025 0.243824
--0.250524 0.278235 0.220726
--0.301349 0.271336 0.322745
-
--0.250524 0.278235 0.220726
--0.252136 0.227025 0.243824
--0.222516 0.247129 0.137382
-
--0.217776 0.196086 0.151759
--0.222516 0.247129 0.137382
--0.252136 0.227025 0.243824
-
--0.222516 0.247129 0.137382
--0.217776 0.196086 0.151759
--0.208124 0.231145 0.0466321
-
--0.200119 0.180188 0.051512
--0.208124 0.231145 0.0466321
--0.217776 0.196086 0.151759
-
--0.208124 0.231145 0.0466321
--0.200119 0.180188 0.051512
--0.208124 0.231145 -0.0466321
-
--0.200119 0.180188 -0.051512
--0.208124 0.231145 -0.0466321
--0.200119 0.180188 0.051512
-
--0.208124 0.231145 -0.0466321
--0.200119 0.180188 -0.051512
--0.222516 0.247129 -0.137382
-
--0.217776 0.196086 -0.151759
--0.222516 0.247129 -0.137382
--0.200119 0.180188 -0.051512
-
--0.222516 0.247129 -0.137382
--0.217776 0.196086 -0.151759
--0.250524 0.278235 -0.220726
-
--0.252136 0.227025 -0.243824
--0.250524 0.278235 -0.220726
--0.217776 0.196086 -0.151759
-
--0.250524 0.278235 -0.220726
--0.252136 0.227025 -0.243824
--0.290638 0.322786 -0.292171
-
--0.301349 0.271336 -0.322745
--0.290638 0.322786 -0.292171
--0.252136 0.227025 -0.243824
-
--0.290638 0.322786 -0.292171
--0.301349 0.271336 -0.322745
--0.340695 0.37838 -0.347864
-
--0.362761 0.326632 -0.384267
--0.340695 0.37838 -0.347864
--0.301349 0.271336 -0.322745
-
--0.340695 0.37838 -0.347864
--0.362761 0.326632 -0.384267
--0.397997 0.44202 -0.384804
-
--0.433061 0.38993 -0.425073
--0.397997 0.44202 -0.384804
--0.362761 0.326632 -0.384267
-
--0.397997 0.44202 -0.384804
--0.433061 0.38993 -0.425073
--0.459455 0.510276 -0.401
-
--0.50846 0.457819 -0.442963
--0.459455 0.510276 -0.401
--0.433061 0.38993 -0.425073
-
--0.459455 0.510276 -0.401
--0.50846 0.457819 -0.442963
--0.521755 0.579468 -0.395577
-
--0.584892 0.526639 -0.436972
--0.521755 0.579468 -0.395577
--0.50846 0.457819 -0.442963
-
--0.521755 0.579468 -0.395577
--0.584892 0.526639 -0.436972
--0.581539 0.645865 -0.368828
-
--0.658237 0.59268 -0.407425
--0.581539 0.645865 -0.368828
--0.584892 0.526639 -0.436972
-
--0.581539 0.645865 -0.368828
--0.658237 0.59268 -0.407425
--0.635585 0.705888 -0.322196
-
--0.724542 0.65238 -0.355913
--0.635585 0.705888 -0.322196
--0.658237 0.59268 -0.407425
-
--0.635585 0.705888 -0.322196
--0.724542 0.65238 -0.355913
--0.680977 0.756302 -0.258194
-
--0.780231 0.702523 -0.285213
--0.680977 0.756302 -0.258194
--0.724542 0.65238 -0.355913
-
--0.680977 0.756302 -0.258194
--0.780231 0.702523 -0.285213
--0.71527 0.794387 -0.180273
-
--0.822302 0.740404 -0.199138
--0.71527 0.794387 -0.180273
--0.780231 0.702523 -0.285213
-
--0.71527 0.794387 -0.180273
--0.822302 0.740404 -0.199138
--0.736614 0.818092 -0.0926336
-
--0.848488 0.763982 -0.102327
--0.736614 0.818092 -0.0926336
--0.822302 0.740404 -0.199138
-
--0.736614 0.818092 -0.0926336
--0.848488 0.763982 -0.102327
--0.743859 0.826139 0
-
--0.857376 0.771985 0
--0.743859 0.826139 0
--0.848488 0.763982 -0.102327
-
--0.857376 0.771985 0
--0.955207 0.693998 0
--0.848488 0.763982 0.102327
-
--0.944942 0.686541 0.108551
--0.848488 0.763982 0.102327
--0.955207 0.693998 0
-
--0.848488 0.763982 0.102327
--0.944942 0.686541 0.108551
--0.822302 0.740404 0.199138
-
--0.914702 0.66457 0.21125
--0.822302 0.740404 0.199138
--0.944942 0.686541 0.108551
-
--0.822302 0.740404 0.199138
--0.914702 0.66457 0.21125
--0.780231 0.702523 0.285213
-
--0.866116 0.62927 0.302561
--0.780231 0.702523 0.285213
--0.914702 0.66457 0.21125
-
--0.780231 0.702523 0.285213
--0.866116 0.62927 0.302561
--0.724542 0.65238 0.355913
-
--0.801803 0.582544 0.37756
--0.724542 0.65238 0.355913
--0.866116 0.62927 0.302561
-
--0.724542 0.65238 0.355913
--0.801803 0.582544 0.37756
--0.658237 0.59268 0.407425
-
--0.725231 0.526911 0.432205
--0.658237 0.59268 0.407425
--0.801803 0.582544 0.37756
-
--0.658237 0.59268 0.407425
--0.725231 0.526911 0.432205
--0.584892 0.526639 0.436972
-
--0.640528 0.465371 0.46355
--0.584892 0.526639 0.436972
--0.725231 0.526911 0.432205
-
--0.584892 0.526639 0.436972
--0.640528 0.465371 0.46355
--0.50846 0.457819 0.442963
-
--0.55226 0.401241 0.469904
--0.50846 0.457819 0.442963
--0.640528 0.465371 0.46355
-
--0.50846 0.457819 0.442963
--0.55226 0.401241 0.469904
--0.433061 0.38993 0.425073
-
--0.465186 0.337977 0.450926
--0.433061 0.38993 0.425073
--0.55226 0.401241 0.469904
-
--0.433061 0.38993 0.425073
--0.465186 0.337977 0.450926
--0.362761 0.326632 0.384267
-
--0.384 0.278992 0.407639
--0.362761 0.326632 0.384267
--0.465186 0.337977 0.450926
-
--0.362761 0.326632 0.384267
--0.384 0.278992 0.407639
--0.301349 0.271336 0.322745
-
--0.313078 0.227464 0.342375
--0.301349 0.271336 0.322745
--0.384 0.278992 0.407639
-
--0.301349 0.271336 0.322745
--0.313078 0.227464 0.342375
--0.252136 0.227025 0.243824
-
--0.256244 0.186172 0.258654
--0.252136 0.227025 0.243824
--0.313078 0.227464 0.342375
-
--0.252136 0.227025 0.243824
--0.256244 0.186172 0.258654
--0.217776 0.196086 0.151759
-
--0.216563 0.157342 0.160989
--0.217776 0.196086 0.151759
--0.256244 0.186172 0.258654
-
--0.217776 0.196086 0.151759
--0.216563 0.157342 0.160989
--0.200119 0.180188 0.051512
-
--0.196172 0.142527 0.054645
--0.200119 0.180188 0.051512
--0.216563 0.157342 0.160989
-
--0.200119 0.180188 0.051512
--0.196172 0.142527 0.054645
--0.200119 0.180188 -0.051512
-
--0.196172 0.142527 -0.054645
--0.200119 0.180188 -0.051512
--0.196172 0.142527 0.054645
-
--0.200119 0.180188 -0.051512
--0.196172 0.142527 -0.054645
--0.217776 0.196086 -0.151759
-
--0.216563 0.157342 -0.160989
--0.217776 0.196086 -0.151759
--0.196172 0.142527 -0.054645
-
--0.217776 0.196086 -0.151759
--0.216563 0.157342 -0.160989
--0.252136 0.227025 -0.243824
-
--0.256244 0.186172 -0.258654
--0.252136 0.227025 -0.243824
--0.216563 0.157342 -0.160989
-
--0.252136 0.227025 -0.243824
--0.256244 0.186172 -0.258654
--0.301349 0.271336 -0.322745
-
--0.313078 0.227464 -0.342375
--0.301349 0.271336 -0.322745
--0.256244 0.186172 -0.258654
-
--0.301349 0.271336 -0.322745
--0.313078 0.227464 -0.342375
--0.362761 0.326632 -0.384267
-
--0.384 0.278992 -0.407639
--0.362761 0.326632 -0.384267
--0.313078 0.227464 -0.342375
-
--0.362761 0.326632 -0.384267
--0.384 0.278992 -0.407639
--0.433061 0.38993 -0.425073
-
--0.465186 0.337977 -0.450926
--0.433061 0.38993 -0.425073
--0.384 0.278992 -0.407639
-
--0.433061 0.38993 -0.425073
--0.465186 0.337977 -0.450926
--0.50846 0.457819 -0.442963
-
--0.55226 0.401241 -0.469904
--0.50846 0.457819 -0.442963
--0.465186 0.337977 -0.450926
-
--0.50846 0.457819 -0.442963
--0.55226 0.401241 -0.469904
--0.584892 0.526639 -0.436972
-
--0.640528 0.465371 -0.46355
--0.584892 0.526639 -0.436972
--0.55226 0.401241 -0.469904
-
--0.584892 0.526639 -0.436972
--0.640528 0.465371 -0.46355
--0.658237 0.59268 -0.407425
-
--0.725231 0.526911 -0.432205
--0.658237 0.59268 -0.407425
--0.640528 0.465371 -0.46355
-
--0.658237 0.59268 -0.407425
--0.725231 0.526911 -0.432205
--0.724542 0.65238 -0.355913
-
--0.801803 0.582544 -0.37756
--0.724542 0.65238 -0.355913
--0.725231 0.526911 -0.432205
-
--0.724542 0.65238 -0.355913
--0.801803 0.582544 -0.37756
--0.780231 0.702523 -0.285213
-
--0.866116 0.62927 -0.302561
--0.780231 0.702523 -0.285213
--0.801803 0.582544 -0.37756
-
--0.780231 0.702523 -0.285213
--0.866116 0.62927 -0.302561
--0.822302 0.740404 -0.199138
-
--0.914702 0.66457 -0.21125
--0.822302 0.740404 -0.199138
--0.866116 0.62927 -0.302561
-
--0.822302 0.740404 -0.199138
--0.914702 0.66457 -0.21125
--0.848488 0.763982 -0.102327
-
--0.944942 0.686541 -0.108551
--0.848488 0.763982 -0.102327
--0.914702 0.66457 -0.21125
-
--0.848488 0.763982 -0.102327
--0.944942 0.686541 -0.108551
--0.857376 0.771985 0
-
--0.955207 0.693998 0
--0.857376 0.771985 0
--0.944942 0.686541 -0.108551
-
--0.955207 0.693998 0
--1.03057 0.595 0
--0.944942 0.686541 0.108551
-
--1.01937 0.588531 0.110696
--0.944942 0.686541 0.108551
--1.03057 0.595 0
-
--0.944942 0.686541 0.108551
--1.01937 0.588531 0.110696
--0.914702 0.66457 0.21125
-
--0.986354 0.569472 0.215424
--0.914702 0.66457 0.21125
--1.01937 0.588531 0.110696
-
--0.914702 0.66457 0.21125
--0.986354 0.569472 0.215424
--0.866116 0.62927 0.302561
-
--0.933317 0.538851 0.308538
--0.866116 0.62927 0.302561
--0.986354 0.569472 0.215424
-
--0.866116 0.62927 0.302561
--0.933317 0.538851 0.308538
--0.801803 0.582544 0.37756
-
--0.863112 0.498318 0.385019
--0.801803 0.582544 0.37756
--0.933317 0.538851 0.308538
-
--0.801803 0.582544 0.37756
--0.863112 0.498318 0.385019
--0.725231 0.526911 0.432205
-
--0.779525 0.450059 0.440744
--0.725231 0.526911 0.432205
--0.863112 0.498318 0.385019
-
--0.725231 0.526911 0.432205
--0.779525 0.450059 0.440744
--0.640528 0.465371 0.46355
-
--0.687062 0.396676 0.472708
--0.640528 0.465371 0.46355
--0.779525 0.450059 0.440744
-
--0.640528 0.465371 0.46355
--0.687062 0.396676 0.472708
--0.55226 0.401241 0.469904
-
--0.590708 0.341045 0.479188
--0.55226 0.401241 0.469904
--0.687062 0.396676 0.472708
-
--0.55226 0.401241 0.469904
--0.590708 0.341045 0.479188
--0.465186 0.337977 0.450926
-
--0.495656 0.286167 0.459835
--0.465186 0.337977 0.450926
--0.590708 0.341045 0.479188
-
--0.465186 0.337977 0.450926
--0.495656 0.286167 0.459835
--0.384 0.278992 0.407639
-
--0.407032 0.235 0.415692
--0.384 0.278992 0.407639
--0.495656 0.286167 0.459835
-
--0.384 0.278992 0.407639
--0.407032 0.235 0.415692
--0.313078 0.227464 0.342375
-
--0.329613 0.190302 0.349139
--0.313078 0.227464 0.342375
--0.407032 0.235 0.415692
-
--0.313078 0.227464 0.342375
--0.329613 0.190302 0.349139
--0.256244 0.186172 0.258654
-
--0.267572 0.154483 0.263764
--0.256244 0.186172 0.258654
--0.329613 0.190302 0.349139
-
--0.256244 0.186172 0.258654
--0.267572 0.154483 0.263764
--0.216563 0.157342 0.160989
-
--0.224255 0.129474 0.16417
--0.216563 0.157342 0.160989
--0.267572 0.154483 0.263764
-
--0.216563 0.157342 0.160989
--0.224255 0.129474 0.16417
--0.196172 0.142527 0.054645
-
--0.201997 0.116623 0.0557246
--0.196172 0.142527 0.054645
--0.224255 0.129474 0.16417
-
--0.196172 0.142527 0.054645
--0.201997 0.116623 0.0557246
--0.196172 0.142527 -0.054645
-
--0.201997 0.116623 -0.0557246
--0.196172 0.142527 -0.054645
--0.201997 0.116623 0.0557246
-
--0.196172 0.142527 -0.054645
--0.201997 0.116623 -0.0557246
--0.216563 0.157342 -0.160989
-
--0.224255 0.129474 -0.16417
--0.216563 0.157342 -0.160989
--0.201997 0.116623 -0.0557246
-
--0.216563 0.157342 -0.160989
--0.224255 0.129474 -0.16417
--0.256244 0.186172 -0.258654
-
--0.267572 0.154483 -0.263764
--0.256244 0.186172 -0.258654
--0.224255 0.129474 -0.16417
-
--0.256244 0.186172 -0.258654
--0.267572 0.154483 -0.263764
--0.313078 0.227464 -0.342375
-
--0.329613 0.190302 -0.349139
--0.313078 0.227464 -0.342375
--0.267572 0.154483 -0.263764
-
--0.313078 0.227464 -0.342375
--0.329613 0.190302 -0.349139
--0.384 0.278992 -0.407639
-
--0.407032 0.235 -0.415692
--0.384 0.278992 -0.407639
--0.329613 0.190302 -0.349139
-
--0.384 0.278992 -0.407639
--0.407032 0.235 -0.415692
--0.465186 0.337977 -0.450926
-
--0.495656 0.286167 -0.459835
--0.465186 0.337977 -0.450926
--0.407032 0.235 -0.415692
-
--0.465186 0.337977 -0.450926
--0.495656 0.286167 -0.459835
--0.55226 0.401241 -0.469904
-
--0.590708 0.341045 -0.479188
--0.55226 0.401241 -0.469904
--0.495656 0.286167 -0.459835
-
--0.55226 0.401241 -0.469904
--0.590708 0.341045 -0.479188
--0.640528 0.465371 -0.46355
-
--0.687062 0.396676 -0.472708
--0.640528 0.465371 -0.46355
--0.590708 0.341045 -0.479188
-
--0.640528 0.465371 -0.46355
--0.687062 0.396676 -0.472708
--0.725231 0.526911 -0.432205
-
--0.779525 0.450059 -0.440744
--0.725231 0.526911 -0.432205
--0.687062 0.396676 -0.472708
-
--0.725231 0.526911 -0.432205
--0.779525 0.450059 -0.440744
--0.801803 0.582544 -0.37756
-
--0.863112 0.498318 -0.385019
--0.801803 0.582544 -0.37756
--0.779525 0.450059 -0.440744
-
--0.801803 0.582544 -0.37756
--0.863112 0.498318 -0.385019
--0.866116 0.62927 -0.302561
-
--0.933317 0.538851 -0.308538
--0.866116 0.62927 -0.302561
--0.863112 0.498318 -0.385019
-
--0.866116 0.62927 -0.302561
--0.933317 0.538851 -0.308538
--0.914702 0.66457 -0.21125
-
--0.986354 0.569472 -0.215424
--0.914702 0.66457 -0.21125
--0.933317 0.538851 -0.308538
-
--0.914702 0.66457 -0.21125
--0.986354 0.569472 -0.215424
--0.944942 0.686541 -0.108551
-
--1.01937 0.588531 -0.110696
--0.944942 0.686541 -0.108551
--0.986354 0.569472 -0.215424
-
--0.944942 0.686541 -0.108551
--1.01937 0.588531 -0.110696
--0.955207 0.693998 0
-
--1.03057 0.595 0
--0.955207 0.693998 0
--1.01937 0.588531 -0.110696
-
--1.03057 0.595 0
--1.07862 0.480234 0
--1.01937 0.588531 0.110696
-
--1.06703 0.475074 0.108551
--1.01937 0.588531 0.110696
--1.07862 0.480234 0
-
--1.01937 0.588531 0.110696
--1.06703 0.475074 0.108551
--0.986354 0.569472 0.215424
-
--1.03289 0.45987 0.21125
--0.986354 0.569472 0.215424
--1.06703 0.475074 0.108551
-
--0.986354 0.569472 0.215424
--1.03289 0.45987 0.21125
--0.933317 0.538851 0.308538
-
--0.978021 0.435443 0.302561
--0.933317 0.538851 0.308538
--1.03289 0.45987 0.21125
-
--0.933317 0.538851 0.308538
--0.978021 0.435443 0.302561
--0.863112 0.498318 0.385019
-
--0.905399 0.40311 0.37756
--0.863112 0.498318 0.385019
--0.978021 0.435443 0.302561
-
--0.863112 0.498318 0.385019
--0.905399 0.40311 0.37756
--0.779525 0.450059 0.440744
-
--0.818934 0.364613 0.432205
--0.779525 0.450059 0.440744
--0.905399 0.40311 0.37756
-
--0.779525 0.450059 0.440744
--0.818934 0.364613 0.432205
--0.687062 0.396676 0.472708
-
--0.723287 0.322028 0.46355
--0.687062 0.396676 0.472708
--0.818934 0.364613 0.432205
-
--0.687062 0.396676 0.472708
--0.723287 0.322028 0.46355
--0.590708 0.341045 0.479188
-
--0.623615 0.277651 0.469904
--0.590708 0.341045 0.479188
--0.723287 0.322028 0.46355
-
--0.590708 0.341045 0.479188
--0.623615 0.277651 0.469904
--0.495656 0.286167 0.459835
-
--0.52529 0.233874 0.450926
--0.495656 0.286167 0.459835
--0.623615 0.277651 0.469904
-
--0.495656 0.286167 0.459835
--0.52529 0.233874 0.450926
--0.407032 0.235 0.415692
-
--0.433614 0.193057 0.407639
--0.407032 0.235 0.415692
--0.52529 0.233874 0.450926
-
--0.407032 0.235 0.415692
--0.433614 0.193057 0.407639
--0.329613 0.190302 0.349139
-
--0.353529 0.157401 0.342375
--0.329613 0.190302 0.349139
--0.433614 0.193057 0.407639
-
--0.329613 0.190302 0.349139
--0.353529 0.157401 0.342375
--0.267572 0.154483 0.263764
-
--0.289352 0.128828 0.258654
--0.267572 0.154483 0.263764
--0.353529 0.157401 0.342375
-
--0.267572 0.154483 0.263764
--0.289352 0.128828 0.258654
--0.224255 0.129474 0.16417
-
--0.244543 0.108878 0.160989
--0.224255 0.129474 0.16417
--0.289352 0.128828 0.258654
-
--0.224255 0.129474 0.16417
--0.244543 0.108878 0.160989
--0.201997 0.116623 0.0557246
-
--0.221518 0.0986263 0.054645
--0.201997 0.116623 0.0557246
--0.244543 0.108878 0.160989
-
--0.201997 0.116623 0.0557246
--0.221518 0.0986263 0.054645
--0.201997 0.116623 -0.0557246
-
--0.221518 0.0986263 -0.054645
--0.201997 0.116623 -0.0557246
--0.221518 0.0986263 0.054645
-
--0.201997 0.116623 -0.0557246
--0.221518 0.0986263 -0.054645
--0.224255 0.129474 -0.16417
-
--0.244543 0.108878 -0.160989
--0.224255 0.129474 -0.16417
--0.221518 0.0986263 -0.054645
-
--0.224255 0.129474 -0.16417
--0.244543 0.108878 -0.160989
--0.267572 0.154483 -0.263764
-
--0.289352 0.128828 -0.258654
--0.267572 0.154483 -0.263764
--0.244543 0.108878 -0.160989
-
--0.267572 0.154483 -0.263764
--0.289352 0.128828 -0.258654
--0.329613 0.190302 -0.349139
-
--0.353529 0.157401 -0.342375
--0.329613 0.190302 -0.349139
--0.289352 0.128828 -0.258654
-
--0.329613 0.190302 -0.349139
--0.353529 0.157401 -0.342375
--0.407032 0.235 -0.415692
-
--0.433614 0.193057 -0.407639
--0.407032 0.235 -0.415692
--0.353529 0.157401 -0.342375
-
--0.407032 0.235 -0.415692
--0.433614 0.193057 -0.407639
--0.495656 0.286167 -0.459835
-
--0.52529 0.233874 -0.450926
--0.495656 0.286167 -0.459835
--0.433614 0.193057 -0.407639
-
--0.495656 0.286167 -0.459835
--0.52529 0.233874 -0.450926
--0.590708 0.341045 -0.479188
-
--0.623615 0.277651 -0.469904
--0.590708 0.341045 -0.479188
--0.52529 0.233874 -0.450926
-
--0.590708 0.341045 -0.479188
--0.623615 0.277651 -0.469904
--0.687062 0.396676 -0.472708
-
--0.723287 0.322028 -0.46355
--0.687062 0.396676 -0.472708
--0.623615 0.277651 -0.469904
-
--0.687062 0.396676 -0.472708
--0.723287 0.322028 -0.46355
--0.779525 0.450059 -0.440744
-
--0.818934 0.364613 -0.432205
--0.779525 0.450059 -0.440744
--0.723287 0.322028 -0.46355
-
--0.779525 0.450059 -0.440744
--0.818934 0.364613 -0.432205
--0.863112 0.498318 -0.385019
-
--0.905399 0.40311 -0.37756
--0.863112 0.498318 -0.385019
--0.818934 0.364613 -0.432205
-
--0.863112 0.498318 -0.385019
--0.905399 0.40311 -0.37756
--0.933317 0.538851 -0.308538
-
--0.978021 0.435443 -0.302561
--0.933317 0.538851 -0.308538
--0.905399 0.40311 -0.37756
-
--0.933317 0.538851 -0.308538
--0.978021 0.435443 -0.302561
--0.986354 0.569472 -0.215424
-
--1.03289 0.45987 -0.21125
--0.986354 0.569472 -0.215424
--0.978021 0.435443 -0.302561
-
--0.986354 0.569472 -0.215424
--1.03289 0.45987 -0.21125
--1.01937 0.588531 -0.110696
-
--1.06703 0.475074 -0.108551
--1.01937 0.588531 -0.110696
--1.03289 0.45987 -0.21125
-
--1.01937 0.588531 -0.110696
--1.06703 0.475074 -0.108551
--1.03057 0.595 0
-
--1.07862 0.480234 0
--1.03057 0.595 0
--1.06703 0.475074 -0.108551
-
--1.07862 0.480234 0
--1.09725 0.356517 0
--1.06703 0.475074 0.108551
-
--1.08587 0.352821 0.102327
--1.06703 0.475074 0.108551
--1.09725 0.356517 0
-
--1.06703 0.475074 0.108551
--1.08587 0.352821 0.102327
--1.03289 0.45987 0.21125
-
--1.05236 0.341932 0.199138
--1.03289 0.45987 0.21125
--1.08587 0.352821 0.102327
-
--1.03289 0.45987 0.21125
--1.05236 0.341932 0.199138
--0.978021 0.435443 0.302561
-
--0.998518 0.324438 0.285213
--0.978021 0.435443 0.302561
--1.05236 0.341932 0.199138
-
--0.978021 0.435443 0.302561
--0.998518 0.324438 0.285213
--0.905399 0.40311 0.37756
-
--0.927249 0.301281 0.355913
--0.905399 0.40311 0.37756
--0.998518 0.324438 0.285213
-
--0.905399 0.40311 0.37756
--0.927249 0.301281 0.355913
--0.818934 0.364613 0.432205
-
--0.842394 0.273711 0.407425
--0.818934 0.364613 0.432205
--0.927249 0.301281 0.355913
-
--0.818934 0.364613 0.432205
--0.842394 0.273711 0.407425
--0.723287 0.322028 0.46355
-
--0.748529 0.243212 0.436972
--0.723287 0.322028 0.46355
--0.842394 0.273711 0.407425
-
--0.723287 0.322028 0.46355
--0.748529 0.243212 0.436972
--0.623615 0.277651 0.469904
-
--0.650713 0.21143 0.442963
--0.623615 0.277651 0.469904
--0.748529 0.243212 0.436972
-
--0.623615 0.277651 0.469904
--0.650713 0.21143 0.442963
--0.52529 0.233874 0.450926
-
--0.55422 0.180077 0.425073
--0.52529 0.233874 0.450926
--0.650713 0.21143 0.442963
-
--0.52529 0.233874 0.450926
--0.55422 0.180077 0.425073
--0.433614 0.193057 0.407639
-
--0.464252 0.150845 0.384267
--0.433614 0.193057 0.407639
--0.55422 0.180077 0.425073
-
--0.433614 0.193057 0.407639
--0.464252 0.150845 0.384267
--0.353529 0.157401 0.342375
-
--0.385659 0.125308 0.322745
--0.353529 0.157401 0.342375
--0.464252 0.150845 0.384267
-
--0.353529 0.157401 0.342375
--0.385659 0.125308 0.322745
--0.289352 0.128828 0.258654
-
--0.322677 0.104844 0.243824
--0.289352 0.128828 0.258654
--0.385659 0.125308 0.322745
-
--0.289352 0.128828 0.258654
--0.322677 0.104844 0.243824
--0.244543 0.108878 0.160989
-
--0.278703 0.0905562 0.151759
--0.244543 0.108878 0.160989
--0.322677 0.104844 0.243824
-
--0.244543 0.108878 0.160989
--0.278703 0.0905562 0.151759
--0.221518 0.0986263 0.054645
-
--0.256107 0.0832143 0.051512
--0.221518 0.0986263 0.054645
--0.278703 0.0905562 0.151759
-
--0.221518 0.0986263 0.054645
--0.256107 0.0832143 0.051512
--0.221518 0.0986263 -0.054645
-
--0.256107 0.0832143 -0.051512
--0.221518 0.0986263 -0.054645
--0.256107 0.0832143 0.051512
-
--0.221518 0.0986263 -0.054645
--0.256107 0.0832143 -0.051512
--0.244543 0.108878 -0.160989
-
--0.278703 0.0905562 -0.151759
--0.244543 0.108878 -0.160989
--0.256107 0.0832143 -0.051512
-
--0.244543 0.108878 -0.160989
--0.278703 0.0905562 -0.151759
--0.289352 0.128828 -0.258654
-
--0.322677 0.104844 -0.243824
--0.289352 0.128828 -0.258654
--0.278703 0.0905562 -0.151759
-
--0.289352 0.128828 -0.258654
--0.322677 0.104844 -0.243824
--0.353529 0.157401 -0.342375
-
--0.385659 0.125308 -0.322745
--0.353529 0.157401 -0.342375
--0.322677 0.104844 -0.243824
-
--0.353529 0.157401 -0.342375
--0.385659 0.125308 -0.322745
--0.433614 0.193057 -0.407639
-
--0.464252 0.150845 -0.384267
--0.433614 0.193057 -0.407639
--0.385659 0.125308 -0.322745
-
--0.433614 0.193057 -0.407639
--0.464252 0.150845 -0.384267
--0.52529 0.233874 -0.450926
-
--0.55422 0.180077 -0.425073
--0.52529 0.233874 -0.450926
--0.464252 0.150845 -0.384267
-
--0.52529 0.233874 -0.450926
--0.55422 0.180077 -0.425073
--0.623615 0.277651 -0.469904
-
--0.650713 0.21143 -0.442963
--0.623615 0.277651 -0.469904
--0.55422 0.180077 -0.425073
-
--0.623615 0.277651 -0.469904
--0.650713 0.21143 -0.442963
--0.723287 0.322028 -0.46355
-
--0.748529 0.243212 -0.436972
--0.723287 0.322028 -0.46355
--0.650713 0.21143 -0.442963
-
--0.723287 0.322028 -0.46355
--0.748529 0.243212 -0.436972
--0.818934 0.364613 -0.432205
-
--0.842394 0.273711 -0.407425
--0.818934 0.364613 -0.432205
--0.748529 0.243212 -0.436972
-
--0.818934 0.364613 -0.432205
--0.842394 0.273711 -0.407425
--0.905399 0.40311 -0.37756
-
--0.927249 0.301281 -0.355913
--0.905399 0.40311 -0.37756
--0.842394 0.273711 -0.407425
-
--0.905399 0.40311 -0.37756
--0.927249 0.301281 -0.355913
--0.978021 0.435443 -0.302561
-
--0.998518 0.324438 -0.285213
--0.978021 0.435443 -0.302561
--0.927249 0.301281 -0.355913
-
--0.978021 0.435443 -0.302561
--0.998518 0.324438 -0.285213
--1.03289 0.45987 -0.21125
-
--1.05236 0.341932 -0.199138
--1.03289 0.45987 -0.21125
--0.998518 0.324438 -0.285213
-
--1.03289 0.45987 -0.21125
--1.05236 0.341932 -0.199138
--1.06703 0.475074 -0.108551
-
--1.08587 0.352821 -0.102327
--1.06703 0.475074 -0.108551
--1.05236 0.341932 -0.199138
-
--1.06703 0.475074 -0.108551
--1.08587 0.352821 -0.102327
--1.07862 0.480234 0
-
--1.09725 0.356517 0
--1.07862 0.480234 0
--1.08587 0.352821 -0.102327
-
--1.09725 0.356517 0
--1.08739 0.231131 0
--1.08587 0.352821 0.102327
-
--1.0768 0.22888 0.0926336
--1.08587 0.352821 0.102327
--1.08739 0.231131 0
-
--1.08587 0.352821 0.102327
--1.0768 0.22888 0.0926336
--1.05236 0.341932 0.199138
-
--1.04559 0.222248 0.180273
--1.05236 0.341932 0.199138
--1.0768 0.22888 0.0926336
-
--1.05236 0.341932 0.199138
--1.04559 0.222248 0.180273
--0.998518 0.324438 0.285213
-
--0.995465 0.211593 0.258194
--0.998518 0.324438 0.285213
--1.04559 0.222248 0.180273
-
--0.998518 0.324438 0.285213
--0.995465 0.211593 0.258194
--0.927249 0.301281 0.355913
-
--0.929109 0.197488 0.322196
--0.927249 0.301281 0.355913
--0.995465 0.211593 0.258194
-
--0.927249 0.301281 0.355913
--0.929109 0.197488 0.322196
--0.842394 0.273711 0.407425
-
--0.850105 0.180695 0.368828
--0.842394 0.273711 0.407425
--0.929109 0.197488 0.322196
-
--0.842394 0.273711 0.407425
--0.850105 0.180695 0.368828
--0.748529 0.243212 0.436972
-
--0.762711 0.162119 0.395577
--0.748529 0.243212 0.436972
--0.850105 0.180695 0.368828
-
--0.748529 0.243212 0.436972
--0.762711 0.162119 0.395577
--0.650713 0.21143 0.442963
-
--0.67164 0.142761 0.401
--0.650713 0.21143 0.442963
--0.762711 0.162119 0.395577
-
--0.650713 0.21143 0.442963
--0.67164 0.142761 0.401
--0.55422 0.180077 0.425073
-
--0.581799 0.123665 0.384804
--0.55422 0.180077 0.425073
--0.67164 0.142761 0.401
-
--0.55422 0.180077 0.425073
--0.581799 0.123665 0.384804
--0.464252 0.150845 0.384267
-
--0.498034 0.10586 0.347864
--0.464252 0.150845 0.384267
--0.581799 0.123665 0.384804
-
--0.464252 0.150845 0.384267
--0.498034 0.10586 0.347864
--0.385659 0.125308 0.322745
-
--0.424859 0.0903067 0.292171
--0.385659 0.125308 0.322745
--0.498034 0.10586 0.347864
-
--0.385659 0.125308 0.322745
--0.424859 0.0903067 0.292171
--0.322677 0.104844 0.243824
-
--0.36622 0.0778425 0.220726
--0.322677 0.104844 0.243824
--0.424859 0.0903067 0.292171
-
--0.322677 0.104844 0.243824
--0.36622 0.0778425 0.220726
--0.278703 0.0905562 0.151759
-
--0.325278 0.06914 0.137382
--0.278703 0.0905562 0.151759
--0.36622 0.0778425 0.220726
-
--0.278703 0.0905562 0.151759
--0.325278 0.06914 0.137382
--0.256107 0.0832143 0.051512
-
--0.30424 0.0646682 0.0466321
--0.256107 0.0832143 0.051512
--0.325278 0.06914 0.137382
-
--0.256107 0.0832143 0.051512
--0.30424 0.0646682 0.0466321
--0.256107 0.0832143 -0.051512
-
--0.30424 0.0646682 -0.0466321
--0.256107 0.0832143 -0.051512
--0.30424 0.0646682 0.0466321
-
--0.256107 0.0832143 -0.051512
--0.30424 0.0646682 -0.0466321
--0.278703 0.0905562 -0.151759
-
--0.325278 0.06914 -0.137382
--0.278703 0.0905562 -0.151759
--0.30424 0.0646682 -0.0466321
-
--0.278703 0.0905562 -0.151759
--0.325278 0.06914 -0.137382
--0.322677 0.104844 -0.243824
-
--0.36622 0.0778425 -0.220726
--0.322677 0.104844 -0.243824
--0.325278 0.06914 -0.137382
-
--0.322677 0.104844 -0.243824
--0.36622 0.0778425 -0.220726
--0.385659 0.125308 -0.322745
-
--0.424859 0.0903067 -0.292171
--0.385659 0.125308 -0.322745
--0.36622 0.0778425 -0.220726
-
--0.385659 0.125308 -0.322745
--0.424859 0.0903067 -0.292171
--0.464252 0.150845 -0.384267
-
--0.498034 0.10586 -0.347864
--0.464252 0.150845 -0.384267
--0.424859 0.0903067 -0.292171
-
--0.464252 0.150845 -0.384267
--0.498034 0.10586 -0.347864
--0.55422 0.180077 -0.425073
-
--0.581799 0.123665 -0.384804
--0.55422 0.180077 -0.425073
--0.498034 0.10586 -0.347864
-
--0.55422 0.180077 -0.425073
--0.581799 0.123665 -0.384804
--0.650713 0.21143 -0.442963
-
--0.67164 0.142761 -0.401
--0.650713 0.21143 -0.442963
--0.581799 0.123665 -0.384804
-
--0.650713 0.21143 -0.442963
--0.67164 0.142761 -0.401
--0.748529 0.243212 -0.436972
-
--0.762711 0.162119 -0.395577
--0.748529 0.243212 -0.436972
--0.67164 0.142761 -0.401
-
--0.748529 0.243212 -0.436972
--0.762711 0.162119 -0.395577
--0.842394 0.273711 -0.407425
-
--0.850105 0.180695 -0.368828
--0.842394 0.273711 -0.407425
--0.762711 0.162119 -0.395577
-
--0.842394 0.273711 -0.407425
--0.850105 0.180695 -0.368828
--0.927249 0.301281 -0.355913
-
--0.929109 0.197488 -0.322196
--0.927249 0.301281 -0.355913
--0.850105 0.180695 -0.368828
-
--0.927249 0.301281 -0.355913
--0.929109 0.197488 -0.322196
--0.998518 0.324438 -0.285213
-
--0.995465 0.211593 -0.258194
--0.998518 0.324438 -0.285213
--0.929109 0.197488 -0.322196
-
--0.998518 0.324438 -0.285213
--0.995465 0.211593 -0.258194
--1.05236 0.341932 -0.199138
-
--1.04559 0.222248 -0.180273
--1.05236 0.341932 -0.199138
--0.995465 0.211593 -0.258194
-
--1.05236 0.341932 -0.199138
--1.04559 0.222248 -0.180273
--1.08587 0.352821 -0.102327
-
--1.0768 0.22888 -0.0926336
--1.08587 0.352821 -0.102327
--1.04559 0.222248 -0.180273
-
--1.08587 0.352821 -0.102327
--1.0768 0.22888 -0.0926336
--1.09725 0.356517 0
-
--1.08739 0.231131 0
--1.09725 0.356517 0
--1.0768 0.22888 -0.0926336
-
--1.08739 0.231131 0
--1.05291 0.110666 0
--1.0768 0.22888 0.0926336
-
--1.04357 0.109683 0.0804188
--1.0768 0.22888 0.0926336
--1.05291 0.110666 0
-
--1.0768 0.22888 0.0926336
--1.04357 0.109683 0.0804188
--1.04559 0.222248 0.180273
-
--1.01602 0.106789 0.156502
--1.04559 0.222248 0.180273
--1.04357 0.109683 0.0804188
-
--1.04559 0.222248 0.180273
--1.01602 0.106789 0.156502
--0.995465 0.211593 0.258194
-
--0.971777 0.102138 0.224149
--0.995465 0.211593 0.258194
--1.01602 0.106789 0.156502
-
--0.995465 0.211593 0.258194
--0.971777 0.102138 0.224149
--0.929109 0.197488 0.322196
-
--0.913207 0.0959819 0.279711
--0.929109 0.197488 0.322196
--0.971777 0.102138 0.224149
-
--0.929109 0.197488 0.322196
--0.913207 0.0959819 0.279711
--0.850105 0.180695 0.368828
-
--0.843472 0.0886525 0.320194
--0.850105 0.180695 0.368828
--0.913207 0.0959819 0.279711
-
--0.850105 0.180695 0.368828
--0.843472 0.0886525 0.320194
--0.762711 0.162119 0.395577
-
--0.766332 0.0805448 0.343415
--0.762711 0.162119 0.395577
--0.843472 0.0886525 0.320194
-
--0.762711 0.162119 0.395577
--0.766332 0.0805448 0.343415
--0.67164 0.142761 0.401
-
--0.685946 0.0720958 0.348123
--0.67164 0.142761 0.401
--0.766332 0.0805448 0.343415
-
--0.67164 0.142761 0.401
--0.685946 0.0720958 0.348123
--0.581799 0.123665 0.384804
-
--0.606646 0.0637611 0.334064
--0.581799 0.123665 0.384804
--0.685946 0.0720958 0.348123
-
--0.581799 0.123665 0.384804
--0.606646 0.0637611 0.334064
--0.498034 0.10586 0.347864
-
--0.532709 0.05599 0.301995
--0.498034 0.10586 0.347864
--0.606646 0.0637611 0.334064
-
--0.498034 0.10586 0.347864
--0.532709 0.05599 0.301995
--0.424859 0.0903067 0.292171
-
--0.46812 0.0492014 0.253645
--0.424859 0.0903067 0.292171
--0.532709 0.05599 0.301995
-
--0.424859 0.0903067 0.292171
--0.46812 0.0492014 0.253645
--0.36622 0.0778425 0.220726
-
--0.416361 0.0437613 0.191621
--0.36622 0.0778425 0.220726
--0.46812 0.0492014 0.253645
-
--0.36622 0.0778425 0.220726
--0.416361 0.0437613 0.191621
--0.325278 0.06914 0.137382
-
--0.380222 0.039963 0.119267
--0.325278 0.06914 0.137382
--0.416361 0.0437613 0.191621
-
--0.325278 0.06914 0.137382
--0.380222 0.039963 0.119267
--0.30424 0.0646682 0.0466321
-
--0.361653 0.0380112 0.0404831
--0.30424 0.0646682 0.0466321
--0.380222 0.039963 0.119267
-
--0.30424 0.0646682 0.0466321
--0.361653 0.0380112 0.0404831
--0.30424 0.0646682 -0.0466321
-
--0.361653 0.0380112 -0.0404831
--0.30424 0.0646682 -0.0466321
--0.361653 0.0380112 0.0404831
-
--0.30424 0.0646682 -0.0466321
--0.361653 0.0380112 -0.0404831
--0.325278 0.06914 -0.137382
-
--0.380222 0.039963 -0.119267
--0.325278 0.06914 -0.137382
--0.361653 0.0380112 -0.0404831
-
--0.325278 0.06914 -0.137382
--0.380222 0.039963 -0.119267
--0.36622 0.0778425 -0.220726
-
--0.416361 0.0437613 -0.191621
--0.36622 0.0778425 -0.220726
--0.380222 0.039963 -0.119267
-
--0.36622 0.0778425 -0.220726
--0.416361 0.0437613 -0.191621
--0.424859 0.0903067 -0.292171
-
--0.46812 0.0492014 -0.253645
--0.424859 0.0903067 -0.292171
--0.416361 0.0437613 -0.191621
-
--0.424859 0.0903067 -0.292171
--0.46812 0.0492014 -0.253645
--0.498034 0.10586 -0.347864
-
--0.532709 0.05599 -0.301995
--0.498034 0.10586 -0.347864
--0.46812 0.0492014 -0.253645
-
--0.498034 0.10586 -0.347864
--0.532709 0.05599 -0.301995
--0.581799 0.123665 -0.384804
-
--0.606646 0.0637611 -0.334064
--0.581799 0.123665 -0.384804
--0.532709 0.05599 -0.301995
-
--0.581799 0.123665 -0.384804
--0.606646 0.0637611 -0.334064
--0.67164 0.142761 -0.401
-
--0.685946 0.0720958 -0.348123
--0.67164 0.142761 -0.401
--0.606646 0.0637611 -0.334064
-
--0.67164 0.142761 -0.401
--0.685946 0.0720958 -0.348123
--0.762711 0.162119 -0.395577
-
--0.766332 0.0805448 -0.343415
--0.762711 0.162119 -0.395577
--0.685946 0.0720958 -0.348123
-
--0.762711 0.162119 -0.395577
--0.766332 0.0805448 -0.343415
--0.850105 0.180695 -0.368828
-
--0.843472 0.0886525 -0.320194
--0.850105 0.180695 -0.368828
--0.766332 0.0805448 -0.343415
-
--0.850105 0.180695 -0.368828
--0.843472 0.0886525 -0.320194
--0.929109 0.197488 -0.322196
-
--0.913207 0.0959819 -0.279711
--0.929109 0.197488 -0.322196
--0.843472 0.0886525 -0.320194
-
--0.929109 0.197488 -0.322196
--0.913207 0.0959819 -0.279711
--0.995465 0.211593 -0.258194
-
--0.971777 0.102138 -0.224149
--0.995465 0.211593 -0.258194
--0.913207 0.0959819 -0.279711
-
--0.995465 0.211593 -0.258194
--0.971777 0.102138 -0.224149
--1.04559 0.222248 -0.180273
-
--1.01602 0.106789 -0.156502
--1.04559 0.222248 -0.180273
--0.971777 0.102138 -0.224149
-
--1.04559 0.222248 -0.180273
--1.01602 0.106789 -0.156502
--1.0768 0.22888 -0.0926336
-
--1.04357 0.109683 -0.0804188
--1.0768 0.22888 -0.0926336
--1.01602 0.106789 -0.156502
-
--1.0768 0.22888 -0.0926336
--1.04357 0.109683 -0.0804188
--1.08739 0.231131 0
-
--1.05291 0.110666 0
--1.08739 0.231131 0
--1.04357 0.109683 -0.0804188
-
--1.05291 0.110666 0
--1 4.44089e-16 0
--1.04357 0.109683 0.0804188
-
--0.992183 4.40618e-16 0.0668786
--1.04357 0.109683 0.0804188
--1 4.44089e-16 0
-
--1.04357 0.109683 0.0804188
--0.992183 4.40618e-16 0.0668786
--1.01602 0.106789 0.156502
-
--0.969153 4.30391e-16 0.130152
--1.01602 0.106789 0.156502
--0.992183 4.40618e-16 0.0668786
-
--1.01602 0.106789 0.156502
--0.969153 4.30391e-16 0.130152
--0.971777 0.102138 0.224149
-
--0.932153 4.13959e-16 0.186408
--0.971777 0.102138 0.224149
--0.969153 4.30391e-16 0.130152
-
--0.971777 0.102138 0.224149
--0.932153 4.13959e-16 0.186408
--0.913207 0.0959819 0.279711
-
--0.883176 3.92209e-16 0.232616
--0.913207 0.0959819 0.279711
--0.932153 4.13959e-16 0.186408
-
--0.913207 0.0959819 0.279711
--0.883176 3.92209e-16 0.232616
--0.843472 0.0886525 0.320194
-
--0.824863 3.66313e-16 0.266283
--0.843472 0.0886525 0.320194
--0.883176 3.92209e-16 0.232616
-
--0.843472 0.0886525 0.320194
--0.824863 3.66313e-16 0.266283
--0.766332 0.0805448 0.343415
-
--0.760358 3.37667e-16 0.285594
--0.766332 0.0805448 0.343415
--0.824863 3.66313e-16 0.266283
-
--0.766332 0.0805448 0.343415
--0.760358 3.37667e-16 0.285594
--0.685946 0.0720958 0.348123
-
--0.693138 3.07815e-16 0.289509
--0.685946 0.0720958 0.348123
--0.760358 3.37667e-16 0.285594
-
--0.685946 0.0720958 0.348123
--0.693138 3.07815e-16 0.289509
--0.606646 0.0637611 0.334064
-
--0.626827 2.78367e-16 0.277817
--0.606646 0.0637611 0.334064
--0.693138 3.07815e-16 0.289509
-
--0.606646 0.0637611 0.334064
--0.626827 2.78367e-16 0.277817
--0.532709 0.05599 0.301995
-
--0.565 2.5091e-16 0.251147
--0.532709 0.05599 0.301995
--0.626827 2.78367e-16 0.277817
-
--0.532709 0.05599 0.301995
--0.565 2.5091e-16 0.251147
--0.46812 0.0492014 0.253645
-
--0.51099 2.26925e-16 0.210938
--0.46812 0.0492014 0.253645
--0.565 2.5091e-16 0.251147
-
--0.46812 0.0492014 0.253645
--0.51099 2.26925e-16 0.210938
--0.416361 0.0437613 0.191621
-
--0.467709 2.07704e-16 0.159358
--0.416361 0.0437613 0.191621
--0.51099 2.26925e-16 0.210938
-
--0.416361 0.0437613 0.191621
--0.467709 2.07704e-16 0.159358
--0.380222 0.039963 0.119267
-
--0.437489 1.94284e-16 0.0991858
--0.380222 0.039963 0.119267
--0.467709 2.07704e-16 0.159358
-
--0.380222 0.039963 0.119267
--0.437489 1.94284e-16 0.0991858
--0.361653 0.0380112 0.0404831
-
--0.421961 1.87388e-16 0.0336669
--0.361653 0.0380112 0.0404831
--0.437489 1.94284e-16 0.0991858
-
--0.361653 0.0380112 0.0404831
--0.421961 1.87388e-16 0.0336669
--0.361653 0.0380112 -0.0404831
-
--0.421961 1.87388e-16 -0.0336669
--0.361653 0.0380112 -0.0404831
--0.421961 1.87388e-16 0.0336669
-
--0.361653 0.0380112 -0.0404831
--0.421961 1.87388e-16 -0.0336669
--0.380222 0.039963 -0.119267
-
--0.437489 1.94284e-16 -0.0991858
--0.380222 0.039963 -0.119267
--0.421961 1.87388e-16 -0.0336669
-
--0.380222 0.039963 -0.119267
--0.437489 1.94284e-16 -0.0991858
--0.416361 0.0437613 -0.191621
-
--0.467709 2.07704e-16 -0.159358
--0.416361 0.0437613 -0.191621
--0.437489 1.94284e-16 -0.0991858
-
--0.416361 0.0437613 -0.191621
--0.467709 2.07704e-16 -0.159358
--0.46812 0.0492014 -0.253645
-
--0.51099 2.26925e-16 -0.210938
--0.46812 0.0492014 -0.253645
--0.467709 2.07704e-16 -0.159358
-
--0.46812 0.0492014 -0.253645
--0.51099 2.26925e-16 -0.210938
--0.532709 0.05599 -0.301995
-
--0.565 2.5091e-16 -0.251147
--0.532709 0.05599 -0.301995
--0.51099 2.26925e-16 -0.210938
-
--0.532709 0.05599 -0.301995
--0.565 2.5091e-16 -0.251147
--0.606646 0.0637611 -0.334064
-
--0.626827 2.78367e-16 -0.277817
--0.606646 0.0637611 -0.334064
--0.565 2.5091e-16 -0.251147
-
--0.606646 0.0637611 -0.334064
--0.626827 2.78367e-16 -0.277817
--0.685946 0.0720958 -0.348123
-
--0.693138 3.07815e-16 -0.289509
--0.685946 0.0720958 -0.348123
--0.626827 2.78367e-16 -0.277817
-
--0.685946 0.0720958 -0.348123
--0.693138 3.07815e-16 -0.289509
--0.766332 0.0805448 -0.343415
-
--0.760358 3.37667e-16 -0.285594
--0.766332 0.0805448 -0.343415
--0.693138 3.07815e-16 -0.289509
-
--0.766332 0.0805448 -0.343415
--0.760358 3.37667e-16 -0.285594
--0.843472 0.0886525 -0.320194
-
--0.824863 3.66313e-16 -0.266283
--0.843472 0.0886525 -0.320194
--0.760358 3.37667e-16 -0.285594
-
--0.843472 0.0886525 -0.320194
--0.824863 3.66313e-16 -0.266283
--0.913207 0.0959819 -0.279711
-
--0.883176 3.92209e-16 -0.232616
--0.913207 0.0959819 -0.279711
--0.824863 3.66313e-16 -0.266283
-
--0.913207 0.0959819 -0.279711
--0.883176 3.92209e-16 -0.232616
--0.971777 0.102138 -0.224149
-
--0.932153 4.13959e-16 -0.186408
--0.971777 0.102138 -0.224149
--0.883176 3.92209e-16 -0.232616
-
--0.971777 0.102138 -0.224149
--0.932153 4.13959e-16 -0.186408
--1.01602 0.106789 -0.156502
-
--0.969153 4.30391e-16 -0.130152
--1.01602 0.106789 -0.156502
--0.932153 4.13959e-16 -0.186408
-
--1.01602 0.106789 -0.156502
--0.969153 4.30391e-16 -0.130152
--1.04357 0.109683 -0.0804188
-
--0.992183 4.40618e-16 -0.0668786
--1.04357 0.109683 -0.0804188
--0.969153 4.30391e-16 -0.130152
-
--1.04357 0.109683 -0.0804188
--0.992183 4.40618e-16 -0.0668786
--1.05291 0.110666 0
-
--1 4.44089e-16 0
--1.05291 0.110666 0
--0.992183 4.40618e-16 -0.0668786
-
--1 4.44089e-16 0
--0.93613 -0.0983913 0
--0.992183 4.40618e-16 0.0668786
-
--0.92993 -0.0977396 0.0533384
--0.992183 4.40618e-16 0.0668786
--0.93613 -0.0983913 0
-
--0.992183 4.40618e-16 0.0668786
--0.92993 -0.0977396 0.0533384
--0.969153 4.30391e-16 0.130152
-
--0.911664 -0.0958197 0.103801
--0.969153 4.30391e-16 0.130152
--0.92993 -0.0977396 0.0533384
-
--0.969153 4.30391e-16 0.130152
--0.911664 -0.0958197 0.103801
--0.932153 4.13959e-16 0.186408
-
--0.882316 -0.0927351 0.148668
--0.932153 4.13959e-16 0.186408
--0.911664 -0.0958197 0.103801
-
--0.932153 4.13959e-16 0.186408
--0.882316 -0.0927351 0.148668
--0.883176 3.92209e-16 0.232616
-
--0.843469 -0.0886521 0.18552
--0.883176 3.92209e-16 0.232616
--0.882316 -0.0927351 0.148668
-
--0.883176 3.92209e-16 0.232616
--0.843469 -0.0886521 0.18552
--0.824863 3.66313e-16 0.266283
-
--0.797217 -0.0837909 0.212371
--0.824863 3.66313e-16 0.266283
--0.843469 -0.0886521 0.18552
-
--0.824863 3.66313e-16 0.266283
--0.797217 -0.0837909 0.212371
--0.760358 3.37667e-16 0.285594
-
--0.746053 -0.0784133 0.227773
--0.760358 3.37667e-16 0.285594
--0.797217 -0.0837909 0.212371
-
--0.760358 3.37667e-16 0.285594
--0.746053 -0.0784133 0.227773
--0.693138 3.07815e-16 0.289509
-
--0.692736 -0.0728095 0.230895
--0.693138 3.07815e-16 0.289509
--0.746053 -0.0784133 0.227773
-
--0.693138 3.07815e-16 0.289509
--0.692736 -0.0728095 0.230895
--0.626827 2.78367e-16 0.277817
-
--0.64014 -0.0672814 0.22157
--0.626827 2.78367e-16 0.277817
--0.692736 -0.0728095 0.230895
-
--0.626827 2.78367e-16 0.277817
--0.64014 -0.0672814 0.22157
--0.565 2.5091e-16 0.251147
-
--0.591101 -0.0621272 0.2003
--0.565 2.5091e-16 0.251147
--0.64014 -0.0672814 0.22157
-
--0.565 2.5091e-16 0.251147
--0.591101 -0.0621272 0.2003
--0.51099 2.26925e-16 0.210938
-
--0.548261 -0.0576246 0.168232
--0.51099 2.26925e-16 0.210938
--0.591101 -0.0621272 0.2003
-
--0.51099 2.26925e-16 0.210938
--0.548261 -0.0576246 0.168232
--0.467709 2.07704e-16 0.159358
-
--0.513932 -0.0540164 0.127094
--0.467709 2.07704e-16 0.159358
--0.548261 -0.0576246 0.168232
-
--0.467709 2.07704e-16 0.159358
--0.513932 -0.0540164 0.127094
--0.437489 1.94284e-16 0.0991858
-
--0.489963 -0.0514972 0.0791047
--0.437489 1.94284e-16 0.0991858
--0.513932 -0.0540164 0.127094
-
--0.437489 1.94284e-16 0.0991858
--0.489963 -0.0514972 0.0791047
--0.421961 1.87388e-16 0.0336669
-
--0.477646 -0.0502026 0.0268508
--0.421961 1.87388e-16 0.0336669
--0.489963 -0.0514972 0.0791047
-
--0.421961 1.87388e-16 0.0336669
--0.477646 -0.0502026 0.0268508
--0.421961 1.87388e-16 -0.0336669
-
--0.477646 -0.0502026 -0.0268508
--0.421961 1.87388e-16 -0.0336669
--0.477646 -0.0502026 0.0268508
-
--0.421961 1.87388e-16 -0.0336669
--0.477646 -0.0502026 -0.0268508
--0.437489 1.94284e-16 -0.0991858
-
--0.489963 -0.0514972 -0.0791047
--0.437489 1.94284e-16 -0.0991858
--0.477646 -0.0502026 -0.0268508
-
--0.437489 1.94284e-16 -0.0991858
--0.489963 -0.0514972 -0.0791047
--0.467709 2.07704e-16 -0.159358
-
--0.513932 -0.0540164 -0.127094
--0.467709 2.07704e-16 -0.159358
--0.489963 -0.0514972 -0.0791047
-
--0.467709 2.07704e-16 -0.159358
--0.513932 -0.0540164 -0.127094
--0.51099 2.26925e-16 -0.210938
-
--0.548261 -0.0576246 -0.168232
--0.51099 2.26925e-16 -0.210938
--0.513932 -0.0540164 -0.127094
-
--0.51099 2.26925e-16 -0.210938
--0.548261 -0.0576246 -0.168232
--0.565 2.5091e-16 -0.251147
-
--0.591101 -0.0621272 -0.2003
--0.565 2.5091e-16 -0.251147
--0.548261 -0.0576246 -0.168232
-
--0.565 2.5091e-16 -0.251147
--0.591101 -0.0621272 -0.2003
--0.626827 2.78367e-16 -0.277817
-
--0.64014 -0.0672814 -0.22157
--0.626827 2.78367e-16 -0.277817
--0.591101 -0.0621272 -0.2003
-
--0.626827 2.78367e-16 -0.277817
--0.64014 -0.0672814 -0.22157
--0.693138 3.07815e-16 -0.289509
-
--0.692736 -0.0728095 -0.230895
--0.693138 3.07815e-16 -0.289509
--0.64014 -0.0672814 -0.22157
-
--0.693138 3.07815e-16 -0.289509
--0.692736 -0.0728095 -0.230895
--0.760358 3.37667e-16 -0.285594
-
--0.746053 -0.0784133 -0.227773
--0.760358 3.37667e-16 -0.285594
--0.692736 -0.0728095 -0.230895
-
--0.760358 3.37667e-16 -0.285594
--0.746053 -0.0784133 -0.227773
--0.824863 3.66313e-16 -0.266283
-
--0.797217 -0.0837909 -0.212371
--0.824863 3.66313e-16 -0.266283
--0.746053 -0.0784133 -0.227773
-
--0.824863 3.66313e-16 -0.266283
--0.797217 -0.0837909 -0.212371
--0.883176 3.92209e-16 -0.232616
-
--0.843469 -0.0886521 -0.18552
--0.883176 3.92209e-16 -0.232616
--0.797217 -0.0837909 -0.212371
-
--0.883176 3.92209e-16 -0.232616
--0.843469 -0.0886521 -0.18552
--0.932153 4.13959e-16 -0.186408
-
--0.882316 -0.0927351 -0.148668
--0.932153 4.13959e-16 -0.186408
--0.843469 -0.0886521 -0.18552
-
--0.932153 4.13959e-16 -0.186408
--0.882316 -0.0927351 -0.148668
--0.969153 4.30391e-16 -0.130152
-
--0.911664 -0.0958197 -0.103801
--0.969153 4.30391e-16 -0.130152
--0.882316 -0.0927351 -0.148668
-
--0.969153 4.30391e-16 -0.130152
--0.911664 -0.0958197 -0.103801
--0.992183 4.40618e-16 -0.0668786
-
--0.92993 -0.0977396 -0.0533384
--0.992183 4.40618e-16 -0.0668786
--0.911664 -0.0958197 -0.103801
-
--0.992183 4.40618e-16 -0.0668786
--0.92993 -0.0977396 -0.0533384
--1 4.44089e-16 0
-
--0.93613 -0.0983913 0
--1 4.44089e-16 0
--0.92993 -0.0977396 -0.0533384
-
--0.93613 -0.0983913 0
--0.868909 -0.184692 0
--0.92993 -0.0977396 0.0533384
-
--0.864207 -0.183693 0.0411236
--0.92993 -0.0977396 0.0533384
--0.868909 -0.184692 0
-
--0.92993 -0.0977396 0.0533384
--0.864207 -0.183693 0.0411236
--0.911664 -0.0958197 0.103801
-
--0.850356 -0.180749 0.0800302
--0.911664 -0.0958197 0.103801
--0.864207 -0.183693 0.0411236
-
--0.911664 -0.0958197 0.103801
--0.850356 -0.180749 0.0800302
--0.882316 -0.0927351 0.148668
-
--0.828101 -0.176018 0.114622
--0.882316 -0.0927351 0.148668
--0.850356 -0.180749 0.0800302
-
--0.882316 -0.0927351 0.148668
--0.828101 -0.176018 0.114622
--0.843469 -0.0886521 0.18552
-
--0.798644 -0.169757 0.143035
--0.843469 -0.0886521 0.18552
--0.828101 -0.176018 0.114622
-
--0.843469 -0.0886521 0.18552
--0.798644 -0.169757 0.143035
--0.797217 -0.0837909 0.212371
-
--0.763571 -0.162302 0.163737
--0.797217 -0.0837909 0.212371
--0.798644 -0.169757 0.143035
-
--0.797217 -0.0837909 0.212371
--0.763571 -0.162302 0.163737
--0.746053 -0.0784133 0.227773
-
--0.724773 -0.154055 0.175612
--0.746053 -0.0784133 0.227773
--0.763571 -0.162302 0.163737
-
--0.746053 -0.0784133 0.227773
--0.724773 -0.154055 0.175612
--0.692736 -0.0728095 0.230895
-
--0.684343 -0.145462 0.178019
--0.692736 -0.0728095 0.230895
--0.724773 -0.154055 0.175612
-
--0.692736 -0.0728095 0.230895
--0.684343 -0.145462 0.178019
--0.64014 -0.0672814 0.22157
-
--0.644459 -0.136984 0.170829
--0.64014 -0.0672814 0.22157
--0.684343 -0.145462 0.178019
-
--0.64014 -0.0672814 0.22157
--0.644459 -0.136984 0.170829
--0.591101 -0.0621272 0.2003
-
--0.607273 -0.12908 0.15443
--0.591101 -0.0621272 0.2003
--0.644459 -0.136984 0.170829
-
--0.591101 -0.0621272 0.2003
--0.607273 -0.12908 0.15443
--0.548261 -0.0576246 0.168232
-
--0.574788 -0.122175 0.129706
--0.548261 -0.0576246 0.168232
--0.607273 -0.12908 0.15443
-
--0.548261 -0.0576246 0.168232
--0.574788 -0.122175 0.129706
--0.513932 -0.0540164 0.127094
-
--0.548756 -0.116642 0.0979889
--0.513932 -0.0540164 0.127094
--0.574788 -0.122175 0.129706
-
--0.513932 -0.0540164 0.127094
--0.548756 -0.116642 0.0979889
--0.489963 -0.0514972 0.0791047
-
--0.53058 -0.112778 0.0609893
--0.489963 -0.0514972 0.0791047
--0.548756 -0.116642 0.0979889
-
--0.489963 -0.0514972 0.0791047
--0.53058 -0.112778 0.0609893
--0.477646 -0.0502026 0.0268508
-
--0.52124 -0.110793 0.0207018
--0.477646 -0.0502026 0.0268508
--0.53058 -0.112778 0.0609893
-
--0.477646 -0.0502026 0.0268508
--0.52124 -0.110793 0.0207018
--0.477646 -0.0502026 -0.0268508
-
--0.52124 -0.110793 -0.0207018
--0.477646 -0.0502026 -0.0268508
--0.52124 -0.110793 0.0207018
-
--0.477646 -0.0502026 -0.0268508
--0.52124 -0.110793 -0.0207018
--0.489963 -0.0514972 -0.0791047
-
--0.53058 -0.112778 -0.0609893
--0.489963 -0.0514972 -0.0791047
--0.52124 -0.110793 -0.0207018
-
--0.489963 -0.0514972 -0.0791047
--0.53058 -0.112778 -0.0609893
--0.513932 -0.0540164 -0.127094
-
--0.548756 -0.116642 -0.0979889
--0.513932 -0.0540164 -0.127094
--0.53058 -0.112778 -0.0609893
-
--0.513932 -0.0540164 -0.127094
--0.548756 -0.116642 -0.0979889
--0.548261 -0.0576246 -0.168232
-
--0.574788 -0.122175 -0.129706
--0.548261 -0.0576246 -0.168232
--0.548756 -0.116642 -0.0979889
-
--0.548261 -0.0576246 -0.168232
--0.574788 -0.122175 -0.129706
--0.591101 -0.0621272 -0.2003
-
--0.607273 -0.12908 -0.15443
--0.591101 -0.0621272 -0.2003
--0.574788 -0.122175 -0.129706
-
--0.591101 -0.0621272 -0.2003
--0.607273 -0.12908 -0.15443
--0.64014 -0.0672814 -0.22157
-
--0.644459 -0.136984 -0.170829
--0.64014 -0.0672814 -0.22157
--0.607273 -0.12908 -0.15443
-
--0.64014 -0.0672814 -0.22157
--0.644459 -0.136984 -0.170829
--0.692736 -0.0728095 -0.230895
-
--0.684343 -0.145462 -0.178019
--0.692736 -0.0728095 -0.230895
--0.644459 -0.136984 -0.170829
-
--0.692736 -0.0728095 -0.230895
--0.684343 -0.145462 -0.178019
--0.746053 -0.0784133 -0.227773
-
--0.724773 -0.154055 -0.175612
--0.746053 -0.0784133 -0.227773
--0.684343 -0.145462 -0.178019
-
--0.746053 -0.0784133 -0.227773
--0.724773 -0.154055 -0.175612
--0.797217 -0.0837909 -0.212371
-
--0.763571 -0.162302 -0.163737
--0.797217 -0.0837909 -0.212371
--0.724773 -0.154055 -0.175612
-
--0.797217 -0.0837909 -0.212371
--0.763571 -0.162302 -0.163737
--0.843469 -0.0886521 -0.18552
-
--0.798644 -0.169757 -0.143035
--0.843469 -0.0886521 -0.18552
--0.763571 -0.162302 -0.163737
-
--0.843469 -0.0886521 -0.18552
--0.798644 -0.169757 -0.143035
--0.882316 -0.0927351 -0.148668
-
--0.828101 -0.176018 -0.114622
--0.882316 -0.0927351 -0.148668
--0.798644 -0.169757 -0.143035
-
--0.882316 -0.0927351 -0.148668
--0.828101 -0.176018 -0.114622
--0.911664 -0.0958197 -0.103801
-
--0.850356 -0.180749 -0.0800302
--0.911664 -0.0958197 -0.103801
--0.828101 -0.176018 -0.114622
-
--0.911664 -0.0958197 -0.103801
--0.850356 -0.180749 -0.0800302
--0.92993 -0.0977396 -0.0533384
-
--0.864207 -0.183693 -0.0411236
--0.92993 -0.0977396 -0.0533384
--0.850356 -0.180749 -0.0800302
-
--0.92993 -0.0977396 -0.0533384
--0.864207 -0.183693 -0.0411236
--0.93613 -0.0983913 0
-
--0.868909 -0.184692 0
--0.93613 -0.0983913 0
--0.864207 -0.183693 -0.0411236
-
--0.868909 -0.184692 0
--0.804867 -0.261517 0
--0.864207 -0.183693 0.0411236
-
--0.801373 -0.260382 0.0314299
--0.864207 -0.183693 0.0411236
--0.804867 -0.261517 0
-
--0.864207 -0.183693 0.0411236
--0.801373 -0.260382 0.0314299
--0.850356 -0.180749 0.0800302
-
--0.79108 -0.257037 0.0611654
--0.850356 -0.180749 0.0800302
--0.801373 -0.260382 0.0314299
-
--0.850356 -0.180749 0.0800302
--0.79108 -0.257037 0.0611654
--0.828101 -0.176018 0.114622
-
--0.774542 -0.251664 0.0876034
--0.828101 -0.176018 0.114622
--0.79108 -0.257037 0.0611654
-
--0.828101 -0.176018 0.114622
--0.774542 -0.251664 0.0876034
--0.798644 -0.169757 0.143035
-
--0.752652 -0.244551 0.109319
--0.798644 -0.169757 0.143035
--0.774542 -0.251664 0.0876034
-
--0.798644 -0.169757 0.143035
--0.752652 -0.244551 0.109319
--0.763571 -0.162302 0.163737
-
--0.726589 -0.236083 0.125141
--0.763571 -0.162302 0.163737
--0.752652 -0.244551 0.109319
-
--0.763571 -0.162302 0.163737
--0.726589 -0.236083 0.125141
--0.724773 -0.154055 0.175612
-
--0.697758 -0.226715 0.134216
--0.724773 -0.154055 0.175612
--0.726589 -0.236083 0.125141
-
--0.724773 -0.154055 0.175612
--0.697758 -0.226715 0.134216
--0.684343 -0.145462 0.178019
-
--0.667714 -0.216953 0.136056
--0.684343 -0.145462 0.178019
--0.697758 -0.226715 0.134216
-
--0.684343 -0.145462 0.178019
--0.667714 -0.216953 0.136056
--0.644459 -0.136984 0.170829
-
--0.638076 -0.207323 0.130561
--0.644459 -0.136984 0.170829
--0.667714 -0.216953 0.136056
-
--0.644459 -0.136984 0.170829
--0.638076 -0.207323 0.130561
--0.607273 -0.12908 0.15443
-
--0.610442 -0.198345 0.118028
--0.607273 -0.12908 0.15443
--0.638076 -0.207323 0.130561
-
--0.607273 -0.12908 0.15443
--0.610442 -0.198345 0.118028
--0.574788 -0.122175 0.129706
-
--0.586302 -0.190501 0.0991314
--0.574788 -0.122175 0.129706
--0.610442 -0.198345 0.118028
-
--0.574788 -0.122175 0.129706
--0.586302 -0.190501 0.0991314
--0.548756 -0.116642 0.0979889
-
--0.566957 -0.184216 0.0748908
--0.548756 -0.116642 0.0979889
--0.586302 -0.190501 0.0991314
-
--0.548756 -0.116642 0.0979889
--0.566957 -0.184216 0.0748908
--0.53058 -0.112778 0.0609893
-
--0.553451 -0.179827 0.0466128
--0.53058 -0.112778 0.0609893
--0.566957 -0.184216 0.0748908
-
--0.53058 -0.112778 0.0609893
--0.553451 -0.179827 0.0466128
--0.52124 -0.110793 0.0207018
-
--0.54651 -0.177572 0.0158219
--0.52124 -0.110793 0.0207018
--0.553451 -0.179827 0.0466128
-
--0.52124 -0.110793 0.0207018
--0.54651 -0.177572 0.0158219
--0.52124 -0.110793 -0.0207018
-
--0.54651 -0.177572 -0.0158219
--0.52124 -0.110793 -0.0207018
--0.54651 -0.177572 0.0158219
-
--0.52124 -0.110793 -0.0207018
--0.54651 -0.177572 -0.0158219
--0.53058 -0.112778 -0.0609893
-
--0.553451 -0.179827 -0.0466128
--0.53058 -0.112778 -0.0609893
--0.54651 -0.177572 -0.0158219
-
--0.53058 -0.112778 -0.0609893
--0.553451 -0.179827 -0.0466128
--0.548756 -0.116642 -0.0979889
-
--0.566957 -0.184216 -0.0748908
--0.548756 -0.116642 -0.0979889
--0.553451 -0.179827 -0.0466128
-
--0.548756 -0.116642 -0.0979889
--0.566957 -0.184216 -0.0748908
--0.574788 -0.122175 -0.129706
-
--0.586302 -0.190501 -0.0991314
--0.574788 -0.122175 -0.129706
--0.566957 -0.184216 -0.0748908
-
--0.574788 -0.122175 -0.129706
--0.586302 -0.190501 -0.0991314
--0.607273 -0.12908 -0.15443
-
--0.610442 -0.198345 -0.118028
--0.607273 -0.12908 -0.15443
--0.586302 -0.190501 -0.0991314
-
--0.607273 -0.12908 -0.15443
--0.610442 -0.198345 -0.118028
--0.644459 -0.136984 -0.170829
-
--0.638076 -0.207323 -0.130561
--0.644459 -0.136984 -0.170829
--0.610442 -0.198345 -0.118028
-
--0.644459 -0.136984 -0.170829
--0.638076 -0.207323 -0.130561
--0.684343 -0.145462 -0.178019
-
--0.667714 -0.216953 -0.136056
--0.684343 -0.145462 -0.178019
--0.638076 -0.207323 -0.130561
-
--0.684343 -0.145462 -0.178019
--0.667714 -0.216953 -0.136056
--0.724773 -0.154055 -0.175612
-
--0.697758 -0.226715 -0.134216
--0.724773 -0.154055 -0.175612
--0.667714 -0.216953 -0.136056
-
--0.724773 -0.154055 -0.175612
--0.697758 -0.226715 -0.134216
--0.763571 -0.162302 -0.163737
-
--0.726589 -0.236083 -0.125141
--0.763571 -0.162302 -0.163737
--0.697758 -0.226715 -0.134216
-
--0.763571 -0.162302 -0.163737
--0.726589 -0.236083 -0.125141
--0.798644 -0.169757 -0.143035
-
--0.752652 -0.244551 -0.109319
--0.798644 -0.169757 -0.143035
--0.726589 -0.236083 -0.125141
-
--0.798644 -0.169757 -0.143035
--0.752652 -0.244551 -0.109319
--0.828101 -0.176018 -0.114622
-
--0.774542 -0.251664 -0.0876034
--0.828101 -0.176018 -0.114622
--0.752652 -0.244551 -0.109319
-
--0.828101 -0.176018 -0.114622
--0.774542 -0.251664 -0.0876034
--0.850356 -0.180749 -0.0800302
-
--0.79108 -0.257037 -0.0611654
--0.850356 -0.180749 -0.0800302
--0.774542 -0.251664 -0.0876034
-
--0.850356 -0.180749 -0.0800302
--0.79108 -0.257037 -0.0611654
--0.864207 -0.183693 -0.0411236
-
--0.801373 -0.260382 -0.0314299
--0.864207 -0.183693 -0.0411236
--0.79108 -0.257037 -0.0611654
-
--0.864207 -0.183693 -0.0411236
--0.801373 -0.260382 -0.0314299
--0.868909 -0.184692 0
-
--0.804867 -0.261517 0
--0.868909 -0.184692 0
--0.801373 -0.260382 -0.0314299
-
--0.804867 -0.261517 0
--0.748467 -0.333239 0
--0.801373 -0.260382 0.0314299
-
--0.745776 -0.332041 0.0252061
--0.801373 -0.260382 0.0314299
--0.748467 -0.333239 0
-
--0.801373 -0.260382 0.0314299
--0.745776 -0.332041 0.0252061
--0.79108 -0.257037 0.0611654
-
--0.737846 -0.32851 0.0490534
--0.79108 -0.257037 0.0611654
--0.745776 -0.332041 0.0252061
-
--0.79108 -0.257037 0.0611654
--0.737846 -0.32851 0.0490534
--0.774542 -0.251664 0.0876034
-
--0.725107 -0.322838 0.0702562
--0.774542 -0.251664 0.0876034
--0.737846 -0.32851 0.0490534
-
--0.774542 -0.251664 0.0876034
--0.725107 -0.322838 0.0702562
--0.752652 -0.244551 0.109319
-
--0.708243 -0.31533 0.0876715
--0.752652 -0.244551 0.109319
--0.725107 -0.322838 0.0702562
-
--0.752652 -0.244551 0.109319
--0.708243 -0.31533 0.0876715
--0.726589 -0.236083 0.125141
-
--0.688166 -0.306391 0.10036
--0.726589 -0.236083 0.125141
--0.708243 -0.31533 0.0876715
-
--0.726589 -0.236083 0.125141
--0.688166 -0.306391 0.10036
--0.697758 -0.226715 0.134216
-
--0.665956 -0.296503 0.107639
--0.697758 -0.226715 0.134216
--0.688166 -0.306391 0.10036
-
--0.697758 -0.226715 0.134216
--0.665956 -0.296503 0.107639
--0.667714 -0.216953 0.136056
-
--0.642812 -0.286198 0.109114
--0.667714 -0.216953 0.136056
--0.665956 -0.296503 0.107639
-
--0.667714 -0.216953 0.136056
--0.642812 -0.286198 0.109114
--0.638076 -0.207323 0.130561
-
--0.61998 -0.276033 0.104708
--0.638076 -0.207323 0.130561
--0.642812 -0.286198 0.109114
-
--0.638076 -0.207323 0.130561
--0.61998 -0.276033 0.104708
--0.610442 -0.198345 0.118028
-
--0.598692 -0.266555 0.0946559
--0.610442 -0.198345 0.118028
--0.61998 -0.276033 0.104708
-
--0.610442 -0.198345 0.118028
--0.598692 -0.266555 0.0946559
--0.586302 -0.190501 0.0991314
-
--0.580096 -0.258275 0.0795014
--0.586302 -0.190501 0.0991314
--0.598692 -0.266555 0.0946559
-
--0.586302 -0.190501 0.0991314
--0.580096 -0.258275 0.0795014
--0.566957 -0.184216 0.0748908
-
--0.565194 -0.251641 0.0600609
--0.566957 -0.184216 0.0748908
--0.580096 -0.258275 0.0795014
-
--0.566957 -0.184216 0.0748908
--0.565194 -0.251641 0.0600609
--0.553451 -0.179827 0.0466128
-
--0.554789 -0.247008 0.0373825
--0.553451 -0.179827 0.0466128
--0.565194 -0.251641 0.0600609
-
--0.553451 -0.179827 0.0466128
--0.554789 -0.247008 0.0373825
--0.54651 -0.177572 0.0158219
-
--0.549443 -0.244628 0.0126889
--0.54651 -0.177572 0.0158219
--0.554789 -0.247008 0.0373825
-
--0.54651 -0.177572 0.0158219
--0.549443 -0.244628 0.0126889
--0.54651 -0.177572 -0.0158219
-
--0.549443 -0.244628 -0.0126889
--0.54651 -0.177572 -0.0158219
--0.549443 -0.244628 0.0126889
-
--0.54651 -0.177572 -0.0158219
--0.549443 -0.244628 -0.0126889
--0.553451 -0.179827 -0.0466128
-
--0.554789 -0.247008 -0.0373825
--0.553451 -0.179827 -0.0466128
--0.549443 -0.244628 -0.0126889
-
--0.553451 -0.179827 -0.0466128
--0.554789 -0.247008 -0.0373825
--0.566957 -0.184216 -0.0748908
-
--0.565194 -0.251641 -0.0600609
--0.566957 -0.184216 -0.0748908
--0.554789 -0.247008 -0.0373825
-
--0.566957 -0.184216 -0.0748908
--0.565194 -0.251641 -0.0600609
--0.586302 -0.190501 -0.0991314
-
--0.580096 -0.258275 -0.0795014
--0.586302 -0.190501 -0.0991314
--0.565194 -0.251641 -0.0600609
-
--0.586302 -0.190501 -0.0991314
--0.580096 -0.258275 -0.0795014
--0.610442 -0.198345 -0.118028
-
--0.598692 -0.266555 -0.0946559
--0.610442 -0.198345 -0.118028
--0.580096 -0.258275 -0.0795014
-
--0.610442 -0.198345 -0.118028
--0.598692 -0.266555 -0.0946559
--0.638076 -0.207323 -0.130561
-
--0.61998 -0.276033 -0.104708
--0.638076 -0.207323 -0.130561
--0.598692 -0.266555 -0.0946559
-
--0.638076 -0.207323 -0.130561
--0.61998 -0.276033 -0.104708
--0.667714 -0.216953 -0.136056
-
--0.642812 -0.286198 -0.109114
--0.667714 -0.216953 -0.136056
--0.61998 -0.276033 -0.104708
-
--0.667714 -0.216953 -0.136056
--0.642812 -0.286198 -0.109114
--0.697758 -0.226715 -0.134216
-
--0.665956 -0.296503 -0.107639
--0.697758 -0.226715 -0.134216
--0.642812 -0.286198 -0.109114
-
--0.697758 -0.226715 -0.134216
--0.665956 -0.296503 -0.107639
--0.726589 -0.236083 -0.125141
-
--0.688166 -0.306391 -0.10036
--0.726589 -0.236083 -0.125141
--0.665956 -0.296503 -0.107639
-
--0.726589 -0.236083 -0.125141
--0.688166 -0.306391 -0.10036
--0.752652 -0.244551 -0.109319
-
--0.708243 -0.31533 -0.0876715
--0.752652 -0.244551 -0.109319
--0.688166 -0.306391 -0.10036
-
--0.752652 -0.244551 -0.109319
--0.708243 -0.31533 -0.0876715
--0.774542 -0.251664 -0.0876034
-
--0.725107 -0.322838 -0.0702562
--0.774542 -0.251664 -0.0876034
--0.708243 -0.31533 -0.0876715
-
--0.774542 -0.251664 -0.0876034
--0.725107 -0.322838 -0.0702562
--0.79108 -0.257037 -0.0611654
-
--0.737846 -0.32851 -0.0490534
--0.79108 -0.257037 -0.0611654
--0.725107 -0.322838 -0.0702562
-
--0.79108 -0.257037 -0.0611654
--0.737846 -0.32851 -0.0490534
--0.801373 -0.260382 -0.0314299
-
--0.745776 -0.332041 -0.0252061
--0.801373 -0.260382 -0.0314299
--0.737846 -0.32851 -0.0490534
-
--0.801373 -0.260382 -0.0314299
--0.745776 -0.332041 -0.0252061
--0.804867 -0.261517 0
-
--0.748467 -0.333239 0
--0.804867 -0.261517 0
--0.745776 -0.332041 -0.0252061
-
--0.748467 -0.333239 0
--0.701481 -0.405 0
--0.745776 -0.332041 0.0252061
-
--0.699146 -0.403652 0.0230616
--0.745776 -0.332041 0.0252061
--0.701481 -0.405 0
-
--0.745776 -0.332041 0.0252061
--0.699146 -0.403652 0.0230616
--0.737846 -0.32851 0.0490534
-
--0.692269 -0.399682 0.0448799
--0.737846 -0.32851 0.0490534
--0.699146 -0.403652 0.0230616
-
--0.737846 -0.32851 0.0490534
--0.692269 -0.399682 0.0448799
--0.725107 -0.322838 0.0702562
-
--0.681219 -0.393302 0.0642788
--0.725107 -0.322838 0.0702562
--0.692269 -0.399682 0.0448799
-
--0.725107 -0.322838 0.0702562
--0.681219 -0.393302 0.0642788
--0.708243 -0.31533 0.0876715
-
--0.666593 -0.384858 0.0802123
--0.708243 -0.31533 0.0876715
--0.681219 -0.393302 0.0642788
-
--0.708243 -0.31533 0.0876715
--0.666593 -0.384858 0.0802123
--0.688166 -0.306391 0.10036
-
--0.64918 -0.374804 0.0918216
--0.688166 -0.306391 0.10036
--0.666593 -0.384858 0.0802123
-
--0.688166 -0.306391 0.10036
--0.64918 -0.374804 0.0918216
--0.665956 -0.296503 0.107639
-
--0.629916 -0.363682 0.0984808
--0.665956 -0.296503 0.107639
--0.64918 -0.374804 0.0918216
-
--0.665956 -0.296503 0.107639
--0.629916 -0.363682 0.0984808
--0.642812 -0.286198 0.109114
-
--0.609843 -0.352093 0.0998308
--0.642812 -0.286198 0.109114
--0.629916 -0.363682 0.0984808
-
--0.642812 -0.286198 0.109114
--0.609843 -0.352093 0.0998308
--0.61998 -0.276033 0.104708
-
--0.59004 -0.34066 0.095799
--0.61998 -0.276033 0.104708
--0.609843 -0.352093 0.0998308
-
--0.61998 -0.276033 0.104708
--0.59004 -0.34066 0.095799
--0.598692 -0.266555 0.0946559
-
--0.571577 -0.33 0.0866025
--0.598692 -0.266555 0.0946559
--0.59004 -0.34066 0.095799
-
--0.598692 -0.266555 0.0946559
--0.571577 -0.33 0.0866025
--0.580096 -0.258275 0.0795014
-
--0.555448 -0.320688 0.0727374
--0.580096 -0.258275 0.0795014
--0.571577 -0.33 0.0866025
-
--0.580096 -0.258275 0.0795014
--0.555448 -0.320688 0.0727374
--0.565194 -0.251641 0.0600609
-
--0.542523 -0.313226 0.0549509
--0.565194 -0.251641 0.0600609
--0.555448 -0.320688 0.0727374
-
--0.565194 -0.251641 0.0600609
--0.542523 -0.313226 0.0549509
--0.554789 -0.247008 0.0373825
-
--0.533498 -0.308015 0.034202
--0.554789 -0.247008 0.0373825
--0.542523 -0.313226 0.0549509
-
--0.554789 -0.247008 0.0373825
--0.533498 -0.308015 0.034202
--0.549443 -0.244628 0.0126889
-
--0.528861 -0.305338 0.0116093
--0.549443 -0.244628 0.0126889
--0.533498 -0.308015 0.034202
-
--0.549443 -0.244628 0.0126889
--0.528861 -0.305338 0.0116093
--0.549443 -0.244628 -0.0126889
-
--0.528861 -0.305338 -0.0116093
--0.549443 -0.244628 -0.0126889
--0.528861 -0.305338 0.0116093
-
--0.549443 -0.244628 -0.0126889
--0.528861 -0.305338 -0.0116093
--0.554789 -0.247008 -0.0373825
-
--0.533498 -0.308015 -0.034202
--0.554789 -0.247008 -0.0373825
--0.528861 -0.305338 -0.0116093
-
--0.554789 -0.247008 -0.0373825
--0.533498 -0.308015 -0.034202
--0.565194 -0.251641 -0.0600609
-
--0.542523 -0.313226 -0.0549509
--0.565194 -0.251641 -0.0600609
--0.533498 -0.308015 -0.034202
-
--0.565194 -0.251641 -0.0600609
--0.542523 -0.313226 -0.0549509
--0.580096 -0.258275 -0.0795014
-
--0.555448 -0.320688 -0.0727374
--0.580096 -0.258275 -0.0795014
--0.542523 -0.313226 -0.0549509
-
--0.580096 -0.258275 -0.0795014
--0.555448 -0.320688 -0.0727374
--0.598692 -0.266555 -0.0946559
-
--0.571577 -0.33 -0.0866025
--0.598692 -0.266555 -0.0946559
--0.555448 -0.320688 -0.0727374
-
--0.598692 -0.266555 -0.0946559
--0.571577 -0.33 -0.0866025
--0.61998 -0.276033 -0.104708
-
--0.59004 -0.34066 -0.095799
--0.61998 -0.276033 -0.104708
--0.571577 -0.33 -0.0866025
-
--0.61998 -0.276033 -0.104708
--0.59004 -0.34066 -0.095799
--0.642812 -0.286198 -0.109114
-
--0.609843 -0.352093 -0.0998308
--0.642812 -0.286198 -0.109114
--0.59004 -0.34066 -0.095799
-
--0.642812 -0.286198 -0.109114
--0.609843 -0.352093 -0.0998308
--0.665956 -0.296503 -0.107639
-
--0.629916 -0.363682 -0.0984808
--0.665956 -0.296503 -0.107639
--0.609843 -0.352093 -0.0998308
-
--0.665956 -0.296503 -0.107639
--0.629916 -0.363682 -0.0984808
--0.688166 -0.306391 -0.10036
-
--0.64918 -0.374804 -0.0918216
--0.688166 -0.306391 -0.10036
--0.629916 -0.363682 -0.0984808
-
--0.688166 -0.306391 -0.10036
--0.64918 -0.374804 -0.0918216
--0.708243 -0.31533 -0.0876715
-
--0.666593 -0.384858 -0.0802123
--0.708243 -0.31533 -0.0876715
--0.64918 -0.374804 -0.0918216
-
--0.708243 -0.31533 -0.0876715
--0.666593 -0.384858 -0.0802123
--0.725107 -0.322838 -0.0702562
-
--0.681219 -0.393302 -0.0642788
--0.725107 -0.322838 -0.0702562
--0.666593 -0.384858 -0.0802123
-
--0.725107 -0.322838 -0.0702562
--0.681219 -0.393302 -0.0642788
--0.737846 -0.32851 -0.0490534
-
--0.692269 -0.399682 -0.0448799
--0.737846 -0.32851 -0.0490534
--0.681219 -0.393302 -0.0642788
-
--0.737846 -0.32851 -0.0490534
--0.692269 -0.399682 -0.0448799
--0.745776 -0.332041 -0.0252061
-
--0.699146 -0.403652 -0.0230616
--0.745776 -0.332041 -0.0252061
--0.692269 -0.399682 -0.0448799
-
--0.745776 -0.332041 -0.0252061
--0.699146 -0.403652 -0.0230616
--0.748467 -0.333239 0
-
--0.701481 -0.405 0
--0.748467 -0.333239 0
--0.699146 -0.403652 -0.0230616
-
--0.701481 -0.405 0
--0.662827 -0.481572 0
--0.699146 -0.403652 0.0230616
-
--0.660444 -0.47984 0.0252061
--0.699146 -0.403652 0.0230616
--0.662827 -0.481572 0
-
--0.699146 -0.403652 0.0230616
--0.660444 -0.47984 0.0252061
--0.692269 -0.399682 0.0448799
-
--0.653421 -0.474739 0.0490534
--0.692269 -0.399682 0.0448799
--0.660444 -0.47984 0.0252061
-
--0.692269 -0.399682 0.0448799
--0.653421 -0.474739 0.0490534
--0.681219 -0.393302 0.0642788
-
--0.64214 -0.466542 0.0702562
--0.681219 -0.393302 0.0642788
--0.653421 -0.474739 0.0490534
-
--0.681219 -0.393302 0.0642788
--0.64214 -0.466542 0.0702562
--0.666593 -0.384858 0.0802123
-
--0.627206 -0.455692 0.0876715
--0.666593 -0.384858 0.0802123
--0.64214 -0.466542 0.0702562
-
--0.666593 -0.384858 0.0802123
--0.627206 -0.455692 0.0876715
--0.64918 -0.374804 0.0918216
-
--0.609425 -0.442773 0.10036
--0.64918 -0.374804 0.0918216
--0.627206 -0.455692 0.0876715
-
--0.64918 -0.374804 0.0918216
--0.609425 -0.442773 0.10036
--0.629916 -0.363682 0.0984808
-
--0.589757 -0.428483 0.107639
--0.629916 -0.363682 0.0984808
--0.609425 -0.442773 0.10036
-
--0.629916 -0.363682 0.0984808
--0.589757 -0.428483 0.107639
--0.609843 -0.352093 0.0998308
-
--0.569261 -0.413592 0.109114
--0.609843 -0.352093 0.0998308
--0.589757 -0.428483 0.107639
-
--0.609843 -0.352093 0.0998308
--0.569261 -0.413592 0.109114
--0.59004 -0.34066 0.095799
-
--0.549042 -0.398902 0.104708
--0.59004 -0.34066 0.095799
--0.569261 -0.413592 0.109114
-
--0.59004 -0.34066 0.095799
--0.549042 -0.398902 0.104708
--0.571577 -0.33 0.0866025
-
--0.53019 -0.385205 0.0946559
--0.571577 -0.33 0.0866025
--0.549042 -0.398902 0.104708
-
--0.571577 -0.33 0.0866025
--0.53019 -0.385205 0.0946559
--0.555448 -0.320688 0.0727374
-
--0.513721 -0.37324 0.0795014
--0.555448 -0.320688 0.0727374
--0.53019 -0.385205 0.0946559
-
--0.555448 -0.320688 0.0727374
--0.513721 -0.37324 0.0795014
--0.542523 -0.313226 0.0549509
-
--0.500524 -0.363652 0.0600609
--0.542523 -0.313226 0.0549509
--0.513721 -0.37324 0.0795014
-
--0.542523 -0.313226 0.0549509
--0.500524 -0.363652 0.0600609
--0.533498 -0.308015 0.034202
-
--0.49131 -0.356957 0.0373825
--0.533498 -0.308015 0.034202
--0.500524 -0.363652 0.0600609
-
--0.533498 -0.308015 0.034202
--0.49131 -0.356957 0.0373825
--0.528861 -0.305338 0.0116093
-
--0.486575 -0.353517 0.0126889
--0.528861 -0.305338 0.0116093
--0.49131 -0.356957 0.0373825
-
--0.528861 -0.305338 0.0116093
--0.486575 -0.353517 0.0126889
--0.528861 -0.305338 -0.0116093
-
--0.486575 -0.353517 -0.0126889
--0.528861 -0.305338 -0.0116093
--0.486575 -0.353517 0.0126889
-
--0.528861 -0.305338 -0.0116093
--0.486575 -0.353517 -0.0126889
--0.533498 -0.308015 -0.034202
-
--0.49131 -0.356957 -0.0373825
--0.533498 -0.308015 -0.034202
--0.486575 -0.353517 -0.0126889
-
--0.533498 -0.308015 -0.034202
--0.49131 -0.356957 -0.0373825
--0.542523 -0.313226 -0.0549509
-
--0.500524 -0.363652 -0.0600609
--0.542523 -0.313226 -0.0549509
--0.49131 -0.356957 -0.0373825
-
--0.542523 -0.313226 -0.0549509
--0.500524 -0.363652 -0.0600609
--0.555448 -0.320688 -0.0727374
-
--0.513721 -0.37324 -0.0795014
--0.555448 -0.320688 -0.0727374
--0.500524 -0.363652 -0.0600609
-
--0.555448 -0.320688 -0.0727374
--0.513721 -0.37324 -0.0795014
--0.571577 -0.33 -0.0866025
-
--0.53019 -0.385205 -0.0946559
--0.571577 -0.33 -0.0866025
--0.513721 -0.37324 -0.0795014
-
--0.571577 -0.33 -0.0866025
--0.53019 -0.385205 -0.0946559
--0.59004 -0.34066 -0.095799
-
--0.549042 -0.398902 -0.104708
--0.59004 -0.34066 -0.095799
--0.53019 -0.385205 -0.0946559
-
--0.59004 -0.34066 -0.095799
--0.549042 -0.398902 -0.104708
--0.609843 -0.352093 -0.0998308
-
--0.569261 -0.413592 -0.109114
--0.609843 -0.352093 -0.0998308
--0.549042 -0.398902 -0.104708
-
--0.609843 -0.352093 -0.0998308
--0.569261 -0.413592 -0.109114
--0.629916 -0.363682 -0.0984808
-
--0.589757 -0.428483 -0.107639
--0.629916 -0.363682 -0.0984808
--0.569261 -0.413592 -0.109114
-
--0.629916 -0.363682 -0.0984808
--0.589757 -0.428483 -0.107639
--0.64918 -0.374804 -0.0918216
-
--0.609425 -0.442773 -0.10036
--0.64918 -0.374804 -0.0918216
--0.589757 -0.428483 -0.107639
-
--0.64918 -0.374804 -0.0918216
--0.609425 -0.442773 -0.10036
--0.666593 -0.384858 -0.0802123
-
--0.627206 -0.455692 -0.0876715
--0.666593 -0.384858 -0.0802123
--0.609425 -0.442773 -0.10036
-
--0.666593 -0.384858 -0.0802123
--0.627206 -0.455692 -0.0876715
--0.681219 -0.393302 -0.0642788
-
--0.64214 -0.466542 -0.0702562
--0.681219 -0.393302 -0.0642788
--0.627206 -0.455692 -0.0876715
-
--0.681219 -0.393302 -0.0642788
--0.64214 -0.466542 -0.0702562
--0.692269 -0.399682 -0.0448799
-
--0.653421 -0.474739 -0.0490534
--0.692269 -0.399682 -0.0448799
--0.64214 -0.466542 -0.0702562
-
--0.692269 -0.399682 -0.0448799
--0.653421 -0.474739 -0.0490534
--0.699146 -0.403652 -0.0230616
-
--0.660444 -0.47984 -0.0252061
--0.699146 -0.403652 -0.0230616
--0.653421 -0.474739 -0.0490534
-
--0.699146 -0.403652 -0.0230616
--0.660444 -0.47984 -0.0252061
--0.701481 -0.405 0
-
--0.662827 -0.481572 0
--0.701481 -0.405 0
--0.660444 -0.47984 -0.0252061
-
--0.662827 -0.481572 0
--0.628914 -0.566276 0
--0.660444 -0.47984 0.0252061
-
--0.626184 -0.563818 0.0314299
--0.660444 -0.47984 0.0252061
--0.628914 -0.566276 0
-
--0.660444 -0.47984 0.0252061
--0.626184 -0.563818 0.0314299
--0.653421 -0.474739 0.0490534
-
--0.618141 -0.556576 0.0611654
--0.653421 -0.474739 0.0490534
--0.626184 -0.563818 0.0314299
-
--0.653421 -0.474739 0.0490534
--0.618141 -0.556576 0.0611654
--0.64214 -0.466542 0.0702562
-
--0.605218 -0.544941 0.0876034
--0.64214 -0.466542 0.0702562
--0.618141 -0.556576 0.0611654
-
--0.64214 -0.466542 0.0702562
--0.605218 -0.544941 0.0876034
--0.627206 -0.455692 0.0876715
-
--0.588114 -0.52954 0.109319
--0.627206 -0.455692 0.0876715
--0.605218 -0.544941 0.0876034
-
--0.627206 -0.455692 0.0876715
--0.588114 -0.52954 0.109319
--0.609425 -0.442773 0.10036
-
--0.567748 -0.511203 0.125141
--0.609425 -0.442773 0.10036
--0.588114 -0.52954 0.109319
-
--0.609425 -0.442773 0.10036
--0.567748 -0.511203 0.125141
--0.589757 -0.428483 0.107639
-
--0.54522 -0.490918 0.134216
--0.589757 -0.428483 0.107639
--0.567748 -0.511203 0.125141
-
--0.589757 -0.428483 0.107639
--0.54522 -0.490918 0.134216
--0.569261 -0.413592 0.109114
-
--0.521744 -0.46978 0.136056
--0.569261 -0.413592 0.109114
--0.54522 -0.490918 0.134216
-
--0.569261 -0.413592 0.109114
--0.521744 -0.46978 0.136056
--0.549042 -0.398902 0.104708
-
--0.498585 -0.448928 0.130561
--0.549042 -0.398902 0.104708
--0.521744 -0.46978 0.136056
-
--0.549042 -0.398902 0.104708
--0.498585 -0.448928 0.130561
--0.53019 -0.385205 0.0946559
-
--0.476992 -0.429486 0.118028
--0.53019 -0.385205 0.0946559
--0.498585 -0.448928 0.130561
-
--0.53019 -0.385205 0.0946559
--0.476992 -0.429486 0.118028
--0.513721 -0.37324 0.0795014
-
--0.45813 -0.412502 0.0991314
--0.513721 -0.37324 0.0795014
--0.476992 -0.429486 0.118028
-
--0.513721 -0.37324 0.0795014
--0.45813 -0.412502 0.0991314
--0.500524 -0.363652 0.0600609
-
--0.443014 -0.398892 0.0748908
--0.500524 -0.363652 0.0600609
--0.45813 -0.412502 0.0991314
-
--0.500524 -0.363652 0.0600609
--0.443014 -0.398892 0.0748908
--0.49131 -0.356957 0.0373825
-
--0.43246 -0.389389 0.0466128
--0.49131 -0.356957 0.0373825
--0.443014 -0.398892 0.0748908
-
--0.49131 -0.356957 0.0373825
--0.43246 -0.389389 0.0466128
--0.486575 -0.353517 0.0126889
-
--0.427037 -0.384506 0.0158219
--0.486575 -0.353517 0.0126889
--0.43246 -0.389389 0.0466128
-
--0.486575 -0.353517 0.0126889
--0.427037 -0.384506 0.0158219
--0.486575 -0.353517 -0.0126889
-
--0.427037 -0.384506 -0.0158219
--0.486575 -0.353517 -0.0126889
--0.427037 -0.384506 0.0158219
-
--0.486575 -0.353517 -0.0126889
--0.427037 -0.384506 -0.0158219
--0.49131 -0.356957 -0.0373825
-
--0.43246 -0.389389 -0.0466128
--0.49131 -0.356957 -0.0373825
--0.427037 -0.384506 -0.0158219
-
--0.49131 -0.356957 -0.0373825
--0.43246 -0.389389 -0.0466128
--0.500524 -0.363652 -0.0600609
-
--0.443014 -0.398892 -0.0748908
--0.500524 -0.363652 -0.0600609
--0.43246 -0.389389 -0.0466128
-
--0.500524 -0.363652 -0.0600609
--0.443014 -0.398892 -0.0748908
--0.513721 -0.37324 -0.0795014
-
--0.45813 -0.412502 -0.0991314
--0.513721 -0.37324 -0.0795014
--0.443014 -0.398892 -0.0748908
-
--0.513721 -0.37324 -0.0795014
--0.45813 -0.412502 -0.0991314
--0.53019 -0.385205 -0.0946559
-
--0.476992 -0.429486 -0.118028
--0.53019 -0.385205 -0.0946559
--0.45813 -0.412502 -0.0991314
-
--0.53019 -0.385205 -0.0946559
--0.476992 -0.429486 -0.118028
--0.549042 -0.398902 -0.104708
-
--0.498585 -0.448928 -0.130561
--0.549042 -0.398902 -0.104708
--0.476992 -0.429486 -0.118028
-
--0.549042 -0.398902 -0.104708
--0.498585 -0.448928 -0.130561
--0.569261 -0.413592 -0.109114
-
--0.521744 -0.46978 -0.136056
--0.569261 -0.413592 -0.109114
--0.498585 -0.448928 -0.130561
-
--0.569261 -0.413592 -0.109114
--0.521744 -0.46978 -0.136056
--0.589757 -0.428483 -0.107639
-
--0.54522 -0.490918 -0.134216
--0.589757 -0.428483 -0.107639
--0.521744 -0.46978 -0.136056
-
--0.589757 -0.428483 -0.107639
--0.54522 -0.490918 -0.134216
--0.609425 -0.442773 -0.10036
-
--0.567748 -0.511203 -0.125141
--0.609425 -0.442773 -0.10036
--0.54522 -0.490918 -0.134216
-
--0.609425 -0.442773 -0.10036
--0.567748 -0.511203 -0.125141
--0.627206 -0.455692 -0.0876715
-
--0.588114 -0.52954 -0.109319
--0.627206 -0.455692 -0.0876715
--0.567748 -0.511203 -0.125141
-
--0.627206 -0.455692 -0.0876715
--0.588114 -0.52954 -0.109319
--0.64214 -0.466542 -0.0702562
-
--0.605218 -0.544941 -0.0876034
--0.64214 -0.466542 -0.0702562
--0.588114 -0.52954 -0.109319
-
--0.64214 -0.466542 -0.0702562
--0.605218 -0.544941 -0.0876034
--0.653421 -0.474739 -0.0490534
-
--0.618141 -0.556576 -0.0611654
--0.653421 -0.474739 -0.0490534
--0.605218 -0.544941 -0.0876034
-
--0.653421 -0.474739 -0.0490534
--0.618141 -0.556576 -0.0611654
--0.660444 -0.47984 -0.0252061
-
--0.626184 -0.563818 -0.0314299
--0.660444 -0.47984 -0.0252061
--0.618141 -0.556576 -0.0611654
-
--0.660444 -0.47984 -0.0252061
--0.626184 -0.563818 -0.0314299
--0.662827 -0.481572 0
-
--0.628914 -0.566276 0
--0.662827 -0.481572 0
--0.626184 -0.563818 -0.0314299
-
--0.628914 -0.566276 0
--0.594403 -0.660151 0
--0.626184 -0.563818 0.0314299
-
--0.591186 -0.656579 0.0411236
--0.626184 -0.563818 0.0314299
--0.594403 -0.660151 0
-
--0.626184 -0.563818 0.0314299
--0.591186 -0.656579 0.0411236
--0.618141 -0.556576 0.0611654
-
--0.581711 -0.646055 0.0800302
--0.618141 -0.556576 0.0611654
--0.591186 -0.656579 0.0411236
-
--0.618141 -0.556576 0.0611654
--0.581711 -0.646055 0.0800302
--0.605218 -0.544941 0.0876034
-
--0.566487 -0.629148 0.114622
--0.605218 -0.544941 0.0876034
--0.581711 -0.646055 0.0800302
-
--0.605218 -0.544941 0.0876034
--0.566487 -0.629148 0.114622
--0.588114 -0.52954 0.109319
-
--0.546336 -0.606767 0.143035
--0.588114 -0.52954 0.109319
--0.566487 -0.629148 0.114622
-
--0.588114 -0.52954 0.109319
--0.546336 -0.606767 0.143035
--0.567748 -0.511203 0.125141
-
--0.522343 -0.580121 0.163737
--0.567748 -0.511203 0.125141
--0.546336 -0.606767 0.143035
-
--0.567748 -0.511203 0.125141
--0.522343 -0.580121 0.163737
--0.54522 -0.490918 0.134216
-
--0.495802 -0.550644 0.175612
--0.54522 -0.490918 0.134216
--0.522343 -0.580121 0.163737
-
--0.54522 -0.490918 0.134216
--0.495802 -0.550644 0.175612
--0.521744 -0.46978 0.136056
-
--0.468145 -0.519928 0.178019
--0.521744 -0.46978 0.136056
--0.495802 -0.550644 0.175612
-
--0.521744 -0.46978 0.136056
--0.468145 -0.519928 0.178019
--0.498585 -0.448928 0.130561
-
--0.440861 -0.489626 0.170829
--0.498585 -0.448928 0.130561
--0.468145 -0.519928 0.178019
-
--0.498585 -0.448928 0.130561
--0.440861 -0.489626 0.170829
--0.476992 -0.429486 0.118028
-
--0.415423 -0.461374 0.15443
--0.476992 -0.429486 0.118028
--0.440861 -0.489626 0.170829
-
--0.476992 -0.429486 0.118028
--0.415423 -0.461374 0.15443
--0.45813 -0.412502 0.0991314
-
--0.3932 -0.436693 0.129706
--0.45813 -0.412502 0.0991314
--0.415423 -0.461374 0.15443
-
--0.45813 -0.412502 0.0991314
--0.3932 -0.436693 0.129706
--0.443014 -0.398892 0.0748908
-
--0.375392 -0.416916 0.0979889
--0.443014 -0.398892 0.0748908
--0.3932 -0.436693 0.129706
-
--0.443014 -0.398892 0.0748908
--0.375392 -0.416916 0.0979889
--0.43246 -0.389389 0.0466128
-
--0.362959 -0.403106 0.0609893
--0.43246 -0.389389 0.0466128
--0.375392 -0.416916 0.0979889
-
--0.43246 -0.389389 0.0466128
--0.362959 -0.403106 0.0609893
--0.427037 -0.384506 0.0158219
-
--0.35657 -0.396011 0.0207018
--0.427037 -0.384506 0.0158219
--0.362959 -0.403106 0.0609893
-
--0.427037 -0.384506 0.0158219
--0.35657 -0.396011 0.0207018
--0.427037 -0.384506 -0.0158219
-
--0.35657 -0.396011 -0.0207018
--0.427037 -0.384506 -0.0158219
--0.35657 -0.396011 0.0207018
-
--0.427037 -0.384506 -0.0158219
--0.35657 -0.396011 -0.0207018
--0.43246 -0.389389 -0.0466128
-
--0.362959 -0.403106 -0.0609893
--0.43246 -0.389389 -0.0466128
--0.35657 -0.396011 -0.0207018
-
--0.43246 -0.389389 -0.0466128
--0.362959 -0.403106 -0.0609893
--0.443014 -0.398892 -0.0748908
-
--0.375392 -0.416916 -0.0979889
--0.443014 -0.398892 -0.0748908
--0.362959 -0.403106 -0.0609893
-
--0.443014 -0.398892 -0.0748908
--0.375392 -0.416916 -0.0979889
--0.45813 -0.412502 -0.0991314
-
--0.3932 -0.436693 -0.129706
--0.45813 -0.412502 -0.0991314
--0.375392 -0.416916 -0.0979889
-
--0.45813 -0.412502 -0.0991314
--0.3932 -0.436693 -0.129706
--0.476992 -0.429486 -0.118028
-
--0.415423 -0.461374 -0.15443
--0.476992 -0.429486 -0.118028
--0.3932 -0.436693 -0.129706
-
--0.476992 -0.429486 -0.118028
--0.415423 -0.461374 -0.15443
--0.498585 -0.448928 -0.130561
-
--0.440861 -0.489626 -0.170829
--0.498585 -0.448928 -0.130561
--0.415423 -0.461374 -0.15443
-
--0.498585 -0.448928 -0.130561
--0.440861 -0.489626 -0.170829
--0.521744 -0.46978 -0.136056
-
--0.468145 -0.519928 -0.178019
--0.521744 -0.46978 -0.136056
--0.440861 -0.489626 -0.170829
-
--0.521744 -0.46978 -0.136056
--0.468145 -0.519928 -0.178019
--0.54522 -0.490918 -0.134216
-
--0.495802 -0.550644 -0.175612
--0.54522 -0.490918 -0.134216
--0.468145 -0.519928 -0.178019
-
--0.54522 -0.490918 -0.134216
--0.495802 -0.550644 -0.175612
--0.567748 -0.511203 -0.125141
-
--0.522343 -0.580121 -0.163737
--0.567748 -0.511203 -0.125141
--0.495802 -0.550644 -0.175612
-
--0.567748 -0.511203 -0.125141
--0.522343 -0.580121 -0.163737
--0.588114 -0.52954 -0.109319
-
--0.546336 -0.606767 -0.143035
--0.588114 -0.52954 -0.109319
--0.522343 -0.580121 -0.163737
-
--0.588114 -0.52954 -0.109319
--0.546336 -0.606767 -0.143035
--0.605218 -0.544941 -0.0876034
-
--0.566487 -0.629148 -0.114622
--0.605218 -0.544941 -0.0876034
--0.546336 -0.606767 -0.143035
-
--0.605218 -0.544941 -0.0876034
--0.566487 -0.629148 -0.114622
--0.618141 -0.556576 -0.0611654
-
--0.581711 -0.646055 -0.0800302
--0.618141 -0.556576 -0.0611654
--0.566487 -0.629148 -0.114622
-
--0.618141 -0.556576 -0.0611654
--0.581711 -0.646055 -0.0800302
--0.626184 -0.563818 -0.0314299
-
--0.591186 -0.656579 -0.0411236
--0.626184 -0.563818 -0.0314299
--0.581711 -0.646055 -0.0800302
-
--0.626184 -0.563818 -0.0314299
--0.591186 -0.656579 -0.0411236
--0.628914 -0.566276 0
-
--0.594403 -0.660151 0
--0.628914 -0.566276 0
--0.591186 -0.656579 -0.0411236
-
--0.594403 -0.660151 0
--0.553274 -0.761517 0
--0.591186 -0.656579 0.0411236
-
--0.54961 -0.756473 0.0533384
--0.591186 -0.656579 0.0411236
--0.553274 -0.761517 0
-
--0.591186 -0.656579 0.0411236
--0.54961 -0.756473 0.0533384
--0.581711 -0.646055 0.0800302
-
--0.538814 -0.741614 0.103801
--0.581711 -0.646055 0.0800302
--0.54961 -0.756473 0.0533384
-
--0.581711 -0.646055 0.0800302
--0.538814 -0.741614 0.103801
--0.566487 -0.629148 0.114622
-
--0.521469 -0.71774 0.148668
--0.566487 -0.629148 0.114622
--0.538814 -0.741614 0.103801
-
--0.566487 -0.629148 0.114622
--0.521469 -0.71774 0.148668
--0.546336 -0.606767 0.143035
-
--0.498509 -0.686139 0.18552
--0.546336 -0.606767 0.143035
--0.521469 -0.71774 0.148668
-
--0.546336 -0.606767 0.143035
--0.498509 -0.686139 0.18552
--0.522343 -0.580121 0.163737
-
--0.471173 -0.648515 0.212371
--0.522343 -0.580121 0.163737
--0.498509 -0.686139 0.18552
-
--0.522343 -0.580121 0.163737
--0.471173 -0.648515 0.212371
--0.495802 -0.550644 0.175612
-
--0.440934 -0.606894 0.227773
--0.495802 -0.550644 0.175612
--0.471173 -0.648515 0.212371
-
--0.495802 -0.550644 0.175612
--0.440934 -0.606894 0.227773
--0.468145 -0.519928 0.178019
-
--0.409423 -0.563522 0.230895
--0.468145 -0.519928 0.178019
--0.440934 -0.606894 0.227773
-
--0.468145 -0.519928 0.178019
--0.409423 -0.563522 0.230895
--0.440861 -0.489626 0.170829
-
--0.378338 -0.520737 0.22157
--0.440861 -0.489626 0.170829
--0.409423 -0.563522 0.230895
-
--0.440861 -0.489626 0.170829
--0.378338 -0.520737 0.22157
--0.415423 -0.461374 0.15443
-
--0.349354 -0.480845 0.2003
--0.415423 -0.461374 0.15443
--0.378338 -0.520737 0.22157
-
--0.415423 -0.461374 0.15443
--0.349354 -0.480845 0.2003
--0.3932 -0.436693 0.129706
-
--0.324035 -0.445996 0.168232
--0.3932 -0.436693 0.129706
--0.349354 -0.480845 0.2003
-
--0.3932 -0.436693 0.129706
--0.324035 -0.445996 0.168232
--0.375392 -0.416916 0.0979889
-
--0.303746 -0.41807 0.127094
--0.375392 -0.416916 0.0979889
--0.324035 -0.445996 0.168232
-
--0.375392 -0.416916 0.0979889
--0.303746 -0.41807 0.127094
--0.362959 -0.403106 0.0609893
-
--0.289579 -0.398572 0.0791047
--0.362959 -0.403106 0.0609893
--0.303746 -0.41807 0.127094
-
--0.362959 -0.403106 0.0609893
--0.289579 -0.398572 0.0791047
--0.35657 -0.396011 0.0207018
-
--0.2823 -0.388552 0.0268508
--0.35657 -0.396011 0.0207018
--0.289579 -0.398572 0.0791047
-
--0.35657 -0.396011 0.0207018
--0.2823 -0.388552 0.0268508
--0.35657 -0.396011 -0.0207018
-
--0.2823 -0.388552 -0.0268508
--0.35657 -0.396011 -0.0207018
--0.2823 -0.388552 0.0268508
-
--0.35657 -0.396011 -0.0207018
--0.2823 -0.388552 -0.0268508
--0.362959 -0.403106 -0.0609893
-
--0.289579 -0.398572 -0.0791047
--0.362959 -0.403106 -0.0609893
--0.2823 -0.388552 -0.0268508
-
--0.362959 -0.403106 -0.0609893
--0.289579 -0.398572 -0.0791047
--0.375392 -0.416916 -0.0979889
-
--0.303746 -0.41807 -0.127094
--0.375392 -0.416916 -0.0979889
--0.289579 -0.398572 -0.0791047
-
--0.375392 -0.416916 -0.0979889
--0.303746 -0.41807 -0.127094
--0.3932 -0.436693 -0.129706
-
--0.324035 -0.445996 -0.168232
--0.3932 -0.436693 -0.129706
--0.303746 -0.41807 -0.127094
-
--0.3932 -0.436693 -0.129706
--0.324035 -0.445996 -0.168232
--0.415423 -0.461374 -0.15443
-
--0.349354 -0.480845 -0.2003
--0.415423 -0.461374 -0.15443
--0.324035 -0.445996 -0.168232
-
--0.415423 -0.461374 -0.15443
--0.349354 -0.480845 -0.2003
--0.440861 -0.489626 -0.170829
-
--0.378338 -0.520737 -0.22157
--0.440861 -0.489626 -0.170829
--0.349354 -0.480845 -0.2003
-
--0.440861 -0.489626 -0.170829
--0.378338 -0.520737 -0.22157
--0.468145 -0.519928 -0.178019
-
--0.409423 -0.563522 -0.230895
--0.468145 -0.519928 -0.178019
--0.378338 -0.520737 -0.22157
-
--0.468145 -0.519928 -0.178019
--0.409423 -0.563522 -0.230895
--0.495802 -0.550644 -0.175612
-
--0.440934 -0.606894 -0.227773
--0.495802 -0.550644 -0.175612
--0.409423 -0.563522 -0.230895
-
--0.495802 -0.550644 -0.175612
--0.440934 -0.606894 -0.227773
--0.522343 -0.580121 -0.163737
-
--0.471173 -0.648515 -0.212371
--0.522343 -0.580121 -0.163737
--0.440934 -0.606894 -0.227773
-
--0.522343 -0.580121 -0.163737
--0.471173 -0.648515 -0.212371
--0.546336 -0.606767 -0.143035
-
--0.498509 -0.686139 -0.18552
--0.546336 -0.606767 -0.143035
--0.471173 -0.648515 -0.212371
-
--0.546336 -0.606767 -0.143035
--0.498509 -0.686139 -0.18552
--0.566487 -0.629148 -0.114622
-
--0.521469 -0.71774 -0.148668
--0.566487 -0.629148 -0.114622
--0.498509 -0.686139 -0.18552
-
--0.566487 -0.629148 -0.114622
--0.521469 -0.71774 -0.148668
--0.581711 -0.646055 -0.0800302
-
--0.538814 -0.741614 -0.103801
--0.581711 -0.646055 -0.0800302
--0.521469 -0.71774 -0.148668
-
--0.581711 -0.646055 -0.0800302
--0.538814 -0.741614 -0.103801
--0.591186 -0.656579 -0.0411236
-
--0.54961 -0.756473 -0.0533384
--0.591186 -0.656579 -0.0411236
--0.538814 -0.741614 -0.103801
-
--0.591186 -0.656579 -0.0411236
--0.54961 -0.756473 -0.0533384
--0.594403 -0.660151 0
-
--0.553274 -0.761517 0
--0.594403 -0.660151 0
--0.54961 -0.756473 -0.0533384
-
--0.553274 -0.761517 0
--0.5 -0.866025 0
--0.54961 -0.756473 0.0533384
-
--0.496092 -0.859256 0.0668786
--0.54961 -0.756473 0.0533384
--0.5 -0.866025 0
-
--0.54961 -0.756473 0.0533384
--0.496092 -0.859256 0.0668786
--0.538814 -0.741614 0.103801
-
--0.484577 -0.839312 0.130152
--0.538814 -0.741614 0.103801
--0.496092 -0.859256 0.0668786
-
--0.538814 -0.741614 0.103801
--0.484577 -0.839312 0.130152
--0.521469 -0.71774 0.148668
-
--0.466076 -0.807268 0.186408
--0.521469 -0.71774 0.148668
--0.484577 -0.839312 0.130152
-
--0.521469 -0.71774 0.148668
--0.466076 -0.807268 0.186408
--0.498509 -0.686139 0.18552
-
--0.441588 -0.764853 0.232616
--0.498509 -0.686139 0.18552
--0.466076 -0.807268 0.186408
-
--0.498509 -0.686139 0.18552
--0.441588 -0.764853 0.232616
--0.471173 -0.648515 0.212371
-
--0.412432 -0.714352 0.266283
--0.471173 -0.648515 0.212371
--0.441588 -0.764853 0.232616
-
--0.471173 -0.648515 0.212371
--0.412432 -0.714352 0.266283
--0.440934 -0.606894 0.227773
-
--0.380179 -0.658489 0.285594
--0.440934 -0.606894 0.227773
--0.412432 -0.714352 0.266283
-
--0.440934 -0.606894 0.227773
--0.380179 -0.658489 0.285594
--0.409423 -0.563522 0.230895
-
--0.346569 -0.600275 0.289509
--0.409423 -0.563522 0.230895
--0.380179 -0.658489 0.285594
-
--0.409423 -0.563522 0.230895
--0.346569 -0.600275 0.289509
--0.378338 -0.520737 0.22157
-
--0.313414 -0.542848 0.277817
--0.378338 -0.520737 0.22157
--0.346569 -0.600275 0.289509
-
--0.378338 -0.520737 0.22157
--0.313414 -0.542848 0.277817
--0.349354 -0.480845 0.2003
-
--0.2825 -0.489304 0.251147
--0.349354 -0.480845 0.2003
--0.313414 -0.542848 0.277817
-
--0.349354 -0.480845 0.2003
--0.2825 -0.489304 0.251147
--0.324035 -0.445996 0.168232
-
--0.255495 -0.44253 0.210938
--0.324035 -0.445996 0.168232
--0.2825 -0.489304 0.251147
-
--0.324035 -0.445996 0.168232
--0.255495 -0.44253 0.210938
--0.303746 -0.41807 0.127094
-
--0.233854 -0.405047 0.159358
--0.303746 -0.41807 0.127094
--0.255495 -0.44253 0.210938
-
--0.303746 -0.41807 0.127094
--0.233854 -0.405047 0.159358
--0.289579 -0.398572 0.0791047
-
--0.218745 -0.378877 0.0991858
--0.289579 -0.398572 0.0791047
--0.233854 -0.405047 0.159358
-
--0.289579 -0.398572 0.0791047
--0.218745 -0.378877 0.0991858
--0.2823 -0.388552 0.0268508
-
--0.21098 -0.365429 0.0336669
--0.2823 -0.388552 0.0268508
--0.218745 -0.378877 0.0991858
-
--0.2823 -0.388552 0.0268508
--0.21098 -0.365429 0.0336669
--0.2823 -0.388552 -0.0268508
-
--0.21098 -0.365429 -0.0336669
--0.2823 -0.388552 -0.0268508
--0.21098 -0.365429 0.0336669
-
--0.2823 -0.388552 -0.0268508
--0.21098 -0.365429 -0.0336669
--0.289579 -0.398572 -0.0791047
-
--0.218745 -0.378877 -0.0991858
--0.289579 -0.398572 -0.0791047
--0.21098 -0.365429 -0.0336669
-
--0.289579 -0.398572 -0.0791047
--0.218745 -0.378877 -0.0991858
--0.303746 -0.41807 -0.127094
-
--0.233854 -0.405047 -0.159358
--0.303746 -0.41807 -0.127094
--0.218745 -0.378877 -0.0991858
-
--0.303746 -0.41807 -0.127094
--0.233854 -0.405047 -0.159358
--0.324035 -0.445996 -0.168232
-
--0.255495 -0.44253 -0.210938
--0.324035 -0.445996 -0.168232
--0.233854 -0.405047 -0.159358
-
--0.324035 -0.445996 -0.168232
--0.255495 -0.44253 -0.210938
--0.349354 -0.480845 -0.2003
-
--0.2825 -0.489304 -0.251147
--0.349354 -0.480845 -0.2003
--0.255495 -0.44253 -0.210938
-
--0.349354 -0.480845 -0.2003
--0.2825 -0.489304 -0.251147
--0.378338 -0.520737 -0.22157
-
--0.313414 -0.542848 -0.277817
--0.378338 -0.520737 -0.22157
--0.2825 -0.489304 -0.251147
-
--0.378338 -0.520737 -0.22157
--0.313414 -0.542848 -0.277817
--0.409423 -0.563522 -0.230895
-
--0.346569 -0.600275 -0.289509
--0.409423 -0.563522 -0.230895
--0.313414 -0.542848 -0.277817
-
--0.409423 -0.563522 -0.230895
--0.346569 -0.600275 -0.289509
--0.440934 -0.606894 -0.227773
-
--0.380179 -0.658489 -0.285594
--0.440934 -0.606894 -0.227773
--0.346569 -0.600275 -0.289509
-
--0.440934 -0.606894 -0.227773
--0.380179 -0.658489 -0.285594
--0.471173 -0.648515 -0.212371
-
--0.412432 -0.714352 -0.266283
--0.471173 -0.648515 -0.212371
--0.380179 -0.658489 -0.285594
-
--0.471173 -0.648515 -0.212371
--0.412432 -0.714352 -0.266283
--0.498509 -0.686139 -0.18552
-
--0.441588 -0.764853 -0.232616
--0.498509 -0.686139 -0.18552
--0.412432 -0.714352 -0.266283
-
--0.498509 -0.686139 -0.18552
--0.441588 -0.764853 -0.232616
--0.521469 -0.71774 -0.148668
-
--0.466076 -0.807268 -0.186408
--0.521469 -0.71774 -0.148668
--0.441588 -0.764853 -0.232616
-
--0.521469 -0.71774 -0.148668
--0.466076 -0.807268 -0.186408
--0.538814 -0.741614 -0.103801
-
--0.484577 -0.839312 -0.130152
--0.538814 -0.741614 -0.103801
--0.466076 -0.807268 -0.186408
-
--0.538814 -0.741614 -0.103801
--0.484577 -0.839312 -0.130152
--0.54961 -0.756473 -0.0533384
-
--0.496092 -0.859256 -0.0668786
--0.54961 -0.756473 -0.0533384
--0.484577 -0.839312 -0.130152
-
--0.54961 -0.756473 -0.0533384
--0.496092 -0.859256 -0.0668786
--0.553274 -0.761517 0
-
--0.5 -0.866025 0
--0.553274 -0.761517 0
--0.496092 -0.859256 -0.0668786
-
--0.5 -0.866025 0
--0.430617 -0.967183 0
--0.496092 -0.859256 0.0668786
-
--0.426794 -0.958596 0.0804188
--0.496092 -0.859256 0.0668786
--0.430617 -0.967183 0
-
--0.496092 -0.859256 0.0668786
--0.426794 -0.958596 0.0804188
--0.484577 -0.839312 0.130152
-
--0.415531 -0.933298 0.156502
--0.484577 -0.839312 0.130152
--0.426794 -0.958596 0.0804188
-
--0.484577 -0.839312 0.130152
--0.415531 -0.933298 0.156502
--0.466076 -0.807268 0.186408
-
--0.397435 -0.892653 0.224149
--0.466076 -0.807268 0.186408
--0.415531 -0.933298 0.156502
-
--0.466076 -0.807268 0.186408
--0.397435 -0.892653 0.224149
--0.441588 -0.764853 0.232616
-
--0.373481 -0.838851 0.279711
--0.441588 -0.764853 0.232616
--0.397435 -0.892653 0.224149
-
--0.441588 -0.764853 0.232616
--0.373481 -0.838851 0.279711
--0.412432 -0.714352 0.266283
-
--0.344961 -0.774795 0.320194
--0.412432 -0.714352 0.266283
--0.373481 -0.838851 0.279711
-
--0.412432 -0.714352 0.266283
--0.344961 -0.774795 0.320194
--0.380179 -0.658489 0.285594
-
--0.313412 -0.703936 0.343415
--0.380179 -0.658489 0.285594
--0.344961 -0.774795 0.320194
-
--0.380179 -0.658489 0.285594
--0.313412 -0.703936 0.343415
--0.346569 -0.600275 0.289509
-
--0.280536 -0.630094 0.348123
--0.346569 -0.600275 0.289509
--0.313412 -0.703936 0.343415
-
--0.346569 -0.600275 0.289509
--0.280536 -0.630094 0.348123
--0.313414 -0.542848 0.277817
-
--0.248104 -0.557252 0.334064
--0.313414 -0.542848 0.277817
--0.280536 -0.630094 0.348123
-
--0.313414 -0.542848 0.277817
--0.248104 -0.557252 0.334064
--0.2825 -0.489304 0.251147
-
--0.217866 -0.489335 0.301995
--0.2825 -0.489304 0.251147
--0.248104 -0.557252 0.334064
-
--0.2825 -0.489304 0.251147
--0.217866 -0.489335 0.301995
--0.255495 -0.44253 0.210938
-
--0.19145 -0.430004 0.253645
--0.255495 -0.44253 0.210938
--0.217866 -0.489335 0.301995
-
--0.255495 -0.44253 0.210938
--0.19145 -0.430004 0.253645
--0.233854 -0.405047 0.159358
-
--0.170282 -0.38246 0.191621
--0.233854 -0.405047 0.159358
--0.19145 -0.430004 0.253645
-
--0.233854 -0.405047 0.159358
--0.170282 -0.38246 0.191621
--0.218745 -0.378877 0.0991858
-
--0.155502 -0.349264 0.119267
--0.218745 -0.378877 0.0991858
--0.170282 -0.38246 0.191621
-
--0.218745 -0.378877 0.0991858
--0.155502 -0.349264 0.119267
--0.21098 -0.365429 0.0336669
-
--0.147908 -0.332206 0.0404831
--0.21098 -0.365429 0.0336669
--0.155502 -0.349264 0.119267
-
--0.21098 -0.365429 0.0336669
--0.147908 -0.332206 0.0404831
--0.21098 -0.365429 -0.0336669
-
--0.147908 -0.332206 -0.0404831
--0.21098 -0.365429 -0.0336669
--0.147908 -0.332206 0.0404831
-
--0.21098 -0.365429 -0.0336669
--0.147908 -0.332206 -0.0404831
--0.218745 -0.378877 -0.0991858
-
--0.155502 -0.349264 -0.119267
--0.218745 -0.378877 -0.0991858
--0.147908 -0.332206 -0.0404831
-
--0.218745 -0.378877 -0.0991858
--0.155502 -0.349264 -0.119267
--0.233854 -0.405047 -0.159358
-
--0.170282 -0.38246 -0.191621
--0.233854 -0.405047 -0.159358
--0.155502 -0.349264 -0.119267
-
--0.233854 -0.405047 -0.159358
--0.170282 -0.38246 -0.191621
--0.255495 -0.44253 -0.210938
-
--0.19145 -0.430004 -0.253645
--0.255495 -0.44253 -0.210938
--0.170282 -0.38246 -0.191621
-
--0.255495 -0.44253 -0.210938
--0.19145 -0.430004 -0.253645
--0.2825 -0.489304 -0.251147
-
--0.217866 -0.489335 -0.301995
--0.2825 -0.489304 -0.251147
--0.19145 -0.430004 -0.253645
-
--0.2825 -0.489304 -0.251147
--0.217866 -0.489335 -0.301995
--0.313414 -0.542848 -0.277817
-
--0.248104 -0.557252 -0.334064
--0.313414 -0.542848 -0.277817
--0.217866 -0.489335 -0.301995
-
--0.313414 -0.542848 -0.277817
--0.248104 -0.557252 -0.334064
--0.346569 -0.600275 -0.289509
-
--0.280536 -0.630094 -0.348123
--0.346569 -0.600275 -0.289509
--0.248104 -0.557252 -0.334064
-
--0.346569 -0.600275 -0.289509
--0.280536 -0.630094 -0.348123
--0.380179 -0.658489 -0.285594
-
--0.313412 -0.703936 -0.343415
--0.380179 -0.658489 -0.285594
--0.280536 -0.630094 -0.348123
-
--0.380179 -0.658489 -0.285594
--0.313412 -0.703936 -0.343415
--0.412432 -0.714352 -0.266283
-
--0.344961 -0.774795 -0.320194
--0.412432 -0.714352 -0.266283
--0.313412 -0.703936 -0.343415
-
--0.412432 -0.714352 -0.266283
--0.344961 -0.774795 -0.320194
--0.441588 -0.764853 -0.232616
-
--0.373481 -0.838851 -0.279711
--0.441588 -0.764853 -0.232616
--0.344961 -0.774795 -0.320194
-
--0.441588 -0.764853 -0.232616
--0.373481 -0.838851 -0.279711
--0.466076 -0.807268 -0.186408
-
--0.397435 -0.892653 -0.224149
--0.466076 -0.807268 -0.186408
--0.373481 -0.838851 -0.279711
-
--0.466076 -0.807268 -0.186408
--0.397435 -0.892653 -0.224149
--0.484577 -0.839312 -0.130152
-
--0.415531 -0.933298 -0.156502
--0.484577 -0.839312 -0.130152
--0.397435 -0.892653 -0.224149
-
--0.484577 -0.839312 -0.130152
--0.415531 -0.933298 -0.156502
--0.496092 -0.859256 -0.0668786
-
--0.426794 -0.958596 -0.0804188
--0.496092 -0.859256 -0.0668786
--0.415531 -0.933298 -0.156502
-
--0.496092 -0.859256 -0.0668786
--0.426794 -0.958596 -0.0804188
--0.5 -0.866025 0
-
--0.430617 -0.967183 0
--0.5 -0.866025 0
--0.426794 -0.958596 -0.0804188
-
--0.430617 -0.967183 0
--0.343528 -1.05727 0
--0.426794 -0.958596 0.0804188
-
--0.340182 -1.04697 0.0926336
--0.426794 -0.958596 0.0804188
--0.343528 -1.05727 0
-
--0.426794 -0.958596 0.0804188
--0.340182 -1.04697 0.0926336
--0.415531 -0.933298 0.156502
-
--0.330325 -1.01664 0.180273
--0.415531 -0.933298 0.156502
--0.340182 -1.04697 0.0926336
-
--0.415531 -0.933298 0.156502
--0.330325 -1.01664 0.180273
--0.397435 -0.892653 0.224149
-
--0.314488 -0.967894 0.258194
--0.397435 -0.892653 0.224149
--0.330325 -1.01664 0.180273
-
--0.397435 -0.892653 0.224149
--0.314488 -0.967894 0.258194
--0.373481 -0.838851 0.279711
-
--0.293525 -0.903376 0.322196
--0.373481 -0.838851 0.279711
--0.314488 -0.967894 0.258194
-
--0.373481 -0.838851 0.279711
--0.293525 -0.903376 0.322196
--0.344961 -0.774795 0.320194
-
--0.268566 -0.82656 0.368828
--0.344961 -0.774795 0.320194
--0.293525 -0.903376 0.322196
-
--0.344961 -0.774795 0.320194
--0.268566 -0.82656 0.368828
--0.313412 -0.703936 0.343415
-
--0.240956 -0.741587 0.395577
--0.313412 -0.703936 0.343415
--0.268566 -0.82656 0.368828
-
--0.313412 -0.703936 0.343415
--0.240956 -0.741587 0.395577
--0.280536 -0.630094 0.348123
-
--0.212185 -0.653038 0.401
--0.280536 -0.630094 0.348123
--0.240956 -0.741587 0.395577
-
--0.280536 -0.630094 0.348123
--0.212185 -0.653038 0.401
--0.248104 -0.557252 0.334064
-
--0.183802 -0.565686 0.384804
--0.248104 -0.557252 0.334064
--0.212185 -0.653038 0.401
-
--0.248104 -0.557252 0.334064
--0.183802 -0.565686 0.384804
--0.217866 -0.489335 0.301995
-
--0.157339 -0.48424 0.347864
--0.217866 -0.489335 0.301995
--0.183802 -0.565686 0.384804
-
--0.217866 -0.489335 0.301995
--0.157339 -0.48424 0.347864
--0.19145 -0.430004 0.253645
-
--0.134222 -0.413092 0.292171
--0.19145 -0.430004 0.253645
--0.157339 -0.48424 0.347864
-
--0.19145 -0.430004 0.253645
--0.134222 -0.413092 0.292171
--0.170282 -0.38246 0.191621
-
--0.115697 -0.356077 0.220726
--0.170282 -0.38246 0.191621
--0.134222 -0.413092 0.292171
-
--0.170282 -0.38246 0.191621
--0.115697 -0.356077 0.220726
--0.155502 -0.349264 0.119267
-
--0.102762 -0.316269 0.137382
--0.155502 -0.349264 0.119267
--0.115697 -0.356077 0.220726
-
--0.155502 -0.349264 0.119267
--0.102762 -0.316269 0.137382
--0.147908 -0.332206 0.0404831
-
--0.0961157 -0.295814 0.0466321
--0.147908 -0.332206 0.0404831
--0.102762 -0.316269 0.137382
-
--0.147908 -0.332206 0.0404831
--0.0961157 -0.295814 0.0466321
--0.147908 -0.332206 -0.0404831
-
--0.0961157 -0.295814 -0.0466321
--0.147908 -0.332206 -0.0404831
--0.0961157 -0.295814 0.0466321
-
--0.147908 -0.332206 -0.0404831
--0.0961157 -0.295814 -0.0466321
--0.155502 -0.349264 -0.119267
-
--0.102762 -0.316269 -0.137382
--0.155502 -0.349264 -0.119267
--0.0961157 -0.295814 -0.0466321
-
--0.155502 -0.349264 -0.119267
--0.102762 -0.316269 -0.137382
--0.170282 -0.38246 -0.191621
-
--0.115697 -0.356077 -0.220726
--0.170282 -0.38246 -0.191621
--0.102762 -0.316269 -0.137382
-
--0.170282 -0.38246 -0.191621
--0.115697 -0.356077 -0.220726
--0.19145 -0.430004 -0.253645
-
--0.134222 -0.413092 -0.292171
--0.19145 -0.430004 -0.253645
--0.115697 -0.356077 -0.220726
-
--0.19145 -0.430004 -0.253645
--0.134222 -0.413092 -0.292171
--0.217866 -0.489335 -0.301995
-
--0.157339 -0.48424 -0.347864
--0.217866 -0.489335 -0.301995
--0.134222 -0.413092 -0.292171
-
--0.217866 -0.489335 -0.301995
--0.157339 -0.48424 -0.347864
--0.248104 -0.557252 -0.334064
-
--0.183802 -0.565686 -0.384804
--0.248104 -0.557252 -0.334064
--0.157339 -0.48424 -0.347864
-
--0.248104 -0.557252 -0.334064
--0.183802 -0.565686 -0.384804
--0.280536 -0.630094 -0.348123
-
--0.212185 -0.653038 -0.401
--0.280536 -0.630094 -0.348123
--0.183802 -0.565686 -0.384804
-
--0.280536 -0.630094 -0.348123
--0.212185 -0.653038 -0.401
--0.313412 -0.703936 -0.343415
-
--0.240956 -0.741587 -0.395577
--0.313412 -0.703936 -0.343415
--0.212185 -0.653038 -0.401
-
--0.313412 -0.703936 -0.343415
--0.240956 -0.741587 -0.395577
--0.344961 -0.774795 -0.320194
-
--0.268566 -0.82656 -0.368828
--0.344961 -0.774795 -0.320194
--0.240956 -0.741587 -0.395577
-
--0.344961 -0.774795 -0.320194
--0.268566 -0.82656 -0.368828
--0.373481 -0.838851 -0.279711
-
--0.293525 -0.903376 -0.322196
--0.373481 -0.838851 -0.279711
--0.268566 -0.82656 -0.368828
-
--0.373481 -0.838851 -0.279711
--0.293525 -0.903376 -0.322196
--0.397435 -0.892653 -0.224149
-
--0.314488 -0.967894 -0.258194
--0.397435 -0.892653 -0.224149
--0.293525 -0.903376 -0.322196
-
--0.397435 -0.892653 -0.224149
--0.314488 -0.967894 -0.258194
--0.415531 -0.933298 -0.156502
-
--0.330325 -1.01664 -0.180273
--0.415531 -0.933298 -0.156502
--0.314488 -0.967894 -0.258194
-
--0.415531 -0.933298 -0.156502
--0.330325 -1.01664 -0.180273
--0.426794 -0.958596 -0.0804188
-
--0.340182 -1.04697 -0.0926336
--0.426794 -0.958596 -0.0804188
--0.330325 -1.01664 -0.180273
-
--0.426794 -0.958596 -0.0804188
--0.340182 -1.04697 -0.0926336
--0.430617 -0.967183 0
-
--0.343528 -1.05727 0
--0.430617 -0.967183 0
--0.340182 -1.04697 -0.0926336
-
--0.343528 -1.05727 0
--0.23987 -1.1285 0
--0.340182 -1.04697 0.0926336
-
--0.237384 -1.1168 0.102327
--0.340182 -1.04697 0.0926336
--0.23987 -1.1285 0
-
--0.340182 -1.04697 0.0926336
--0.237384 -1.1168 0.102327
--0.330325 -1.01664 0.180273
-
--0.230058 -1.08234 0.199138
--0.330325 -1.01664 0.180273
--0.237384 -1.1168 0.102327
-
--0.330325 -1.01664 0.180273
--0.230058 -1.08234 0.199138
--0.314488 -0.967894 0.258194
-
--0.218287 -1.02696 0.285213
--0.314488 -0.967894 0.258194
--0.230058 -1.08234 0.199138
-
--0.314488 -0.967894 0.258194
--0.218287 -1.02696 0.285213
--0.293525 -0.903376 0.322196
-
--0.202707 -0.953662 0.355913
--0.293525 -0.903376 0.322196
--0.218287 -1.02696 0.285213
-
--0.293525 -0.903376 0.322196
--0.202707 -0.953662 0.355913
--0.268566 -0.82656 0.368828
-
--0.184157 -0.86639 0.407425
--0.268566 -0.82656 0.368828
--0.202707 -0.953662 0.355913
-
--0.268566 -0.82656 0.368828
--0.184157 -0.86639 0.407425
--0.240956 -0.741587 0.395577
-
--0.163637 -0.769851 0.436972
--0.240956 -0.741587 0.395577
--0.184157 -0.86639 0.407425
-
--0.240956 -0.741587 0.395577
--0.163637 -0.769851 0.436972
--0.212185 -0.653038 0.401
-
--0.142253 -0.669249 0.442963
--0.212185 -0.653038 0.401
--0.163637 -0.769851 0.436972
-
--0.212185 -0.653038 0.401
--0.142253 -0.669249 0.442963
--0.183802 -0.565686 0.384804
-
--0.121159 -0.570007 0.425073
--0.183802 -0.565686 0.384804
--0.142253 -0.669249 0.442963
-
--0.183802 -0.565686 0.384804
--0.121159 -0.570007 0.425073
--0.157339 -0.48424 0.347864
-
--0.101491 -0.477476 0.384267
--0.157339 -0.48424 0.347864
--0.121159 -0.570007 0.425073
-
--0.157339 -0.48424 0.347864
--0.101491 -0.477476 0.384267
--0.134222 -0.413092 0.292171
-
--0.0843093 -0.396644 0.322745
--0.134222 -0.413092 0.292171
--0.101491 -0.477476 0.384267
-
--0.134222 -0.413092 0.292171
--0.0843093 -0.396644 0.322745
--0.115697 -0.356077 0.220726
-
--0.0705409 -0.331869 0.243824
--0.115697 -0.356077 0.220726
--0.0843093 -0.396644 0.322745
-
--0.115697 -0.356077 0.220726
--0.0705409 -0.331869 0.243824
--0.102762 -0.316269 0.137382
-
--0.0609277 -0.286642 0.151759
--0.102762 -0.316269 0.137382
--0.0705409 -0.331869 0.243824
-
--0.102762 -0.316269 0.137382
--0.0609277 -0.286642 0.151759
--0.0961157 -0.295814 0.0466321
-
--0.0559879 -0.263402 0.051512
--0.0961157 -0.295814 0.0466321
--0.0609277 -0.286642 0.151759
-
--0.0961157 -0.295814 0.0466321
--0.0559879 -0.263402 0.051512
--0.0961157 -0.295814 -0.0466321
-
--0.0559879 -0.263402 -0.051512
--0.0961157 -0.295814 -0.0466321
--0.0559879 -0.263402 0.051512
-
--0.0961157 -0.295814 -0.0466321
--0.0559879 -0.263402 -0.051512
--0.102762 -0.316269 -0.137382
-
--0.0609277 -0.286642 -0.151759
--0.102762 -0.316269 -0.137382
--0.0559879 -0.263402 -0.051512
-
--0.102762 -0.316269 -0.137382
--0.0609277 -0.286642 -0.151759
--0.115697 -0.356077 -0.220726
-
--0.0705409 -0.331869 -0.243824
--0.115697 -0.356077 -0.220726
--0.0609277 -0.286642 -0.151759
-
--0.115697 -0.356077 -0.220726
--0.0705409 -0.331869 -0.243824
--0.134222 -0.413092 -0.292171
-
--0.0843093 -0.396644 -0.322745
--0.134222 -0.413092 -0.292171
--0.0705409 -0.331869 -0.243824
-
--0.134222 -0.413092 -0.292171
--0.0843093 -0.396644 -0.322745
--0.157339 -0.48424 -0.347864
-
--0.101491 -0.477476 -0.384267
--0.157339 -0.48424 -0.347864
--0.0843093 -0.396644 -0.322745
-
--0.157339 -0.48424 -0.347864
--0.101491 -0.477476 -0.384267
--0.183802 -0.565686 -0.384804
-
--0.121159 -0.570007 -0.425073
--0.183802 -0.565686 -0.384804
--0.101491 -0.477476 -0.384267
-
--0.183802 -0.565686 -0.384804
--0.121159 -0.570007 -0.425073
--0.212185 -0.653038 -0.401
-
--0.142253 -0.669249 -0.442963
--0.212185 -0.653038 -0.401
--0.121159 -0.570007 -0.425073
-
--0.212185 -0.653038 -0.401
--0.142253 -0.669249 -0.442963
--0.240956 -0.741587 -0.395577
-
--0.163637 -0.769851 -0.436972
--0.240956 -0.741587 -0.395577
--0.142253 -0.669249 -0.442963
-
--0.240956 -0.741587 -0.395577
--0.163637 -0.769851 -0.436972
--0.268566 -0.82656 -0.368828
-
--0.184157 -0.86639 -0.407425
--0.268566 -0.82656 -0.368828
--0.163637 -0.769851 -0.436972
-
--0.268566 -0.82656 -0.368828
--0.184157 -0.86639 -0.407425
--0.293525 -0.903376 -0.322196
-
--0.202707 -0.953662 -0.355913
--0.293525 -0.903376 -0.322196
--0.184157 -0.86639 -0.407425
-
--0.293525 -0.903376 -0.322196
--0.202707 -0.953662 -0.355913
--0.314488 -0.967894 -0.258194
-
--0.218287 -1.02696 -0.285213
--0.314488 -0.967894 -0.258194
--0.202707 -0.953662 -0.355913
-
--0.314488 -0.967894 -0.258194
--0.218287 -1.02696 -0.285213
--0.330325 -1.01664 -0.180273
-
--0.230058 -1.08234 -0.199138
--0.330325 -1.01664 -0.180273
--0.218287 -1.02696 -0.285213
-
--0.330325 -1.01664 -0.180273
--0.230058 -1.08234 -0.199138
--0.340182 -1.04697 -0.0926336
-
--0.237384 -1.1168 -0.102327
--0.340182 -1.04697 -0.0926336
--0.230058 -1.08234 -0.199138
-
--0.340182 -1.04697 -0.0926336
--0.237384 -1.1168 -0.102327
--0.343528 -1.05727 0
-
--0.23987 -1.1285 0
--0.343528 -1.05727 0
--0.237384 -1.1168 -0.102327
-
--0.23987 -1.1285 0
--0.123417 -1.17423 0
--0.237384 -1.1168 0.102327
-
--0.122091 -1.16161 0.108551
--0.237384 -1.1168 0.102327
--0.123417 -1.17423 0
-
--0.237384 -1.1168 0.102327
--0.122091 -1.16161 0.108551
--0.230058 -1.08234 0.199138
-
--0.118183 -1.12444 0.21125
--0.230058 -1.08234 0.199138
--0.122091 -1.16161 0.108551
-
--0.230058 -1.08234 0.199138
--0.118183 -1.12444 0.21125
--0.218287 -1.02696 0.285213
-
--0.111906 -1.06471 0.302561
--0.218287 -1.02696 0.285213
--0.118183 -1.12444 0.21125
-
--0.218287 -1.02696 0.285213
--0.111906 -1.06471 0.302561
--0.202707 -0.953662 0.355913
-
--0.103596 -0.985654 0.37756
--0.202707 -0.953662 0.355913
--0.111906 -1.06471 0.302561
-
--0.202707 -0.953662 0.355913
--0.103596 -0.985654 0.37756
--0.184157 -0.86639 0.407425
-
--0.093703 -0.891524 0.432205
--0.184157 -0.86639 0.407425
--0.103596 -0.985654 0.37756
-
--0.184157 -0.86639 0.407425
--0.093703 -0.891524 0.432205
--0.163637 -0.769851 0.436972
-
--0.082759 -0.787399 0.46355
--0.163637 -0.769851 0.436972
--0.093703 -0.891524 0.432205
-
--0.163637 -0.769851 0.436972
--0.082759 -0.787399 0.46355
--0.142253 -0.669249 0.442963
-
--0.0713544 -0.678892 0.469904
--0.142253 -0.669249 0.442963
--0.082759 -0.787399 0.46355
-
--0.142253 -0.669249 0.442963
--0.0713544 -0.678892 0.469904
--0.121159 -0.570007 0.425073
-
--0.060104 -0.571852 0.450926
--0.121159 -0.570007 0.425073
--0.0713544 -0.678892 0.469904
-
--0.121159 -0.570007 0.425073
--0.060104 -0.571852 0.450926
--0.101491 -0.477476 0.384267
-
--0.0496144 -0.472049 0.407639
--0.101491 -0.477476 0.384267
--0.060104 -0.571852 0.450926
-
--0.101491 -0.477476 0.384267
--0.0496144 -0.472049 0.407639
--0.0843093 -0.396644 0.322745
-
--0.040451 -0.384866 0.342375
--0.0843093 -0.396644 0.322745
--0.0496144 -0.472049 0.407639
-
--0.0843093 -0.396644 0.322745
--0.040451 -0.384866 0.342375
--0.0705409 -0.331869 0.243824
-
--0.0331079 -0.315 0.258654
--0.0705409 -0.331869 0.243824
--0.040451 -0.384866 0.342375
-
--0.0705409 -0.331869 0.243824
--0.0331079 -0.315 0.258654
--0.0609277 -0.286642 0.151759
-
--0.0279808 -0.26622 0.160989
--0.0609277 -0.286642 0.151759
--0.0331079 -0.315 0.258654
-
--0.0609277 -0.286642 0.151759
--0.0279808 -0.26622 0.160989
--0.0559879 -0.263402 0.051512
-
--0.0253463 -0.241154 0.054645
--0.0559879 -0.263402 0.051512
--0.0279808 -0.26622 0.160989
-
--0.0559879 -0.263402 0.051512
--0.0253463 -0.241154 0.054645
--0.0559879 -0.263402 -0.051512
-
--0.0253463 -0.241154 -0.054645
--0.0559879 -0.263402 -0.051512
--0.0253463 -0.241154 0.054645
-
--0.0559879 -0.263402 -0.051512
--0.0253463 -0.241154 -0.054645
--0.0609277 -0.286642 -0.151759
-
--0.0279808 -0.26622 -0.160989
--0.0609277 -0.286642 -0.151759
--0.0253463 -0.241154 -0.054645
-
--0.0609277 -0.286642 -0.151759
--0.0279808 -0.26622 -0.160989
--0.0705409 -0.331869 -0.243824
-
--0.0331079 -0.315 -0.258654
--0.0705409 -0.331869 -0.243824
--0.0279808 -0.26622 -0.160989
-
--0.0705409 -0.331869 -0.243824
--0.0331079 -0.315 -0.258654
--0.0843093 -0.396644 -0.322745
-
--0.040451 -0.384866 -0.342375
--0.0843093 -0.396644 -0.322745
--0.0331079 -0.315 -0.258654
-
--0.0843093 -0.396644 -0.322745
--0.040451 -0.384866 -0.342375
--0.101491 -0.477476 -0.384267
-
--0.0496144 -0.472049 -0.407639
--0.101491 -0.477476 -0.384267
--0.040451 -0.384866 -0.342375
-
--0.101491 -0.477476 -0.384267
--0.0496144 -0.472049 -0.407639
--0.121159 -0.570007 -0.425073
-
--0.060104 -0.571852 -0.450926
--0.121159 -0.570007 -0.425073
--0.0496144 -0.472049 -0.407639
-
--0.121159 -0.570007 -0.425073
--0.060104 -0.571852 -0.450926
--0.142253 -0.669249 -0.442963
-
--0.0713544 -0.678892 -0.469904
--0.142253 -0.669249 -0.442963
--0.060104 -0.571852 -0.450926
-
--0.142253 -0.669249 -0.442963
--0.0713544 -0.678892 -0.469904
--0.163637 -0.769851 -0.436972
-
--0.082759 -0.787399 -0.46355
--0.163637 -0.769851 -0.436972
--0.0713544 -0.678892 -0.469904
-
--0.163637 -0.769851 -0.436972
--0.082759 -0.787399 -0.46355
--0.184157 -0.86639 -0.407425
-
--0.093703 -0.891524 -0.432205
--0.184157 -0.86639 -0.407425
--0.082759 -0.787399 -0.46355
-
--0.184157 -0.86639 -0.407425
--0.093703 -0.891524 -0.432205
--0.202707 -0.953662 -0.355913
-
--0.103596 -0.985654 -0.37756
--0.202707 -0.953662 -0.355913
--0.093703 -0.891524 -0.432205
-
--0.202707 -0.953662 -0.355913
--0.103596 -0.985654 -0.37756
--0.218287 -1.02696 -0.285213
-
--0.111906 -1.06471 -0.302561
--0.218287 -1.02696 -0.285213
--0.103596 -0.985654 -0.37756
-
--0.218287 -1.02696 -0.285213
--0.111906 -1.06471 -0.302561
--0.230058 -1.08234 -0.199138
-
--0.118183 -1.12444 -0.21125
--0.230058 -1.08234 -0.199138
--0.111906 -1.06471 -0.302561
-
--0.230058 -1.08234 -0.199138
--0.118183 -1.12444 -0.21125
--0.237384 -1.1168 -0.102327
-
--0.122091 -1.16161 -0.108551
--0.237384 -1.1168 -0.102327
--0.118183 -1.12444 -0.21125
-
--0.237384 -1.1168 -0.102327
--0.122091 -1.16161 -0.108551
--0.23987 -1.1285 0
-
--0.123417 -1.17423 0
--0.23987 -1.1285 0
--0.122091 -1.16161 -0.108551
-
--0.123417 -1.17423 0
-0 -1.19 0
--0.122091 -1.16161 0.108551
-
-0 -1.17706 0.110696
--0.122091 -1.16161 0.108551
-0 -1.19 0
-
--0.122091 -1.16161 0.108551
-0 -1.17706 0.110696
--0.118183 -1.12444 0.21125
-
-0 -1.13894 0.215424
--0.118183 -1.12444 0.21125
-0 -1.17706 0.110696
-
--0.118183 -1.12444 0.21125
-0 -1.13894 0.215424
--0.111906 -1.06471 0.302561
-
-0 -1.0777 0.308538
--0.111906 -1.06471 0.302561
-0 -1.13894 0.215424
-
--0.111906 -1.06471 0.302561
-0 -1.0777 0.308538
--0.103596 -0.985654 0.37756
-
-0 -0.996636 0.385019
--0.103596 -0.985654 0.37756
-0 -1.0777 0.308538
-
--0.103596 -0.985654 0.37756
-0 -0.996636 0.385019
--0.093703 -0.891524 0.432205
-
-0 -0.900118 0.440744
--0.093703 -0.891524 0.432205
-0 -0.996636 0.385019
-
--0.093703 -0.891524 0.432205
-0 -0.900118 0.440744
--0.082759 -0.787399 0.46355
-
-0 -0.793351 0.472708
--0.082759 -0.787399 0.46355
-0 -0.900118 0.440744
-
--0.082759 -0.787399 0.46355
-0 -0.793351 0.472708
--0.0713544 -0.678892 0.469904
-
-0 -0.68209 0.479188
--0.0713544 -0.678892 0.469904
-0 -0.793351 0.472708
-
--0.0713544 -0.678892 0.469904
-0 -0.68209 0.479188
--0.060104 -0.571852 0.450926
-
-0 -0.572334 0.459835
--0.060104 -0.571852 0.450926
-0 -0.68209 0.479188
-
--0.060104 -0.571852 0.450926
-0 -0.572334 0.459835
--0.0496144 -0.472049 0.407639
-
-0 -0.47 0.415692
--0.0496144 -0.472049 0.407639
-0 -0.572334 0.459835
-
--0.0496144 -0.472049 0.407639
-0 -0.47 0.415692
--0.040451 -0.384866 0.342375
-
-0 -0.380604 0.349139
--0.040451 -0.384866 0.342375
-0 -0.47 0.415692
-
--0.040451 -0.384866 0.342375
-0 -0.380604 0.349139
--0.0331079 -0.315 0.258654
-
-0 -0.308966 0.263764
--0.0331079 -0.315 0.258654
-0 -0.380604 0.349139
-
--0.0331079 -0.315 0.258654
-0 -0.308966 0.263764
--0.0279808 -0.26622 0.160989
-
-0 -0.258948 0.16417
--0.0279808 -0.26622 0.160989
-0 -0.308966 0.263764
-
--0.0279808 -0.26622 0.160989
-0 -0.258948 0.16417
--0.0253463 -0.241154 0.054645
-
-0 -0.233246 0.0557246
--0.0253463 -0.241154 0.054645
-0 -0.258948 0.16417
-
--0.0253463 -0.241154 0.054645
-0 -0.233246 0.0557246
--0.0253463 -0.241154 -0.054645
-
-0 -0.233246 -0.0557246
--0.0253463 -0.241154 -0.054645
-0 -0.233246 0.0557246
-
--0.0253463 -0.241154 -0.054645
-0 -0.233246 -0.0557246
--0.0279808 -0.26622 -0.160989
-
-0 -0.258948 -0.16417
--0.0279808 -0.26622 -0.160989
-0 -0.233246 -0.0557246
-
--0.0279808 -0.26622 -0.160989
-0 -0.258948 -0.16417
--0.0331079 -0.315 -0.258654
-
-0 -0.308966 -0.263764
--0.0331079 -0.315 -0.258654
-0 -0.258948 -0.16417
-
--0.0331079 -0.315 -0.258654
-0 -0.308966 -0.263764
--0.040451 -0.384866 -0.342375
-
-0 -0.380604 -0.349139
--0.040451 -0.384866 -0.342375
-0 -0.308966 -0.263764
-
--0.040451 -0.384866 -0.342375
-0 -0.380604 -0.349139
--0.0496144 -0.472049 -0.407639
-
-0 -0.47 -0.415692
--0.0496144 -0.472049 -0.407639
-0 -0.380604 -0.349139
-
--0.0496144 -0.472049 -0.407639
-0 -0.47 -0.415692
--0.060104 -0.571852 -0.450926
-
-0 -0.572334 -0.459835
--0.060104 -0.571852 -0.450926
-0 -0.47 -0.415692
-
--0.060104 -0.571852 -0.450926
-0 -0.572334 -0.459835
--0.0713544 -0.678892 -0.469904
-
-0 -0.68209 -0.479188
--0.0713544 -0.678892 -0.469904
-0 -0.572334 -0.459835
-
--0.0713544 -0.678892 -0.469904
-0 -0.68209 -0.479188
--0.082759 -0.787399 -0.46355
-
-0 -0.793351 -0.472708
--0.082759 -0.787399 -0.46355
-0 -0.68209 -0.479188
-
--0.082759 -0.787399 -0.46355
-0 -0.793351 -0.472708
--0.093703 -0.891524 -0.432205
-
-0 -0.900118 -0.440744
--0.093703 -0.891524 -0.432205
-0 -0.793351 -0.472708
-
--0.093703 -0.891524 -0.432205
-0 -0.900118 -0.440744
--0.103596 -0.985654 -0.37756
-
-0 -0.996636 -0.385019
--0.103596 -0.985654 -0.37756
-0 -0.900118 -0.440744
-
--0.103596 -0.985654 -0.37756
-0 -0.996636 -0.385019
--0.111906 -1.06471 -0.302561
-
-0 -1.0777 -0.308538
--0.111906 -1.06471 -0.302561
-0 -0.996636 -0.385019
-
--0.111906 -1.06471 -0.302561
-0 -1.0777 -0.308538
--0.118183 -1.12444 -0.21125
-
-0 -1.13894 -0.215424
--0.118183 -1.12444 -0.21125
-0 -1.0777 -0.308538
-
--0.118183 -1.12444 -0.21125
-0 -1.13894 -0.215424
--0.122091 -1.16161 -0.108551
-
-0 -1.17706 -0.110696
--0.122091 -1.16161 -0.108551
-0 -1.13894 -0.215424
-
--0.122091 -1.16161 -0.108551
-0 -1.17706 -0.110696
--0.123417 -1.17423 0
-
-0 -1.19 0
--0.123417 -1.17423 0
-0 -1.17706 -0.110696
-
-0 -1.19 0
-0.123417 -1.17423 0
-0 -1.17706 0.110696
-
-0.122091 -1.16161 0.108551
-0 -1.17706 0.110696
-0.123417 -1.17423 0
-
-0 -1.17706 0.110696
-0.122091 -1.16161 0.108551
-0 -1.13894 0.215424
-
-0.118183 -1.12444 0.21125
-0 -1.13894 0.215424
-0.122091 -1.16161 0.108551
-
-0 -1.13894 0.215424
-0.118183 -1.12444 0.21125
-0 -1.0777 0.308538
-
-0.111906 -1.06471 0.302561
-0 -1.0777 0.308538
-0.118183 -1.12444 0.21125
-
-0 -1.0777 0.308538
-0.111906 -1.06471 0.302561
-0 -0.996636 0.385019
-
-0.103596 -0.985654 0.37756
-0 -0.996636 0.385019
-0.111906 -1.06471 0.302561
-
-0 -0.996636 0.385019
-0.103596 -0.985654 0.37756
-0 -0.900118 0.440744
-
-0.093703 -0.891524 0.432205
-0 -0.900118 0.440744
-0.103596 -0.985654 0.37756
-
-0 -0.900118 0.440744
-0.093703 -0.891524 0.432205
-0 -0.793351 0.472708
-
-0.082759 -0.787399 0.46355
-0 -0.793351 0.472708
-0.093703 -0.891524 0.432205
-
-0 -0.793351 0.472708
-0.082759 -0.787399 0.46355
-0 -0.68209 0.479188
-
-0.0713544 -0.678892 0.469904
-0 -0.68209 0.479188
-0.082759 -0.787399 0.46355
-
-0 -0.68209 0.479188
-0.0713544 -0.678892 0.469904
-0 -0.572334 0.459835
-
-0.060104 -0.571852 0.450926
-0 -0.572334 0.459835
-0.0713544 -0.678892 0.469904
-
-0 -0.572334 0.459835
-0.060104 -0.571852 0.450926
-0 -0.47 0.415692
-
-0.0496144 -0.472049 0.407639
-0 -0.47 0.415692
-0.060104 -0.571852 0.450926
-
-0 -0.47 0.415692
-0.0496144 -0.472049 0.407639
-0 -0.380604 0.349139
-
-0.040451 -0.384866 0.342375
-0 -0.380604 0.349139
-0.0496144 -0.472049 0.407639
-
-0 -0.380604 0.349139
-0.040451 -0.384866 0.342375
-0 -0.308966 0.263764
-
-0.0331079 -0.315 0.258654
-0 -0.308966 0.263764
-0.040451 -0.384866 0.342375
-
-0 -0.308966 0.263764
-0.0331079 -0.315 0.258654
-0 -0.258948 0.16417
-
-0.0279808 -0.26622 0.160989
-0 -0.258948 0.16417
-0.0331079 -0.315 0.258654
-
-0 -0.258948 0.16417
-0.0279808 -0.26622 0.160989
-0 -0.233246 0.0557246
-
-0.0253463 -0.241154 0.054645
-0 -0.233246 0.0557246
-0.0279808 -0.26622 0.160989
-
-0 -0.233246 0.0557246
-0.0253463 -0.241154 0.054645
-0 -0.233246 -0.0557246
-
-0.0253463 -0.241154 -0.054645
-0 -0.233246 -0.0557246
-0.0253463 -0.241154 0.054645
-
-0 -0.233246 -0.0557246
-0.0253463 -0.241154 -0.054645
-0 -0.258948 -0.16417
-
-0.0279808 -0.26622 -0.160989
-0 -0.258948 -0.16417
-0.0253463 -0.241154 -0.054645
-
-0 -0.258948 -0.16417
-0.0279808 -0.26622 -0.160989
-0 -0.308966 -0.263764
-
-0.0331079 -0.315 -0.258654
-0 -0.308966 -0.263764
-0.0279808 -0.26622 -0.160989
-
-0 -0.308966 -0.263764
-0.0331079 -0.315 -0.258654
-0 -0.380604 -0.349139
-
-0.040451 -0.384866 -0.342375
-0 -0.380604 -0.349139
-0.0331079 -0.315 -0.258654
-
-0 -0.380604 -0.349139
-0.040451 -0.384866 -0.342375
-0 -0.47 -0.415692
-
-0.0496144 -0.472049 -0.407639
-0 -0.47 -0.415692
-0.040451 -0.384866 -0.342375
-
-0 -0.47 -0.415692
-0.0496144 -0.472049 -0.407639
-0 -0.572334 -0.459835
-
-0.060104 -0.571852 -0.450926
-0 -0.572334 -0.459835
-0.0496144 -0.472049 -0.407639
-
-0 -0.572334 -0.459835
-0.060104 -0.571852 -0.450926
-0 -0.68209 -0.479188
-
-0.0713544 -0.678892 -0.469904
-0 -0.68209 -0.479188
-0.060104 -0.571852 -0.450926
-
-0 -0.68209 -0.479188
-0.0713544 -0.678892 -0.469904
-0 -0.793351 -0.472708
-
-0.082759 -0.787399 -0.46355
-0 -0.793351 -0.472708
-0.0713544 -0.678892 -0.469904
-
-0 -0.793351 -0.472708
-0.082759 -0.787399 -0.46355
-0 -0.900118 -0.440744
-
-0.093703 -0.891524 -0.432205
-0 -0.900118 -0.440744
-0.082759 -0.787399 -0.46355
-
-0 -0.900118 -0.440744
-0.093703 -0.891524 -0.432205
-0 -0.996636 -0.385019
-
-0.103596 -0.985654 -0.37756
-0 -0.996636 -0.385019
-0.093703 -0.891524 -0.432205
-
-0 -0.996636 -0.385019
-0.103596 -0.985654 -0.37756
-0 -1.0777 -0.308538
-
-0.111906 -1.06471 -0.302561
-0 -1.0777 -0.308538
-0.103596 -0.985654 -0.37756
-
-0 -1.0777 -0.308538
-0.111906 -1.06471 -0.302561
-0 -1.13894 -0.215424
-
-0.118183 -1.12444 -0.21125
-0 -1.13894 -0.215424
-0.111906 -1.06471 -0.302561
-
-0 -1.13894 -0.215424
-0.118183 -1.12444 -0.21125
-0 -1.17706 -0.110696
-
-0.122091 -1.16161 -0.108551
-0 -1.17706 -0.110696
-0.118183 -1.12444 -0.21125
-
-0 -1.17706 -0.110696
-0.122091 -1.16161 -0.108551
-0 -1.19 0
-
-0.123417 -1.17423 0
-0 -1.19 0
-0.122091 -1.16161 -0.108551
-
-0.123417 -1.17423 0
-0.23987 -1.1285 0
-0.122091 -1.16161 0.108551
-
-0.237384 -1.1168 0.102327
-0.122091 -1.16161 0.108551
-0.23987 -1.1285 0
-
-0.122091 -1.16161 0.108551
-0.237384 -1.1168 0.102327
-0.118183 -1.12444 0.21125
-
-0.230058 -1.08234 0.199138
-0.118183 -1.12444 0.21125
-0.237384 -1.1168 0.102327
-
-0.118183 -1.12444 0.21125
-0.230058 -1.08234 0.199138
-0.111906 -1.06471 0.302561
-
-0.218287 -1.02696 0.285213
-0.111906 -1.06471 0.302561
-0.230058 -1.08234 0.199138
-
-0.111906 -1.06471 0.302561
-0.218287 -1.02696 0.285213
-0.103596 -0.985654 0.37756
-
-0.202707 -0.953662 0.355913
-0.103596 -0.985654 0.37756
-0.218287 -1.02696 0.285213
-
-0.103596 -0.985654 0.37756
-0.202707 -0.953662 0.355913
-0.093703 -0.891524 0.432205
-
-0.184157 -0.86639 0.407425
-0.093703 -0.891524 0.432205
-0.202707 -0.953662 0.355913
-
-0.093703 -0.891524 0.432205
-0.184157 -0.86639 0.407425
-0.082759 -0.787399 0.46355
-
-0.163637 -0.769851 0.436972
-0.082759 -0.787399 0.46355
-0.184157 -0.86639 0.407425
-
-0.082759 -0.787399 0.46355
-0.163637 -0.769851 0.436972
-0.0713544 -0.678892 0.469904
-
-0.142253 -0.669249 0.442963
-0.0713544 -0.678892 0.469904
-0.163637 -0.769851 0.436972
-
-0.0713544 -0.678892 0.469904
-0.142253 -0.669249 0.442963
-0.060104 -0.571852 0.450926
-
-0.121159 -0.570007 0.425073
-0.060104 -0.571852 0.450926
-0.142253 -0.669249 0.442963
-
-0.060104 -0.571852 0.450926
-0.121159 -0.570007 0.425073
-0.0496144 -0.472049 0.407639
-
-0.101491 -0.477476 0.384267
-0.0496144 -0.472049 0.407639
-0.121159 -0.570007 0.425073
-
-0.0496144 -0.472049 0.407639
-0.101491 -0.477476 0.384267
-0.040451 -0.384866 0.342375
-
-0.0843093 -0.396644 0.322745
-0.040451 -0.384866 0.342375
-0.101491 -0.477476 0.384267
-
-0.040451 -0.384866 0.342375
-0.0843093 -0.396644 0.322745
-0.0331079 -0.315 0.258654
-
-0.0705409 -0.331869 0.243824
-0.0331079 -0.315 0.258654
-0.0843093 -0.396644 0.322745
-
-0.0331079 -0.315 0.258654
-0.0705409 -0.331869 0.243824
-0.0279808 -0.26622 0.160989
-
-0.0609277 -0.286642 0.151759
-0.0279808 -0.26622 0.160989
-0.0705409 -0.331869 0.243824
-
-0.0279808 -0.26622 0.160989
-0.0609277 -0.286642 0.151759
-0.0253463 -0.241154 0.054645
-
-0.0559879 -0.263402 0.051512
-0.0253463 -0.241154 0.054645
-0.0609277 -0.286642 0.151759
-
-0.0253463 -0.241154 0.054645
-0.0559879 -0.263402 0.051512
-0.0253463 -0.241154 -0.054645
-
-0.0559879 -0.263402 -0.051512
-0.0253463 -0.241154 -0.054645
-0.0559879 -0.263402 0.051512
-
-0.0253463 -0.241154 -0.054645
-0.0559879 -0.263402 -0.051512
-0.0279808 -0.26622 -0.160989
-
-0.0609277 -0.286642 -0.151759
-0.0279808 -0.26622 -0.160989
-0.0559879 -0.263402 -0.051512
-
-0.0279808 -0.26622 -0.160989
-0.0609277 -0.286642 -0.151759
-0.0331079 -0.315 -0.258654
-
-0.0705409 -0.331869 -0.243824
-0.0331079 -0.315 -0.258654
-0.0609277 -0.286642 -0.151759
-
-0.0331079 -0.315 -0.258654
-0.0705409 -0.331869 -0.243824
-0.040451 -0.384866 -0.342375
-
-0.0843093 -0.396644 -0.322745
-0.040451 -0.384866 -0.342375
-0.0705409 -0.331869 -0.243824
-
-0.040451 -0.384866 -0.342375
-0.0843093 -0.396644 -0.322745
-0.0496144 -0.472049 -0.407639
-
-0.101491 -0.477476 -0.384267
-0.0496144 -0.472049 -0.407639
-0.0843093 -0.396644 -0.322745
-
-0.0496144 -0.472049 -0.407639
-0.101491 -0.477476 -0.384267
-0.060104 -0.571852 -0.450926
-
-0.121159 -0.570007 -0.425073
-0.060104 -0.571852 -0.450926
-0.101491 -0.477476 -0.384267
-
-0.060104 -0.571852 -0.450926
-0.121159 -0.570007 -0.425073
-0.0713544 -0.678892 -0.469904
-
-0.142253 -0.669249 -0.442963
-0.0713544 -0.678892 -0.469904
-0.121159 -0.570007 -0.425073
-
-0.0713544 -0.678892 -0.469904
-0.142253 -0.669249 -0.442963
-0.082759 -0.787399 -0.46355
-
-0.163637 -0.769851 -0.436972
-0.082759 -0.787399 -0.46355
-0.142253 -0.669249 -0.442963
-
-0.082759 -0.787399 -0.46355
-0.163637 -0.769851 -0.436972
-0.093703 -0.891524 -0.432205
-
-0.184157 -0.86639 -0.407425
-0.093703 -0.891524 -0.432205
-0.163637 -0.769851 -0.436972
-
-0.093703 -0.891524 -0.432205
-0.184157 -0.86639 -0.407425
-0.103596 -0.985654 -0.37756
-
-0.202707 -0.953662 -0.355913
-0.103596 -0.985654 -0.37756
-0.184157 -0.86639 -0.407425
-
-0.103596 -0.985654 -0.37756
-0.202707 -0.953662 -0.355913
-0.111906 -1.06471 -0.302561
-
-0.218287 -1.02696 -0.285213
-0.111906 -1.06471 -0.302561
-0.202707 -0.953662 -0.355913
-
-0.111906 -1.06471 -0.302561
-0.218287 -1.02696 -0.285213
-0.118183 -1.12444 -0.21125
-
-0.230058 -1.08234 -0.199138
-0.118183 -1.12444 -0.21125
-0.218287 -1.02696 -0.285213
-
-0.118183 -1.12444 -0.21125
-0.230058 -1.08234 -0.199138
-0.122091 -1.16161 -0.108551
-
-0.237384 -1.1168 -0.102327
-0.122091 -1.16161 -0.108551
-0.230058 -1.08234 -0.199138
-
-0.122091 -1.16161 -0.108551
-0.237384 -1.1168 -0.102327
-0.123417 -1.17423 0
-
-0.23987 -1.1285 0
-0.123417 -1.17423 0
-0.237384 -1.1168 -0.102327
-
-0.23987 -1.1285 0
-0.343528 -1.05727 0
-0.237384 -1.1168 0.102327
-
-0.340182 -1.04697 0.0926336
-0.237384 -1.1168 0.102327
-0.343528 -1.05727 0
-
-0.237384 -1.1168 0.102327
-0.340182 -1.04697 0.0926336
-0.230058 -1.08234 0.199138
-
-0.330325 -1.01664 0.180273
-0.230058 -1.08234 0.199138
-0.340182 -1.04697 0.0926336
-
-0.230058 -1.08234 0.199138
-0.330325 -1.01664 0.180273
-0.218287 -1.02696 0.285213
-
-0.314488 -0.967894 0.258194
-0.218287 -1.02696 0.285213
-0.330325 -1.01664 0.180273
-
-0.218287 -1.02696 0.285213
-0.314488 -0.967894 0.258194
-0.202707 -0.953662 0.355913
-
-0.293525 -0.903376 0.322196
-0.202707 -0.953662 0.355913
-0.314488 -0.967894 0.258194
-
-0.202707 -0.953662 0.355913
-0.293525 -0.903376 0.322196
-0.184157 -0.86639 0.407425
-
-0.268566 -0.82656 0.368828
-0.184157 -0.86639 0.407425
-0.293525 -0.903376 0.322196
-
-0.184157 -0.86639 0.407425
-0.268566 -0.82656 0.368828
-0.163637 -0.769851 0.436972
-
-0.240956 -0.741587 0.395577
-0.163637 -0.769851 0.436972
-0.268566 -0.82656 0.368828
-
-0.163637 -0.769851 0.436972
-0.240956 -0.741587 0.395577
-0.142253 -0.669249 0.442963
-
-0.212185 -0.653038 0.401
-0.142253 -0.669249 0.442963
-0.240956 -0.741587 0.395577
-
-0.142253 -0.669249 0.442963
-0.212185 -0.653038 0.401
-0.121159 -0.570007 0.425073
-
-0.183802 -0.565686 0.384804
-0.121159 -0.570007 0.425073
-0.212185 -0.653038 0.401
-
-0.121159 -0.570007 0.425073
-0.183802 -0.565686 0.384804
-0.101491 -0.477476 0.384267
-
-0.157339 -0.48424 0.347864
-0.101491 -0.477476 0.384267
-0.183802 -0.565686 0.384804
-
-0.101491 -0.477476 0.384267
-0.157339 -0.48424 0.347864
-0.0843093 -0.396644 0.322745
-
-0.134222 -0.413092 0.292171
-0.0843093 -0.396644 0.322745
-0.157339 -0.48424 0.347864
-
-0.0843093 -0.396644 0.322745
-0.134222 -0.413092 0.292171
-0.0705409 -0.331869 0.243824
-
-0.115697 -0.356077 0.220726
-0.0705409 -0.331869 0.243824
-0.134222 -0.413092 0.292171
-
-0.0705409 -0.331869 0.243824
-0.115697 -0.356077 0.220726
-0.0609277 -0.286642 0.151759
-
-0.102762 -0.316269 0.137382
-0.0609277 -0.286642 0.151759
-0.115697 -0.356077 0.220726
-
-0.0609277 -0.286642 0.151759
-0.102762 -0.316269 0.137382
-0.0559879 -0.263402 0.051512
-
-0.0961157 -0.295814 0.0466321
-0.0559879 -0.263402 0.051512
-0.102762 -0.316269 0.137382
-
-0.0559879 -0.263402 0.051512
-0.0961157 -0.295814 0.0466321
-0.0559879 -0.263402 -0.051512
-
-0.0961157 -0.295814 -0.0466321
-0.0559879 -0.263402 -0.051512
-0.0961157 -0.295814 0.0466321
-
-0.0559879 -0.263402 -0.051512
-0.0961157 -0.295814 -0.0466321
-0.0609277 -0.286642 -0.151759
-
-0.102762 -0.316269 -0.137382
-0.0609277 -0.286642 -0.151759
-0.0961157 -0.295814 -0.0466321
-
-0.0609277 -0.286642 -0.151759
-0.102762 -0.316269 -0.137382
-0.0705409 -0.331869 -0.243824
-
-0.115697 -0.356077 -0.220726
-0.0705409 -0.331869 -0.243824
-0.102762 -0.316269 -0.137382
-
-0.0705409 -0.331869 -0.243824
-0.115697 -0.356077 -0.220726
-0.0843093 -0.396644 -0.322745
-
-0.134222 -0.413092 -0.292171
-0.0843093 -0.396644 -0.322745
-0.115697 -0.356077 -0.220726
-
-0.0843093 -0.396644 -0.322745
-0.134222 -0.413092 -0.292171
-0.101491 -0.477476 -0.384267
-
-0.157339 -0.48424 -0.347864
-0.101491 -0.477476 -0.384267
-0.134222 -0.413092 -0.292171
-
-0.101491 -0.477476 -0.384267
-0.157339 -0.48424 -0.347864
-0.121159 -0.570007 -0.425073
-
-0.183802 -0.565686 -0.384804
-0.121159 -0.570007 -0.425073
-0.157339 -0.48424 -0.347864
-
-0.121159 -0.570007 -0.425073
-0.183802 -0.565686 -0.384804
-0.142253 -0.669249 -0.442963
-
-0.212185 -0.653038 -0.401
-0.142253 -0.669249 -0.442963
-0.183802 -0.565686 -0.384804
-
-0.142253 -0.669249 -0.442963
-0.212185 -0.653038 -0.401
-0.163637 -0.769851 -0.436972
-
-0.240956 -0.741587 -0.395577
-0.163637 -0.769851 -0.436972
-0.212185 -0.653038 -0.401
-
-0.163637 -0.769851 -0.436972
-0.240956 -0.741587 -0.395577
-0.184157 -0.86639 -0.407425
-
-0.268566 -0.82656 -0.368828
-0.184157 -0.86639 -0.407425
-0.240956 -0.741587 -0.395577
-
-0.184157 -0.86639 -0.407425
-0.268566 -0.82656 -0.368828
-0.202707 -0.953662 -0.355913
-
-0.293525 -0.903376 -0.322196
-0.202707 -0.953662 -0.355913
-0.268566 -0.82656 -0.368828
-
-0.202707 -0.953662 -0.355913
-0.293525 -0.903376 -0.322196
-0.218287 -1.02696 -0.285213
-
-0.314488 -0.967894 -0.258194
-0.218287 -1.02696 -0.285213
-0.293525 -0.903376 -0.322196
-
-0.218287 -1.02696 -0.285213
-0.314488 -0.967894 -0.258194
-0.230058 -1.08234 -0.199138
-
-0.330325 -1.01664 -0.180273
-0.230058 -1.08234 -0.199138
-0.314488 -0.967894 -0.258194
-
-0.230058 -1.08234 -0.199138
-0.330325 -1.01664 -0.180273
-0.237384 -1.1168 -0.102327
-
-0.340182 -1.04697 -0.0926336
-0.237384 -1.1168 -0.102327
-0.330325 -1.01664 -0.180273
-
-0.237384 -1.1168 -0.102327
-0.340182 -1.04697 -0.0926336
-0.23987 -1.1285 0
-
-0.343528 -1.05727 0
-0.23987 -1.1285 0
-0.340182 -1.04697 -0.0926336
-
-0.343528 -1.05727 0
-0.430617 -0.967183 0
-0.340182 -1.04697 0.0926336
-
-0.426794 -0.958596 0.0804188
-0.340182 -1.04697 0.0926336
-0.430617 -0.967183 0
-
-0.340182 -1.04697 0.0926336
-0.426794 -0.958596 0.0804188
-0.330325 -1.01664 0.180273
-
-0.415531 -0.933298 0.156502
-0.330325 -1.01664 0.180273
-0.426794 -0.958596 0.0804188
-
-0.330325 -1.01664 0.180273
-0.415531 -0.933298 0.156502
-0.314488 -0.967894 0.258194
-
-0.397435 -0.892653 0.224149
-0.314488 -0.967894 0.258194
-0.415531 -0.933298 0.156502
-
-0.314488 -0.967894 0.258194
-0.397435 -0.892653 0.224149
-0.293525 -0.903376 0.322196
-
-0.373481 -0.838851 0.279711
-0.293525 -0.903376 0.322196
-0.397435 -0.892653 0.224149
-
-0.293525 -0.903376 0.322196
-0.373481 -0.838851 0.279711
-0.268566 -0.82656 0.368828
-
-0.344961 -0.774795 0.320194
-0.268566 -0.82656 0.368828
-0.373481 -0.838851 0.279711
-
-0.268566 -0.82656 0.368828
-0.344961 -0.774795 0.320194
-0.240956 -0.741587 0.395577
-
-0.313412 -0.703936 0.343415
-0.240956 -0.741587 0.395577
-0.344961 -0.774795 0.320194
-
-0.240956 -0.741587 0.395577
-0.313412 -0.703936 0.343415
-0.212185 -0.653038 0.401
-
-0.280536 -0.630094 0.348123
-0.212185 -0.653038 0.401
-0.313412 -0.703936 0.343415
-
-0.212185 -0.653038 0.401
-0.280536 -0.630094 0.348123
-0.183802 -0.565686 0.384804
-
-0.248104 -0.557252 0.334064
-0.183802 -0.565686 0.384804
-0.280536 -0.630094 0.348123
-
-0.183802 -0.565686 0.384804
-0.248104 -0.557252 0.334064
-0.157339 -0.48424 0.347864
-
-0.217866 -0.489335 0.301995
-0.157339 -0.48424 0.347864
-0.248104 -0.557252 0.334064
-
-0.157339 -0.48424 0.347864
-0.217866 -0.489335 0.301995
-0.134222 -0.413092 0.292171
-
-0.19145 -0.430004 0.253645
-0.134222 -0.413092 0.292171
-0.217866 -0.489335 0.301995
-
-0.134222 -0.413092 0.292171
-0.19145 -0.430004 0.253645
-0.115697 -0.356077 0.220726
-
-0.170282 -0.38246 0.191621
-0.115697 -0.356077 0.220726
-0.19145 -0.430004 0.253645
-
-0.115697 -0.356077 0.220726
-0.170282 -0.38246 0.191621
-0.102762 -0.316269 0.137382
-
-0.155502 -0.349264 0.119267
-0.102762 -0.316269 0.137382
-0.170282 -0.38246 0.191621
-
-0.102762 -0.316269 0.137382
-0.155502 -0.349264 0.119267
-0.0961157 -0.295814 0.0466321
-
-0.147908 -0.332206 0.0404831
-0.0961157 -0.295814 0.0466321
-0.155502 -0.349264 0.119267
-
-0.0961157 -0.295814 0.0466321
-0.147908 -0.332206 0.0404831
-0.0961157 -0.295814 -0.0466321
-
-0.147908 -0.332206 -0.0404831
-0.0961157 -0.295814 -0.0466321
-0.147908 -0.332206 0.0404831
-
-0.0961157 -0.295814 -0.0466321
-0.147908 -0.332206 -0.0404831
-0.102762 -0.316269 -0.137382
-
-0.155502 -0.349264 -0.119267
-0.102762 -0.316269 -0.137382
-0.147908 -0.332206 -0.0404831
-
-0.102762 -0.316269 -0.137382
-0.155502 -0.349264 -0.119267
-0.115697 -0.356077 -0.220726
-
-0.170282 -0.38246 -0.191621
-0.115697 -0.356077 -0.220726
-0.155502 -0.349264 -0.119267
-
-0.115697 -0.356077 -0.220726
-0.170282 -0.38246 -0.191621
-0.134222 -0.413092 -0.292171
-
-0.19145 -0.430004 -0.253645
-0.134222 -0.413092 -0.292171
-0.170282 -0.38246 -0.191621
-
-0.134222 -0.413092 -0.292171
-0.19145 -0.430004 -0.253645
-0.157339 -0.48424 -0.347864
-
-0.217866 -0.489335 -0.301995
-0.157339 -0.48424 -0.347864
-0.19145 -0.430004 -0.253645
-
-0.157339 -0.48424 -0.347864
-0.217866 -0.489335 -0.301995
-0.183802 -0.565686 -0.384804
-
-0.248104 -0.557252 -0.334064
-0.183802 -0.565686 -0.384804
-0.217866 -0.489335 -0.301995
-
-0.183802 -0.565686 -0.384804
-0.248104 -0.557252 -0.334064
-0.212185 -0.653038 -0.401
-
-0.280536 -0.630094 -0.348123
-0.212185 -0.653038 -0.401
-0.248104 -0.557252 -0.334064
-
-0.212185 -0.653038 -0.401
-0.280536 -0.630094 -0.348123
-0.240956 -0.741587 -0.395577
-
-0.313412 -0.703936 -0.343415
-0.240956 -0.741587 -0.395577
-0.280536 -0.630094 -0.348123
-
-0.240956 -0.741587 -0.395577
-0.313412 -0.703936 -0.343415
-0.268566 -0.82656 -0.368828
-
-0.344961 -0.774795 -0.320194
-0.268566 -0.82656 -0.368828
-0.313412 -0.703936 -0.343415
-
-0.268566 -0.82656 -0.368828
-0.344961 -0.774795 -0.320194
-0.293525 -0.903376 -0.322196
-
-0.373481 -0.838851 -0.279711
-0.293525 -0.903376 -0.322196
-0.344961 -0.774795 -0.320194
-
-0.293525 -0.903376 -0.322196
-0.373481 -0.838851 -0.279711
-0.314488 -0.967894 -0.258194
-
-0.397435 -0.892653 -0.224149
-0.314488 -0.967894 -0.258194
-0.373481 -0.838851 -0.279711
-
-0.314488 -0.967894 -0.258194
-0.397435 -0.892653 -0.224149
-0.330325 -1.01664 -0.180273
-
-0.415531 -0.933298 -0.156502
-0.330325 -1.01664 -0.180273
-0.397435 -0.892653 -0.224149
-
-0.330325 -1.01664 -0.180273
-0.415531 -0.933298 -0.156502
-0.340182 -1.04697 -0.0926336
-
-0.426794 -0.958596 -0.0804188
-0.340182 -1.04697 -0.0926336
-0.415531 -0.933298 -0.156502
-
-0.340182 -1.04697 -0.0926336
-0.426794 -0.958596 -0.0804188
-0.343528 -1.05727 0
-
-0.430617 -0.967183 0
-0.343528 -1.05727 0
-0.426794 -0.958596 -0.0804188
-
-0.430617 -0.967183 0
-0.5 -0.866025 0
-0.426794 -0.958596 0.0804188
-
-0.496092 -0.859256 0.0668786
-0.426794 -0.958596 0.0804188
-0.5 -0.866025 0
-
-0.426794 -0.958596 0.0804188
-0.496092 -0.859256 0.0668786
-0.415531 -0.933298 0.156502
-
-0.484577 -0.839312 0.130152
-0.415531 -0.933298 0.156502
-0.496092 -0.859256 0.0668786
-
-0.415531 -0.933298 0.156502
-0.484577 -0.839312 0.130152
-0.397435 -0.892653 0.224149
-
-0.466076 -0.807268 0.186408
-0.397435 -0.892653 0.224149
-0.484577 -0.839312 0.130152
-
-0.397435 -0.892653 0.224149
-0.466076 -0.807268 0.186408
-0.373481 -0.838851 0.279711
-
-0.441588 -0.764853 0.232616
-0.373481 -0.838851 0.279711
-0.466076 -0.807268 0.186408
-
-0.373481 -0.838851 0.279711
-0.441588 -0.764853 0.232616
-0.344961 -0.774795 0.320194
-
-0.412432 -0.714352 0.266283
-0.344961 -0.774795 0.320194
-0.441588 -0.764853 0.232616
-
-0.344961 -0.774795 0.320194
-0.412432 -0.714352 0.266283
-0.313412 -0.703936 0.343415
-
-0.380179 -0.658489 0.285594
-0.313412 -0.703936 0.343415
-0.412432 -0.714352 0.266283
-
-0.313412 -0.703936 0.343415
-0.380179 -0.658489 0.285594
-0.280536 -0.630094 0.348123
-
-0.346569 -0.600275 0.289509
-0.280536 -0.630094 0.348123
-0.380179 -0.658489 0.285594
-
-0.280536 -0.630094 0.348123
-0.346569 -0.600275 0.289509
-0.248104 -0.557252 0.334064
-
-0.313414 -0.542848 0.277817
-0.248104 -0.557252 0.334064
-0.346569 -0.600275 0.289509
-
-0.248104 -0.557252 0.334064
-0.313414 -0.542848 0.277817
-0.217866 -0.489335 0.301995
-
-0.2825 -0.489304 0.251147
-0.217866 -0.489335 0.301995
-0.313414 -0.542848 0.277817
-
-0.217866 -0.489335 0.301995
-0.2825 -0.489304 0.251147
-0.19145 -0.430004 0.253645
-
-0.255495 -0.44253 0.210938
-0.19145 -0.430004 0.253645
-0.2825 -0.489304 0.251147
-
-0.19145 -0.430004 0.253645
-0.255495 -0.44253 0.210938
-0.170282 -0.38246 0.191621
-
-0.233854 -0.405047 0.159358
-0.170282 -0.38246 0.191621
-0.255495 -0.44253 0.210938
-
-0.170282 -0.38246 0.191621
-0.233854 -0.405047 0.159358
-0.155502 -0.349264 0.119267
-
-0.218745 -0.378877 0.0991858
-0.155502 -0.349264 0.119267
-0.233854 -0.405047 0.159358
-
-0.155502 -0.349264 0.119267
-0.218745 -0.378877 0.0991858
-0.147908 -0.332206 0.0404831
-
-0.21098 -0.365429 0.0336669
-0.147908 -0.332206 0.0404831
-0.218745 -0.378877 0.0991858
-
-0.147908 -0.332206 0.0404831
-0.21098 -0.365429 0.0336669
-0.147908 -0.332206 -0.0404831
-
-0.21098 -0.365429 -0.0336669
-0.147908 -0.332206 -0.0404831
-0.21098 -0.365429 0.0336669
-
-0.147908 -0.332206 -0.0404831
-0.21098 -0.365429 -0.0336669
-0.155502 -0.349264 -0.119267
-
-0.218745 -0.378877 -0.0991858
-0.155502 -0.349264 -0.119267
-0.21098 -0.365429 -0.0336669
-
-0.155502 -0.349264 -0.119267
-0.218745 -0.378877 -0.0991858
-0.170282 -0.38246 -0.191621
-
-0.233854 -0.405047 -0.159358
-0.170282 -0.38246 -0.191621
-0.218745 -0.378877 -0.0991858
-
-0.170282 -0.38246 -0.191621
-0.233854 -0.405047 -0.159358
-0.19145 -0.430004 -0.253645
-
-0.255495 -0.44253 -0.210938
-0.19145 -0.430004 -0.253645
-0.233854 -0.405047 -0.159358
-
-0.19145 -0.430004 -0.253645
-0.255495 -0.44253 -0.210938
-0.217866 -0.489335 -0.301995
-
-0.2825 -0.489304 -0.251147
-0.217866 -0.489335 -0.301995
-0.255495 -0.44253 -0.210938
-
-0.217866 -0.489335 -0.301995
-0.2825 -0.489304 -0.251147
-0.248104 -0.557252 -0.334064
-
-0.313414 -0.542848 -0.277817
-0.248104 -0.557252 -0.334064
-0.2825 -0.489304 -0.251147
-
-0.248104 -0.557252 -0.334064
-0.313414 -0.542848 -0.277817
-0.280536 -0.630094 -0.348123
-
-0.346569 -0.600275 -0.289509
-0.280536 -0.630094 -0.348123
-0.313414 -0.542848 -0.277817
-
-0.280536 -0.630094 -0.348123
-0.346569 -0.600275 -0.289509
-0.313412 -0.703936 -0.343415
-
-0.380179 -0.658489 -0.285594
-0.313412 -0.703936 -0.343415
-0.346569 -0.600275 -0.289509
-
-0.313412 -0.703936 -0.343415
-0.380179 -0.658489 -0.285594
-0.344961 -0.774795 -0.320194
-
-0.412432 -0.714352 -0.266283
-0.344961 -0.774795 -0.320194
-0.380179 -0.658489 -0.285594
-
-0.344961 -0.774795 -0.320194
-0.412432 -0.714352 -0.266283
-0.373481 -0.838851 -0.279711
-
-0.441588 -0.764853 -0.232616
-0.373481 -0.838851 -0.279711
-0.412432 -0.714352 -0.266283
-
-0.373481 -0.838851 -0.279711
-0.441588 -0.764853 -0.232616
-0.397435 -0.892653 -0.224149
-
-0.466076 -0.807268 -0.186408
-0.397435 -0.892653 -0.224149
-0.441588 -0.764853 -0.232616
-
-0.397435 -0.892653 -0.224149
-0.466076 -0.807268 -0.186408
-0.415531 -0.933298 -0.156502
-
-0.484577 -0.839312 -0.130152
-0.415531 -0.933298 -0.156502
-0.466076 -0.807268 -0.186408
-
-0.415531 -0.933298 -0.156502
-0.484577 -0.839312 -0.130152
-0.426794 -0.958596 -0.0804188
-
-0.496092 -0.859256 -0.0668786
-0.426794 -0.958596 -0.0804188
-0.484577 -0.839312 -0.130152
-
-0.426794 -0.958596 -0.0804188
-0.496092 -0.859256 -0.0668786
-0.430617 -0.967183 0
-
-0.5 -0.866025 0
-0.430617 -0.967183 0
-0.496092 -0.859256 -0.0668786
-
-0.5 -0.866025 0
-0.553274 -0.761517 0
-0.496092 -0.859256 0.0668786
-
-0.54961 -0.756473 0.0533384
-0.496092 -0.859256 0.0668786
-0.553274 -0.761517 0
-
-0.496092 -0.859256 0.0668786
-0.54961 -0.756473 0.0533384
-0.484577 -0.839312 0.130152
-
-0.538814 -0.741614 0.103801
-0.484577 -0.839312 0.130152
-0.54961 -0.756473 0.0533384
-
-0.484577 -0.839312 0.130152
-0.538814 -0.741614 0.103801
-0.466076 -0.807268 0.186408
-
-0.521469 -0.71774 0.148668
-0.466076 -0.807268 0.186408
-0.538814 -0.741614 0.103801
-
-0.466076 -0.807268 0.186408
-0.521469 -0.71774 0.148668
-0.441588 -0.764853 0.232616
-
-0.498509 -0.686139 0.18552
-0.441588 -0.764853 0.232616
-0.521469 -0.71774 0.148668
-
-0.441588 -0.764853 0.232616
-0.498509 -0.686139 0.18552
-0.412432 -0.714352 0.266283
-
-0.471173 -0.648515 0.212371
-0.412432 -0.714352 0.266283
-0.498509 -0.686139 0.18552
-
-0.412432 -0.714352 0.266283
-0.471173 -0.648515 0.212371
-0.380179 -0.658489 0.285594
-
-0.440934 -0.606894 0.227773
-0.380179 -0.658489 0.285594
-0.471173 -0.648515 0.212371
-
-0.380179 -0.658489 0.285594
-0.440934 -0.606894 0.227773
-0.346569 -0.600275 0.289509
-
-0.409423 -0.563522 0.230895
-0.346569 -0.600275 0.289509
-0.440934 -0.606894 0.227773
-
-0.346569 -0.600275 0.289509
-0.409423 -0.563522 0.230895
-0.313414 -0.542848 0.277817
-
-0.378338 -0.520737 0.22157
-0.313414 -0.542848 0.277817
-0.409423 -0.563522 0.230895
-
-0.313414 -0.542848 0.277817
-0.378338 -0.520737 0.22157
-0.2825 -0.489304 0.251147
-
-0.349354 -0.480845 0.2003
-0.2825 -0.489304 0.251147
-0.378338 -0.520737 0.22157
-
-0.2825 -0.489304 0.251147
-0.349354 -0.480845 0.2003
-0.255495 -0.44253 0.210938
-
-0.324035 -0.445996 0.168232
-0.255495 -0.44253 0.210938
-0.349354 -0.480845 0.2003
-
-0.255495 -0.44253 0.210938
-0.324035 -0.445996 0.168232
-0.233854 -0.405047 0.159358
-
-0.303746 -0.41807 0.127094
-0.233854 -0.405047 0.159358
-0.324035 -0.445996 0.168232
-
-0.233854 -0.405047 0.159358
-0.303746 -0.41807 0.127094
-0.218745 -0.378877 0.0991858
-
-0.289579 -0.398572 0.0791047
-0.218745 -0.378877 0.0991858
-0.303746 -0.41807 0.127094
-
-0.218745 -0.378877 0.0991858
-0.289579 -0.398572 0.0791047
-0.21098 -0.365429 0.0336669
-
-0.2823 -0.388552 0.0268508
-0.21098 -0.365429 0.0336669
-0.289579 -0.398572 0.0791047
-
-0.21098 -0.365429 0.0336669
-0.2823 -0.388552 0.0268508
-0.21098 -0.365429 -0.0336669
-
-0.2823 -0.388552 -0.0268508
-0.21098 -0.365429 -0.0336669
-0.2823 -0.388552 0.0268508
-
-0.21098 -0.365429 -0.0336669
-0.2823 -0.388552 -0.0268508
-0.218745 -0.378877 -0.0991858
-
-0.289579 -0.398572 -0.0791047
-0.218745 -0.378877 -0.0991858
-0.2823 -0.388552 -0.0268508
-
-0.218745 -0.378877 -0.0991858
-0.289579 -0.398572 -0.0791047
-0.233854 -0.405047 -0.159358
-
-0.303746 -0.41807 -0.127094
-0.233854 -0.405047 -0.159358
-0.289579 -0.398572 -0.0791047
-
-0.233854 -0.405047 -0.159358
-0.303746 -0.41807 -0.127094
-0.255495 -0.44253 -0.210938
-
-0.324035 -0.445996 -0.168232
-0.255495 -0.44253 -0.210938
-0.303746 -0.41807 -0.127094
-
-0.255495 -0.44253 -0.210938
-0.324035 -0.445996 -0.168232
-0.2825 -0.489304 -0.251147
-
-0.349354 -0.480845 -0.2003
-0.2825 -0.489304 -0.251147
-0.324035 -0.445996 -0.168232
-
-0.2825 -0.489304 -0.251147
-0.349354 -0.480845 -0.2003
-0.313414 -0.542848 -0.277817
-
-0.378338 -0.520737 -0.22157
-0.313414 -0.542848 -0.277817
-0.349354 -0.480845 -0.2003
-
-0.313414 -0.542848 -0.277817
-0.378338 -0.520737 -0.22157
-0.346569 -0.600275 -0.289509
-
-0.409423 -0.563522 -0.230895
-0.346569 -0.600275 -0.289509
-0.378338 -0.520737 -0.22157
-
-0.346569 -0.600275 -0.289509
-0.409423 -0.563522 -0.230895
-0.380179 -0.658489 -0.285594
-
-0.440934 -0.606894 -0.227773
-0.380179 -0.658489 -0.285594
-0.409423 -0.563522 -0.230895
-
-0.380179 -0.658489 -0.285594
-0.440934 -0.606894 -0.227773
-0.412432 -0.714352 -0.266283
-
-0.471173 -0.648515 -0.212371
-0.412432 -0.714352 -0.266283
-0.440934 -0.606894 -0.227773
-
-0.412432 -0.714352 -0.266283
-0.471173 -0.648515 -0.212371
-0.441588 -0.764853 -0.232616
-
-0.498509 -0.686139 -0.18552
-0.441588 -0.764853 -0.232616
-0.471173 -0.648515 -0.212371
-
-0.441588 -0.764853 -0.232616
-0.498509 -0.686139 -0.18552
-0.466076 -0.807268 -0.186408
-
-0.521469 -0.71774 -0.148668
-0.466076 -0.807268 -0.186408
-0.498509 -0.686139 -0.18552
-
-0.466076 -0.807268 -0.186408
-0.521469 -0.71774 -0.148668
-0.484577 -0.839312 -0.130152
-
-0.538814 -0.741614 -0.103801
-0.484577 -0.839312 -0.130152
-0.521469 -0.71774 -0.148668
-
-0.484577 -0.839312 -0.130152
-0.538814 -0.741614 -0.103801
-0.496092 -0.859256 -0.0668786
-
-0.54961 -0.756473 -0.0533384
-0.496092 -0.859256 -0.0668786
-0.538814 -0.741614 -0.103801
-
-0.496092 -0.859256 -0.0668786
-0.54961 -0.756473 -0.0533384
-0.5 -0.866025 0
-
-0.553274 -0.761517 0
-0.5 -0.866025 0
-0.54961 -0.756473 -0.0533384
-
-0.553274 -0.761517 0
-0.594403 -0.660151 0
-0.54961 -0.756473 0.0533384
-
-0.591186 -0.656579 0.0411236
-0.54961 -0.756473 0.0533384
-0.594403 -0.660151 0
-
-0.54961 -0.756473 0.0533384
-0.591186 -0.656579 0.0411236
-0.538814 -0.741614 0.103801
-
-0.581711 -0.646055 0.0800302
-0.538814 -0.741614 0.103801
-0.591186 -0.656579 0.0411236
-
-0.538814 -0.741614 0.103801
-0.581711 -0.646055 0.0800302
-0.521469 -0.71774 0.148668
-
-0.566487 -0.629148 0.114622
-0.521469 -0.71774 0.148668
-0.581711 -0.646055 0.0800302
-
-0.521469 -0.71774 0.148668
-0.566487 -0.629148 0.114622
-0.498509 -0.686139 0.18552
-
-0.546336 -0.606767 0.143035
-0.498509 -0.686139 0.18552
-0.566487 -0.629148 0.114622
-
-0.498509 -0.686139 0.18552
-0.546336 -0.606767 0.143035
-0.471173 -0.648515 0.212371
-
-0.522343 -0.580121 0.163737
-0.471173 -0.648515 0.212371
-0.546336 -0.606767 0.143035
-
-0.471173 -0.648515 0.212371
-0.522343 -0.580121 0.163737
-0.440934 -0.606894 0.227773
-
-0.495802 -0.550644 0.175612
-0.440934 -0.606894 0.227773
-0.522343 -0.580121 0.163737
-
-0.440934 -0.606894 0.227773
-0.495802 -0.550644 0.175612
-0.409423 -0.563522 0.230895
-
-0.468145 -0.519928 0.178019
-0.409423 -0.563522 0.230895
-0.495802 -0.550644 0.175612
-
-0.409423 -0.563522 0.230895
-0.468145 -0.519928 0.178019
-0.378338 -0.520737 0.22157
-
-0.440861 -0.489626 0.170829
-0.378338 -0.520737 0.22157
-0.468145 -0.519928 0.178019
-
-0.378338 -0.520737 0.22157
-0.440861 -0.489626 0.170829
-0.349354 -0.480845 0.2003
-
-0.415423 -0.461374 0.15443
-0.349354 -0.480845 0.2003
-0.440861 -0.489626 0.170829
-
-0.349354 -0.480845 0.2003
-0.415423 -0.461374 0.15443
-0.324035 -0.445996 0.168232
-
-0.3932 -0.436693 0.129706
-0.324035 -0.445996 0.168232
-0.415423 -0.461374 0.15443
-
-0.324035 -0.445996 0.168232
-0.3932 -0.436693 0.129706
-0.303746 -0.41807 0.127094
-
-0.375392 -0.416916 0.0979889
-0.303746 -0.41807 0.127094
-0.3932 -0.436693 0.129706
-
-0.303746 -0.41807 0.127094
-0.375392 -0.416916 0.0979889
-0.289579 -0.398572 0.0791047
-
-0.362959 -0.403106 0.0609893
-0.289579 -0.398572 0.0791047
-0.375392 -0.416916 0.0979889
-
-0.289579 -0.398572 0.0791047
-0.362959 -0.403106 0.0609893
-0.2823 -0.388552 0.0268508
-
-0.35657 -0.396011 0.0207018
-0.2823 -0.388552 0.0268508
-0.362959 -0.403106 0.0609893
-
-0.2823 -0.388552 0.0268508
-0.35657 -0.396011 0.0207018
-0.2823 -0.388552 -0.0268508
-
-0.35657 -0.396011 -0.0207018
-0.2823 -0.388552 -0.0268508
-0.35657 -0.396011 0.0207018
-
-0.2823 -0.388552 -0.0268508
-0.35657 -0.396011 -0.0207018
-0.289579 -0.398572 -0.0791047
-
-0.362959 -0.403106 -0.0609893
-0.289579 -0.398572 -0.0791047
-0.35657 -0.396011 -0.0207018
-
-0.289579 -0.398572 -0.0791047
-0.362959 -0.403106 -0.0609893
-0.303746 -0.41807 -0.127094
-
-0.375392 -0.416916 -0.0979889
-0.303746 -0.41807 -0.127094
-0.362959 -0.403106 -0.0609893
-
-0.303746 -0.41807 -0.127094
-0.375392 -0.416916 -0.0979889
-0.324035 -0.445996 -0.168232
-
-0.3932 -0.436693 -0.129706
-0.324035 -0.445996 -0.168232
-0.375392 -0.416916 -0.0979889
-
-0.324035 -0.445996 -0.168232
-0.3932 -0.436693 -0.129706
-0.349354 -0.480845 -0.2003
-
-0.415423 -0.461374 -0.15443
-0.349354 -0.480845 -0.2003
-0.3932 -0.436693 -0.129706
-
-0.349354 -0.480845 -0.2003
-0.415423 -0.461374 -0.15443
-0.378338 -0.520737 -0.22157
-
-0.440861 -0.489626 -0.170829
-0.378338 -0.520737 -0.22157
-0.415423 -0.461374 -0.15443
-
-0.378338 -0.520737 -0.22157
-0.440861 -0.489626 -0.170829
-0.409423 -0.563522 -0.230895
-
-0.468145 -0.519928 -0.178019
-0.409423 -0.563522 -0.230895
-0.440861 -0.489626 -0.170829
-
-0.409423 -0.563522 -0.230895
-0.468145 -0.519928 -0.178019
-0.440934 -0.606894 -0.227773
-
-0.495802 -0.550644 -0.175612
-0.440934 -0.606894 -0.227773
-0.468145 -0.519928 -0.178019
-
-0.440934 -0.606894 -0.227773
-0.495802 -0.550644 -0.175612
-0.471173 -0.648515 -0.212371
-
-0.522343 -0.580121 -0.163737
-0.471173 -0.648515 -0.212371
-0.495802 -0.550644 -0.175612
-
-0.471173 -0.648515 -0.212371
-0.522343 -0.580121 -0.163737
-0.498509 -0.686139 -0.18552
-
-0.546336 -0.606767 -0.143035
-0.498509 -0.686139 -0.18552
-0.522343 -0.580121 -0.163737
-
-0.498509 -0.686139 -0.18552
-0.546336 -0.606767 -0.143035
-0.521469 -0.71774 -0.148668
-
-0.566487 -0.629148 -0.114622
-0.521469 -0.71774 -0.148668
-0.546336 -0.606767 -0.143035
-
-0.521469 -0.71774 -0.148668
-0.566487 -0.629148 -0.114622
-0.538814 -0.741614 -0.103801
-
-0.581711 -0.646055 -0.0800302
-0.538814 -0.741614 -0.103801
-0.566487 -0.629148 -0.114622
-
-0.538814 -0.741614 -0.103801
-0.581711 -0.646055 -0.0800302
-0.54961 -0.756473 -0.0533384
-
-0.591186 -0.656579 -0.0411236
-0.54961 -0.756473 -0.0533384
-0.581711 -0.646055 -0.0800302
-
-0.54961 -0.756473 -0.0533384
-0.591186 -0.656579 -0.0411236
-0.553274 -0.761517 0
-
-0.594403 -0.660151 0
-0.553274 -0.761517 0
-0.591186 -0.656579 -0.0411236
-
-0.594403 -0.660151 0
-0.628914 -0.566276 0
-0.591186 -0.656579 0.0411236
-
-0.626184 -0.563818 0.0314299
-0.591186 -0.656579 0.0411236
-0.628914 -0.566276 0
-
-0.591186 -0.656579 0.0411236
-0.626184 -0.563818 0.0314299
-0.581711 -0.646055 0.0800302
-
-0.618141 -0.556576 0.0611654
-0.581711 -0.646055 0.0800302
-0.626184 -0.563818 0.0314299
-
-0.581711 -0.646055 0.0800302
-0.618141 -0.556576 0.0611654
-0.566487 -0.629148 0.114622
-
-0.605218 -0.544941 0.0876034
-0.566487 -0.629148 0.114622
-0.618141 -0.556576 0.0611654
-
-0.566487 -0.629148 0.114622
-0.605218 -0.544941 0.0876034
-0.546336 -0.606767 0.143035
-
-0.588114 -0.52954 0.109319
-0.546336 -0.606767 0.143035
-0.605218 -0.544941 0.0876034
-
-0.546336 -0.606767 0.143035
-0.588114 -0.52954 0.109319
-0.522343 -0.580121 0.163737
-
-0.567748 -0.511203 0.125141
-0.522343 -0.580121 0.163737
-0.588114 -0.52954 0.109319
-
-0.522343 -0.580121 0.163737
-0.567748 -0.511203 0.125141
-0.495802 -0.550644 0.175612
-
-0.54522 -0.490918 0.134216
-0.495802 -0.550644 0.175612
-0.567748 -0.511203 0.125141
-
-0.495802 -0.550644 0.175612
-0.54522 -0.490918 0.134216
-0.468145 -0.519928 0.178019
-
-0.521744 -0.46978 0.136056
-0.468145 -0.519928 0.178019
-0.54522 -0.490918 0.134216
-
-0.468145 -0.519928 0.178019
-0.521744 -0.46978 0.136056
-0.440861 -0.489626 0.170829
-
-0.498585 -0.448928 0.130561
-0.440861 -0.489626 0.170829
-0.521744 -0.46978 0.136056
-
-0.440861 -0.489626 0.170829
-0.498585 -0.448928 0.130561
-0.415423 -0.461374 0.15443
-
-0.476992 -0.429486 0.118028
-0.415423 -0.461374 0.15443
-0.498585 -0.448928 0.130561
-
-0.415423 -0.461374 0.15443
-0.476992 -0.429486 0.118028
-0.3932 -0.436693 0.129706
-
-0.45813 -0.412502 0.0991314
-0.3932 -0.436693 0.129706
-0.476992 -0.429486 0.118028
-
-0.3932 -0.436693 0.129706
-0.45813 -0.412502 0.0991314
-0.375392 -0.416916 0.0979889
-
-0.443014 -0.398892 0.0748908
-0.375392 -0.416916 0.0979889
-0.45813 -0.412502 0.0991314
-
-0.375392 -0.416916 0.0979889
-0.443014 -0.398892 0.0748908
-0.362959 -0.403106 0.0609893
-
-0.43246 -0.389389 0.0466128
-0.362959 -0.403106 0.0609893
-0.443014 -0.398892 0.0748908
-
-0.362959 -0.403106 0.0609893
-0.43246 -0.389389 0.0466128
-0.35657 -0.396011 0.0207018
-
-0.427037 -0.384506 0.0158219
-0.35657 -0.396011 0.0207018
-0.43246 -0.389389 0.0466128
-
-0.35657 -0.396011 0.0207018
-0.427037 -0.384506 0.0158219
-0.35657 -0.396011 -0.0207018
-
-0.427037 -0.384506 -0.0158219
-0.35657 -0.396011 -0.0207018
-0.427037 -0.384506 0.0158219
-
-0.35657 -0.396011 -0.0207018
-0.427037 -0.384506 -0.0158219
-0.362959 -0.403106 -0.0609893
-
-0.43246 -0.389389 -0.0466128
-0.362959 -0.403106 -0.0609893
-0.427037 -0.384506 -0.0158219
-
-0.362959 -0.403106 -0.0609893
-0.43246 -0.389389 -0.0466128
-0.375392 -0.416916 -0.0979889
-
-0.443014 -0.398892 -0.0748908
-0.375392 -0.416916 -0.0979889
-0.43246 -0.389389 -0.0466128
-
-0.375392 -0.416916 -0.0979889
-0.443014 -0.398892 -0.0748908
-0.3932 -0.436693 -0.129706
-
-0.45813 -0.412502 -0.0991314
-0.3932 -0.436693 -0.129706
-0.443014 -0.398892 -0.0748908
-
-0.3932 -0.436693 -0.129706
-0.45813 -0.412502 -0.0991314
-0.415423 -0.461374 -0.15443
-
-0.476992 -0.429486 -0.118028
-0.415423 -0.461374 -0.15443
-0.45813 -0.412502 -0.0991314
-
-0.415423 -0.461374 -0.15443
-0.476992 -0.429486 -0.118028
-0.440861 -0.489626 -0.170829
-
-0.498585 -0.448928 -0.130561
-0.440861 -0.489626 -0.170829
-0.476992 -0.429486 -0.118028
-
-0.440861 -0.489626 -0.170829
-0.498585 -0.448928 -0.130561
-0.468145 -0.519928 -0.178019
-
-0.521744 -0.46978 -0.136056
-0.468145 -0.519928 -0.178019
-0.498585 -0.448928 -0.130561
-
-0.468145 -0.519928 -0.178019
-0.521744 -0.46978 -0.136056
-0.495802 -0.550644 -0.175612
-
-0.54522 -0.490918 -0.134216
-0.495802 -0.550644 -0.175612
-0.521744 -0.46978 -0.136056
-
-0.495802 -0.550644 -0.175612
-0.54522 -0.490918 -0.134216
-0.522343 -0.580121 -0.163737
-
-0.567748 -0.511203 -0.125141
-0.522343 -0.580121 -0.163737
-0.54522 -0.490918 -0.134216
-
-0.522343 -0.580121 -0.163737
-0.567748 -0.511203 -0.125141
-0.546336 -0.606767 -0.143035
-
-0.588114 -0.52954 -0.109319
-0.546336 -0.606767 -0.143035
-0.567748 -0.511203 -0.125141
-
-0.546336 -0.606767 -0.143035
-0.588114 -0.52954 -0.109319
-0.566487 -0.629148 -0.114622
-
-0.605218 -0.544941 -0.0876034
-0.566487 -0.629148 -0.114622
-0.588114 -0.52954 -0.109319
-
-0.566487 -0.629148 -0.114622
-0.605218 -0.544941 -0.0876034
-0.581711 -0.646055 -0.0800302
-
-0.618141 -0.556576 -0.0611654
-0.581711 -0.646055 -0.0800302
-0.605218 -0.544941 -0.0876034
-
-0.581711 -0.646055 -0.0800302
-0.618141 -0.556576 -0.0611654
-0.591186 -0.656579 -0.0411236
-
-0.626184 -0.563818 -0.0314299
-0.591186 -0.656579 -0.0411236
-0.618141 -0.556576 -0.0611654
-
-0.591186 -0.656579 -0.0411236
-0.626184 -0.563818 -0.0314299
-0.594403 -0.660151 0
-
-0.628914 -0.566276 0
-0.594403 -0.660151 0
-0.626184 -0.563818 -0.0314299
-
-0.628914 -0.566276 0
-0.662827 -0.481572 0
-0.626184 -0.563818 0.0314299
-
-0.660444 -0.47984 0.0252061
-0.626184 -0.563818 0.0314299
-0.662827 -0.481572 0
-
-0.626184 -0.563818 0.0314299
-0.660444 -0.47984 0.0252061
-0.618141 -0.556576 0.0611654
-
-0.653421 -0.474739 0.0490534
-0.618141 -0.556576 0.0611654
-0.660444 -0.47984 0.0252061
-
-0.618141 -0.556576 0.0611654
-0.653421 -0.474739 0.0490534
-0.605218 -0.544941 0.0876034
-
-0.64214 -0.466542 0.0702562
-0.605218 -0.544941 0.0876034
-0.653421 -0.474739 0.0490534
-
-0.605218 -0.544941 0.0876034
-0.64214 -0.466542 0.0702562
-0.588114 -0.52954 0.109319
-
-0.627206 -0.455692 0.0876715
-0.588114 -0.52954 0.109319
-0.64214 -0.466542 0.0702562
-
-0.588114 -0.52954 0.109319
-0.627206 -0.455692 0.0876715
-0.567748 -0.511203 0.125141
-
-0.609425 -0.442773 0.10036
-0.567748 -0.511203 0.125141
-0.627206 -0.455692 0.0876715
-
-0.567748 -0.511203 0.125141
-0.609425 -0.442773 0.10036
-0.54522 -0.490918 0.134216
-
-0.589757 -0.428483 0.107639
-0.54522 -0.490918 0.134216
-0.609425 -0.442773 0.10036
-
-0.54522 -0.490918 0.134216
-0.589757 -0.428483 0.107639
-0.521744 -0.46978 0.136056
-
-0.569261 -0.413592 0.109114
-0.521744 -0.46978 0.136056
-0.589757 -0.428483 0.107639
-
-0.521744 -0.46978 0.136056
-0.569261 -0.413592 0.109114
-0.498585 -0.448928 0.130561
-
-0.549042 -0.398902 0.104708
-0.498585 -0.448928 0.130561
-0.569261 -0.413592 0.109114
-
-0.498585 -0.448928 0.130561
-0.549042 -0.398902 0.104708
-0.476992 -0.429486 0.118028
-
-0.53019 -0.385205 0.0946559
-0.476992 -0.429486 0.118028
-0.549042 -0.398902 0.104708
-
-0.476992 -0.429486 0.118028
-0.53019 -0.385205 0.0946559
-0.45813 -0.412502 0.0991314
-
-0.513721 -0.37324 0.0795014
-0.45813 -0.412502 0.0991314
-0.53019 -0.385205 0.0946559
-
-0.45813 -0.412502 0.0991314
-0.513721 -0.37324 0.0795014
-0.443014 -0.398892 0.0748908
-
-0.500524 -0.363652 0.0600609
-0.443014 -0.398892 0.0748908
-0.513721 -0.37324 0.0795014
-
-0.443014 -0.398892 0.0748908
-0.500524 -0.363652 0.0600609
-0.43246 -0.389389 0.0466128
-
-0.49131 -0.356957 0.0373825
-0.43246 -0.389389 0.0466128
-0.500524 -0.363652 0.0600609
-
-0.43246 -0.389389 0.0466128
-0.49131 -0.356957 0.0373825
-0.427037 -0.384506 0.0158219
-
-0.486575 -0.353517 0.0126889
-0.427037 -0.384506 0.0158219
-0.49131 -0.356957 0.0373825
-
-0.427037 -0.384506 0.0158219
-0.486575 -0.353517 0.0126889
-0.427037 -0.384506 -0.0158219
-
-0.486575 -0.353517 -0.0126889
-0.427037 -0.384506 -0.0158219
-0.486575 -0.353517 0.0126889
-
-0.427037 -0.384506 -0.0158219
-0.486575 -0.353517 -0.0126889
-0.43246 -0.389389 -0.0466128
-
-0.49131 -0.356957 -0.0373825
-0.43246 -0.389389 -0.0466128
-0.486575 -0.353517 -0.0126889
-
-0.43246 -0.389389 -0.0466128
-0.49131 -0.356957 -0.0373825
-0.443014 -0.398892 -0.0748908
-
-0.500524 -0.363652 -0.0600609
-0.443014 -0.398892 -0.0748908
-0.49131 -0.356957 -0.0373825
-
-0.443014 -0.398892 -0.0748908
-0.500524 -0.363652 -0.0600609
-0.45813 -0.412502 -0.0991314
-
-0.513721 -0.37324 -0.0795014
-0.45813 -0.412502 -0.0991314
-0.500524 -0.363652 -0.0600609
-
-0.45813 -0.412502 -0.0991314
-0.513721 -0.37324 -0.0795014
-0.476992 -0.429486 -0.118028
-
-0.53019 -0.385205 -0.0946559
-0.476992 -0.429486 -0.118028
-0.513721 -0.37324 -0.0795014
-
-0.476992 -0.429486 -0.118028
-0.53019 -0.385205 -0.0946559
-0.498585 -0.448928 -0.130561
-
-0.549042 -0.398902 -0.104708
-0.498585 -0.448928 -0.130561
-0.53019 -0.385205 -0.0946559
-
-0.498585 -0.448928 -0.130561
-0.549042 -0.398902 -0.104708
-0.521744 -0.46978 -0.136056
-
-0.569261 -0.413592 -0.109114
-0.521744 -0.46978 -0.136056
-0.549042 -0.398902 -0.104708
-
-0.521744 -0.46978 -0.136056
-0.569261 -0.413592 -0.109114
-0.54522 -0.490918 -0.134216
-
-0.589757 -0.428483 -0.107639
-0.54522 -0.490918 -0.134216
-0.569261 -0.413592 -0.109114
-
-0.54522 -0.490918 -0.134216
-0.589757 -0.428483 -0.107639
-0.567748 -0.511203 -0.125141
-
-0.609425 -0.442773 -0.10036
-0.567748 -0.511203 -0.125141
-0.589757 -0.428483 -0.107639
-
-0.567748 -0.511203 -0.125141
-0.609425 -0.442773 -0.10036
-0.588114 -0.52954 -0.109319
-
-0.627206 -0.455692 -0.0876715
-0.588114 -0.52954 -0.109319
-0.609425 -0.442773 -0.10036
-
-0.588114 -0.52954 -0.109319
-0.627206 -0.455692 -0.0876715
-0.605218 -0.544941 -0.0876034
-
-0.64214 -0.466542 -0.0702562
-0.605218 -0.544941 -0.0876034
-0.627206 -0.455692 -0.0876715
-
-0.605218 -0.544941 -0.0876034
-0.64214 -0.466542 -0.0702562
-0.618141 -0.556576 -0.0611654
-
-0.653421 -0.474739 -0.0490534
-0.618141 -0.556576 -0.0611654
-0.64214 -0.466542 -0.0702562
-
-0.618141 -0.556576 -0.0611654
-0.653421 -0.474739 -0.0490534
-0.626184 -0.563818 -0.0314299
-
-0.660444 -0.47984 -0.0252061
-0.626184 -0.563818 -0.0314299
-0.653421 -0.474739 -0.0490534
-
-0.626184 -0.563818 -0.0314299
-0.660444 -0.47984 -0.0252061
-0.628914 -0.566276 0
-
-0.662827 -0.481572 0
-0.628914 -0.566276 0
-0.660444 -0.47984 -0.0252061
-
-0.662827 -0.481572 0
-0.701481 -0.405 0
-0.660444 -0.47984 0.0252061
-
-0.699146 -0.403652 0.0230616
-0.660444 -0.47984 0.0252061
-0.701481 -0.405 0
-
-0.660444 -0.47984 0.0252061
-0.699146 -0.403652 0.0230616
-0.653421 -0.474739 0.0490534
-
-0.692269 -0.399682 0.0448799
-0.653421 -0.474739 0.0490534
-0.699146 -0.403652 0.0230616
-
-0.653421 -0.474739 0.0490534
-0.692269 -0.399682 0.0448799
-0.64214 -0.466542 0.0702562
-
-0.681219 -0.393302 0.0642788
-0.64214 -0.466542 0.0702562
-0.692269 -0.399682 0.0448799
-
-0.64214 -0.466542 0.0702562
-0.681219 -0.393302 0.0642788
-0.627206 -0.455692 0.0876715
-
-0.666593 -0.384858 0.0802123
-0.627206 -0.455692 0.0876715
-0.681219 -0.393302 0.0642788
-
-0.627206 -0.455692 0.0876715
-0.666593 -0.384858 0.0802123
-0.609425 -0.442773 0.10036
-
-0.64918 -0.374804 0.0918216
-0.609425 -0.442773 0.10036
-0.666593 -0.384858 0.0802123
-
-0.609425 -0.442773 0.10036
-0.64918 -0.374804 0.0918216
-0.589757 -0.428483 0.107639
-
-0.629916 -0.363682 0.0984808
-0.589757 -0.428483 0.107639
-0.64918 -0.374804 0.0918216
-
-0.589757 -0.428483 0.107639
-0.629916 -0.363682 0.0984808
-0.569261 -0.413592 0.109114
-
-0.609843 -0.352093 0.0998308
-0.569261 -0.413592 0.109114
-0.629916 -0.363682 0.0984808
-
-0.569261 -0.413592 0.109114
-0.609843 -0.352093 0.0998308
-0.549042 -0.398902 0.104708
-
-0.59004 -0.34066 0.095799
-0.549042 -0.398902 0.104708
-0.609843 -0.352093 0.0998308
-
-0.549042 -0.398902 0.104708
-0.59004 -0.34066 0.095799
-0.53019 -0.385205 0.0946559
-
-0.571577 -0.33 0.0866025
-0.53019 -0.385205 0.0946559
-0.59004 -0.34066 0.095799
-
-0.53019 -0.385205 0.0946559
-0.571577 -0.33 0.0866025
-0.513721 -0.37324 0.0795014
-
-0.555448 -0.320688 0.0727374
-0.513721 -0.37324 0.0795014
-0.571577 -0.33 0.0866025
-
-0.513721 -0.37324 0.0795014
-0.555448 -0.320688 0.0727374
-0.500524 -0.363652 0.0600609
-
-0.542523 -0.313226 0.0549509
-0.500524 -0.363652 0.0600609
-0.555448 -0.320688 0.0727374
-
-0.500524 -0.363652 0.0600609
-0.542523 -0.313226 0.0549509
-0.49131 -0.356957 0.0373825
-
-0.533498 -0.308015 0.034202
-0.49131 -0.356957 0.0373825
-0.542523 -0.313226 0.0549509
-
-0.49131 -0.356957 0.0373825
-0.533498 -0.308015 0.034202
-0.486575 -0.353517 0.0126889
-
-0.528861 -0.305338 0.0116093
-0.486575 -0.353517 0.0126889
-0.533498 -0.308015 0.034202
-
-0.486575 -0.353517 0.0126889
-0.528861 -0.305338 0.0116093
-0.486575 -0.353517 -0.0126889
-
-0.528861 -0.305338 -0.0116093
-0.486575 -0.353517 -0.0126889
-0.528861 -0.305338 0.0116093
-
-0.486575 -0.353517 -0.0126889
-0.528861 -0.305338 -0.0116093
-0.49131 -0.356957 -0.0373825
-
-0.533498 -0.308015 -0.034202
-0.49131 -0.356957 -0.0373825
-0.528861 -0.305338 -0.0116093
-
-0.49131 -0.356957 -0.0373825
-0.533498 -0.308015 -0.034202
-0.500524 -0.363652 -0.0600609
-
-0.542523 -0.313226 -0.0549509
-0.500524 -0.363652 -0.0600609
-0.533498 -0.308015 -0.034202
-
-0.500524 -0.363652 -0.0600609
-0.542523 -0.313226 -0.0549509
-0.513721 -0.37324 -0.0795014
-
-0.555448 -0.320688 -0.0727374
-0.513721 -0.37324 -0.0795014
-0.542523 -0.313226 -0.0549509
-
-0.513721 -0.37324 -0.0795014
-0.555448 -0.320688 -0.0727374
-0.53019 -0.385205 -0.0946559
-
-0.571577 -0.33 -0.0866025
-0.53019 -0.385205 -0.0946559
-0.555448 -0.320688 -0.0727374
-
-0.53019 -0.385205 -0.0946559
-0.571577 -0.33 -0.0866025
-0.549042 -0.398902 -0.104708
-
-0.59004 -0.34066 -0.095799
-0.549042 -0.398902 -0.104708
-0.571577 -0.33 -0.0866025
-
-0.549042 -0.398902 -0.104708
-0.59004 -0.34066 -0.095799
-0.569261 -0.413592 -0.109114
-
-0.609843 -0.352093 -0.0998308
-0.569261 -0.413592 -0.109114
-0.59004 -0.34066 -0.095799
-
-0.569261 -0.413592 -0.109114
-0.609843 -0.352093 -0.0998308
-0.589757 -0.428483 -0.107639
-
-0.629916 -0.363682 -0.0984808
-0.589757 -0.428483 -0.107639
-0.609843 -0.352093 -0.0998308
-
-0.589757 -0.428483 -0.107639
-0.629916 -0.363682 -0.0984808
-0.609425 -0.442773 -0.10036
-
-0.64918 -0.374804 -0.0918216
-0.609425 -0.442773 -0.10036
-0.629916 -0.363682 -0.0984808
-
-0.609425 -0.442773 -0.10036
-0.64918 -0.374804 -0.0918216
-0.627206 -0.455692 -0.0876715
-
-0.666593 -0.384858 -0.0802123
-0.627206 -0.455692 -0.0876715
-0.64918 -0.374804 -0.0918216
-
-0.627206 -0.455692 -0.0876715
-0.666593 -0.384858 -0.0802123
-0.64214 -0.466542 -0.0702562
-
-0.681219 -0.393302 -0.0642788
-0.64214 -0.466542 -0.0702562
-0.666593 -0.384858 -0.0802123
-
-0.64214 -0.466542 -0.0702562
-0.681219 -0.393302 -0.0642788
-0.653421 -0.474739 -0.0490534
-
-0.692269 -0.399682 -0.0448799
-0.653421 -0.474739 -0.0490534
-0.681219 -0.393302 -0.0642788
-
-0.653421 -0.474739 -0.0490534
-0.692269 -0.399682 -0.0448799
-0.660444 -0.47984 -0.0252061
-
-0.699146 -0.403652 -0.0230616
-0.660444 -0.47984 -0.0252061
-0.692269 -0.399682 -0.0448799
-
-0.660444 -0.47984 -0.0252061
-0.699146 -0.403652 -0.0230616
-0.662827 -0.481572 0
-
-0.701481 -0.405 0
-0.662827 -0.481572 0
-0.699146 -0.403652 -0.0230616
-
-0.701481 -0.405 0
-0.748467 -0.333239 0
-0.699146 -0.403652 0.0230616
-
-0.745776 -0.332041 0.0252061
-0.699146 -0.403652 0.0230616
-0.748467 -0.333239 0
-
-0.699146 -0.403652 0.0230616
-0.745776 -0.332041 0.0252061
-0.692269 -0.399682 0.0448799
-
-0.737846 -0.32851 0.0490534
-0.692269 -0.399682 0.0448799
-0.745776 -0.332041 0.0252061
-
-0.692269 -0.399682 0.0448799
-0.737846 -0.32851 0.0490534
-0.681219 -0.393302 0.0642788
-
-0.725107 -0.322838 0.0702562
-0.681219 -0.393302 0.0642788
-0.737846 -0.32851 0.0490534
-
-0.681219 -0.393302 0.0642788
-0.725107 -0.322838 0.0702562
-0.666593 -0.384858 0.0802123
-
-0.708243 -0.31533 0.0876715
-0.666593 -0.384858 0.0802123
-0.725107 -0.322838 0.0702562
-
-0.666593 -0.384858 0.0802123
-0.708243 -0.31533 0.0876715
-0.64918 -0.374804 0.0918216
-
-0.688166 -0.306391 0.10036
-0.64918 -0.374804 0.0918216
-0.708243 -0.31533 0.0876715
-
-0.64918 -0.374804 0.0918216
-0.688166 -0.306391 0.10036
-0.629916 -0.363682 0.0984808
-
-0.665956 -0.296503 0.107639
-0.629916 -0.363682 0.0984808
-0.688166 -0.306391 0.10036
-
-0.629916 -0.363682 0.0984808
-0.665956 -0.296503 0.107639
-0.609843 -0.352093 0.0998308
-
-0.642812 -0.286198 0.109114
-0.609843 -0.352093 0.0998308
-0.665956 -0.296503 0.107639
-
-0.609843 -0.352093 0.0998308
-0.642812 -0.286198 0.109114
-0.59004 -0.34066 0.095799
-
-0.61998 -0.276033 0.104708
-0.59004 -0.34066 0.095799
-0.642812 -0.286198 0.109114
-
-0.59004 -0.34066 0.095799
-0.61998 -0.276033 0.104708
-0.571577 -0.33 0.0866025
-
-0.598692 -0.266555 0.0946559
-0.571577 -0.33 0.0866025
-0.61998 -0.276033 0.104708
-
-0.571577 -0.33 0.0866025
-0.598692 -0.266555 0.0946559
-0.555448 -0.320688 0.0727374
-
-0.580096 -0.258275 0.0795014
-0.555448 -0.320688 0.0727374
-0.598692 -0.266555 0.0946559
-
-0.555448 -0.320688 0.0727374
-0.580096 -0.258275 0.0795014
-0.542523 -0.313226 0.0549509
-
-0.565194 -0.251641 0.0600609
-0.542523 -0.313226 0.0549509
-0.580096 -0.258275 0.0795014
-
-0.542523 -0.313226 0.0549509
-0.565194 -0.251641 0.0600609
-0.533498 -0.308015 0.034202
-
-0.554789 -0.247008 0.0373825
-0.533498 -0.308015 0.034202
-0.565194 -0.251641 0.0600609
-
-0.533498 -0.308015 0.034202
-0.554789 -0.247008 0.0373825
-0.528861 -0.305338 0.0116093
-
-0.549443 -0.244628 0.0126889
-0.528861 -0.305338 0.0116093
-0.554789 -0.247008 0.0373825
-
-0.528861 -0.305338 0.0116093
-0.549443 -0.244628 0.0126889
-0.528861 -0.305338 -0.0116093
-
-0.549443 -0.244628 -0.0126889
-0.528861 -0.305338 -0.0116093
-0.549443 -0.244628 0.0126889
-
-0.528861 -0.305338 -0.0116093
-0.549443 -0.244628 -0.0126889
-0.533498 -0.308015 -0.034202
-
-0.554789 -0.247008 -0.0373825
-0.533498 -0.308015 -0.034202
-0.549443 -0.244628 -0.0126889
-
-0.533498 -0.308015 -0.034202
-0.554789 -0.247008 -0.0373825
-0.542523 -0.313226 -0.0549509
-
-0.565194 -0.251641 -0.0600609
-0.542523 -0.313226 -0.0549509
-0.554789 -0.247008 -0.0373825
-
-0.542523 -0.313226 -0.0549509
-0.565194 -0.251641 -0.0600609
-0.555448 -0.320688 -0.0727374
-
-0.580096 -0.258275 -0.0795014
-0.555448 -0.320688 -0.0727374
-0.565194 -0.251641 -0.0600609
-
-0.555448 -0.320688 -0.0727374
-0.580096 -0.258275 -0.0795014
-0.571577 -0.33 -0.0866025
-
-0.598692 -0.266555 -0.0946559
-0.571577 -0.33 -0.0866025
-0.580096 -0.258275 -0.0795014
-
-0.571577 -0.33 -0.0866025
-0.598692 -0.266555 -0.0946559
-0.59004 -0.34066 -0.095799
-
-0.61998 -0.276033 -0.104708
-0.59004 -0.34066 -0.095799
-0.598692 -0.266555 -0.0946559
-
-0.59004 -0.34066 -0.095799
-0.61998 -0.276033 -0.104708
-0.609843 -0.352093 -0.0998308
-
-0.642812 -0.286198 -0.109114
-0.609843 -0.352093 -0.0998308
-0.61998 -0.276033 -0.104708
-
-0.609843 -0.352093 -0.0998308
-0.642812 -0.286198 -0.109114
-0.629916 -0.363682 -0.0984808
-
-0.665956 -0.296503 -0.107639
-0.629916 -0.363682 -0.0984808
-0.642812 -0.286198 -0.109114
-
-0.629916 -0.363682 -0.0984808
-0.665956 -0.296503 -0.107639
-0.64918 -0.374804 -0.0918216
-
-0.688166 -0.306391 -0.10036
-0.64918 -0.374804 -0.0918216
-0.665956 -0.296503 -0.107639
-
-0.64918 -0.374804 -0.0918216
-0.688166 -0.306391 -0.10036
-0.666593 -0.384858 -0.0802123
-
-0.708243 -0.31533 -0.0876715
-0.666593 -0.384858 -0.0802123
-0.688166 -0.306391 -0.10036
-
-0.666593 -0.384858 -0.0802123
-0.708243 -0.31533 -0.0876715
-0.681219 -0.393302 -0.0642788
-
-0.725107 -0.322838 -0.0702562
-0.681219 -0.393302 -0.0642788
-0.708243 -0.31533 -0.0876715
-
-0.681219 -0.393302 -0.0642788
-0.725107 -0.322838 -0.0702562
-0.692269 -0.399682 -0.0448799
-
-0.737846 -0.32851 -0.0490534
-0.692269 -0.399682 -0.0448799
-0.725107 -0.322838 -0.0702562
-
-0.692269 -0.399682 -0.0448799
-0.737846 -0.32851 -0.0490534
-0.699146 -0.403652 -0.0230616
-
-0.745776 -0.332041 -0.0252061
-0.699146 -0.403652 -0.0230616
-0.737846 -0.32851 -0.0490534
-
-0.699146 -0.403652 -0.0230616
-0.745776 -0.332041 -0.0252061
-0.701481 -0.405 0
-
-0.748467 -0.333239 0
-0.701481 -0.405 0
-0.745776 -0.332041 -0.0252061
-
-0.748467 -0.333239 0
-0.804867 -0.261517 0
-0.745776 -0.332041 0.0252061
-
-0.801373 -0.260382 0.0314299
-0.745776 -0.332041 0.0252061
-0.804867 -0.261517 0
-
-0.745776 -0.332041 0.0252061
-0.801373 -0.260382 0.0314299
-0.737846 -0.32851 0.0490534
-
-0.79108 -0.257037 0.0611654
-0.737846 -0.32851 0.0490534
-0.801373 -0.260382 0.0314299
-
-0.737846 -0.32851 0.0490534
-0.79108 -0.257037 0.0611654
-0.725107 -0.322838 0.0702562
-
-0.774542 -0.251664 0.0876034
-0.725107 -0.322838 0.0702562
-0.79108 -0.257037 0.0611654
-
-0.725107 -0.322838 0.0702562
-0.774542 -0.251664 0.0876034
-0.708243 -0.31533 0.0876715
-
-0.752652 -0.244551 0.109319
-0.708243 -0.31533 0.0876715
-0.774542 -0.251664 0.0876034
-
-0.708243 -0.31533 0.0876715
-0.752652 -0.244551 0.109319
-0.688166 -0.306391 0.10036
-
-0.726589 -0.236083 0.125141
-0.688166 -0.306391 0.10036
-0.752652 -0.244551 0.109319
-
-0.688166 -0.306391 0.10036
-0.726589 -0.236083 0.125141
-0.665956 -0.296503 0.107639
-
-0.697758 -0.226715 0.134216
-0.665956 -0.296503 0.107639
-0.726589 -0.236083 0.125141
-
-0.665956 -0.296503 0.107639
-0.697758 -0.226715 0.134216
-0.642812 -0.286198 0.109114
-
-0.667714 -0.216953 0.136056
-0.642812 -0.286198 0.109114
-0.697758 -0.226715 0.134216
-
-0.642812 -0.286198 0.109114
-0.667714 -0.216953 0.136056
-0.61998 -0.276033 0.104708
-
-0.638076 -0.207323 0.130561
-0.61998 -0.276033 0.104708
-0.667714 -0.216953 0.136056
-
-0.61998 -0.276033 0.104708
-0.638076 -0.207323 0.130561
-0.598692 -0.266555 0.0946559
-
-0.610442 -0.198345 0.118028
-0.598692 -0.266555 0.0946559
-0.638076 -0.207323 0.130561
-
-0.598692 -0.266555 0.0946559
-0.610442 -0.198345 0.118028
-0.580096 -0.258275 0.0795014
-
-0.586302 -0.190501 0.0991314
-0.580096 -0.258275 0.0795014
-0.610442 -0.198345 0.118028
-
-0.580096 -0.258275 0.0795014
-0.586302 -0.190501 0.0991314
-0.565194 -0.251641 0.0600609
-
-0.566957 -0.184216 0.0748908
-0.565194 -0.251641 0.0600609
-0.586302 -0.190501 0.0991314
-
-0.565194 -0.251641 0.0600609
-0.566957 -0.184216 0.0748908
-0.554789 -0.247008 0.0373825
-
-0.553451 -0.179827 0.0466128
-0.554789 -0.247008 0.0373825
-0.566957 -0.184216 0.0748908
-
-0.554789 -0.247008 0.0373825
-0.553451 -0.179827 0.0466128
-0.549443 -0.244628 0.0126889
-
-0.54651 -0.177572 0.0158219
-0.549443 -0.244628 0.0126889
-0.553451 -0.179827 0.0466128
-
-0.549443 -0.244628 0.0126889
-0.54651 -0.177572 0.0158219
-0.549443 -0.244628 -0.0126889
-
-0.54651 -0.177572 -0.0158219
-0.549443 -0.244628 -0.0126889
-0.54651 -0.177572 0.0158219
-
-0.549443 -0.244628 -0.0126889
-0.54651 -0.177572 -0.0158219
-0.554789 -0.247008 -0.0373825
-
-0.553451 -0.179827 -0.0466128
-0.554789 -0.247008 -0.0373825
-0.54651 -0.177572 -0.0158219
-
-0.554789 -0.247008 -0.0373825
-0.553451 -0.179827 -0.0466128
-0.565194 -0.251641 -0.0600609
-
-0.566957 -0.184216 -0.0748908
-0.565194 -0.251641 -0.0600609
-0.553451 -0.179827 -0.0466128
-
-0.565194 -0.251641 -0.0600609
-0.566957 -0.184216 -0.0748908
-0.580096 -0.258275 -0.0795014
-
-0.586302 -0.190501 -0.0991314
-0.580096 -0.258275 -0.0795014
-0.566957 -0.184216 -0.0748908
-
-0.580096 -0.258275 -0.0795014
-0.586302 -0.190501 -0.0991314
-0.598692 -0.266555 -0.0946559
-
-0.610442 -0.198345 -0.118028
-0.598692 -0.266555 -0.0946559
-0.586302 -0.190501 -0.0991314
-
-0.598692 -0.266555 -0.0946559
-0.610442 -0.198345 -0.118028
-0.61998 -0.276033 -0.104708
-
-0.638076 -0.207323 -0.130561
-0.61998 -0.276033 -0.104708
-0.610442 -0.198345 -0.118028
-
-0.61998 -0.276033 -0.104708
-0.638076 -0.207323 -0.130561
-0.642812 -0.286198 -0.109114
-
-0.667714 -0.216953 -0.136056
-0.642812 -0.286198 -0.109114
-0.638076 -0.207323 -0.130561
-
-0.642812 -0.286198 -0.109114
-0.667714 -0.216953 -0.136056
-0.665956 -0.296503 -0.107639
-
-0.697758 -0.226715 -0.134216
-0.665956 -0.296503 -0.107639
-0.667714 -0.216953 -0.136056
-
-0.665956 -0.296503 -0.107639
-0.697758 -0.226715 -0.134216
-0.688166 -0.306391 -0.10036
-
-0.726589 -0.236083 -0.125141
-0.688166 -0.306391 -0.10036
-0.697758 -0.226715 -0.134216
-
-0.688166 -0.306391 -0.10036
-0.726589 -0.236083 -0.125141
-0.708243 -0.31533 -0.0876715
-
-0.752652 -0.244551 -0.109319
-0.708243 -0.31533 -0.0876715
-0.726589 -0.236083 -0.125141
-
-0.708243 -0.31533 -0.0876715
-0.752652 -0.244551 -0.109319
-0.725107 -0.322838 -0.0702562
-
-0.774542 -0.251664 -0.0876034
-0.725107 -0.322838 -0.0702562
-0.752652 -0.244551 -0.109319
-
-0.725107 -0.322838 -0.0702562
-0.774542 -0.251664 -0.0876034
-0.737846 -0.32851 -0.0490534
-
-0.79108 -0.257037 -0.0611654
-0.737846 -0.32851 -0.0490534
-0.774542 -0.251664 -0.0876034
-
-0.737846 -0.32851 -0.0490534
-0.79108 -0.257037 -0.0611654
-0.745776 -0.332041 -0.0252061
-
-0.801373 -0.260382 -0.0314299
-0.745776 -0.332041 -0.0252061
-0.79108 -0.257037 -0.0611654
-
-0.745776 -0.332041 -0.0252061
-0.801373 -0.260382 -0.0314299
-0.748467 -0.333239 0
-
-0.804867 -0.261517 0
-0.748467 -0.333239 0
-0.801373 -0.260382 -0.0314299
-
-0.804867 -0.261517 0
-0.868909 -0.184692 0
-0.801373 -0.260382 0.0314299
-
-0.864207 -0.183693 0.0411236
-0.801373 -0.260382 0.0314299
-0.868909 -0.184692 0
-
-0.801373 -0.260382 0.0314299
-0.864207 -0.183693 0.0411236
-0.79108 -0.257037 0.0611654
-
-0.850356 -0.180749 0.0800302
-0.79108 -0.257037 0.0611654
-0.864207 -0.183693 0.0411236
-
-0.79108 -0.257037 0.0611654
-0.850356 -0.180749 0.0800302
-0.774542 -0.251664 0.0876034
-
-0.828101 -0.176018 0.114622
-0.774542 -0.251664 0.0876034
-0.850356 -0.180749 0.0800302
-
-0.774542 -0.251664 0.0876034
-0.828101 -0.176018 0.114622
-0.752652 -0.244551 0.109319
-
-0.798644 -0.169757 0.143035
-0.752652 -0.244551 0.109319
-0.828101 -0.176018 0.114622
-
-0.752652 -0.244551 0.109319
-0.798644 -0.169757 0.143035
-0.726589 -0.236083 0.125141
-
-0.763571 -0.162302 0.163737
-0.726589 -0.236083 0.125141
-0.798644 -0.169757 0.143035
-
-0.726589 -0.236083 0.125141
-0.763571 -0.162302 0.163737
-0.697758 -0.226715 0.134216
-
-0.724773 -0.154055 0.175612
-0.697758 -0.226715 0.134216
-0.763571 -0.162302 0.163737
-
-0.697758 -0.226715 0.134216
-0.724773 -0.154055 0.175612
-0.667714 -0.216953 0.136056
-
-0.684343 -0.145462 0.178019
-0.667714 -0.216953 0.136056
-0.724773 -0.154055 0.175612
-
-0.667714 -0.216953 0.136056
-0.684343 -0.145462 0.178019
-0.638076 -0.207323 0.130561
-
-0.644459 -0.136984 0.170829
-0.638076 -0.207323 0.130561
-0.684343 -0.145462 0.178019
-
-0.638076 -0.207323 0.130561
-0.644459 -0.136984 0.170829
-0.610442 -0.198345 0.118028
-
-0.607273 -0.12908 0.15443
-0.610442 -0.198345 0.118028
-0.644459 -0.136984 0.170829
-
-0.610442 -0.198345 0.118028
-0.607273 -0.12908 0.15443
-0.586302 -0.190501 0.0991314
-
-0.574788 -0.122175 0.129706
-0.586302 -0.190501 0.0991314
-0.607273 -0.12908 0.15443
-
-0.586302 -0.190501 0.0991314
-0.574788 -0.122175 0.129706
-0.566957 -0.184216 0.0748908
-
-0.548756 -0.116642 0.0979889
-0.566957 -0.184216 0.0748908
-0.574788 -0.122175 0.129706
-
-0.566957 -0.184216 0.0748908
-0.548756 -0.116642 0.0979889
-0.553451 -0.179827 0.0466128
-
-0.53058 -0.112778 0.0609893
-0.553451 -0.179827 0.0466128
-0.548756 -0.116642 0.0979889
-
-0.553451 -0.179827 0.0466128
-0.53058 -0.112778 0.0609893
-0.54651 -0.177572 0.0158219
-
-0.52124 -0.110793 0.0207018
-0.54651 -0.177572 0.0158219
-0.53058 -0.112778 0.0609893
-
-0.54651 -0.177572 0.0158219
-0.52124 -0.110793 0.0207018
-0.54651 -0.177572 -0.0158219
-
-0.52124 -0.110793 -0.0207018
-0.54651 -0.177572 -0.0158219
-0.52124 -0.110793 0.0207018
-
-0.54651 -0.177572 -0.0158219
-0.52124 -0.110793 -0.0207018
-0.553451 -0.179827 -0.0466128
-
-0.53058 -0.112778 -0.0609893
-0.553451 -0.179827 -0.0466128
-0.52124 -0.110793 -0.0207018
-
-0.553451 -0.179827 -0.0466128
-0.53058 -0.112778 -0.0609893
-0.566957 -0.184216 -0.0748908
-
-0.548756 -0.116642 -0.0979889
-0.566957 -0.184216 -0.0748908
-0.53058 -0.112778 -0.0609893
-
-0.566957 -0.184216 -0.0748908
-0.548756 -0.116642 -0.0979889
-0.586302 -0.190501 -0.0991314
-
-0.574788 -0.122175 -0.129706
-0.586302 -0.190501 -0.0991314
-0.548756 -0.116642 -0.0979889
-
-0.586302 -0.190501 -0.0991314
-0.574788 -0.122175 -0.129706
-0.610442 -0.198345 -0.118028
-
-0.607273 -0.12908 -0.15443
-0.610442 -0.198345 -0.118028
-0.574788 -0.122175 -0.129706
-
-0.610442 -0.198345 -0.118028
-0.607273 -0.12908 -0.15443
-0.638076 -0.207323 -0.130561
-
-0.644459 -0.136984 -0.170829
-0.638076 -0.207323 -0.130561
-0.607273 -0.12908 -0.15443
-
-0.638076 -0.207323 -0.130561
-0.644459 -0.136984 -0.170829
-0.667714 -0.216953 -0.136056
-
-0.684343 -0.145462 -0.178019
-0.667714 -0.216953 -0.136056
-0.644459 -0.136984 -0.170829
-
-0.667714 -0.216953 -0.136056
-0.684343 -0.145462 -0.178019
-0.697758 -0.226715 -0.134216
-
-0.724773 -0.154055 -0.175612
-0.697758 -0.226715 -0.134216
-0.684343 -0.145462 -0.178019
-
-0.697758 -0.226715 -0.134216
-0.724773 -0.154055 -0.175612
-0.726589 -0.236083 -0.125141
-
-0.763571 -0.162302 -0.163737
-0.726589 -0.236083 -0.125141
-0.724773 -0.154055 -0.175612
-
-0.726589 -0.236083 -0.125141
-0.763571 -0.162302 -0.163737
-0.752652 -0.244551 -0.109319
-
-0.798644 -0.169757 -0.143035
-0.752652 -0.244551 -0.109319
-0.763571 -0.162302 -0.163737
-
-0.752652 -0.244551 -0.109319
-0.798644 -0.169757 -0.143035
-0.774542 -0.251664 -0.0876034
-
-0.828101 -0.176018 -0.114622
-0.774542 -0.251664 -0.0876034
-0.798644 -0.169757 -0.143035
-
-0.774542 -0.251664 -0.0876034
-0.828101 -0.176018 -0.114622
-0.79108 -0.257037 -0.0611654
-
-0.850356 -0.180749 -0.0800302
-0.79108 -0.257037 -0.0611654
-0.828101 -0.176018 -0.114622
-
-0.79108 -0.257037 -0.0611654
-0.850356 -0.180749 -0.0800302
-0.801373 -0.260382 -0.0314299
-
-0.864207 -0.183693 -0.0411236
-0.801373 -0.260382 -0.0314299
-0.850356 -0.180749 -0.0800302
-
-0.801373 -0.260382 -0.0314299
-0.864207 -0.183693 -0.0411236
-0.804867 -0.261517 0
-
-0.868909 -0.184692 0
-0.804867 -0.261517 0
-0.864207 -0.183693 -0.0411236
-
-0.868909 -0.184692 0
-0.93613 -0.0983913 0
-0.864207 -0.183693 0.0411236
-
-0.92993 -0.0977396 0.0533384
-0.864207 -0.183693 0.0411236
-0.93613 -0.0983913 0
-
-0.864207 -0.183693 0.0411236
-0.92993 -0.0977396 0.0533384
-0.850356 -0.180749 0.0800302
-
-0.911664 -0.0958197 0.103801
-0.850356 -0.180749 0.0800302
-0.92993 -0.0977396 0.0533384
-
-0.850356 -0.180749 0.0800302
-0.911664 -0.0958197 0.103801
-0.828101 -0.176018 0.114622
-
-0.882316 -0.0927351 0.148668
-0.828101 -0.176018 0.114622
-0.911664 -0.0958197 0.103801
-
-0.828101 -0.176018 0.114622
-0.882316 -0.0927351 0.148668
-0.798644 -0.169757 0.143035
-
-0.843469 -0.0886521 0.18552
-0.798644 -0.169757 0.143035
-0.882316 -0.0927351 0.148668
-
-0.798644 -0.169757 0.143035
-0.843469 -0.0886521 0.18552
-0.763571 -0.162302 0.163737
-
-0.797217 -0.0837909 0.212371
-0.763571 -0.162302 0.163737
-0.843469 -0.0886521 0.18552
-
-0.763571 -0.162302 0.163737
-0.797217 -0.0837909 0.212371
-0.724773 -0.154055 0.175612
-
-0.746053 -0.0784133 0.227773
-0.724773 -0.154055 0.175612
-0.797217 -0.0837909 0.212371
-
-0.724773 -0.154055 0.175612
-0.746053 -0.0784133 0.227773
-0.684343 -0.145462 0.178019
-
-0.692736 -0.0728095 0.230895
-0.684343 -0.145462 0.178019
-0.746053 -0.0784133 0.227773
-
-0.684343 -0.145462 0.178019
-0.692736 -0.0728095 0.230895
-0.644459 -0.136984 0.170829
-
-0.64014 -0.0672814 0.22157
-0.644459 -0.136984 0.170829
-0.692736 -0.0728095 0.230895
-
-0.644459 -0.136984 0.170829
-0.64014 -0.0672814 0.22157
-0.607273 -0.12908 0.15443
-
-0.591101 -0.0621272 0.2003
-0.607273 -0.12908 0.15443
-0.64014 -0.0672814 0.22157
-
-0.607273 -0.12908 0.15443
-0.591101 -0.0621272 0.2003
-0.574788 -0.122175 0.129706
-
-0.548261 -0.0576246 0.168232
-0.574788 -0.122175 0.129706
-0.591101 -0.0621272 0.2003
-
-0.574788 -0.122175 0.129706
-0.548261 -0.0576246 0.168232
-0.548756 -0.116642 0.0979889
-
-0.513932 -0.0540164 0.127094
-0.548756 -0.116642 0.0979889
-0.548261 -0.0576246 0.168232
-
-0.548756 -0.116642 0.0979889
-0.513932 -0.0540164 0.127094
-0.53058 -0.112778 0.0609893
-
-0.489963 -0.0514972 0.0791047
-0.53058 -0.112778 0.0609893
-0.513932 -0.0540164 0.127094
-
-0.53058 -0.112778 0.0609893
-0.489963 -0.0514972 0.0791047
-0.52124 -0.110793 0.0207018
-
-0.477646 -0.0502026 0.0268508
-0.52124 -0.110793 0.0207018
-0.489963 -0.0514972 0.0791047
-
-0.52124 -0.110793 0.0207018
-0.477646 -0.0502026 0.0268508
-0.52124 -0.110793 -0.0207018
-
-0.477646 -0.0502026 -0.0268508
-0.52124 -0.110793 -0.0207018
-0.477646 -0.0502026 0.0268508
-
-0.52124 -0.110793 -0.0207018
-0.477646 -0.0502026 -0.0268508
-0.53058 -0.112778 -0.0609893
-
-0.489963 -0.0514972 -0.0791047
-0.53058 -0.112778 -0.0609893
-0.477646 -0.0502026 -0.0268508
-
-0.53058 -0.112778 -0.0609893
-0.489963 -0.0514972 -0.0791047
-0.548756 -0.116642 -0.0979889
-
-0.513932 -0.0540164 -0.127094
-0.548756 -0.116642 -0.0979889
-0.489963 -0.0514972 -0.0791047
-
-0.548756 -0.116642 -0.0979889
-0.513932 -0.0540164 -0.127094
-0.574788 -0.122175 -0.129706
-
-0.548261 -0.0576246 -0.168232
-0.574788 -0.122175 -0.129706
-0.513932 -0.0540164 -0.127094
-
-0.574788 -0.122175 -0.129706
-0.548261 -0.0576246 -0.168232
-0.607273 -0.12908 -0.15443
-
-0.591101 -0.0621272 -0.2003
-0.607273 -0.12908 -0.15443
-0.548261 -0.0576246 -0.168232
-
-0.607273 -0.12908 -0.15443
-0.591101 -0.0621272 -0.2003
-0.644459 -0.136984 -0.170829
-
-0.64014 -0.0672814 -0.22157
-0.644459 -0.136984 -0.170829
-0.591101 -0.0621272 -0.2003
-
-0.644459 -0.136984 -0.170829
-0.64014 -0.0672814 -0.22157
-0.684343 -0.145462 -0.178019
-
-0.692736 -0.0728095 -0.230895
-0.684343 -0.145462 -0.178019
-0.64014 -0.0672814 -0.22157
-
-0.684343 -0.145462 -0.178019
-0.692736 -0.0728095 -0.230895
-0.724773 -0.154055 -0.175612
-
-0.746053 -0.0784133 -0.227773
-0.724773 -0.154055 -0.175612
-0.692736 -0.0728095 -0.230895
-
-0.724773 -0.154055 -0.175612
-0.746053 -0.0784133 -0.227773
-0.763571 -0.162302 -0.163737
-
-0.797217 -0.0837909 -0.212371
-0.763571 -0.162302 -0.163737
-0.746053 -0.0784133 -0.227773
-
-0.763571 -0.162302 -0.163737
-0.797217 -0.0837909 -0.212371
-0.798644 -0.169757 -0.143035
-
-0.843469 -0.0886521 -0.18552
-0.798644 -0.169757 -0.143035
-0.797217 -0.0837909 -0.212371
-
-0.798644 -0.169757 -0.143035
-0.843469 -0.0886521 -0.18552
-0.828101 -0.176018 -0.114622
-
-0.882316 -0.0927351 -0.148668
-0.828101 -0.176018 -0.114622
-0.843469 -0.0886521 -0.18552
-
-0.828101 -0.176018 -0.114622
-0.882316 -0.0927351 -0.148668
-0.850356 -0.180749 -0.0800302
-
-0.911664 -0.0958197 -0.103801
-0.850356 -0.180749 -0.0800302
-0.882316 -0.0927351 -0.148668
-
-0.850356 -0.180749 -0.0800302
-0.911664 -0.0958197 -0.103801
-0.864207 -0.183693 -0.0411236
-
-0.92993 -0.0977396 -0.0533384
-0.864207 -0.183693 -0.0411236
-0.911664 -0.0958197 -0.103801
-
-0.864207 -0.183693 -0.0411236
-0.92993 -0.0977396 -0.0533384
-0.868909 -0.184692 0
-
-0.93613 -0.0983913 0
-0.868909 -0.184692 0
-0.92993 -0.0977396 -0.0533384
-
-0.93613 -0.0983913 0
-1 -8.88178e-16 0
-0.92993 -0.0977396 0.0533384
-
-0.992183 -8.81236e-16 0.0668786
-0.92993 -0.0977396 0.0533384
-1 -8.88178e-16 0
-
-0.92993 -0.0977396 0.0533384
-0.992183 -8.81236e-16 0.0668786
-0.911664 -0.0958197 0.103801
-
-0.969153 -8.60781e-16 0.130152
-0.911664 -0.0958197 0.103801
-0.992183 -8.81236e-16 0.0668786
-
-0.911664 -0.0958197 0.103801
-0.969153 -8.60781e-16 0.130152
-0.882316 -0.0927351 0.148668
-
-0.932153 -8.27918e-16 0.186408
-0.882316 -0.0927351 0.148668
-0.969153 -8.60781e-16 0.130152
-
-0.882316 -0.0927351 0.148668
-0.932153 -8.27918e-16 0.186408
-0.843469 -0.0886521 0.18552
-
-0.883176 -7.84418e-16 0.232616
-0.843469 -0.0886521 0.18552
-0.932153 -8.27918e-16 0.186408
-
-0.843469 -0.0886521 0.18552
-0.883176 -7.84418e-16 0.232616
-0.797217 -0.0837909 0.212371
-
-0.824863 -7.32626e-16 0.266283
-0.797217 -0.0837909 0.212371
-0.883176 -7.84418e-16 0.232616
-
-0.797217 -0.0837909 0.212371
-0.824863 -7.32626e-16 0.266283
-0.746053 -0.0784133 0.227773
-
-0.760358 -6.75334e-16 0.285594
-0.746053 -0.0784133 0.227773
-0.824863 -7.32626e-16 0.266283
-
-0.746053 -0.0784133 0.227773
-0.760358 -6.75334e-16 0.285594
-0.692736 -0.0728095 0.230895
-
-0.693138 -6.1563e-16 0.289509
-0.692736 -0.0728095 0.230895
-0.760358 -6.75334e-16 0.285594
-
-0.692736 -0.0728095 0.230895
-0.693138 -6.1563e-16 0.289509
-0.64014 -0.0672814 0.22157
-
-0.626827 -5.56734e-16 0.277817
-0.64014 -0.0672814 0.22157
-0.693138 -6.1563e-16 0.289509
-
-0.64014 -0.0672814 0.22157
-0.626827 -5.56734e-16 0.277817
-0.591101 -0.0621272 0.2003
-
-0.565 -5.01821e-16 0.251147
-0.591101 -0.0621272 0.2003
-0.626827 -5.56734e-16 0.277817
-
-0.591101 -0.0621272 0.2003
-0.565 -5.01821e-16 0.251147
-0.548261 -0.0576246 0.168232
-
-0.51099 -4.5385e-16 0.210938
-0.548261 -0.0576246 0.168232
-0.565 -5.01821e-16 0.251147
-
-0.548261 -0.0576246 0.168232
-0.51099 -4.5385e-16 0.210938
-0.513932 -0.0540164 0.127094
-
-0.467709 -4.15409e-16 0.159358
-0.513932 -0.0540164 0.127094
-0.51099 -4.5385e-16 0.210938
-
-0.513932 -0.0540164 0.127094
-0.467709 -4.15409e-16 0.159358
-0.489963 -0.0514972 0.0791047
-
-0.437489 -3.88568e-16 0.0991858
-0.489963 -0.0514972 0.0791047
-0.467709 -4.15409e-16 0.159358
-
-0.489963 -0.0514972 0.0791047
-0.437489 -3.88568e-16 0.0991858
-0.477646 -0.0502026 0.0268508
-
-0.421961 -3.74777e-16 0.0336669
-0.477646 -0.0502026 0.0268508
-0.437489 -3.88568e-16 0.0991858
-
-0.477646 -0.0502026 0.0268508
-0.421961 -3.74777e-16 0.0336669
-0.477646 -0.0502026 -0.0268508
-
-0.421961 -3.74777e-16 -0.0336669
-0.477646 -0.0502026 -0.0268508
-0.421961 -3.74777e-16 0.0336669
-
-0.477646 -0.0502026 -0.0268508
-0.421961 -3.74777e-16 -0.0336669
-0.489963 -0.0514972 -0.0791047
-
-0.437489 -3.88568e-16 -0.0991858
-0.489963 -0.0514972 -0.0791047
-0.421961 -3.74777e-16 -0.0336669
-
-0.489963 -0.0514972 -0.0791047
-0.437489 -3.88568e-16 -0.0991858
-0.513932 -0.0540164 -0.127094
-
-0.467709 -4.15409e-16 -0.159358
-0.513932 -0.0540164 -0.127094
-0.437489 -3.88568e-16 -0.0991858
-
-0.513932 -0.0540164 -0.127094
-0.467709 -4.15409e-16 -0.159358
-0.548261 -0.0576246 -0.168232
-
-0.51099 -4.5385e-16 -0.210938
-0.548261 -0.0576246 -0.168232
-0.467709 -4.15409e-16 -0.159358
-
-0.548261 -0.0576246 -0.168232
-0.51099 -4.5385e-16 -0.210938
-0.591101 -0.0621272 -0.2003
-
-0.565 -5.01821e-16 -0.251147
-0.591101 -0.0621272 -0.2003
-0.51099 -4.5385e-16 -0.210938
-
-0.591101 -0.0621272 -0.2003
-0.565 -5.01821e-16 -0.251147
-0.64014 -0.0672814 -0.22157
-
-0.626827 -5.56734e-16 -0.277817
-0.64014 -0.0672814 -0.22157
-0.565 -5.01821e-16 -0.251147
-
-0.64014 -0.0672814 -0.22157
-0.626827 -5.56734e-16 -0.277817
-0.692736 -0.0728095 -0.230895
-
-0.693138 -6.1563e-16 -0.289509
-0.692736 -0.0728095 -0.230895
-0.626827 -5.56734e-16 -0.277817
-
-0.692736 -0.0728095 -0.230895
-0.693138 -6.1563e-16 -0.289509
-0.746053 -0.0784133 -0.227773
-
-0.760358 -6.75334e-16 -0.285594
-0.746053 -0.0784133 -0.227773
-0.693138 -6.1563e-16 -0.289509
-
-0.746053 -0.0784133 -0.227773
-0.760358 -6.75334e-16 -0.285594
-0.797217 -0.0837909 -0.212371
-
-0.824863 -7.32626e-16 -0.266283
-0.797217 -0.0837909 -0.212371
-0.760358 -6.75334e-16 -0.285594
-
-0.797217 -0.0837909 -0.212371
-0.824863 -7.32626e-16 -0.266283
-0.843469 -0.0886521 -0.18552
-
-0.883176 -7.84418e-16 -0.232616
-0.843469 -0.0886521 -0.18552
-0.824863 -7.32626e-16 -0.266283
-
-0.843469 -0.0886521 -0.18552
-0.883176 -7.84418e-16 -0.232616
-0.882316 -0.0927351 -0.148668
-
-0.932153 -8.27918e-16 -0.186408
-0.882316 -0.0927351 -0.148668
-0.883176 -7.84418e-16 -0.232616
-
-0.882316 -0.0927351 -0.148668
-0.932153 -8.27918e-16 -0.186408
-0.911664 -0.0958197 -0.103801
-
-0.969153 -8.60781e-16 -0.130152
-0.911664 -0.0958197 -0.103801
-0.932153 -8.27918e-16 -0.186408
-
-0.911664 -0.0958197 -0.103801
-0.969153 -8.60781e-16 -0.130152
-0.92993 -0.0977396 -0.0533384
-
-0.992183 -8.81236e-16 -0.0668786
-0.92993 -0.0977396 -0.0533384
-0.969153 -8.60781e-16 -0.130152
-
-0.92993 -0.0977396 -0.0533384
-0.992183 -8.81236e-16 -0.0668786
-0.93613 -0.0983913 0
-
-1 -8.88178e-16 0
-0.93613 -0.0983913 0
-0.992183 -8.81236e-16 -0.0668786
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/Makefile b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/Makefile
deleted file mode 100644
index fff3b2a8..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/Makefile
+++ /dev/null
@@ -1,28 +0,0 @@
-CC = g++
-
-CFLAGS  = -O2 -I. -I../../include
-LDFLAGS	= -L. -L../../lib
-LDLIBS  = -lPQP -lm      
-
-.SUFFIXES: .cpp
-
-SRCS    = main.cpp
-
-OBJECTS	= main.o
-
-TARGET  = sample
-
-CLEAN   = $(OBJECTS) $(TARGET)
-
-.cpp.o:
-	$(CC) ${CFLAGS} -c $<
-
-$(TARGET): $(OBJECTS)
-	$(CC) $(CFLAGS) -o $(TARGET) $(OBJECTS) -L. $(LDFLAGS) $(LDLIBS)
-
-run: $(TARGET)
-	$(TARGET)
-
-clean:
-	/bin/rm -f $(CLEAN)
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/main.cpp b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/main.cpp
deleted file mode 100644
index f81dfdba..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/main.cpp
+++ /dev/null
@@ -1,301 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#include <stdio.h>
-#include <math.h>
-#include "PQP.h"
-
-#define PI 3.14159265359
-#define LISTS 0
-
-main()
-{
-  // initialize PQP model pointers
-
-  PQP_Model *b1 = new PQP_Model;
-  PQP_Model *b2 = new PQP_Model;
-  
-  // Add trianges to form tori
-
-  fprintf(stderr, "loading tris into PQP_Model objects...");  fflush(stderr);
-  
-  PQP_REAL a = (PQP_REAL)1.0;  // major radius of the tori
-  PQP_REAL b = (PQP_REAL)0.2;  // minor radius of the tori
-
-  int n1 = 50;     // tori will have n1*n2*2 triangles each
-  int n2 = 50;
-
-  int uc, vc;
-  int count = 0;
-  
-  b1->BeginModel();
-  b2->BeginModel();
-  for(uc=0; uc<n1; uc++)
-  {
-    for(vc=0; vc<n2; vc++)
-    {
-      PQP_REAL u1 = (PQP_REAL)(2.0*PI*uc) / n1; 
-      PQP_REAL u2 = (PQP_REAL)(2.0*PI*(uc+1)) / n1; 
-      PQP_REAL v1 = (PQP_REAL)(2.0*PI*vc) / n2; 
-      PQP_REAL v2 = (PQP_REAL)(2.0*PI*(vc+1)) / n2; 
-
-      PQP_REAL p1[3], p2[3], p3[3], p4[3];
-
-      p1[0] = (a - b * cos(v1)) * cos(u1);
-      p2[0] = (a - b * cos(v1)) * cos(u2);
-      p3[0] = (a - b * cos(v2)) * cos(u1);
-      p4[0] = (a - b * cos(v2)) * cos(u2);
-      p1[1] = (a - b * cos(v1)) * sin(u1);
-      p2[1] = (a - b * cos(v1)) * sin(u2);
-      p3[1] = (a - b * cos(v2)) * sin(u1);
-      p4[1] = (a - b * cos(v2)) * sin(u2);
-      p1[2] = b * sin(v1);
-      p2[2] = b * sin(v1);
-      p3[2] = b * sin(v2);
-      p4[2] = b * sin(v2);
-
-      b1->AddTri(p1, p2, p3, count);
-      b1->AddTri(p4, p2, p3, count+1);
-      b2->AddTri(p1, p2, p3, count);
-      b2->AddTri(p4, p2, p3, count+1);
-
-      count += 2;
-    }
-  }
-
-  fprintf(stderr, "done\n");  fflush(stderr);
-  fprintf(stderr, "Tori have %d triangles each.\n", count);
-  fprintf(stderr, "building hierarchies...");  fflush(stderr);
-  b1->EndModel();
-  b2->EndModel();
-  fprintf(stderr, "done.\n"); 
-  b1->MemUsage(1);
-  b2->MemUsage(1);
-  fflush(stderr); 
-  
-  // now we are free to call the proximity routines.
-  // but first, construct the transformations that define the placement
-  // of our two hierarchies in world space:
-
-  // this placement causes them to overlap a large amount.
-
-  PQP_REAL R1[3][3], R2[3][3], T1[3], T2[3];
-  
-  R1[0][0] = R1[1][1] = R1[2][2] = 1.0;
-  R1[0][1] = R1[1][0] = R1[2][0] = 0.0;
-  R1[0][2] = R1[1][2] = R1[2][1] = 0.0;
-
-  R2[0][0] = R2[1][1] = R2[2][2] = 1.0;
-  R2[0][1] = R2[1][0] = R2[2][0] = 0.0;
-  R2[0][2] = R2[1][2] = R2[2][1] = 0.0;
-  
-  T1[0] = 1.0;  T1[1] = 0.0; T1[2] = 0.0;
-  T2[0] = 0.0;  T2[1] = 0.0; T2[2] = 0.0;
-
-  // perform a collision query
-
-  PQP_CollideResult cres;
-  PQP_Collide(&cres, R1, T1, b1, R2, T2, b2, PQP_ALL_CONTACTS);
-
-  // looking at the report, we can see where all the contacts were, and
-  // also how many tests were necessary:
-
-  printf("\nAll contact collision query between overlapping tori:\n");
-  printf("Num BV tests: %d\n", cres.NumBVTests());
-  printf("Num Tri tests: %d\n", cres.NumTriTests());
-  printf("Num contact pairs: %d\n", cres.NumPairs());
-#if LISTS
-  int i;
-  for(i=0; i<cres.NumPairs(); i++)
-  {
-    printf("\t contact %4d: tri %4d and tri %4d\n",
-           i,
-           cres.Id1(i),
-           cres.Id2(i));
-  }
-#endif
-
-  // Notice the PQP_ALL_CONTACTS flag we used in the call to PQP_Collide.
-  // The alternative is to use the PQP_FIRST_CONTACT flag, instead.
-  // The result is that the collide routine searches for any contact,
-  // but not all of them.  It can take many many fewer tests to locate a single
-  // contact.
-
-  PQP_Collide(&cres, R1, T1, b1, R2, T2, b2, PQP_FIRST_CONTACT);
-
-  printf("\nFirst contact collision query between overlapping tori:\n");
-  printf("Num BV tests: %d\n", cres.NumBVTests());
-  printf("Num Tri tests: %d\n", cres.NumTriTests());
-  printf("Num contact pairs: %d\n", cres.NumPairs());
-#if LISTS
-  for(i=0; i<cres.NumPairs(); i++)
-  {
-    printf("\t contact %4d: tri %4d and tri %4d\n", 
-           i, 
-           cres.Id1(i), 
-           cres.Id2(i));
-  }
-#endif
-  
-  // Perform a distance query, which should return a distance of 0.0
-
-  PQP_DistanceResult dres;
-  PQP_Distance(&dres, R1, T1, b1, R2, T2, b2, 0.0, 0.0);
-
-  printf("\nDistance query between overlapping tori\n");
-  printf("Num BV tests: %d\n", dres.NumBVTests());
-  printf("Num Tri tests: %d\n", dres.NumTriTests());
-  printf("Distance: %lf\n", dres.Distance());
-
-  // by rotating one of them around the x-axis 90 degrees, they 
-  // are now interlocked, but not quite touching.
-
-  R1[0][0] = 1.0;  R1[0][1] = 0.0;  R1[0][2] = 0.0;
-  R1[1][0] = 0.0;  R1[1][1] = 0.0;  R1[1][2] =-1.0;
-  R1[2][0] = 0.0;  R1[2][1] = 1.0;  R1[2][2] = 0.0;
-  
-  PQP_Collide(&cres, R1, T1, b1, R2, T2, b2, PQP_FIRST_CONTACT);
-
-  printf("\nCollision query between interlocked but nontouching tori:\n");
-  printf("Num BV tests: %d\n", cres.NumBVTests());
-  printf("Num Tri tests: %d\n", cres.NumTriTests());
-  printf("Num contact pairs: %d\n", cres.NumPairs());
-#if LISTS
-  for(i=0; i<cres.NumPairs(); i++)
-  {
-    printf("\t contact %4d: tri %4d and tri %4d\n", 
-           i, 
-           cres.Id1(i), 
-           cres.Id2(i));
-  }
-#endif
-
-  // Perform a distance query - the distance found should be greater than zero
-
-  PQP_Distance(&dres, R1, T1, b1, R2, T2, b2, 0.0, 0.0);
-
-  printf("\nDistance query between interlocked but nontouching tori\n");
-  printf("Num BV tests: %d\n", dres.NumBVTests());
-  printf("Num Tri tests: %d\n", dres.NumTriTests());
-  printf("Distance: %lf\n", dres.Distance());
-
-  // Perform two tolerance queries. One tolerance setting is greater than the 
-  // distance between the models, and one tolerance is less than the distance.
-
-  PQP_ToleranceResult tres;
-  PQP_REAL tolerance = (PQP_REAL).60;
-  PQP_Tolerance(&tres, R1, T1, b1, R2, T2, b2, tolerance);
-
-  printf("\nTolerance query between interlocked but nontouching tori\n"
-         "with tolerance %lf\n", tolerance);
-  printf("Num BV tests: %d\n", tres.NumBVTests());
-  printf("Num Tri tests: %d\n", tres.NumTriTests());
-  printf("Closer than tolerance? ",tolerance);
-  if (tres.CloserThanTolerance()) printf("yes.\n"); else printf("no.\n");
-
-  tolerance = (PQP_REAL).40;
-  PQP_Tolerance(&tres, R1, T1, b1, R2, T2, b2, tolerance);
-
-  printf("\nTolerance query between interlocked but nontouching tori\n"
-         "with tolerance %lf\n", tolerance);
-  printf("Num BV tests: %d\n", tres.NumBVTests());
-  printf("Num Tri tests: %d\n", tres.NumTriTests());
-  printf("Closer than tolerance? ",tolerance);
-  if (tres.CloserThanTolerance()) printf("yes.\n"); else printf("no.\n");
-
-  // by moving one of the tori closer to the other, they
-  // almost touch.  This is the case that requires a lot
-  // of work wiht methods which use bounding boxes of limited
-  // aspect ratio.  Oriented bounding boxes are more efficient
-  // at determining noncontact than spheres, octree, or axis-aligned
-  // bounding boxes for scenarios like this.  In this case, the interlocked
-  // tori are separated by 0.0001 at their closest point.
-
-
-  T1[0] = (PQP_REAL)1.5999;
-  
-  PQP_Collide(&cres, R1, T1, b1, R2, T2, b2, PQP_FIRST_CONTACT);
-
-  printf("\nCollision query on interlocked and almost touching tori:\n");
-  printf("Num BV tests: %d\n", cres.NumBVTests());
-  printf("Num Tri tests: %d\n", cres.NumTriTests());
-  printf("Num contact pairs: %d\n", cres.NumPairs());
-#if LISTS
-  for(i=0; i<cres.NumPairs(); i++)
-  {
-    printf("\t contact %4d: tri %4d and tri %4d\n", 
-           i, 
-           cres.Id1(i), 
-           cres.Id2(i));
-  }
-#endif
-
-  PQP_Distance(&dres, R1, T1, b1, R2, T2, b2, 0.0, 0.0);
-
-  printf("\nDistance query between interlocked and almost touching tori\n");
-  printf("Num BV tests: %d\n", dres.NumBVTests());
-  printf("Num Tri tests: %d\n", dres.NumTriTests());
-  printf("Distance: %lf\n", dres.Distance());
-
-  tolerance = (PQP_REAL)0.00015;
-  PQP_Tolerance(&tres, R1, T1, b1, R2, T2, b2, tolerance);
-
-  printf("\nTolerance query between interlocked and almost touching tori\n"
-         "with tolerance %lf\n", tolerance);
-  printf("Num BV tests: %d\n", tres.NumBVTests());
-  printf("Num Tri tests: %d\n", tres.NumTriTests());
-  printf("Closer than tolerance? ",tolerance);
-  if (tres.CloserThanTolerance()) printf("yes.\n"); else printf("no.\n");
-
-  tolerance = (PQP_REAL)0.00005;
-  PQP_Tolerance(&tres, R1, T1, b1, R2, T2, b2, tolerance);
-
-  printf("\nTolerance query between interlocked and almost touching tori\n"
-         "with tolerance %lf\n", tolerance);
-  printf("Num BV tests: %d\n", tres.NumBVTests());
-  printf("Num Tri tests: %d\n", tres.NumTriTests());
-  printf("Closer than tolerance? ",tolerance);
-  if (tres.CloserThanTolerance()) printf("yes.\n"); else printf("no.\n");
-
-  delete b1;
-  delete b2;
-
-  return 0;  
-}
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/sample.dsp b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/sample.dsp
deleted file mode 100644
index aec7603d..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/sample.dsp
+++ /dev/null
@@ -1,91 +0,0 @@
-# Microsoft Developer Studio Project File - Name="sample" - Package Owner=<4>
-# Microsoft Developer Studio Generated Build File, Format Version 5.00
-# ** DO NOT EDIT **
-
-# TARGTYPE "Win32 (x86) Console Application" 0x0103
-
-CFG=sample - Win32 Debug
-!MESSAGE This is not a valid makefile. To build this project using NMAKE,
-!MESSAGE use the Export Makefile command and run
-!MESSAGE 
-!MESSAGE NMAKE /f "sample.mak".
-!MESSAGE 
-!MESSAGE You can specify a configuration when running NMAKE
-!MESSAGE by defining the macro CFG on the command line. For example:
-!MESSAGE 
-!MESSAGE NMAKE /f "sample.mak" CFG="sample - Win32 Debug"
-!MESSAGE 
-!MESSAGE Possible choices for configuration are:
-!MESSAGE 
-!MESSAGE "sample - Win32 Release" (based on "Win32 (x86) Console Application")
-!MESSAGE "sample - Win32 Debug" (based on "Win32 (x86) Console Application")
-!MESSAGE 
-
-# Begin Project
-# PROP Scc_ProjName ""
-# PROP Scc_LocalPath ""
-CPP=cl.exe
-RSC=rc.exe
-
-!IF  "$(CFG)" == "sample - Win32 Release"
-
-# PROP BASE Use_MFC 0
-# PROP BASE Use_Debug_Libraries 0
-# PROP BASE Output_Dir "Release"
-# PROP BASE Intermediate_Dir "Release"
-# PROP BASE Target_Dir ""
-# PROP Use_MFC 0
-# PROP Use_Debug_Libraries 0
-# PROP Output_Dir "./"
-# PROP Intermediate_Dir "Release"
-# PROP Ignore_Export_Lib 0
-# PROP Target_Dir ""
-# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD CPP /nologo /W3 /GX /O2 /I "..\..\include" /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD BASE RSC /l 0x409 /d "NDEBUG"
-# ADD RSC /l 0x409 /d "NDEBUG"
-BSC32=bscmake.exe
-# ADD BASE BSC32 /nologo
-# ADD BSC32 /nologo
-LINK32=link.exe
-# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
-# ADD LINK32 pqp.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib PQP.lib /nologo /subsystem:console /machine:I386 /libpath:"..\..\lib"
-# SUBTRACT LINK32 /nodefaultlib
-
-!ELSEIF  "$(CFG)" == "sample - Win32 Debug"
-
-# PROP BASE Use_MFC 0
-# PROP BASE Use_Debug_Libraries 1
-# PROP BASE Output_Dir "Debug"
-# PROP BASE Intermediate_Dir "Debug"
-# PROP BASE Target_Dir ""
-# PROP Use_MFC 0
-# PROP Use_Debug_Libraries 1
-# PROP Output_Dir "./"
-# PROP Intermediate_Dir "Debug"
-# PROP Ignore_Export_Lib 0
-# PROP Target_Dir ""
-# ADD BASE CPP /nologo /W3 /Gm /GX /Zi /Od /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD CPP /nologo /W3 /GX /Od /I "..\..\include" /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD BASE RSC /l 0x409 /d "_DEBUG"
-# ADD RSC /l 0x409 /d "_DEBUG"
-BSC32=bscmake.exe
-# ADD BASE BSC32 /nologo
-# ADD BSC32 /nologo
-LINK32=link.exe
-# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /debug /machine:I386 /pdbtype:sept
-# ADD LINK32 PQP.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /debug /machine:I386 /pdbtype:sept /libpath:"..\..\lib"
-# SUBTRACT LINK32 /nodefaultlib
-
-!ENDIF 
-
-# Begin Target
-
-# Name "sample - Win32 Release"
-# Name "sample - Win32 Debug"
-# Begin Source File
-
-SOURCE=.\main.cpp
-# End Source File
-# End Target
-# End Project
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/sample.plg b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/sample.plg
deleted file mode 100644
index 958f67ae..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/sample/sample.plg
+++ /dev/null
@@ -1,20 +0,0 @@
---------------------Configuration: sample - Win32 Release--------------------
-Begining build with project "C:\Win95\Desktop\PQP_v1.2.1\demos\sample\sample.dsp", at root.
-Active configuration is Win32 (x86) Console Application (based on Win32 (x86) Console Application)
-
-Project's tools are:
-			"32-bit C/C++ Compiler for 80x86" with flags "/nologo /ML /W3 /GX /O2 /I "..\..\include" /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /Fp"Release/sample.pch" /YX /Fo"Release/" /Fd"Release/" /FD /c "
-			"Win32 Resource Compiler" with flags "/l 0x409 /d "NDEBUG" "
-			"Browser Database Maker" with flags "/nologo /o"./sample.bsc" "
-			"COFF Linker for 80x86" with flags "pqp.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib PQP.lib /nologo /subsystem:console /incremental:no /pdb:"./sample.pdb" /machine:I386 /out:"./sample.exe" /libpath:"..\..\lib" "
-			"Custom Build" with flags ""
-			"<Component 0xa>" with flags ""
-
-Creating temp file "C:\WIN95\TEMP\RSP6314.TMP" with contents <pqp.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib PQP.lib /nologo /subsystem:console /incremental:no /pdb:"./sample.pdb" /machine:I386 /out:"./sample.exe" /libpath:"..\..\lib" 
-.\Release\main.obj>
-Creating command line "link.exe @C:\WIN95\TEMP\RSP6314.TMP" 
-Linking...
-
-
-
-sample.exe - 0 error(s), 0 warning(s)
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/Makefile b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/Makefile
deleted file mode 100644
index 9289a9b1..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/Makefile
+++ /dev/null
@@ -1,36 +0,0 @@
-# Must set these gl and glut locations to build 'spinning'
-
-CC = g++
-
-GL_INCPATH = -I/usr/include/
-GL_LIBPATH = -L/usr/lib/ -L/usr/X11R6/lib/
-GL_LIBS = -lGLU -lGL -lXext -lXmu -lXi -lX11 -lglut
-
-.SUFFIXES: .cpp
-
-CC = g++
-CFLAGS  = -g -O2 -I. -I../../include $(GL_INCPATH)
-LDFLAGS = -L. -L../../lib -L/usr/lib/ -L/usr/X11R6/lib/
-LDLIBS  = -lPQP -lm $(GL_LIBS) 
-
-OBJS   = main.o model.o
-TARGET = spinning
-
-.cpp.o:
-	$(CC) ${CFLAGS} -c $<
-
-$(TARGET): $(OBJS)
-	$(CC) $(CFLAGS) $(OBJS) -o $(TARGET) $(LDFLAGS) $(LDLIBS)
-
-run: $(TARGET)
-	$(TARGET)
-
-clean: 
-	rm -f *~ $(OBJS) $(TARGET) 
-
-
-
-
-
-
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/MatVec.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/MatVec.h
deleted file mode 100644
index 3d90522f..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/MatVec.h
+++ /dev/null
@@ -1,881 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_MATVEC_H
-#define PQP_MATVEC_H
-
-#include <math.h>
-#include <stdio.h>
-#include "PQP_Compile.h"
-
-#ifndef M_PI
-const double M_PI =  3.14159265359;
-#endif
-
-#ifdef gnu
-#include "zzzz.h"
-
-#ifdef hppa
-#define myfabs(x) \
- ({double __value, __arg = (x); \
-   asm("fabs,dbl %1, %0": "=f" (__value): "f" (__arg)); \
-   __value; \
-});
-#endif
-
-#ifdef mips
-#define myfabs(x) \
- ({double __value, __arg = (x); \
-   asm("abs.d %0, %1": "=f" (__value): "f" (__arg)); \
-   __value; \
-});
-#endif
-
-#else  
-
-#define myfabs(x) ((x < 0) ? -x : x)
-
-#endif
-
-
-inline
-void
-Mprintg(const PQP_REAL M[3][3])
-{
-  printf("%g %g %g\n%g %g %g\n%g %g %g\n",
-	 M[0][0], M[0][1], M[0][2],
-	 M[1][0], M[1][1], M[1][2],
-	 M[2][0], M[2][1], M[2][2]);
-}
-
-
-inline
-void
-Mfprint(FILE *f, const PQP_REAL M[3][3])
-{
-  fprintf(f, "%g %g %g\n%g %g %g\n%g %g %g\n",
-	 M[0][0], M[0][1], M[0][2],
-	 M[1][0], M[1][1], M[1][2],
-	 M[2][0], M[2][1], M[2][2]);
-}
-
-inline
-void
-Mprint(const PQP_REAL M[3][3])
-{
-  printf("%g %g %g\n%g %g %g\n%g %g %g\n",
-	 M[0][0], M[0][1], M[0][2],
-	 M[1][0], M[1][1], M[1][2],
-	 M[2][0], M[2][1], M[2][2]);
-}
-
-inline
-void
-Vprintg(const PQP_REAL V[3])
-{
-  printf("%g %g %g\n", V[0], V[1], V[2]);
-}
-
-inline
-void
-Vfprint(FILE *f, const PQP_REAL V[3])
-{
-  fprintf(f, "%g %g %g\n", V[0], V[1], V[2]);
-}
-
-inline
-void
-Vprint(const PQP_REAL V[3])
-{
-  printf("%g %g %g\n", V[0], V[1], V[2]);
-}
-
-inline
-void
-Midentity(PQP_REAL M[3][3])
-{
-  M[0][0] = M[1][1] = M[2][2] = 1.0;
-  M[0][1] = M[1][2] = M[2][0] = 0.0;
-  M[0][2] = M[1][0] = M[2][1] = 0.0;
-}
-
-inline
-void
-Videntity(PQP_REAL T[3])
-{
-  T[0] = T[1] = T[2] = 0.0;
-}
-
-inline
-void
-McM(PQP_REAL Mr[3][3], const PQP_REAL M[3][3])
-{
-  Mr[0][0] = M[0][0];  Mr[0][1] = M[0][1];  Mr[0][2] = M[0][2];
-  Mr[1][0] = M[1][0];  Mr[1][1] = M[1][1];  Mr[1][2] = M[1][2];
-  Mr[2][0] = M[2][0];  Mr[2][1] = M[2][1];  Mr[2][2] = M[2][2];
-}
-
-inline
-void
-MTcM(PQP_REAL Mr[3][3], const PQP_REAL M[3][3])
-{
-  Mr[0][0] = M[0][0];  Mr[1][0] = M[0][1];  Mr[2][0] = M[0][2];
-  Mr[0][1] = M[1][0];  Mr[1][1] = M[1][1];  Mr[2][1] = M[1][2];
-  Mr[0][2] = M[2][0];  Mr[1][2] = M[2][1];  Mr[2][2] = M[2][2];
-}
-
-inline
-void
-VcV(PQP_REAL Vr[3], const PQP_REAL V[3])
-{
-  Vr[0] = V[0];  Vr[1] = V[1];  Vr[2] = V[2];
-}
-
-inline
-void
-McolcV(PQP_REAL Vr[3], const PQP_REAL M[3][3], int c)
-{
-  Vr[0] = M[0][c];
-  Vr[1] = M[1][c];
-  Vr[2] = M[2][c];
-}
-
-inline
-void
-McolcMcol(PQP_REAL Mr[3][3], int cr, const PQP_REAL M[3][3], int c)
-{
-  Mr[0][cr] = M[0][c];
-  Mr[1][cr] = M[1][c];
-  Mr[2][cr] = M[2][c];
-}
-
-inline
-void
-MxMpV(PQP_REAL Mr[3][3], const PQP_REAL M1[3][3], const PQP_REAL M2[3][3], const PQP_REAL T[3])
-{
-  Mr[0][0] = (M1[0][0] * M2[0][0] +
-	      M1[0][1] * M2[1][0] +
-	      M1[0][2] * M2[2][0] +
-	      T[0]);
-  Mr[1][0] = (M1[1][0] * M2[0][0] +
-	      M1[1][1] * M2[1][0] +
-	      M1[1][2] * M2[2][0] +
-	      T[1]);
-  Mr[2][0] = (M1[2][0] * M2[0][0] +
-	      M1[2][1] * M2[1][0] +
-	      M1[2][2] * M2[2][0] +
-	      T[2]);
-  Mr[0][1] = (M1[0][0] * M2[0][1] +
-	      M1[0][1] * M2[1][1] +
-	      M1[0][2] * M2[2][1] +
-	      T[0]);
-  Mr[1][1] = (M1[1][0] * M2[0][1] +
-	      M1[1][1] * M2[1][1] +
- 	      M1[1][2] * M2[2][1] +
-	      T[1]);
-  Mr[2][1] = (M1[2][0] * M2[0][1] +
-	      M1[2][1] * M2[1][1] +
-	      M1[2][2] * M2[2][1] +
-	      T[2]);
-  Mr[0][2] = (M1[0][0] * M2[0][2] +
-	      M1[0][1] * M2[1][2] +
-	      M1[0][2] * M2[2][2] +
-	      T[0]);
-  Mr[1][2] = (M1[1][0] * M2[0][2] +
-	      M1[1][1] * M2[1][2] +
-	      M1[1][2] * M2[2][2] +
-	      T[1]);
-  Mr[2][2] = (M1[2][0] * M2[0][2] +
-	      M1[2][1] * M2[1][2] +
-	      M1[2][2] * M2[2][2] +
-	      T[2]);
-}
-
-inline
-void
-MxM(PQP_REAL Mr[3][3], const PQP_REAL M1[3][3], const PQP_REAL M2[3][3])
-{
-  Mr[0][0] = (M1[0][0] * M2[0][0] +
-	      M1[0][1] * M2[1][0] +
-	      M1[0][2] * M2[2][0]);
-  Mr[1][0] = (M1[1][0] * M2[0][0] +
-	      M1[1][1] * M2[1][0] +
-	      M1[1][2] * M2[2][0]);
-  Mr[2][0] = (M1[2][0] * M2[0][0] +
-	      M1[2][1] * M2[1][0] +
-	      M1[2][2] * M2[2][0]);
-  Mr[0][1] = (M1[0][0] * M2[0][1] +
-	      M1[0][1] * M2[1][1] +
-	      M1[0][2] * M2[2][1]);
-  Mr[1][1] = (M1[1][0] * M2[0][1] +
-	      M1[1][1] * M2[1][1] +
- 	      M1[1][2] * M2[2][1]);
-  Mr[2][1] = (M1[2][0] * M2[0][1] +
-	      M1[2][1] * M2[1][1] +
-	      M1[2][2] * M2[2][1]);
-  Mr[0][2] = (M1[0][0] * M2[0][2] +
-	      M1[0][1] * M2[1][2] +
-	      M1[0][2] * M2[2][2]);
-  Mr[1][2] = (M1[1][0] * M2[0][2] +
-	      M1[1][1] * M2[1][2] +
-	      M1[1][2] * M2[2][2]);
-  Mr[2][2] = (M1[2][0] * M2[0][2] +
-	      M1[2][1] * M2[1][2] +
-	      M1[2][2] * M2[2][2]);
-}
-
-
-inline
-void
-MxMT(PQP_REAL Mr[3][3], const PQP_REAL M1[3][3], const PQP_REAL M2[3][3])
-{
-  Mr[0][0] = (M1[0][0] * M2[0][0] +
-	      M1[0][1] * M2[0][1] +
-	      M1[0][2] * M2[0][2]);
-  Mr[1][0] = (M1[1][0] * M2[0][0] +
-	      M1[1][1] * M2[0][1] +
-	      M1[1][2] * M2[0][2]);
-  Mr[2][0] = (M1[2][0] * M2[0][0] +
-	      M1[2][1] * M2[0][1] +
-	      M1[2][2] * M2[0][2]);
-  Mr[0][1] = (M1[0][0] * M2[1][0] +
-	      M1[0][1] * M2[1][1] +
-	      M1[0][2] * M2[1][2]);
-  Mr[1][1] = (M1[1][0] * M2[1][0] +
-	      M1[1][1] * M2[1][1] +
- 	      M1[1][2] * M2[1][2]);
-  Mr[2][1] = (M1[2][0] * M2[1][0] +
-	      M1[2][1] * M2[1][1] +
-	      M1[2][2] * M2[1][2]);
-  Mr[0][2] = (M1[0][0] * M2[2][0] +
-	      M1[0][1] * M2[2][1] +
-	      M1[0][2] * M2[2][2]);
-  Mr[1][2] = (M1[1][0] * M2[2][0] +
-	      M1[1][1] * M2[2][1] +
-	      M1[1][2] * M2[2][2]);
-  Mr[2][2] = (M1[2][0] * M2[2][0] +
-	      M1[2][1] * M2[2][1] +
-	      M1[2][2] * M2[2][2]);
-}
-
-inline
-void
-MTxM(PQP_REAL Mr[3][3], const PQP_REAL M1[3][3], const PQP_REAL M2[3][3])
-{
-  Mr[0][0] = (M1[0][0] * M2[0][0] +
-	      M1[1][0] * M2[1][0] +
-	      M1[2][0] * M2[2][0]);
-  Mr[1][0] = (M1[0][1] * M2[0][0] +
-	      M1[1][1] * M2[1][0] +
-	      M1[2][1] * M2[2][0]);
-  Mr[2][0] = (M1[0][2] * M2[0][0] +
-	      M1[1][2] * M2[1][0] +
-	      M1[2][2] * M2[2][0]);
-  Mr[0][1] = (M1[0][0] * M2[0][1] +
-	      M1[1][0] * M2[1][1] +
-	      M1[2][0] * M2[2][1]);
-  Mr[1][1] = (M1[0][1] * M2[0][1] +
-	      M1[1][1] * M2[1][1] +
- 	      M1[2][1] * M2[2][1]);
-  Mr[2][1] = (M1[0][2] * M2[0][1] +
-	      M1[1][2] * M2[1][1] +
-	      M1[2][2] * M2[2][1]);
-  Mr[0][2] = (M1[0][0] * M2[0][2] +
-	      M1[1][0] * M2[1][2] +
-	      M1[2][0] * M2[2][2]);
-  Mr[1][2] = (M1[0][1] * M2[0][2] +
-	      M1[1][1] * M2[1][2] +
-	      M1[2][1] * M2[2][2]);
-  Mr[2][2] = (M1[0][2] * M2[0][2] +
-	      M1[1][2] * M2[1][2] +
-	      M1[2][2] * M2[2][2]);
-}
-
-inline
-void
-MxV(PQP_REAL Vr[3], const PQP_REAL M1[3][3], const PQP_REAL V1[3])
-{
-  Vr[0] = (M1[0][0] * V1[0] +
-	   M1[0][1] * V1[1] + 
-	   M1[0][2] * V1[2]);
-  Vr[1] = (M1[1][0] * V1[0] +
-	   M1[1][1] * V1[1] + 
-	   M1[1][2] * V1[2]);
-  Vr[2] = (M1[2][0] * V1[0] +
-	   M1[2][1] * V1[1] + 
-	   M1[2][2] * V1[2]);
-}
-
-
-inline
-void
-MxVpV(PQP_REAL Vr[3], const PQP_REAL M1[3][3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = (M1[0][0] * V1[0] +
-	   M1[0][1] * V1[1] + 
-	   M1[0][2] * V1[2] + 
-	   V2[0]);
-  Vr[1] = (M1[1][0] * V1[0] +
-	   M1[1][1] * V1[1] + 
-	   M1[1][2] * V1[2] + 
-	   V2[1]);
-  Vr[2] = (M1[2][0] * V1[0] +
-	   M1[2][1] * V1[1] + 
-	   M1[2][2] * V1[2] + 
-	   V2[2]);
-}
-
-
-inline
-void
-sMxVpV(PQP_REAL Vr[3], PQP_REAL s1, const PQP_REAL M1[3][3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = s1 * (M1[0][0] * V1[0] +
-		M1[0][1] * V1[1] + 
-		M1[0][2] * V1[2]) +
-		V2[0];
-  Vr[1] = s1 * (M1[1][0] * V1[0] +
-		M1[1][1] * V1[1] + 
-		M1[1][2] * V1[2]) + 
-		V2[1];
-  Vr[2] = s1 * (M1[2][0] * V1[0] +
-		M1[2][1] * V1[1] + 
-		M1[2][2] * V1[2]) + 
-		V2[2];
-}
-
-inline
-void
-MTxV(PQP_REAL Vr[3], const PQP_REAL M1[3][3], const PQP_REAL V1[3])
-{
-  Vr[0] = (M1[0][0] * V1[0] +
-	   M1[1][0] * V1[1] + 
-	   M1[2][0] * V1[2]); 
-  Vr[1] = (M1[0][1] * V1[0] +
-	   M1[1][1] * V1[1] + 
-	   M1[2][1] * V1[2]);
-  Vr[2] = (M1[0][2] * V1[0] +
-	   M1[1][2] * V1[1] + 
-	   M1[2][2] * V1[2]); 
-}
-
-inline
-void
-sMTxV(PQP_REAL Vr[3], PQP_REAL s1, const PQP_REAL M1[3][3], const PQP_REAL V1[3])
-{
-  Vr[0] = s1*(M1[0][0] * V1[0] +
-	      M1[1][0] * V1[1] + 
-	      M1[2][0] * V1[2]); 
-  Vr[1] = s1*(M1[0][1] * V1[0] +
-	      M1[1][1] * V1[1] + 
-	      M1[2][1] * V1[2]);
-  Vr[2] = s1*(M1[0][2] * V1[0] +
-	      M1[1][2] * V1[1] + 
-	      M1[2][2] * V1[2]); 
-}
-
-inline
-void
-sMxV(PQP_REAL Vr[3], PQP_REAL s1, const PQP_REAL M1[3][3], const PQP_REAL V1[3])
-{
-  Vr[0] = s1*(M1[0][0] * V1[0] +
-	      M1[0][1] * V1[1] + 
-	      M1[0][2] * V1[2]); 
-  Vr[1] = s1*(M1[1][0] * V1[0] +
-	      M1[1][1] * V1[1] + 
-	      M1[1][2] * V1[2]);
-  Vr[2] = s1*(M1[2][0] * V1[0] +
-	      M1[2][1] * V1[1] + 
-	      M1[2][2] * V1[2]); 
-}
-
-
-inline
-void
-VmV(PQP_REAL Vr[3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = V1[0] - V2[0];
-  Vr[1] = V1[1] - V2[1];
-  Vr[2] = V1[2] - V2[2];
-}
-
-inline
-void
-VpV(PQP_REAL Vr[3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = V1[0] + V2[0];
-  Vr[1] = V1[1] + V2[1];
-  Vr[2] = V1[2] + V2[2];
-}
-
-inline
-void
-VpVxS(PQP_REAL Vr[3], const PQP_REAL V1[3], const PQP_REAL V2[3], PQP_REAL s)
-{
-  Vr[0] = V1[0] + V2[0] * s;
-  Vr[1] = V1[1] + V2[1] * s;
-  Vr[2] = V1[2] + V2[2] * s;
-}
-
-inline 
-void
-MskewV(PQP_REAL M[3][3], const PQP_REAL v[3])
-{
-  M[0][0] = M[1][1] = M[2][2] = 0.0;
-  M[1][0] = v[2];
-  M[0][1] = -v[2];
-  M[0][2] = v[1];
-  M[2][0] = -v[1];
-  M[1][2] = -v[0];
-  M[2][1] = v[0];
-}
-
-
-inline
-void
-VcrossV(PQP_REAL Vr[3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = V1[1]*V2[2] - V1[2]*V2[1];
-  Vr[1] = V1[2]*V2[0] - V1[0]*V2[2];
-  Vr[2] = V1[0]*V2[1] - V1[1]*V2[0];
-}
-
-
-inline
-PQP_REAL
-Vlength(PQP_REAL V[3])
-{
-  return sqrt(V[0]*V[0] + V[1]*V[1] + V[2]*V[2]);
-}
-
-inline
-void
-Vnormalize(PQP_REAL V[3])
-{
-  PQP_REAL d = (PQP_REAL)1.0 / sqrt(V[0]*V[0] + V[1]*V[1] + V[2]*V[2]);
-  V[0] *= d;
-  V[1] *= d;
-  V[2] *= d;
-}
-
-
-inline
-PQP_REAL
-VdotV(const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  return (V1[0]*V2[0] + V1[1]*V2[1] + V1[2]*V2[2]);
-}
-
-
-inline
-PQP_REAL
-VdistV2(const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  return ( (V1[0]-V2[0]) * (V1[0]-V2[0]) + 
-	   (V1[1]-V2[1]) * (V1[1]-V2[1]) + 
-	   (V1[2]-V2[2]) * (V1[2]-V2[2]));
-}
-
-inline
-void
-VxS(PQP_REAL Vr[3], const PQP_REAL V[3], PQP_REAL s)
-{
-  Vr[0] = V[0] * s;
-  Vr[1] = V[1] * s;
-  Vr[2] = V[2] * s;
-}
-
-inline
-void
-MRotZ(PQP_REAL Mr[3][3], PQP_REAL t)
-{
-  Mr[0][0] = cos(t);
-  Mr[1][0] = sin(t);
-  Mr[0][1] = -Mr[1][0];
-  Mr[1][1] = Mr[0][0];
-  Mr[2][0] = Mr[2][1] = 0.0;
-  Mr[0][2] = Mr[1][2] = 0.0;
-  Mr[2][2] = 1.0;
-}
-
-
-inline
-void
-MRotX(PQP_REAL Mr[3][3], PQP_REAL t)
-{
-  Mr[1][1] = cos(t);
-  Mr[2][1] = sin(t);
-  Mr[1][2] = -Mr[2][1];
-  Mr[2][2] = Mr[1][1];
-  Mr[0][1] = Mr[0][2] = 0.0;
-  Mr[1][0] = Mr[2][0] = 0.0;
-  Mr[0][0] = 1.0;
-}
-
-inline
-void
-MRotY(PQP_REAL Mr[3][3], PQP_REAL t)
-{
-  Mr[2][2] = cos(t);
-  Mr[0][2] = sin(t);
-  Mr[2][0] = -Mr[0][2];
-  Mr[0][0] = Mr[2][2];
-  Mr[1][2] = Mr[1][0] = 0.0;
-  Mr[2][1] = Mr[0][1] = 0.0;
-  Mr[1][1] = 1.0;
-}
-
-inline
-void
-MVtoOGL(double oglm[16], const PQP_REAL R[3][3], const PQP_REAL T[3])
-{
-  oglm[0] = (double)R[0][0]; 
-  oglm[1] = (double)R[1][0]; 
-  oglm[2] = (double)R[2][0]; 
-  oglm[3] = 0.0;
-  oglm[4] = (double)R[0][1]; 
-  oglm[5] = (double)R[1][1];
-  oglm[6] = (double)R[2][1];
-  oglm[7] = 0.0;
-  oglm[8] = (double)R[0][2];
-  oglm[9] = (double)R[1][2];
-  oglm[10] = (double)R[2][2];
-  oglm[11] = 0.0;
-  oglm[12] = (double)T[0];
-  oglm[13] = (double)T[1];
-  oglm[14] = (double)T[2];
-  oglm[15] = 1.0;
-}
-
-inline 
-void
-OGLtoMV(PQP_REAL R[3][3], PQP_REAL T[3], const double oglm[16])
-{
-  R[0][0] = (PQP_REAL)oglm[0];
-  R[1][0] = (PQP_REAL)oglm[1];
-  R[2][0] = (PQP_REAL)oglm[2];
-
-  R[0][1] = (PQP_REAL)oglm[4];
-  R[1][1] = (PQP_REAL)oglm[5];
-  R[2][1] = (PQP_REAL)oglm[6];
-
-  R[0][2] = (PQP_REAL)oglm[8];
-  R[1][2] = (PQP_REAL)oglm[9];
-  R[2][2] = (PQP_REAL)oglm[10];
-
-  T[0] = (PQP_REAL)oglm[12];
-  T[1] = (PQP_REAL)oglm[13];
-  T[2] = (PQP_REAL)oglm[14];
-}
-
-// taken from quatlib, written by Richard Holloway
-const int QX = 0;
-const int QY = 1;
-const int QZ = 2;
-const int QW = 3;
-
-inline
-void 
-MRotQ(PQP_REAL destMatrix[3][3], PQP_REAL srcQuat[4])
-{
-  PQP_REAL  s;
-  PQP_REAL  xs, ys, zs,
-    	    wx, wy, wz,
-	        xx, xy, xz,
-	        yy, yz, zz;
-
-  /* 
-   * For unit srcQuat, just set s = 2.0; or set xs = srcQuat[QX] + 
-   *   srcQuat[QX], etc. 
-   */
-
-  s = (PQP_REAL)2.0 / (srcQuat[QX]*srcQuat[QX] + srcQuat[QY]*srcQuat[QY] + 
-    	     srcQuat[QZ]*srcQuat[QZ] + srcQuat[QW]*srcQuat[QW]);
-
-  xs = srcQuat[QX] * s;   ys = srcQuat[QY] * s;   zs = srcQuat[QZ] * s;
-  wx = srcQuat[QW] * xs;  wy = srcQuat[QW] * ys;  wz = srcQuat[QW] * zs;
-  xx = srcQuat[QX] * xs;  xy = srcQuat[QX] * ys;  xz = srcQuat[QX] * zs;
-  yy = srcQuat[QY] * ys;  yz = srcQuat[QY] * zs;  zz = srcQuat[QZ] * zs;
-
-  destMatrix[QX][QX] = (PQP_REAL)1.0 - (yy + zz);
-  destMatrix[QX][QY] = xy + wz;
-  destMatrix[QX][QZ] = xz - wy;
-
-  destMatrix[QY][QX] = xy - wz;
-  destMatrix[QY][QY] = (PQP_REAL)1.0 - (xx + zz);
-  destMatrix[QY][QZ] = yz + wx;
-
-  destMatrix[QZ][QX] = xz + wy;
-  destMatrix[QZ][QY] = yz - wx;
-  destMatrix[QZ][QZ] = (PQP_REAL)1.0 - (xx + yy);
-} 
-
-inline
-void
-Mqinverse(PQP_REAL Mr[3][3], PQP_REAL m[3][3])
-{
-  int i,j;
-
-  for(i=0; i<3; i++)
-    for(j=0; j<3; j++)
-    {
-      int i1 = (i+1)%3;
-      int i2 = (i+2)%3;
-      int j1 = (j+1)%3;
-      int j2 = (j+2)%3;
-      Mr[i][j] = (m[j1][i1]*m[j2][i2] - m[j1][i2]*m[j2][i1]);
-    }
-}
-
-// Meigen from Numerical Recipes in C
-
-#if 0
-
-#define rfabs(x) ((x < 0) ? -x : x)
-
-#define ROT(a,i,j,k,l) g=a[i][j]; h=a[k][l]; a[i][j]=g-s*(h+g*tau); a[k][l]=h+s*(g-h*tau);
-
-int
-inline
-Meigen(PQP_REAL vout[3][3], PQP_REAL dout[3], PQP_REAL a[3][3])
-{
-  int i;
-  PQP_REAL tresh,theta,tau,t,sm,s,h,g,c;
-  int nrot;
-  PQP_REAL b[3];
-  PQP_REAL z[3];
-  PQP_REAL v[3][3];
-  PQP_REAL d[3];
-
-  v[0][0] = v[1][1] = v[2][2] = 1.0;
-  v[0][1] = v[1][2] = v[2][0] = 0.0;
-  v[0][2] = v[1][0] = v[2][1] = 0.0;
-  
-  b[0] = a[0][0]; d[0] = a[0][0]; z[0] = 0.0;
-  b[1] = a[1][1]; d[1] = a[1][1]; z[1] = 0.0;
-  b[2] = a[2][2]; d[2] = a[2][2]; z[2] = 0.0;
-
-  nrot = 0;
-
-  
-  for(i=0; i<50; i++)
-    {
-
-      printf("2\n");
-
-      sm=0.0; sm+=fabs(a[0][1]); sm+=fabs(a[0][2]); sm+=fabs(a[1][2]);
-      if (sm == 0.0) { McM(vout,v); VcV(dout,d); return i; }
-      
-      if (i < 3) tresh=0.2*sm/(3*3); else tresh=0.0;
-      
-      {
-	g = 100.0*rfabs(a[0][1]);  
-	if (i>3 && rfabs(d[0])+g==rfabs(d[0]) && rfabs(d[1])+g==rfabs(d[1]))
-	  a[0][1]=0.0;
-	else if (rfabs(a[0][1])>tresh)
-	  {
-	    h = d[1]-d[0];
-	    if (rfabs(h)+g == rfabs(h)) t=(a[0][1])/h;
-	    else
-	      {
-		theta=0.5*h/(a[0][1]);
-		t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
-		if (theta < 0.0) t = -t;
-	      }
-	    c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[0][1];
-	    z[0] -= h; z[1] += h; d[0] -= h; d[1] += h;
-	    a[0][1]=0.0;
-	    ROT(a,0,2,1,2); ROT(v,0,0,0,1); ROT(v,1,0,1,1); ROT(v,2,0,2,1); 
-	    nrot++;
-	  }
-      }
-
-      {
-	g = 100.0*rfabs(a[0][2]);
-	if (i>3 && rfabs(d[0])+g==rfabs(d[0]) && rfabs(d[2])+g==rfabs(d[2]))
-	  a[0][2]=0.0;
-	else if (rfabs(a[0][2])>tresh)
-	  {
-	    h = d[2]-d[0];
-	    if (rfabs(h)+g == rfabs(h)) t=(a[0][2])/h;
-	    else
-	      {
-		theta=0.5*h/(a[0][2]);
-		t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
-		if (theta < 0.0) t = -t;
-	      }
-	    c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[0][2];
-	    z[0] -= h; z[2] += h; d[0] -= h; d[2] += h;
-	    a[0][2]=0.0;
-	    ROT(a,0,1,1,2); ROT(v,0,0,0,2); ROT(v,1,0,1,2); ROT(v,2,0,2,2); 
-	    nrot++;
-	  }
-      }
-
-
-      {
-	g = 100.0*rfabs(a[1][2]);
-	if (i>3 && rfabs(d[1])+g==rfabs(d[1]) && rfabs(d[2])+g==rfabs(d[2]))
-	  a[1][2]=0.0;
-	else if (rfabs(a[1][2])>tresh)
-	  {
-	    h = d[2]-d[1];
-	    if (rfabs(h)+g == rfabs(h)) t=(a[1][2])/h;
-	    else
-	      {
-		theta=0.5*h/(a[1][2]);
-		t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
-		if (theta < 0.0) t = -t;
-	      }
-	    c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[1][2];
-	    z[1] -= h; z[2] += h; d[1] -= h; d[2] += h;
-	    a[1][2]=0.0;
-	    ROT(a,0,1,0,2); ROT(v,0,1,0,2); ROT(v,1,1,1,2); ROT(v,2,1,2,2); 
-	    nrot++;
-	  }
-      }
-
-      b[0] += z[0]; d[0] = b[0]; z[0] = 0.0;
-      b[1] += z[1]; d[1] = b[1]; z[1] = 0.0;
-      b[2] += z[2]; d[2] = b[2]; z[2] = 0.0;
-      
-    }
-
-  fprintf(stderr, "eigen: too many iterations in Jacobi transform (%d).\n", i);
-
-  return i;
-}
-
-#else
-
-
-
-#define ROTATE(a,i,j,k,l) g=a[i][j]; h=a[k][l]; a[i][j]=g-s*(h+g*tau); a[k][l]=h+s*(g-h*tau);
-
-void
-inline
-Meigen(PQP_REAL vout[3][3], PQP_REAL dout[3], PQP_REAL a[3][3])
-{
-  int n = 3;
-  int j,iq,ip,i;
-  PQP_REAL tresh,theta,tau,t,sm,s,h,g,c;
-  int nrot;
-  PQP_REAL b[3];
-  PQP_REAL z[3];
-  PQP_REAL v[3][3];
-  PQP_REAL d[3];
-  
-  Midentity(v);
-  for(ip=0; ip<n; ip++) 
-    {
-      b[ip] = a[ip][ip];
-      d[ip] = a[ip][ip];
-      z[ip] = 0.0;
-    }
-  
-  nrot = 0;
-  
-  for(i=0; i<50; i++)
-    {
-
-      sm=0.0;
-      for(ip=0;ip<n;ip++) for(iq=ip+1;iq<n;iq++) sm+=fabs(a[ip][iq]);
-      if (sm == 0.0)
-	{
-	  McM(vout, v);
-	  VcV(dout, d);
-	  return;
-	}
-      
-      
-      if (i < 3) tresh=(PQP_REAL)0.2*sm/(n*n);
-      else tresh=0.0;
-      
-      for(ip=0; ip<n; ip++) for(iq=ip+1; iq<n; iq++)
-	{
-	  g = (PQP_REAL)100.0*fabs(a[ip][iq]);
-	  if (i>3 && 
-	      fabs(d[ip])+g==fabs(d[ip]) && 
-	      fabs(d[iq])+g==fabs(d[iq]))
-	    a[ip][iq]=0.0;
-	  else if (fabs(a[ip][iq])>tresh)
-	    {
-	      h = d[iq]-d[ip];
-	      if (fabs(h)+g == fabs(h)) t=(a[ip][iq])/h;
-	      else
-		{
-		  theta=(PQP_REAL)0.5*h/(a[ip][iq]);
-		  t=(PQP_REAL)(1.0/(fabs(theta)+sqrt(1.0+theta*theta)));
-		  if (theta < 0.0) t = -t;
-		}
-	      c=(PQP_REAL)1.0/sqrt(1+t*t);
-	      s=t*c;
-	      tau=s/((PQP_REAL)1.0+c);
-	      h=t*a[ip][iq];
-	      z[ip] -= h;
-	      z[iq] += h;
-	      d[ip] -= h;
-	      d[iq] += h;
-	      a[ip][iq]=0.0;
-	      for(j=0;j<ip;j++) { ROTATE(a,j,ip,j,iq); } 
-	      for(j=ip+1;j<iq;j++) { ROTATE(a,ip,j,j,iq); } 
-	      for(j=iq+1;j<n;j++) { ROTATE(a,ip,j,iq,j); } 
-	      for(j=0;j<n;j++) { ROTATE(v,j,ip,j,iq); } 
-	      nrot++;
-	    }
-	}
-      for(ip=0;ip<n;ip++)
-	{
-	  b[ip] += z[ip];
-	  d[ip] = b[ip];
-	  z[ip] = 0.0;
-	}
-    }
-
-  fprintf(stderr, "eigen: too many iterations in Jacobi transform.\n");
-
-  return;
-}
-
-
-#endif
-
-#endif
-/* MATVEC_H */
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/bunny.tris b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/bunny.tris
deleted file mode 100644
index 5df21722..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/bunny.tris
+++ /dev/null
@@ -1,8817 +0,0 @@
-2204
--0.61915501 0.44778999 0.11374
--0.65483498 0.44209999 0.23309999
--0.54955502 0.46242001 0.21086
-
--0.67527496 -0.04277 0.26872
--0.69119499 -0.03813 0.21893999
--0.70878502 -0.09154 0.23915001
-
--0.369095 -0.54116001 0.13157
--0.38878502 -0.53153 0.12594
--0.41275501 -0.52455002 0.07158
-
--0.75503502 0.05844 0.12856
--0.73905502 0.04444 0.0987
--0.75351501 0.04522 0.14867
-
--0.66683502 0.43922001 0.22899
--0.65483498 0.44209999 0.23309999
--0.61915501 0.44778999 0.11374
-
-0.100405 0.1927 0.26025
-0.21620501 0.20631001 0.22993
-0.147305 0.21093 0.16179001
-
--0.49363499 0.44341 -0.49014
--0.47512501 0.32431999 -0.07113
--0.51723499 0.35522999 -0.21364
-
--0.33272499 -0.76374001 -0.11234
--0.31717501 -0.73977997 -0.10929
--0.31505501 -0.76257004 -0.12831
-
-0.013465 -0.32881001 0.57973
--0.006605 -0.27245001 0.59221001
--0.042595 -0.29021999 0.57817001
-
--0.478615 0.61969002 -0.45830002
--0.55654499 0.64793999 -0.39986
--0.541525 0.60362999 -0.27988001
-
--0.69841499 -0.28159 0.17025999
--0.67350502 -0.31801001 0.21348
--0.70689499 -0.24051001 0.17004999
-
--0.53543499 0.41438 -0.43537998
--0.52343498 0.42028999 -0.45174999
--0.52669498 0.41201 -0.43175999
-
--0.73406502 0.22117001 0.0777
--0.69706497 0.27559999 0.04741
--0.67165497 0.20761999 -0.01075
-
-0.032965 0.15014 0.30976
-0.119035 0.13868 0.35504002
-0.100405 0.1927 0.26025
-
--0.48884499 0.70297997 -0.56327
--0.543125 0.70637001 -0.51022999
--0.478615 0.61969002 -0.45830002
-
--0.56956501 0.37901001 0.42835999
--0.62949501 0.42409 0.33152
--0.62565498 0.37287998 0.41800999
-
--0.69841499 -0.28159 0.17025999
--0.67290497 -0.32478001 0.06036
--0.67019501 -0.33046001 0.17235001
-
-0.26532499 0.11682 0.36832001
-0.279865 0.18177999 0.28193001
-0.185485 0.15646 0.33446999
-
-0.100405 0.1927 0.26025
-0.19949499 0.18938999 0.2817
-0.21620501 0.20631001 0.22993
-
--0.051545 0.75455002 -0.12812
--0.075495 0.73363998 -0.09516
--0.036455 0.74396004 -0.12342
-
--0.085275 0.1548 0.17931
--0.087935 0.12239 0.26698
-0.014575 0.18521999 0.18579
-
-0.100405 0.1927 0.26025
-0.147305 0.21093 0.16179001
-0.014575 0.18521999 0.18579
-
--0.440755 0.59640999 -0.59333
--0.43966499 0.60813999 -0.59201
--0.44141499 0.60801998 -0.58164001
-
-0.068505 0.67084 -0.27976999
-0.073585 0.64028999 -0.27017
-0.046245 0.64051003 -0.26128
-
--0.722985 0.29028 0.13737
--0.65177498 0.38554001 0.03709
--0.685625 0.31711 0.06703
-
--0.53012501 0.29573 0.48049
--0.59655499 0.21528 0.54181
--0.52195499 0.23915001 0.49179001
-
--0.49343498 0.53766998 -0.56959999
--0.46016499 0.52960999 -0.57521999
--0.49435501 0.49361 -0.54973999
-
-0.62454498 -0.39271999 0.04435
-0.59800499 -0.28384001 -0.03253
-0.616395 -0.19808001 0.01714
-
--0.40461498 0.42754002 0.32105999
--0.45004501 0.41863998 0.36409
--0.43137501 0.38099998 0.37743
-
--0.62663502 0.17285 0.54678001
--0.59655499 0.21528 0.54181
--0.65234497 0.19790001 0.53490002
-
--0.59655499 0.21528 0.54181
--0.60633499 0.29861 0.49606998
--0.65054497 0.23882 0.51790001
-
-0.63150501 -0.32306999 0.09721
-0.62454498 -0.39271999 0.04435
-0.616395 -0.19808001 0.01714
-
--0.087935 0.12239 0.26698
-0.100405 0.1927 0.26025
-0.014575 0.18521999 0.18579
-
--0.40461498 0.42754002 0.32105999
--0.38591499 0.35167 0.31952
--0.36774502 0.40701 0.25933001
-
--0.62663502 0.17285 0.54678001
--0.59962502 0.11646 0.54145
--0.59655499 0.21528 0.54181
-
--0.48044498 -0.07672 -0.15554
--0.40962502 -0.24707001 -0.19660999
--0.39932499 -0.27525 -0.19733
-
--0.67873497 0.42423 0.10789
--0.61915501 0.44778999 0.11374
--0.65177498 0.41154999 0.04812
-
--0.71519501 -0.22723 0.07012
--0.68001503 -0.24351 -0.00998
--0.63365501 -0.34187 -0.01984
-
--0.112925 0.44946999 -0.01904
--0.29133499 0.43453999 0.10392
--0.28335501 0.37535999 0.07935
-
-0.20192499 0.21209999 0.08168
-0.267075 0.20905001 0.1627
-0.30644501 0.19247999 0.06287
-
--0.31738501 0.43448002 0.11911
--0.049325 0.62575001 -0.12564
--0.112215 0.62556 -0.07594
-
--0.50442501 0.51681 -0.12221
--0.497005 0.44953999 -0.01774
--0.462285 0.43570999 -0.09058
-
-0.147305 0.21093 0.16179001
-0.21620501 0.20631001 0.22993
-0.267075 0.20905001 0.1627
-
--0.38455502 -0.62816002 0.13858
--0.35919498 -0.65380997 0.20221001
--0.334715 -0.61401001 0.18212
-
--0.17445499 -0.76107002 0.26183001
--0.189415 -0.75043999 0.19530001
--0.18321501 -0.75733002 0.1487
-
--0.43966499 0.60813999 -0.59201
--0.440755 0.59640999 -0.59333
--0.43943501 0.61122002 -0.59380001
-
--0.68663498 0.30483 0.43856998
--0.66231499 0.29212999 0.47123001
--0.62565498 0.37287998 0.41800999
-
--0.58244499 0.64759003 -0.39550999
--0.541525 0.60362999 -0.27988001
--0.55654499 0.64793999 -0.39986
-
-0.61706501 -0.15582 0.06717
-0.63150501 -0.32306999 0.09721
-0.616395 -0.19808001 0.01714
-
-0.119035 0.13868 0.35504002
-0.185485 0.15646 0.33446999
-0.19949499 0.18938999 0.2817
-
--0.439925 0.61355999 -0.59553001
--0.44219501 0.62398998 -0.59071999
--0.43966499 0.60813999 -0.59201
-
--0.297925 -0.53887001 -0.09417
--0.26883499 -0.37657001 -0.16448
--0.238365 -0.47976002 -0.11273
-
--0.67350502 -0.31801001 0.21348
--0.65677498 -0.28486 0.31427999
--0.71858498 -0.18570999 0.23955999
-
--0.445825 0.62064999 -0.60304001
--0.44350498 0.63459 -0.59969002
--0.439925 0.61355999 -0.59553001
-
-0.36023499 -0.12728 -0.21188999
-0.38315498 -0.105 -0.19958
-0.44883499 -0.17316 -0.18752001
-
-0.004935 0.49839001 -0.08707
--0.112925 0.44946999 -0.01904
--0.34072498 0.34067001 0.0194
-
--0.52690498 0.36866001 0.4325
--0.56956501 0.37901001 0.42835999
--0.60633499 0.29861 0.49606998
-
--0.722985 0.29028 0.13737
--0.69845497 0.34506001 0.09724
--0.65177498 0.38554001 0.03709
-
-0.21620501 0.20631001 0.22993
-0.31116501 0.18573 0.23601
-0.267075 0.20905001 0.1627
-
--0.53012501 0.29573 0.48049
--0.52690498 0.36866001 0.4325
--0.60633499 0.29861 0.49606998
-
-0.66172501 -0.52612 -0.03485
-0.66172501 -0.51227001 -0.03209
-0.701595 -0.51362999 -0.01377
-
--0.27186501 0.17989 0.1998
--0.28657499 0.21525999 0.16419001
--0.318915 0.22754999 0.2701
-
--0.096095 0.71514 -0.06997
--0.236595 0.58076 0.04404
--0.166485 0.62580002 -0.00026
-
-0.38503502 0.15941 0.19188999
-0.41226501 0.13985 0.08791
-0.30644501 0.19247999 0.06287
-
-0.046245 0.64051003 -0.26128
--0.027095 0.51598 -0.13203
--0.048255 0.52195999 -0.13641
-
-0.059645 0.68377998 -0.28246
-0.068505 0.67084 -0.27976999
-0.046245 0.64051003 -0.26128
-
--0.44495499 0.61160999 -0.60196999
--0.45517502 0.62153999 -0.60337002
--0.445825 0.62064999 -0.60304001
-
--0.040395 -0.02881 -0.20667999
-0.027045 -0.06751 -0.21985001
-0.074325 -0.09863 -0.22704
-
-0.100405 0.1927 0.26025
-0.119035 0.13868 0.35504002
-0.19949499 0.18938999 0.2817
-
-0.17338499 -0.16284 0.56652
-0.223505 -0.23148001 0.58157001
-0.25977501 -0.2282 0.57007
-
--0.52043499 0.07819 -0.06974
--0.43113499 0.13668 -0.06854
--0.43526501 0.09176 -0.08455
-
--0.551175 -0.15953 0.43046001
--0.50651501 -0.10104 0.42856998
--0.57303501 -0.09277 0.39316002
-
-0.63273499 -0.64609001 0.00875
-0.63202499 -0.59748001 -0.03384
-0.68647499 -0.58339001 -0.0017
-
--0.50564499 -0.26843 0.44533001
--0.44656502 -0.19707001 0.46938
--0.51212502 -0.2273 0.45049999
-
-0.143465 0.09524 0.39535999
-0.119035 0.13868 0.35504002
-0.013225 0.0811 0.38118
-
-0.093335 -0.54011002 0.55001999
-0.133365 -0.51195999 0.55555
-0.093385 -0.48191002 0.57638
-
-0.26328501 -0.13812 0.51595001
-0.25977501 -0.2282 0.57007
-0.27328501 -0.16485001 0.53637001
-
-0.26328501 -0.13812 0.51595001
-0.27328501 -0.16485001 0.53637001
-0.327005 -0.16132 0.50963001
-
-0.61706501 -0.15582 0.06717
-0.58518501 -0.07291 0.16698
-0.61038502 -0.18419001 0.23695999
-
-0.32314499 0.16155001 -0.00588
-0.232845 0.19128 0.00246
-0.30644501 0.19247999 0.06287
-
--0.74736504 0.31806 0.17700001
--0.72976501 0.37284 0.12714
--0.69845497 0.34506001 0.09724
-
--0.32939499 -0.58321999 0.36421001
--0.296705 -0.61009998 0.40333
--0.256665 -0.55305 0.4109
-
--0.51212502 -0.2273 0.45049999
--0.44656502 -0.19707001 0.46938
--0.55939499 -0.21372999 0.42647999
-
--0.522085 0.42964001 -0.46967999
--0.52343498 0.42028999 -0.45174999
--0.52310501 0.42203999 -0.45536999
-
-0.56855499 -0.27214001 -0.1024
-0.595695 -0.19973 -0.04273
-0.59800499 -0.28384001 -0.03253
-
--0.106735 0.07859 0.32783001
-0.013225 0.0811 0.38118
-0.032965 0.15014 0.30976
-
--0.50564499 -0.26843 0.44533001
--0.51212502 -0.2273 0.45049999
--0.54116501 -0.33391998 0.39556
-
--0.65483498 0.44209999 0.23309999
--0.567505 0.44047001 0.32217999
--0.54955502 0.46242001 0.21086
-
--0.446595 -0.28271999 0.45134998
--0.50564499 -0.26843 0.44533001
--0.437295 -0.37362999 0.41646999
-
-0.26304501 -0.48462002 0.55549999
-0.163435 -0.53869999 0.56303001
-0.263435 -0.55469002 0.54113998
-
-0.182565 -0.11096 0.51632
-0.154285 -0.09136 0.45977001
-0.079635 -0.11564 0.52494999
-
--0.150585 -0.30923 -0.29997999
--0.119055 -0.34823002 -0.33359001
--0.107915 -0.53838001 -0.23878
-
--0.49363499 0.44341 -0.49014
--0.49435501 0.49361 -0.54973999
--0.46016499 0.52960999 -0.57521999
-
--0.45953499 0.45066002 -0.34074001
--0.44795502 0.48275002 -0.23052
--0.45510502 0.35847 -0.05053
-
-0.583465 -0.60224998 0.34046001
-0.55329498 -0.58823002 0.33521
-0.49892502 -0.66067001 0.30966
-
--0.35919498 -0.65380997 0.20221001
--0.404995 -0.67698997 0.19254
--0.41561501 -0.69004997 0.22243999
-
--0.722985 0.29028 0.13737
--0.74114502 0.29077999 0.20722
--0.74736504 0.31806 0.17700001
-
--0.49363499 0.44341 -0.49014
--0.45953499 0.45066002 -0.34074001
--0.47512501 0.32431999 -0.07113
-
--0.50564499 -0.26843 0.44533001
--0.446595 -0.28271999 0.45134998
--0.44656502 -0.19707001 0.46938
-
--0.38665501 -0.15554 0.46
--0.436525 -0.08632 0.43841
--0.44656502 -0.19707001 0.46938
-
-0.053215 -0.32796001 0.58986
-0.133395 -0.34088001 0.60337002
-0.043465 -0.23129 0.58570999
-
-0.293375 0.02494 0.40310001
-0.32342499 -0.00259 0.41494999
-0.37462502 0.09203 0.35064999
-
-0.293375 0.02494 0.40310001
-0.23304501 0.00794 0.42648998
-0.154285 -0.09136 0.45977001
-
--0.436525 -0.08632 0.43841
--0.551175 -0.15953 0.43046001
--0.44656502 -0.19707001 0.46938
-
-0.136995 -0.12943 0.54544998
-0.182745 -0.12148 0.53138
-0.182565 -0.11096 0.51632
-
--0.437295 -0.37362999 0.41646999
--0.37656502 -0.29565001 0.46369999
--0.446595 -0.28271999 0.45134998
-
-0.035725 -0.09047 0.45244999
-0.079635 -0.11564 0.52494999
-0.154285 -0.09136 0.45977001
-
-0.262635 -0.34882 0.57363998
-0.276035 -0.42984001 0.55702
-0.336675 -0.44263 0.52173
-
--0.47702499 -0.74514 -0.06318
--0.52946499 -0.75737999 -0.02987
--0.50606499 -0.70516998 -0.03412
-
--0.37656502 -0.29565001 0.46369999
--0.33655499 -0.23921 0.47109001
--0.446595 -0.28271999 0.45134998
-
--0.436525 -0.08632 0.43841
--0.50651501 -0.10104 0.42856998
--0.551175 -0.15953 0.43046001
-
-0.103425 -0.39764999 0.58700001
-0.17356501 -0.39825001 0.58146
-0.153475 -0.35493 0.60167
-
-0.153435 -0.64473 0.48566002
-0.19356501 -0.64248001 0.49592999
-0.203395 -0.59640999 0.54062
-
-0.153435 -0.64473 0.48566002
-0.203395 -0.59640999 0.54062
-0.153405 -0.58124001 0.55702
-
--0.41656502 -0.18295 0.46936001
--0.44656502 -0.19707001 0.46938
--0.446595 -0.28271999 0.45134998
-
-0.103425 -0.39764999 0.58700001
-0.133395 -0.34088001 0.60337002
-0.053215 -0.32796001 0.58986
-
-0.293375 0.02494 0.40310001
-0.37462502 0.09203 0.35064999
-0.26532499 0.11682 0.36832001
-
--0.53415501 0.42109001 -0.44837002
--0.531875 0.43505001 -0.47442001
--0.52310501 0.42203999 -0.45536999
-
--0.192925 0.12158 0.28837999
--0.106735 0.07859 0.32783001
--0.138135 0.15368 0.18959999
-
--0.297925 -0.53887001 -0.09417
--0.157915 -0.5673 -0.08973
--0.24751499 -0.60999001 -0.0966
-
--0.116545 0.01205 -0.16351999
--0.160285 -0.07244 -0.20541
--0.190415 -0.01619 -0.18384001
-
--0.436525 -0.08632 0.43841
--0.38654499 -0.07216 0.43530998
--0.336605 -0.00365 0.39479
-
--0.42501499 0.0966 0.42016998
--0.44178501 0.09654 0.43144001
--0.44835499 0.03677 0.38549
-
-0.37462502 0.09203 0.35064999
-0.368885 0.12605 0.31459999
-0.29845501 0.12968 0.34632999
-
--0.406185 -0.64178001 0.44240002
--0.40703499 -0.68030998 0.47273998
--0.35189499 -0.67195 0.46866001
-
--0.46279499 0.65877998 -0.53924999
--0.48884499 0.70297997 -0.56327
--0.478615 0.61969002 -0.45830002
-
--0.49119499 0.00697 0.39306
--0.436525 -0.08632 0.43841
--0.336605 -0.00365 0.39479
-
-0.053525 -0.59877998 0.51932999
-0.153435 -0.64473 0.48566002
-0.153405 -0.58124001 0.55702
-
--0.43119499 -0.63069 0.39651001
--0.45441502 -0.64302002 0.36220001
--0.46994499 -0.66989998 0.39380001
-
--0.083505 0.68447998 -0.17287001
--0.073375 0.61046001 -0.18223
--0.18282499 0.59498001 -0.13044
-
--0.41656502 -0.18295 0.46936001
--0.446595 -0.28271999 0.45134998
--0.33655499 -0.23921 0.47109001
-
--0.430355 -0.10442 -0.17239
--0.420495 -0.13227 -0.18625
--0.40962502 -0.24707001 -0.19660999
-
-0.203305 0.06761 0.41046001
-0.23304501 0.00794 0.42648998
-0.293375 0.02494 0.40310001
-
-0.57196499 -0.49865002 0.31608
-0.59136501 -0.44555 0.29172001
-0.57273499 -0.37573002 0.33617001
-
--0.141445 -0.71961998 0.33926998
--0.129625 -0.75866997 0.17889999
--0.097395 -0.72411003 0.17242001
-
-0.74039497 -0.56462002 0.06716
-0.757565 -0.47983002 0.05688
-0.77457497 -0.49212002 0.10691
-
-0.046245 0.64051003 -0.26128
-0.066055 0.59167999 -0.23388
--0.027095 0.51598 -0.13203
-
--0.33655499 -0.23921 0.47109001
--0.37656502 -0.29565001 0.46369999
--0.326595 -0.31034 0.45616001
-
--0.44656502 -0.19707001 0.46938
--0.41656502 -0.18295 0.46936001
--0.38665501 -0.15554 0.46
-
--0.406535 0.02358 0.37558998
--0.33633499 0.03778 0.36269001
--0.343685 0.08148 0.34409
-
-0.26532499 0.11682 0.36832001
-0.185485 0.15646 0.33446999
-0.143465 0.09524 0.39535999
-
-0.154285 -0.09136 0.45977001
-0.253855 -0.08411 0.48338001
-0.32342499 -0.00259 0.41494999
-
-0.37626499 -0.10669 0.47582001
-0.32317501 -0.0705 0.47466
-0.352155 -0.22743 0.51053001
-
--0.40703499 -0.68030998 0.47273998
--0.363685 -0.71358002 0.48608002
--0.35189499 -0.67195 0.46866001
-
-0.32317501 -0.0705 0.47466
-0.42301498 -0.09387 0.43786999
-0.42587502 -0.0541 0.4068
-
--0.38665501 -0.15554 0.46
--0.41656502 -0.18295 0.46936001
--0.33655499 -0.23921 0.47109001
-
--0.406535 0.02358 0.37558998
--0.49119499 0.00697 0.39306
--0.336605 -0.00365 0.39479
-
-0.103345 -0.42644001 0.57532001
-0.17356501 -0.39825001 0.58146
-0.103425 -0.39764999 0.58700001
-
--0.326595 -0.31034 0.45616001
--0.306675 -0.36883999 0.43159
--0.24657499 -0.24148001 0.44134998
-
-0.55329498 -0.58823002 0.33521
-0.52557499 -0.56825001 0.33627998
-0.49892502 -0.66067001 0.30966
-
-0.63363499 -0.56191002 0.33492001
-0.59330502 -0.54569 0.33654999
-0.583465 -0.60224998 0.34046001
-
-0.143455 0.01272 0.43963001
-0.093525 -0.02874 0.45459
-0.154285 -0.09136 0.45977001
-
--0.34806499 -0.62027 0.40410999
--0.354585 -0.59728001 0.33195
--0.39304501 -0.61914001 0.39880001
-
--0.30634501 -0.15582 0.45601002
--0.306255 -0.14151 0.45530998
--0.38665501 -0.15554 0.46
-
--0.306255 -0.14151 0.45530998
--0.38654499 -0.07216 0.43530998
--0.38665501 -0.15554 0.46
-
-0.327005 -0.16132 0.50963001
-0.33553501 -0.21408001 0.52173
-0.352155 -0.22743 0.51053001
-
--0.74114502 0.29077999 0.20722
--0.72123497 0.26363001 0.29735001
--0.74582497 0.34598999 0.25691
-
--0.74152496 0.38702 0.23667
--0.72732498 0.41339001 0.20645
--0.74042503 0.40042999 0.17667999
-
-0.40009499 -0.18596001 0.49257999
-0.37626499 -0.10669 0.47582001
-0.352155 -0.22743 0.51053001
-
-0.583465 -0.60224998 0.34046001
-0.49892502 -0.66067001 0.30966
-0.57481499 -0.63938 0.32445999
-
--0.43943501 0.61122002 -0.59380001
--0.44495499 0.61160999 -0.60196999
--0.439925 0.61355999 -0.59553001
-
--0.336605 -0.00365 0.39479
--0.306255 -0.14151 0.45530998
--0.266535 -0.03076 0.41641998
-
--0.33633499 0.03778 0.36269001
--0.406535 0.02358 0.37558998
--0.336605 -0.00365 0.39479
-
-0.203305 0.06761 0.41046001
-0.143465 0.09524 0.39535999
-0.143455 0.01272 0.43963001
-
--0.49363499 0.44341 -0.49014
--0.52519501 0.43825001 -0.48328999
--0.49435501 0.49361 -0.54973999
-
-0.143465 0.09524 0.39535999
-0.013225 0.0811 0.38118
-0.043555 0.01225 0.43209
-
--0.266625 -0.63647999 0.42265999
--0.296705 -0.61009998 0.40333
--0.35189499 -0.67195 0.46866001
-
--0.306255 -0.14151 0.45530998
--0.246605 -0.2133 0.44130001
--0.216565 -0.08709 0.42601002
-
--0.306255 -0.14151 0.45530998
--0.30634501 -0.15582 0.45601002
--0.246605 -0.2133 0.44130001
-
--0.336605 -0.00365 0.39479
--0.38654499 -0.07216 0.43530998
--0.306255 -0.14151 0.45530998
-
-0.061495 0.71106003 -0.27132
-0.036155 0.71919998 -0.22396
-0.077465 0.65564003 -0.25237
-
--0.51220501 0.43668999 -0.48354
--0.52519501 0.43825001 -0.48328999
--0.49363499 0.44341 -0.49014
-
-0.182565 -0.11096 0.51632
-0.23345501 -0.11154 0.49640999
-0.154285 -0.09136 0.45977001
-
-0.032965 0.15014 0.30976
-0.013225 0.0811 0.38118
-0.119035 0.13868 0.35504002
-
-0.20192499 0.21209999 0.08168
-0.147305 0.21093 0.16179001
-0.267075 0.20905001 0.1627
-
--0.50442501 0.51681 -0.12221
--0.541525 0.60362999 -0.27988001
--0.55648499 0.57926998 -0.21315001
-
--0.30634501 -0.15582 0.45601002
--0.38665501 -0.15554 0.46
--0.33655499 -0.23921 0.47109001
-
-0.293375 0.02494 0.40310001
-0.26532499 0.11682 0.36832001
-0.203305 0.06761 0.41046001
-
-0.153405 -0.58124001 0.55702
-0.163435 -0.53869999 0.56303001
-0.133365 -0.51195999 0.55555
-
--0.296705 -0.61009998 0.40333
--0.34806499 -0.62027 0.40410999
--0.406185 -0.64178001 0.44240002
-
--0.306675 -0.36883999 0.43159
--0.21644501 -0.28254 0.45178001
--0.24657499 -0.24148001 0.44134998
-
--0.266535 -0.03076 0.41641998
--0.216565 -0.08709 0.42601002
--0.236425 0.01018 0.38021999
-
-0.154285 -0.09136 0.45977001
-0.32342499 -0.00259 0.41494999
-0.293375 0.02494 0.40310001
-
--0.72732498 0.41339001 0.20645
--0.67873497 0.42423 0.10789
--0.70818497 0.41217999 0.12753
-
--0.216555 -0.65108002 0.42185001
--0.35189499 -0.67195 0.46866001
--0.363685 -0.71358002 0.48608002
-
--0.256665 -0.55305 0.4109
--0.272745 -0.45799 0.41743
--0.32939499 -0.58321999 0.36421001
-
--0.363685 -0.71358002 0.48608002
--0.37914501 -0.74181999 0.48116001
--0.307395 -0.74459 0.46473999
-
--0.296705 -0.61009998 0.40333
--0.406185 -0.64178001 0.44240002
--0.35189499 -0.67195 0.46866001
-
--0.21657499 -0.42470001 0.43263
--0.256665 -0.55305 0.4109
--0.206465 -0.52480999 0.41360001
-
--0.192925 0.12158 0.28837999
--0.28057501 0.13838 0.25653999
--0.308445 0.09557 0.30705999
-
--0.192925 0.12158 0.28837999
--0.308445 0.09557 0.30705999
--0.33633499 0.03778 0.36269001
-
--0.43411499 -0.75475998 0.44608002
--0.33710499 -0.76268997 0.2824
--0.257085 -0.75538002 0.41583
-
--0.216555 -0.65108002 0.42185001
--0.266625 -0.63647999 0.42265999
--0.35189499 -0.67195 0.46866001
-
--0.216555 -0.65108002 0.42185001
--0.22651501 -0.56736 0.40914001
--0.266625 -0.63647999 0.42265999
-
--0.306675 -0.36883999 0.43159
--0.326595 -0.31034 0.45616001
--0.37656502 -0.29565001 0.46369999
-
--0.246605 -0.2133 0.44130001
--0.30634501 -0.15582 0.45601002
--0.24657499 -0.24148001 0.44134998
-
--0.216565 -0.08709 0.42601002
--0.266535 -0.03076 0.41641998
--0.306255 -0.14151 0.45530998
-
--0.192925 0.12158 0.28837999
--0.33633499 0.03778 0.36269001
--0.236425 0.01018 0.38021999
-
--0.43119499 -0.63069 0.39651001
--0.42884499 -0.63210999 0.34209
--0.45441502 -0.64302002 0.36220001
-
--0.47864498 -0.74934998 0.25862
--0.47838501 -0.72314003 0.26280001
--0.45761501 -0.71341003 0.26252001
-
--0.69706497 0.27559999 0.04741
--0.685625 0.31711 0.06703
--0.62156502 0.28177999 -0.03207
-
--0.363685 -0.71358002 0.48608002
--0.307395 -0.74459 0.46473999
--0.232635 -0.74156998 0.44324001
-
--0.33655499 -0.23921 0.47109001
--0.326595 -0.31034 0.45616001
--0.24657499 -0.24148001 0.44134998
-
--0.206455 -0.16997 0.45382999
--0.146535 -0.15527 0.46143002
--0.136605 -0.09948 0.44941002
-
-0.066055 0.59167999 -0.23388
-0.075975 0.58987 -0.22885
-0.068865 0.56655998 -0.20183001
-
--0.22651501 -0.56736 0.40914001
--0.256665 -0.55305 0.4109
--0.296705 -0.61009998 0.40333
-
--0.306675 -0.36883999 0.43159
--0.21657499 -0.42470001 0.43263
--0.21644501 -0.28254 0.45178001
-
-0.17338499 -0.16284 0.56652
-0.053405 -0.17601 0.57659
-0.223505 -0.23148001 0.58157001
-
--0.54392502 0.40847 -0.42164001
--0.53543499 0.41438 -0.43537998
--0.52669498 0.41201 -0.43175999
-
-0.153405 -0.58124001 0.55702
-0.133365 -0.51195999 0.55555
-0.093335 -0.54011002 0.55001999
-
--0.256665 -0.55305 0.4109
--0.22651501 -0.56736 0.40914001
--0.206465 -0.52480999 0.41360001
-
--0.21644501 -0.28254 0.45178001
--0.246605 -0.2133 0.44130001
--0.24657499 -0.24148001 0.44134998
-
--0.206455 -0.16997 0.45382999
--0.136605 -0.09948 0.44941002
--0.216565 -0.08709 0.42601002
-
--0.216565 -0.08709 0.42601002
--0.136605 -0.09948 0.44941002
--0.096575 0.02365 0.37799999
-
-0.26328501 -0.13812 0.51595001
-0.17338499 -0.16284 0.56652
-0.25977501 -0.2282 0.57007
-
--0.30634501 -0.15582 0.45601002
--0.33655499 -0.23921 0.47109001
--0.24657499 -0.24148001 0.44134998
-
--0.21644501 -0.28254 0.45178001
--0.176625 -0.22690001 0.44397999
--0.206455 -0.16997 0.45382999
-
--0.266535 -0.03076 0.41641998
--0.236425 0.01018 0.38021999
--0.336605 -0.00365 0.39479
-
--0.21657499 -0.42470001 0.43263
--0.16668501 -0.42550999 0.42176998
--0.156665 -0.36923 0.42314999
-
--0.21644501 -0.28254 0.45178001
--0.206455 -0.16997 0.45382999
--0.246605 -0.2133 0.44130001
-
-0.23304501 0.00794 0.42648998
-0.143455 0.01272 0.43963001
-0.154285 -0.09136 0.45977001
-
-0.24317499 -0.62743 0.50932999
-0.203395 -0.59640999 0.54062
-0.19356501 -0.64248001 0.49592999
-
--0.014785 0.14532 -0.02397
--0.060175 0.08937 -0.1052
--0.138675 0.11073 -0.06666
-
--0.216555 -0.65108002 0.42185001
--0.140305 -0.57868999 0.38641998
--0.22651501 -0.56736 0.40914001
-
--0.206465 -0.52480999 0.41360001
--0.22651501 -0.56736 0.40914001
--0.140305 -0.57868999 0.38641998
-
--0.156665 -0.36923 0.42314999
--0.16668501 -0.42550999 0.42176998
--0.116605 -0.52758999 0.38146999
-
--0.156565 -0.18361 0.45839001
--0.146535 -0.15527 0.46143002
--0.206455 -0.16997 0.45382999
-
--0.136605 -0.09948 0.44941002
-0.013225 0.0811 0.38118
--0.096575 0.02365 0.37799999
-
-0.72791496 -0.59351002 0.06742
-0.67806503 -0.65469002 0.13749
-0.67858498 -0.64014999 0.05778
-
--0.044845 -0.65685997 0.5468
--0.043565 -0.73834 0.55035999
-0.065805 -0.69416 0.51382
-
-0.23345501 -0.11154 0.49640999
-0.182745 -0.12148 0.53138
-0.26328501 -0.13812 0.51595001
-
--0.21657499 -0.42470001 0.43263
--0.272745 -0.45799 0.41743
--0.256665 -0.55305 0.4109
-
-0.59330502 -0.54569 0.33654999
-0.64346497 -0.49037998 0.32360001
-0.57196499 -0.49865002 0.31608
-
--0.49023499 0.31427999 -0.06865
--0.54886501 0.33823002 -0.12392
--0.47512501 0.32431999 -0.07113
-
--0.59239498 0.37070999 -0.07326
--0.54886501 0.33823002 -0.12392
--0.54577499 0.32955002 -0.08891
-
--0.22651501 -0.56736 0.40914001
--0.296705 -0.61009998 0.40333
--0.266625 -0.63647999 0.42265999
-
--0.140305 -0.57868999 0.38641998
--0.116605 -0.52758999 0.38146999
--0.206465 -0.52480999 0.41360001
-
-0.25977501 -0.2282 0.57007
-0.276535 -0.21360001 0.55987
-0.27328501 -0.16485001 0.53637001
-
--0.43966499 0.60813999 -0.59201
--0.43943501 0.61122002 -0.59380001
--0.439925 0.61355999 -0.59553001
-
--0.176625 -0.22690001 0.44397999
--0.21644501 -0.28254 0.45178001
--0.156665 -0.36923 0.42314999
-
--0.146535 -0.15527 0.46143002
--0.093355 -0.17006001 0.46999001
--0.136605 -0.09948 0.44941002
-
--0.44350498 0.63459 -0.59969002
--0.45517502 0.62153999 -0.60337002
--0.44495499 0.61160999 -0.60196999
-
--0.137875 -0.2701 0.43911999
--0.116605 -0.52758999 0.38146999
--0.096085 -0.45277 0.41069
-
--0.21644501 -0.28254 0.45178001
--0.21657499 -0.42470001 0.43263
--0.156665 -0.36923 0.42314999
-
--0.176625 -0.22690001 0.44397999
--0.156665 -0.36923 0.42314999
--0.137875 -0.2701 0.43911999
-
--0.136565 -0.18389 0.45653999
--0.137875 -0.2701 0.43911999
--0.119785 -0.23910999 0.46998001
-
--0.137875 -0.2701 0.43911999
--0.136565 -0.18389 0.45653999
--0.156565 -0.18361 0.45839001
-
--0.137875 -0.2701 0.43911999
--0.156565 -0.18361 0.45839001
--0.176625 -0.22690001 0.44397999
-
--0.16668501 -0.42550999 0.42176998
--0.206465 -0.52480999 0.41360001
--0.116605 -0.52758999 0.38146999
-
--0.137875 -0.2701 0.43911999
--0.096085 -0.45277 0.41069
--0.029985 -0.49078999 0.50139999
-
--0.192925 0.12158 0.28837999
--0.236425 0.01018 0.38021999
--0.096575 0.02365 0.37799999
-
--0.106735 0.07859 0.32783001
--0.192925 0.12158 0.28837999
--0.096575 0.02365 0.37799999
-
-0.133395 -0.34088001 0.60337002
-0.223505 -0.23148001 0.58157001
-0.043465 -0.23129 0.58570999
-
-0.253855 -0.08411 0.48338001
-0.23345501 -0.11154 0.49640999
-0.26328501 -0.13812 0.51595001
-
--0.166485 0.62580002 -0.00026
--0.112215 0.62556 -0.07594
--0.036455 0.74396004 -0.12342
-
--0.16668501 -0.42550999 0.42176998
--0.21657499 -0.42470001 0.43263
--0.206465 -0.52480999 0.41360001
-
-0.52557499 -0.56825001 0.33627998
-0.47058498 -0.56601002 0.39771999
-0.465905 -0.63949001 0.35477001
-
--0.156565 -0.18361 0.45839001
--0.136565 -0.18389 0.45653999
--0.146535 -0.15527 0.46143002
-
--0.146535 -0.15527 0.46143002
--0.136565 -0.18389 0.45653999
--0.093355 -0.17006001 0.46999001
-
--0.136605 -0.09948 0.44941002
-0.043555 0.01225 0.43209
-0.013225 0.0811 0.38118
-
--0.236425 0.01018 0.38021999
--0.216565 -0.08709 0.42601002
--0.096575 0.02365 0.37799999
-
-0.069325 0.57973999 -0.17223
-0.060495 0.54880001 -0.17709
-0.068865 0.56655998 -0.20183001
-
-0.145115 -0.74193001 0.48983002
-0.268925 -0.75015999 0.45092999
-0.253395 -0.73496002 0.46985001
-
--0.531875 0.43505001 -0.47442001
--0.522085 0.42964001 -0.46967999
--0.52310501 0.42203999 -0.45536999
-
--0.50442501 0.51681 -0.12221
--0.55648499 0.57926998 -0.21315001
--0.53754501 0.46978001 -0.00341
-
--0.74152496 0.38702 0.23667
--0.74582497 0.34598999 0.25691
--0.72876503 0.31882 0.31702
-
--0.522085 0.42964001 -0.46967999
--0.51220501 0.43668999 -0.48354
--0.51262501 0.42702 -0.46618999
-
--0.246605 -0.2133 0.44130001
--0.206455 -0.16997 0.45382999
--0.216565 -0.08709 0.42601002
-
--0.51262501 0.42702 -0.46618999
--0.51220501 0.43668999 -0.48354
--0.49363499 0.44341 -0.49014
-
--0.136605 -0.09948 0.44941002
--0.093355 -0.17006001 0.46999001
--0.080705 -0.14328 0.45655998
-
-0.163435 -0.53869999 0.56303001
-0.153405 -0.58124001 0.55702
-0.203395 -0.59640999 0.54062
-
-0.185485 0.15646 0.33446999
-0.119035 0.13868 0.35504002
-0.143465 0.09524 0.39535999
-
-0.32342499 -0.00259 0.41494999
-0.253855 -0.08411 0.48338001
-0.32317501 -0.0705 0.47466
-
-0.21620501 0.20631001 0.22993
-0.19949499 0.18938999 0.2817
-0.279865 0.18177999 0.28193001
-
--0.080705 -0.14328 0.45655998
--0.106555 -0.0996 0.45023998
--0.136605 -0.09948 0.44941002
-
--0.036705 -0.58948002 0.47154999
--0.106135 -0.61624001 0.49498001
--0.056445 -0.62691002 0.52630001
-
--0.100065 -0.67837997 0.54858002
--0.106135 -0.61624001 0.49498001
--0.16275499 -0.66514 0.49737
-
--0.056445 -0.62691002 0.52630001
--0.044845 -0.65685997 0.5468
-0.023435 -0.61555 0.49417
-
--0.40218498 -0.59438999 0.01163
--0.41205502 -0.60668999 0.06219
--0.40209499 -0.53867001 0.05158
-
--0.119005 -0.73551003 0.54847
--0.055935 -0.72981003 0.55643002
--0.100065 -0.67837997 0.54858002
-
--0.106135 -0.61624001 0.49498001
--0.036705 -0.58948002 0.47154999
--0.143465 -0.60214001 0.43403999
-
-0.30644501 0.19247999 0.06287
-0.368895 0.14748 0.00937
-0.32314499 0.16155001 -0.00588
-
-0.19949499 0.18938999 0.2817
-0.185485 0.15646 0.33446999
-0.279865 0.18177999 0.28193001
-
-0.21620501 0.20631001 0.22993
-0.279865 0.18177999 0.28193001
-0.31116501 0.18573 0.23601
-
-0.093385 -0.48191002 0.57638
-0.203465 -0.48157001 0.57987
-0.17356501 -0.39825001 0.58146
-
--0.69313499 0.39777 0.31554001
--0.65483498 0.44209999 0.23309999
--0.72732498 0.41339001 0.20645
-
-0.279865 0.18177999 0.28193001
-0.362635 0.14925 0.26934
-0.31116501 0.18573 0.23601
-
--0.029165 -0.1302 0.47558998
--0.029335 -0.10314 0.45814999
--0.106555 -0.0996 0.45023998
-
--0.156585 -0.76415001 0.10611
--0.152885 -0.76372002 0.12453
--0.166565 -0.76378998 0.10376
-
-0.145115 -0.74193001 0.48983002
-0.253395 -0.73496002 0.46985001
-0.242435 -0.69941002 0.47040001
-
-0.093385 -0.48191002 0.57638
-0.133365 -0.51195999 0.55555
-0.203465 -0.48157001 0.57987
-
-0.63363499 -0.56191002 0.33492001
-0.68953499 -0.50616001 0.3109
-0.64346497 -0.49037998 0.32360001
-
--0.118055 -0.56602001 0.3798
--0.140305 -0.57868999 0.38641998
--0.036705 -0.58948002 0.47154999
-
--0.49872501 0.43931999 0.33116001
--0.567505 0.44047001 0.32217999
--0.56956501 0.37901001 0.42835999
-
--0.49872501 0.43931999 0.33116001
--0.40461498 0.42754002 0.32105999
--0.45608501 0.45756001 0.24393999
-
--0.574305 0.39730999 -0.30334999
--0.54327499 0.39124001 -0.37567001
--0.55800499 0.38182999 -0.29503
-
-0.066055 0.59167999 -0.23388
-0.068865 0.56655998 -0.20183001
-0.060495 0.54880001 -0.17709
-
--0.20724501 -0.69445999 -0.26997999
--0.166175 -0.74779999 -0.29483
--0.20123501 -0.75469002 -0.29017
-
-0.013465 -0.32881001 0.57973
--0.019855 -0.37563999 0.55806
-0.053215 -0.32796001 0.58986
-
--0.042475 -0.24874001 0.57685001
--0.042595 -0.29021999 0.57817001
--0.006605 -0.27245001 0.59221001
-
--0.47262501 0.31153 -0.0592
--0.39040501 0.27885 -0.0233
--0.43113499 0.13668 -0.06854
-
--0.107915 -0.53838001 -0.23878
--0.158205 -0.50859001 -0.11002
--0.16091499 -0.46264999 -0.1489
-
-0.32317501 -0.0705 0.47466
-0.253855 -0.08411 0.48338001
-0.26328501 -0.13812 0.51595001
-
--0.036455 0.74396004 -0.12342
--0.020145 0.67031998 -0.15351
-0.036155 0.71919998 -0.22396
-
-0.242435 -0.69941002 0.47040001
-0.073435 -0.62984001 0.4934
-0.065805 -0.69416 0.51382
-
-0.253305 -0.66041 0.46727001
-0.19356501 -0.64248001 0.49592999
-0.153435 -0.64473 0.48566002
-
--0.056445 -0.62691002 0.52630001
-0.023435 -0.61555 0.49417
--0.016705 -0.60248001 0.48320999
-
--0.212425 0.4907 -0.10495
--0.40245499 0.42946999 0.00582
--0.23320499 0.5352 -0.10464
-
--0.029165 -0.1302 0.47558998
-0.035725 -0.09047 0.45244999
--0.029335 -0.10314 0.45814999
-
-0.17338499 -0.16284 0.56652
-0.136995 -0.12943 0.54544998
-0.053405 -0.17601 0.57659
-
-0.52557499 -0.56825001 0.33627998
-0.55329498 -0.58823002 0.33521
-0.57196499 -0.49865002 0.31608
-
-0.203465 -0.48157001 0.57987
-0.133365 -0.51195999 0.55555
-0.163435 -0.53869999 0.56303001
-
-0.26304501 -0.48462002 0.55549999
-0.203465 -0.48157001 0.57987
-0.163435 -0.53869999 0.56303001
-
-0.279865 0.18177999 0.28193001
-0.29845501 0.12968 0.34632999
-0.362635 0.14925 0.26934
-
--0.19886499 -0.37626999 -0.16464001
--0.238365 -0.47976002 -0.11273
--0.26883499 -0.37657001 -0.16448
-
-0.075455 0.60136002 -0.24311001
-0.080755 0.61445999 -0.2476
-0.075975 0.58987 -0.22885
-
--0.52343498 0.42028999 -0.45174999
--0.515135 0.41865002 -0.44709
--0.52669498 0.41201 -0.43175999
-
-0.267075 0.20905001 0.1627
-0.38503502 0.15941 0.19188999
-0.30644501 0.19247999 0.06287
-
-0.035725 -0.09047 0.45244999
-0.093525 -0.02874 0.45459
-0.043555 0.01225 0.43209
-
--0.77178497 0.08616 0.18837
--0.77828499 0.14011 0.20802999
--0.77015503 0.16722 0.17794001
-
--0.019855 -0.37563999 0.55806
-0.053355 -0.41346001 0.56433998
-0.053215 -0.32796001 0.58986
-
--0.006605 -0.27245001 0.59221001
-0.013465 -0.32881001 0.57973
-0.043465 -0.23129 0.58570999
-
-0.053405 -0.17601 0.57659
--0.008315 -0.16797001 0.55435001
--0.042475 -0.24874001 0.57685001
-
-0.035725 -0.09047 0.45244999
--0.009275 -0.14155 0.52644001
-0.079635 -0.11564 0.52494999
-
-0.073435 -0.62984001 0.4934
-0.023435 -0.61555 0.49417
--0.044845 -0.65685997 0.5468
-
--0.019855 -0.37563999 0.55806
--0.085865 -0.32016998 0.52319
--0.029985 -0.49078999 0.50139999
-
--0.075765 -0.16964001 0.4948
--0.057925 -0.20864 0.54856998
--0.008315 -0.16797001 0.55435001
-
--0.51262501 0.42702 -0.46618999
--0.49363499 0.44341 -0.49014
--0.515135 0.41865002 -0.44709
-
--0.136605 -0.09948 0.44941002
--0.106555 -0.0996 0.45023998
-0.043555 0.01225 0.43209
-
-0.053525 -0.59877998 0.51932999
-0.023435 -0.61555 0.49417
-0.073435 -0.62984001 0.4934
-
-0.053355 -0.41346001 0.56433998
--0.019855 -0.37563999 0.55806
-0.031045 -0.48976002 0.55334
-
-0.103425 -0.39764999 0.58700001
-0.053215 -0.32796001 0.58986
-0.053355 -0.41346001 0.56433998
-
-0.043465 -0.23129 0.58570999
-0.013465 -0.32881001 0.57973
-0.053215 -0.32796001 0.58986
-
-0.47058498 -0.56601002 0.39771999
-0.44266499 -0.61000999 0.39195
-0.465905 -0.63949001 0.35477001
-
-0.26532499 0.11682 0.36832001
-0.29845501 0.12968 0.34632999
-0.279865 0.18177999 0.28193001
-
-0.053525 -0.59877998 0.51932999
-0.073435 -0.62984001 0.4934
-0.153435 -0.64473 0.48566002
-
--0.39039501 -0.65042 0.25218
--0.354585 -0.59728001 0.33195
--0.35820499 -0.59717999 0.29188
-
-0.68647499 -0.58339001 -0.0017
-0.701595 -0.51362999 -0.01377
-0.74039497 -0.56462002 0.06716
-
-0.77457497 -0.49212002 0.10691
-0.76139503 -0.53476002 0.19711
-0.74088501 -0.59263 0.15724
-
-0.043555 0.01225 0.43209
-0.093525 -0.02874 0.45459
-0.143455 0.01272 0.43963001
-
-0.013225 0.0811 0.38118
--0.106735 0.07859 0.32783001
--0.096575 0.02365 0.37799999
-
--0.087935 0.12239 0.26698
--0.106735 0.07859 0.32783001
-0.032965 0.15014 0.30976
-
-0.103345 -0.42644001 0.57532001
-0.093385 -0.48191002 0.57638
-0.17356501 -0.39825001 0.58146
-
-0.242435 -0.69941002 0.47040001
-0.153435 -0.64473 0.48566002
-0.073435 -0.62984001 0.4934
-
-0.103345 -0.42644001 0.57532001
-0.103425 -0.39764999 0.58700001
-0.053355 -0.41346001 0.56433998
-
-0.616395 -0.19808001 0.01714
-0.595695 -0.19973 -0.04273
-0.61706501 -0.15582 0.06717
-
--0.029335 -0.10314 0.45814999
-0.043555 0.01225 0.43209
--0.106555 -0.0996 0.45023998
-
-0.143455 0.01272 0.43963001
-0.143465 0.09524 0.39535999
-0.043555 0.01225 0.43209
-
-0.26532499 0.11682 0.36832001
-0.143465 0.09524 0.39535999
-0.203305 0.06761 0.41046001
-
-0.587925 -0.08729 0.02727
-0.57723499 -0.16372999 -0.05665
-0.53067501 -0.0586 -0.06884
-
-0.103425 -0.39764999 0.58700001
-0.153475 -0.35493 0.60167
-0.133395 -0.34088001 0.60337002
-
-0.153405 -0.58124001 0.55702
-0.093335 -0.54011002 0.55001999
-0.053525 -0.59877998 0.51932999
-
-0.223505 -0.23148001 0.58157001
-0.133395 -0.34088001 0.60337002
-0.153475 -0.35493 0.60167
-
-0.263435 -0.55469002 0.54113998
-0.307425 -0.55289001 0.51352001
-0.26304501 -0.48462002 0.55549999
-
-0.242435 -0.69941002 0.47040001
-0.065805 -0.69416 0.51382
-0.145115 -0.74193001 0.48983002
-
-0.036155 0.71919998 -0.22396
--0.020145 0.67031998 -0.15351
-0.069325 0.57973999 -0.17223
-
--0.18914499 -0.31829 -0.17997
--0.178825 -0.39007 -0.16848
--0.19886499 -0.37626999 -0.16464001
-
-0.70712502 -0.44008999 0.28386
-0.64346497 -0.49037998 0.32360001
-0.68953499 -0.50616001 0.3109
-
--0.17994499 -0.75432999 0.36115002
--0.21356501 -0.75926003 0.30533001
--0.17445499 -0.76107002 0.26183001
-
--0.009545 0.50974998 -0.05037
--0.084295 0.46479 -0.01832
-0.004935 0.49839001 -0.08707
-
-0.263435 -0.55469002 0.54113998
-0.354795 -0.58098999 0.47644001
-0.307425 -0.55289001 0.51352001
-
-0.44975498 -0.50793999 -0.1924
-0.42197498 -0.58331001 -0.20099001
-0.391745 -0.56583 -0.23886999
-
-0.583465 -0.60224998 0.34046001
-0.59330502 -0.54569 0.33654999
-0.55329498 -0.58823002 0.33521
-
-0.59800499 -0.28384001 -0.03253
-0.62454498 -0.39271999 0.04435
-0.611035 -0.42883999 0.02128
-
-0.369995 -0.75161003 -0.02044
-0.38144501 -0.72870003 -0.01149
-0.37226501 -0.75335999 0.0004
-
--0.50698502 0.14098 0.53110001
--0.52195499 0.23915001 0.49179001
--0.59655499 0.21528 0.54181
-
-0.154285 -0.09136 0.45977001
-0.23345501 -0.11154 0.49640999
-0.253855 -0.08411 0.48338001
-
--0.48429501 0.08465 0.51129002
--0.44178501 0.09654 0.43144001
--0.429935 0.13929 0.43106998
-
--0.52690498 0.36866001 0.4325
--0.53012501 0.29573 0.48049
--0.499935 0.33810001 0.43618999
-
-0.34578499 -0.27997 0.53634998
-0.33553501 -0.21408001 0.52173
-0.262635 -0.34882 0.57363998
-
--0.199305 -0.2299 -0.22021999
--0.153045 -0.23818001 -0.25016001
--0.167955 -0.26533001 -0.23986
-
-0.016075 0.68472 -0.25462
-0.046245 0.64051003 -0.26128
--0.048255 0.52195999 -0.13641
-
-0.17356501 -0.39825001 0.58146
-0.262635 -0.34882 0.57363998
-0.25977501 -0.2282 0.57007
-
--0.51295502 0.12691 0.53984001
--0.516045 0.07047 0.53485001
--0.48429501 0.08465 0.51129002
-
--0.53012501 0.29573 0.48049
--0.60633499 0.29861 0.49606998
--0.59655499 0.21528 0.54181
-
--0.53012501 0.29573 0.48049
--0.48616501 0.21021999 0.45523998
--0.499935 0.33810001 0.43618999
-
-0.253305 -0.66041 0.46727001
-0.253395 -0.73496002 0.46985001
-0.329505 -0.71892998 0.45332001
-
--0.51295502 0.12691 0.53984001
--0.50698502 0.14098 0.53110001
--0.59655499 0.21528 0.54181
-
--0.51295502 0.12691 0.53984001
--0.48429501 0.08465 0.51129002
--0.50698502 0.14098 0.53110001
-
--0.166485 0.62580002 -0.00026
--0.236595 0.58076 0.04404
--0.31738501 0.43448002 0.11911
-
-0.051805 0.5825 -0.15508
--0.049325 0.62575001 -0.12564
--0.22710501 0.49293999 0.03888
-
--0.51295502 0.12691 0.53984001
--0.54655499 0.08835 0.54924999
--0.516045 0.07047 0.53485001
-
--0.48616501 0.21021999 0.45523998
--0.44947498 0.27966999 0.36776001
--0.499935 0.33810001 0.43618999
-
-0.57196499 -0.49865002 0.31608
-0.57273499 -0.37573002 0.33617001
-0.51838501 -0.48213001 0.39742001
-
-0.72546501 -0.5941 0.22735001
-0.70681503 -0.56171001 0.28268
-0.68346497 -0.63983002 0.21789
-
-0.49573502 -0.1589 0.41981998
-0.486665 -0.19856001 0.44179001
-0.55290501 -0.18681999 0.36167999
-
-0.70884499 -0.36710999 0.13567
-0.64000504 -0.36174 0.16885
-0.64128502 -0.37016998 0.18415001
-
-0.49573502 -0.1589 0.41981998
-0.56959499 -0.12199 0.29812
-0.55259499 -0.04642 0.27702
-
--0.54655499 0.08835 0.54924999
--0.51295502 0.12691 0.53984001
--0.59655499 0.21528 0.54181
-
-0.55290501 -0.18681999 0.36167999
-0.486665 -0.19856001 0.44179001
-0.54806499 -0.22674 0.37215
-
-0.61429501 -0.26823 0.25707001
-0.56959499 -0.12199 0.29812
-0.54806499 -0.22674 0.37215
-
--0.48616501 0.21021999 0.45523998
--0.52195499 0.23915001 0.49179001
--0.50698502 0.14098 0.53110001
-
--0.53012501 0.29573 0.48049
--0.52195499 0.23915001 0.49179001
--0.48616501 0.21021999 0.45523998
-
-0.53676498 -0.34728001 0.38973
-0.427565 -0.38834 0.46021
-0.51838501 -0.48213001 0.39742001
-
-0.42587502 -0.0541 0.4068
-0.43314499 -0.00056 0.38240002
-0.32342499 -0.00259 0.41494999
-
-0.54806499 -0.22674 0.37215
-0.50891499 -0.266 0.42063
-0.58010502 -0.29504 0.32986
-
--0.44178501 0.09654 0.43144001
--0.48429501 0.08465 0.51129002
--0.44835499 0.03677 0.38549
-
-0.069325 0.57973999 -0.17223
-0.046465 0.53513 -0.12086
-0.060495 0.54880001 -0.17709
-
--0.48429501 0.08465 0.51129002
--0.429935 0.13929 0.43106998
--0.50698502 0.14098 0.53110001
-
-0.486665 -0.19856001 0.44179001
-0.49573502 -0.1589 0.41981998
-0.40009499 -0.18596001 0.49257999
-
--0.43137501 0.38099998 0.37743
--0.45004501 0.41863998 0.36409
--0.52690498 0.36866001 0.4325
-
--0.41858501 0.32521999 -0.01536
--0.401735 0.37047001 -0.00194
--0.352155 0.32740002 0.01621
-
--0.329715 0.31518 0.05937
--0.363535 0.29777 0.01081
--0.34072498 0.34067001 0.0194
-
--0.089315 -0.30382 -0.35894001
--0.049465 -0.37333 -0.3702
--0.099045 -0.37569 -0.34127998
-
-0.42301498 -0.09387 0.43786999
-0.32317501 -0.0705 0.47466
-0.37626499 -0.10669 0.47582001
-
-0.47968498 -0.06731 0.37938999
-0.42301498 -0.09387 0.43786999
-0.49573502 -0.1589 0.41981998
-
--0.406535 0.02358 0.37558998
--0.44835499 0.03677 0.38549
--0.49119499 0.00697 0.39306
-
--0.49119499 0.00697 0.39306
--0.44835499 0.03677 0.38549
--0.527495 0.03341 0.50833
-
--0.429935 0.13929 0.43106998
--0.48616501 0.21021999 0.45523998
--0.50698502 0.14098 0.53110001
-
-0.335285 -0.62630001 0.44756001
-0.367225 -0.65199997 0.44060001
-0.44266499 -0.61000999 0.39195
-
--0.44178501 0.09654 0.43144001
--0.42501499 0.0966 0.42016998
--0.429935 0.13929 0.43106998
-
--0.44947498 0.27966999 0.36776001
--0.39515499 0.30839001 0.32299999
--0.44827499 0.33785 0.38784
-
--0.49363499 0.44341 -0.49014
--0.47018501 0.48946999 -0.51748001
--0.44885502 0.48257999 -0.32057999
-
--0.43594501 0.20952999 0.40491001
--0.48616501 0.21021999 0.45523998
--0.429935 0.13929 0.43106998
-
--0.229725 -0.20162001 -0.21724001
--0.32967499 -0.20312 -0.20150999
--0.310175 -0.08771 -0.20037001
-
-0.44266499 -0.61000999 0.39195
-0.43657501 -0.53799 0.43675999
-0.335285 -0.62630001 0.44756001
-
-0.47968498 -0.06731 0.37938999
-0.43314499 -0.00056 0.38240002
-0.42587502 -0.0541 0.4068
-
--0.57997501 0.39771 -0.2633
--0.51723499 0.35522999 -0.21364
--0.54886501 0.33823002 -0.12392
-
--0.48429501 0.08465 0.51129002
--0.527495 0.03341 0.50833
--0.44835499 0.03677 0.38549
-
--0.43594501 0.20952999 0.40491001
--0.429935 0.13929 0.43106998
--0.38712502 0.13965 0.40511002
-
--0.614795 0.37119999 -0.013
--0.58929501 0.35665001 -0.05348
--0.57147499 0.29725 -0.05187
-
--0.35580502 0.52299 0.06101
--0.30827499 0.55255001 0.0553
--0.247845 0.62541 -0.03466
-
-0.558475 -0.70769997 0.03611
-0.59227501 -0.64189003 -0.02401
-0.63273499 -0.64609001 0.00875
-
-0.38605499 -0.52320999 0.48705002
-0.51838501 -0.48213001 0.39742001
-0.427565 -0.38834 0.46021
-
--0.35817501 0.08173 0.3584
--0.42501499 0.0966 0.42016998
--0.40279499 0.05291 0.38118999
-
--0.43594501 0.20952999 0.40491001
--0.44947498 0.27966999 0.36776001
--0.48616501 0.21021999 0.45523998
-
--0.38712502 0.13965 0.40511002
--0.336045 0.18141001 0.33853001
--0.39515499 0.30839001 0.32299999
-
--0.44947498 0.27966999 0.36776001
--0.44827499 0.33785 0.38784
--0.499935 0.33810001 0.43618999
-
-0.70681503 -0.56171001 0.28268
-0.63936501 -0.64530998 0.26995001
-0.68346497 -0.63983002 0.21789
-
--0.036705 -0.58948002 0.47154999
--0.056445 -0.62691002 0.52630001
--0.016705 -0.60248001 0.48320999
-
--0.28335501 0.37535999 0.07935
--0.32425499 0.33021 0.07945
--0.259715 0.37625999 0.05013
-
--0.37914501 -0.74181999 0.48116001
--0.363685 -0.71358002 0.48608002
--0.40310501 -0.70723999 0.48404999
-
--0.25884501 -0.74322998 -0.26056
--0.20724501 -0.69445999 -0.26997999
--0.20123501 -0.75469002 -0.29017
-
-0.41008499 -0.30582001 0.50618
-0.38686501 -0.42890999 0.48895
-0.427565 -0.38834 0.46021
-
-0.308475 -0.66796997 0.46055
-0.367225 -0.65199997 0.44060001
-0.335285 -0.62630001 0.44756001
-
--0.45004501 0.41863998 0.36409
--0.56956501 0.37901001 0.42835999
--0.52690498 0.36866001 0.4325
-
--0.272745 -0.45799 0.41743
--0.21657499 -0.42470001 0.43263
--0.306675 -0.36883999 0.43159
-
-0.42587502 -0.0541 0.4068
-0.42301498 -0.09387 0.43786999
-0.47968498 -0.06731 0.37938999
-
--0.38591499 0.35167 0.31952
--0.43137501 0.38099998 0.37743
--0.44827499 0.33785 0.38784
-
-0.55259499 -0.04642 0.27702
-0.47858501 0.02572 0.32499001
-0.47968498 -0.06731 0.37938999
-
--0.44219501 0.62398998 -0.59071999
--0.455145 0.56103001 -0.45051998
--0.44630501 0.55679001 -0.57491001
-
--0.67350502 -0.31801001 0.21348
--0.71858498 -0.18570999 0.23955999
--0.72665497 -0.19900999 0.19982
-
--0.44835499 0.03677 0.38549
--0.406535 0.02358 0.37558998
--0.40279499 0.05291 0.38118999
-
--0.40461498 0.42754002 0.32105999
--0.36774502 0.40701 0.25933001
--0.38813499 0.43208 0.28315001
-
--0.71858498 -0.18570999 0.23955999
--0.69847504 -0.16400999 0.28132
--0.71903503 -0.1047 0.21924999
-
--0.39515499 0.30839001 0.32299999
--0.44947498 0.27966999 0.36776001
--0.43594501 0.20952999 0.40491001
-
--0.429935 0.13929 0.43106998
--0.42501499 0.0966 0.42016998
--0.38712502 0.13965 0.40511002
-
--0.34358501 0.26857 0.25934
--0.35530499 0.32993999 0.20927
--0.38591499 0.35167 0.31952
-
--0.39515499 0.30839001 0.32299999
--0.34358501 0.26857 0.25934
--0.38591499 0.35167 0.31952
-
--0.216555 -0.65108002 0.42185001
--0.363685 -0.71358002 0.48608002
--0.232635 -0.74156998 0.44324001
-
-0.72546501 -0.5941 0.22735001
-0.76139503 -0.53476002 0.19711
-0.76070503 -0.52106998 0.2173
-
--0.42501499 0.0966 0.42016998
--0.44835499 0.03677 0.38549
--0.40279499 0.05291 0.38118999
-
--0.38591499 0.35167 0.31952
--0.44827499 0.33785 0.38784
--0.39515499 0.30839001 0.32299999
-
-0.49892502 -0.66067001 0.30966
-0.52557499 -0.56825001 0.33627998
-0.465905 -0.63949001 0.35477001
-
-0.336675 -0.44263 0.52173
-0.38686501 -0.42890999 0.48895
-0.358755 -0.33319 0.53729
-
--0.35817501 0.08173 0.3584
--0.38712502 0.13965 0.40511002
--0.42501499 0.0966 0.42016998
-
-0.47058498 -0.56601002 0.39771999
-0.38605499 -0.52320999 0.48705002
-0.43657501 -0.53799 0.43675999
-
-0.33553501 -0.21408001 0.52173
-0.25977501 -0.2282 0.57007
-0.262635 -0.34882 0.57363998
-
-0.61429501 -0.26823 0.25707001
-0.64128502 -0.37016998 0.18415001
-0.64000504 -0.36174 0.16885
-
--0.020145 0.67031998 -0.15351
--0.112215 0.62556 -0.07594
--0.049325 0.62575001 -0.12564
-
--0.308445 0.09557 0.30705999
--0.336045 0.18141001 0.33853001
--0.38712502 0.13965 0.40511002
-
--0.35817501 0.08173 0.3584
--0.308445 0.09557 0.30705999
--0.38712502 0.13965 0.40511002
-
-0.327005 -0.16132 0.50963001
-0.276535 -0.21360001 0.55987
-0.33553501 -0.21408001 0.52173
-
-0.327005 -0.16132 0.50963001
-0.27328501 -0.16485001 0.53637001
-0.276535 -0.21360001 0.55987
-
-0.307425 -0.55289001 0.51352001
-0.354795 -0.58098999 0.47644001
-0.38605499 -0.52320999 0.48705002
-
-0.336675 -0.44263 0.52173
-0.307425 -0.55289001 0.51352001
-0.38605499 -0.52320999 0.48705002
-
--0.406535 0.02358 0.37558998
--0.343685 0.08148 0.34409
--0.35817501 0.08173 0.3584
-
--0.28057501 0.13838 0.25653999
--0.27186501 0.17989 0.1998
--0.318915 0.22754999 0.2701
-
--0.38712502 0.13965 0.40511002
--0.39515499 0.30839001 0.32299999
--0.43594501 0.20952999 0.40491001
-
--0.112215 0.62556 -0.07594
--0.020145 0.67031998 -0.15351
--0.036455 0.74396004 -0.12342
-
--0.559795 0.4541 0.06169
--0.53754501 0.46978001 -0.00341
--0.579935 0.46213001 -0.01038
-
-0.327005 -0.16132 0.50963001
-0.32317501 -0.0705 0.47466
-0.26328501 -0.13812 0.51595001
-
-0.473535 -0.68335999 0.30688
-0.49892502 -0.66067001 0.30966
-0.43405499 -0.71273003 0.30693001
-
--0.343685 0.08148 0.34409
--0.33633499 0.03778 0.36269001
--0.308445 0.09557 0.30705999
-
--0.33633499 0.03778 0.36269001
--0.336605 -0.00365 0.39479
--0.236425 0.01018 0.38021999
-
-0.67806503 -0.65469002 0.13749
-0.74088501 -0.59263 0.15724
-0.68346497 -0.63983002 0.21789
-
-0.263435 -0.55469002 0.54113998
-0.24317499 -0.62743 0.50932999
-0.354795 -0.58098999 0.47644001
-
--0.386665 -0.56747002 0.10225
--0.38455502 -0.62816002 0.13858
--0.334715 -0.61401001 0.18212
-
--0.406535 0.02358 0.37558998
--0.35817501 0.08173 0.3584
--0.40279499 0.05291 0.38118999
-
-0.486665 -0.19856001 0.44179001
-0.40009499 -0.18596001 0.49257999
-0.50891499 -0.266 0.42063
-
-0.41008499 -0.30582001 0.50618
-0.358755 -0.33319 0.53729
-0.38686501 -0.42890999 0.48895
-
-0.24317499 -0.62743 0.50932999
-0.253305 -0.66041 0.46727001
-0.335285 -0.62630001 0.44756001
-
-0.066055 0.59167999 -0.23388
-0.060495 0.54880001 -0.17709
--0.027095 0.51598 -0.13203
-
--0.44141499 0.60801998 -0.58164001
--0.44219501 0.62398998 -0.59071999
--0.44630501 0.55679001 -0.57491001
-
--0.35817501 0.08173 0.3584
--0.343685 0.08148 0.34409
--0.308445 0.09557 0.30705999
-
-0.470495 0.07129 0.2808
-0.47858501 0.02572 0.32499001
-0.55259499 -0.04642 0.27702
-
-0.40009499 -0.18596001 0.49257999
-0.352155 -0.22743 0.51053001
-0.34578499 -0.27997 0.53634998
-
--0.049325 0.62575001 -0.12564
-0.051805 0.5825 -0.15508
-0.069325 0.57973999 -0.17223
-
--0.055935 -0.72981003 0.55643002
--0.044845 -0.65685997 0.5468
--0.100065 -0.67837997 0.54858002
-
--0.47512501 0.32431999 -0.07113
--0.47262501 0.31153 -0.0592
--0.49023499 0.31427999 -0.06865
-
--0.52343498 0.42028999 -0.45174999
--0.53415501 0.42109001 -0.44837002
--0.52310501 0.42203999 -0.45536999
-
-0.004935 0.49839001 -0.08707
--0.34072498 0.34067001 0.0194
--0.027095 0.51598 -0.13203
-
-0.53676498 -0.34728001 0.38973
-0.50891499 -0.266 0.42063
-0.41008499 -0.30582001 0.50618
-
--0.468335 0.32449001 -0.06341
--0.47512501 0.32431999 -0.07113
--0.45510502 0.35847 -0.05053
-
-0.17356501 -0.39825001 0.58146
-0.223505 -0.23148001 0.58157001
-0.153475 -0.35493 0.60167
-
--0.096095 0.71514 -0.06997
--0.075495 0.73363998 -0.09516
--0.247845 0.62541 -0.03466
-
--0.29133499 0.43453999 0.10392
--0.165655 0.49323002 0.03954
--0.22710501 0.49293999 0.03888
-
--0.55654499 0.64793999 -0.39986
--0.478615 0.61969002 -0.45830002
--0.543125 0.70637001 -0.51022999
-
-0.276035 -0.42984001 0.55702
-0.203465 -0.48157001 0.57987
-0.26304501 -0.48462002 0.55549999
-
-0.336675 -0.44263 0.52173
-0.276035 -0.42984001 0.55702
-0.307425 -0.55289001 0.51352001
-
-0.56959499 -0.12199 0.29812
-0.49573502 -0.1589 0.41981998
-0.55290501 -0.18681999 0.36167999
-
--0.39515499 0.30839001 0.32299999
--0.318915 0.22754999 0.2701
--0.34358501 0.26857 0.25934
-
-0.253305 -0.66041 0.46727001
-0.308475 -0.66796997 0.46055
-0.335285 -0.62630001 0.44756001
-
-0.76550499 -0.45125 0.21715
-0.74180496 -0.46634998 0.26339001
-0.76070503 -0.52106998 0.2173
-
--0.096095 0.71514 -0.06997
--0.247845 0.62541 -0.03466
--0.30827499 0.55255001 0.0553
-
-0.276035 -0.42984001 0.55702
-0.17356501 -0.39825001 0.58146
-0.203465 -0.48157001 0.57987
-
--0.137245 -0.71829002 0.35676998
--0.141445 -0.71961998 0.33926998
--0.126875 -0.71792 0.35866001
-
-0.253305 -0.66041 0.46727001
-0.329505 -0.71892998 0.45332001
-0.308475 -0.66796997 0.46055
-
-0.32317501 -0.0705 0.47466
-0.42587502 -0.0541 0.4068
-0.32342499 -0.00259 0.41494999
-
-0.38605499 -0.52320999 0.48705002
-0.354795 -0.58098999 0.47644001
-0.43657501 -0.53799 0.43675999
-
--0.166485 0.62580002 -0.00026
--0.036455 0.74396004 -0.12342
--0.096095 0.71514 -0.06997
-
--0.502845 -0.67873001 0.11659
--0.54426498 -0.71963997 0.10263
--0.45942501 -0.75005997 0.21047001
-
--0.166485 0.62580002 -0.00026
--0.31738501 0.43448002 0.11911
--0.112215 0.62556 -0.07594
-
-0.61429501 -0.26823 0.25707001
-0.58010502 -0.29504 0.32986
-0.60397499 -0.40557999 0.27521
-
-0.465905 -0.63949001 0.35477001
-0.44266499 -0.61000999 0.39195
-0.390485 -0.69848 0.41848
-
-0.19356501 -0.64248001 0.49592999
-0.253305 -0.66041 0.46727001
-0.24317499 -0.62743 0.50932999
-
-0.427565 -0.38834 0.46021
-0.53676498 -0.34728001 0.38973
-0.41008499 -0.30582001 0.50618
-
--0.044845 -0.65685997 0.5468
--0.055935 -0.72981003 0.55643002
--0.043565 -0.73834 0.55035999
-
--0.081355 0.49502998 0.00394
--0.084295 0.46479 -0.01832
--0.009545 0.50974998 -0.05037
-
--0.39040501 0.27885 -0.0233
--0.41858501 0.32521999 -0.01536
--0.352155 0.32740002 0.01621
-
-0.544925 -0.67612 0.29681999
-0.57144501 -0.70275002 0.21681
-0.63936501 -0.64530998 0.26995001
-
-0.49573502 -0.1589 0.41981998
-0.42301498 -0.09387 0.43786999
-0.40009499 -0.18596001 0.49257999
-
--0.29133499 0.43453999 0.10392
--0.31738501 0.43448002 0.11911
--0.34077499 0.36119999 0.14935
-
-0.558475 -0.70769997 0.03611
-0.63273499 -0.64609001 0.00875
-0.67858498 -0.64014999 0.05778
-
-0.55259499 -0.04642 0.27702
-0.58518501 -0.07291 0.16698
-0.54476501 -0.0057 0.22294001
-
-0.70712502 -0.44008999 0.28386
-0.74180496 -0.46634998 0.26339001
-0.74194504 -0.41438999 0.23629999
-
--0.165655 0.49323002 0.03954
-0.051805 0.5825 -0.15508
--0.22710501 0.49293999 0.03888
-
--0.34072498 0.34067001 0.0194
--0.212425 0.4907 -0.10495
--0.027095 0.51598 -0.13203
-
--0.069995 -0.13285 -0.23166
--0.229725 -0.20162001 -0.21724001
--0.160285 -0.07244 -0.20541
-
-0.63363499 -0.56191002 0.33492001
-0.583465 -0.60224998 0.34046001
-0.62594501 -0.60432999 0.32353001
-
-0.58010502 -0.29504 0.32986
-0.61429501 -0.26823 0.25707001
-0.54806499 -0.22674 0.37215
-
-0.37462502 0.09203 0.35064999
-0.29845501 0.12968 0.34632999
-0.26532499 0.11682 0.36832001
-
-0.58010502 -0.29504 0.32986
-0.53676498 -0.34728001 0.38973
-0.57273499 -0.37573002 0.33617001
-
-0.47058498 -0.56601002 0.39771999
-0.51838501 -0.48213001 0.39742001
-0.38605499 -0.52320999 0.48705002
-
--0.044845 -0.65685997 0.5468
--0.056445 -0.62691002 0.52630001
--0.100065 -0.67837997 0.54858002
-
--0.216555 -0.65108002 0.42185001
--0.232635 -0.74156998 0.44324001
--0.222955 -0.69486 0.43347
-
--0.547775 -0.01096 0.39499001
--0.57050499 -0.03053 0.38844002
--0.49119499 0.00697 0.39306
-
-0.63363499 -0.56191002 0.33492001
-0.70681503 -0.56171001 0.28268
-0.68953499 -0.50616001 0.3109
-
--0.019895 -0.21881001 -0.36255001
--0.000905 -0.16063999 -0.32273998
-0.061575 -0.19306999 -0.34928001
-
-0.073585 0.64028999 -0.27017
-0.075455 0.60136002 -0.24311001
-0.046245 0.64051003 -0.26128
-
-0.42301498 -0.09387 0.43786999
-0.37626499 -0.10669 0.47582001
-0.40009499 -0.18596001 0.49257999
-
-0.47858501 0.02572 0.32499001
-0.43314499 -0.00056 0.38240002
-0.47968498 -0.06731 0.37938999
-
--0.36774502 0.40701 0.25933001
--0.36813499 0.44145 0.14507
--0.38813499 0.43208 0.28315001
-
-0.60397499 -0.40557999 0.27521
-0.57273499 -0.37573002 0.33617001
-0.59136501 -0.44555 0.29172001
-
-0.59330502 -0.54569 0.33654999
-0.63363499 -0.56191002 0.33492001
-0.64346497 -0.49037998 0.32360001
-
-0.263435 -0.55469002 0.54113998
-0.203395 -0.59640999 0.54062
-0.24317499 -0.62743 0.50932999
-
--0.31738501 0.43448002 0.11911
--0.34386501 0.40557999 0.15052
--0.34077499 0.36119999 0.14935
-
--0.17994499 -0.75432999 0.36115002
--0.17445499 -0.76107002 0.26183001
--0.129625 -0.75866997 0.17889999
-
-0.17356501 -0.39825001 0.58146
-0.25977501 -0.2282 0.57007
-0.223505 -0.23148001 0.58157001
-
-0.38686501 -0.42890999 0.48895
-0.38605499 -0.52320999 0.48705002
-0.427565 -0.38834 0.46021
-
-0.253305 -0.66041 0.46727001
-0.242435 -0.69941002 0.47040001
-0.253395 -0.73496002 0.46985001
-
-0.24317499 -0.62743 0.50932999
-0.335285 -0.62630001 0.44756001
-0.354795 -0.58098999 0.47644001
-
-0.40009499 -0.18596001 0.49257999
-0.41008499 -0.30582001 0.50618
-0.50891499 -0.266 0.42063
-
-0.163435 -0.53869999 0.56303001
-0.203395 -0.59640999 0.54062
-0.263435 -0.55469002 0.54113998
-
-0.47058498 -0.56601002 0.39771999
-0.52557499 -0.56825001 0.33627998
-0.51838501 -0.48213001 0.39742001
-
-0.64000504 -0.36174 0.16885
-0.63150501 -0.32306999 0.09721
-0.61706501 -0.15582 0.06717
-
--0.18282499 0.59498001 -0.13044
--0.126565 0.67811996 -0.13629
--0.083505 0.68447998 -0.17287001
-
-0.358755 -0.33319 0.53729
-0.41008499 -0.30582001 0.50618
-0.34578499 -0.27997 0.53634998
-
-0.63273499 -0.64609001 0.00875
-0.68647499 -0.58339001 -0.0017
-0.67858498 -0.64014999 0.05778
-
-0.32317501 -0.0705 0.47466
-0.327005 -0.16132 0.50963001
-0.352155 -0.22743 0.51053001
-
-0.55329498 -0.58823002 0.33521
-0.59330502 -0.54569 0.33654999
-0.57196499 -0.49865002 0.31608
-
-0.51838501 -0.48213001 0.39742001
-0.52557499 -0.56825001 0.33627998
-0.57196499 -0.49865002 0.31608
-
--0.31738501 0.43448002 0.11911
--0.354445 0.43800999 0.1358
--0.34386501 0.40557999 0.15052
-
--0.29133499 0.43453999 0.10392
--0.34077499 0.36119999 0.14935
--0.28335501 0.37535999 0.07935
-
-0.262635 -0.34882 0.57363998
-0.336675 -0.44263 0.52173
-0.358755 -0.33319 0.53729
-
-0.23304501 0.00794 0.42648998
-0.203305 0.06761 0.41046001
-0.143455 0.01272 0.43963001
-
--0.078115 -0.62351002 -0.25240999
-0.002175 -0.65117996 -0.26294001
--0.152975 -0.66613998 -0.27448999
-
-0.50891499 -0.266 0.42063
-0.54806499 -0.22674 0.37215
-0.486665 -0.19856001 0.44179001
-
-0.34578499 -0.27997 0.53634998
-0.352155 -0.22743 0.51053001
-0.33553501 -0.21408001 0.52173
-
-0.25977501 -0.2282 0.57007
-0.33553501 -0.21408001 0.52173
-0.276535 -0.21360001 0.55987
-
-0.57273499 -0.37573002 0.33617001
-0.53676498 -0.34728001 0.38973
-0.51838501 -0.48213001 0.39742001
-
--0.44495499 0.61160999 -0.60196999
--0.440755 0.59640999 -0.59333
--0.46016499 0.52960999 -0.57521999
-
--0.334715 -0.61401001 0.18212
--0.35919498 -0.65380997 0.20221001
--0.35820499 -0.59717999 0.29188
-
--0.36254501 -0.75091003 -0.10707
--0.420145 -0.75016998 -0.08755
--0.47012501 -0.68793999 -0.04621
-
-0.002175 -0.65117996 -0.26294001
--0.166175 -0.74779999 -0.29483
--0.152975 -0.66613998 -0.27448999
-
--0.20724501 -0.69445999 -0.26997999
--0.152975 -0.66613998 -0.27448999
--0.166175 -0.74779999 -0.29483
-
-0.62594501 -0.60432999 0.32353001
-0.57481499 -0.63938 0.32445999
-0.63936501 -0.64530998 0.26995001
-
-0.276035 -0.42984001 0.55702
-0.26304501 -0.48462002 0.55549999
-0.307425 -0.55289001 0.51352001
-
-0.62594501 -0.60432999 0.32353001
-0.583465 -0.60224998 0.34046001
-0.57481499 -0.63938 0.32445999
-
-0.329505 -0.71892998 0.45332001
-0.390485 -0.69848 0.41848
-0.367225 -0.65199997 0.44060001
-
--0.550975 0.20959 -0.06745
--0.57065498 0.15109 -0.06724
--0.60123501 0.19448 -0.05578
-
-0.595695 -0.19973 -0.04273
-0.616395 -0.19808001 0.01714
-0.59800499 -0.28384001 -0.03253
-
-0.43657501 -0.53799 0.43675999
-0.354795 -0.58098999 0.47644001
-0.335285 -0.62630001 0.44756001
-
-0.67858498 -0.64014999 0.05778
-0.67806503 -0.65469002 0.13749
-0.59101501 -0.70407997 0.1113
-
--0.44606499 -0.76600998 -0.07796
--0.420145 -0.75016998 -0.08755
--0.43560501 -0.76556 -0.07625
-
-0.262635 -0.34882 0.57363998
-0.358755 -0.33319 0.53729
-0.34578499 -0.27997 0.53634998
-
-0.50891499 -0.266 0.42063
-0.53676498 -0.34728001 0.38973
-0.58010502 -0.29504 0.32986
-
--0.165655 0.49323002 0.03954
--0.009545 0.50974998 -0.05037
-0.051805 0.5825 -0.15508
-
--0.44842499 -0.42519001 -0.09399
--0.40871498 -0.39304001 -0.14109
--0.388325 -0.45629002 -0.06645
-
--0.049325 0.62575001 -0.12564
-0.069325 0.57973999 -0.17223
--0.020145 0.67031998 -0.15351
-
--0.192925 0.12158 0.28837999
--0.208305 0.15802 0.22305
--0.28057501 0.13838 0.25653999
-
--0.34077499 0.36119999 0.14935
--0.32425499 0.33021 0.07945
--0.28335501 0.37535999 0.07935
-
--0.081355 0.49502998 0.00394
--0.165655 0.49323002 0.03954
--0.29133499 0.43453999 0.10392
-
-0.465905 -0.63949001 0.35477001
-0.390485 -0.69848 0.41848
-0.43405499 -0.71273003 0.30693001
-
-0.49573502 -0.1589 0.41981998
-0.55259499 -0.04642 0.27702
-0.47968498 -0.06731 0.37938999
-
--0.31738501 0.43448002 0.11911
--0.29133499 0.43453999 0.10392
--0.22710501 0.49293999 0.03888
-
-0.43314499 -0.00056 0.38240002
-0.37462502 0.09203 0.35064999
-0.32342499 -0.00259 0.41494999
-
--0.075495 0.73363998 -0.09516
--0.096095 0.71514 -0.06997
--0.036455 0.74396004 -0.12342
-
-0.44266499 -0.61000999 0.39195
-0.47058498 -0.56601002 0.39771999
-0.43657501 -0.53799 0.43675999
-
-0.38686501 -0.42890999 0.48895
-0.336675 -0.44263 0.52173
-0.38605499 -0.52320999 0.48705002
-
-0.57144501 -0.70275002 0.21681
-0.63408501 -0.68242996 0.15461
-0.68346497 -0.63983002 0.21789
-
-0.093335 -0.54011002 0.55001999
-0.093385 -0.48191002 0.57638
-0.031045 -0.48976002 0.55334
-
--0.34806499 -0.62027 0.40410999
--0.39304501 -0.61914001 0.39880001
--0.406185 -0.64178001 0.44240002
-
--0.59962502 0.11646 0.54145
--0.54655499 0.08835 0.54924999
--0.59655499 0.21528 0.54181
-
-0.077465 0.65564003 -0.25237
-0.036155 0.71919998 -0.22396
-0.069325 0.57973999 -0.17223
-
--0.522085 0.42964001 -0.46967999
--0.51262501 0.42702 -0.46618999
--0.52343498 0.42028999 -0.45174999
-
-0.40009499 -0.18596001 0.49257999
-0.34578499 -0.27997 0.53634998
-0.41008499 -0.30582001 0.50618
-
-0.276035 -0.42984001 0.55702
-0.262635 -0.34882 0.57363998
-0.17356501 -0.39825001 0.58146
-
--0.71519501 -0.22723 0.07012
--0.72489502 -0.13198 0.11954
--0.68935501 -0.17514999 0.00979
-
--0.141445 -0.71961998 0.33926998
--0.097395 -0.72411003 0.17242001
-0.034255 -0.70801003 0.40098999
-
--0.47262501 0.31153 -0.0592
--0.52155499 0.29777 -0.06353
--0.49023499 0.31427999 -0.06865
-
--0.455145 0.56103001 -0.45051998
--0.44795502 0.48275002 -0.23052
--0.44885502 0.48257999 -0.32057999
-
--0.58654499 0.0687 0.53747002
--0.627995 0.04726 0.49209
--0.60431499 0.04708 0.51540001
-
--0.74453499 0.0457 0.23389999
--0.77178497 0.08616 0.18837
--0.75351501 0.04522 0.14867
-
--0.76138496 0.14034 0.29812
--0.773265 0.14032 0.25822001
--0.76094498 0.07262 0.24841
-
--0.76094498 0.07262 0.24841
--0.773265 0.14032 0.25822001
--0.77178497 0.08616 0.18837
-
--0.70774498 0.00346 0.16879
--0.69119499 -0.03813 0.21893999
--0.67764503 0.00206 0.26896999
-
--0.238545 -0.76138 0.28424
--0.17994499 -0.75432999 0.36115002
--0.257085 -0.75538002 0.41583
-
--0.46994499 -0.66989998 0.39380001
--0.47614498 -0.66900002 0.34229
--0.49865501 -0.72585999 0.36729
-
-0.247805 -0.73291 -0.06195
-0.222605 -0.71620003 -0.04485
-0.231395 -0.71984001 -0.09604
-
--0.67350502 -0.31801001 0.21348
--0.72665497 -0.19900999 0.19982
--0.70689499 -0.24051001 0.17004999
-
--0.233095 -0.62811001 -0.12729
--0.24751499 -0.60999001 -0.0966
--0.16779499 -0.59556999 -0.09223
-
--0.71903503 -0.1047 0.21924999
--0.69850502 -0.02457 0.14891
--0.72112503 -0.09155 0.13937
-
--0.71519501 -0.22723 0.07012
--0.69344498 -0.26929001 0.08014
--0.70689499 -0.24051001 0.17004999
-
-0.44724499 -0.56456001 -0.18232
-0.50467499 -0.54449001 -0.10164
-0.45115501 -0.60699001 -0.15207
-
--0.77015503 0.16722 0.17794001
--0.722985 0.29028 0.13737
--0.73406502 0.22117001 0.0777
-
-0.108785 -0.70753998 0.38001999
-0.071735 -0.70736 0.39019001
-0.034255 -0.70801003 0.40098999
-
--0.212425 0.4907 -0.10495
--0.073375 0.61046001 -0.18223
--0.048255 0.52195999 -0.13641
-
-0.54445499 -0.48500999 -0.09213
-0.44975498 -0.50793999 -0.1924
-0.554575 -0.42790001 -0.10218
-
--0.45953499 0.45066002 -0.34074001
--0.45510502 0.35847 -0.05053
--0.47512501 0.32431999 -0.07113
-
--0.75427498 0.12566 0.09816
--0.77015503 0.16722 0.17794001
--0.73406502 0.22117001 0.0777
-
-0.72791496 -0.59351002 0.06742
-0.74088501 -0.59263 0.15724
-0.67806503 -0.65469002 0.13749
-
--0.65483498 0.44209999 0.23309999
--0.66683502 0.43922001 0.22899
--0.72732498 0.41339001 0.20645
-
--0.47864498 -0.74934998 0.25862
--0.45761501 -0.71341003 0.26252001
--0.45211498 -0.74226997 0.21997999
-
-0.069325 0.57973999 -0.17223
-0.080755 0.61445999 -0.2476
-0.077465 0.65564003 -0.25237
-
--0.67873497 0.42423 0.10789
--0.65177498 0.41154999 0.04812
--0.72976501 0.37284 0.12714
-
--0.65177498 0.41154999 0.04812
--0.65177498 0.38554001 0.03709
--0.72976501 0.37284 0.12714
-
-0.72394501 -0.43584999 0.02906
-0.72512497 -0.40280998 0.05526
-0.756455 -0.42445 0.07686
-
--0.33072498 -0.58639999 0.18187
--0.334715 -0.61401001 0.18212
--0.35820499 -0.59717999 0.29188
-
-0.051805 0.5825 -0.15508
-0.046465 0.53513 -0.12086
-0.069325 0.57973999 -0.17223
-
--0.59834499 0.43923 0.01644
--0.579935 0.46213001 -0.01038
--0.61525501 0.41305 0.00652
-
--0.158205 -0.50859001 -0.11002
--0.178085 -0.52410999 -0.09604
--0.238365 -0.47976002 -0.11273
-
--0.21439501 -0.74724998 0.25917999
--0.19824499 -0.74849998 0.24569
--0.17445499 -0.76107002 0.26183001
-
--0.247845 0.62541 -0.03466
--0.29095501 0.58248001 -0.04404
--0.40747501 0.47915001 0.0356
-
--0.44820499 0.36980999 -0.02461
--0.47220501 0.42382 -0.00262
--0.44782501 0.38021 -0.01581
-
--0.37405499 -0.52716 0.21347
--0.37755501 -0.52604 0.2115
--0.360765 -0.53513 0.20674
-
--0.52155499 0.29777 -0.06353
--0.54577499 0.32955002 -0.08891
--0.49023499 0.31427999 -0.06865
-
--0.329715 0.31518 0.05937
--0.32425499 0.33021 0.07945
--0.30900499 0.25450001 0.12933
-
--0.73949501 0.19546 0.40769001
--0.76541496 0.19517 0.23780001
--0.76138496 0.14034 0.29812
-
--0.75975502 0.14085 0.40800999
--0.76138496 0.14034 0.29812
--0.76316498 0.10037 0.37827
-
--0.069995 -0.13285 -0.23166
--0.040395 -0.02881 -0.20667999
-0.074325 -0.09863 -0.22704
-
--0.462365 -0.76483002 -0.06405
--0.47280499 -0.76528 -0.06571
--0.47702499 -0.74514 -0.06318
-
--0.77015503 0.16722 0.17794001
--0.76541496 0.19517 0.23780001
--0.722985 0.29028 0.13737
-
-0.47530499 -0.39273998 -0.18283001
-0.44975498 -0.50793999 -0.1924
-0.458255 -0.43664001 -0.18388
-
--0.139575 -0.71986 0.03333
--0.204055 -0.71999001 -0.05273
--0.098815 -0.71488998 -0.14756
-
-0.56943501 -0.51193001 -0.02993
-0.54107498 -0.55365002 -0.04656
-0.54445499 -0.48500999 -0.09213
-
-0.372915 -0.65777 -0.19226999
-0.382645 -0.65669998 -0.17177999
-0.39260502 -0.67114998 -0.11193
-
-0.756455 -0.42445 0.07686
-0.757565 -0.47983002 0.05688
-0.73838501 -0.45884998 0.0331
-
--0.579935 0.46213001 -0.01038
--0.55648499 0.57926998 -0.21315001
--0.58244499 0.64759003 -0.39550999
-
--0.75503502 0.05844 0.12856
--0.75427498 0.12566 0.09816
--0.73905502 0.04444 0.0987
-
-0.56943501 -0.51193001 -0.02993
-0.554575 -0.42790001 -0.10218
-0.611035 -0.42883999 0.02128
-
--0.67290497 -0.32478001 0.06036
--0.63462502 -0.37513 0.05758
--0.67019501 -0.33046001 0.17235001
-
--0.57005501 0.04798 -0.05057
--0.67421501 -0.09452 -0.01072
--0.66189499 0.00042 0.02855
-
-0.54445499 -0.48500999 -0.09213
-0.54107498 -0.55365002 -0.04656
-0.50467499 -0.54449001 -0.10164
-
-0.39172501 -0.75321999 0.22577
-0.34790501 -0.74143997 0.42344002
-0.268925 -0.75015999 0.45092999
-
-0.30606501 -0.05008 -0.17846001
-0.259195 0.02269 -0.176
-0.359175 -0.0197 -0.15061
-
--0.75427498 0.12566 0.09816
--0.75503502 0.05844 0.12856
--0.77178497 0.08616 0.18837
-
--0.33072498 -0.58639999 0.18187
--0.33488499 -0.55792 0.17202
--0.386665 -0.56747002 0.10225
-
-0.329505 -0.71892998 0.45332001
-0.367225 -0.65199997 0.44060001
-0.308475 -0.66796997 0.46055
-
-0.004935 0.49839001 -0.08707
--0.027095 0.51598 -0.13203
-0.060495 0.54880001 -0.17709
-
-0.44320499 -0.65613998 -0.05025
-0.522575 -0.68685997 -0.0156
-0.40176498 -0.71222 -0.03167
-
-0.51241501 -0.64007004 -0.04479
-0.44320499 -0.65613998 -0.05025
-0.50317501 -0.58196999 -0.06143
-
-0.008635 0.76769997 -0.20617001
--0.006815 0.77167 -0.18312
-0.036155 0.71919998 -0.22396
-
--0.573535 -0.42264999 0.23674
--0.57746498 -0.38132 0.32298
--0.63988499 -0.38061001 0.17080999
-
-0.329505 -0.71892998 0.45332001
-0.34790501 -0.74143997 0.42344002
-0.390485 -0.69848 0.41848
-
-0.59800499 -0.28384001 -0.03253
-0.611035 -0.42883999 0.02128
-0.554575 -0.42790001 -0.10218
-
--0.73905502 0.04444 0.0987
--0.68397499 0.00246 0.06858
--0.70774498 0.00346 0.16879
-
--0.73406502 0.22117001 0.0777
--0.722985 0.29028 0.13737
--0.685625 0.31711 0.06703
-
--0.53066502 0.00663 -0.09101
--0.47079498 0.02284 -0.11794
--0.48044498 -0.07672 -0.15554
-
--0.69932503 0.13755 -0.00205
--0.75427498 0.12566 0.09816
--0.73406502 0.22117001 0.0777
-
-0.080755 0.61445999 -0.2476
-0.073585 0.64028999 -0.27017
-0.077465 0.65564003 -0.25237
-
-0.066055 0.59167999 -0.23388
-0.075455 0.60136002 -0.24311001
-0.075975 0.58987 -0.22885
-
--0.502845 -0.67873001 0.11659
--0.38455502 -0.62816002 0.13858
--0.50359501 -0.65364998 0.07231
-
--0.72489502 -0.13198 0.11954
--0.70828499 -0.11964 0.0597
--0.68935501 -0.17514999 0.00979
-
-0.56943501 -0.51193001 -0.02993
-0.54445499 -0.48500999 -0.09213
-0.554575 -0.42790001 -0.10218
-
--0.515135 0.41865002 -0.44709
--0.49363499 0.44341 -0.49014
--0.51723499 0.35522999 -0.21364
-
--0.49023499 0.31427999 -0.06865
--0.54577499 0.32955002 -0.08891
--0.54886501 0.33823002 -0.12392
-
-0.59800499 -0.28384001 -0.03253
-0.554575 -0.42790001 -0.10218
-0.47530499 -0.39273998 -0.18283001
-
--0.47018501 0.48946999 -0.51748001
--0.455145 0.56103001 -0.45051998
--0.44885502 0.48257999 -0.32057999
-
-0.372915 -0.65777 -0.19226999
-0.39260502 -0.67114998 -0.11193
-0.35073502 -0.73208 -0.14142
-
-0.54107498 -0.55365002 -0.04656
-0.50317501 -0.58196999 -0.06143
-0.50467499 -0.54449001 -0.10164
-
--0.77178497 0.08616 0.18837
--0.773265 0.14032 0.25822001
--0.77828499 0.14011 0.20802999
-
-0.44975498 -0.50793999 -0.1924
-0.47530499 -0.39273998 -0.18283001
-0.554575 -0.42790001 -0.10218
-
--0.70818497 0.41217999 0.12753
--0.72976501 0.37284 0.12714
--0.74042503 0.40042999 0.17667999
-
--0.63988499 -0.38061001 0.17080999
--0.67019501 -0.33046001 0.17235001
--0.63462502 -0.37513 0.05758
-
--0.722985 0.29028 0.13737
--0.74736504 0.31806 0.17700001
--0.69845497 0.34506001 0.09724
-
-0.74039497 -0.56462002 0.06716
-0.77457497 -0.49212002 0.10691
-0.74088501 -0.59263 0.15724
-
--0.20123501 -0.75469002 -0.29017
--0.23188499 -0.76166 -0.28009001
--0.25884501 -0.74322998 -0.26056
-
--0.16091499 -0.46264999 -0.1489
--0.158205 -0.50859001 -0.11002
--0.19886499 -0.37626999 -0.16464001
-
-0.40481499 -0.73542999 0.28509001
-0.473535 -0.68335999 0.30688
-0.43405499 -0.71273003 0.30693001
-
-0.061495 0.71106003 -0.27132
-0.008635 0.76769997 -0.20617001
-0.036155 0.71919998 -0.22396
-
--0.67165497 0.20761999 -0.01075
--0.67093498 0.16365 -0.02486
--0.69932503 0.13755 -0.00205
-
--0.70828499 -0.11964 0.0597
--0.72489502 -0.13198 0.11954
--0.72112503 -0.09155 0.13937
-
--0.531875 0.43505001 -0.47442001
--0.49343498 0.53766998 -0.56959999
--0.49435501 0.49361 -0.54973999
-
--0.67873497 0.42423 0.10789
--0.72976501 0.37284 0.12714
--0.70818497 0.41217999 0.12753
-
--0.19886499 -0.37626999 -0.16464001
--0.158205 -0.50859001 -0.11002
--0.238365 -0.47976002 -0.11273
-
-0.32443501 -0.74949997 -0.15917
-0.35073502 -0.73208 -0.14142
-0.369995 -0.75161003 -0.02044
-
-0.40176498 -0.71222 -0.03167
-0.39260502 -0.67114998 -0.11193
-0.44320499 -0.65613998 -0.05025
-
--0.41561501 -0.69004997 0.22243999
--0.39039501 -0.65042 0.25218
--0.35919498 -0.65380997 0.20221001
-
-0.55953499 -0.19656 -0.10231
-0.52969501 -0.24299 -0.15367
-0.53496498 -0.20222 -0.13642
-
-0.44975498 -0.50793999 -0.1924
-0.44724499 -0.56456001 -0.18232
-0.42197498 -0.58331001 -0.20099001
-
--0.42884499 -0.63210999 0.34209
--0.47553501 -0.68308998 0.30209
--0.45441502 -0.64302002 0.36220001
-
--0.178825 -0.39007 -0.16848
--0.156355 -0.32272999 -0.27996
--0.107915 -0.53838001 -0.23878
-
-0.141325 -0.71446999 0.04894
--0.113155 -0.72134003 0.07626
--0.031635 -0.71653999 -0.15134
-
--0.23188499 -0.76166 -0.28009001
--0.249135 -0.76183998 -0.26459
--0.25884501 -0.74322998 -0.26056
-
--0.34072498 0.34067001 0.0194
--0.352155 0.32740002 0.01621
--0.312335 0.41512001 -0.03359
-
-0.72791496 -0.59351002 0.06742
-0.74039497 -0.56462002 0.06716
-0.74088501 -0.59263 0.15724
-
--0.43119499 -0.63069 0.39651001
--0.39304501 -0.61914001 0.39880001
--0.42884499 -0.63210999 0.34209
-
--0.69344498 -0.26929001 0.08014
--0.71519501 -0.22723 0.07012
--0.63365501 -0.34187 -0.01984
-
-0.40176498 -0.71222 -0.03167
-0.38144501 -0.72870003 -0.01149
-0.369995 -0.75161003 -0.02044
-
-0.061495 0.71106003 -0.27132
-0.077465 0.65564003 -0.25237
-0.068505 0.67084 -0.27976999
-
--0.336045 0.18141001 0.33853001
--0.308445 0.09557 0.30705999
--0.28057501 0.13838 0.25653999
-
-0.141225 -0.72126999 0.18233999
-0.145855 -0.70772003 0.36983002
-0.034255 -0.70801003 0.40098999
-
-0.44975498 -0.50793999 -0.1924
-0.50467499 -0.54449001 -0.10164
-0.44724499 -0.56456001 -0.18232
-
--0.44219501 0.62398998 -0.59071999
--0.46279499 0.65877998 -0.53924999
--0.455145 0.56103001 -0.45051998
-
-0.60656502 -0.14218 0.20698999
-0.61038502 -0.18419001 0.23695999
-0.58518501 -0.07291 0.16698
-
--0.089315 -0.30382 -0.35894001
--0.049555 -0.31667 -0.37383999
--0.049465 -0.37333 -0.3702
-
--0.152975 -0.66613998 -0.27448999
--0.117175 -0.61290001 -0.22316
--0.078115 -0.62351002 -0.25240999
-
--0.67093498 0.16365 -0.02486
--0.67165497 0.20761999 -0.01075
--0.60123501 0.19448 -0.05578
-
--0.57746498 -0.38132 0.32298
--0.63135502 -0.33622002 0.29066999
--0.63988499 -0.38061001 0.17080999
-
--0.72375504 -0.14514 0.19955999
--0.72112503 -0.09155 0.13937
--0.72489502 -0.13198 0.11954
-
-0.269445 -0.75794998 -0.18476999
-0.302465 -0.72740997 -0.204
-0.32443501 -0.74949997 -0.15917
-
--0.440755 0.59640999 -0.59333
--0.44141499 0.60801998 -0.58164001
--0.44630501 0.55679001 -0.57491001
-
-0.60397499 -0.40557999 0.27521
-0.58010502 -0.29504 0.32986
-0.57273499 -0.37573002 0.33617001
-
-0.61038502 -0.18419001 0.23695999
-0.60656502 -0.14218 0.20698999
-0.56959499 -0.12199 0.29812
-
-0.55259499 -0.04642 0.27702
-0.56959499 -0.12199 0.29812
-0.60656502 -0.14218 0.20698999
-
-0.55259499 -0.04642 0.27702
-0.60656502 -0.14218 0.20698999
-0.58518501 -0.07291 0.16698
-
--0.165655 0.49323002 0.03954
--0.081355 0.49502998 0.00394
--0.009545 0.50974998 -0.05037
-
-0.075455 0.60136002 -0.24311001
-0.066055 0.59167999 -0.23388
-0.046245 0.64051003 -0.26128
-
--0.44795502 0.48275002 -0.23052
--0.462285 0.43570999 -0.09058
--0.45510502 0.35847 -0.05053
-
--0.36774502 0.40701 0.25933001
--0.34386501 0.40557999 0.15052
--0.36813499 0.44145 0.14507
-
--0.71858498 -0.18570999 0.23955999
--0.72375504 -0.14514 0.19955999
--0.72665497 -0.19900999 0.19982
-
--0.39515499 0.30839001 0.32299999
--0.336045 0.18141001 0.33853001
--0.318915 0.22754999 0.2701
-
-0.54445499 -0.48500999 -0.09213
-0.50467499 -0.54449001 -0.10164
-0.44975498 -0.50793999 -0.1924
-
--0.32425499 0.33021 0.07945
--0.329715 0.31518 0.05937
--0.31918501 0.34056 0.04058
-
-0.61429501 -0.26823 0.25707001
-0.61038502 -0.18419001 0.23695999
-0.56959499 -0.12199 0.29812
-
--0.199305 -0.2299 -0.22021999
--0.105115 -0.16202 -0.24193001
--0.153045 -0.23818001 -0.25016001
-
-0.70681503 -0.56171001 0.28268
-0.62594501 -0.60432999 0.32353001
-0.63936501 -0.64530998 0.26995001
-
-0.72546501 -0.5941 0.22735001
-0.74088501 -0.59263 0.15724
-0.76139503 -0.53476002 0.19711
-
-0.70681503 -0.56171001 0.28268
-0.72546501 -0.5941 0.22735001
-0.76070503 -0.52106998 0.2173
-
-0.76070503 -0.52106998 0.2173
-0.76139503 -0.53476002 0.19711
-0.77713501 -0.47799 0.15698
-
--0.52343498 0.42028999 -0.45174999
--0.51262501 0.42702 -0.46618999
--0.515135 0.41865002 -0.44709
-
--0.112925 0.44946999 -0.01904
--0.28335501 0.37535999 0.07935
--0.259715 0.37625999 0.05013
-
--0.34077499 0.36119999 0.14935
--0.30900499 0.25450001 0.12933
--0.32425499 0.33021 0.07945
-
-0.587925 -0.08729 0.02727
-0.61706501 -0.15582 0.06717
-0.57723499 -0.16372999 -0.05665
-
--0.105115 -0.16202 -0.24193001
--0.129445 -0.21128 -0.28048
--0.153045 -0.23818001 -0.25016001
-
-0.74180496 -0.46634998 0.26339001
-0.70681503 -0.56171001 0.28268
-0.76070503 -0.52106998 0.2173
-
-0.51815498 0.03883 0.06995
-0.554645 -0.00877 0.1262
-0.587925 -0.08729 0.02727
-
-0.61706501 -0.15582 0.06717
-0.595695 -0.19973 -0.04273
-0.57723499 -0.16372999 -0.05665
-
-0.70681503 -0.56171001 0.28268
-0.63363499 -0.56191002 0.33492001
-0.62594501 -0.60432999 0.32353001
-
-0.74180496 -0.46634998 0.26339001
-0.68953499 -0.50616001 0.3109
-0.70681503 -0.56171001 0.28268
-
--0.45953499 0.45066002 -0.34074001
--0.49363499 0.44341 -0.49014
--0.44885502 0.48257999 -0.32057999
-
-0.77457497 -0.49212002 0.10691
-0.77608498 -0.45037998 0.12685
-0.77713501 -0.47799 0.15698
-
-0.63408501 -0.68242996 0.15461
-0.67806503 -0.65469002 0.13749
-0.68346497 -0.63983002 0.21789
-
-0.74180496 -0.46634998 0.26339001
-0.70712502 -0.44008999 0.28386
-0.68953499 -0.50616001 0.3109
-
--0.35530499 0.32993999 0.20927
--0.34358501 0.26857 0.25934
--0.318915 0.22754999 0.2701
-
-0.76210503 -0.40971001 0.18714001
-0.74194504 -0.41438999 0.23629999
-0.76550499 -0.45125 0.21715
-
-0.76139503 -0.53476002 0.19711
-0.77457497 -0.49212002 0.10691
-0.77713501 -0.47799 0.15698
-
-0.76550499 -0.45125 0.21715
-0.76070503 -0.52106998 0.2173
-0.77713501 -0.47799 0.15698
-
--0.31738501 0.43448002 0.11911
--0.22710501 0.49293999 0.03888
--0.049325 0.62575001 -0.12564
-
-0.61038502 -0.18419001 0.23695999
-0.64000504 -0.36174 0.16885
-0.61706501 -0.15582 0.06717
-
-0.61038502 -0.18419001 0.23695999
-0.61429501 -0.26823 0.25707001
-0.64000504 -0.36174 0.16885
-
-0.372915 -0.65777 -0.19226999
-0.35073502 -0.73208 -0.14142
-0.32443501 -0.74949997 -0.15917
-
--0.019855 -0.37563999 0.55806
-0.013465 -0.32881001 0.57973
--0.042595 -0.29021999 0.57817001
-
--0.19960501 -0.25952999 -0.2083
--0.199305 -0.2299 -0.22021999
--0.167955 -0.26533001 -0.23986
-
--0.34386501 0.40557999 0.15052
--0.35530499 0.32993999 0.20927
--0.34077499 0.36119999 0.14935
-
--0.54955502 0.46242001 0.21086
--0.50165501 0.46126999 0.24231001
--0.45608501 0.45756001 0.24393999
-
--0.75427498 0.12566 0.09816
--0.77178497 0.08616 0.18837
--0.77015503 0.16722 0.17794001
-
--0.69841499 -0.28159 0.17025999
--0.69344498 -0.26929001 0.08014
--0.67290497 -0.32478001 0.06036
-
--0.457075 0.67668999 -0.58800999
--0.48884499 0.70297997 -0.56327
--0.46279499 0.65877998 -0.53924999
-
--0.49433498 0.69546997 -0.58514
--0.47459499 0.69324997 -0.58602001
--0.457075 0.67668999 -0.58800999
-
--0.46279499 0.65877998 -0.53924999
--0.44219501 0.62398998 -0.59071999
--0.457075 0.67668999 -0.58800999
-
-0.77608498 -0.45037998 0.12685
-0.76210503 -0.40971001 0.18714001
-0.77713501 -0.47799 0.15698
-
-0.76210503 -0.40971001 0.18714001
-0.72683502 -0.37872002 0.20152
-0.74194504 -0.41438999 0.23629999
-
-0.74180496 -0.46634998 0.26339001
-0.76550499 -0.45125 0.21715
-0.74194504 -0.41438999 0.23629999
-
-0.77608498 -0.45037998 0.12685
-0.77457497 -0.49212002 0.10691
-0.756455 -0.42445 0.07686
-
-0.77608498 -0.45037998 0.12685
-0.761605 -0.39966999 0.14054
-0.76210503 -0.40971001 0.18714001
-
-0.756455 -0.42445 0.07686
-0.72512497 -0.40280998 0.05526
-0.74167503 -0.40138 0.07409
-
-0.761605 -0.39966999 0.14054
-0.74167503 -0.40138 0.07409
-0.72733498 -0.37303001 0.14242
-
-0.761605 -0.39966999 0.14054
-0.72683502 -0.37872002 0.20152
-0.76210503 -0.40971001 0.18714001
-
-0.72683502 -0.37872002 0.20152
-0.70692497 -0.40130001 0.25292999
-0.74194504 -0.41438999 0.23629999
-
-0.49892502 -0.66067001 0.30966
-0.544925 -0.67612 0.29681999
-0.57481499 -0.63938 0.32445999
-
--0.44795502 0.48275002 -0.23052
--0.46693501 0.51418999 -0.19490999
--0.462285 0.43570999 -0.09058
-
-0.025515 0.74473999 -0.25292999
--0.016475 0.76692001 -0.19555
-0.008635 0.76769997 -0.20617001
-
-0.761605 -0.39966999 0.14054
-0.72733498 -0.37303001 0.14242
-0.72683502 -0.37872002 0.20152
-
-0.67144501 -0.41029999 0.26914
-0.70712502 -0.44008999 0.28386
-0.70692497 -0.40130001 0.25292999
-
-0.72683502 -0.37872002 0.20152
-0.671035 -0.38804001 0.23941999
-0.70692497 -0.40130001 0.25292999
-
-0.72733498 -0.37303001 0.14242
-0.68963501 -0.36695999 0.18777
-0.72683502 -0.37872002 0.20152
-
-0.68963501 -0.36695999 0.18777
-0.64128502 -0.37016998 0.18415001
-0.671035 -0.38804001 0.23941999
-
-0.67144501 -0.41029999 0.26914
-0.70692497 -0.40130001 0.25292999
-0.671035 -0.38804001 0.23941999
-
-0.761605 -0.39966999 0.14054
-0.77608498 -0.45037998 0.12685
-0.756455 -0.42445 0.07686
-
-0.72733498 -0.37303001 0.14242
-0.70884499 -0.36710999 0.13567
-0.68963501 -0.36695999 0.18777
-
-0.62960499 -0.39731998 0.23868999
-0.60397499 -0.40557999 0.27521
-0.59136501 -0.44555 0.29172001
-
--0.559795 0.4541 0.06169
--0.579935 0.46213001 -0.01038
--0.59834499 0.43923 0.01644
-
-0.72683502 -0.37872002 0.20152
-0.68963501 -0.36695999 0.18777
-0.671035 -0.38804001 0.23941999
-
--0.53754501 0.46978001 -0.00341
--0.559795 0.4541 0.06169
--0.50223499 0.44608002 0.02426
-
-0.62960499 -0.39731998 0.23868999
-0.67144501 -0.41029999 0.26914
-0.671035 -0.38804001 0.23941999
-
-0.67144501 -0.41029999 0.26914
-0.59136501 -0.44555 0.29172001
-0.57196499 -0.49865002 0.31608
-
-0.62960499 -0.39731998 0.23868999
-0.59136501 -0.44555 0.29172001
-0.67144501 -0.41029999 0.26914
-
--0.61915501 0.44778999 0.11374
--0.559795 0.4541 0.06169
--0.59834499 0.43923 0.01644
-
-0.64128502 -0.37016998 0.18415001
-0.62960499 -0.39731998 0.23868999
-0.671035 -0.38804001 0.23941999
-
--0.28657499 0.21525999 0.16419001
--0.35530499 0.32993999 0.20927
--0.318915 0.22754999 0.2701
-
--0.42884499 -0.63210999 0.34209
--0.39304501 -0.61914001 0.39880001
--0.354585 -0.59728001 0.33195
-
-0.56959499 -0.12199 0.29812
-0.55290501 -0.18681999 0.36167999
-0.54806499 -0.22674 0.37215
-
--0.087935 0.12239 0.26698
-0.032965 0.15014 0.30976
-0.100405 0.1927 0.26025
-
--0.31738501 0.43448002 0.11911
--0.236595 0.58076 0.04404
--0.354445 0.43800999 0.1358
-
--0.69313499 0.39777 0.31554001
--0.62949501 0.42409 0.33152
--0.65483498 0.44209999 0.23309999
-
--0.74471497 0.23594 0.22754
--0.74114502 0.29077999 0.20722
--0.722985 0.29028 0.13737
-
-0.70884499 -0.36710999 0.13567
-0.64561501 -0.37198002 0.10372
-0.64000504 -0.36174 0.16885
-
-0.60397499 -0.40557999 0.27521
-0.62960499 -0.39731998 0.23868999
-0.64128502 -0.37016998 0.18415001
-
--0.72665497 -0.19900999 0.19982
--0.71519501 -0.22723 0.07012
--0.70689499 -0.24051001 0.17004999
-
--0.36813499 0.44145 0.14507
--0.34386501 0.40557999 0.15052
--0.354445 0.43800999 0.1358
-
--0.43739498 0.45532001 0.06203
--0.46518501 0.44868 0.07372
--0.54955502 0.46242001 0.21086
-
-0.76210503 -0.40971001 0.18714001
-0.76550499 -0.45125 0.21715
-0.77713501 -0.47799 0.15698
-
--0.138135 0.15368 0.18959999
--0.250515 0.18847 0.08946
--0.24738501 0.17902 0.16450001
-
--0.76094498 0.07262 0.24841
--0.74453499 0.0457 0.23389999
--0.70928497 0.03538 0.30452
-
-0.64561501 -0.37198002 0.10372
-0.63150501 -0.32306999 0.09721
-0.64000504 -0.36174 0.16885
-
--0.72665497 -0.19900999 0.19982
--0.72489502 -0.13198 0.11954
--0.71519501 -0.22723 0.07012
-
--0.096095 0.71514 -0.06997
--0.30827499 0.55255001 0.0553
--0.236595 0.58076 0.04404
-
--0.53754501 0.46978001 -0.00341
--0.50223499 0.44608002 0.02426
--0.497005 0.44953999 -0.01774
-
--0.404995 -0.67698997 0.19254
--0.45211498 -0.74226997 0.21997999
--0.41561501 -0.69004997 0.22243999
-
--0.66683502 0.43922001 0.22899
--0.61915501 0.44778999 0.11374
--0.67873497 0.42423 0.10789
-
--0.45004501 0.41863998 0.36409
--0.49872501 0.43931999 0.33116001
--0.56956501 0.37901001 0.42835999
-
--0.567505 0.44047001 0.32217999
--0.50165501 0.46126999 0.24231001
--0.54955502 0.46242001 0.21086
-
--0.208305 0.15802 0.22305
--0.138135 0.15368 0.18959999
--0.24738501 0.17902 0.16450001
-
--0.44795502 0.48275002 -0.23052
--0.455145 0.56103001 -0.45051998
--0.478615 0.61969002 -0.45830002
-
--0.50442501 0.51681 -0.12221
--0.48107498 0.54027 -0.21445999
--0.541525 0.60362999 -0.27988001
-
--0.74582497 0.34598999 0.25691
--0.74042503 0.40042999 0.17667999
--0.74736504 0.31806 0.17700001
-
--0.301705 0.19448999 0.02741
--0.250515 0.18847 0.08946
--0.221775 0.16362 -0.02269
-
--0.28657499 0.21525999 0.16419001
--0.30900499 0.25450001 0.12933
--0.35530499 0.32993999 0.20927
-
--0.36774502 0.40701 0.25933001
--0.35530499 0.32993999 0.20927
--0.34386501 0.40557999 0.15052
-
--0.084295 0.46479 -0.01832
--0.081355 0.49502998 0.00394
--0.112925 0.44946999 -0.01904
-
--0.250515 0.18847 0.08946
--0.106075 0.15324 0.06919
--0.221775 0.16362 -0.02269
-
--0.62949501 0.42409 0.33152
--0.567505 0.44047001 0.32217999
--0.65483498 0.44209999 0.23309999
-
--0.025365 0.17524 0.11324
-0.014575 0.18521999 0.18579
-0.147305 0.21093 0.16179001
-
--0.58244499 0.64759003 -0.39550999
--0.55654499 0.64793999 -0.39986
--0.543125 0.70637001 -0.51022999
-
--0.35530499 0.32993999 0.20927
--0.36774502 0.40701 0.25933001
--0.38591499 0.35167 0.31952
-
--0.352155 0.32740002 0.01621
--0.401735 0.37047001 -0.00194
--0.312335 0.41512001 -0.03359
-
--0.44827499 0.33785 0.38784
--0.43137501 0.38099998 0.37743
--0.52690498 0.36866001 0.4325
-
--0.27186501 0.17989 0.1998
--0.28057501 0.13838 0.25653999
--0.24738501 0.17902 0.16450001
-
--0.085275 0.1548 0.17931
--0.025365 0.17524 0.11324
--0.106075 0.15324 0.06919
-
--0.497005 0.44953999 -0.01774
--0.50223499 0.44608002 0.02426
--0.47220501 0.42382 -0.00262
-
--0.61915501 0.44778999 0.11374
--0.59834499 0.43923 0.01644
--0.65177498 0.41154999 0.04812
-
--0.48884499 0.70297997 -0.56327
--0.51963501 0.70806 -0.56443001
--0.543125 0.70637001 -0.51022999
-
--0.295275 0.20636 0.05543
--0.28657499 0.21525999 0.16419001
--0.250515 0.18847 0.08946
-
--0.44820499 0.36980999 -0.02461
--0.462285 0.43570999 -0.09058
--0.47220501 0.42382 -0.00262
-
--0.36813499 0.44145 0.14507
--0.30827499 0.55255001 0.0553
--0.35580502 0.52299 0.06101
-
--0.478615 0.61969002 -0.45830002
--0.541525 0.60362999 -0.27988001
--0.48107498 0.54027 -0.21445999
-
--0.46693501 0.51418999 -0.19490999
--0.50442501 0.51681 -0.12221
--0.462285 0.43570999 -0.09058
-
--0.478615 0.61969002 -0.45830002
--0.455145 0.56103001 -0.45051998
--0.46279499 0.65877998 -0.53924999
-
--0.386665 -0.56747002 0.10225
--0.369095 -0.54116001 0.13157
--0.41275501 -0.52455002 0.07158
-
--0.301705 0.19448999 0.02741
--0.295275 0.20636 0.05543
--0.250515 0.18847 0.08946
-
--0.50442501 0.51681 -0.12221
--0.53754501 0.46978001 -0.00341
--0.497005 0.44953999 -0.01774
-
--0.74114502 0.29077999 0.20722
--0.74471497 0.23594 0.22754
--0.72123497 0.26363001 0.29735001
-
--0.74736504 0.31806 0.17700001
--0.74114502 0.29077999 0.20722
--0.74582497 0.34598999 0.25691
-
--0.39786499 0.47005001 0.10535
--0.40865501 0.45254002 0.17395
--0.36813499 0.44145 0.14507
-
--0.69119499 -0.03813 0.21893999
--0.71903503 -0.1047 0.21924999
--0.70878502 -0.09154 0.23915001
-
--0.73905502 0.04444 0.0987
--0.70774498 0.00346 0.16879
--0.75351501 0.04522 0.14867
-
--0.121325 0.14207 0.02081
--0.138675 0.11073 -0.06666
--0.221775 0.16362 -0.02269
-
--0.74042503 0.40042999 0.17667999
--0.72732498 0.41339001 0.20645
--0.70818497 0.41217999 0.12753
-
--0.40865501 0.45254002 0.17395
--0.54955502 0.46242001 0.21086
--0.45608501 0.45756001 0.24393999
-
-0.060925 -0.75339996 0.44673
-0.134945 -0.75379997 0.42655998
-0.023935 -0.75346001 0.45659
-
-0.061495 0.71106003 -0.27132
-0.047165 0.73010002 -0.26747
-0.008635 0.76769997 -0.20617001
-
--0.47512501 0.32431999 -0.07113
--0.54886501 0.33823002 -0.12392
--0.51723499 0.35522999 -0.21364
-
--0.140345 -0.05789 -0.20672001
--0.105925 -0.01889 -0.19115
--0.040395 -0.02881 -0.20667999
-
--0.025365 0.17524 0.11324
--0.085275 0.1548 0.17931
-0.014575 0.18521999 0.18579
-
--0.192925 0.12158 0.28837999
--0.138135 0.15368 0.18959999
--0.208305 0.15802 0.22305
-
--0.329715 0.31518 0.05937
--0.34072498 0.34067001 0.0194
--0.31918501 0.34056 0.04058
-
-0.54476501 -0.0057 0.22294001
-0.470495 0.07129 0.2808
-0.55259499 -0.04642 0.27702
-
-0.49233501 0.07108 0.18927999
-0.54476501 -0.0057 0.22294001
-0.554645 -0.00877 0.1262
-
--0.085275 0.1548 0.17931
--0.106075 0.15324 0.06919
--0.138135 0.15368 0.18959999
-
--0.40865501 0.45254002 0.17395
--0.43739498 0.45532001 0.06203
--0.54955502 0.46242001 0.21086
-
-0.51815498 0.03883 0.06995
-0.48769501 0.07898 0.11616
-0.49233501 0.07108 0.18927999
-
-0.49233501 0.07108 0.18927999
-0.470495 0.07129 0.2808
-0.54476501 -0.0057 0.22294001
-
--0.121325 0.14207 0.02081
--0.025365 0.17524 0.11324
-0.078115 0.18864 0.02789
-
--0.46518501 0.44868 0.07372
--0.559795 0.4541 0.06169
--0.54955502 0.46242001 0.21086
-
--0.559795 0.4541 0.06169
--0.61915501 0.44778999 0.11374
--0.54955502 0.46242001 0.21086
-
--0.138135 0.15368 0.18959999
--0.106075 0.15324 0.06919
--0.250515 0.18847 0.08946
-
--0.50165501 0.46126999 0.24231001
--0.49872501 0.43931999 0.33116001
--0.45608501 0.45756001 0.24393999
-
--0.438055 -0.66690002 0.44669998
--0.43119499 -0.63069 0.39651001
--0.46994499 -0.66989998 0.39380001
-
-0.51815498 0.03883 0.06995
-0.49233501 0.07108 0.18927999
-0.554645 -0.00877 0.1262
-
-0.54476501 -0.0057 0.22294001
-0.58518501 -0.07291 0.16698
-0.554645 -0.00877 0.1262
-
--0.38813499 0.43208 0.28315001
--0.40865501 0.45254002 0.17395
--0.45608501 0.45756001 0.24393999
-
--0.087935 0.12239 0.26698
--0.085275 0.1548 0.17931
--0.138135 0.15368 0.18959999
-
--0.34746498 -0.54298 0.16158001
--0.33488499 -0.55792 0.17202
--0.34688499 -0.54231998 0.18309999
-
--0.28057501 0.13838 0.25653999
--0.208305 0.15802 0.22305
--0.24738501 0.17902 0.16450001
-
-0.047165 0.73010002 -0.26747
-0.061495 0.71106003 -0.27132
-0.059645 0.68377998 -0.28246
-
-0.554645 -0.00877 0.1262
-0.58518501 -0.07291 0.16698
-0.587925 -0.08729 0.02727
-
--0.50442501 0.51681 -0.12221
--0.46693501 0.51418999 -0.19490999
--0.48107498 0.54027 -0.21445999
-
--0.139575 -0.71986 0.03333
--0.152335 -0.71831001 0.01116
--0.204055 -0.71999001 -0.05273
-
-0.48769501 0.07898 0.11616
-0.41226501 0.13985 0.08791
-0.49233501 0.07108 0.18927999
-
--0.036455 0.74396004 -0.12342
-0.036155 0.71919998 -0.22396
--0.006815 0.77167 -0.18312
-
--0.58244499 0.64759003 -0.39550999
--0.543125 0.70637001 -0.51022999
--0.597435 0.68508003 -0.47937
-
--0.38813499 0.43208 0.28315001
--0.36813499 0.44145 0.14507
--0.40865501 0.45254002 0.17395
-
--0.45004501 0.41863998 0.36409
--0.40461498 0.42754002 0.32105999
--0.49872501 0.43931999 0.33116001
-
-0.37462502 0.09203 0.35064999
-0.43314499 -0.00056 0.38240002
-0.47858501 0.02572 0.32499001
-
-0.49725498 0.02933 -0.02307
-0.51815498 0.03883 0.06995
-0.587925 -0.08729 0.02727
-
-0.51815498 0.03883 0.06995
-0.45834499 0.08214 0.00486
-0.48769501 0.07898 0.11616
-
--0.336045 0.18141001 0.33853001
--0.28057501 0.13838 0.25653999
--0.318915 0.22754999 0.2701
-
--0.40461498 0.42754002 0.32105999
--0.43137501 0.38099998 0.37743
--0.38591499 0.35167 0.31952
-
-0.136995 -0.12943 0.54544998
-0.182565 -0.11096 0.51632
-0.079635 -0.11564 0.52494999
-
--0.499935 0.33810001 0.43618999
--0.44827499 0.33785 0.38784
--0.52690498 0.36866001 0.4325
-
--0.49872501 0.43931999 0.33116001
--0.50165501 0.46126999 0.24231001
--0.567505 0.44047001 0.32217999
-
-0.23345501 -0.11154 0.49640999
-0.182565 -0.11096 0.51632
-0.182745 -0.12148 0.53138
-
-0.182745 -0.12148 0.53138
-0.17338499 -0.16284 0.56652
-0.26328501 -0.13812 0.51595001
-
-0.70712502 -0.44008999 0.28386
-0.67144501 -0.41029999 0.26914
-0.64346497 -0.49037998 0.32360001
-
--0.19938499 -0.27365 -0.20799
--0.176745 -0.32091 -0.21965
--0.18914499 -0.31829 -0.17997
-
-0.430765 0.12101 0.23743
-0.362635 0.14925 0.26934
-0.368885 0.12605 0.31459999
-
-0.70884499 -0.36710999 0.13567
-0.64128502 -0.37016998 0.18415001
-0.68963501 -0.36695999 0.18777
-
-0.45834499 0.08214 0.00486
-0.41226501 0.13985 0.08791
-0.48769501 0.07898 0.11616
-
-0.60397499 -0.40557999 0.27521
-0.64128502 -0.37016998 0.18415001
-0.61429501 -0.26823 0.25707001
-
--0.72375504 -0.14514 0.19955999
--0.71903503 -0.1047 0.21924999
--0.72112503 -0.09155 0.13937
-
-0.17338499 -0.16284 0.56652
-0.182745 -0.12148 0.53138
-0.136995 -0.12943 0.54544998
-
-0.38503502 0.15941 0.19188999
-0.430765 0.12101 0.23743
-0.49233501 0.07108 0.18927999
-
-0.368885 0.12605 0.31459999
-0.37462502 0.09203 0.35064999
-0.470495 0.07129 0.2808
-
-0.368885 0.12605 0.31459999
-0.470495 0.07129 0.2808
-0.430765 0.12101 0.23743
-
--0.36813499 0.44145 0.14507
--0.354445 0.43800999 0.1358
--0.30827499 0.55255001 0.0553
-
--0.46693501 0.51418999 -0.19490999
--0.44795502 0.48275002 -0.23052
--0.48107498 0.54027 -0.21445999
-
-0.430765 0.12101 0.23743
-0.470495 0.07129 0.2808
-0.49233501 0.07108 0.18927999
-
--0.30900499 0.25450001 0.12933
--0.34077499 0.36119999 0.14935
--0.35530499 0.32993999 0.20927
-
--0.27186501 0.17989 0.1998
--0.24738501 0.17902 0.16450001
--0.250515 0.18847 0.08946
-
--0.56956501 0.37901001 0.42835999
--0.567505 0.44047001 0.32217999
--0.62949501 0.42409 0.33152
-
-0.41226501 0.13985 0.08791
-0.38503502 0.15941 0.19188999
-0.49233501 0.07108 0.18927999
-
--0.40461498 0.42754002 0.32105999
--0.38813499 0.43208 0.28315001
--0.45608501 0.45756001 0.24393999
-
-0.035725 -0.09047 0.45244999
-0.154285 -0.09136 0.45977001
-0.093525 -0.02874 0.45459
-
-0.37462502 0.09203 0.35064999
-0.47858501 0.02572 0.32499001
-0.470495 0.07129 0.2808
-
--0.67165497 0.20761999 -0.01075
--0.69932503 0.13755 -0.00205
--0.73406502 0.22117001 0.0777
-
-0.223505 -0.23148001 0.58157001
-0.053405 -0.17601 0.57659
-0.043465 -0.23129 0.58570999
-
-0.61706501 -0.15582 0.06717
-0.587925 -0.08729 0.02727
-0.58518501 -0.07291 0.16698
-
-0.362635 0.14925 0.26934
-0.430765 0.12101 0.23743
-0.38503502 0.15941 0.19188999
-
--0.106735 0.07859 0.32783001
--0.087935 0.12239 0.26698
--0.138135 0.15368 0.18959999
-
--0.48107498 0.54027 -0.21445999
--0.44795502 0.48275002 -0.23052
--0.478615 0.61969002 -0.45830002
-
-0.28172501 -0.75823997 -0.05062
-0.369995 -0.75161003 -0.02044
-0.37226501 -0.75335999 0.0004
-
-0.40085499 0.10826 -0.02869
-0.32314499 0.16155001 -0.00588
-0.368895 0.14748 0.00937
-
--0.51963501 0.70806 -0.56443001
--0.572925 0.70330002 -0.52133999
--0.543125 0.70637001 -0.51022999
-
--0.68001503 -0.24351 -0.00998
--0.68935501 -0.17514999 0.00979
--0.660215 -0.19101 -0.05073
-
-0.41226501 0.13985 0.08791
-0.45834499 0.08214 0.00486
-0.40085499 0.10826 -0.02869
-
-0.41226501 0.13985 0.08791
-0.40085499 0.10826 -0.02869
-0.368895 0.14748 0.00937
-
-0.267075 0.20905001 0.1627
-0.31116501 0.18573 0.23601
-0.38503502 0.15941 0.19188999
-
-0.29845501 0.12968 0.34632999
-0.368885 0.12605 0.31459999
-0.362635 0.14925 0.26934
-
--0.28657499 0.21525999 0.16419001
--0.27186501 0.17989 0.1998
--0.250515 0.18847 0.08946
-
--0.56052502 -0.45873001 0.12908
--0.53317501 -0.47806999 0.18746
--0.63988499 -0.38061001 0.17080999
-
--0.52155499 0.29777 -0.06353
--0.54156502 0.29757 -0.05975
--0.54577499 0.32955002 -0.08891
-
-0.41226501 0.13985 0.08791
-0.368895 0.14748 0.00937
-0.30644501 0.19247999 0.06287
-
-0.362635 0.14925 0.26934
-0.38503502 0.15941 0.19188999
-0.31116501 0.18573 0.23601
-
--0.080705 -0.14328 0.45655998
--0.075765 -0.16964001 0.4948
--0.029165 -0.1302 0.47558998
-
-0.043465 -0.23129 0.58570999
-0.053405 -0.17601 0.57659
--0.042475 -0.24874001 0.57685001
-
--0.036705 -0.58948002 0.47154999
--0.029985 -0.49078999 0.50139999
--0.096085 -0.45277 0.41069
-
--0.406185 -0.64178001 0.44240002
--0.39304501 -0.61914001 0.39880001
--0.43119499 -0.63069 0.39651001
-
--0.100065 -0.67837997 0.54858002
--0.158775 -0.70517998 0.52299
--0.119005 -0.73551003 0.54847
-
--0.008315 -0.16797001 0.55435001
--0.057925 -0.20864 0.54856998
--0.042475 -0.24874001 0.57685001
-
--0.62411499 0.60556 -0.39534
--0.608685 0.60671001 -0.42444
--0.61443501 0.52313 -0.27403999
-
--0.100065 -0.67837997 0.54858002
--0.056445 -0.62691002 0.52630001
--0.106135 -0.61624001 0.49498001
-
--0.051545 0.75455002 -0.12812
--0.29095501 0.58248001 -0.04404
--0.247845 0.62541 -0.03466
-
--0.158775 -0.70517998 0.52299
--0.100065 -0.67837997 0.54858002
--0.16275499 -0.66514 0.49737
-
--0.597435 0.68508003 -0.47937
--0.579935 0.46213001 -0.01038
--0.58244499 0.64759003 -0.39550999
-
--0.57147499 0.29725 -0.05187
--0.54156502 0.29757 -0.05975
--0.52155499 0.29777 -0.06353
-
--0.44782501 0.38021 -0.01581
--0.41858501 0.32521999 -0.01536
--0.44820499 0.36980999 -0.02461
-
--0.116605 -0.52758999 0.38146999
--0.140305 -0.57868999 0.38641998
--0.118055 -0.56602001 0.3798
-
--0.35253502 -0.54191002 0.28164
--0.354585 -0.59728001 0.33195
--0.32939499 -0.58321999 0.36421001
-
-0.35949501 -0.21177999 -0.24714001
-0.290105 -0.15098 -0.25101999
-0.28848499 -0.13418 -0.22884001
-
--0.44495499 0.61160999 -0.60196999
--0.43943501 0.61122002 -0.59380001
--0.440755 0.59640999 -0.59333
-
-0.053525 -0.59877998 0.51932999
-0.093335 -0.54011002 0.55001999
-0.031045 -0.48976002 0.55334
-
--0.43739498 0.45532001 0.06203
--0.247845 0.62541 -0.03466
--0.40747501 0.47915001 0.0356
-
--0.34072498 0.34067001 0.0194
--0.363535 0.29777 0.01081
--0.352155 0.32740002 0.01621
-
--0.47512501 0.32431999 -0.07113
--0.468335 0.32449001 -0.06341
--0.47262501 0.31153 -0.0592
-
--0.199305 -0.2299 -0.22021999
--0.19938499 -0.27365 -0.20799
--0.249485 -0.24631001 -0.19802999
-
--0.32425499 0.33021 0.07945
--0.31918501 0.34056 0.04058
--0.259715 0.37625999 0.05013
-
--0.60170502 0.42654999 -0.05351
--0.59239498 0.37070999 -0.07326
--0.614795 0.37119999 -0.013
-
--0.34414501 -0.48889999 0.33360001
--0.35253502 -0.54191002 0.28164
--0.32939499 -0.58321999 0.36421001
-
--0.009275 -0.14155 0.52644001
--0.008315 -0.16797001 0.55435001
-0.053405 -0.17601 0.57659
-
--0.068205 -0.24886999 0.56009998
--0.042475 -0.24874001 0.57685001
--0.057925 -0.20864 0.54856998
-
--0.17994499 -0.75432999 0.36115002
--0.129625 -0.75866997 0.17889999
--0.141445 -0.71961998 0.33926998
-
--0.35181499 -0.54046001 0.20204
--0.34688499 -0.54231998 0.18309999
--0.33072498 -0.58639999 0.18187
-
--0.009545 0.50974998 -0.05037
-0.004935 0.49839001 -0.08707
-0.046465 0.53513 -0.12086
-
--0.029165 -0.1302 0.47558998
--0.106555 -0.0996 0.45023998
--0.080705 -0.14328 0.45655998
-
--0.068205 -0.24886999 0.56009998
--0.093355 -0.17006001 0.46999001
--0.119785 -0.23910999 0.46998001
-
--0.068205 -0.24886999 0.56009998
--0.057925 -0.20864 0.54856998
--0.075765 -0.16964001 0.4948
-
--0.074085 -0.30458 0.55348
--0.068205 -0.24886999 0.56009998
--0.119785 -0.23910999 0.46998001
-
-0.031045 -0.48976002 0.55334
--0.019855 -0.37563999 0.55806
--0.016705 -0.60248001 0.48320999
-
--0.119785 -0.23910999 0.46998001
--0.137875 -0.2701 0.43911999
--0.085865 -0.32016998 0.52319
-
--0.38665501 -0.15554 0.46
--0.38654499 -0.07216 0.43530998
--0.436525 -0.08632 0.43841
-
-0.035725 -0.09047 0.45244999
--0.029165 -0.1302 0.47558998
--0.009275 -0.14155 0.52644001
-
--0.019855 -0.37563999 0.55806
--0.042595 -0.29021999 0.57817001
--0.074085 -0.30458 0.55348
-
--0.330975 0.52471001 -0.03259
--0.18282499 0.59498001 -0.13044
--0.23320499 0.5352 -0.10464
-
-0.093385 -0.48191002 0.57638
-0.103345 -0.42644001 0.57532001
-0.053355 -0.41346001 0.56433998
-
--0.54655499 0.08835 0.54924999
--0.58654499 0.0687 0.53747002
--0.54197498 0.03751 0.51964001
-
--0.137875 -0.2701 0.43911999
--0.029985 -0.49078999 0.50139999
--0.085865 -0.32016998 0.52319
-
--0.029165 -0.1302 0.47558998
--0.075765 -0.16964001 0.4948
--0.009275 -0.14155 0.52644001
-
--0.35181499 -0.54046001 0.20204
--0.40862499 -0.51027 0.23212
--0.382085 -0.52368999 0.21750999
-
--0.288985 -0.33368 -0.16805
--0.328545 -0.40797001 -0.12829
--0.37912498 -0.31878 -0.18186001
-
--0.455145 0.56103001 -0.45051998
--0.47018501 0.48946999 -0.51748001
--0.44630501 0.55679001 -0.57491001
-
--0.080705 -0.14328 0.45655998
--0.093355 -0.17006001 0.46999001
--0.075765 -0.16964001 0.4948
-
--0.40862499 -0.51027 0.23212
--0.37079498 -0.49140999 0.28962999
--0.403395 -0.47771 0.30250999
-
--0.35181499 -0.54046001 0.20204
--0.37079498 -0.49140999 0.28962999
--0.40862499 -0.51027 0.23212
-
--0.42102501 -0.74413002 0.47407001
--0.44044498 -0.72050003 0.46478001
--0.47779499 -0.74220001 0.42571999
-
--0.51212502 -0.2273 0.45049999
--0.55939499 -0.21372999 0.42647999
--0.61961498 -0.25518 0.37487
-
--0.40703499 -0.68030998 0.47273998
--0.406185 -0.64178001 0.44240002
--0.438055 -0.66690002 0.44669998
-
--0.35181499 -0.54046001 0.20204
--0.35253502 -0.54191002 0.28164
--0.37079498 -0.49140999 0.28962999
-
--0.60170502 0.42654999 -0.05351
--0.579935 0.46213001 -0.01038
--0.62411499 0.60556 -0.39534
-
--0.140345 -0.05789 -0.20672001
--0.040395 -0.02881 -0.20667999
--0.069995 -0.13285 -0.23166
-
--0.62949501 0.42409 0.33152
--0.69313499 0.39777 0.31554001
--0.62565498 0.37287998 0.41800999
-
--0.259715 0.37625999 0.05013
--0.31918501 0.34056 0.04058
--0.112925 0.44946999 -0.01904
-
--0.677295 0.16986 0.51804001
--0.62663502 0.17285 0.54678001
--0.65234497 0.19790001 0.53490002
-
--0.49433498 0.69546997 -0.58514
--0.457075 0.67668999 -0.58800999
--0.47443501 0.65209999 -0.59683998
-
--0.50058498 -0.72952003 0.32737999
--0.47553501 -0.68308998 0.30209
--0.47838501 -0.72314003 0.26280001
-
-0.38315498 -0.105 -0.19958
-0.44600498 -0.11718 -0.16657
-0.44883499 -0.17316 -0.18752001
-
--0.65234497 0.19790001 0.53490002
--0.65054497 0.23882 0.51790001
--0.68966499 0.23750999 0.48583
-
--0.45441502 -0.64302002 0.36220001
--0.47614498 -0.66900002 0.34229
--0.46994499 -0.66989998 0.39380001
-
--0.55939499 -0.21372999 0.42647999
--0.551175 -0.15953 0.43046001
--0.61401501 -0.18775999 0.38139999
-
--0.042595 -0.29021999 0.57817001
--0.042475 -0.24874001 0.57685001
--0.068205 -0.24886999 0.56009998
-
--0.152975 -0.66613998 -0.27448999
--0.17661501 -0.63981998 -0.23927999
--0.117175 -0.61290001 -0.22316
-
--0.272745 -0.45799 0.41743
--0.34414501 -0.48889999 0.33360001
--0.32939499 -0.58321999 0.36421001
-
--0.029985 -0.49078999 0.50139999
--0.036705 -0.58948002 0.47154999
--0.016705 -0.60248001 0.48320999
-
--0.136565 -0.18389 0.45653999
--0.119785 -0.23910999 0.46998001
--0.093355 -0.17006001 0.46999001
-
--0.096085 -0.45277 0.41069
--0.116605 -0.52758999 0.38146999
--0.118055 -0.56602001 0.3798
-
--0.59962502 0.11646 0.54145
--0.62663502 0.17285 0.54678001
--0.677295 0.16986 0.51804001
-
--0.65526497 -0.16193001 0.33708
--0.61401501 -0.18775999 0.38139999
--0.60681499 -0.05331 0.35605999
-
--0.40862499 -0.51027 0.23212
--0.406595 -0.51327 0.22797001
--0.406595 -0.51174999 0.23107
-
--0.39039501 -0.65042 0.25218
--0.42884499 -0.63210999 0.34209
--0.354585 -0.59728001 0.33195
-
--0.54392502 0.40847 -0.42164001
--0.52669498 0.41201 -0.43175999
--0.54327499 0.39124001 -0.37567001
-
--0.61961498 -0.25518 0.37487
--0.55939499 -0.21372999 0.42647999
--0.61401501 -0.18775999 0.38139999
-
--0.420495 -0.13227 -0.18625
--0.36962502 -0.20292999 -0.20726999
--0.40962502 -0.24707001 -0.19660999
-
--0.48429501 0.08465 0.51129002
--0.516045 0.07047 0.53485001
--0.527495 0.03341 0.50833
-
--0.16779499 -0.59556999 -0.09223
--0.132525 -0.59215 -0.16823
--0.228515 -0.64073997 -0.19774
-
--0.49343498 0.53766998 -0.56959999
--0.44495499 0.61160999 -0.60196999
--0.46016499 0.52960999 -0.57521999
-
--0.363685 -0.71358002 0.48608002
--0.40703499 -0.68030998 0.47273998
--0.40310501 -0.70723999 0.48404999
-
--0.65234497 0.19790001 0.53490002
--0.59655499 0.21528 0.54181
--0.65054497 0.23882 0.51790001
-
--0.74907501 0.12734 0.44921001
--0.70310501 0.07475 0.49027
--0.677295 0.16986 0.51804001
-
--0.16779499 -0.59556999 -0.09223
--0.228515 -0.64073997 -0.19774
--0.233095 -0.62811001 -0.12729
-
--0.75975502 0.14085 0.40800999
--0.754655 0.10016 0.44153999
--0.74907501 0.12734 0.44921001
-
--0.17445499 -0.76107002 0.26183001
--0.18321501 -0.75733002 0.1487
--0.129625 -0.75866997 0.17889999
-
--0.156665 -0.36923 0.42314999
--0.116605 -0.52758999 0.38146999
--0.137875 -0.2701 0.43911999
-
--0.58818501 -0.35695 -0.06415
--0.60820499 -0.28396 -0.08675
--0.579235 -0.25250999 -0.13211
-
--0.158205 -0.50859001 -0.11002
--0.157915 -0.5673 -0.08973
--0.178085 -0.52410999 -0.09604
-
--0.438055 -0.66690002 0.44669998
--0.406185 -0.64178001 0.44240002
--0.43119499 -0.63069 0.39651001
-
--0.437295 -0.37362999 0.41646999
--0.50172501 -0.31013 0.42847
--0.50455502 -0.31641001 0.42362999
-
--0.56019501 -0.74653 0.0799
--0.54426498 -0.71963997 0.10263
--0.54181499 -0.69334 0.08588
-
--0.019855 -0.37563999 0.55806
--0.029985 -0.49078999 0.50139999
--0.016705 -0.60248001 0.48320999
-
--0.143465 -0.60214001 0.43403999
--0.140305 -0.57868999 0.38641998
--0.216555 -0.65108002 0.42185001
-
-0.046465 0.53513 -0.12086
-0.004935 0.49839001 -0.08707
-0.060495 0.54880001 -0.17709
-
--0.32939499 -0.58321999 0.36421001
--0.34806499 -0.62027 0.40410999
--0.296705 -0.61009998 0.40333
-
-0.70712502 -0.44008999 0.28386
-0.74194504 -0.41438999 0.23629999
-0.70692497 -0.40130001 0.25292999
-
--0.382085 -0.52368999 0.21750999
--0.37405499 -0.52716 0.21347
--0.360765 -0.53513 0.20674
-
--0.236595 0.58076 0.04404
--0.30827499 0.55255001 0.0553
--0.354445 0.43800999 0.1358
-
--0.18321501 -0.75733002 0.1487
--0.252265 -0.76543999 0.06978
--0.20473499 -0.76521004 0.06109
-
--0.54181499 -0.69334 0.08588
--0.502845 -0.67873001 0.11659
--0.50359501 -0.65364998 0.07231
-
--0.44044498 -0.72050003 0.46478001
--0.40703499 -0.68030998 0.47273998
--0.438055 -0.66690002 0.44669998
-
--0.099435 -0.2215 -0.33507999
--0.129445 -0.21128 -0.28048
--0.068905 -0.17981001 -0.32354
-
--0.44842499 -0.42519001 -0.09399
--0.48772499 -0.47484001 -0.01301
--0.51724499 -0.39648998 -0.08125
-
--0.53066502 0.00663 -0.09101
--0.48044498 -0.07672 -0.15554
--0.59998501 -0.08147 -0.08608
-
--0.143465 -0.60214001 0.43403999
--0.16275499 -0.66514 0.49737
--0.106135 -0.61624001 0.49498001
-
--0.65054497 0.23882 0.51790001
--0.66231499 0.29212999 0.47123001
--0.68966499 0.23750999 0.48583
-
--0.074085 -0.30458 0.55348
--0.119785 -0.23910999 0.46998001
--0.085865 -0.32016998 0.52319
-
--0.551175 -0.15953 0.43046001
--0.55939499 -0.21372999 0.42647999
--0.44656502 -0.19707001 0.46938
-
--0.419095 -0.61935001 0.07249
--0.47767502 -0.65098999 0.02223
--0.50359501 -0.65364998 0.07231
-
--0.009275 -0.14155 0.52644001
-0.053405 -0.17601 0.57659
-0.079635 -0.11564 0.52494999
-
--0.60025501 0.10649 -0.05573
--0.67093498 0.16365 -0.02486
--0.60123501 0.19448 -0.05578
-
--0.068205 -0.24886999 0.56009998
--0.075765 -0.16964001 0.4948
--0.093355 -0.17006001 0.46999001
-
--0.67091499 0.06852 0.50094002
--0.648545 0.03328 0.48077
--0.627995 0.04726 0.49209
-
--0.71903503 -0.1047 0.21924999
--0.69847504 -0.16400999 0.28132
--0.70878502 -0.09154 0.23915001
-
--0.60633499 0.29861 0.49606998
--0.56956501 0.37901001 0.42835999
--0.62565498 0.37287998 0.41800999
-
--0.50359501 -0.65364998 0.07231
--0.51823502 -0.66611 0.04218
--0.54181499 -0.69334 0.08588
-
--0.65526497 -0.16193001 0.33708
--0.69847504 -0.16400999 0.28132
--0.71858498 -0.18570999 0.23955999
-
--0.009545 0.50974998 -0.05037
-0.046465 0.53513 -0.12086
-0.051805 0.5825 -0.15508
-
--0.036705 -0.58948002 0.47154999
--0.140305 -0.57868999 0.38641998
--0.143465 -0.60214001 0.43403999
-
--0.54181499 -0.69334 0.08588
--0.54426498 -0.71963997 0.10263
--0.502845 -0.67873001 0.11659
-
--0.042595 -0.29021999 0.57817001
--0.068205 -0.24886999 0.56009998
--0.074085 -0.30458 0.55348
-
--0.156565 -0.18361 0.45839001
--0.206455 -0.16997 0.45382999
--0.176625 -0.22690001 0.44397999
-
--0.603685 0.00224 0.46230999
--0.66449501 0.01509 0.45601002
--0.58873501 -0.02668 0.38175999
-
--0.35253502 -0.54191002 0.28164
--0.35820499 -0.59717999 0.29188
--0.354585 -0.59728001 0.33195
-
--0.46994499 -0.66989998 0.39380001
--0.49865501 -0.72585999 0.36729
--0.47779499 -0.74220001 0.42571999
-
--0.21126499 -0.66814003 0.43307999
--0.16275499 -0.66514 0.49737
--0.143465 -0.60214001 0.43403999
-
--0.31935499 -0.27489 -0.19740999
--0.249485 -0.24631001 -0.19802999
--0.288985 -0.33368 -0.16805
-
--0.65371498 -0.08158 0.31889
--0.67527496 -0.04277 0.26872
--0.70878502 -0.09154 0.23915001
-
--0.124945 -0.75449997 0.44332001
--0.204825 -0.74662003 0.45456001
--0.17994499 -0.75432999 0.36115002
-
--0.627995 0.04726 0.49209
--0.58654499 0.0687 0.53747002
--0.677295 0.16986 0.51804001
-
--0.49940498 -0.74658997 0.33923
--0.50058498 -0.72952003 0.32737999
--0.47864498 -0.74934998 0.25862
-
--0.69313499 0.39777 0.31554001
--0.72732498 0.41339001 0.20645
--0.74152496 0.38702 0.23667
-
--0.56019501 -0.74653 0.0799
--0.51762501 -0.76198997 0.10242
--0.51126499 -0.75096001 0.14734
-
--0.45942501 -0.75005997 0.21047001
--0.54426498 -0.71963997 0.10263
--0.51126499 -0.75096001 0.14734
-
--0.19960501 -0.25952999 -0.2083
--0.167955 -0.26533001 -0.23986
--0.176745 -0.32091 -0.21965
-
--0.69847504 -0.16400999 0.28132
--0.65371498 -0.08158 0.31889
--0.70878502 -0.09154 0.23915001
-
-0.031045 -0.48976002 0.55334
-0.093385 -0.48191002 0.57638
-0.053355 -0.41346001 0.56433998
-
--0.109575 -0.27684 -0.3468
--0.099435 -0.2215 -0.33507999
--0.059835 -0.23341 -0.35984001
-
--0.21126499 -0.66814003 0.43307999
--0.143465 -0.60214001 0.43403999
--0.216555 -0.65108002 0.42185001
-
--0.33072498 -0.58639999 0.18187
--0.386665 -0.56747002 0.10225
--0.334715 -0.61401001 0.18212
-
--0.66231499 0.29212999 0.47123001
--0.60633499 0.29861 0.49606998
--0.62565498 0.37287998 0.41800999
-
--0.009275 -0.14155 0.52644001
--0.075765 -0.16964001 0.4948
--0.008315 -0.16797001 0.55435001
-
--0.603685 0.00224 0.46230999
--0.58873501 -0.02668 0.38175999
--0.547775 -0.01096 0.39499001
-
--0.65371498 -0.08158 0.31889
--0.65526497 -0.16193001 0.33708
--0.60681499 -0.05331 0.35605999
-
--0.65054497 0.23882 0.51790001
--0.60633499 0.29861 0.49606998
--0.66231499 0.29212999 0.47123001
-
--0.69313499 0.39777 0.31554001
--0.71621498 0.319 0.37698002
--0.68663498 0.30483 0.43856998
-
--0.47904499 -0.33529999 -0.1591
--0.42914501 -0.31971001 -0.17452999
--0.458685 -0.37923 -0.13846
-
--0.71858498 -0.18570999 0.23955999
--0.71903503 -0.1047 0.21924999
--0.72375504 -0.14514 0.19955999
-
--0.40703499 -0.68030998 0.47273998
--0.44044498 -0.72050003 0.46478001
--0.40310501 -0.70723999 0.48404999
-
--0.60681499 -0.05331 0.35605999
--0.57050499 -0.03053 0.38844002
--0.58873501 -0.02668 0.38175999
-
--0.403615 -0.76533997 0.20007999
--0.51762501 -0.76198997 0.10242
--0.38783501 -0.76627998 0.13294
-
--0.45211498 -0.74226997 0.21997999
--0.502845 -0.67873001 0.11659
--0.45942501 -0.75005997 0.21047001
-
-0.047165 0.73010002 -0.26747
-0.025515 0.74473999 -0.25292999
-0.008635 0.76769997 -0.20617001
-
-0.053525 -0.59877998 0.51932999
-0.031045 -0.48976002 0.55334
--0.016705 -0.60248001 0.48320999
-
--0.048255 0.52195999 -0.13641
--0.027095 0.51598 -0.13203
--0.212425 0.4907 -0.10495
-
--0.35253502 -0.54191002 0.28164
--0.34414501 -0.48889999 0.33360001
--0.37079498 -0.49140999 0.28962999
-
--0.019855 -0.37563999 0.55806
--0.074085 -0.30458 0.55348
--0.085865 -0.32016998 0.52319
-
--0.39786499 0.47005001 0.10535
--0.36813499 0.44145 0.14507
--0.35580502 0.52299 0.06101
-
--0.51762501 -0.76198997 0.10242
--0.54935501 -0.75695999 0.01981
--0.499095 -0.76375999 -0.05418
-
--0.462365 -0.76483002 -0.06405
--0.47702499 -0.74514 -0.06318
--0.44606499 -0.76600998 -0.07796
-
--0.68397499 0.00246 0.06858
--0.72147499 0.057 0.05831
--0.66189499 0.00042 0.02855
-
--0.65526497 -0.16193001 0.33708
--0.61961498 -0.25518 0.37487
--0.61401501 -0.18775999 0.38139999
-
--0.76316498 0.10037 0.37827
--0.756325 0.07345 0.41839001
--0.754655 0.10016 0.44153999
-
--0.006605 -0.27245001 0.59221001
-0.043465 -0.23129 0.58570999
--0.042475 -0.24874001 0.57685001
-
--0.54426498 -0.71963997 0.10263
--0.56019501 -0.74653 0.0799
--0.51126499 -0.75096001 0.14734
-
--0.50876499 -0.69231003 -0.00193
--0.51823502 -0.66611 0.04218
--0.47767502 -0.65098999 0.02223
-
--0.056505 -0.75303001 -0.26643
--0.176455 -0.76629997 -0.28367001
--0.166175 -0.74779999 -0.29483
-
--0.61401501 -0.18775999 0.38139999
--0.551175 -0.15953 0.43046001
--0.57303501 -0.09277 0.39316002
-
--0.098815 -0.71488998 -0.14756
--0.204055 -0.71999001 -0.05273
--0.212265 -0.71635002 -0.05771
-
--0.707295 0.05002 0.47198002
--0.70310501 0.07475 0.49027
--0.754655 0.10016 0.44153999
-
-0.51838501 -0.73889 0.11006
-0.51719501 -0.72348999 0.03903
-0.558475 -0.70769997 0.03611
-
--0.386665 -0.56747002 0.10225
--0.419095 -0.61935001 0.07249
--0.38455502 -0.62816002 0.13858
-
--0.176455 -0.76629997 -0.28367001
--0.20123501 -0.75469002 -0.29017
--0.166175 -0.74779999 -0.29483
-
--0.297925 -0.53887001 -0.09417
--0.34724499 -0.58544998 -0.05828
--0.357915 -0.49792999 -0.07636
-
--0.65526497 -0.16193001 0.33708
--0.65677498 -0.28486 0.31427999
--0.61961498 -0.25518 0.37487
-
-0.053405 -0.17601 0.57659
-0.136995 -0.12943 0.54544998
-0.079635 -0.11564 0.52494999
-
--0.677295 0.16986 0.51804001
--0.68966499 0.23750999 0.48583
--0.74907501 0.12734 0.44921001
-
--0.69313499 0.39777 0.31554001
--0.68663498 0.30483 0.43856998
--0.62565498 0.37287998 0.41800999
-
--0.47614498 -0.66900002 0.34229
--0.50058498 -0.72952003 0.32737999
--0.49865501 -0.72585999 0.36729
-
--0.60681499 -0.05331 0.35605999
--0.61401501 -0.18775999 0.38139999
--0.57303501 -0.09277 0.39316002
-
--0.677295 0.16986 0.51804001
--0.65234497 0.19790001 0.53490002
--0.68966499 0.23750999 0.48583
-
--0.73949501 0.19546 0.40769001
--0.75975502 0.14085 0.40800999
--0.74907501 0.12734 0.44921001
-
--0.69313499 0.39777 0.31554001
--0.74152496 0.38702 0.23667
--0.71621498 0.319 0.37698002
-
--0.036705 -0.58948002 0.47154999
--0.096085 -0.45277 0.41069
--0.118055 -0.56602001 0.3798
-
--0.38455502 -0.62816002 0.13858
--0.419095 -0.61935001 0.07249
--0.50359501 -0.65364998 0.07231
-
--0.157915 -0.5673 -0.08973
--0.16779499 -0.59556999 -0.09223
--0.24751499 -0.60999001 -0.0966
-
-0.458255 -0.43664001 -0.18388
-0.37158501 -0.45105999 -0.26129999
-0.42092499 -0.38223 -0.23412001
-
--0.627995 0.04726 0.49209
--0.677295 0.16986 0.51804001
--0.67091499 0.06852 0.50094002
-
--0.016705 -0.60248001 0.48320999
-0.023435 -0.61555 0.49417
-0.053525 -0.59877998 0.51932999
-
--0.45211498 -0.74226997 0.21997999
--0.404995 -0.67698997 0.19254
--0.502845 -0.67873001 0.11659
-
--0.33488499 -0.55792 0.17202
--0.34746498 -0.54298 0.16158001
--0.369095 -0.54116001 0.13157
-
--0.363535 0.29777 0.01081
--0.39040501 0.27885 -0.0233
--0.352155 0.32740002 0.01621
-
--0.36962502 -0.20292999 -0.20726999
--0.32967499 -0.20312 -0.20150999
--0.31935499 -0.27489 -0.19740999
-
--0.51823502 -0.66611 0.04218
--0.50876499 -0.69231003 -0.00193
--0.547785 -0.71860001 0.02244
-
--0.68966499 0.23750999 0.48583
--0.73949501 0.19546 0.40769001
--0.74907501 0.12734 0.44921001
-
--0.68663498 0.30483 0.43856998
--0.68966499 0.23750999 0.48583
--0.66231499 0.29212999 0.47123001
-
-0.232845 0.19128 0.00246
-0.20192499 0.21209999 0.08168
-0.30644501 0.19247999 0.06287
-
--0.58654499 0.0687 0.53747002
--0.54655499 0.08835 0.54924999
--0.59962502 0.11646 0.54145
-
-0.27865499 -0.11254 -0.21181999
-0.131915 -0.11946 -0.26507999
-0.074325 -0.09863 -0.22704
-
--0.47443501 0.65209999 -0.59683998
--0.44350498 0.63459 -0.59969002
--0.44495499 0.61160999 -0.60196999
-
--0.35253502 -0.54191002 0.28164
--0.33072498 -0.58639999 0.18187
--0.35820499 -0.59717999 0.29188
-
--0.531875 0.43505001 -0.47442001
--0.49435501 0.49361 -0.54973999
--0.52519501 0.43825001 -0.48328999
-
--0.56290501 0.68952003 -0.53467999
--0.51963501 0.70806 -0.56443001
--0.51469501 0.68051003 -0.57174
-
--0.386665 -0.56747002 0.10225
--0.33488499 -0.55792 0.17202
--0.369095 -0.54116001 0.13157
-
--0.47443501 0.65209999 -0.59683998
--0.49175499 0.59293999 -0.57492001
--0.51469501 0.68051003 -0.57174
-
--0.597435 0.68508003 -0.47937
--0.572925 0.70330002 -0.52133999
--0.614175 0.66246002 -0.47494999
-
--0.572925 0.70330002 -0.52133999
--0.56290501 0.68952003 -0.53467999
--0.614175 0.66246002 -0.47494999
-
--0.57066502 0.53661999 -0.36436001
--0.554105 0.60669998 -0.47487
--0.53073502 0.52237 -0.47411999
-
--0.49343498 0.53766998 -0.56959999
--0.531875 0.43505001 -0.47442001
--0.53073502 0.52237 -0.47411999
-
--0.49175499 0.59293999 -0.57492001
--0.49343498 0.53766998 -0.56959999
--0.53073502 0.52237 -0.47411999
-
--0.554105 0.60669998 -0.47487
--0.49175499 0.59293999 -0.57492001
--0.53073502 0.52237 -0.47411999
-
--0.597435 0.68508003 -0.47937
--0.614175 0.66246002 -0.47494999
--0.579935 0.46213001 -0.01038
-
--0.73949501 0.19546 0.40769001
--0.68966499 0.23750999 0.48583
--0.71621498 0.319 0.37698002
-
--0.707295 0.05002 0.47198002
--0.756325 0.07345 0.41839001
--0.72276497 0.02686 0.4157
-
--0.614175 0.66246002 -0.47494999
--0.608685 0.60671001 -0.42444
--0.62411499 0.60556 -0.39534
-
--0.53415501 0.42109001 -0.44837002
--0.53543499 0.41438 -0.43537998
--0.54392502 0.40847 -0.42164001
-
--0.614175 0.66246002 -0.47494999
--0.56290501 0.68952003 -0.53467999
--0.554105 0.60669998 -0.47487
-
--0.73949501 0.19546 0.40769001
--0.71621498 0.319 0.37698002
--0.72876503 0.31882 0.31702
-
--0.55925499 0.46678001 -0.32376999
--0.57066502 0.53661999 -0.36436001
--0.53073502 0.52237 -0.47411999
-
--0.76541496 0.19517 0.23780001
--0.773265 0.14032 0.25822001
--0.76138496 0.14034 0.29812
-
--0.54327499 0.39124001 -0.37567001
--0.51723499 0.35522999 -0.21364
--0.55800499 0.38182999 -0.29503
-
--0.614175 0.66246002 -0.47494999
--0.62411499 0.60556 -0.39534
--0.579935 0.46213001 -0.01038
-
--0.69847504 -0.16400999 0.28132
--0.65526497 -0.16193001 0.33708
--0.65371498 -0.08158 0.31889
-
--0.614175 0.66246002 -0.47494999
--0.554105 0.60669998 -0.47487
--0.608685 0.60671001 -0.42444
-
--0.574305 0.39730999 -0.30334999
--0.55925499 0.46678001 -0.32376999
--0.531875 0.43505001 -0.47442001
-
--0.57066502 0.53661999 -0.36436001
--0.608685 0.60671001 -0.42444
--0.554105 0.60669998 -0.47487
-
--0.35253502 -0.54191002 0.28164
--0.35181499 -0.54046001 0.20204
--0.33072498 -0.58639999 0.18187
-
--0.608685 0.60671001 -0.42444
--0.57066502 0.53661999 -0.36436001
--0.61443501 0.52313 -0.27403999
-
--0.68966499 0.23750999 0.48583
--0.68663498 0.30483 0.43856998
--0.71621498 0.319 0.37698002
-
--0.382085 -0.52368999 0.21750999
--0.360765 -0.53513 0.20674
--0.35181499 -0.54046001 0.20204
-
--0.54392502 0.40847 -0.42164001
--0.574305 0.39730999 -0.30334999
--0.531875 0.43505001 -0.47442001
-
-0.012615 -0.75335999 -0.24431999
-0.011285 -0.76453003 -0.22976
--0.056505 -0.75303001 -0.26643
-
-0.091055 0.16486 -0.04745
-0.078115 0.18864 0.02789
-0.147815 0.19112 0.00398
-
--0.57997501 0.39771 -0.2633
--0.59004501 0.41210999 -0.14346
--0.55925499 0.46678001 -0.32376999
-
--0.71903503 -0.1047 0.21924999
--0.69119499 -0.03813 0.21893999
--0.69850502 -0.02457 0.14891
-
--0.119055 -0.34823002 -0.33359001
--0.150585 -0.30923 -0.29997999
--0.109575 -0.27684 -0.3468
-
--0.67527496 -0.04277 0.26872
--0.67764503 0.00206 0.26896999
--0.69119499 -0.03813 0.21893999
-
--0.574305 0.39730999 -0.30334999
--0.57806499 0.41137001 -0.27343
--0.55925499 0.46678001 -0.32376999
-
--0.47553501 -0.68308998 0.30209
--0.50058498 -0.72952003 0.32737999
--0.47614498 -0.66900002 0.34229
-
--0.47553501 -0.68308998 0.30209
--0.45884499 -0.68533997 0.2724
--0.45761501 -0.71341003 0.26252001
-
--0.178825 -0.39007 -0.16848
--0.107915 -0.53838001 -0.23878
--0.16091499 -0.46264999 -0.1489
-
--0.089315 -0.30382 -0.35894001
--0.119055 -0.34823002 -0.33359001
--0.109575 -0.27684 -0.3468
-
--0.131875 -0.22559999 -0.29035
--0.109575 -0.27684 -0.3468
--0.150585 -0.30923 -0.29997999
-
--0.119055 -0.34823002 -0.33359001
--0.099045 -0.37569 -0.34127998
--0.089125 -0.40429001 -0.33634998
-
--0.150585 -0.30923 -0.29997999
--0.156355 -0.32272999 -0.27996
--0.167955 -0.26533001 -0.23986
-
--0.131875 -0.22559999 -0.29035
--0.167955 -0.26533001 -0.23986
--0.153045 -0.23818001 -0.25016001
-
--0.150585 -0.30923 -0.29997999
--0.167955 -0.26533001 -0.23986
--0.131875 -0.22559999 -0.29035
-
--0.129445 -0.21128 -0.28048
--0.099435 -0.2215 -0.33507999
--0.131875 -0.22559999 -0.29035
-
--0.078115 -0.62351002 -0.25240999
--0.117175 -0.61290001 -0.22316
--0.058185 -0.59312 -0.27127001
-
--0.18914499 -0.31829 -0.17997
--0.156355 -0.32272999 -0.27996
--0.178825 -0.39007 -0.16848
-
--0.131875 -0.22559999 -0.29035
--0.099435 -0.2215 -0.33507999
--0.109575 -0.27684 -0.3468
-
--0.105115 -0.16202 -0.24193001
--0.199305 -0.2299 -0.22021999
--0.229725 -0.20162001 -0.21724001
-
--0.58244499 0.64759003 -0.39550999
--0.55648499 0.57926998 -0.21315001
--0.541525 0.60362999 -0.27988001
-
--0.45441502 -0.64302002 0.36220001
--0.47553501 -0.68308998 0.30209
--0.47614498 -0.66900002 0.34229
-
--0.74599503 0.0726 0.28837999
--0.76138496 0.14034 0.29812
--0.76094498 0.07262 0.24841
-
-0.232845 0.19128 0.00246
-0.23810499 0.17156 -0.03667
-0.147815 0.19112 0.00398
-
--0.058185 -0.59312 -0.27127001
--0.119055 -0.34823002 -0.33359001
--0.028935 -0.47416 -0.34169998
-
--0.156355 -0.32272999 -0.27996
--0.176745 -0.32091 -0.21965
--0.167955 -0.26533001 -0.23986
-
-0.17213499 -0.75156998 0.0888
-0.182815 -0.75714996 0.16868999
-0.141225 -0.72126999 0.18233999
-
--0.271495 -0.75060997 -0.24094
--0.264615 -0.75880997 -0.25176001
--0.271465 -0.75859001 -0.23466
-
--0.291175 -0.73332001 -0.18757
--0.271465 -0.75859001 -0.23466
--0.285585 -0.75900002 -0.19978001
-
-0.35907501 0.07059 -0.10795
-0.293955 0.09814 -0.1175
-0.32314499 0.16155001 -0.00588
-
--0.25884501 -0.74322998 -0.26056
--0.271495 -0.75060997 -0.24094
--0.271465 -0.75859001 -0.23466
-
--0.18914499 -0.31829 -0.17997
--0.176745 -0.32091 -0.21965
--0.156355 -0.32272999 -0.27996
-
--0.55925499 0.46678001 -0.32376999
--0.57806499 0.41137001 -0.27343
--0.57997501 0.39771 -0.2633
-
-0.33996498 -0.09883 -0.20899
-0.36023499 -0.12728 -0.21188999
-0.27865499 -0.11254 -0.21181999
-
--0.119055 -0.34823002 -0.33359001
--0.049465 -0.37333 -0.3702
--0.028935 -0.47416 -0.34169998
-
--0.47767502 -0.65098999 0.02223
--0.51823502 -0.66611 0.04218
--0.50359501 -0.65364998 0.07231
-
--0.72123497 0.26363001 0.29735001
--0.74471497 0.23594 0.22754
--0.76541496 0.19517 0.23780001
-
--0.107915 -0.53838001 -0.23878
--0.117175 -0.61290001 -0.22316
--0.132525 -0.59215 -0.16823
-
--0.57997501 0.39771 -0.2633
--0.59239498 0.37070999 -0.07326
--0.59004501 0.41210999 -0.14346
-
--0.585895 0.42438999 -0.1235
--0.61443501 0.52313 -0.27403999
--0.57066502 0.53661999 -0.36436001
-
--0.65177498 0.38554001 0.03709
--0.65177498 0.41154999 0.04812
--0.61525501 0.41305 0.00652
-
-0.016075 0.68472 -0.25462
-0.059645 0.68377998 -0.28246
-0.046245 0.64051003 -0.26128
-
--0.249265 -0.69514999 -0.22771999
--0.27567499 -0.69246002 -0.18768
--0.228515 -0.64073997 -0.19774
-
--0.27567499 -0.69246002 -0.18768
--0.249265 -0.69514999 -0.22771999
--0.25884501 -0.74322998 -0.26056
-
--0.27567499 -0.69246002 -0.18768
--0.291175 -0.73332001 -0.18757
--0.30734501 -0.71100998 -0.10559
-
-0.074325 -0.09863 -0.22704
-0.131915 -0.11946 -0.26507999
-0.059725 -0.12592 -0.27848
-
--0.45884499 -0.68533997 0.2724
--0.41561501 -0.69004997 0.22243999
--0.45761501 -0.71341003 0.26252001
-
--0.41561501 -0.69004997 0.22243999
--0.45884499 -0.68533997 0.2724
--0.39039501 -0.65042 0.25218
-
--0.27567499 -0.69246002 -0.18768
--0.271465 -0.75859001 -0.23466
--0.291175 -0.73332001 -0.18757
-
--0.107915 -0.53838001 -0.23878
--0.132525 -0.59215 -0.16823
--0.158205 -0.50859001 -0.11002
-
--0.57997501 0.39771 -0.2633
--0.55800499 0.38182999 -0.29503
--0.51723499 0.35522999 -0.21364
-
--0.59004501 0.41210999 -0.14346
--0.585895 0.42438999 -0.1235
--0.55925499 0.46678001 -0.32376999
-
--0.156355 -0.32272999 -0.27996
--0.150585 -0.30923 -0.29997999
--0.107915 -0.53838001 -0.23878
-
--0.73949501 0.19546 0.40769001
--0.72123497 0.26363001 0.29735001
--0.76541496 0.19517 0.23780001
-
--0.291175 -0.73332001 -0.18757
--0.285585 -0.75900002 -0.19978001
--0.31505501 -0.76257004 -0.12831
-
--0.69706497 0.27559999 0.04741
--0.73406502 0.22117001 0.0777
--0.685625 0.31711 0.06703
-
--0.069995 -0.13285 -0.23166
--0.105115 -0.16202 -0.24193001
--0.229725 -0.20162001 -0.21724001
-
--0.42884499 -0.63210999 0.34209
--0.45884499 -0.68533997 0.2724
--0.47553501 -0.68308998 0.30209
-
--0.67165497 0.20761999 -0.01075
--0.62156502 0.28177999 -0.03207
--0.60123501 0.19448 -0.05578
-
--0.051545 0.75455002 -0.12812
--0.126565 0.67811996 -0.13629
--0.29095501 0.58248001 -0.04404
-
-0.40085499 0.10826 -0.02869
-0.35907501 0.07059 -0.10795
-0.32314499 0.16155001 -0.00588
-
--0.60170502 0.42654999 -0.05351
--0.61443501 0.52313 -0.27403999
--0.585895 0.42438999 -0.1235
-
--0.073375 0.61046001 -0.18223
--0.23320499 0.5352 -0.10464
--0.18282499 0.59498001 -0.13044
-
--0.30734501 -0.71100998 -0.10559
--0.31505501 -0.76257004 -0.12831
--0.30720501 -0.73987999 -0.10804
-
--0.38455502 -0.62816002 0.13858
--0.404995 -0.67698997 0.19254
--0.35919498 -0.65380997 0.20221001
-
--0.45761501 -0.71341003 0.26252001
--0.41561501 -0.69004997 0.22243999
--0.45211498 -0.74226997 0.21997999
-
--0.72732498 0.41339001 0.20645
--0.66683502 0.43922001 0.22899
--0.67873497 0.42423 0.10789
-
--0.132525 -0.59215 -0.16823
--0.157915 -0.5673 -0.08973
--0.158205 -0.50859001 -0.11002
-
--0.105115 -0.16202 -0.24193001
--0.069995 -0.13285 -0.23166
--0.068905 -0.17981001 -0.32354
-
-0.68443497 -0.45104 0.0037
-0.72394501 -0.43584999 0.02906
-0.73838501 -0.45884998 0.0331
-
--0.44044498 -0.72050003 0.46478001
--0.438055 -0.66690002 0.44669998
--0.47779499 -0.74220001 0.42571999
-
--0.76541496 0.19517 0.23780001
--0.77828499 0.14011 0.20802999
--0.773265 0.14032 0.25822001
-
--0.72123497 0.26363001 0.29735001
--0.72876503 0.31882 0.31702
--0.74582497 0.34598999 0.25691
-
--0.30734501 -0.71100998 -0.10559
--0.291175 -0.73332001 -0.18757
--0.31505501 -0.76257004 -0.12831
-
-0.33996498 -0.09883 -0.20899
-0.359175 -0.0197 -0.15061
-0.38315498 -0.105 -0.19958
-
--0.585895 0.42438999 -0.1235
--0.57066502 0.53661999 -0.36436001
--0.55925499 0.46678001 -0.32376999
-
--0.59239498 0.37070999 -0.07326
--0.595065 0.41257 -0.06351
--0.585895 0.42438999 -0.1235
-
--0.124945 -0.75449997 0.44332001
--0.17994499 -0.75432999 0.36115002
--0.163815 -0.75672997 0.40183998
-
--0.18686501 0.0498 -0.14299
--0.24480499 0.12143 -0.09801
--0.138675 0.11073 -0.06666
-
--0.238545 -0.76138 0.28424
--0.21356501 -0.75926003 0.30533001
--0.17994499 -0.75432999 0.36115002
-
--0.77015503 0.16722 0.17794001
--0.77828499 0.14011 0.20802999
--0.76541496 0.19517 0.23780001
-
--0.74152496 0.38702 0.23667
--0.72876503 0.31882 0.31702
--0.71621498 0.319 0.37698002
-
-0.42197498 -0.58331001 -0.20099001
-0.44724499 -0.56456001 -0.18232
-0.45115501 -0.60699001 -0.15207
-
-0.293955 0.09814 -0.1175
-0.23810499 0.17156 -0.03667
-0.32314499 0.16155001 -0.00588
-
-0.069325 0.57973999 -0.17223
-0.075975 0.58987 -0.22885
-0.080755 0.61445999 -0.2476
-
--0.72665497 -0.19900999 0.19982
--0.72375504 -0.14514 0.19955999
--0.72489502 -0.13198 0.11954
-
--0.54156502 0.29757 -0.05975
--0.58929501 0.35665001 -0.05348
--0.54577499 0.32955002 -0.08891
-
--0.69841499 -0.28159 0.17025999
--0.67019501 -0.33046001 0.17235001
--0.67350502 -0.31801001 0.21348
-
--0.46518501 0.44868 0.07372
--0.50223499 0.44608002 0.02426
--0.559795 0.4541 0.06169
-
--0.47553501 -0.68308998 0.30209
--0.45761501 -0.71341003 0.26252001
--0.47838501 -0.72314003 0.26280001
-
--0.41858501 0.32521999 -0.01536
--0.47262501 0.31153 -0.0592
--0.468335 0.32449001 -0.06341
-
--0.468335 0.32449001 -0.06341
--0.45510502 0.35847 -0.05053
--0.44820499 0.36980999 -0.02461
-
-0.50467499 -0.54449001 -0.10164
-0.50317501 -0.58196999 -0.06143
-0.45115501 -0.60699001 -0.15207
-
--0.76541496 0.19517 0.23780001
--0.74471497 0.23594 0.22754
--0.722985 0.29028 0.13737
-
--0.69119499 -0.03813 0.21893999
--0.70774498 0.00346 0.16879
--0.69850502 -0.02457 0.14891
-
--0.595065 0.41257 -0.06351
--0.60170502 0.42654999 -0.05351
--0.585895 0.42438999 -0.1235
-
--0.35820499 -0.59717999 0.29188
--0.35919498 -0.65380997 0.20221001
--0.39039501 -0.65042 0.25218
-
--0.574305 0.39730999 -0.30334999
--0.55800499 0.38182999 -0.29503
--0.57806499 0.41137001 -0.27343
-
--0.76316498 0.10037 0.37827
--0.754655 0.10016 0.44153999
--0.75975502 0.14085 0.40800999
-
--0.70689499 -0.24051001 0.17004999
--0.69344498 -0.26929001 0.08014
--0.69841499 -0.28159 0.17025999
-
--0.59004501 0.41210999 -0.14346
--0.59239498 0.37070999 -0.07326
--0.585895 0.42438999 -0.1235
-
--0.438055 -0.66690002 0.44669998
--0.46994499 -0.66989998 0.39380001
--0.47779499 -0.74220001 0.42571999
-
--0.38455502 -0.62816002 0.13858
--0.502845 -0.67873001 0.11659
--0.404995 -0.67698997 0.19254
-
-0.51719501 -0.72348999 0.03903
-0.38144501 -0.72870003 -0.01149
-0.40176498 -0.71222 -0.03167
-
-0.36023499 -0.12728 -0.21188999
-0.44883499 -0.17316 -0.18752001
-0.35949501 -0.21177999 -0.24714001
-
--0.131875 -0.22559999 -0.29035
--0.153045 -0.23818001 -0.25016001
--0.129445 -0.21128 -0.28048
-
-0.259195 0.02269 -0.176
-0.293955 0.09814 -0.1175
-0.35907501 0.07059 -0.10795
-
-0.125885 -0.16028999 -0.32228001
-0.059725 -0.12592 -0.27848
-0.131915 -0.11946 -0.26507999
-
--0.141615 -0.76162003 0.1249
--0.129625 -0.75866997 0.17889999
--0.18321501 -0.75733002 0.1487
-
--0.60820499 -0.28396 -0.08675
--0.68001503 -0.24351 -0.00998
--0.660215 -0.19101 -0.05073
-
-0.68647499 -0.58339001 -0.0017
-0.72791496 -0.59351002 0.06742
-0.67858498 -0.64014999 0.05778
-
-0.49725498 0.02933 -0.02307
-0.587925 -0.08729 0.02727
-0.53067501 -0.0586 -0.06884
-
--0.60820499 -0.28396 -0.08675
--0.58818501 -0.35695 -0.06415
--0.63365501 -0.34187 -0.01984
-
--0.57005501 0.04798 -0.05057
--0.59998501 -0.08147 -0.08608
--0.67421501 -0.09452 -0.01072
-
--0.040395 -0.02881 -0.20667999
-0.005765 0.04376 -0.15766
-0.027045 -0.06751 -0.21985001
-
--0.019805 -0.26032 -0.37293999
-0.040165 -0.24620001 -0.37231998
--0.009285 -0.35868999 -0.37393002
-
--0.60170502 0.42654999 -0.05351
--0.614795 0.37119999 -0.013
--0.61525501 0.41305 0.00652
-
--0.42247501 -0.65561996 -0.03636
--0.40218498 -0.59438999 0.01163
--0.36709499 -0.61487 -0.04815
-
-0.52969501 -0.24299 -0.15367
-0.42092499 -0.38223 -0.23412001
-0.45040501 -0.27245001 -0.20267
-
--0.68001503 -0.24351 -0.00998
--0.71519501 -0.22723 0.07012
--0.68935501 -0.17514999 0.00979
-
--0.67421501 -0.09452 -0.01072
--0.68397499 0.00246 0.06858
--0.66189499 0.00042 0.02855
-
--0.18686501 0.0498 -0.14299
--0.138675 0.11073 -0.06666
--0.060175 0.08937 -0.1052
-
-0.179445 0.04258 -0.17731001
-0.093325 0.13007 -0.09003
-0.232995 0.12265 -0.10369
-
--0.60170502 0.42654999 -0.05351
--0.595065 0.41257 -0.06351
--0.59239498 0.37070999 -0.07326
-
--0.59239498 0.37070999 -0.07326
--0.58929501 0.35665001 -0.05348
--0.614795 0.37119999 -0.013
-
--0.61525501 0.41305 0.00652
--0.579935 0.46213001 -0.01038
--0.60170502 0.42654999 -0.05351
-
--0.121325 0.14207 0.02081
-0.078115 0.18864 0.02789
--0.014785 0.14532 -0.02397
-
--0.19960501 -0.25952999 -0.2083
--0.176745 -0.32091 -0.21965
--0.19938499 -0.27365 -0.20799
-
--0.18686501 0.0498 -0.14299
--0.116545 0.01205 -0.16351999
--0.190415 -0.01619 -0.18384001
-
-0.42092499 -0.38223 -0.23412001
-0.370625 -0.38014999 -0.26396999
-0.261315 -0.36248001 -0.31499001
-
--0.36254501 -0.75091003 -0.10707
--0.27737499 -0.63951 -0.09283
--0.30734501 -0.71100998 -0.10559
-
--0.39643501 -0.51195999 -0.00889
--0.357915 -0.49792999 -0.07636
--0.34724499 -0.58544998 -0.05828
-
--0.58818501 -0.35695 -0.06415
--0.51724499 -0.39648998 -0.08125
--0.59931499 -0.38535999 -0.00934
-
--0.63365501 -0.34187 -0.01984
--0.59931499 -0.38535999 -0.00934
--0.63462502 -0.37513 0.05758
-
--0.59998501 -0.08147 -0.08608
--0.59406502 -0.18136 -0.12044
--0.660215 -0.19101 -0.05073
-
--0.72147499 0.057 0.05831
--0.75427498 0.12566 0.09816
--0.69932503 0.13755 -0.00205
-
--0.65177498 0.38554001 0.03709
--0.614795 0.37119999 -0.013
--0.62156502 0.28177999 -0.03207
-
--0.55648499 0.57926998 -0.21315001
--0.579935 0.46213001 -0.01038
--0.53754501 0.46978001 -0.00341
-
--0.55925499 0.46678001 -0.32376999
--0.53073502 0.52237 -0.47411999
--0.531875 0.43505001 -0.47442001
-
--0.68935501 -0.17514999 0.00979
--0.67421501 -0.09452 -0.01072
--0.660215 -0.19101 -0.05073
-
-0.67144501 -0.41029999 0.26914
-0.57196499 -0.49865002 0.31608
-0.64346497 -0.49037998 0.32360001
-
--0.572925 0.70330002 -0.52133999
--0.597435 0.68508003 -0.47937
--0.543125 0.70637001 -0.51022999
-
--0.75975502 0.14085 0.40800999
--0.73949501 0.19546 0.40769001
--0.76138496 0.14034 0.29812
-
--0.50876499 -0.69231003 -0.00193
--0.52946499 -0.75737999 -0.02987
--0.547785 -0.71860001 0.02244
-
--0.67421501 -0.09452 -0.01072
--0.70828499 -0.11964 0.0597
--0.72112503 -0.09155 0.13937
-
--0.69026497 0.08918 0.00135
--0.60025501 0.10649 -0.05573
--0.57005501 0.04798 -0.05057
-
--0.67421501 -0.09452 -0.01072
--0.72112503 -0.09155 0.13937
--0.68397499 0.00246 0.06858
-
--0.72147499 0.057 0.05831
--0.69026497 0.08918 0.00135
--0.66189499 0.00042 0.02855
-
--0.72147499 0.057 0.05831
--0.73905502 0.04444 0.0987
--0.75427498 0.12566 0.09816
-
--0.72147499 0.057 0.05831
--0.69932503 0.13755 -0.00205
--0.69026497 0.08918 0.00135
-
--0.65177498 0.38554001 0.03709
--0.61525501 0.41305 0.00652
--0.614795 0.37119999 -0.013
-
--0.61525501 0.41305 0.00652
--0.65177498 0.41154999 0.04812
--0.59834499 0.43923 0.01644
-
--0.40209499 -0.53867001 0.05158
--0.39643501 -0.51195999 -0.00889
--0.40218498 -0.59438999 0.01163
-
--0.41205502 -0.60668999 0.06219
--0.386665 -0.56747002 0.10225
--0.40209499 -0.53867001 0.05158
-
--0.59931499 -0.38535999 -0.00934
--0.63365501 -0.34187 -0.01984
--0.58818501 -0.35695 -0.06415
-
--0.60820499 -0.28396 -0.08675
--0.63365501 -0.34187 -0.01984
--0.68001503 -0.24351 -0.00998
-
--0.69026497 0.08918 0.00135
--0.57005501 0.04798 -0.05057
--0.66189499 0.00042 0.02855
-
--0.69026497 0.08918 0.00135
--0.67093498 0.16365 -0.02486
--0.60025501 0.10649 -0.05573
-
--0.65177498 0.38554001 0.03709
--0.62156502 0.28177999 -0.03207
--0.685625 0.31711 0.06703
-
--0.547785 -0.71860001 0.02244
--0.54181499 -0.69334 0.08588
--0.51823502 -0.66611 0.04218
-
--0.60820499 -0.28396 -0.08675
--0.660215 -0.19101 -0.05073
--0.59406502 -0.18136 -0.12044
-
--0.67290497 -0.32478001 0.06036
--0.63365501 -0.34187 -0.01984
--0.63462502 -0.37513 0.05758
-
--0.72112503 -0.09155 0.13937
--0.69850502 -0.02457 0.14891
--0.68397499 0.00246 0.06858
-
--0.72976501 0.37284 0.12714
--0.65177498 0.38554001 0.03709
--0.69845497 0.34506001 0.09724
-
--0.47767502 -0.65098999 0.02223
--0.47012501 -0.68793999 -0.04621
--0.50606499 -0.70516998 -0.03412
-
--0.47767502 -0.65098999 0.02223
--0.41205502 -0.60668999 0.06219
--0.42247501 -0.65561996 -0.03636
-
--0.40218498 -0.59438999 0.01163
--0.42247501 -0.65561996 -0.03636
--0.41205502 -0.60668999 0.06219
-
--0.59931499 -0.38535999 -0.00934
--0.57057499 -0.43936001 0.05637
--0.63462502 -0.37513 0.05758
-
--0.69344498 -0.26929001 0.08014
--0.63365501 -0.34187 -0.01984
--0.67290497 -0.32478001 0.06036
-
--0.59998501 -0.08147 -0.08608
--0.660215 -0.19101 -0.05073
--0.67421501 -0.09452 -0.01072
-
--0.73949501 0.19546 0.40769001
--0.72876503 0.31882 0.31702
--0.72123497 0.26363001 0.29735001
-
--0.47767502 -0.65098999 0.02223
--0.42247501 -0.65561996 -0.03636
--0.47012501 -0.68793999 -0.04621
-
--0.47767502 -0.65098999 0.02223
--0.419095 -0.61935001 0.07249
--0.41205502 -0.60668999 0.06219
-
--0.47012501 -0.68793999 -0.04621
--0.42247501 -0.65561996 -0.03636
--0.27737499 -0.63951 -0.09283
-
--0.41205502 -0.60668999 0.06219
--0.419095 -0.61935001 0.07249
--0.386665 -0.56747002 0.10225
-
--0.41275501 -0.52455002 0.07158
--0.40209499 -0.53867001 0.05158
--0.386665 -0.56747002 0.10225
-
--0.39643501 -0.51195999 -0.00889
--0.36709499 -0.61487 -0.04815
--0.40218498 -0.59438999 0.01163
-
--0.67421501 -0.09452 -0.01072
--0.68935501 -0.17514999 0.00979
--0.70828499 -0.11964 0.0597
-
--0.73905502 0.04444 0.0987
--0.72147499 0.057 0.05831
--0.68397499 0.00246 0.06858
-
-0.073585 0.64028999 -0.27017
-0.080755 0.61445999 -0.2476
-0.075455 0.60136002 -0.24311001
-
-0.091085 -0.00535 -0.20563999
-0.074325 -0.09863 -0.22704
-0.027045 -0.06751 -0.21985001
-
-0.239765 -0.07146 -0.19552
-0.20949499 8e-05 -0.18802999
-0.259195 0.02269 -0.176
-
--0.445825 0.62064999 -0.60304001
--0.45517502 0.62153999 -0.60337002
--0.44350498 0.63459 -0.59969002
-
--0.47443501 0.65209999 -0.59683998
--0.44495499 0.61160999 -0.60196999
--0.49343498 0.53766998 -0.56959999
-
--0.44495499 0.61160999 -0.60196999
--0.445825 0.62064999 -0.60304001
--0.439925 0.61355999 -0.59553001
-
-0.44600498 -0.11718 -0.16657
-0.53613499 -0.09893 -0.08599
-0.57723499 -0.16372999 -0.05665
-
--0.44219501 0.62398998 -0.59071999
--0.439925 0.61355999 -0.59553001
--0.44350498 0.63459 -0.59969002
-
--0.124945 -0.75449997 0.44332001
--0.088955 -0.75287003 0.51883999
--0.167295 -0.74737 0.49738998
-
-0.35907501 0.07059 -0.10795
-0.40085499 0.10826 -0.02869
-0.47436501 0.00685 -0.07925
-
-0.23810499 0.17156 -0.03667
-0.093325 0.13007 -0.09003
-0.091055 0.16486 -0.04745
-
-0.027045 -0.06751 -0.21985001
-0.069925 0.02503 -0.17805
-0.091085 -0.00535 -0.20563999
-
-0.35907501 0.07059 -0.10795
-0.47436501 0.00685 -0.07925
-0.47198502 -0.04777 -0.12069
-
-0.200805 -0.34676998 -0.33601002
-0.290415 -0.22259001 -0.29337
-0.261315 -0.36248001 -0.31499001
-
--0.20724501 -0.69445999 -0.26997999
--0.25884501 -0.74322998 -0.26056
--0.249265 -0.69514999 -0.22771999
-
-0.222605 -0.71620003 -0.04485
-0.18418501 -0.71306999 -0.11163
-0.231395 -0.71984001 -0.09604
-
-0.53613499 -0.09893 -0.08599
-0.47198502 -0.04777 -0.12069
-0.53067501 -0.0586 -0.06884
-
-0.47198502 -0.04777 -0.12069
-0.38315498 -0.105 -0.19958
-0.359175 -0.0197 -0.15061
-
-0.44600498 -0.11718 -0.16657
-0.53496498 -0.20222 -0.13642
-0.44883499 -0.17316 -0.18752001
-
-0.72512497 -0.40280998 0.05526
-0.68443497 -0.45104 0.0037
-0.66293503 -0.39085999 0.06263
-
-0.40085499 0.10826 -0.02869
-0.45834499 0.08214 0.00486
-0.47436501 0.00685 -0.07925
-
-0.59800499 -0.28384001 -0.03253
-0.47530499 -0.39273998 -0.18283001
-0.56855499 -0.27214001 -0.1024
-
-0.54107498 -0.55365002 -0.04656
-0.56943501 -0.51193001 -0.02993
-0.58218498 -0.58167 -0.0532
-
-0.69163498 -0.37717999 0.08836
-0.64561501 -0.37198002 0.10372
-0.70884499 -0.36710999 0.13567
-
--0.106075 0.15324 0.06919
--0.121325 0.14207 0.02081
--0.221775 0.16362 -0.02269
-
-0.52969501 -0.24299 -0.15367
-0.56855499 -0.27214001 -0.1024
-0.47530499 -0.39273998 -0.18283001
-
--0.27737499 -0.63951 -0.09283
--0.233095 -0.62811001 -0.12729
--0.27567499 -0.69246002 -0.18768
-
--0.015555 0.06388 -0.13874
-0.069925 0.02503 -0.17805
-0.005765 0.04376 -0.15766
-
-0.44600498 -0.11718 -0.16657
-0.47198502 -0.04777 -0.12069
-0.53613499 -0.09893 -0.08599
-
-0.091085 -0.00535 -0.20563999
-0.153225 0.01244 -0.18492001
-0.239765 -0.07146 -0.19552
-
--0.43739498 0.45532001 0.06203
--0.39786499 0.47005001 0.10535
--0.35580502 0.52299 0.06101
-
--0.000905 -0.16063999 -0.32273998
--0.019895 -0.21881001 -0.36255001
--0.068905 -0.17981001 -0.32354
-
-0.595695 -0.19973 -0.04273
-0.56855499 -0.27214001 -0.1024
-0.55953499 -0.19656 -0.10231
-
-0.47198502 -0.04777 -0.12069
-0.44600498 -0.11718 -0.16657
-0.38315498 -0.105 -0.19958
-
-0.27865499 -0.11254 -0.21181999
-0.290105 -0.15098 -0.25101999
-0.22540501 -0.15247 -0.28954
-
-0.078115 0.18864 0.02789
-0.20192499 0.21209999 0.08168
-0.147815 0.19112 0.00398
-
-0.45834499 0.08214 0.00486
-0.49725498 0.02933 -0.02307
-0.47436501 0.00685 -0.07925
-
--0.40865501 0.45254002 0.17395
--0.39786499 0.47005001 0.10535
--0.43739498 0.45532001 0.06203
-
-0.57723499 -0.16372999 -0.05665
-0.595695 -0.19973 -0.04273
-0.55953499 -0.19656 -0.10231
-
-0.027045 -0.06751 -0.21985001
-0.005765 0.04376 -0.15766
-0.069925 0.02503 -0.17805
-
--0.40747501 0.47915001 0.0356
--0.29095501 0.58248001 -0.04404
--0.330975 0.52471001 -0.03259
-
-0.74167503 -0.40138 0.07409
-0.69163498 -0.37717999 0.08836
-0.70884499 -0.36710999 0.13567
-
-0.35907501 0.07059 -0.10795
-0.47198502 -0.04777 -0.12069
-0.359175 -0.0197 -0.15061
-
--0.138675 0.11073 -0.06666
--0.266325 0.15101 -0.06886
--0.221775 0.16362 -0.02269
-
--0.41858501 0.32521999 -0.01536
--0.468335 0.32449001 -0.06341
--0.44820499 0.36980999 -0.02461
-
--0.50223499 0.44608002 0.02426
--0.46518501 0.44868 0.07372
--0.46452499 0.41841999 0.00315
-
--0.46518501 0.44868 0.07372
--0.43739498 0.45532001 0.06203
--0.46452499 0.41841999 0.00315
-
-0.23810499 0.17156 -0.03667
-0.232845 0.19128 0.00246
-0.32314499 0.16155001 -0.00588
-
-0.74167503 -0.40138 0.07409
-0.70884499 -0.36710999 0.13567
-0.72733498 -0.37303001 0.14242
-
-0.756455 -0.42445 0.07686
-0.77457497 -0.49212002 0.10691
-0.757565 -0.47983002 0.05688
-
--0.44713501 0.41133999 0.01059
--0.47220501 0.42382 -0.00262
--0.46452499 0.41841999 0.00315
-
--0.51963501 0.70806 -0.56443001
--0.48884499 0.70297997 -0.56327
--0.49433498 0.69546997 -0.58514
-
--0.462285 0.43570999 -0.09058
--0.497005 0.44953999 -0.01774
--0.47220501 0.42382 -0.00262
-
-0.23810499 0.17156 -0.03667
-0.091055 0.16486 -0.04745
-0.147815 0.19112 0.00398
-
--0.44713501 0.41133999 0.01059
--0.46452499 0.41841999 0.00315
--0.43739498 0.45532001 0.06203
-
-0.002175 -0.65117996 -0.26294001
--0.056505 -0.75303001 -0.26643
--0.166175 -0.74779999 -0.29483
-
--0.113155 -0.72134003 0.07626
--0.123175 -0.72098999 0.07391
--0.125935 -0.71977997 0.05414
-
-0.72512497 -0.40280998 0.05526
-0.72394501 -0.43584999 0.02906
-0.68443497 -0.45104 0.0037
-
--0.069995 -0.13285 -0.23166
--0.000905 -0.16063999 -0.32273998
--0.068905 -0.17981001 -0.32354
-
--0.126565 0.67811996 -0.13629
--0.18282499 0.59498001 -0.13044
--0.29095501 0.58248001 -0.04404
-
--0.107665 -0.74504997 0.54255001
--0.119005 -0.73551003 0.54847
--0.167295 -0.74737 0.49738998
-
--0.121325 0.14207 0.02081
--0.014785 0.14532 -0.02397
--0.138675 0.11073 -0.06666
-
--0.59239498 0.37070999 -0.07326
--0.57997501 0.39771 -0.2633
--0.54886501 0.33823002 -0.12392
-
--0.47220501 0.42382 -0.00262
--0.50223499 0.44608002 0.02426
--0.46452499 0.41841999 0.00315
-
--0.44713501 0.41133999 0.01059
--0.40245499 0.42946999 0.00582
--0.401735 0.37047001 -0.00194
-
-0.761605 -0.39966999 0.14054
-0.756455 -0.42445 0.07686
-0.74167503 -0.40138 0.07409
-
--0.060175 0.08937 -0.1052
--0.015555 0.06388 -0.13874
-0.005765 0.04376 -0.15766
-
--0.117175 -0.61290001 -0.22316
--0.17661501 -0.63981998 -0.23927999
--0.132525 -0.59215 -0.16823
-
--0.40747501 0.47915001 0.0356
--0.40245499 0.42946999 0.00582
--0.44713501 0.41133999 0.01059
-
--0.41858501 0.32521999 -0.01536
--0.39040501 0.27885 -0.0233
--0.47262501 0.31153 -0.0592
-
-0.239765 -0.07146 -0.19552
-0.153225 0.01244 -0.18492001
-0.20949499 8e-05 -0.18802999
-
--0.000905 -0.16063999 -0.32273998
-0.125885 -0.16028999 -0.32228001
-0.061575 -0.19306999 -0.34928001
-
-0.040165 -0.24620001 -0.37231998
-0.061575 -0.19306999 -0.34928001
-0.125885 -0.16028999 -0.32228001
-
--0.43526501 0.09176 -0.08455
--0.31862499 0.11157 -0.10718
--0.38056499 0.02471 -0.15193
-
--0.27737499 -0.63951 -0.09283
--0.27567499 -0.69246002 -0.18768
--0.30734501 -0.71100998 -0.10559
-
--0.116545 0.01205 -0.16351999
--0.105925 -0.01889 -0.19115
--0.140345 -0.05789 -0.20672001
-
-0.091085 -0.00535 -0.20563999
-0.069925 0.02503 -0.17805
-0.093325 0.13007 -0.09003
-
--0.18686501 0.0498 -0.14299
--0.060175 0.08937 -0.1052
--0.116545 0.01205 -0.16351999
-
--0.014785 0.14532 -0.02397
-0.093325 0.13007 -0.09003
--0.015555 0.06388 -0.13874
-
--0.49363499 0.44341 -0.49014
--0.46016499 0.52960999 -0.57521999
--0.47018501 0.48946999 -0.51748001
-
--0.140345 -0.05789 -0.20672001
--0.069995 -0.13285 -0.23166
--0.160285 -0.07244 -0.20541
-
-0.73838501 -0.45884998 0.0331
-0.757565 -0.47983002 0.05688
-0.701595 -0.51362999 -0.01377
-
--0.44782501 0.38021 -0.01581
--0.401735 0.37047001 -0.00194
--0.41858501 0.32521999 -0.01536
-
--0.014785 0.14532 -0.02397
-0.091055 0.16486 -0.04745
-0.093325 0.13007 -0.09003
-
-0.49725498 0.02933 -0.02307
-0.45834499 0.08214 0.00486
-0.51815498 0.03883 0.06995
-
--0.116545 0.01205 -0.16351999
-0.005765 0.04376 -0.15766
--0.105925 -0.01889 -0.19115
-
-0.44883499 -0.17316 -0.18752001
-0.45040501 -0.27245001 -0.20267
-0.420485 -0.22735001 -0.22077999
-
-0.005765 0.04376 -0.15766
--0.040395 -0.02881 -0.20667999
--0.105925 -0.01889 -0.19115
-
--0.019895 -0.21881001 -0.36255001
--0.059835 -0.23341 -0.35984001
--0.068905 -0.17981001 -0.32354
-
--0.65677498 -0.28486 0.31427999
--0.65526497 -0.16193001 0.33708
--0.71858498 -0.18570999 0.23955999
-
-0.259195 0.02269 -0.176
-0.35907501 0.07059 -0.10795
-0.359175 -0.0197 -0.15061
-
--0.49433498 0.69546997 -0.58514
--0.47443501 0.65209999 -0.59683998
--0.51469501 0.68051003 -0.57174
-
--0.20724501 -0.69445999 -0.26997999
--0.249265 -0.69514999 -0.22771999
--0.228515 -0.64073997 -0.19774
-
--0.17661501 -0.63981998 -0.23927999
--0.152975 -0.66613998 -0.27448999
--0.20724501 -0.69445999 -0.26997999
-
-0.62454498 -0.39271999 0.04435
-0.63150501 -0.32306999 0.09721
-0.64561501 -0.37198002 0.10372
-
-0.72512497 -0.40280998 0.05526
-0.69163498 -0.37717999 0.08836
-0.74167503 -0.40138 0.07409
-
--0.31862499 0.11157 -0.10718
--0.266325 0.15101 -0.06886
--0.24480499 0.12143 -0.09801
-
--0.051545 0.75455002 -0.12812
--0.247845 0.62541 -0.03466
--0.075495 0.73363998 -0.09516
-
-0.56855499 -0.27214001 -0.1024
-0.52969501 -0.24299 -0.15367
-0.55953499 -0.19656 -0.10231
-
--0.34418499 0.18421 -0.02241
--0.301705 0.19448999 0.02741
--0.266325 0.15101 -0.06886
-
--0.17661501 -0.63981998 -0.23927999
--0.228515 -0.64073997 -0.19774
--0.132525 -0.59215 -0.16823
-
--0.74042503 0.40042999 0.17667999
--0.72976501 0.37284 0.12714
--0.74736504 0.31806 0.17700001
-
--0.329715 0.31518 0.05937
--0.30900499 0.25450001 0.12933
--0.32405499 0.22228001 0.01714
-
-0.72394501 -0.43584999 0.02906
-0.756455 -0.42445 0.07686
-0.73838501 -0.45884998 0.0331
-
--0.31862499 0.11157 -0.10718
--0.18686501 0.0498 -0.14299
--0.35469501 0.06252 -0.13541
-
--0.43526501 0.09176 -0.08455
--0.38056499 0.02471 -0.15193
--0.47079498 0.02284 -0.11794
-
-0.232845 0.19128 0.00246
-0.147815 0.19112 0.00398
-0.20192499 0.21209999 0.08168
-
--0.30900499 0.25450001 0.12933
--0.28657499 0.21525999 0.16419001
--0.295275 0.20636 0.05543
-
--0.32405499 0.22228001 0.01714
--0.30900499 0.25450001 0.12933
--0.295275 0.20636 0.05543
-
--0.32405499 0.22228001 0.01714
--0.301705 0.19448999 0.02741
--0.34418499 0.18421 -0.02241
-
--0.43526501 0.09176 -0.08455
--0.43113499 0.13668 -0.06854
--0.34418499 0.18421 -0.02241
-
--0.116545 0.01205 -0.16351999
--0.140345 -0.05789 -0.20672001
--0.160285 -0.07244 -0.20541
-
--0.329715 0.31518 0.05937
--0.32405499 0.22228001 0.01714
--0.363535 0.29777 0.01081
-
--0.31862499 0.11157 -0.10718
--0.24480499 0.12143 -0.09801
--0.18686501 0.0498 -0.14299
-
-0.44600498 -0.11718 -0.16657
-0.57723499 -0.16372999 -0.05665
-0.53496498 -0.20222 -0.13642
-
--0.122175 -0.71571999 0.37543999
--0.126875 -0.71792 0.35866001
--0.100605 -0.71330002 0.37792
-
--0.301705 0.19448999 0.02741
--0.32405499 0.22228001 0.01714
--0.295275 0.20636 0.05543
-
-0.074325 -0.09863 -0.22704
-0.059725 -0.12592 -0.27848
--0.000905 -0.16063999 -0.32273998
-
-0.57723499 -0.16372999 -0.05665
-0.53613499 -0.09893 -0.08599
-0.53067501 -0.0586 -0.06884
-
-0.611035 -0.42883999 0.02128
-0.62454498 -0.39271999 0.04435
-0.66293503 -0.39085999 0.06263
-
-0.72512497 -0.40280998 0.05526
-0.66293503 -0.39085999 0.06263
-0.69163498 -0.37717999 0.08836
-
-0.68443497 -0.45104 0.0037
-0.611035 -0.42883999 0.02128
-0.66293503 -0.39085999 0.06263
-
-0.435765 -0.49491001 -0.21247999
-0.44975498 -0.50793999 -0.1924
-0.391745 -0.56583 -0.23886999
-
--0.31862499 0.11157 -0.10718
--0.35469501 0.06252 -0.13541
--0.38056499 0.02471 -0.15193
-
--0.44141499 0.60801998 -0.58164001
--0.43966499 0.60813999 -0.59201
--0.44219501 0.62398998 -0.59071999
-
-0.232995 0.12265 -0.10369
-0.23810499 0.17156 -0.03667
-0.293955 0.09814 -0.1175
-
-0.078115 0.18864 0.02789
-0.147305 0.21093 0.16179001
-0.20192499 0.21209999 0.08168
-
--0.18686501 0.0498 -0.14299
--0.190415 -0.01619 -0.18384001
--0.38056499 0.02471 -0.15193
-
--0.18686501 0.0498 -0.14299
--0.38056499 0.02471 -0.15193
--0.35469501 0.06252 -0.13541
-
-0.078115 0.18864 0.02789
--0.025365 0.17524 0.11324
-0.147305 0.21093 0.16179001
-
-0.078115 0.18864 0.02789
-0.091055 0.16486 -0.04745
--0.014785 0.14532 -0.02397
-
--0.121325 0.14207 0.02081
--0.106075 0.15324 0.06919
--0.025365 0.17524 0.11324
-
-0.47436501 0.00685 -0.07925
-0.53067501 -0.0586 -0.06884
-0.47198502 -0.04777 -0.12069
-
--0.301705 0.19448999 0.02741
--0.221775 0.16362 -0.02269
--0.266325 0.15101 -0.06886
-
--0.38056499 0.02471 -0.15193
--0.190415 -0.01619 -0.18384001
--0.310175 -0.08771 -0.20037001
-
-0.293955 0.09814 -0.1175
-0.179445 0.04258 -0.17731001
-0.232995 0.12265 -0.10369
-
--0.31862499 0.11157 -0.10718
--0.43526501 0.09176 -0.08455
--0.34418499 0.18421 -0.02241
-
--0.45953499 0.45066002 -0.34074001
--0.44885502 0.48257999 -0.32057999
--0.44795502 0.48275002 -0.23052
-
-0.53067501 -0.0586 -0.06884
-0.47436501 0.00685 -0.07925
-0.49725498 0.02933 -0.02307
-
--0.17661501 -0.63981998 -0.23927999
--0.20724501 -0.69445999 -0.26997999
--0.228515 -0.64073997 -0.19774
-
-0.074325 -0.09863 -0.22704
--0.000905 -0.16063999 -0.32273998
--0.069995 -0.13285 -0.23166
-
-0.069925 0.02503 -0.17805
--0.015555 0.06388 -0.13874
-0.093325 0.13007 -0.09003
-
--0.016475 0.76692001 -0.19555
--0.006815 0.77167 -0.18312
-0.008635 0.76769997 -0.20617001
-
-0.28848499 -0.13418 -0.22884001
-0.36023499 -0.12728 -0.21188999
-0.35949501 -0.21177999 -0.24714001
-
-0.69163498 -0.37717999 0.08836
-0.66293503 -0.39085999 0.06263
-0.64561501 -0.37198002 0.10372
-
--0.47012501 -0.68793999 -0.04621
--0.420145 -0.75016998 -0.08755
--0.47702499 -0.74514 -0.06318
-
-0.153225 0.01244 -0.18492001
-0.091085 -0.00535 -0.20563999
-0.093325 0.13007 -0.09003
-
-0.293955 0.09814 -0.1175
-0.259195 0.02269 -0.176
-0.179445 0.04258 -0.17731001
-
--0.138675 0.11073 -0.06666
--0.24480499 0.12143 -0.09801
--0.266325 0.15101 -0.06886
-
-0.27865499 -0.11254 -0.21181999
-0.28848499 -0.13418 -0.22884001
-0.290105 -0.15098 -0.25101999
-
-0.44883499 -0.17316 -0.18752001
-0.420485 -0.22735001 -0.22077999
-0.35949501 -0.21177999 -0.24714001
-
-0.093325 0.13007 -0.09003
-0.23810499 0.17156 -0.03667
-0.232995 0.12265 -0.10369
-
--0.21356501 -0.75926003 0.30533001
--0.21439501 -0.74724998 0.25917999
--0.17445499 -0.76107002 0.26183001
-
--0.42247501 -0.65561996 -0.03636
--0.36709499 -0.61487 -0.04815
--0.27737499 -0.63951 -0.09283
-
--0.083505 0.68447998 -0.17287001
--0.126565 0.67811996 -0.13629
--0.016475 0.76692001 -0.19555
-
-0.42092499 -0.38223 -0.23412001
-0.261315 -0.36248001 -0.31499001
-0.290415 -0.22259001 -0.29337
-
-0.66293503 -0.39085999 0.06263
-0.62454498 -0.39271999 0.04435
-0.64561501 -0.37198002 0.10372
-
--0.44782501 0.38021 -0.01581
--0.47220501 0.42382 -0.00262
--0.44713501 0.41133999 0.01059
-
--0.016475 0.76692001 -0.19555
--0.126565 0.67811996 -0.13629
--0.051545 0.75455002 -0.12812
-
--0.016475 0.76692001 -0.19555
--0.051545 0.75455002 -0.12812
--0.006815 0.77167 -0.18312
-
--0.060175 0.08937 -0.1052
--0.014785 0.14532 -0.02397
--0.015555 0.06388 -0.13874
-
-0.179445 0.04258 -0.17731001
-0.153225 0.01244 -0.18492001
-0.093325 0.13007 -0.09003
-
--0.33072498 -0.58639999 0.18187
--0.34688499 -0.54231998 0.18309999
--0.33488499 -0.55792 0.17202
-
-0.140395 -0.26084999 -0.35778
-0.100535 -0.31684999 -0.36356998
-0.040165 -0.24620001 -0.37231998
-
-0.22540501 -0.15247 -0.28954
-0.125885 -0.16028999 -0.32228001
-0.131915 -0.11946 -0.26507999
-
--0.25884501 -0.74322998 -0.26056
--0.262125 -0.75611 -0.24801001
--0.271495 -0.75060997 -0.24094
-
--0.058185 -0.59312 -0.27127001
--0.107915 -0.53838001 -0.23878
--0.119055 -0.34823002 -0.33359001
-
--0.238545 -0.76138 0.28424
--0.257085 -0.75538002 0.41583
--0.33710499 -0.76268997 0.2824
-
--0.57065498 0.15109 -0.06724
--0.550975 0.20959 -0.06745
--0.501245 0.20993999 -0.07225
-
--0.46016499 0.52960999 -0.57521999
--0.440755 0.59640999 -0.59333
--0.44630501 0.55679001 -0.57491001
-
-0.701595 -0.51362999 -0.01377
-0.757565 -0.47983002 0.05688
-0.74039497 -0.56462002 0.06716
-
--0.52043499 0.07819 -0.06974
--0.60025501 0.10649 -0.05573
--0.57065498 0.15109 -0.06724
-
--0.41327499 -0.49464001 -0.01295
--0.388325 -0.45629002 -0.06645
--0.357915 -0.49792999 -0.07636
-
--0.51851501 -0.35137001 -0.13174
--0.58818501 -0.35695 -0.06415
--0.579235 -0.25250999 -0.13211
-
--0.19824499 -0.74849998 0.24569
--0.189415 -0.75043999 0.19530001
--0.17445499 -0.76107002 0.26183001
-
-0.58218498 -0.58167 -0.0532
-0.66172501 -0.52612 -0.03485
-0.63202499 -0.59748001 -0.03384
-
--0.48044498 -0.07672 -0.15554
--0.430355 -0.10442 -0.17239
--0.40962502 -0.24707001 -0.19660999
-
-0.102645 -0.75471001 -0.22798
-0.18262501 -0.73998001 -0.2282
-0.269445 -0.75794998 -0.18476999
-
--0.113155 -0.72134003 0.07626
--0.125935 -0.71977997 0.05414
--0.139575 -0.71986 0.03333
-
--0.501245 0.20993999 -0.07225
--0.550975 0.20959 -0.06745
--0.60123501 0.19448 -0.05578
-
--0.57147499 0.29725 -0.05187
--0.60123501 0.19448 -0.05578
--0.62156502 0.28177999 -0.03207
-
--0.34418499 0.18421 -0.02241
--0.39040501 0.27885 -0.0233
--0.32405499 0.22228001 0.01714
-
-0.68443497 -0.45104 0.0037
-0.73838501 -0.45884998 0.0331
-0.701595 -0.51362999 -0.01377
-
-0.66172501 -0.52612 -0.03485
-0.68647499 -0.58339001 -0.0017
-0.63202499 -0.59748001 -0.03384
-
--0.52043499 0.07819 -0.06974
--0.57065498 0.15109 -0.06724
--0.501245 0.20993999 -0.07225
-
--0.57057499 -0.43936001 0.05637
--0.51724499 -0.39648998 -0.08125
--0.48772499 -0.47484001 -0.01301
-
--0.51851501 -0.35137001 -0.13174
--0.51724499 -0.39648998 -0.08125
--0.58818501 -0.35695 -0.06415
-
-0.59227501 -0.64189003 -0.02401
-0.63202499 -0.59748001 -0.03384
-0.63273499 -0.64609001 0.00875
-
-0.54107498 -0.55365002 -0.04656
-0.51241501 -0.64007004 -0.04479
-0.50317501 -0.58196999 -0.06143
-
-0.56943501 -0.51193001 -0.02993
-0.66172501 -0.52612 -0.03485
-0.58218498 -0.58167 -0.0532
-
--0.41327499 -0.49464001 -0.01295
--0.44842499 -0.42519001 -0.09399
--0.388325 -0.45629002 -0.06645
-
--0.48044498 -0.07672 -0.15554
--0.47079498 0.02284 -0.11794
--0.38056499 0.02471 -0.15193
-
--0.176455 -0.76629997 -0.28367001
--0.056505 -0.75303001 -0.26643
-0.011285 -0.76453003 -0.22976
-
--0.501245 0.20993999 -0.07225
--0.57147499 0.29725 -0.05187
--0.52155499 0.29777 -0.06353
-
--0.41327499 -0.49464001 -0.01295
--0.48772499 -0.47484001 -0.01301
--0.44842499 -0.42519001 -0.09399
-
--0.58929501 0.35665001 -0.05348
--0.59239498 0.37070999 -0.07326
--0.54577499 0.32955002 -0.08891
-
--0.420145 -0.75016998 -0.08755
--0.44606499 -0.76600998 -0.07796
--0.47702499 -0.74514 -0.06318
-
--0.166565 -0.76378998 0.10376
--0.152885 -0.76372002 0.12453
--0.18321501 -0.75733002 0.1487
-
-0.51241501 -0.64007004 -0.04479
-0.54107498 -0.55365002 -0.04656
-0.58218498 -0.58167 -0.0532
-
-0.558475 -0.70769997 0.03611
-0.522575 -0.68685997 -0.0156
-0.59227501 -0.64189003 -0.02401
-
-0.58218498 -0.58167 -0.0532
-0.63202499 -0.59748001 -0.03384
-0.59227501 -0.64189003 -0.02401
-
-0.44320499 -0.65613998 -0.05025
-0.39260502 -0.67114998 -0.11193
-0.45115501 -0.60699001 -0.15207
-
--0.47904499 -0.33529999 -0.1591
--0.48954498 -0.24917 -0.17212999
--0.39932499 -0.27525 -0.19733
-
--0.249485 -0.24631001 -0.19802999
--0.19938499 -0.27365 -0.20799
--0.18914499 -0.31829 -0.17997
-
--0.266325 0.15101 -0.06886
--0.31862499 0.11157 -0.10718
--0.34418499 0.18421 -0.02241
-
--0.579235 -0.25250999 -0.13211
--0.59406502 -0.18136 -0.12044
--0.48954498 -0.24917 -0.17212999
-
-0.58218498 -0.58167 -0.0532
-0.59227501 -0.64189003 -0.02401
-0.51241501 -0.64007004 -0.04479
-
-0.56943501 -0.51193001 -0.02993
-0.66172501 -0.51227001 -0.03209
-0.66172501 -0.52612 -0.03485
-
--0.39932499 -0.27525 -0.19733
--0.42914501 -0.31971001 -0.17452999
--0.47904499 -0.33529999 -0.1591
-
--0.42914501 -0.31971001 -0.17452999
--0.40871498 -0.39304001 -0.14109
--0.458685 -0.37923 -0.13846
-
--0.48954498 -0.24917 -0.17212999
--0.48044498 -0.07672 -0.15554
--0.39932499 -0.27525 -0.19733
-
--0.57147499 0.29725 -0.05187
--0.501245 0.20993999 -0.07225
--0.60123501 0.19448 -0.05578
-
--0.47904499 -0.33529999 -0.1591
--0.51851501 -0.35137001 -0.13174
--0.579235 -0.25250999 -0.13211
-
--0.47702499 -0.74514 -0.06318
--0.50606499 -0.70516998 -0.03412
--0.47012501 -0.68793999 -0.04621
-
-0.522575 -0.68685997 -0.0156
-0.51241501 -0.64007004 -0.04479
-0.59227501 -0.64189003 -0.02401
-
--0.49433498 0.69546997 -0.58514
--0.48884499 0.70297997 -0.56327
--0.47459499 0.69324997 -0.58602001
-
-0.44320499 -0.65613998 -0.05025
-0.45115501 -0.60699001 -0.15207
-0.50317501 -0.58196999 -0.06143
-
--0.006815 0.77167 -0.18312
--0.051545 0.75455002 -0.12812
--0.036455 0.74396004 -0.12342
-
--0.190415 -0.01619 -0.18384001
--0.229725 -0.20162001 -0.21724001
--0.310175 -0.08771 -0.20037001
-
--0.44350498 0.63459 -0.59969002
--0.47443501 0.65209999 -0.59683998
--0.457075 0.67668999 -0.58800999
-
--0.49175499 0.59293999 -0.57492001
--0.554105 0.60669998 -0.47487
--0.51469501 0.68051003 -0.57174
-
-0.51719501 -0.72348999 0.03903
-0.40176498 -0.71222 -0.03167
-0.522575 -0.68685997 -0.0156
-
--0.57005501 0.04798 -0.05057
--0.53066502 0.00663 -0.09101
--0.59998501 -0.08147 -0.08608
-
-0.073435 -0.62984001 0.4934
--0.044845 -0.65685997 0.5468
-0.065805 -0.69416 0.51382
-
-0.420485 -0.22735001 -0.22077999
-0.45040501 -0.27245001 -0.20267
-0.42092499 -0.38223 -0.23412001
-
-0.35949501 -0.21177999 -0.24714001
-0.420485 -0.22735001 -0.22077999
-0.290415 -0.22259001 -0.29337
-
--0.554105 0.60669998 -0.47487
--0.56290501 0.68952003 -0.53467999
--0.51469501 0.68051003 -0.57174
-
--0.47079498 0.02284 -0.11794
--0.53066502 0.00663 -0.09101
--0.43526501 0.09176 -0.08455
-
--0.190415 -0.01619 -0.18384001
--0.160285 -0.07244 -0.20541
--0.229725 -0.20162001 -0.21724001
-
--0.199305 -0.2299 -0.22021999
--0.19960501 -0.25952999 -0.2083
--0.19938499 -0.27365 -0.20799
-
--0.264615 -0.75880997 -0.25176001
--0.271495 -0.75060997 -0.24094
--0.262125 -0.75611 -0.24801001
-
--0.43739498 0.45532001 0.06203
--0.40747501 0.47915001 0.0356
--0.44713501 0.41133999 0.01059
-
--0.34724499 -0.58544998 -0.05828
--0.24751499 -0.60999001 -0.0966
--0.27737499 -0.63951 -0.09283
-
--0.24751499 -0.60999001 -0.0966
--0.34724499 -0.58544998 -0.05828
--0.297925 -0.53887001 -0.09417
-
--0.39643501 -0.51195999 -0.00889
--0.41327499 -0.49464001 -0.01295
--0.357915 -0.49792999 -0.07636
-
-0.44320499 -0.65613998 -0.05025
-0.51241501 -0.64007004 -0.04479
-0.522575 -0.68685997 -0.0156
-
--0.31935499 -0.27489 -0.19740999
--0.288985 -0.33368 -0.16805
--0.37912498 -0.31878 -0.18186001
-
--0.330975 0.52471001 -0.03259
--0.29095501 0.58248001 -0.04404
--0.18282499 0.59498001 -0.13044
-
-0.53496498 -0.20222 -0.13642
-0.52969501 -0.24299 -0.15367
-0.44883499 -0.17316 -0.18752001
-
--0.229725 -0.20162001 -0.21724001
--0.249485 -0.24631001 -0.19802999
--0.32967499 -0.20312 -0.20150999
-
--0.40871498 -0.39304001 -0.14109
--0.328545 -0.40797001 -0.12829
--0.388325 -0.45629002 -0.06645
-
--0.420145 -0.75016998 -0.08755
--0.418405 -0.76513 -0.09148
--0.43560501 -0.76556 -0.07625
-
-0.44883499 -0.17316 -0.18752001
-0.52969501 -0.24299 -0.15367
-0.45040501 -0.27245001 -0.20267
-
--0.18914499 -0.31829 -0.17997
--0.19886499 -0.37626999 -0.16464001
--0.288985 -0.33368 -0.16805
-
--0.39932499 -0.27525 -0.19733
--0.31935499 -0.27489 -0.19740999
--0.37912498 -0.31878 -0.18186001
-
--0.222955 -0.69486 0.43347
--0.21126499 -0.66814003 0.43307999
--0.216555 -0.65108002 0.42185001
-
--0.264615 -0.75880997 -0.25176001
--0.25884501 -0.74322998 -0.26056
--0.249135 -0.76183998 -0.26459
-
--0.029335 -0.10314 0.45814999
-0.035725 -0.09047 0.45244999
-0.043555 0.01225 0.43209
-
-0.251465 -0.18408001 -0.29662001
-0.290105 -0.15098 -0.25101999
-0.35949501 -0.21177999 -0.24714001
-
-0.004935 0.49839001 -0.08707
--0.084295 0.46479 -0.01832
--0.112925 0.44946999 -0.01904
-
-0.458255 -0.43664001 -0.18388
-0.44975498 -0.50793999 -0.1924
-0.435765 -0.49491001 -0.21247999
-
--0.36709499 -0.61487 -0.04815
--0.39643501 -0.51195999 -0.00889
--0.34724499 -0.58544998 -0.05828
-
--0.47443501 0.65209999 -0.59683998
--0.49343498 0.53766998 -0.56959999
--0.49175499 0.59293999 -0.57492001
-
-0.382645 -0.65669998 -0.17177999
-0.42197498 -0.58331001 -0.20099001
-0.45115501 -0.60699001 -0.15207
-
-0.259195 0.02269 -0.176
-0.30606501 -0.05008 -0.17846001
-0.239765 -0.07146 -0.19552
-
-0.558475 -0.70769997 0.03611
-0.67858498 -0.64014999 0.05778
-0.59101501 -0.70407997 0.1113
-
-0.37158501 -0.45105999 -0.26129999
-0.370625 -0.38014999 -0.26396999
-0.42092499 -0.38223 -0.23412001
-
--0.073375 0.61046001 -0.18223
--0.212425 0.4907 -0.10495
--0.23320499 0.5352 -0.10464
-
--0.34724499 -0.58544998 -0.05828
--0.27737499 -0.63951 -0.09283
--0.36709499 -0.61487 -0.04815
-
--0.328545 -0.40797001 -0.12829
--0.26883499 -0.37657001 -0.16448
--0.297925 -0.53887001 -0.09417
-
--0.31717501 -0.73977997 -0.10929
--0.30720501 -0.73987999 -0.10804
--0.31505501 -0.76257004 -0.12831
-
-0.435765 -0.49491001 -0.21247999
-0.37158501 -0.45105999 -0.26129999
-0.458255 -0.43664001 -0.18388
-
-0.42092499 -0.38223 -0.23412001
-0.52969501 -0.24299 -0.15367
-0.47530499 -0.39273998 -0.18283001
-
--0.36962502 -0.20292999 -0.20726999
--0.39932499 -0.27525 -0.19733
--0.40962502 -0.24707001 -0.19660999
-
--0.238365 -0.47976002 -0.11273
--0.178085 -0.52410999 -0.09604
--0.157915 -0.5673 -0.08973
-
-0.45115501 -0.60699001 -0.15207
-0.39260502 -0.67114998 -0.11193
-0.382645 -0.65669998 -0.17177999
-
-0.261315 -0.36248001 -0.31499001
-0.37158501 -0.45105999 -0.26129999
-0.251075 -0.40532001 -0.30648001
-
-0.37158501 -0.45105999 -0.26129999
-0.35170502 -0.52154999 -0.26212999
-0.251075 -0.40532001 -0.30648001
-
--0.52669498 0.41201 -0.43175999
--0.515135 0.41865002 -0.44709
--0.54327499 0.39124001 -0.37567001
-
--0.50876499 -0.69231003 -0.00193
--0.50606499 -0.70516998 -0.03412
--0.52946499 -0.75737999 -0.02987
-
-0.372915 -0.65777 -0.19226999
-0.36238499 -0.61118 -0.21527
-0.382645 -0.65669998 -0.17177999
-
-0.391745 -0.56583 -0.23886999
-0.42197498 -0.58331001 -0.20099001
-0.36238499 -0.61118 -0.21527
-
-0.36023499 -0.12728 -0.21188999
-0.33996498 -0.09883 -0.20899
-0.38315498 -0.105 -0.19958
-
-0.322565 -0.66830002 -0.22158001
-0.22237499 -0.68262001 -0.22483
-0.292015 -0.59245998 -0.26313
-
-0.36238499 -0.61118 -0.21527
-0.372915 -0.65777 -0.19226999
-0.322565 -0.66830002 -0.22158001
-
-0.292015 -0.59245998 -0.26313
-0.391745 -0.56583 -0.23886999
-0.36238499 -0.61118 -0.21527
-
-0.37158501 -0.45105999 -0.26129999
-0.391745 -0.56583 -0.23886999
-0.35170502 -0.52154999 -0.26212999
-
-0.458255 -0.43664001 -0.18388
-0.42092499 -0.38223 -0.23412001
-0.47530499 -0.39273998 -0.18283001
-
--0.26883499 -0.37657001 -0.16448
--0.328545 -0.40797001 -0.12829
--0.288985 -0.33368 -0.16805
-
--0.56290501 0.68952003 -0.53467999
--0.572925 0.70330002 -0.52133999
--0.51963501 0.70806 -0.56443001
-
--0.328545 -0.40797001 -0.12829
--0.297925 -0.53887001 -0.09417
--0.388325 -0.45629002 -0.06645
-
-0.391745 -0.56583 -0.23886999
-0.33190498 -0.54949001 -0.26895
-0.35170502 -0.52154999 -0.26212999
-
-0.37158501 -0.45105999 -0.26129999
-0.435765 -0.49491001 -0.21247999
-0.391745 -0.56583 -0.23886999
-
--0.522085 0.42964001 -0.46967999
--0.531875 0.43505001 -0.47442001
--0.52519501 0.43825001 -0.48328999
-
-0.372915 -0.65777 -0.19226999
-0.32443501 -0.74949997 -0.15917
-0.302465 -0.72740997 -0.204
-
-0.611035 -0.42883999 0.02128
-0.68443497 -0.45104 0.0037
-0.66172501 -0.51227001 -0.03209
-
-0.66172501 -0.52612 -0.03485
-0.701595 -0.51362999 -0.01377
-0.68647499 -0.58339001 -0.0017
-
--0.36254501 -0.75091003 -0.10707
--0.30734501 -0.71100998 -0.10559
--0.31717501 -0.73977997 -0.10929
-
-0.42092499 -0.38223 -0.23412001
-0.290415 -0.22259001 -0.29337
-0.420485 -0.22735001 -0.22077999
-
-0.251465 -0.18408001 -0.29662001
-0.35949501 -0.21177999 -0.24714001
-0.290415 -0.22259001 -0.29337
-
-0.292015 -0.59245998 -0.26313
-0.22237499 -0.68262001 -0.22483
-0.19210501 -0.62008999 -0.27941999
-
-0.56943501 -0.51193001 -0.02993
-0.611035 -0.42883999 0.02128
-0.66172501 -0.51227001 -0.03209
-
-0.30606501 -0.05008 -0.17846001
-0.359175 -0.0197 -0.15061
-0.33996498 -0.09883 -0.20899
-
-0.251465 -0.18408001 -0.29662001
-0.290415 -0.22259001 -0.29337
-0.200305 -0.22082001 -0.32242001
-
--0.67093498 0.16365 -0.02486
--0.69026497 0.08918 0.00135
--0.69932503 0.13755 -0.00205
-
-0.290105 -0.15098 -0.25101999
-0.251465 -0.18408001 -0.29662001
-0.22540501 -0.15247 -0.28954
-
--0.212425 0.4907 -0.10495
--0.34072498 0.34067001 0.0194
--0.312335 0.41512001 -0.03359
-
--0.000905 -0.16063999 -0.32273998
-0.059725 -0.12592 -0.27848
-0.125885 -0.16028999 -0.32228001
-
--0.233095 -0.62811001 -0.12729
--0.228515 -0.64073997 -0.19774
--0.27567499 -0.69246002 -0.18768
-
--0.44219501 0.62398998 -0.59071999
--0.44350498 0.63459 -0.59969002
--0.457075 0.67668999 -0.58800999
-
--0.019895 -0.21881001 -0.36255001
-0.040165 -0.24620001 -0.37231998
--0.019805 -0.26032 -0.37293999
-
-0.292015 -0.59245998 -0.26313
-0.33190498 -0.54949001 -0.26895
-0.391745 -0.56583 -0.23886999
-
--0.27737499 -0.63951 -0.09283
--0.24751499 -0.60999001 -0.0966
--0.233095 -0.62811001 -0.12729
-
--0.42914501 -0.31971001 -0.17452999
--0.37912498 -0.31878 -0.18186001
--0.40871498 -0.39304001 -0.14109
-
--0.40245499 0.42946999 0.00582
--0.330975 0.52471001 -0.03259
--0.23320499 0.5352 -0.10464
-
-0.241845 -0.57674 -0.28339001
-0.211805 -0.50487 -0.30047001
-0.33190498 -0.54949001 -0.26895
-
-0.211805 -0.50487 -0.30047001
-0.241845 -0.57674 -0.28339001
-0.21181499 -0.56279999 -0.28535
-
-0.211805 -0.50487 -0.30047001
-0.35170502 -0.52154999 -0.26212999
-0.33190498 -0.54949001 -0.26895
-
-0.251075 -0.40532001 -0.30648001
-0.35170502 -0.52154999 -0.26212999
-0.211805 -0.50487 -0.30047001
-
-0.239765 -0.07146 -0.19552
-0.33996498 -0.09883 -0.20899
-0.27865499 -0.11254 -0.21181999
-
-0.322565 -0.66830002 -0.22158001
-0.292015 -0.59245998 -0.26313
-0.36238499 -0.61118 -0.21527
-
-0.239765 -0.07146 -0.19552
-0.30606501 -0.05008 -0.17846001
-0.33996498 -0.09883 -0.20899
-
-0.322565 -0.66830002 -0.22158001
-0.372915 -0.65777 -0.19226999
-0.302465 -0.72740997 -0.204
-
-0.282605 -0.72681999 -0.21195999
-0.18262501 -0.73998001 -0.2282
-0.22237499 -0.68262001 -0.22483
-
-0.322565 -0.66830002 -0.22158001
-0.282605 -0.72681999 -0.21195999
-0.22237499 -0.68262001 -0.22483
-
-0.292015 -0.59245998 -0.26313
-0.19210501 -0.62008999 -0.27941999
-0.241845 -0.57674 -0.28339001
-
-0.19210501 -0.62008999 -0.27941999
-0.21181499 -0.56279999 -0.28535
-0.241845 -0.57674 -0.28339001
-
-0.151255 -0.47417999 -0.33002998
-0.211805 -0.50487 -0.30047001
-0.21181499 -0.56279999 -0.28535
-
-0.261315 -0.36248001 -0.31499001
-0.370625 -0.38014999 -0.26396999
-0.37158501 -0.45105999 -0.26129999
-
-0.239765 -0.07146 -0.19552
-0.074325 -0.09863 -0.22704
-0.091085 -0.00535 -0.20563999
-
-0.282605 -0.72681999 -0.21195999
-0.269445 -0.75794998 -0.18476999
-0.18262501 -0.73998001 -0.2282
-
-0.200805 -0.34676998 -0.33601002
-0.140395 -0.26084999 -0.35778
-0.200305 -0.22082001 -0.32242001
-
-0.20949499 8e-05 -0.18802999
-0.153225 0.01244 -0.18492001
-0.179445 0.04258 -0.17731001
-
--0.275595 -0.76456001 -0.06335
--0.244305 -0.76299004 -0.00343
--0.38783501 -0.76627998 0.13294
-
-0.172295 -0.65259003 -0.24820999
-0.19210501 -0.62008999 -0.27941999
-0.22237499 -0.68262001 -0.22483
-
-0.261315 -0.36248001 -0.31499001
-0.251075 -0.40532001 -0.30648001
-0.200805 -0.34676998 -0.33601002
-
--0.57005501 0.04798 -0.05057
--0.52043499 0.07819 -0.06974
--0.53066502 0.00663 -0.09101
-
-0.20949499 8e-05 -0.18802999
-0.179445 0.04258 -0.17731001
-0.259195 0.02269 -0.176
-
--0.46016499 0.52960999 -0.57521999
--0.44630501 0.55679001 -0.57491001
--0.47018501 0.48946999 -0.51748001
-
-0.292015 -0.59245998 -0.26313
-0.241845 -0.57674 -0.28339001
-0.33190498 -0.54949001 -0.26895
-
-0.200805 -0.34676998 -0.33601002
-0.200305 -0.22082001 -0.32242001
-0.290415 -0.22259001 -0.29337
-
--0.57057499 -0.43936001 0.05637
--0.48772499 -0.47484001 -0.01301
--0.510555 -0.49130001 0.09622
-
-0.27865499 -0.11254 -0.21181999
-0.22540501 -0.15247 -0.28954
-0.131915 -0.11946 -0.26507999
-
--0.297925 -0.53887001 -0.09417
--0.238365 -0.47976002 -0.11273
--0.157915 -0.5673 -0.08973
-
--0.44820499 0.36980999 -0.02461
--0.45510502 0.35847 -0.05053
--0.462285 0.43570999 -0.09058
-
-0.19929501 -0.75515999 -0.14499
--0.124075 -0.75598 -0.18927
-0.011285 -0.76453003 -0.22976
-
-0.322565 -0.66830002 -0.22158001
-0.302465 -0.72740997 -0.204
-0.282605 -0.72681999 -0.21195999
-
-0.19210501 -0.62008999 -0.27941999
-0.172295 -0.65259003 -0.24820999
-0.082165 -0.64961998 -0.27099001
-
-0.031555 -0.54588001 -0.32389999
-0.061695 -0.56002998 -0.32155998
-0.002175 -0.65117996 -0.26294001
-
--0.089315 -0.30382 -0.35894001
--0.099045 -0.37569 -0.34127998
--0.119055 -0.34823002 -0.33359001
-
--0.58929501 0.35665001 -0.05348
--0.54156502 0.29757 -0.05975
--0.57147499 0.29725 -0.05187
-
-0.082165 -0.64961998 -0.27099001
-0.172295 -0.65259003 -0.24820999
-0.032345 -0.66652 -0.25143
-
-0.061695 -0.56002998 -0.32155998
-0.151255 -0.47417999 -0.33002998
-0.21181499 -0.56279999 -0.28535
-
-0.131055 -0.41751999 -0.33540001
-0.251075 -0.40532001 -0.30648001
-0.151255 -0.47417999 -0.33002998
-
-0.22540501 -0.15247 -0.28954
-0.251465 -0.18408001 -0.29662001
-0.125885 -0.16028999 -0.32228001
-
-0.51838501 -0.73889 0.11006
-0.59101501 -0.70407997 0.1113
-0.57144501 -0.70275002 0.21681
-
--0.249485 -0.24631001 -0.19802999
--0.18914499 -0.31829 -0.17997
--0.288985 -0.33368 -0.16805
-
--0.27567499 -0.69246002 -0.18768
--0.25884501 -0.74322998 -0.26056
--0.271465 -0.75859001 -0.23466
-
--0.125935 -0.71977997 0.05414
--0.136375 -0.72024002 0.05244
--0.139575 -0.71986 0.03333
-
--0.36254501 -0.75091003 -0.10707
--0.47012501 -0.68793999 -0.04621
--0.27737499 -0.63951 -0.09283
-
--0.42914501 -0.31971001 -0.17452999
--0.39932499 -0.27525 -0.19733
--0.37912498 -0.31878 -0.18186001
-
-0.172295 -0.65259003 -0.24820999
-0.22237499 -0.68262001 -0.22483
-0.032345 -0.66652 -0.25143
-
-0.22237499 -0.68262001 -0.22483
-0.18262501 -0.73998001 -0.2282
-0.032345 -0.66652 -0.25143
-
-0.251075 -0.40532001 -0.30648001
-0.211805 -0.50487 -0.30047001
-0.151255 -0.47417999 -0.33002998
-
-0.200805 -0.34676998 -0.33601002
-0.251075 -0.40532001 -0.30648001
-0.131055 -0.41751999 -0.33540001
-
--0.215165 -0.74110001 0.12757
--0.18321501 -0.75733002 0.1487
--0.19240499 -0.74304001 0.15199
-
--0.38056499 0.02471 -0.15193
--0.310175 -0.08771 -0.20037001
--0.35023499 -0.1021 -0.20283001
-
--0.112925 0.44946999 -0.01904
--0.31918501 0.34056 0.04058
--0.34072498 0.34067001 0.0194
-
--0.30734501 -0.71100998 -0.10559
--0.30720501 -0.73987999 -0.10804
--0.31717501 -0.73977997 -0.10929
-
-0.18262501 -0.73998001 -0.2282
-0.102645 -0.75471001 -0.22798
-0.032345 -0.66652 -0.25143
-
-0.19210501 -0.62008999 -0.27941999
-0.082165 -0.64961998 -0.27099001
-0.061695 -0.56002998 -0.32155998
-
-0.100535 -0.31684999 -0.36356998
-0.140395 -0.26084999 -0.35778
-0.200805 -0.34676998 -0.33601002
-
--0.40245499 0.42946999 0.00582
--0.40747501 0.47915001 0.0356
--0.330975 0.52471001 -0.03259
-
--0.52043499 0.07819 -0.06974
--0.501245 0.20993999 -0.07225
--0.43113499 0.13668 -0.06854
-
-0.19210501 -0.62008999 -0.27941999
-0.061695 -0.56002998 -0.32155998
-0.21181499 -0.56279999 -0.28535
-
-0.200805 -0.34676998 -0.33601002
-0.131055 -0.41751999 -0.33540001
-0.100535 -0.31684999 -0.36356998
-
--0.52043499 0.07819 -0.06974
--0.57005501 0.04798 -0.05057
--0.60025501 0.10649 -0.05573
-
--0.53066502 0.00663 -0.09101
--0.52043499 0.07819 -0.06974
--0.43526501 0.09176 -0.08455
-
--0.35023499 -0.1021 -0.20283001
--0.430355 -0.10442 -0.17239
--0.48044498 -0.07672 -0.15554
-
-0.151255 -0.47417999 -0.33002998
-0.031555 -0.54588001 -0.32389999
-0.041465 -0.48752998 -0.34728001
-
-0.131055 -0.41751999 -0.33540001
-0.151255 -0.47417999 -0.33002998
-0.041465 -0.48752998 -0.34728001
-
-0.125885 -0.16028999 -0.32228001
-0.251465 -0.18408001 -0.29662001
-0.140395 -0.26084999 -0.35778
-
-0.382645 -0.65669998 -0.17177999
-0.36238499 -0.61118 -0.21527
-0.42197498 -0.58331001 -0.20099001
-
-0.68647499 -0.58339001 -0.0017
-0.74039497 -0.56462002 0.06716
-0.72791496 -0.59351002 0.06742
-
--0.40245499 0.42946999 0.00582
--0.312335 0.41512001 -0.03359
--0.401735 0.37047001 -0.00194
-
-0.66172501 -0.51227001 -0.03209
-0.68443497 -0.45104 0.0037
-0.701595 -0.51362999 -0.01377
-
--0.060175 0.08937 -0.1052
-0.005765 0.04376 -0.15766
--0.116545 0.01205 -0.16351999
-
-0.061495 0.71106003 -0.27132
-0.068505 0.67084 -0.27976999
-0.059645 0.68377998 -0.28246
-
--0.26883499 -0.37657001 -0.16448
--0.288985 -0.33368 -0.16805
--0.19886499 -0.37626999 -0.16464001
-
--0.32967499 -0.20312 -0.20150999
--0.249485 -0.24631001 -0.19802999
--0.31935499 -0.27489 -0.19740999
-
-0.36023499 -0.12728 -0.21188999
-0.28848499 -0.13418 -0.22884001
-0.27865499 -0.11254 -0.21181999
-
-0.012615 -0.75335999 -0.24431999
-0.032345 -0.66652 -0.25143
-0.102645 -0.75471001 -0.22798
-
--0.47702499 -0.74514 -0.06318
--0.499095 -0.76375999 -0.05418
--0.52946499 -0.75737999 -0.02987
-
--0.229725 -0.20162001 -0.21724001
--0.199305 -0.2299 -0.22021999
--0.249485 -0.24631001 -0.19802999
-
--0.76138496 0.14034 0.29812
--0.74599503 0.0726 0.28837999
--0.76316498 0.10037 0.37827
-
--0.120215 -0.74757004 0.18886999
--0.097395 -0.72411003 0.17242001
--0.129625 -0.75866997 0.17889999
-
--0.357915 -0.49792999 -0.07636
--0.388325 -0.45629002 -0.06645
--0.297925 -0.53887001 -0.09417
-
--0.18321501 -0.75733002 0.1487
--0.152885 -0.76372002 0.12453
--0.141615 -0.76162003 0.1249
-
--0.21356501 -0.75926003 0.30533001
--0.238545 -0.76138 0.28424
--0.21439501 -0.74724998 0.25917999
-
-0.041465 -0.48752998 -0.34728001
--0.009285 -0.35868999 -0.37393002
-0.100535 -0.31684999 -0.36356998
-
-0.041465 -0.48752998 -0.34728001
-0.100535 -0.31684999 -0.36356998
-0.131055 -0.41751999 -0.33540001
-
--0.35023499 -0.1021 -0.20283001
--0.48044498 -0.07672 -0.15554
--0.38056499 0.02471 -0.15193
-
--0.50876499 -0.69231003 -0.00193
--0.47767502 -0.65098999 0.02223
--0.50606499 -0.70516998 -0.03412
-
--0.073375 0.61046001 -0.18223
--0.083505 0.68447998 -0.17287001
-0.016075 0.68472 -0.25462
-
-0.251465 -0.18408001 -0.29662001
-0.200305 -0.22082001 -0.32242001
-0.140395 -0.26084999 -0.35778
-
-0.012615 -0.75335999 -0.24431999
-0.002175 -0.65117996 -0.26294001
-0.032345 -0.66652 -0.25143
-
-0.082165 -0.64961998 -0.27099001
-0.032345 -0.66652 -0.25143
-0.002175 -0.65117996 -0.26294001
-
-0.031555 -0.54588001 -0.32389999
-0.151255 -0.47417999 -0.33002998
-0.061695 -0.56002998 -0.32155998
-
-0.041465 -0.48752998 -0.34728001
--0.049465 -0.37333 -0.3702
--0.009285 -0.35868999 -0.37393002
-
--0.39040501 0.27885 -0.0233
--0.363535 0.29777 0.01081
--0.32405499 0.22228001 0.01714
-
--0.51963501 0.70806 -0.56443001
--0.49433498 0.69546997 -0.58514
--0.51469501 0.68051003 -0.57174
-
--0.48954498 -0.24917 -0.17212999
--0.59406502 -0.18136 -0.12044
--0.48044498 -0.07672 -0.15554
-
--0.54935501 -0.75695999 0.01981
--0.56031502 -0.74598999 0.02573
--0.547785 -0.71860001 0.02244
-
-0.102645 -0.75471001 -0.22798
-0.011285 -0.76453003 -0.22976
-0.012615 -0.75335999 -0.24431999
-
--0.17994499 -0.75432999 0.36115002
--0.17762501 -0.75689003 0.38146999
--0.163815 -0.75672997 0.40183998
-
-0.016075 0.68472 -0.25462
--0.048255 0.52195999 -0.13641
--0.073375 0.61046001 -0.18223
-
--0.232635 -0.74156998 0.44324001
--0.204825 -0.74662003 0.45456001
--0.222955 -0.69486 0.43347
-
--0.44782501 0.38021 -0.01581
--0.44713501 0.41133999 0.01059
--0.401735 0.37047001 -0.00194
-
--0.038565 -0.53313 -0.31079
--0.078115 -0.62351002 -0.25240999
--0.058185 -0.59312 -0.27127001
-
--0.049555 -0.31667 -0.37383999
--0.019805 -0.26032 -0.37293999
--0.009285 -0.35868999 -0.37393002
-
--0.579235 -0.25250999 -0.13211
--0.60820499 -0.28396 -0.08675
--0.59406502 -0.18136 -0.12044
-
--0.47904499 -0.33529999 -0.1591
--0.579235 -0.25250999 -0.13211
--0.48954498 -0.24917 -0.17212999
-
-0.239765 -0.07146 -0.19552
-0.27865499 -0.11254 -0.21181999
-0.074325 -0.09863 -0.22704
-
--0.36962502 -0.20292999 -0.20726999
--0.31935499 -0.27489 -0.19740999
--0.39932499 -0.27525 -0.19733
-
-0.025515 0.74473999 -0.25292999
-0.047165 0.73010002 -0.26747
-0.059645 0.68377998 -0.28246
-
--0.038565 -0.53313 -0.31079
-0.031555 -0.54588001 -0.32389999
-0.002175 -0.65117996 -0.26294001
-
--0.59406502 -0.18136 -0.12044
--0.59998501 -0.08147 -0.08608
--0.48044498 -0.07672 -0.15554
-
--0.32967499 -0.20312 -0.20150999
--0.35023499 -0.1021 -0.20283001
--0.310175 -0.08771 -0.20037001
-
--0.328545 -0.40797001 -0.12829
--0.40871498 -0.39304001 -0.14109
--0.37912498 -0.31878 -0.18186001
-
-0.025515 0.74473999 -0.25292999
-0.016075 0.68472 -0.25462
--0.083505 0.68447998 -0.17287001
-
--0.016475 0.76692001 -0.19555
-0.025515 0.74473999 -0.25292999
--0.083505 0.68447998 -0.17287001
-
--0.44842499 -0.42519001 -0.09399
--0.458685 -0.37923 -0.13846
--0.40871498 -0.39304001 -0.14109
-
-0.059645 0.68377998 -0.28246
-0.016075 0.68472 -0.25462
-0.025515 0.74473999 -0.25292999
-
--0.60123501 0.19448 -0.05578
--0.57065498 0.15109 -0.06724
--0.60025501 0.10649 -0.05573
-
-0.031555 -0.54588001 -0.32389999
--0.038565 -0.53313 -0.31079
--0.028935 -0.47416 -0.34169998
-
--0.69706497 0.27559999 0.04741
--0.62156502 0.28177999 -0.03207
--0.67165497 0.20761999 -0.01075
-
--0.36962502 -0.20292999 -0.20726999
--0.420495 -0.13227 -0.18625
--0.35023499 -0.1021 -0.20283001
-
--0.038565 -0.53313 -0.31079
-0.002175 -0.65117996 -0.26294001
--0.078115 -0.62351002 -0.25240999
-
--0.009285 -0.35868999 -0.37393002
--0.049465 -0.37333 -0.3702
--0.049555 -0.31667 -0.37383999
-
--0.019805 -0.26032 -0.37293999
--0.059835 -0.23341 -0.35984001
--0.019895 -0.21881001 -0.36255001
-
--0.39040501 0.27885 -0.0233
--0.34418499 0.18421 -0.02241
--0.43113499 0.13668 -0.06854
-
--0.36962502 -0.20292999 -0.20726999
--0.35023499 -0.1021 -0.20283001
--0.32967499 -0.20312 -0.20150999
-
--0.35023499 -0.1021 -0.20283001
--0.420495 -0.13227 -0.18625
--0.430355 -0.10442 -0.17239
-
-0.040165 -0.24620001 -0.37231998
-0.125885 -0.16028999 -0.32228001
-0.140395 -0.26084999 -0.35778
-
-0.061695 -0.56002998 -0.32155998
-0.082165 -0.64961998 -0.27099001
-0.002175 -0.65117996 -0.26294001
-
-0.040165 -0.24620001 -0.37231998
-0.100535 -0.31684999 -0.36356998
--0.009285 -0.35868999 -0.37393002
-
-0.040165 -0.24620001 -0.37231998
--0.019895 -0.21881001 -0.36255001
-0.061575 -0.19306999 -0.34928001
-
--0.117175 -0.61290001 -0.22316
--0.107915 -0.53838001 -0.23878
--0.058185 -0.59312 -0.27127001
-
--0.049555 -0.31667 -0.37383999
--0.109575 -0.27684 -0.3468
--0.059835 -0.23341 -0.35984001
-
--0.34806499 -0.62027 0.40410999
--0.32939499 -0.58321999 0.36421001
--0.354585 -0.59728001 0.33195
-
-0.002175 -0.65117996 -0.26294001
-0.012615 -0.75335999 -0.24431999
--0.056505 -0.75303001 -0.26643
-
-0.031555 -0.54588001 -0.32389999
--0.028935 -0.47416 -0.34169998
-0.041465 -0.48752998 -0.34728001
-
--0.059835 -0.23341 -0.35984001
--0.099435 -0.2215 -0.33507999
--0.068905 -0.17981001 -0.32354
-
--0.47262501 0.31153 -0.0592
--0.43113499 0.13668 -0.06854
--0.501245 0.20993999 -0.07225
-
-0.073585 0.64028999 -0.27017
-0.068505 0.67084 -0.27976999
-0.077465 0.65564003 -0.25237
-
--0.52155499 0.29777 -0.06353
--0.47262501 0.31153 -0.0592
--0.501245 0.20993999 -0.07225
-
--0.16779499 -0.59556999 -0.09223
--0.157915 -0.5673 -0.08973
--0.132525 -0.59215 -0.16823
-
--0.058185 -0.59312 -0.27127001
--0.028935 -0.47416 -0.34169998
--0.038565 -0.53313 -0.31079
-
-0.041465 -0.48752998 -0.34728001
--0.028935 -0.47416 -0.34169998
--0.049465 -0.37333 -0.3702
-
--0.119055 -0.34823002 -0.33359001
--0.089125 -0.40429001 -0.33634998
--0.049465 -0.37333 -0.3702
-
--0.44842499 -0.42519001 -0.09399
--0.51724499 -0.39648998 -0.08125
--0.458685 -0.37923 -0.13846
-
--0.262125 -0.75611 -0.24801001
--0.25884501 -0.74322998 -0.26056
--0.264615 -0.75880997 -0.25176001
-
--0.089125 -0.40429001 -0.33634998
--0.099045 -0.37569 -0.34127998
--0.049465 -0.37333 -0.3702
-
--0.019805 -0.26032 -0.37293999
--0.049555 -0.31667 -0.37383999
--0.059835 -0.23341 -0.35984001
-
--0.16091499 -0.46264999 -0.1489
--0.19886499 -0.37626999 -0.16464001
--0.178825 -0.39007 -0.16848
-
-0.57723499 -0.16372999 -0.05665
-0.55953499 -0.19656 -0.10231
-0.53496498 -0.20222 -0.13642
-
--0.51724499 -0.39648998 -0.08125
--0.51851501 -0.35137001 -0.13174
--0.458685 -0.37923 -0.13846
-
--0.47904499 -0.33529999 -0.1591
--0.458685 -0.37923 -0.13846
--0.51851501 -0.35137001 -0.13174
-
--0.42884499 -0.63210999 0.34209
--0.39039501 -0.65042 0.25218
--0.45884499 -0.68533997 0.2724
-
--0.57303501 -0.09277 0.39316002
--0.50651501 -0.10104 0.42856998
--0.49119499 0.00697 0.39306
-
--0.049555 -0.31667 -0.37383999
--0.089315 -0.30382 -0.35894001
--0.109575 -0.27684 -0.3468
-
--0.129445 -0.21128 -0.28048
--0.105115 -0.16202 -0.24193001
--0.068905 -0.17981001 -0.32354
-
-0.27501499 -0.73774002 0.33299999
-0.263195 -0.75384003 0.38103001
-0.25369499 -0.75265999 0.37801998
-
-0.27501499 -0.73774002 0.33299999
-0.307255 -0.75317001 0.29917999
-0.263195 -0.75384003 0.38103001
-
-0.21626499 -0.75853996 0.0299
-0.37226501 -0.75335999 0.0004
-0.37679501 -0.75690002 0.04199
-
-0.217575 -0.76156998 0.10704
-0.182815 -0.75714996 0.16868999
-0.17213499 -0.75156998 0.0888
-
-0.18217501 -0.72101997 0.24479
-0.169515 -0.73176003 0.21563999
-0.22463499 -0.75526001 0.22989
-
-0.46587502 -0.74139 0.21201
-0.57144501 -0.70275002 0.21681
-0.544925 -0.67612 0.29681999
-
--0.163815 -0.75672997 0.40183998
--0.149955 -0.75657997 0.42223999
--0.124945 -0.75449997 0.44332001
-
-0.74088501 -0.59263 0.15724
-0.72546501 -0.5941 0.22735001
-0.68346497 -0.63983002 0.21789
-
--0.531875 0.43505001 -0.47442001
--0.53415501 0.42109001 -0.44837002
--0.54392502 0.40847 -0.42164001
-
-0.145115 -0.74193001 0.48983002
-0.065805 -0.69416 0.51382
--0.043565 -0.73834 0.55035999
-
--0.124945 -0.75449997 0.44332001
--0.149955 -0.75657997 0.42223999
--0.129735 -0.75664001 0.42655998
-
--0.53543499 0.41438 -0.43537998
--0.53415501 0.42109001 -0.44837002
--0.52343498 0.42028999 -0.45174999
-
-0.247225 -0.73827003 0.07339
-0.230595 -0.75019997 0.08086
-0.214865 -0.76049004 0.08706
-
-0.39461498 -0.74144997 0.14291
-0.43240501 -0.75309998 0.17931999
-0.39172501 -0.75321999 0.22577
-
-0.39461498 -0.74144997 0.14291
-0.39172501 -0.75321999 0.22577
-0.37518501 -0.73981003 0.19209999
-
-0.273465 -0.75255997 0.21926001
-0.34330502 -0.75508003 0.23577999
-0.307255 -0.75317001 0.29917999
-
-0.268925 -0.75015999 0.45092999
-0.33077499 -0.74196999 0.4384
-0.253395 -0.73496002 0.46985001
-
--0.52519501 0.43825001 -0.48328999
--0.51220501 0.43668999 -0.48354
--0.522085 0.42964001 -0.46967999
-
-0.51719501 -0.72348999 0.03903
-0.37226501 -0.75335999 0.0004
-0.38144501 -0.72870003 -0.01149
-
-0.023935 -0.75346001 0.45659
-0.041895 -0.75098 0.44063
-0.060925 -0.75339996 0.44673
-
-0.51838501 -0.73889 0.11006
-0.37679501 -0.75690002 0.04199
-0.51719501 -0.72348999 0.03903
-
--0.096785 -0.71277 0.39598999
--0.126875 -0.71792 0.35866001
-0.034255 -0.70801003 0.40098999
-
-0.28172501 -0.75823997 -0.05062
-0.272735 -0.75711998 -0.10985
-0.32443501 -0.74949997 -0.15917
-
-0.21626499 -0.75853996 0.0299
-0.28172501 -0.75823997 -0.05062
-0.37226501 -0.75335999 0.0004
-
-0.098315 -0.75280998 0.43609001
-0.060925 -0.75339996 0.44673
-0.079235 -0.75045998 0.43006001
-
-0.243085 -0.75848 0.18212999
-0.273465 -0.75255997 0.21926001
-0.22463499 -0.75526001 0.22989
-
-0.071735 -0.70736 0.39019001
-0.108785 -0.70753998 0.38001999
-0.092555 -0.70641998 0.39365002
-
-0.217575 -0.76156998 0.10704
-0.227675 -0.76184998 0.16388
-0.182815 -0.75714996 0.16868999
-
-0.23564501 -0.75482002 0.39424999
-0.25369499 -0.75265999 0.37801998
-0.263195 -0.75384003 0.38103001
-
-0.307255 -0.75317001 0.29917999
-0.27501499 -0.73774002 0.33299999
-0.249485 -0.73458 0.28882999
-
-0.129605 -0.70660004 0.38347
-0.108785 -0.70753998 0.38001999
-0.145855 -0.70772003 0.36983002
-
--0.112925 0.44946999 -0.01904
--0.081355 0.49502998 0.00394
--0.29133499 0.43453999 0.10392
-
--0.167295 -0.74737 0.49738998
--0.158775 -0.70517998 0.52299
--0.204825 -0.74662003 0.45456001
-
--0.70774498 0.00346 0.16879
--0.68397499 0.00246 0.06858
--0.69850502 -0.02457 0.14891
-
--0.168155 -0.75809998 0.38451
--0.163815 -0.75672997 0.40183998
--0.17762501 -0.75689003 0.38146999
-
--0.74453499 0.0457 0.23389999
--0.75351501 0.04522 0.14867
--0.70774498 0.00346 0.16879
-
-0.40481499 -0.73542999 0.28509001
-0.46587502 -0.74139 0.21201
-0.544925 -0.67612 0.29681999
-
-0.356045 -0.73796997 0.07649
-0.34848499 -0.74596001 0.06365
-0.372925 -0.74444 0.08579
-
-0.34330502 -0.75508003 0.23577999
-0.37518501 -0.73981003 0.19209999
-0.39172501 -0.75321999 0.22577
-
-0.171975 -0.75398003 0.41638
-0.216595 -0.75247002 0.38827999
-0.268925 -0.75015999 0.45092999
-
--0.74453499 0.0457 0.23389999
--0.76094498 0.07262 0.24841
--0.77178497 0.08616 0.18837
-
-0.38517502 -0.74663002 0.10888
-0.37679501 -0.75690002 0.04199
-0.43240501 -0.75309998 0.17931999
-
-0.307255 -0.75317001 0.29917999
-0.39172501 -0.75321999 0.22577
-0.268925 -0.75015999 0.45092999
-
-0.32443501 -0.74949997 -0.15917
-0.272735 -0.75711998 -0.10985
-0.269445 -0.75794998 -0.18476999
-
-0.23355499 -0.75731003 0.17916
-0.243085 -0.75848 0.18212999
-0.22463499 -0.75526001 0.22989
-
--0.40862499 -0.51027 0.23212
--0.406595 -0.51174999 0.23107
--0.382085 -0.52368999 0.21750999
-
--0.74453499 0.0457 0.23389999
--0.67764503 0.00206 0.26896999
--0.70928497 0.03538 0.30452
-
--0.74599503 0.0726 0.28837999
--0.74184502 0.0506 0.33896999
--0.76316498 0.10037 0.37827
-
-0.071735 -0.70736 0.39019001
-0.055505 -0.70625 0.40381001
-0.034255 -0.70801003 0.40098999
-
--0.70928497 0.03538 0.30452
--0.74599503 0.0726 0.28837999
--0.76094498 0.07262 0.24841
-
--0.74184502 0.0506 0.33896999
--0.756325 0.07345 0.41839001
--0.76316498 0.10037 0.37827
-
-0.38517502 -0.74663002 0.10888
-0.372925 -0.74444 0.08579
-0.37679501 -0.75690002 0.04199
-
-0.307255 -0.75317001 0.29917999
-0.249485 -0.73458 0.28882999
-0.22463499 -0.75526001 0.22989
-
-0.38517502 -0.74663002 0.10888
-0.43240501 -0.75309998 0.17931999
-0.39461498 -0.74144997 0.14291
-
-0.25821501 -0.72514999 0.35438
-0.250725 -0.71367996 0.32457001
-0.27501499 -0.73774002 0.33299999
-
--0.54392502 0.40847 -0.42164001
--0.54327499 0.39124001 -0.37567001
--0.574305 0.39730999 -0.30334999
-
--0.70928497 0.03538 0.30452
--0.74184502 0.0506 0.33896999
--0.74599503 0.0726 0.28837999
-
--0.19240499 -0.74304001 0.15199
--0.18321501 -0.75733002 0.1487
--0.189415 -0.75043999 0.19530001
-
-0.57144501 -0.70275002 0.21681
-0.59101501 -0.70407997 0.1113
-0.63408501 -0.68242996 0.15461
-
-0.59101501 -0.70407997 0.1113
-0.67806503 -0.65469002 0.13749
-0.63408501 -0.68242996 0.15461
-
--0.74453499 0.0457 0.23389999
--0.70774498 0.00346 0.16879
--0.67764503 0.00206 0.26896999
-
--0.204825 -0.74662003 0.45456001
--0.232635 -0.74156998 0.44324001
--0.257085 -0.75538002 0.41583
-
-0.216595 -0.75247002 0.38827999
-0.23564501 -0.75482002 0.39424999
-0.268925 -0.75015999 0.45092999
-
-0.17213499 -0.75156998 0.0888
-0.136425 -0.71731003 0.08693
-0.141325 -0.71446999 0.04894
-
--0.70928497 0.03538 0.30452
--0.70194504 0.01583 0.35792
--0.74184502 0.0506 0.33896999
-
--0.70928497 0.03538 0.30452
--0.67764503 0.00206 0.26896999
--0.64516502 -0.00556 0.3159
-
--0.756325 0.07345 0.41839001
--0.74184502 0.0506 0.33896999
--0.72276497 0.02686 0.4157
-
-0.245315 -0.71125 0.33931999
-0.250725 -0.71367996 0.32457001
-0.25821501 -0.72514999 0.35438
-
-0.275065 -0.74995003 0.05247
-0.247225 -0.73827003 0.07339
-0.214865 -0.76049004 0.08706
-
-0.39172501 -0.75321999 0.22577
-0.40481499 -0.73542999 0.28509001
-0.34790501 -0.74143997 0.42344002
-
-0.307255 -0.75317001 0.29917999
-0.268925 -0.75015999 0.45092999
-0.263195 -0.75384003 0.38103001
-
-0.134945 -0.75379997 0.42655998
-0.171975 -0.75398003 0.41638
-0.268925 -0.75015999 0.45092999
-
-0.307255 -0.75317001 0.29917999
-0.34330502 -0.75508003 0.23577999
-0.39172501 -0.75321999 0.22577
-
--0.74184502 0.0506 0.33896999
--0.70194504 0.01583 0.35792
--0.72276497 0.02686 0.4157
-
--0.097395 -0.72411003 0.17242001
--0.113155 -0.72134003 0.07626
-0.141225 -0.72126999 0.18233999
-
-0.18217501 -0.72101997 0.24479
-0.145855 -0.70772003 0.36983002
-0.141225 -0.72126999 0.18233999
-
-0.17213499 -0.75156998 0.0888
-0.141225 -0.72126999 0.18233999
-0.136425 -0.71731003 0.08693
-
--0.72276497 0.02686 0.4157
--0.70194504 0.01583 0.35792
--0.64516502 -0.00556 0.3159
-
--0.707295 0.05002 0.47198002
--0.72276497 0.02686 0.4157
--0.66449501 0.01509 0.45601002
-
-0.134945 -0.75379997 0.42655998
-0.098315 -0.75280998 0.43609001
-0.115885 -0.75144997 0.42055
-
-0.34848499 -0.74596001 0.06365
-0.37679501 -0.75690002 0.04199
-0.372925 -0.74444 0.08579
-
-0.19929501 -0.75515999 -0.14499
-0.231395 -0.71984001 -0.09604
-0.18418501 -0.71306999 -0.11163
-
-0.46587502 -0.74139 0.21201
-0.51838501 -0.73889 0.11006
-0.57144501 -0.70275002 0.21681
-
--0.72276497 0.02686 0.4157
--0.64516502 -0.00556 0.3159
--0.58873501 -0.02668 0.38175999
-
-0.204165 -0.70615997 0.36240002
-0.18334499 -0.70709 0.35896
-0.16710501 -0.70596001 0.37262001
-
-0.43405499 -0.71273003 0.30693001
-0.34790501 -0.74143997 0.42344002
-0.40481499 -0.73542999 0.28509001
-
-0.269445 -0.75794998 -0.18476999
-0.19929501 -0.75515999 -0.14499
-0.011285 -0.76453003 -0.22976
-
-0.46587502 -0.74139 0.21201
-0.43240501 -0.75309998 0.17931999
-0.51838501 -0.73889 0.11006
-
-0.38517502 -0.74663002 0.10888
-0.37738499 -0.74217003 0.10322
-0.372925 -0.74444 0.08579
-
-0.243085 -0.75848 0.18212999
-0.249445 -0.75310997 0.19672001
-0.273465 -0.75255997 0.21926001
-
-0.171975 -0.75398003 0.41638
-0.134945 -0.75379997 0.42655998
-0.153365 -0.75081001 0.40972
-
-0.522575 -0.68685997 -0.0156
-0.558475 -0.70769997 0.03611
-0.51719501 -0.72348999 0.03903
-
-0.145115 -0.74193001 0.48983002
--0.043565 -0.73834 0.55035999
--0.088955 -0.75287003 0.51883999
-
-0.182815 -0.75714996 0.16868999
-0.23355499 -0.75731003 0.17916
-0.22463499 -0.75526001 0.22989
-
--0.67527496 -0.04277 0.26872
--0.65371498 -0.08158 0.31889
--0.60681499 -0.05331 0.35605999
-
-0.145855 -0.70772003 0.36983002
-0.108785 -0.70753998 0.38001999
-0.034255 -0.70801003 0.40098999
-
-0.275065 -0.74995003 0.05247
-0.214865 -0.76049004 0.08706
-0.21626499 -0.75853996 0.0299
-
-0.21626499 -0.75853996 0.0299
-0.17213499 -0.75156998 0.0888
-0.141325 -0.71446999 0.04894
-
--0.64516502 -0.00556 0.3159
--0.67527496 -0.04277 0.26872
--0.60681499 -0.05331 0.35605999
-
--0.707295 0.05002 0.47198002
--0.66449501 0.01509 0.45601002
--0.648545 0.03328 0.48077
-
--0.67091499 0.06852 0.50094002
--0.70310501 0.07475 0.49027
--0.707295 0.05002 0.47198002
-
--0.67091499 0.06852 0.50094002
--0.707295 0.05002 0.47198002
--0.648545 0.03328 0.48077
-
--0.158775 -0.70517998 0.52299
--0.222955 -0.69486 0.43347
--0.204825 -0.74662003 0.45456001
-
--0.516045 0.07047 0.53485001
--0.54655499 0.08835 0.54924999
--0.54197498 0.03751 0.51964001
-
--0.515135 0.41865002 -0.44709
--0.51723499 0.35522999 -0.21364
--0.54327499 0.39124001 -0.37567001
-
--0.113155 -0.72134003 0.07626
--0.139575 -0.71986 0.03333
--0.031635 -0.71653999 -0.15134
-
--0.64516502 -0.00556 0.3159
--0.67764503 0.00206 0.26896999
--0.67527496 -0.04277 0.26872
-
-0.43240501 -0.75309998 0.17931999
-0.46587502 -0.74139 0.21201
-0.39172501 -0.75321999 0.22577
-
-0.230595 -0.75019997 0.08086
-0.217575 -0.76156998 0.10704
-0.214865 -0.76049004 0.08706
-
--0.139575 -0.71986 0.03333
--0.098815 -0.71488998 -0.14756
--0.031635 -0.71653999 -0.15134
-
--0.677295 0.16986 0.51804001
--0.70310501 0.07475 0.49027
--0.67091499 0.06852 0.50094002
-
--0.167295 -0.74737 0.49738998
--0.204825 -0.74662003 0.45456001
--0.124945 -0.75449997 0.44332001
-
--0.212425 0.4907 -0.10495
--0.312335 0.41512001 -0.03359
--0.40245499 0.42946999 0.00582
-
--0.043565 -0.73834 0.55035999
--0.055935 -0.72981003 0.55643002
--0.107665 -0.74504997 0.54255001
-
-0.134945 -0.75379997 0.42655998
-0.060925 -0.75339996 0.44673
-0.098315 -0.75280998 0.43609001
-
--0.60681499 -0.05331 0.35605999
--0.57303501 -0.09277 0.39316002
--0.57050499 -0.03053 0.38844002
-
--0.72276497 0.02686 0.4157
--0.58873501 -0.02668 0.38175999
--0.66449501 0.01509 0.45601002
-
--0.63135502 -0.33622002 0.29066999
--0.67350502 -0.31801001 0.21348
--0.63988499 -0.38061001 0.17080999
-
--0.62156502 0.28177999 -0.03207
--0.614795 0.37119999 -0.013
--0.57147499 0.29725 -0.05187
-
--0.055935 -0.72981003 0.55643002
--0.119005 -0.73551003 0.54847
--0.107665 -0.74504997 0.54255001
-
--0.70194504 0.01583 0.35792
--0.70928497 0.03538 0.30452
--0.64516502 -0.00556 0.3159
-
--0.603685 0.00224 0.46230999
--0.648545 0.03328 0.48077
--0.66449501 0.01509 0.45601002
-
--0.54935501 -0.75695999 0.01981
--0.52946499 -0.75737999 -0.02987
--0.499095 -0.76375999 -0.05418
-
--0.573535 -0.42264999 0.23674
--0.63988499 -0.38061001 0.17080999
--0.53317501 -0.47806999 0.18746
-
--0.57746498 -0.38132 0.32298
--0.54116501 -0.33391998 0.39556
--0.61961498 -0.25518 0.37487
-
--0.088955 -0.75287003 0.51883999
--0.107665 -0.74504997 0.54255001
--0.167295 -0.74737 0.49738998
-
-0.49892502 -0.66067001 0.30966
-0.465905 -0.63949001 0.35477001
-0.43405499 -0.71273003 0.30693001
-
-0.23564501 -0.75482002 0.39424999
-0.263195 -0.75384003 0.38103001
-0.268925 -0.75015999 0.45092999
-
-0.268925 -0.75015999 0.45092999
-0.34790501 -0.74143997 0.42344002
-0.33077499 -0.74196999 0.4384
-
-0.34790501 -0.74143997 0.42344002
-0.329505 -0.71892998 0.45332001
-0.33077499 -0.74196999 0.4384
-
--0.63462502 -0.37513 0.05758
--0.57057499 -0.43936001 0.05637
--0.56052502 -0.45873001 0.12908
-
-0.33077499 -0.74196999 0.4384
-0.329505 -0.71892998 0.45332001
-0.253395 -0.73496002 0.46985001
-
--0.57057499 -0.43936001 0.05637
--0.59931499 -0.38535999 -0.00934
--0.51724499 -0.39648998 -0.08125
-
--0.63135502 -0.33622002 0.29066999
--0.57746498 -0.38132 0.32298
--0.65677498 -0.28486 0.31427999
-
-0.068865 0.56655998 -0.20183001
-0.075975 0.58987 -0.22885
-0.069325 0.57973999 -0.17223
-
-0.222605 -0.71620003 -0.04485
-0.141325 -0.71446999 0.04894
-0.18418501 -0.71306999 -0.11163
-
-0.272735 -0.75711998 -0.10985
-0.19929501 -0.75515999 -0.14499
-0.269445 -0.75794998 -0.18476999
-
-0.182815 -0.75714996 0.16868999
-0.169515 -0.73176003 0.21563999
-0.141225 -0.72126999 0.18233999
-
--0.60681499 -0.05331 0.35605999
--0.58873501 -0.02668 0.38175999
--0.64516502 -0.00556 0.3159
-
--0.54197498 0.03751 0.51964001
--0.60431499 0.04708 0.51540001
--0.603685 0.00224 0.46230999
-
--0.603685 0.00224 0.46230999
--0.627995 0.04726 0.49209
--0.648545 0.03328 0.48077
-
--0.307395 -0.74459 0.46473999
--0.257085 -0.75538002 0.41583
--0.232635 -0.74156998 0.44324001
-
-0.214865 -0.76049004 0.08706
-0.17213499 -0.75156998 0.0888
-0.21626499 -0.75853996 0.0299
-
-0.307255 -0.75317001 0.29917999
-0.22463499 -0.75526001 0.22989
-0.273465 -0.75255997 0.21926001
-
--0.63462502 -0.37513 0.05758
--0.56052502 -0.45873001 0.12908
--0.63988499 -0.38061001 0.17080999
-
-0.35073502 -0.73208 -0.14142
-0.39260502 -0.67114998 -0.11193
-0.369995 -0.75161003 -0.02044
-
--0.603685 0.00224 0.46230999
--0.547775 -0.01096 0.39499001
--0.527495 0.03341 0.50833
-
--0.60431499 0.04708 0.51540001
--0.627995 0.04726 0.49209
--0.603685 0.00224 0.46230999
-
-0.023935 -0.75346001 0.45659
-0.134945 -0.75379997 0.42655998
--0.013045 -0.75356003 0.46638
-
--0.41275501 -0.52455002 0.07158
--0.510555 -0.49130001 0.09622
--0.48772499 -0.47484001 -0.01301
-
--0.547775 -0.01096 0.39499001
--0.49119499 0.00697 0.39306
--0.527495 0.03341 0.50833
-
--0.57050499 -0.03053 0.38844002
--0.547775 -0.01096 0.39499001
--0.58873501 -0.02668 0.38175999
-
--0.573535 -0.42264999 0.23674
--0.499585 -0.45534 0.28041
--0.57746498 -0.38132 0.32298
-
--0.60170502 0.42654999 -0.05351
--0.62411499 0.60556 -0.39534
--0.61443501 0.52313 -0.27403999
-
-0.37679501 -0.75690002 0.04199
-0.33116501 -0.74032997 0.055
-0.275065 -0.74995003 0.05247
-
--0.54935501 -0.75695999 0.01981
--0.547785 -0.71860001 0.02244
--0.52946499 -0.75737999 -0.02987
-
--0.56019501 -0.74653 0.0799
--0.555005 -0.74924004 0.06549
--0.54935501 -0.75695999 0.01981
-
-0.37679501 -0.75690002 0.04199
-0.37226501 -0.75335999 0.0004
-0.51719501 -0.72348999 0.03903
-
--0.56052502 -0.45873001 0.12908
--0.57057499 -0.43936001 0.05637
--0.510555 -0.49130001 0.09622
-
--0.57746498 -0.38132 0.32298
--0.61961498 -0.25518 0.37487
--0.65677498 -0.28486 0.31427999
-
--0.50651501 -0.10104 0.42856998
--0.436525 -0.08632 0.43841
--0.49119499 0.00697 0.39306
-
--0.603685 0.00224 0.46230999
--0.527495 0.03341 0.50833
--0.54197498 0.03751 0.51964001
-
--0.516045 0.07047 0.53485001
--0.54197498 0.03751 0.51964001
--0.527495 0.03341 0.50833
-
-0.182815 -0.75714996 0.16868999
-0.22463499 -0.75526001 0.22989
-0.169515 -0.73176003 0.21563999
-
--0.555005 -0.74924004 0.06549
--0.56031502 -0.74598999 0.02573
--0.54935501 -0.75695999 0.01981
-
-0.249445 -0.75310997 0.19672001
-0.26935499 -0.75383003 0.20142
-0.273465 -0.75255997 0.21926001
-
--0.54197498 0.03751 0.51964001
--0.58654499 0.0687 0.53747002
--0.60431499 0.04708 0.51540001
-
--0.58654499 0.0687 0.53747002
--0.59962502 0.11646 0.54145
--0.677295 0.16986 0.51804001
-
-0.247805 -0.73291 -0.06195
-0.28172501 -0.75823997 -0.05062
-0.21626499 -0.75853996 0.0299
-
--0.555005 -0.74924004 0.06549
--0.56019501 -0.74653 0.0799
--0.547785 -0.71860001 0.02244
-
-0.25369499 -0.75265999 0.37801998
-0.25821501 -0.72514999 0.35438
-0.27501499 -0.73774002 0.33299999
-
-0.231395 -0.71984001 -0.09604
-0.272735 -0.75711998 -0.10985
-0.28172501 -0.75823997 -0.05062
-
--0.499095 -0.76375999 -0.05418
--0.47702499 -0.74514 -0.06318
--0.47280499 -0.76528 -0.06571
-
--0.53317501 -0.47806999 0.18746
--0.56052502 -0.45873001 0.12908
--0.52072498 -0.48604 0.17909
-
-0.51838501 -0.73889 0.11006
-0.558475 -0.70769997 0.03611
-0.59101501 -0.70407997 0.1113
-
--0.462365 -0.76483002 -0.06405
--0.499095 -0.76375999 -0.05418
--0.47280499 -0.76528 -0.06571
-
--0.555005 -0.74924004 0.06549
--0.547785 -0.71860001 0.02244
--0.56031502 -0.74598999 0.02573
-
--0.57050499 -0.03053 0.38844002
--0.57303501 -0.09277 0.39316002
--0.49119499 0.00697 0.39306
-
--0.56052502 -0.45873001 0.12908
--0.510555 -0.49130001 0.09622
--0.52072498 -0.48604 0.17909
-
--0.126875 -0.71792 0.35866001
--0.141445 -0.71961998 0.33926998
-0.034255 -0.70801003 0.40098999
-
-0.19929501 -0.75515999 -0.14499
-0.272735 -0.75711998 -0.10985
-0.231395 -0.71984001 -0.09604
-
-0.204165 -0.70615997 0.36240002
-0.16710501 -0.70596001 0.37262001
-0.145855 -0.70772003 0.36983002
-
--0.275595 -0.76456001 -0.06335
--0.38783501 -0.76627998 0.13294
--0.499095 -0.76375999 -0.05418
-
--0.45211498 -0.74226997 0.21997999
--0.45942501 -0.75005997 0.21047001
--0.457565 -0.75337997 0.23136999
-
--0.39643501 -0.51195999 -0.00889
--0.40209499 -0.53867001 0.05158
--0.41327499 -0.49464001 -0.01295
-
--0.40209499 -0.53867001 0.05158
--0.41275501 -0.52455002 0.07158
--0.41327499 -0.49464001 -0.01295
-
--0.41327499 -0.49464001 -0.01295
--0.41275501 -0.52455002 0.07158
--0.48772499 -0.47484001 -0.01301
-
--0.52077499 -0.38400002 0.37219002
--0.57746498 -0.38132 0.32298
--0.47914501 -0.41923 0.35875
-
--0.52077499 -0.38400002 0.37219002
--0.54116501 -0.33391998 0.39556
--0.57746498 -0.38132 0.32298
-
-0.242435 -0.69941002 0.47040001
-0.253305 -0.66041 0.46727001
-0.153435 -0.64473 0.48566002
-
--0.25963499 -0.76286003 0.28113001
--0.238545 -0.76138 0.28424
--0.33710499 -0.76268997 0.2824
-
--0.43560501 -0.76556 -0.07625
--0.39801498 -0.76503998 -0.08748
--0.35171501 -0.76720001 -0.03957
-
--0.56019501 -0.74653 0.0799
--0.54935501 -0.75695999 0.01981
--0.51762501 -0.76198997 0.10242
-
--0.510555 -0.49130001 0.09622
--0.40885502 -0.52321999 0.18152
--0.52072498 -0.48604 0.17909
-
--0.510555 -0.49130001 0.09622
--0.41275501 -0.52455002 0.07158
--0.40885502 -0.52321999 0.18152
-
--0.65677498 -0.28486 0.31427999
--0.67350502 -0.31801001 0.21348
--0.63135502 -0.33622002 0.29066999
-
--0.16275499 -0.66514 0.49737
--0.21126499 -0.66814003 0.43307999
--0.222955 -0.69486 0.43347
-
--0.154315 -0.75793999 0.40488998
--0.149955 -0.75657997 0.42223999
--0.163815 -0.75672997 0.40183998
-
-0.51838501 -0.73889 0.11006
-0.43240501 -0.75309998 0.17931999
-0.37679501 -0.75690002 0.04199
-
--0.44606499 -0.76600998 -0.07796
--0.43560501 -0.76556 -0.07625
--0.462365 -0.76483002 -0.06405
-
--0.52077499 -0.38400002 0.37219002
--0.47914501 -0.41923 0.35875
--0.437295 -0.37362999 0.41646999
-
-0.268925 -0.75015999 0.45092999
--0.088955 -0.75287003 0.51883999
--0.013045 -0.75356003 0.46638
-
--0.379445 -0.76219002 -0.10469
--0.420145 -0.75016998 -0.08755
--0.36254501 -0.75091003 -0.10707
-
--0.39801498 -0.76503998 -0.08748
--0.43560501 -0.76556 -0.07625
--0.418405 -0.76513 -0.09148
-
--0.54116501 -0.33391998 0.39556
--0.52077499 -0.38400002 0.37219002
--0.50455502 -0.31641001 0.42362999
-
-0.18418501 -0.71306999 -0.11163
--0.031635 -0.71653999 -0.15134
-0.19929501 -0.75515999 -0.14499
-
-0.134945 -0.75379997 0.42655998
-0.268925 -0.75015999 0.45092999
--0.013045 -0.75356003 0.46638
-
-0.27501499 -0.73774002 0.33299999
-0.250725 -0.71367996 0.32457001
-0.249485 -0.73458 0.28882999
-
--0.379445 -0.76219002 -0.10469
--0.39801498 -0.76503998 -0.08748
--0.420145 -0.75016998 -0.08755
-
--0.39801498 -0.76503998 -0.08748
--0.418405 -0.76513 -0.09148
--0.420145 -0.75016998 -0.08755
-
--0.52077499 -0.38400002 0.37219002
--0.437295 -0.37362999 0.41646999
--0.50455502 -0.31641001 0.42362999
-
--0.48884499 0.70297997 -0.56327
--0.457075 0.67668999 -0.58800999
--0.47459499 0.69324997 -0.58602001
-
-0.204165 -0.70615997 0.36240002
-0.250725 -0.71367996 0.32457001
-0.245315 -0.71125 0.33931999
-
--0.40862499 -0.51027 0.23212
--0.403395 -0.47771 0.30250999
--0.499585 -0.45534 0.28041
-
--0.499585 -0.45534 0.28041
--0.403395 -0.47771 0.30250999
--0.47914501 -0.41923 0.35875
-
-0.473535 -0.68335999 0.30688
-0.544925 -0.67612 0.29681999
-0.49892502 -0.66067001 0.30966
-
-0.63936501 -0.64530998 0.26995001
-0.57144501 -0.70275002 0.21681
-0.68346497 -0.63983002 0.21789
-
-0.37679501 -0.75690002 0.04199
-0.34848499 -0.74596001 0.06365
-0.33116501 -0.74032997 0.055
-
--0.403615 -0.76533997 0.20007999
--0.51126499 -0.75096001 0.14734
--0.51762501 -0.76198997 0.10242
-
--0.41275501 -0.52455002 0.07158
--0.38878502 -0.53153 0.12594
--0.40885502 -0.52321999 0.18152
-
--0.50172501 -0.31013 0.42847
--0.54116501 -0.33391998 0.39556
--0.50455502 -0.31641001 0.42362999
-
--0.437295 -0.37362999 0.41646999
--0.54116501 -0.33391998 0.39556
--0.50172501 -0.31013 0.42847
-
-0.250725 -0.71367996 0.32457001
-0.204165 -0.70615997 0.36240002
-0.145855 -0.70772003 0.36983002
-
--0.34996498 -0.76412003 -0.09704
--0.39801498 -0.76503998 -0.08748
--0.379445 -0.76219002 -0.10469
-
--0.39801498 -0.76503998 -0.08748
--0.33272499 -0.76374001 -0.11234
--0.35171501 -0.76720001 -0.03957
-
--0.52072498 -0.48604 0.17909
--0.499585 -0.45534 0.28041
--0.53317501 -0.47806999 0.18746
-
--0.51212502 -0.2273 0.45049999
--0.61961498 -0.25518 0.37487
--0.54116501 -0.33391998 0.39556
-
-0.28172501 -0.75823997 -0.05062
-0.32443501 -0.74949997 -0.15917
-0.369995 -0.75161003 -0.02044
-
--0.39801498 -0.76503998 -0.08748
--0.34996498 -0.76412003 -0.09704
--0.33272499 -0.76374001 -0.11234
-
--0.33272499 -0.76374001 -0.11234
--0.34996498 -0.76412003 -0.09704
--0.36254501 -0.75091003 -0.10707
-
--0.34996498 -0.76412003 -0.09704
--0.379445 -0.76219002 -0.10469
--0.36254501 -0.75091003 -0.10707
-
--0.403615 -0.76533997 0.20007999
--0.45942501 -0.75005997 0.21047001
--0.51126499 -0.75096001 0.14734
-
--0.244305 -0.76299004 -0.00343
--0.252265 -0.76543999 0.06978
--0.31338499 -0.75958 0.08819
-
--0.43739498 0.45532001 0.06203
--0.35580502 0.52299 0.06101
--0.247845 0.62541 -0.03466
-
--0.158775 -0.70517998 0.52299
--0.16275499 -0.66514 0.49737
--0.222955 -0.69486 0.43347
-
--0.499585 -0.45534 0.28041
--0.573535 -0.42264999 0.23674
--0.53317501 -0.47806999 0.18746
-
-0.43405499 -0.71273003 0.30693001
-0.390485 -0.69848 0.41848
-0.34790501 -0.74143997 0.42344002
-
--0.33272499 -0.76374001 -0.11234
--0.36254501 -0.75091003 -0.10707
--0.31717501 -0.73977997 -0.10929
-
--0.40862499 -0.51027 0.23212
--0.499585 -0.45534 0.28041
--0.52072498 -0.48604 0.17909
-
--0.57746498 -0.38132 0.32298
--0.499585 -0.45534 0.28041
--0.47914501 -0.41923 0.35875
-
--0.457565 -0.75337997 0.23136999
--0.47864498 -0.74934998 0.25862
--0.45211498 -0.74226997 0.21997999
-
-0.141225 -0.72126999 0.18233999
-0.169515 -0.73176003 0.21563999
-0.18217501 -0.72101997 0.24479
-
--0.75503502 0.05844 0.12856
--0.75351501 0.04522 0.14867
--0.77178497 0.08616 0.18837
-
--0.403395 -0.47771 0.30250999
--0.37079498 -0.49140999 0.28962999
--0.35775501 -0.44438 0.37122002
-
--0.249135 -0.76183998 -0.26459
--0.25644501 -0.76240997 -0.24681999
--0.264615 -0.75880997 -0.25176001
-
--0.264615 -0.75880997 -0.25176001
--0.25644501 -0.76240997 -0.24681999
--0.271465 -0.75859001 -0.23466
-
--0.45942501 -0.75005997 0.21047001
--0.403615 -0.76533997 0.20007999
--0.457565 -0.75337997 0.23136999
-
--0.50058498 -0.72952003 0.32737999
--0.47838501 -0.72314003 0.26280001
--0.47864498 -0.74934998 0.25862
-
--0.74582497 0.34598999 0.25691
--0.74152496 0.38702 0.23667
--0.74042503 0.40042999 0.17667999
-
--0.40862499 -0.51027 0.23212
--0.52072498 -0.48604 0.17909
--0.40885502 -0.52321999 0.18152
-
--0.34414501 -0.48889999 0.33360001
--0.34850498 -0.42101002 0.38814999
--0.35775501 -0.44438 0.37122002
-
--0.249135 -0.76183998 -0.26459
--0.23188499 -0.76166 -0.28009001
--0.176455 -0.76629997 -0.28367001
-
--0.25644501 -0.76240997 -0.24681999
--0.249135 -0.76183998 -0.26459
--0.271465 -0.75859001 -0.23466
-
--0.249135 -0.76183998 -0.26459
--0.285585 -0.75900002 -0.19978001
--0.271465 -0.75859001 -0.23466
-
--0.230425 -0.75021004 -0.08579
--0.275595 -0.76456001 -0.06335
--0.19269501 -0.75025002 -0.15227
-
--0.45830502 -0.75790001 0.34023998
--0.47864498 -0.74934998 0.25862
--0.457565 -0.75337997 0.23136999
-
--0.49865501 -0.72585999 0.36729
--0.50058498 -0.72952003 0.32737999
--0.49940498 -0.74658997 0.33923
-
--0.55800499 0.38182999 -0.29503
--0.57997501 0.39771 -0.2633
--0.57806499 0.41137001 -0.27343
-
-0.17213499 -0.75156998 0.0888
-0.214865 -0.76049004 0.08706
-0.217575 -0.76156998 0.10704
-
--0.38783501 -0.76627998 0.13294
--0.35726501 -0.76607002 0.13902
--0.37178501 -0.76844002 0.17385
-
--0.437295 -0.37362999 0.41646999
--0.34850498 -0.42101002 0.38814999
--0.306675 -0.36883999 0.43159
-
-0.018465 -0.70608002 0.41395
--0.096785 -0.71277 0.39598999
-0.034255 -0.70801003 0.40098999
-
--0.31505501 -0.76257004 -0.12831
--0.20019501 -0.76468002 -0.19624001
--0.275595 -0.76456001 -0.06335
-
--0.31505501 -0.76257004 -0.12831
--0.285585 -0.75900002 -0.19978001
--0.20019501 -0.76468002 -0.19624001
-
--0.33272499 -0.76374001 -0.11234
--0.31505501 -0.76257004 -0.12831
--0.275595 -0.76456001 -0.06335
-
--0.462365 -0.76483002 -0.06405
--0.275595 -0.76456001 -0.06335
--0.499095 -0.76375999 -0.05418
-
--0.56019501 -0.74653 0.0799
--0.54181499 -0.69334 0.08588
--0.547785 -0.71860001 0.02244
-
--0.204825 -0.74662003 0.45456001
--0.257085 -0.75538002 0.41583
--0.17994499 -0.75432999 0.36115002
-
--0.403615 -0.76533997 0.20007999
--0.38783501 -0.76627998 0.13294
--0.37178501 -0.76844002 0.17385
-
--0.47779499 -0.74220001 0.42571999
--0.49865501 -0.72585999 0.36729
--0.49940498 -0.74658997 0.33923
-
--0.403395 -0.47771 0.30250999
--0.35775501 -0.44438 0.37122002
--0.47914501 -0.41923 0.35875
-
--0.437295 -0.37362999 0.41646999
--0.35775501 -0.44438 0.37122002
--0.34850498 -0.42101002 0.38814999
-
--0.43411499 -0.75475998 0.44608002
--0.47779499 -0.74220001 0.42571999
--0.49940498 -0.74658997 0.33923
-
--0.031635 -0.71653999 -0.15134
--0.124075 -0.75598 -0.18927
-0.19929501 -0.75515999 -0.14499
-
--0.176455 -0.76629997 -0.28367001
--0.23188499 -0.76166 -0.28009001
--0.20123501 -0.75469002 -0.29017
-
--0.462365 -0.76483002 -0.06405
--0.35171501 -0.76720001 -0.03957
--0.275595 -0.76456001 -0.06335
-
--0.33328499 -0.75277 0.11401
--0.35726501 -0.76607002 0.13902
--0.38783501 -0.76627998 0.13294
-
--0.50564499 -0.26843 0.44533001
--0.54116501 -0.33391998 0.39556
--0.437295 -0.37362999 0.41646999
-
--0.70310501 0.07475 0.49027
--0.74907501 0.12734 0.44921001
--0.754655 0.10016 0.44153999
-
--0.275595 -0.76456001 -0.06335
--0.35171501 -0.76720001 -0.03957
--0.33272499 -0.76374001 -0.11234
-
--0.244305 -0.76299004 -0.00343
--0.31338499 -0.75958 0.08819
--0.38783501 -0.76627998 0.13294
-
--0.31338499 -0.75958 0.08819
--0.33328499 -0.75277 0.11401
--0.38783501 -0.76627998 0.13294
-
--0.31338499 -0.75958 0.08819
--0.317565 -0.74244003 0.10792
--0.33328499 -0.75277 0.11401
-
--0.37656502 -0.29565001 0.46369999
--0.437295 -0.37362999 0.41646999
--0.306675 -0.36883999 0.43159
-
--0.34414501 -0.48889999 0.33360001
--0.35775501 -0.44438 0.37122002
--0.37079498 -0.49140999 0.28962999
-
-0.011285 -0.76453003 -0.22976
-0.102645 -0.75471001 -0.22798
-0.269445 -0.75794998 -0.18476999
-
--0.249135 -0.76183998 -0.26459
--0.176455 -0.76629997 -0.28367001
--0.20019501 -0.76468002 -0.19624001
-
--0.285585 -0.75900002 -0.19978001
--0.249135 -0.76183998 -0.26459
--0.20019501 -0.76468002 -0.19624001
-
--0.462365 -0.76483002 -0.06405
--0.43560501 -0.76556 -0.07625
--0.35171501 -0.76720001 -0.03957
-
--0.272745 -0.45799 0.41743
--0.306675 -0.36883999 0.43159
--0.34850498 -0.42101002 0.38814999
-
--0.707295 0.05002 0.47198002
--0.754655 0.10016 0.44153999
--0.756325 0.07345 0.41839001
-
--0.244305 -0.76299004 -0.00343
--0.275595 -0.76456001 -0.06335
--0.25025499 -0.76152 -0.04266
-
--0.38783501 -0.76627998 0.13294
--0.51762501 -0.76198997 0.10242
--0.499095 -0.76375999 -0.05418
-
--0.302635 -0.74605003 0.09617
--0.317565 -0.74244003 0.10792
--0.31338499 -0.75958 0.08819
-
--0.403615 -0.76533997 0.20007999
--0.37178501 -0.76844002 0.17385
--0.457565 -0.75337997 0.23136999
-
--0.45830502 -0.75790001 0.34023998
--0.49940498 -0.74658997 0.33923
--0.47864498 -0.74934998 0.25862
-
-0.39172501 -0.75321999 0.22577
-0.46587502 -0.74139 0.21201
-0.40481499 -0.73542999 0.28509001
-
--0.230425 -0.75021004 -0.08579
--0.25025499 -0.76152 -0.04266
--0.275595 -0.76456001 -0.06335
-
--0.19269501 -0.75025002 -0.15227
--0.20012501 -0.73857002 -0.12739
--0.230425 -0.75021004 -0.08579
-
--0.230425 -0.75021004 -0.08579
--0.228295 -0.73980003 -0.05803
--0.25025499 -0.76152 -0.04266
-
--0.20019501 -0.76468002 -0.19624001
--0.19269501 -0.75025002 -0.15227
--0.275595 -0.76456001 -0.06335
-
--0.43411499 -0.75475998 0.44608002
--0.49940498 -0.74658997 0.33923
--0.45830502 -0.75790001 0.34023998
-
--0.34414501 -0.48889999 0.33360001
--0.272745 -0.45799 0.41743
--0.34850498 -0.42101002 0.38814999
-
-0.141325 -0.71446999 0.04894
--0.031635 -0.71653999 -0.15134
-0.18418501 -0.71306999 -0.11163
-
--0.20019501 -0.76468002 -0.19624001
--0.126185 -0.73445999 -0.17226
--0.19269501 -0.75025002 -0.15227
-
--0.244305 -0.76299004 -0.00343
--0.21838499 -0.76528 0.04031
--0.252265 -0.76543999 0.06978
-
-0.34330502 -0.75508003 0.23577999
-0.35800499 -0.74028 0.20723
-0.37518501 -0.73981003 0.19209999
-
-0.268925 -0.75015999 0.45092999
-0.145115 -0.74193001 0.48983002
--0.088955 -0.75287003 0.51883999
-
--0.437295 -0.37362999 0.41646999
--0.47914501 -0.41923 0.35875
--0.35775501 -0.44438 0.37122002
-
--0.19269501 -0.75025002 -0.15227
--0.157735 -0.71690002 -0.13885
--0.20012501 -0.73857002 -0.12739
-
--0.212265 -0.71635002 -0.05771
--0.20012501 -0.73857002 -0.12739
--0.157735 -0.71690002 -0.13885
-
--0.212265 -0.71635002 -0.05771
--0.228295 -0.73980003 -0.05803
--0.230425 -0.75021004 -0.08579
-
--0.21838499 -0.76528 0.04031
--0.20473499 -0.76521004 0.06109
--0.252265 -0.76543999 0.06978
-
--0.302635 -0.74605003 0.09617
--0.252265 -0.76543999 0.06978
--0.23188499 -0.74691002 0.11138
-
-0.18217501 -0.72101997 0.24479
-0.250725 -0.71367996 0.32457001
-0.145855 -0.70772003 0.36983002
-
--0.20019501 -0.76468002 -0.19624001
--0.124075 -0.75598 -0.18927
--0.126185 -0.73445999 -0.17226
-
--0.212265 -0.71635002 -0.05771
--0.230425 -0.75021004 -0.08579
--0.20012501 -0.73857002 -0.12739
-
--0.23126499 -0.75763 -0.00567
--0.23070499 -0.76289001 0.01753
--0.244305 -0.76299004 -0.00343
-
--0.341875 -0.76486 0.26566999
--0.33710499 -0.76268997 0.2824
--0.35217499 -0.76522003 0.26378
-
--0.43411499 -0.75475998 0.44608002
--0.257085 -0.75538002 0.41583
--0.307395 -0.74459 0.46473999
-
--0.42102501 -0.74413002 0.47407001
--0.40310501 -0.70723999 0.48404999
--0.44044498 -0.72050003 0.46478001
-
-0.18217501 -0.72101997 0.24479
-0.22463499 -0.75526001 0.22989
-0.249485 -0.73458 0.28882999
-
-0.222605 -0.71620003 -0.04485
-0.21626499 -0.75853996 0.0299
-0.141325 -0.71446999 0.04894
-
--0.18956499 -0.71819 -0.03302
--0.199555 -0.71782997 -0.03538
--0.204055 -0.71999001 -0.05273
-
--0.21838499 -0.76528 0.04031
--0.244305 -0.76299004 -0.00343
--0.23070499 -0.76289001 0.01753
-
--0.21987499 -0.76162003 0.01856
--0.21838499 -0.76528 0.04031
--0.23070499 -0.76289001 0.01753
-
--0.457565 -0.75337997 0.23136999
--0.37178501 -0.76844002 0.17385
--0.35217499 -0.76522003 0.26378
-
--0.33710499 -0.76268997 0.2824
--0.286705 -0.76327003 0.29353001
--0.25963499 -0.76286003 0.28113001
-
--0.126185 -0.73445999 -0.17226
--0.157735 -0.71690002 -0.13885
--0.19269501 -0.75025002 -0.15227
-
--0.18640499 -0.71848999 -0.01372
--0.18956499 -0.71819 -0.03302
--0.204055 -0.71999001 -0.05273
-
--0.42102501 -0.74413002 0.47407001
--0.47779499 -0.74220001 0.42571999
--0.43411499 -0.75475998 0.44608002
-
--0.43411499 -0.75475998 0.44608002
--0.45830502 -0.75790001 0.34023998
--0.33710499 -0.76268997 0.2824
-
--0.37914501 -0.74181999 0.48116001
--0.42102501 -0.74413002 0.47407001
--0.43411499 -0.75475998 0.44608002
-
-0.250725 -0.71367996 0.32457001
-0.18217501 -0.72101997 0.24479
-0.249485 -0.73458 0.28882999
-
-0.282605 -0.72681999 -0.21195999
-0.302465 -0.72740997 -0.204
-0.269445 -0.75794998 -0.18476999
-
--0.124075 -0.75598 -0.18927
--0.031635 -0.71653999 -0.15134
--0.126185 -0.73445999 -0.17226
-
--0.21838499 -0.76528 0.04031
--0.207995 -0.76482002 0.04198
--0.20473499 -0.76521004 0.06109
-
--0.302635 -0.74605003 0.09617
--0.31338499 -0.75958 0.08819
--0.252265 -0.76543999 0.06978
-
--0.35217499 -0.76522003 0.26378
--0.33710499 -0.76268997 0.2824
--0.45830502 -0.75790001 0.34023998
-
--0.37914501 -0.74181999 0.48116001
--0.40310501 -0.70723999 0.48404999
--0.42102501 -0.74413002 0.47407001
-
--0.20019501 -0.76468002 -0.19624001
--0.176455 -0.76629997 -0.28367001
-0.011285 -0.76453003 -0.22976
-
-0.369995 -0.75161003 -0.02044
-0.39260502 -0.67114998 -0.11193
-0.40176498 -0.71222 -0.03167
-
-0.473535 -0.68335999 0.30688
-0.40481499 -0.73542999 0.28509001
-0.544925 -0.67612 0.29681999
-
--0.031635 -0.71653999 -0.15134
--0.098815 -0.71488998 -0.14756
--0.126185 -0.73445999 -0.17226
-
--0.152335 -0.71831001 0.01116
--0.176385 -0.71885002 -0.01135
--0.18640499 -0.71848999 -0.01372
-
-0.44266499 -0.61000999 0.39195
-0.367225 -0.65199997 0.44060001
-0.390485 -0.69848 0.41848
-
-0.136425 -0.71731003 0.08693
--0.113155 -0.72134003 0.07626
-0.141325 -0.71446999 0.04894
-
-0.023935 -0.75346001 0.45659
--0.013045 -0.75356003 0.46638
-0.003695 -0.75341003 0.45222
-
-0.21626499 -0.75853996 0.0299
-0.37679501 -0.75690002 0.04199
-0.275065 -0.74995003 0.05247
-
--0.124075 -0.75598 -0.18927
--0.20019501 -0.76468002 -0.19624001
-0.011285 -0.76453003 -0.22976
-
--0.098815 -0.71488998 -0.14756
--0.157735 -0.71690002 -0.13885
--0.126185 -0.73445999 -0.17226
-
--0.152335 -0.71831001 0.01116
--0.18640499 -0.71848999 -0.01372
--0.204055 -0.71999001 -0.05273
-
--0.119005 -0.73551003 0.54847
--0.158775 -0.70517998 0.52299
--0.167295 -0.74737 0.49738998
-
--0.097395 -0.72411003 0.17242001
-0.141225 -0.72126999 0.18233999
-0.034255 -0.70801003 0.40098999
-
--0.152335 -0.71831001 0.01116
--0.17276501 -0.71839996 0.00712
--0.176385 -0.71885002 -0.01135
-
--0.18067499 -0.76468002 0.08361
--0.20473499 -0.76521004 0.06109
--0.183915 -0.76429001 0.06451
-
-0.57481499 -0.63938 0.32445999
-0.544925 -0.67612 0.29681999
-0.63936501 -0.64530998 0.26995001
-
-0.247805 -0.73291 -0.06195
-0.21626499 -0.75853996 0.0299
-0.222605 -0.71620003 -0.04485
-
--0.166565 -0.76378998 0.10376
--0.20473499 -0.76521004 0.06109
--0.18067499 -0.76468002 0.08361
-
--0.35217499 -0.76522003 0.26378
--0.45830502 -0.75790001 0.34023998
--0.457565 -0.75337997 0.23136999
-
--0.67350502 -0.31801001 0.21348
--0.67019501 -0.33046001 0.17235001
--0.63988499 -0.38061001 0.17080999
-
-0.136425 -0.71731003 0.08693
-0.141225 -0.72126999 0.18233999
--0.113155 -0.72134003 0.07626
-
--0.088955 -0.75287003 0.51883999
--0.124945 -0.75449997 0.44332001
--0.013045 -0.75356003 0.46638
-
--0.043565 -0.73834 0.55035999
--0.107665 -0.74504997 0.54255001
--0.088955 -0.75287003 0.51883999
-
--0.16981501 -0.76339996 0.08462
--0.166565 -0.76378998 0.10376
--0.18067499 -0.76468002 0.08361
-
--0.18321501 -0.75733002 0.1487
--0.215165 -0.74110001 0.12757
--0.23188499 -0.74691002 0.11138
-
--0.37914501 -0.74181999 0.48116001
--0.43411499 -0.75475998 0.44608002
--0.307395 -0.74459 0.46473999
-
-0.247805 -0.73291 -0.06195
-0.231395 -0.71984001 -0.09604
-0.28172501 -0.75823997 -0.05062
-
-0.182815 -0.75714996 0.16868999
-0.227675 -0.76184998 0.16388
-0.23355499 -0.75731003 0.17916
-
--0.096785 -0.71277 0.39598999
--0.100605 -0.71330002 0.37792
--0.126875 -0.71792 0.35866001
-
--0.212265 -0.71635002 -0.05771
--0.157735 -0.71690002 -0.13885
--0.098815 -0.71488998 -0.14756
-
--0.139575 -0.71986 0.03333
--0.149585 -0.71949997 0.03095
--0.152335 -0.71831001 0.01116
-
--0.18321501 -0.75733002 0.1487
--0.20473499 -0.76521004 0.06109
--0.166565 -0.76378998 0.10376
-
--0.252265 -0.76543999 0.06978
--0.18321501 -0.75733002 0.1487
--0.23188499 -0.74691002 0.11138
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/main.cpp b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/main.cpp
deleted file mode 100644
index 816f1881..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/main.cpp
+++ /dev/null
@@ -1,372 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <math.h>
-#include <GL/glut.h>
-#include "PQP.h"
-#include "model.h"
-#include "MatVec.h"
-
-PQP_Model bunny, torus;
-Model *bunny_to_draw, *torus_to_draw;
-
-int mode;
-double beginx, beginy;
-double dis = 10.0, azim = 0.0, elev = 0.0;
-double ddis = 0.0, dazim = 0.0, delev = 0.0;
-double rot1 = 0.0, rot2 = 0.0, rot3 = 0.0;
-int animate = 0;
-
-void
-InitViewerWindow()
-{
-  GLfloat Ambient[] = { 0.2f, 0.2f, 0.2f, 1.0f };  
-  GLfloat Diffuse[] = { 0.8f, 0.8f, 0.8f, 1.0f };  
-  GLfloat Specular[] = { 0.2f, 0.2f, 0.2f, 1.0f };   
-  GLfloat SpecularExp[] = { 50 };              
-  GLfloat Emission[] = { 0.1f, 0.1f, 0.1f, 1.0f };
-
-  glMaterialfv(GL_FRONT, GL_AMBIENT, Ambient);
-  glMaterialfv(GL_FRONT, GL_DIFFUSE, Diffuse);
-  glMaterialfv(GL_FRONT, GL_SPECULAR, Specular);
-  glMaterialfv(GL_FRONT, GL_SHININESS, SpecularExp);
-  glMaterialfv(GL_FRONT, GL_EMISSION, Emission);
-
-  glMaterialfv(GL_BACK, GL_AMBIENT, Ambient);
-  glMaterialfv(GL_BACK, GL_DIFFUSE, Diffuse);
-  glMaterialfv(GL_BACK, GL_SPECULAR, Specular);
-  glMaterialfv(GL_BACK, GL_SHININESS, SpecularExp);
-  glMaterialfv(GL_BACK, GL_EMISSION, Emission);
-
-  glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE);
-	
-  glEnable(GL_COLOR_MATERIAL);
-
-  GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
-  glLightfv(GL_LIGHT0, GL_POSITION, light_position);
-  glEnable(GL_LIGHT0);
-  glEnable(GL_LIGHTING);
-  glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
-
-  glDepthFunc(GL_LEQUAL);
-  glEnable(GL_DEPTH_TEST);
-
-  glShadeModel(GL_FLAT);
-  glClearColor(0.0, 0.0, 0.0, 0.0);
-
-  glEnable(GL_CULL_FACE);
-  glCullFace(GL_BACK);
-  glEnable(GL_NORMALIZE);
-
-  glMatrixMode(GL_PROJECTION);
-  glLoadIdentity();
-  glFrustum(-0.004,0.004,-0.004,0.004,.01,100.0);
-
-  glMatrixMode(GL_MODELVIEW);
-}
-
-void 
-KeyboardCB(unsigned char key, int x, int y) 
-{
-  switch(key) 
-  {
-  case 'q': delete bunny_to_draw; delete torus_to_draw; exit(0); 
-  default: animate = 1 - animate;
-  }
-
-  glutPostRedisplay();
-}
-
-void
-MouseCB(int _b, int _s, int _x, int _y)
-{
-  if (_s == GLUT_UP)
-  {
-    dis += ddis;
-    azim += dazim;
-    elev += delev;
-    ddis = 0.0;
-    dazim = 0.0;
-    delev = 0.0;
-    return;
-  }
-
-  if (_b == GLUT_RIGHT_BUTTON)
-  {
-    mode = 0;
-    beginy = _y;
-    return;
-  }
-  else
-  {
-    mode = 1;
-    beginx = _x;
-    beginy = _y;
-  }
-}
-
-void
-MotionCB(int _x, int _y)
-{
-  if (mode == 0)
-  {
-    ddis = dis * (_y - beginy)/200.0;
-  }
-  else
-  {
-    dazim = (_x - beginx)/5.0;
-    delev = (_y - beginy)/5.0;      
-  }
-  
-  glutPostRedisplay();
-}
-
-inline void glVertex3v(float V[3]) { glVertex3fv(V); }
-inline void glVertex3v(double V[3]) { glVertex3dv(V); }
-
-void
-BeginDraw()
-{
-  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
-
-  glLoadIdentity();  
-  glTranslatef(0.0, 0.0, -(dis+ddis));
-  glRotated(elev+delev, 1.0, 0.0, 0.0);
-  glRotated(azim+dazim, 0.0, 1.0, 0.0);
-}
-
-void
-EndDraw()
-{
-  glFlush();
-  glutSwapBuffers();
-}
-
-void
-IdleCB() 
-{
-  glutPostRedisplay();
-}
-
-void
-DisplayCB()
-{
-  BeginDraw();
-
-  // set up model transformations
-
-  if (animate) 
-  {
-    rot1 += .1;
-    rot2 += .2;
-    rot3 += .3;
-  }
-
-  PQP_REAL R1[3][3],R2[3][3],T1[3],T2[3];
-  PQP_REAL M1[3][3],M2[3][3],M3[3][3];
-
-  T1[0] = -1;
-  T1[1] =  0.0;
-  T1[2] =  0.0;
-
-  T2[0] =  1;
-  T2[1] =  0.0;
-  T2[2] =  0.0;
-
-  MRotX(M1,rot1);
-  MRotY(M2,rot2);
-  MxM(M3,M1,M2);
-  MRotZ(M1,rot3);
-  MxM(R1,M3,M1);
-
-  MRotX(M1,rot3);
-  MRotY(M2,rot1);
-  MxM(M3,M1,M2);
-  MRotZ(M1,rot2);
-  MxM(R2,M3,M1);
-
-  // perform distance query
-
-  PQP_REAL rel_err = 0.0;
-  PQP_REAL abs_err = 0.0;
-  PQP_DistanceResult res;
-  PQP_Distance(&res,R1,T1,&bunny,R2,T2,&torus,rel_err,abs_err);
-
-  // draw the models
-
-  glColor3d(0.0,0.0,1.0);
-  double oglm[16];
-  MVtoOGL(oglm,R1,T1);
-  glPushMatrix();
-  glMultMatrixd(oglm);
-  bunny_to_draw->Draw();
-  glPopMatrix();
-
-  glColor3d(0.0,1.0,0.0);
-  MVtoOGL(oglm,R2,T2);
-  glPushMatrix();
-  glMultMatrixd(oglm);
-  torus_to_draw->Draw();
-  glPopMatrix();
-
-  // draw the closest points as small spheres
-
-  glColor3d(1.0,0.0,0.0);
-
-  PQP_REAL P1[3],P2[3],V1[3],V2[3];
-  VcV(P1,res.P1());
-  VcV(P2,res.P2());
-
-  // each point is in the space of its model;
-  // transform to world space
-
-  MxVpV(V1,R1,P1,T1);
-
-  glPushMatrix();
-  glTranslated(V1[0],V1[1],V1[2]);
-  glutSolidSphere(.05,15,15);
-  glPopMatrix();
-
-  MxVpV(V2,R2,P2,T2);
-
-  glPushMatrix();
-  glTranslated(V2[0],V2[1],V2[2]);
-  glutSolidSphere(.05,15,15);
-  glPopMatrix();
-
-  // draw the line between the closest points
-
-  glDisable(GL_LIGHTING);
-  glBegin(GL_LINES);
-  glVertex3v(V1);
-  glVertex3v(V2);
-  glEnd();
-  glEnable(GL_LIGHTING);
-
-  EndDraw();
-}
-
-void main(int argc, char **argv)
-{
-  glutInit(&argc, argv);
-  glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH | GLUT_MULTISAMPLE);
-
-  // create the window
-
-  glutCreateWindow("PQP Demo - Spinning");
-
-  // set OpenGL graphics state -- material props, perspective, etc.
-
-  InitViewerWindow();
-
-  // set the callbacks
-
-  glutDisplayFunc(DisplayCB);
-  glutIdleFunc(IdleCB);
-  glutMouseFunc(MouseCB);
-  glutMotionFunc(MotionCB);  
-  glutKeyboardFunc(KeyboardCB);
-
-  // initialize the bunny
-
-  FILE *fp;
-  int i, ntris;
-
-  bunny_to_draw = new Model("bunny.tris");
-
-  fp = fopen("bunny.tris","r");
-  if (fp == NULL) { fprintf(stderr,"Couldn't open bunny.tris\n"); exit(-1); }
-  fscanf(fp,"%d",&ntris);
-
-  bunny.BeginModel();
-  for (i = 0; i < ntris; i++)
-  {
-    double p1x,p1y,p1z,p2x,p2y,p2z,p3x,p3y,p3z;
-    fscanf(fp,"%lf %lf %lf %lf %lf %lf %lf %lf %lf", 
-           &p1x,&p1y,&p1z,&p2x,&p2y,&p2z,&p3x,&p3y,&p3z);
-    PQP_REAL p1[3],p2[3],p3[3];
-    p1[0] = (PQP_REAL)p1x; p1[1] = (PQP_REAL)p1y; p1[2] = (PQP_REAL)p1z;
-    p2[0] = (PQP_REAL)p2x; p2[1] = (PQP_REAL)p2y; p2[2] = (PQP_REAL)p2z;
-    p3[0] = (PQP_REAL)p3x; p3[1] = (PQP_REAL)p3y; p3[2] = (PQP_REAL)p3z;
-    bunny.AddTri(p1,p2,p3,i);
-  }
-  bunny.EndModel();
-  fclose(fp);
-
-  // initialize the torus
-
-  torus_to_draw = new Model("torus.tris");
-
-  fp = fopen("torus.tris","r");
-  if (fp == NULL) { fprintf(stderr,"Couldn't open torus.tris\n"); exit(-1); }
-  fscanf(fp,"%d",&ntris);
-
-  torus.BeginModel();
-  for (i = 0; i < ntris; i++)
-  {
-    double p1x,p1y,p1z,p2x,p2y,p2z,p3x,p3y,p3z;
-    fscanf(fp,"%lf %lf %lf %lf %lf %lf %lf %lf %lf", 
-           &p1x,&p1y,&p1z,&p2x,&p2y,&p2z,&p3x,&p3y,&p3z);
-    PQP_REAL p1[3],p2[3],p3[3];
-    p1[0] = (PQP_REAL)p1x; p1[1] = (PQP_REAL)p1y; p1[2] = (PQP_REAL)p1z;
-    p2[0] = (PQP_REAL)p2x; p2[1] = (PQP_REAL)p2y; p2[2] = (PQP_REAL)p2z;
-    p3[0] = (PQP_REAL)p3x; p3[1] = (PQP_REAL)p3y; p3[2] = (PQP_REAL)p3z;
-    torus.AddTri(p1,p2,p3,i);
-  }
-  torus.EndModel();
-  fclose(fp);
-
-  // print instructions
-
-  printf("PQP Demo - Spinning:\n"
-         "Press 'q' to quit.\n"
-         "Press any other key to toggle animation.\n"
-         "Left-drag left & right to change angle of view.\n"
-         "Left-drag up & down to change elevation of view.\n"
-         "Right-drag up & down to change distance of view.\n");
-
-  // Enter the main loop.
-
-  glutMainLoop();
-}
-
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/model.cpp b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/model.cpp
deleted file mode 100644
index e145b31b..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/model.cpp
+++ /dev/null
@@ -1,144 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <math.h>
-#include "GL/glut.h"
-#include "model.h"
-
-inline
-void
-VmV(double Vr[3], const double V1[3], const double V2[3])
-{
-  Vr[0] = V1[0] - V2[0];
-  Vr[1] = V1[1] - V2[1];
-  Vr[2] = V1[2] - V2[2];
-}
-
-inline
-void
-VcrossV(double Vr[3], const double V1[3], const double V2[3])
-{
-  Vr[0] = V1[1]*V2[2] - V1[2]*V2[1];
-  Vr[1] = V1[2]*V2[0] - V1[0]*V2[2];
-  Vr[2] = V1[0]*V2[1] - V1[1]*V2[0];
-}
-
-inline
-void
-Vnormalize(double V[3])
-{
-  double d = 1.0 / sqrt(V[0]*V[0] + V[1]*V[1] + V[2]*V[2]);
-  V[0] *= d;
-  V[1] *= d;
-  V[2] *= d;
-}
-
-Model::Model(char *tris_file)
-{
-  FILE *fp = fopen(tris_file,"r");
-  if (fp == NULL)
-  { 
-    fprintf(stderr,"Model Constructor: Couldn't open %s\n",tris_file); 
-    exit(-1); 
-  }
-
-  fscanf(fp,"%d",&ntris);
-  tri = new ModelTri[ntris];
-
-  int i;
-
-  for (i = 0; i < ntris; i++)
-  {
-    // read the tri verts
-
-    fscanf(fp,"%lf %lf %lf %lf %lf %lf %lf %lf %lf",
-           &tri[i].p0[0], &tri[i].p0[1], &tri[i].p0[2],
-           &tri[i].p1[0], &tri[i].p1[1], &tri[i].p1[2],
-           &tri[i].p2[0], &tri[i].p2[1], &tri[i].p2[2]);
-
-    // set the normal
-
-    double a[3],b[3];
-    VmV(a,tri[i].p1,tri[i].p0);
-    VmV(b,tri[i].p2,tri[i].p0);
-    VcrossV(tri[i].n,a,b);
-    Vnormalize(tri[i].n);
-  }
-  
-  fclose(fp);
-
-  // generate display list
-
-  display_list = glGenLists(1);
-  glNewList(display_list,GL_COMPILE);
-  glBegin(GL_TRIANGLES);
-  for (i = 0; i < ntris; i++)
-  {
-    glNormal3dv(tri[i].n);
-    glVertex3dv(tri[i].p0);
-    glVertex3dv(tri[i].p1);
-    glVertex3dv(tri[i].p2);
-  }
-  glEnd();
-  glEndList();  
-}
-
-Model::~Model()
-{
-  delete [] tri;
-}
-
-void
-Model::Draw()
-{
-  glCallList(display_list);
-}
-
-void
-Model::DrawTri(int index)
-{
-  glBegin(GL_TRIANGLES);
-  glVertex3dv(tri[index].p0);
-  glVertex3dv(tri[index].p1);
-  glVertex3dv(tri[index].p2);
-  glEnd();
-}
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/model.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/model.h
deleted file mode 100644
index df352e4e..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/model.h
+++ /dev/null
@@ -1,63 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef MODEL_H
-#define MODEL_H
-
-struct ModelTri
-{
-  double p0[3], p1[3], p2[3];
-  double n[3];
-};
-
-class Model
-{
-  int ntris;
-  ModelTri *tri;
-  int display_list;
-
-public:
-  Model(char *tris_file);
-  ~Model();
-  void Draw();
-  void DrawTri(int index);
-};
-
-#endif
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/spinning.dsp b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/spinning.dsp
deleted file mode 100644
index b31912aa..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/spinning.dsp
+++ /dev/null
@@ -1,98 +0,0 @@
-# Microsoft Developer Studio Project File - Name="spinning" - Package Owner=<4>
-# Microsoft Developer Studio Generated Build File, Format Version 5.00
-# ** DO NOT EDIT **
-
-# TARGTYPE "Win32 (x86) Console Application" 0x0103
-
-CFG=spinning - Win32 Debug
-!MESSAGE This is not a valid makefile. To build this project using NMAKE,
-!MESSAGE use the Export Makefile command and run
-!MESSAGE 
-!MESSAGE NMAKE /f "spinning.mak".
-!MESSAGE 
-!MESSAGE You can specify a configuration when running NMAKE
-!MESSAGE by defining the macro CFG on the command line. For example:
-!MESSAGE 
-!MESSAGE NMAKE /f "spinning.mak" CFG="spinning - Win32 Debug"
-!MESSAGE 
-!MESSAGE Possible choices for configuration are:
-!MESSAGE 
-!MESSAGE "spinning - Win32 Release" (based on\
- "Win32 (x86) Console Application")
-!MESSAGE "spinning - Win32 Debug" (based on "Win32 (x86) Console Application")
-!MESSAGE 
-
-# Begin Project
-# PROP Scc_ProjName ""
-# PROP Scc_LocalPath ""
-CPP=xicl5.exe
-RSC=rc.exe
-
-!IF  "$(CFG)" == "spinning - Win32 Release"
-
-# PROP BASE Use_MFC 0
-# PROP BASE Use_Debug_Libraries 0
-# PROP BASE Output_Dir "Release"
-# PROP BASE Intermediate_Dir "Release"
-# PROP BASE Target_Dir ""
-# PROP Use_MFC 0
-# PROP Use_Debug_Libraries 0
-# PROP Output_Dir "./"
-# PROP Intermediate_Dir "Release"
-# PROP Ignore_Export_Lib 0
-# PROP Target_Dir ""
-# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD CPP /nologo /W3 /GX /O2 /I "..\..\include" /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD BASE RSC /l 0x409 /d "NDEBUG"
-# ADD RSC /l 0x409 /d "NDEBUG"
-BSC32=bscmake.exe
-# ADD BASE BSC32 /nologo
-# ADD BSC32 /nologo
-LINK32=xilink5.exe
-# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /machine:I386
-# ADD LINK32 glut32.lib opengl32.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib pqp.lib /nologo /subsystem:console /pdb:none /machine:I386 /libpath:"..\..\lib"
-
-!ELSEIF  "$(CFG)" == "spinning - Win32 Debug"
-
-# PROP BASE Use_MFC 0
-# PROP BASE Use_Debug_Libraries 1
-# PROP BASE Output_Dir "spinning"
-# PROP BASE Intermediate_Dir "spinning"
-# PROP BASE Target_Dir ""
-# PROP Use_MFC 0
-# PROP Use_Debug_Libraries 1
-# PROP Output_Dir "./"
-# PROP Intermediate_Dir "Debug"
-# PROP Ignore_Export_Lib 0
-# PROP Target_Dir ""
-# ADD BASE CPP /nologo /W3 /Gm /GX /Zi /Od /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD CPP /nologo /W3 /GX /Od /I "..\..\include" /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c
-# ADD BASE RSC /l 0x409 /d "_DEBUG"
-# ADD RSC /l 0x409 /d "_DEBUG"
-BSC32=bscmake.exe
-# ADD BASE BSC32 /nologo
-# ADD BSC32 /nologo
-LINK32=xilink5.exe
-# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /subsystem:console /debug /machine:I386 /pdbtype:sept
-# ADD LINK32 glut32.lib opengl32.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib pqp.lib /nologo /subsystem:console /pdb:none /debug /machine:I386 /libpath:"..\..\lib"
-
-!ENDIF 
-
-# Begin Target
-
-# Name "spinning - Win32 Release"
-# Name "spinning - Win32 Debug"
-# Begin Source File
-
-SOURCE=.\main.cpp
-# End Source File
-# Begin Source File
-
-SOURCE=.\model.cpp
-# End Source File
-# Begin Source File
-
-SOURCE=.\model.h
-# End Source File
-# End Target
-# End Project
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/spinning.plg b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/spinning.plg
deleted file mode 100644
index d8ee3728..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/spinning.plg
+++ /dev/null
@@ -1,27 +0,0 @@
---------------------Configuration: spinning - Win32 Release--------------------
-Begining build with project "C:\WIN95\DESKTOP\PQP_v1.2.1\demos\spinning\spinning.dsp", at root.
-Active configuration is Win32 (x86) Console Application (based on Win32 (x86) Console Application)
-
-Project's tools are:
-			"32-bit C/C++ Compiler for 80x86" with flags "/nologo /ML /W3 /GX /O2 /I "..\..\include" /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /Fp"Release/spinning.pch" /YX /Fo"Release/" /Fd"Release/" /FD /c "
-			"Win32 Resource Compiler" with flags "/l 0x409 /d "NDEBUG" "
-			"Browser Database Maker" with flags "/nologo /o"./spinning.bsc" "
-			"COFF Linker for 80x86" with flags "glut32.lib opengl32.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib pqp.lib /nologo /subsystem:console /pdb:none /machine:I386 /out:"./spinning.exe" /libpath:"..\..\lib" "
-			"Custom Build" with flags ""
-			"<Component 0xa>" with flags ""
-
-Creating temp file "C:\WIN95\TEMP\RSP9380.TMP" with contents </nologo /ML /W3 /GX /O2 /I "..\..\include" /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /Fp"Release/spinning.pch" /YX /Fo"Release/" /Fd"Release/" /FD /c 
-"C:\WIN95\DESKTOP\PQP_v1.2.1\demos\spinning\main.cpp"
->
-Creating command line "cl.exe @C:\WIN95\TEMP\RSP9380.TMP" 
-Creating temp file "C:\WIN95\TEMP\RSP9381.TMP" with contents <glut32.lib opengl32.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib pqp.lib /nologo /subsystem:console /pdb:none /machine:I386 /out:"./spinning.exe" /libpath:"..\..\lib" 
-.\Release\main.obj
-.\Release\model.obj>
-Creating command line "link.exe @C:\WIN95\TEMP\RSP9381.TMP" 
-Compiling...
-main.cpp
-Linking...
-
-
-
-spinning.exe - 0 error(s), 0 warning(s)
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/torus.tris b/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/torus.tris
deleted file mode 100644
index a0bc4507..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/demos/spinning/torus.tris
+++ /dev/null
@@ -1,5329 +0,0 @@
-1332
-0.58 0 0
-0.571657 0.0980205 0.033314
-0.569145 0 0.0615636
-
-0.560958 0.0961859 0.0948776
-0.569145 0 0.0615636
-0.571657 0.0980205 0.033314
-
-0.569145 0 0.0615636
-0.560958 0.0961859 0.0948776
-0.537888 0 0.115702
-
-0.530151 0.0909035 0.149016
-0.537888 0 0.115702
-0.560958 0.0961859 0.0948776
-
-0.537888 0 0.115702
-0.530151 0.0909035 0.149016
-0.49 0 0.155885
-
-0.482952 0.0828104 0.189199
-0.49 0 0.155885
-0.530151 0.0909035 0.149016
-
-0.49 0 0.155885
-0.482952 0.0828104 0.189199
-0.431257 0 0.177265
-
-0.425053 0.0728827 0.210579
-0.431257 0 0.177265
-0.482952 0.0828104 0.189199
-
-0.431257 0 0.177265
-0.425053 0.0728827 0.210579
-0.368743 0 0.177265
-
-0.363439 0.0623179 0.210579
-0.368743 0 0.177265
-0.425053 0.0728827 0.210579
-
-0.368743 0 0.177265
-0.363439 0.0623179 0.210579
-0.31 0 0.155885
-
-0.305541 0.0523903 0.189199
-0.31 0 0.155885
-0.363439 0.0623179 0.210579
-
-0.31 0 0.155885
-0.305541 0.0523903 0.189199
-0.262112 0 0.115702
-
-0.258342 0.0442971 0.149016
-0.262112 0 0.115702
-0.305541 0.0523903 0.189199
-
-0.262112 0 0.115702
-0.258342 0.0442971 0.149016
-0.230855 0 0.0615636
-
-0.227535 0.0390147 0.0948776
-0.230855 0 0.0615636
-0.258342 0.0442971 0.149016
-
-0.230855 0 0.0615636
-0.227535 0.0390147 0.0948776
-0.22 0 0
-
-0.216836 0.0371802 0.033314
-0.22 0 0
-0.227535 0.0390147 0.0948776
-
-0.22 0 0
-0.216836 0.0371802 0.033314
-0.230855 0 -0.0615636
-
-0.227535 0.0390147 -0.0282496
-0.230855 0 -0.0615636
-0.216836 0.0371802 0.033314
-
-0.230855 0 -0.0615636
-0.227535 0.0390147 -0.0282496
-0.262112 0 -0.115702
-
-0.258342 0.0442971 -0.0823878
-0.262112 0 -0.115702
-0.227535 0.0390147 -0.0282496
-
-0.262112 0 -0.115702
-0.258342 0.0442971 -0.0823878
-0.31 0 -0.155885
-
-0.305541 0.0523903 -0.122571
-0.31 0 -0.155885
-0.258342 0.0442971 -0.0823878
-
-0.31 0 -0.155885
-0.305541 0.0523903 -0.122571
-0.368743 0 -0.177265
-
-0.363439 0.0623179 -0.143951
-0.368743 0 -0.177265
-0.305541 0.0523903 -0.122571
-
-0.368743 0 -0.177265
-0.363439 0.0623179 -0.143951
-0.431257 0 -0.177265
-
-0.425053 0.0728827 -0.143951
-0.431257 0 -0.177265
-0.363439 0.0623179 -0.143951
-
-0.431257 0 -0.177265
-0.425053 0.0728827 -0.143951
-0.49 0 -0.155885
-
-0.482952 0.0828104 -0.122571
-0.49 0 -0.155885
-0.425053 0.0728827 -0.143951
-
-0.49 0 -0.155885
-0.482952 0.0828104 -0.122571
-0.537888 0 -0.115702
-
-0.530151 0.0909035 -0.0823878
-0.537888 0 -0.115702
-0.482952 0.0828104 -0.122571
-
-0.537888 0 -0.115702
-0.530151 0.0909035 -0.0823878
-0.569145 0 -0.0615636
-
-0.560958 0.0961859 -0.0282496
-0.569145 0 -0.0615636
-0.530151 0.0909035 -0.0823878
-
-0.569145 0 -0.0615636
-0.560958 0.0961859 -0.0282496
-0.58 0 0
-
-0.571657 0.0980205 0.033314
-0.58 0 0
-0.560958 0.0961859 -0.0282496
-
-0.571657 0.0980205 0.033314
-0.546869 0.193221 0.062822
-0.560958 0.0961859 0.0948776
-
-0.536634 0.189605 0.124386
-0.560958 0.0961859 0.0948776
-0.546869 0.193221 0.062822
-
-0.560958 0.0961859 0.0948776
-0.536634 0.189605 0.124386
-0.530151 0.0909035 0.149016
-
-0.507162 0.179192 0.178524
-0.530151 0.0909035 0.149016
-0.536634 0.189605 0.124386
-
-0.530151 0.0909035 0.149016
-0.507162 0.179192 0.178524
-0.482952 0.0828104 0.189199
-
-0.46201 0.163238 0.218707
-0.482952 0.0828104 0.189199
-0.507162 0.179192 0.178524
-
-0.482952 0.0828104 0.189199
-0.46201 0.163238 0.218707
-0.425053 0.0728827 0.210579
-
-0.406622 0.143669 0.240087
-0.425053 0.0728827 0.210579
-0.46201 0.163238 0.218707
-
-0.425053 0.0728827 0.210579
-0.406622 0.143669 0.240087
-0.363439 0.0623179 0.210579
-
-0.34768 0.122843 0.240087
-0.363439 0.0623179 0.210579
-0.406622 0.143669 0.240087
-
-0.363439 0.0623179 0.210579
-0.34768 0.122843 0.240087
-0.305541 0.0523903 0.189199
-
-0.292292 0.103273 0.218707
-0.305541 0.0523903 0.189199
-0.34768 0.122843 0.240087
-
-0.305541 0.0523903 0.189199
-0.292292 0.103273 0.218707
-0.258342 0.0442971 0.149016
-
-0.247139 0.0873199 0.178524
-0.258342 0.0442971 0.149016
-0.292292 0.103273 0.218707
-
-0.258342 0.0442971 0.149016
-0.247139 0.0873199 0.178524
-0.227535 0.0390147 0.0948776
-
-0.217668 0.0769071 0.124386
-0.227535 0.0390147 0.0948776
-0.247139 0.0873199 0.178524
-
-0.227535 0.0390147 0.0948776
-0.217668 0.0769071 0.124386
-0.216836 0.0371802 0.033314
-
-0.207433 0.0732908 0.062822
-0.216836 0.0371802 0.033314
-0.217668 0.0769071 0.124386
-
-0.216836 0.0371802 0.033314
-0.207433 0.0732908 0.062822
-0.227535 0.0390147 -0.0282496
-
-0.217668 0.0769071 0.00125837
-0.227535 0.0390147 -0.0282496
-0.207433 0.0732908 0.062822
-
-0.227535 0.0390147 -0.0282496
-0.217668 0.0769071 0.00125837
-0.258342 0.0442971 -0.0823878
-
-0.247139 0.0873199 -0.0528798
-0.258342 0.0442971 -0.0823878
-0.217668 0.0769071 0.00125837
-
-0.258342 0.0442971 -0.0823878
-0.247139 0.0873199 -0.0528798
-0.305541 0.0523903 -0.122571
-
-0.292292 0.103273 -0.0930626
-0.305541 0.0523903 -0.122571
-0.247139 0.0873199 -0.0528798
-
-0.305541 0.0523903 -0.122571
-0.292292 0.103273 -0.0930626
-0.363439 0.0623179 -0.143951
-
-0.34768 0.122843 -0.114443
-0.363439 0.0623179 -0.143951
-0.292292 0.103273 -0.0930626
-
-0.363439 0.0623179 -0.143951
-0.34768 0.122843 -0.114443
-0.425053 0.0728827 -0.143951
-
-0.406622 0.143669 -0.114443
-0.425053 0.0728827 -0.143951
-0.34768 0.122843 -0.114443
-
-0.425053 0.0728827 -0.143951
-0.406622 0.143669 -0.114443
-0.482952 0.0828104 -0.122571
-
-0.46201 0.163238 -0.0930626
-0.482952 0.0828104 -0.122571
-0.406622 0.143669 -0.114443
-
-0.482952 0.0828104 -0.122571
-0.46201 0.163238 -0.0930626
-0.530151 0.0909035 -0.0823878
-
-0.507162 0.179192 -0.0528798
-0.530151 0.0909035 -0.0823878
-0.46201 0.163238 -0.0930626
-
-0.530151 0.0909035 -0.0823878
-0.507162 0.179192 -0.0528798
-0.560958 0.0961859 -0.0282496
-
-0.536634 0.189605 0.00125837
-0.560958 0.0961859 -0.0282496
-0.507162 0.179192 -0.0528798
-
-0.560958 0.0961859 -0.0282496
-0.536634 0.189605 0.00125837
-0.571657 0.0980205 0.033314
-
-0.546869 0.193221 0.062822
-0.571657 0.0980205 0.033314
-0.536634 0.189605 0.00125837
-
-0.546869 0.193221 0.062822
-0.506348 0.282863 0.0851529
-0.536634 0.189605 0.124386
-
-0.496871 0.277569 0.146717
-0.536634 0.189605 0.124386
-0.506348 0.282863 0.0851529
-
-0.536634 0.189605 0.124386
-0.496871 0.277569 0.146717
-0.507162 0.179192 0.178524
-
-0.469584 0.262325 0.200855
-0.507162 0.179192 0.178524
-0.496871 0.277569 0.146717
-
-0.507162 0.179192 0.178524
-0.469584 0.262325 0.200855
-0.46201 0.163238 0.218707
-
-0.427777 0.238971 0.241037
-0.46201 0.163238 0.218707
-0.469584 0.262325 0.200855
-
-0.46201 0.163238 0.218707
-0.427777 0.238971 0.241037
-0.406622 0.143669 0.240087
-
-0.376493 0.210322 0.262418
-0.406622 0.143669 0.240087
-0.427777 0.238971 0.241037
-
-0.406622 0.143669 0.240087
-0.376493 0.210322 0.262418
-0.34768 0.122843 0.240087
-
-0.321918 0.179834 0.262418
-0.34768 0.122843 0.240087
-0.376493 0.210322 0.262418
-
-0.34768 0.122843 0.240087
-0.321918 0.179834 0.262418
-0.292292 0.103273 0.218707
-
-0.270634 0.151185 0.241037
-0.292292 0.103273 0.218707
-0.321918 0.179834 0.262418
-
-0.292292 0.103273 0.218707
-0.270634 0.151185 0.241037
-0.247139 0.0873199 0.178524
-
-0.228827 0.127831 0.200855
-0.247139 0.0873199 0.178524
-0.270634 0.151185 0.241037
-
-0.247139 0.0873199 0.178524
-0.228827 0.127831 0.200855
-0.217668 0.0769071 0.124386
-
-0.20154 0.112587 0.146717
-0.217668 0.0769071 0.124386
-0.228827 0.127831 0.200855
-
-0.217668 0.0769071 0.124386
-0.20154 0.112587 0.146717
-0.207433 0.0732908 0.062822
-
-0.192063 0.107293 0.0851529
-0.207433 0.0732908 0.062822
-0.20154 0.112587 0.146717
-
-0.207433 0.0732908 0.062822
-0.192063 0.107293 0.0851529
-0.217668 0.0769071 0.00125837
-
-0.20154 0.112587 0.0235893
-0.217668 0.0769071 0.00125837
-0.192063 0.107293 0.0851529
-
-0.217668 0.0769071 0.00125837
-0.20154 0.112587 0.0235893
-0.247139 0.0873199 -0.0528798
-
-0.228827 0.127831 -0.0305489
-0.247139 0.0873199 -0.0528798
-0.20154 0.112587 0.0235893
-
-0.247139 0.0873199 -0.0528798
-0.228827 0.127831 -0.0305489
-0.292292 0.103273 -0.0930626
-
-0.270634 0.151185 -0.0707317
-0.292292 0.103273 -0.0930626
-0.228827 0.127831 -0.0305489
-
-0.292292 0.103273 -0.0930626
-0.270634 0.151185 -0.0707317
-0.34768 0.122843 -0.114443
-
-0.321918 0.179834 -0.0921125
-0.34768 0.122843 -0.114443
-0.270634 0.151185 -0.0707317
-
-0.34768 0.122843 -0.114443
-0.321918 0.179834 -0.0921125
-0.406622 0.143669 -0.114443
-
-0.376493 0.210322 -0.0921125
-0.406622 0.143669 -0.114443
-0.321918 0.179834 -0.0921125
-
-0.406622 0.143669 -0.114443
-0.376493 0.210322 -0.0921125
-0.46201 0.163238 -0.0930626
-
-0.427777 0.238971 -0.0707317
-0.46201 0.163238 -0.0930626
-0.376493 0.210322 -0.0921125
-
-0.46201 0.163238 -0.0930626
-0.427777 0.238971 -0.0707317
-0.507162 0.179192 -0.0528798
-
-0.469584 0.262325 -0.0305489
-0.507162 0.179192 -0.0528798
-0.427777 0.238971 -0.0707317
-
-0.507162 0.179192 -0.0528798
-0.469584 0.262325 -0.0305489
-0.536634 0.189605 0.00125837
-
-0.496871 0.277569 0.0235893
-0.536634 0.189605 0.00125837
-0.469584 0.262325 -0.0305489
-
-0.536634 0.189605 0.00125837
-0.496871 0.277569 0.0235893
-0.546869 0.193221 0.062822
-
-0.506348 0.282863 0.0851529
-0.546869 0.193221 0.062822
-0.496871 0.277569 0.0235893
-
-0.506348 0.282863 0.0851529
-0.451261 0.364368 0.0977555
-0.496871 0.277569 0.146717
-
-0.442815 0.357548 0.159319
-0.496871 0.277569 0.146717
-0.451261 0.364368 0.0977555
-
-0.496871 0.277569 0.146717
-0.442815 0.357548 0.159319
-0.469584 0.262325 0.200855
-
-0.418496 0.337912 0.213457
-0.469584 0.262325 0.200855
-0.442815 0.357548 0.159319
-
-0.469584 0.262325 0.200855
-0.418496 0.337912 0.213457
-0.427777 0.238971 0.241037
-
-0.381238 0.307828 0.25364
-0.427777 0.238971 0.241037
-0.418496 0.337912 0.213457
-
-0.427777 0.238971 0.241037
-0.381238 0.307828 0.25364
-0.376493 0.210322 0.262418
-
-0.335533 0.270924 0.275021
-0.376493 0.210322 0.262418
-0.381238 0.307828 0.25364
-
-0.376493 0.210322 0.262418
-0.335533 0.270924 0.275021
-0.321918 0.179834 0.262418
-
-0.286895 0.231652 0.275021
-0.321918 0.179834 0.262418
-0.335533 0.270924 0.275021
-
-0.321918 0.179834 0.262418
-0.286895 0.231652 0.275021
-0.270634 0.151185 0.241037
-
-0.241191 0.194748 0.25364
-0.270634 0.151185 0.241037
-0.286895 0.231652 0.275021
-
-0.270634 0.151185 0.241037
-0.241191 0.194748 0.25364
-0.228827 0.127831 0.200855
-
-0.203933 0.164664 0.213457
-0.228827 0.127831 0.200855
-0.241191 0.194748 0.25364
-
-0.228827 0.127831 0.200855
-0.203933 0.164664 0.213457
-0.20154 0.112587 0.146717
-
-0.179614 0.145028 0.159319
-0.20154 0.112587 0.146717
-0.203933 0.164664 0.213457
-
-0.20154 0.112587 0.146717
-0.179614 0.145028 0.159319
-0.192063 0.107293 0.0851529
-
-0.171168 0.138208 0.0977555
-0.192063 0.107293 0.0851529
-0.179614 0.145028 0.159319
-
-0.192063 0.107293 0.0851529
-0.171168 0.138208 0.0977555
-0.20154 0.112587 0.0235893
-
-0.179614 0.145028 0.0361919
-0.20154 0.112587 0.0235893
-0.171168 0.138208 0.0977555
-
-0.20154 0.112587 0.0235893
-0.179614 0.145028 0.0361919
-0.228827 0.127831 -0.0305489
-
-0.203933 0.164664 -0.0179462
-0.228827 0.127831 -0.0305489
-0.179614 0.145028 0.0361919
-
-0.228827 0.127831 -0.0305489
-0.203933 0.164664 -0.0179462
-0.270634 0.151185 -0.0707317
-
-0.241191 0.194748 -0.058129
-0.270634 0.151185 -0.0707317
-0.203933 0.164664 -0.0179462
-
-0.270634 0.151185 -0.0707317
-0.241191 0.194748 -0.058129
-0.321918 0.179834 -0.0921125
-
-0.286895 0.231652 -0.0795099
-0.321918 0.179834 -0.0921125
-0.241191 0.194748 -0.058129
-
-0.321918 0.179834 -0.0921125
-0.286895 0.231652 -0.0795099
-0.376493 0.210322 -0.0921125
-
-0.335533 0.270924 -0.0795099
-0.376493 0.210322 -0.0921125
-0.286895 0.231652 -0.0795099
-
-0.376493 0.210322 -0.0921125
-0.335533 0.270924 -0.0795099
-0.427777 0.238971 -0.0707317
-
-0.381238 0.307828 -0.058129
-0.427777 0.238971 -0.0707317
-0.335533 0.270924 -0.0795099
-
-0.427777 0.238971 -0.0707317
-0.381238 0.307828 -0.058129
-0.469584 0.262325 -0.0305489
-
-0.418496 0.337912 -0.0179462
-0.469584 0.262325 -0.0305489
-0.381238 0.307828 -0.058129
-
-0.469584 0.262325 -0.0305489
-0.418496 0.337912 -0.0179462
-0.496871 0.277569 0.0235893
-
-0.442815 0.357548 0.0361919
-0.496871 0.277569 0.0235893
-0.418496 0.337912 -0.0179462
-
-0.496871 0.277569 0.0235893
-0.442815 0.357548 0.0361919
-0.506348 0.282863 0.0851529
-
-0.451261 0.364368 0.0977555
-0.506348 0.282863 0.0851529
-0.442815 0.357548 0.0361919
-
-0.451261 0.364368 0.0977555
-0.383191 0.43539 0.09919
-0.442815 0.357548 0.159319
-
-0.376019 0.427241 0.160754
-0.442815 0.357548 0.159319
-0.383191 0.43539 0.09919
-
-0.442815 0.357548 0.159319
-0.376019 0.427241 0.160754
-0.418496 0.337912 0.213457
-
-0.355369 0.403778 0.214892
-0.418496 0.337912 0.213457
-0.376019 0.427241 0.160754
-
-0.418496 0.337912 0.213457
-0.355369 0.403778 0.214892
-0.381238 0.307828 0.25364
-
-0.323731 0.367829 0.255075
-0.381238 0.307828 0.25364
-0.355369 0.403778 0.214892
-
-0.381238 0.307828 0.25364
-0.323731 0.367829 0.255075
-0.335533 0.270924 0.275021
-
-0.28492 0.323732 0.276455
-0.335533 0.270924 0.275021
-0.323731 0.367829 0.255075
-
-0.335533 0.270924 0.275021
-0.28492 0.323732 0.276455
-0.286895 0.231652 0.275021
-
-0.243619 0.276805 0.276455
-0.286895 0.231652 0.275021
-0.28492 0.323732 0.276455
-
-0.286895 0.231652 0.275021
-0.243619 0.276805 0.276455
-0.241191 0.194748 0.25364
-
-0.204809 0.232708 0.255075
-0.241191 0.194748 0.25364
-0.243619 0.276805 0.276455
-
-0.241191 0.194748 0.25364
-0.204809 0.232708 0.255075
-0.203933 0.164664 0.213457
-
-0.173171 0.19676 0.214892
-0.203933 0.164664 0.213457
-0.204809 0.232708 0.255075
-
-0.203933 0.164664 0.213457
-0.173171 0.19676 0.214892
-0.179614 0.145028 0.159319
-
-0.15252 0.173297 0.160754
-0.179614 0.145028 0.159319
-0.173171 0.19676 0.214892
-
-0.179614 0.145028 0.159319
-0.15252 0.173297 0.160754
-0.171168 0.138208 0.0977555
-
-0.145348 0.165148 0.09919
-0.171168 0.138208 0.0977555
-0.15252 0.173297 0.160754
-
-0.171168 0.138208 0.0977555
-0.145348 0.165148 0.09919
-0.179614 0.145028 0.0361919
-
-0.15252 0.173297 0.0376264
-0.179614 0.145028 0.0361919
-0.145348 0.165148 0.09919
-
-0.179614 0.145028 0.0361919
-0.15252 0.173297 0.0376264
-0.203933 0.164664 -0.0179462
-
-0.173171 0.19676 -0.0165117
-0.203933 0.164664 -0.0179462
-0.15252 0.173297 0.0376264
-
-0.203933 0.164664 -0.0179462
-0.173171 0.19676 -0.0165117
-0.241191 0.194748 -0.058129
-
-0.204809 0.232708 -0.0566945
-0.241191 0.194748 -0.058129
-0.173171 0.19676 -0.0165117
-
-0.241191 0.194748 -0.058129
-0.204809 0.232708 -0.0566945
-0.286895 0.231652 -0.0795099
-
-0.243619 0.276805 -0.0780754
-0.286895 0.231652 -0.0795099
-0.204809 0.232708 -0.0566945
-
-0.286895 0.231652 -0.0795099
-0.243619 0.276805 -0.0780754
-0.335533 0.270924 -0.0795099
-
-0.28492 0.323732 -0.0780754
-0.335533 0.270924 -0.0795099
-0.243619 0.276805 -0.0780754
-
-0.335533 0.270924 -0.0795099
-0.28492 0.323732 -0.0780754
-0.381238 0.307828 -0.058129
-
-0.323731 0.367829 -0.0566945
-0.381238 0.307828 -0.058129
-0.28492 0.323732 -0.0780754
-
-0.381238 0.307828 -0.058129
-0.323731 0.367829 -0.0566945
-0.418496 0.337912 -0.0179462
-
-0.355369 0.403778 -0.0165117
-0.418496 0.337912 -0.0179462
-0.323731 0.367829 -0.0566945
-
-0.418496 0.337912 -0.0179462
-0.355369 0.403778 -0.0165117
-0.442815 0.357548 0.0361919
-
-0.376019 0.427241 0.0376264
-0.442815 0.357548 0.0361919
-0.355369 0.403778 -0.0165117
-
-0.442815 0.357548 0.0361919
-0.376019 0.427241 0.0376264
-0.451261 0.364368 0.0977555
-
-0.383191 0.43539 0.09919
-0.451261 0.364368 0.0977555
-0.376019 0.427241 0.0376264
-
-0.383191 0.43539 0.09919
-0.304098 0.493887 0.0892926
-0.376019 0.427241 0.160754
-
-0.298407 0.484643 0.150856
-0.376019 0.427241 0.160754
-0.304098 0.493887 0.0892926
-
-0.376019 0.427241 0.160754
-0.298407 0.484643 0.150856
-0.355369 0.403778 0.214892
-
-0.282019 0.458027 0.204994
-0.355369 0.403778 0.214892
-0.298407 0.484643 0.150856
-
-0.355369 0.403778 0.214892
-0.282019 0.458027 0.204994
-0.323731 0.367829 0.255075
-
-0.256911 0.417249 0.245177
-0.323731 0.367829 0.255075
-0.282019 0.458027 0.204994
-
-0.323731 0.367829 0.255075
-0.256911 0.417249 0.245177
-0.28492 0.323732 0.276455
-
-0.226111 0.367228 0.266558
-0.28492 0.323732 0.276455
-0.256911 0.417249 0.245177
-
-0.28492 0.323732 0.276455
-0.226111 0.367228 0.266558
-0.243619 0.276805 0.276455
-
-0.193335 0.313996 0.266558
-0.243619 0.276805 0.276455
-0.226111 0.367228 0.266558
-
-0.243619 0.276805 0.276455
-0.193335 0.313996 0.266558
-0.204809 0.232708 0.255075
-
-0.162535 0.263974 0.245177
-0.204809 0.232708 0.255075
-0.193335 0.313996 0.266558
-
-0.204809 0.232708 0.255075
-0.162535 0.263974 0.245177
-0.173171 0.19676 0.214892
-
-0.137427 0.223196 0.204994
-0.173171 0.19676 0.214892
-0.162535 0.263974 0.245177
-
-0.173171 0.19676 0.214892
-0.137427 0.223196 0.204994
-0.15252 0.173297 0.160754
-
-0.121039 0.19658 0.150856
-0.15252 0.173297 0.160754
-0.137427 0.223196 0.204994
-
-0.15252 0.173297 0.160754
-0.121039 0.19658 0.150856
-0.145348 0.165148 0.09919
-
-0.115348 0.187336 0.0892926
-0.145348 0.165148 0.09919
-0.121039 0.19658 0.150856
-
-0.145348 0.165148 0.09919
-0.115348 0.187336 0.0892926
-0.15252 0.173297 0.0376264
-
-0.121039 0.19658 0.027729
-0.15252 0.173297 0.0376264
-0.115348 0.187336 0.0892926
-
-0.15252 0.173297 0.0376264
-0.121039 0.19658 0.027729
-0.173171 0.19676 -0.0165117
-
-0.137427 0.223196 -0.0264092
-0.173171 0.19676 -0.0165117
-0.121039 0.19658 0.027729
-
-0.173171 0.19676 -0.0165117
-0.137427 0.223196 -0.0264092
-0.204809 0.232708 -0.0566945
-
-0.162535 0.263974 -0.066592
-0.204809 0.232708 -0.0566945
-0.137427 0.223196 -0.0264092
-
-0.204809 0.232708 -0.0566945
-0.162535 0.263974 -0.066592
-0.243619 0.276805 -0.0780754
-
-0.193335 0.313996 -0.0879728
-0.243619 0.276805 -0.0780754
-0.162535 0.263974 -0.066592
-
-0.243619 0.276805 -0.0780754
-0.193335 0.313996 -0.0879728
-0.28492 0.323732 -0.0780754
-
-0.226111 0.367228 -0.0879728
-0.28492 0.323732 -0.0780754
-0.193335 0.313996 -0.0879728
-
-0.28492 0.323732 -0.0780754
-0.226111 0.367228 -0.0879728
-0.323731 0.367829 -0.0566945
-
-0.256911 0.417249 -0.066592
-0.323731 0.367829 -0.0566945
-0.226111 0.367228 -0.0879728
-
-0.323731 0.367829 -0.0566945
-0.256911 0.417249 -0.066592
-0.355369 0.403778 -0.0165117
-
-0.282019 0.458027 -0.0264092
-0.355369 0.403778 -0.0165117
-0.256911 0.417249 -0.066592
-
-0.355369 0.403778 -0.0165117
-0.282019 0.458027 -0.0264092
-0.376019 0.427241 0.0376264
-
-0.298407 0.484643 0.027729
-0.376019 0.427241 0.0376264
-0.282019 0.458027 -0.0264092
-
-0.376019 0.427241 0.0376264
-0.298407 0.484643 0.027729
-0.383191 0.43539 0.09919
-
-0.304098 0.493887 0.0892926
-0.383191 0.43539 0.09919
-0.298407 0.484643 0.027729
-
-0.304098 0.493887 0.0892926
-0.216257 0.538176 0.0691939
-0.298407 0.484643 0.150856
-
-0.212209 0.528103 0.130758
-0.298407 0.484643 0.150856
-0.216257 0.538176 0.0691939
-
-0.298407 0.484643 0.150856
-0.212209 0.528103 0.130758
-0.282019 0.458027 0.204994
-
-0.200555 0.4991 0.184896
-0.282019 0.458027 0.204994
-0.212209 0.528103 0.130758
-
-0.282019 0.458027 0.204994
-0.200555 0.4991 0.184896
-0.256911 0.417249 0.245177
-
-0.1827 0.454666 0.225078
-0.256911 0.417249 0.245177
-0.200555 0.4991 0.184896
-
-0.256911 0.417249 0.245177
-0.1827 0.454666 0.225078
-0.226111 0.367228 0.266558
-
-0.160797 0.400158 0.246459
-0.226111 0.367228 0.266558
-0.1827 0.454666 0.225078
-
-0.226111 0.367228 0.266558
-0.160797 0.400158 0.246459
-0.193335 0.313996 0.266558
-
-0.137488 0.342153 0.246459
-0.193335 0.313996 0.266558
-0.160797 0.400158 0.246459
-
-0.193335 0.313996 0.266558
-0.137488 0.342153 0.246459
-0.162535 0.263974 0.245177
-
-0.115586 0.287646 0.225078
-0.162535 0.263974 0.245177
-0.137488 0.342153 0.246459
-
-0.162535 0.263974 0.245177
-0.115586 0.287646 0.225078
-0.137427 0.223196 0.204994
-
-0.0977302 0.243211 0.184896
-0.137427 0.223196 0.204994
-0.115586 0.287646 0.225078
-
-0.137427 0.223196 0.204994
-0.0977302 0.243211 0.184896
-0.121039 0.19658 0.150856
-
-0.0860759 0.214208 0.130758
-0.121039 0.19658 0.150856
-0.0977302 0.243211 0.184896
-
-0.121039 0.19658 0.150856
-0.0860759 0.214208 0.130758
-0.115348 0.187336 0.0892926
-
-0.0820284 0.204136 0.0691939
-0.115348 0.187336 0.0892926
-0.0860759 0.214208 0.130758
-
-0.115348 0.187336 0.0892926
-0.0820284 0.204136 0.0691939
-0.121039 0.19658 0.027729
-
-0.0860759 0.214208 0.00763026
-0.121039 0.19658 0.027729
-0.0820284 0.204136 0.0691939
-
-0.121039 0.19658 0.027729
-0.0860759 0.214208 0.00763026
-0.137427 0.223196 -0.0264092
-
-0.0977302 0.243211 -0.0465079
-0.137427 0.223196 -0.0264092
-0.0860759 0.214208 0.00763026
-
-0.137427 0.223196 -0.0264092
-0.0977302 0.243211 -0.0465079
-0.162535 0.263974 -0.066592
-
-0.115586 0.287646 -0.0866907
-0.162535 0.263974 -0.066592
-0.0977302 0.243211 -0.0465079
-
-0.162535 0.263974 -0.066592
-0.115586 0.287646 -0.0866907
-0.193335 0.313996 -0.0879728
-
-0.137488 0.342153 -0.108072
-0.193335 0.313996 -0.0879728
-0.115586 0.287646 -0.0866907
-
-0.193335 0.313996 -0.0879728
-0.137488 0.342153 -0.108072
-0.226111 0.367228 -0.0879728
-
-0.160797 0.400158 -0.108072
-0.226111 0.367228 -0.0879728
-0.137488 0.342153 -0.108072
-
-0.226111 0.367228 -0.0879728
-0.160797 0.400158 -0.108072
-0.256911 0.417249 -0.066592
-
-0.1827 0.454666 -0.0866907
-0.256911 0.417249 -0.066592
-0.160797 0.400158 -0.108072
-
-0.256911 0.417249 -0.066592
-0.1827 0.454666 -0.0866907
-0.282019 0.458027 -0.0264092
-
-0.200555 0.4991 -0.0465079
-0.282019 0.458027 -0.0264092
-0.1827 0.454666 -0.0866907
-
-0.282019 0.458027 -0.0264092
-0.200555 0.4991 -0.0465079
-0.298407 0.484643 0.027729
-
-0.212209 0.528103 0.00763026
-0.298407 0.484643 0.027729
-0.200555 0.4991 -0.0465079
-
-0.298407 0.484643 0.027729
-0.212209 0.528103 0.00763026
-0.304098 0.493887 0.0892926
-
-0.216257 0.538176 0.0691939
-0.304098 0.493887 0.0892926
-0.212209 0.528103 0.00763026
-
-0.216257 0.538176 0.0691939
-0.122194 0.566982 0.0411901
-0.212209 0.528103 0.130758
-
-0.119907 0.55637 0.102754
-0.212209 0.528103 0.130758
-0.122194 0.566982 0.0411901
-
-0.212209 0.528103 0.130758
-0.119907 0.55637 0.102754
-0.200555 0.4991 0.184896
-
-0.113322 0.525815 0.156892
-0.200555 0.4991 0.184896
-0.119907 0.55637 0.102754
-
-0.200555 0.4991 0.184896
-0.113322 0.525815 0.156892
-0.1827 0.454666 0.225078
-
-0.103233 0.479002 0.197075
-0.1827 0.454666 0.225078
-0.113322 0.525815 0.156892
-
-0.1827 0.454666 0.225078
-0.103233 0.479002 0.197075
-0.160797 0.400158 0.246459
-
-0.0908568 0.421577 0.218456
-0.160797 0.400158 0.246459
-0.103233 0.479002 0.197075
-
-0.160797 0.400158 0.246459
-0.0908568 0.421577 0.218456
-0.137488 0.342153 0.246459
-
-0.0776866 0.360467 0.218456
-0.137488 0.342153 0.246459
-0.0908568 0.421577 0.218456
-
-0.137488 0.342153 0.246459
-0.0776866 0.360467 0.218456
-0.115586 0.287646 0.225078
-
-0.0653106 0.303042 0.197075
-0.115586 0.287646 0.225078
-0.0776866 0.360467 0.218456
-
-0.115586 0.287646 0.225078
-0.0653106 0.303042 0.197075
-0.0977302 0.243211 0.184896
-
-0.0552216 0.256229 0.156892
-0.0977302 0.243211 0.184896
-0.0653106 0.303042 0.197075
-
-0.0977302 0.243211 0.184896
-0.0552216 0.256229 0.156892
-0.0860759 0.214208 0.130758
-
-0.0486364 0.225674 0.102754
-0.0860759 0.214208 0.130758
-0.0552216 0.256229 0.156892
-
-0.0860759 0.214208 0.130758
-0.0486364 0.225674 0.102754
-0.0820284 0.204136 0.0691939
-
-0.0463494 0.215062 0.0411901
-0.0820284 0.204136 0.0691939
-0.0486364 0.225674 0.102754
-
-0.0820284 0.204136 0.0691939
-0.0463494 0.215062 0.0411901
-0.0860759 0.214208 0.00763026
-
-0.0486364 0.225674 -0.0203735
-0.0860759 0.214208 0.00763026
-0.0463494 0.215062 0.0411901
-
-0.0860759 0.214208 0.00763026
-0.0486364 0.225674 -0.0203735
-0.0977302 0.243211 -0.0465079
-
-0.0552216 0.256229 -0.0745116
-0.0977302 0.243211 -0.0465079
-0.0486364 0.225674 -0.0203735
-
-0.0977302 0.243211 -0.0465079
-0.0552216 0.256229 -0.0745116
-0.115586 0.287646 -0.0866907
-
-0.0653106 0.303042 -0.114694
-0.115586 0.287646 -0.0866907
-0.0552216 0.256229 -0.0745116
-
-0.115586 0.287646 -0.0866907
-0.0653106 0.303042 -0.114694
-0.137488 0.342153 -0.108072
-
-0.0776866 0.360467 -0.136075
-0.137488 0.342153 -0.108072
-0.0653106 0.303042 -0.114694
-
-0.137488 0.342153 -0.108072
-0.0776866 0.360467 -0.136075
-0.160797 0.400158 -0.108072
-
-0.0908568 0.421577 -0.136075
-0.160797 0.400158 -0.108072
-0.0776866 0.360467 -0.136075
-
-0.160797 0.400158 -0.108072
-0.0908568 0.421577 -0.136075
-0.1827 0.454666 -0.0866907
-
-0.103233 0.479002 -0.114694
-0.1827 0.454666 -0.0866907
-0.0908568 0.421577 -0.136075
-
-0.1827 0.454666 -0.0866907
-0.103233 0.479002 -0.114694
-0.200555 0.4991 -0.0465079
-
-0.113322 0.525815 -0.0745116
-0.200555 0.4991 -0.0465079
-0.103233 0.479002 -0.114694
-
-0.200555 0.4991 -0.0465079
-0.113322 0.525815 -0.0745116
-0.212209 0.528103 0.00763026
-
-0.119907 0.55637 -0.0203735
-0.212209 0.528103 0.00763026
-0.113322 0.525815 -0.0745116
-
-0.212209 0.528103 0.00763026
-0.119907 0.55637 -0.0203735
-0.216257 0.538176 0.0691939
-
-0.122194 0.566982 0.0411901
-0.216257 0.538176 0.0691939
-0.119907 0.55637 -0.0203735
-
-0.122194 0.566982 0.0411901
-0.0246159 0.579477 0.00848059
-0.119907 0.55637 0.102754
-
-0.0241552 0.568632 0.0700442
-0.119907 0.55637 0.102754
-0.0246159 0.579477 0.00848059
-
-0.119907 0.55637 0.102754
-0.0241552 0.568632 0.0700442
-0.113322 0.525815 0.156892
-
-0.0228286 0.537403 0.124182
-0.113322 0.525815 0.156892
-0.0241552 0.568632 0.0700442
-
-0.113322 0.525815 0.156892
-0.0228286 0.537403 0.124182
-0.103233 0.479002 0.197075
-
-0.0207962 0.489558 0.164365
-0.103233 0.479002 0.197075
-0.0228286 0.537403 0.124182
-
-0.103233 0.479002 0.197075
-0.0207962 0.489558 0.164365
-0.0908568 0.421577 0.218456
-
-0.0183031 0.430868 0.185746
-0.0908568 0.421577 0.218456
-0.0207962 0.489558 0.164365
-
-0.0908568 0.421577 0.218456
-0.0183031 0.430868 0.185746
-0.0776866 0.360467 0.218456
-
-0.0156499 0.368411 0.185746
-0.0776866 0.360467 0.218456
-0.0183031 0.430868 0.185746
-
-0.0776866 0.360467 0.218456
-0.0156499 0.368411 0.185746
-0.0653106 0.303042 0.197075
-
-0.0131568 0.309721 0.164365
-0.0653106 0.303042 0.197075
-0.0156499 0.368411 0.185746
-
-0.0653106 0.303042 0.197075
-0.0131568 0.309721 0.164365
-0.0552216 0.256229 0.156892
-
-0.0111243 0.261876 0.124182
-0.0552216 0.256229 0.156892
-0.0131568 0.309721 0.164365
-
-0.0552216 0.256229 0.156892
-0.0111243 0.261876 0.124182
-0.0486364 0.225674 0.102754
-
-0.00979778 0.230647 0.0700442
-0.0486364 0.225674 0.102754
-0.0111243 0.261876 0.124182
-
-0.0486364 0.225674 0.102754
-0.00979778 0.230647 0.0700442
-0.0463494 0.215062 0.0411901
-
-0.00933706 0.219802 0.00848059
-0.0463494 0.215062 0.0411901
-0.00979778 0.230647 0.0700442
-
-0.0463494 0.215062 0.0411901
-0.00933706 0.219802 0.00848059
-0.0486364 0.225674 -0.0203735
-
-0.00979778 0.230647 -0.053083
-0.0486364 0.225674 -0.0203735
-0.00933706 0.219802 0.00848059
-
-0.0486364 0.225674 -0.0203735
-0.00979778 0.230647 -0.053083
-0.0552216 0.256229 -0.0745116
-
-0.0111243 0.261876 -0.107221
-0.0552216 0.256229 -0.0745116
-0.00979778 0.230647 -0.053083
-
-0.0552216 0.256229 -0.0745116
-0.0111243 0.261876 -0.107221
-0.0653106 0.303042 -0.114694
-
-0.0131568 0.309721 -0.147404
-0.0653106 0.303042 -0.114694
-0.0111243 0.261876 -0.107221
-
-0.0653106 0.303042 -0.114694
-0.0131568 0.309721 -0.147404
-0.0776866 0.360467 -0.136075
-
-0.0156499 0.368411 -0.168785
-0.0776866 0.360467 -0.136075
-0.0131568 0.309721 -0.147404
-
-0.0776866 0.360467 -0.136075
-0.0156499 0.368411 -0.168785
-0.0908568 0.421577 -0.136075
-
-0.0183031 0.430868 -0.168785
-0.0908568 0.421577 -0.136075
-0.0156499 0.368411 -0.168785
-
-0.0908568 0.421577 -0.136075
-0.0183031 0.430868 -0.168785
-0.103233 0.479002 -0.114694
-
-0.0207962 0.489558 -0.147404
-0.103233 0.479002 -0.114694
-0.0183031 0.430868 -0.168785
-
-0.103233 0.479002 -0.114694
-0.0207962 0.489558 -0.147404
-0.113322 0.525815 -0.0745116
-
-0.0228286 0.537403 -0.107221
-0.113322 0.525815 -0.0745116
-0.0207962 0.489558 -0.147404
-
-0.113322 0.525815 -0.0745116
-0.0228286 0.537403 -0.107221
-0.119907 0.55637 -0.0203735
-
-0.0241552 0.568632 -0.053083
-0.119907 0.55637 -0.0203735
-0.0228286 0.537403 -0.107221
-
-0.119907 0.55637 -0.0203735
-0.0241552 0.568632 -0.053083
-0.122194 0.566982 0.0411901
-
-0.0246159 0.579477 0.00848059
-0.122194 0.566982 0.0411901
-0.0241552 0.568632 -0.053083
-
-0.0246159 0.579477 0.00848059
--0.0736703 0.575302 -0.0251978
-0.0241552 0.568632 0.0700442
-
--0.0722915 0.564535 0.0363658
-0.0241552 0.568632 0.0700442
--0.0736703 0.575302 -0.0251978
-
-0.0241552 0.568632 0.0700442
--0.0722915 0.564535 0.0363658
-0.0228286 0.537403 0.124182
-
--0.0683214 0.533531 0.090504
-0.0228286 0.537403 0.124182
--0.0722915 0.564535 0.0363658
-
-0.0228286 0.537403 0.124182
--0.0683214 0.533531 0.090504
-0.0207962 0.489558 0.164365
-
--0.0622387 0.486031 0.130687
-0.0207962 0.489558 0.164365
--0.0683214 0.533531 0.090504
-
-0.0207962 0.489558 0.164365
--0.0622387 0.486031 0.130687
-0.0183031 0.430868 0.185746
-
--0.0547773 0.427764 0.152068
-0.0183031 0.430868 0.185746
--0.0622387 0.486031 0.130687
-
-0.0183031 0.430868 0.185746
--0.0547773 0.427764 0.152068
-0.0156499 0.368411 0.185746
-
--0.046837 0.365757 0.152068
-0.0156499 0.368411 0.185746
--0.0547773 0.427764 0.152068
-
-0.0156499 0.368411 0.185746
--0.046837 0.365757 0.152068
-0.0131568 0.309721 0.164365
-
--0.0393755 0.307489 0.130687
-0.0131568 0.309721 0.164365
--0.046837 0.365757 0.152068
-
-0.0131568 0.309721 0.164365
--0.0393755 0.307489 0.130687
-0.0111243 0.261876 0.124182
-
--0.0332929 0.259989 0.090504
-0.0111243 0.261876 0.124182
--0.0393755 0.307489 0.130687
-
-0.0111243 0.261876 0.124182
--0.0332929 0.259989 0.090504
-0.00979778 0.230647 0.0700442
-
--0.0293227 0.228986 0.0363658
-0.00979778 0.230647 0.0700442
--0.0332929 0.259989 0.090504
-
-0.00979778 0.230647 0.0700442
--0.0293227 0.228986 0.0363658
-0.00933706 0.219802 0.00848059
-
--0.0279439 0.218218 -0.0251978
-0.00933706 0.219802 0.00848059
--0.0293227 0.228986 0.0363658
-
-0.00933706 0.219802 0.00848059
--0.0279439 0.218218 -0.0251978
-0.00979778 0.230647 -0.053083
-
--0.0293227 0.228986 -0.0867614
-0.00979778 0.230647 -0.053083
--0.0279439 0.218218 -0.0251978
-
-0.00979778 0.230647 -0.053083
--0.0293227 0.228986 -0.0867614
-0.0111243 0.261876 -0.107221
-
--0.0332929 0.259989 -0.1409
-0.0111243 0.261876 -0.107221
--0.0293227 0.228986 -0.0867614
-
-0.0111243 0.261876 -0.107221
--0.0332929 0.259989 -0.1409
-0.0131568 0.309721 -0.147404
-
--0.0393755 0.307489 -0.181082
-0.0131568 0.309721 -0.147404
--0.0332929 0.259989 -0.1409
-
-0.0131568 0.309721 -0.147404
--0.0393755 0.307489 -0.181082
-0.0156499 0.368411 -0.168785
-
--0.046837 0.365757 -0.202463
-0.0156499 0.368411 -0.168785
--0.0393755 0.307489 -0.181082
-
-0.0156499 0.368411 -0.168785
--0.046837 0.365757 -0.202463
-0.0183031 0.430868 -0.168785
-
--0.0547773 0.427764 -0.202463
-0.0183031 0.430868 -0.168785
--0.046837 0.365757 -0.202463
-
-0.0183031 0.430868 -0.168785
--0.0547773 0.427764 -0.202463
-0.0207962 0.489558 -0.147404
-
--0.0622387 0.486031 -0.181082
-0.0207962 0.489558 -0.147404
--0.0547773 0.427764 -0.202463
-
-0.0207962 0.489558 -0.147404
--0.0622387 0.486031 -0.181082
-0.0228286 0.537403 -0.107221
-
--0.0683214 0.533531 -0.1409
-0.0228286 0.537403 -0.107221
--0.0622387 0.486031 -0.181082
-
-0.0228286 0.537403 -0.107221
--0.0683214 0.533531 -0.1409
-0.0241552 0.568632 -0.053083
-
--0.0722915 0.564535 -0.0867614
-0.0241552 0.568632 -0.053083
--0.0683214 0.533531 -0.1409
-
-0.0241552 0.568632 -0.053083
--0.0722915 0.564535 -0.0867614
-0.0246159 0.579477 0.00848059
-
--0.0736703 0.575302 -0.0251978
-0.0246159 0.579477 0.00848059
--0.0722915 0.564535 -0.0867614
-
--0.0736703 0.575302 -0.0251978
--0.169837 0.554577 -0.0559975
--0.0722915 0.564535 0.0363658
-
--0.166659 0.544197 0.00556615
--0.0722915 0.564535 0.0363658
--0.169837 0.554577 -0.0559975
-
--0.0722915 0.564535 0.0363658
--0.166659 0.544197 0.00556615
--0.0683214 0.533531 0.090504
-
--0.157506 0.514311 0.0597043
--0.0683214 0.533531 0.090504
--0.166659 0.544197 0.00556615
-
--0.0683214 0.533531 0.090504
--0.157506 0.514311 0.0597043
--0.0622387 0.486031 0.130687
-
--0.143483 0.468522 0.0998871
--0.0622387 0.486031 0.130687
--0.157506 0.514311 0.0597043
-
--0.0622387 0.486031 0.130687
--0.143483 0.468522 0.0998871
--0.0547773 0.427764 0.152068
-
--0.126282 0.412353 0.121268
--0.0547773 0.427764 0.152068
--0.143483 0.468522 0.0998871
-
--0.0547773 0.427764 0.152068
--0.126282 0.412353 0.121268
--0.046837 0.365757 0.152068
-
--0.107976 0.35258 0.121268
--0.046837 0.365757 0.152068
--0.126282 0.412353 0.121268
-
--0.046837 0.365757 0.152068
--0.107976 0.35258 0.121268
--0.0393755 0.307489 0.130687
-
--0.0907751 0.296412 0.0998871
--0.0393755 0.307489 0.130687
--0.107976 0.35258 0.121268
-
--0.0393755 0.307489 0.130687
--0.0907751 0.296412 0.0998871
--0.0332929 0.259989 0.090504
-
--0.0767524 0.250623 0.0597043
--0.0332929 0.259989 0.090504
--0.0907751 0.296412 0.0998871
-
--0.0332929 0.259989 0.090504
--0.0767524 0.250623 0.0597043
--0.0293227 0.228986 0.0363658
-
--0.0675997 0.220736 0.00556615
--0.0293227 0.228986 0.0363658
--0.0767524 0.250623 0.0597043
-
--0.0293227 0.228986 0.0363658
--0.0675997 0.220736 0.00556615
--0.0279439 0.218218 -0.0251978
-
--0.064421 0.210357 -0.0559975
--0.0279439 0.218218 -0.0251978
--0.0675997 0.220736 0.00556615
-
--0.0279439 0.218218 -0.0251978
--0.064421 0.210357 -0.0559975
--0.0293227 0.228986 -0.0867614
-
--0.0675997 0.220736 -0.117561
--0.0293227 0.228986 -0.0867614
--0.064421 0.210357 -0.0559975
-
--0.0293227 0.228986 -0.0867614
--0.0675997 0.220736 -0.117561
--0.0332929 0.259989 -0.1409
-
--0.0767524 0.250623 -0.171699
--0.0332929 0.259989 -0.1409
--0.0675997 0.220736 -0.117561
-
--0.0332929 0.259989 -0.1409
--0.0767524 0.250623 -0.171699
--0.0393755 0.307489 -0.181082
-
--0.0907751 0.296412 -0.211882
--0.0393755 0.307489 -0.181082
--0.0767524 0.250623 -0.171699
-
--0.0393755 0.307489 -0.181082
--0.0907751 0.296412 -0.211882
--0.046837 0.365757 -0.202463
-
--0.107976 0.35258 -0.233263
--0.046837 0.365757 -0.202463
--0.0907751 0.296412 -0.211882
-
--0.046837 0.365757 -0.202463
--0.107976 0.35258 -0.233263
--0.0547773 0.427764 -0.202463
-
--0.126282 0.412353 -0.233263
--0.0547773 0.427764 -0.202463
--0.107976 0.35258 -0.233263
-
--0.0547773 0.427764 -0.202463
--0.126282 0.412353 -0.233263
--0.0622387 0.486031 -0.181082
-
--0.143483 0.468522 -0.211882
--0.0622387 0.486031 -0.181082
--0.126282 0.412353 -0.233263
-
--0.0622387 0.486031 -0.181082
--0.143483 0.468522 -0.211882
--0.0683214 0.533531 -0.1409
-
--0.157506 0.514311 -0.171699
--0.0683214 0.533531 -0.1409
--0.143483 0.468522 -0.211882
-
--0.0683214 0.533531 -0.1409
--0.157506 0.514311 -0.171699
--0.0722915 0.564535 -0.0867614
-
--0.166659 0.544197 -0.117561
--0.0722915 0.564535 -0.0867614
--0.157506 0.514311 -0.171699
-
--0.0722915 0.564535 -0.0867614
--0.166659 0.544197 -0.117561
--0.0736703 0.575302 -0.0251978
-
--0.169837 0.554577 -0.0559975
--0.0736703 0.575302 -0.0251978
--0.166659 0.544197 -0.117561
-
--0.169837 0.554577 -0.0559975
--0.261118 0.517897 -0.0803997
--0.166659 0.544197 0.00556615
-
--0.256231 0.508204 -0.0188361
--0.166659 0.544197 0.00556615
--0.261118 0.517897 -0.0803997
-
--0.166659 0.544197 0.00556615
--0.256231 0.508204 -0.0188361
--0.157506 0.514311 0.0597043
-
--0.242159 0.480294 0.0353021
--0.157506 0.514311 0.0597043
--0.256231 0.508204 -0.0188361
-
--0.157506 0.514311 0.0597043
--0.242159 0.480294 0.0353021
--0.143483 0.468522 0.0998871
-
--0.2206 0.437534 0.0754849
--0.143483 0.468522 0.0998871
--0.242159 0.480294 0.0353021
-
--0.143483 0.468522 0.0998871
--0.2206 0.437534 0.0754849
--0.126282 0.412353 0.121268
-
--0.194153 0.38508 0.0968657
--0.126282 0.412353 0.121268
--0.2206 0.437534 0.0754849
-
--0.126282 0.412353 0.121268
--0.194153 0.38508 0.0968657
--0.107976 0.35258 0.121268
-
--0.16601 0.32926 0.0968657
--0.107976 0.35258 0.121268
--0.194153 0.38508 0.0968657
-
--0.107976 0.35258 0.121268
--0.16601 0.32926 0.0968657
--0.0907751 0.296412 0.0998871
-
--0.139563 0.276807 0.0754849
--0.0907751 0.296412 0.0998871
--0.16601 0.32926 0.0968657
-
--0.0907751 0.296412 0.0998871
--0.139563 0.276807 0.0754849
--0.0767524 0.250623 0.0597043
-
--0.118004 0.234047 0.0353021
--0.0767524 0.250623 0.0597043
--0.139563 0.276807 0.0754849
-
--0.0767524 0.250623 0.0597043
--0.118004 0.234047 0.0353021
--0.0675997 0.220736 0.00556615
-
--0.103932 0.206137 -0.0188361
--0.0675997 0.220736 0.00556615
--0.118004 0.234047 0.0353021
-
--0.0675997 0.220736 0.00556615
--0.103932 0.206137 -0.0188361
--0.064421 0.210357 -0.0559975
-
--0.0990448 0.196444 -0.0803997
--0.064421 0.210357 -0.0559975
--0.103932 0.206137 -0.0188361
-
--0.064421 0.210357 -0.0559975
--0.0990448 0.196444 -0.0803997
--0.0675997 0.220736 -0.117561
-
--0.103932 0.206137 -0.141963
--0.0675997 0.220736 -0.117561
--0.0990448 0.196444 -0.0803997
-
--0.0675997 0.220736 -0.117561
--0.103932 0.206137 -0.141963
--0.0767524 0.250623 -0.171699
-
--0.118004 0.234047 -0.196101
--0.0767524 0.250623 -0.171699
--0.103932 0.206137 -0.141963
-
--0.0767524 0.250623 -0.171699
--0.118004 0.234047 -0.196101
--0.0907751 0.296412 -0.211882
-
--0.139563 0.276807 -0.236284
--0.0907751 0.296412 -0.211882
--0.118004 0.234047 -0.196101
-
--0.0907751 0.296412 -0.211882
--0.139563 0.276807 -0.236284
--0.107976 0.35258 -0.233263
-
--0.16601 0.32926 -0.257665
--0.107976 0.35258 -0.233263
--0.139563 0.276807 -0.236284
-
--0.107976 0.35258 -0.233263
--0.16601 0.32926 -0.257665
--0.126282 0.412353 -0.233263
-
--0.194153 0.38508 -0.257665
--0.126282 0.412353 -0.233263
--0.16601 0.32926 -0.257665
-
--0.126282 0.412353 -0.233263
--0.194153 0.38508 -0.257665
--0.143483 0.468522 -0.211882
-
--0.2206 0.437534 -0.236284
--0.143483 0.468522 -0.211882
--0.194153 0.38508 -0.257665
-
--0.143483 0.468522 -0.211882
--0.2206 0.437534 -0.236284
--0.157506 0.514311 -0.171699
-
--0.242159 0.480294 -0.196101
--0.157506 0.514311 -0.171699
--0.2206 0.437534 -0.236284
-
--0.157506 0.514311 -0.171699
--0.242159 0.480294 -0.196101
--0.166659 0.544197 -0.117561
-
--0.256231 0.508204 -0.141963
--0.166659 0.544197 -0.117561
--0.242159 0.480294 -0.196101
-
--0.166659 0.544197 -0.117561
--0.256231 0.508204 -0.141963
--0.169837 0.554577 -0.0559975
-
--0.261118 0.517897 -0.0803997
--0.169837 0.554577 -0.0559975
--0.256231 0.508204 -0.141963
-
--0.261118 0.517897 -0.0803997
--0.344887 0.466318 -0.0956167
--0.256231 0.508204 -0.0188361
-
--0.338432 0.457591 -0.034053
--0.256231 0.508204 -0.0188361
--0.344887 0.466318 -0.0956167
-
--0.256231 0.508204 -0.0188361
--0.338432 0.457591 -0.034053
--0.242159 0.480294 0.0353021
-
--0.319846 0.43246 0.0200851
--0.242159 0.480294 0.0353021
--0.338432 0.457591 -0.034053
-
--0.242159 0.480294 0.0353021
--0.319846 0.43246 0.0200851
--0.2206 0.437534 0.0754849
-
--0.29137 0.393959 0.0602679
--0.2206 0.437534 0.0754849
--0.319846 0.43246 0.0200851
-
--0.2206 0.437534 0.0754849
--0.29137 0.393959 0.0602679
--0.194153 0.38508 0.0968657
-
--0.25644 0.346729 0.0816487
--0.194153 0.38508 0.0968657
--0.29137 0.393959 0.0602679
-
--0.194153 0.38508 0.0968657
--0.25644 0.346729 0.0816487
--0.16601 0.32926 0.0968657
-
--0.219267 0.296469 0.0816487
--0.16601 0.32926 0.0968657
--0.25644 0.346729 0.0816487
-
--0.16601 0.32926 0.0968657
--0.219267 0.296469 0.0816487
--0.139563 0.276807 0.0754849
-
--0.184336 0.249239 0.0602679
--0.139563 0.276807 0.0754849
--0.219267 0.296469 0.0816487
-
--0.139563 0.276807 0.0754849
--0.184336 0.249239 0.0602679
--0.118004 0.234047 0.0353021
-
--0.15586 0.210737 0.0200851
--0.118004 0.234047 0.0353021
--0.184336 0.249239 0.0602679
-
--0.118004 0.234047 0.0353021
--0.15586 0.210737 0.0200851
--0.103932 0.206137 -0.0188361
-
--0.137274 0.185607 -0.034053
--0.103932 0.206137 -0.0188361
--0.15586 0.210737 0.0200851
-
--0.103932 0.206137 -0.0188361
--0.137274 0.185607 -0.034053
--0.0990448 0.196444 -0.0803997
-
--0.130819 0.176879 -0.0956167
--0.0990448 0.196444 -0.0803997
--0.137274 0.185607 -0.034053
-
--0.0990448 0.196444 -0.0803997
--0.130819 0.176879 -0.0956167
--0.103932 0.206137 -0.141963
-
--0.137274 0.185607 -0.15718
--0.103932 0.206137 -0.141963
--0.130819 0.176879 -0.0956167
-
--0.103932 0.206137 -0.141963
--0.137274 0.185607 -0.15718
--0.118004 0.234047 -0.196101
-
--0.15586 0.210737 -0.211318
--0.118004 0.234047 -0.196101
--0.137274 0.185607 -0.15718
-
--0.118004 0.234047 -0.196101
--0.15586 0.210737 -0.211318
--0.139563 0.276807 -0.236284
-
--0.184336 0.249239 -0.251501
--0.139563 0.276807 -0.236284
--0.15586 0.210737 -0.211318
-
--0.139563 0.276807 -0.236284
--0.184336 0.249239 -0.251501
--0.16601 0.32926 -0.257665
-
--0.219267 0.296469 -0.272882
--0.16601 0.32926 -0.257665
--0.184336 0.249239 -0.251501
-
--0.16601 0.32926 -0.257665
--0.219267 0.296469 -0.272882
--0.194153 0.38508 -0.257665
-
--0.25644 0.346729 -0.272882
--0.194153 0.38508 -0.257665
--0.219267 0.296469 -0.272882
-
--0.194153 0.38508 -0.257665
--0.25644 0.346729 -0.272882
--0.2206 0.437534 -0.236284
-
--0.29137 0.393959 -0.251501
--0.2206 0.437534 -0.236284
--0.25644 0.346729 -0.272882
-
--0.2206 0.437534 -0.236284
--0.29137 0.393959 -0.251501
--0.242159 0.480294 -0.196101
-
--0.319846 0.43246 -0.211318
--0.242159 0.480294 -0.196101
--0.29137 0.393959 -0.251501
-
--0.242159 0.480294 -0.196101
--0.319846 0.43246 -0.211318
--0.256231 0.508204 -0.141963
-
--0.338432 0.457591 -0.15718
--0.256231 0.508204 -0.141963
--0.319846 0.43246 -0.211318
-
--0.256231 0.508204 -0.141963
--0.338432 0.457591 -0.15718
--0.261118 0.517897 -0.0803997
-
--0.344887 0.466318 -0.0956167
--0.261118 0.517897 -0.0803997
--0.338432 0.457591 -0.15718
-
--0.344887 0.466318 -0.0956167
--0.418735 0.401325 -0.0999099
--0.338432 0.457591 -0.034053
-
--0.410897 0.393813 -0.0383463
--0.338432 0.457591 -0.034053
--0.418735 0.401325 -0.0999099
-
--0.338432 0.457591 -0.034053
--0.410897 0.393813 -0.0383463
--0.319846 0.43246 0.0200851
-
--0.388332 0.372186 0.0157919
--0.319846 0.43246 0.0200851
--0.410897 0.393813 -0.0383463
-
--0.319846 0.43246 0.0200851
--0.388332 0.372186 0.0157919
--0.29137 0.393959 0.0602679
-
--0.353758 0.33905 0.0559747
--0.29137 0.393959 0.0602679
--0.388332 0.372186 0.0157919
-
--0.29137 0.393959 0.0602679
--0.353758 0.33905 0.0559747
--0.25644 0.346729 0.0816487
-
--0.311348 0.298403 0.0773555
--0.25644 0.346729 0.0816487
--0.353758 0.33905 0.0559747
-
--0.25644 0.346729 0.0816487
--0.311348 0.298403 0.0773555
--0.219267 0.296469 0.0816487
-
--0.266216 0.255148 0.0773555
--0.219267 0.296469 0.0816487
--0.311348 0.298403 0.0773555
-
--0.219267 0.296469 0.0816487
--0.266216 0.255148 0.0773555
--0.184336 0.249239 0.0602679
-
--0.223806 0.214501 0.0559747
--0.184336 0.249239 0.0602679
--0.266216 0.255148 0.0773555
-
--0.184336 0.249239 0.0602679
--0.223806 0.214501 0.0559747
--0.15586 0.210737 0.0200851
-
--0.189233 0.181365 0.0157919
--0.15586 0.210737 0.0200851
--0.223806 0.214501 0.0559747
-
--0.15586 0.210737 0.0200851
--0.189233 0.181365 0.0157919
--0.137274 0.185607 -0.034053
-
--0.166667 0.159738 -0.0383463
--0.137274 0.185607 -0.034053
--0.189233 0.181365 0.0157919
-
--0.137274 0.185607 -0.034053
--0.166667 0.159738 -0.0383463
--0.130819 0.176879 -0.0956167
-
--0.15883 0.152227 -0.0999099
--0.130819 0.176879 -0.0956167
--0.166667 0.159738 -0.0383463
-
--0.130819 0.176879 -0.0956167
--0.15883 0.152227 -0.0999099
--0.137274 0.185607 -0.15718
-
--0.166667 0.159738 -0.161474
--0.137274 0.185607 -0.15718
--0.15883 0.152227 -0.0999099
-
--0.137274 0.185607 -0.15718
--0.166667 0.159738 -0.161474
--0.15586 0.210737 -0.211318
-
--0.189233 0.181365 -0.215612
--0.15586 0.210737 -0.211318
--0.166667 0.159738 -0.161474
-
--0.15586 0.210737 -0.211318
--0.189233 0.181365 -0.215612
--0.184336 0.249239 -0.251501
-
--0.223806 0.214501 -0.255794
--0.184336 0.249239 -0.251501
--0.189233 0.181365 -0.215612
-
--0.184336 0.249239 -0.251501
--0.223806 0.214501 -0.255794
--0.219267 0.296469 -0.272882
-
--0.266216 0.255148 -0.277175
--0.219267 0.296469 -0.272882
--0.223806 0.214501 -0.255794
-
--0.219267 0.296469 -0.272882
--0.266216 0.255148 -0.277175
--0.25644 0.346729 -0.272882
-
--0.311348 0.298403 -0.277175
--0.25644 0.346729 -0.272882
--0.266216 0.255148 -0.277175
-
--0.25644 0.346729 -0.272882
--0.311348 0.298403 -0.277175
--0.29137 0.393959 -0.251501
-
--0.353758 0.33905 -0.255794
--0.29137 0.393959 -0.251501
--0.311348 0.298403 -0.277175
-
--0.29137 0.393959 -0.251501
--0.353758 0.33905 -0.255794
--0.319846 0.43246 -0.211318
-
--0.388332 0.372186 -0.215612
--0.319846 0.43246 -0.211318
--0.353758 0.33905 -0.255794
-
--0.319846 0.43246 -0.211318
--0.388332 0.372186 -0.215612
--0.338432 0.457591 -0.15718
-
--0.410897 0.393813 -0.161474
--0.338432 0.457591 -0.15718
--0.388332 0.372186 -0.215612
-
--0.338432 0.457591 -0.15718
--0.410897 0.393813 -0.161474
--0.344887 0.466318 -0.0956167
-
--0.418735 0.401325 -0.0999099
--0.344887 0.466318 -0.0956167
--0.410897 0.393813 -0.161474
-
--0.418735 0.401325 -0.0999099
--0.480536 0.324785 -0.0927889
--0.410897 0.393813 -0.0383463
-
--0.471542 0.318707 -0.0312253
--0.410897 0.393813 -0.0383463
--0.480536 0.324785 -0.0927889
-
--0.410897 0.393813 -0.0383463
--0.471542 0.318707 -0.0312253
--0.388332 0.372186 0.0157919
-
--0.445645 0.301204 0.0229129
--0.388332 0.372186 0.0157919
--0.471542 0.318707 -0.0312253
-
--0.388332 0.372186 0.0157919
--0.445645 0.301204 0.0229129
--0.353758 0.33905 0.0559747
-
--0.40597 0.274388 0.0630957
--0.353758 0.33905 0.0559747
--0.445645 0.301204 0.0229129
-
--0.353758 0.33905 0.0559747
--0.40597 0.274388 0.0630957
--0.311348 0.298403 0.0773555
-
--0.3573 0.241493 0.0844765
--0.311348 0.298403 0.0773555
--0.40597 0.274388 0.0630957
-
--0.311348 0.298403 0.0773555
--0.3573 0.241493 0.0844765
--0.266216 0.255148 0.0773555
-
--0.305507 0.206487 0.0844765
--0.266216 0.255148 0.0773555
--0.3573 0.241493 0.0844765
-
--0.266216 0.255148 0.0773555
--0.305507 0.206487 0.0844765
--0.223806 0.214501 0.0559747
-
--0.256838 0.173592 0.0630957
--0.223806 0.214501 0.0559747
--0.305507 0.206487 0.0844765
-
--0.223806 0.214501 0.0559747
--0.256838 0.173592 0.0630957
--0.189233 0.181365 0.0157919
-
--0.217162 0.146776 0.0229129
--0.189233 0.181365 0.0157919
--0.256838 0.173592 0.0630957
-
--0.189233 0.181365 0.0157919
--0.217162 0.146776 0.0229129
--0.166667 0.159738 -0.0383463
-
--0.191266 0.129273 -0.0312253
--0.166667 0.159738 -0.0383463
--0.217162 0.146776 0.0229129
-
--0.166667 0.159738 -0.0383463
--0.191266 0.129273 -0.0312253
--0.15883 0.152227 -0.0999099
-
--0.182272 0.123194 -0.0927889
--0.15883 0.152227 -0.0999099
--0.191266 0.129273 -0.0312253
-
--0.15883 0.152227 -0.0999099
--0.182272 0.123194 -0.0927889
--0.166667 0.159738 -0.161474
-
--0.191266 0.129273 -0.154353
--0.166667 0.159738 -0.161474
--0.182272 0.123194 -0.0927889
-
--0.166667 0.159738 -0.161474
--0.191266 0.129273 -0.154353
--0.189233 0.181365 -0.215612
-
--0.217162 0.146776 -0.208491
--0.189233 0.181365 -0.215612
--0.191266 0.129273 -0.154353
-
--0.189233 0.181365 -0.215612
--0.217162 0.146776 -0.208491
--0.223806 0.214501 -0.255794
-
--0.256838 0.173592 -0.248673
--0.223806 0.214501 -0.255794
--0.217162 0.146776 -0.208491
-
--0.223806 0.214501 -0.255794
--0.256838 0.173592 -0.248673
--0.266216 0.255148 -0.277175
-
--0.305507 0.206487 -0.270054
--0.266216 0.255148 -0.277175
--0.256838 0.173592 -0.248673
-
--0.266216 0.255148 -0.277175
--0.305507 0.206487 -0.270054
--0.311348 0.298403 -0.277175
-
--0.3573 0.241493 -0.270054
--0.311348 0.298403 -0.277175
--0.305507 0.206487 -0.270054
-
--0.311348 0.298403 -0.277175
--0.3573 0.241493 -0.270054
--0.353758 0.33905 -0.255794
-
--0.40597 0.274388 -0.248673
--0.353758 0.33905 -0.255794
--0.3573 0.241493 -0.270054
-
--0.353758 0.33905 -0.255794
--0.40597 0.274388 -0.248673
--0.388332 0.372186 -0.215612
-
--0.445645 0.301204 -0.208491
--0.388332 0.372186 -0.215612
--0.40597 0.274388 -0.248673
-
--0.388332 0.372186 -0.215612
--0.445645 0.301204 -0.208491
--0.410897 0.393813 -0.161474
-
--0.471542 0.318707 -0.154353
--0.410897 0.393813 -0.161474
--0.445645 0.301204 -0.208491
-
--0.410897 0.393813 -0.161474
--0.471542 0.318707 -0.154353
--0.418735 0.401325 -0.0999099
-
--0.480536 0.324785 -0.0927889
--0.418735 0.401325 -0.0999099
--0.471542 0.318707 -0.154353
-
--0.480536 0.324785 -0.0927889
--0.528513 0.238903 -0.0750672
--0.471542 0.318707 -0.0312253
-
--0.518621 0.234431 -0.0135036
--0.471542 0.318707 -0.0312253
--0.528513 0.238903 -0.0750672
-
--0.471542 0.318707 -0.0312253
--0.518621 0.234431 -0.0135036
--0.445645 0.301204 0.0229129
-
--0.490139 0.221557 0.0406345
--0.445645 0.301204 0.0229129
--0.518621 0.234431 -0.0135036
-
--0.445645 0.301204 0.0229129
--0.490139 0.221557 0.0406345
--0.40597 0.274388 0.0630957
-
--0.446502 0.201832 0.0808173
--0.40597 0.274388 0.0630957
--0.490139 0.221557 0.0406345
-
--0.40597 0.274388 0.0630957
--0.446502 0.201832 0.0808173
--0.3573 0.241493 0.0844765
-
--0.392973 0.177635 0.102198
--0.3573 0.241493 0.0844765
--0.446502 0.201832 0.0808173
-
--0.3573 0.241493 0.0844765
--0.392973 0.177635 0.102198
--0.305507 0.206487 0.0844765
-
--0.336009 0.151886 0.102198
--0.305507 0.206487 0.0844765
--0.392973 0.177635 0.102198
-
--0.305507 0.206487 0.0844765
--0.336009 0.151886 0.102198
--0.256838 0.173592 0.0630957
-
--0.282481 0.127689 0.0808173
--0.256838 0.173592 0.0630957
--0.336009 0.151886 0.102198
-
--0.256838 0.173592 0.0630957
--0.282481 0.127689 0.0808173
--0.217162 0.146776 0.0229129
-
--0.238844 0.107964 0.0406345
--0.217162 0.146776 0.0229129
--0.282481 0.127689 0.0808173
-
--0.217162 0.146776 0.0229129
--0.238844 0.107964 0.0406345
--0.191266 0.129273 -0.0312253
-
--0.210362 0.0950896 -0.0135036
--0.191266 0.129273 -0.0312253
--0.238844 0.107964 0.0406345
-
--0.191266 0.129273 -0.0312253
--0.210362 0.0950896 -0.0135036
--0.182272 0.123194 -0.0927889
-
--0.20047 0.0906183 -0.0750672
--0.182272 0.123194 -0.0927889
--0.210362 0.0950896 -0.0135036
-
--0.182272 0.123194 -0.0927889
--0.20047 0.0906183 -0.0750672
--0.191266 0.129273 -0.154353
-
--0.210362 0.0950896 -0.136631
--0.191266 0.129273 -0.154353
--0.20047 0.0906183 -0.0750672
-
--0.191266 0.129273 -0.154353
--0.210362 0.0950896 -0.136631
--0.217162 0.146776 -0.208491
-
--0.238844 0.107964 -0.190769
--0.217162 0.146776 -0.208491
--0.210362 0.0950896 -0.136631
-
--0.217162 0.146776 -0.208491
--0.238844 0.107964 -0.190769
--0.256838 0.173592 -0.248673
-
--0.282481 0.127689 -0.230952
--0.256838 0.173592 -0.248673
--0.238844 0.107964 -0.190769
-
--0.256838 0.173592 -0.248673
--0.282481 0.127689 -0.230952
--0.305507 0.206487 -0.270054
-
--0.336009 0.151886 -0.252333
--0.305507 0.206487 -0.270054
--0.282481 0.127689 -0.230952
-
--0.305507 0.206487 -0.270054
--0.336009 0.151886 -0.252333
--0.3573 0.241493 -0.270054
-
--0.392973 0.177635 -0.252333
--0.3573 0.241493 -0.270054
--0.336009 0.151886 -0.252333
-
--0.3573 0.241493 -0.270054
--0.392973 0.177635 -0.252333
--0.40597 0.274388 -0.248673
-
--0.446502 0.201832 -0.230952
--0.40597 0.274388 -0.248673
--0.392973 0.177635 -0.252333
-
--0.40597 0.274388 -0.248673
--0.446502 0.201832 -0.230952
--0.445645 0.301204 -0.208491
-
--0.490139 0.221557 -0.190769
--0.445645 0.301204 -0.208491
--0.446502 0.201832 -0.230952
-
--0.445645 0.301204 -0.208491
--0.490139 0.221557 -0.190769
--0.471542 0.318707 -0.154353
-
--0.518621 0.234431 -0.136631
--0.471542 0.318707 -0.154353
--0.490139 0.221557 -0.190769
-
--0.471542 0.318707 -0.154353
--0.518621 0.234431 -0.136631
--0.480536 0.324785 -0.0927889
-
--0.528513 0.238903 -0.0750672
--0.480536 0.324785 -0.0927889
--0.518621 0.234431 -0.136631
-
--0.528513 0.238903 -0.0750672
--0.561285 0.146147 -0.0487695
--0.518621 0.234431 -0.0135036
-
--0.55078 0.143412 0.0127941
--0.518621 0.234431 -0.0135036
--0.561285 0.146147 -0.0487695
-
--0.518621 0.234431 -0.0135036
--0.55078 0.143412 0.0127941
--0.490139 0.221557 0.0406345
-
--0.520532 0.135536 0.0669323
--0.490139 0.221557 0.0406345
--0.55078 0.143412 0.0127941
-
--0.490139 0.221557 0.0406345
--0.520532 0.135536 0.0669323
--0.446502 0.201832 0.0808173
-
--0.474189 0.123469 0.107115
--0.446502 0.201832 0.0808173
--0.520532 0.135536 0.0669323
-
--0.446502 0.201832 0.0808173
--0.474189 0.123469 0.107115
--0.392973 0.177635 0.102198
-
--0.417341 0.108667 0.128496
--0.392973 0.177635 0.102198
--0.474189 0.123469 0.107115
-
--0.392973 0.177635 0.102198
--0.417341 0.108667 0.128496
--0.336009 0.151886 0.102198
-
--0.356845 0.0929152 0.128496
--0.336009 0.151886 0.102198
--0.417341 0.108667 0.128496
-
--0.336009 0.151886 0.102198
--0.356845 0.0929152 0.128496
--0.282481 0.127689 0.0808173
-
--0.299997 0.0781132 0.107115
--0.282481 0.127689 0.0808173
--0.356845 0.0929152 0.128496
-
--0.282481 0.127689 0.0808173
--0.299997 0.0781132 0.107115
--0.238844 0.107964 0.0406345
-
--0.253654 0.0660465 0.0669323
--0.238844 0.107964 0.0406345
--0.299997 0.0781132 0.107115
-
--0.238844 0.107964 0.0406345
--0.253654 0.0660465 0.0669323
--0.210362 0.0950896 -0.0135036
-
--0.223406 0.0581705 0.0127941
--0.210362 0.0950896 -0.0135036
--0.253654 0.0660465 0.0669323
-
--0.210362 0.0950896 -0.0135036
--0.223406 0.0581705 0.0127941
--0.20047 0.0906183 -0.0750672
-
--0.212901 0.0554352 -0.0487695
--0.20047 0.0906183 -0.0750672
--0.223406 0.0581705 0.0127941
-
--0.20047 0.0906183 -0.0750672
--0.212901 0.0554352 -0.0487695
--0.210362 0.0950896 -0.136631
-
--0.223406 0.0581705 -0.110333
--0.210362 0.0950896 -0.136631
--0.212901 0.0554352 -0.0487695
-
--0.210362 0.0950896 -0.136631
--0.223406 0.0581705 -0.110333
--0.238844 0.107964 -0.190769
-
--0.253654 0.0660465 -0.164471
--0.238844 0.107964 -0.190769
--0.223406 0.0581705 -0.110333
-
--0.238844 0.107964 -0.190769
--0.253654 0.0660465 -0.164471
--0.282481 0.127689 -0.230952
-
--0.299997 0.0781132 -0.204654
--0.282481 0.127689 -0.230952
--0.253654 0.0660465 -0.164471
-
--0.282481 0.127689 -0.230952
--0.299997 0.0781132 -0.204654
--0.336009 0.151886 -0.252333
-
--0.356845 0.0929152 -0.226035
--0.336009 0.151886 -0.252333
--0.299997 0.0781132 -0.204654
-
--0.336009 0.151886 -0.252333
--0.356845 0.0929152 -0.226035
--0.392973 0.177635 -0.252333
-
--0.417341 0.108667 -0.226035
--0.392973 0.177635 -0.252333
--0.356845 0.0929152 -0.226035
-
--0.392973 0.177635 -0.252333
--0.417341 0.108667 -0.226035
--0.446502 0.201832 -0.230952
-
--0.474189 0.123469 -0.204654
--0.446502 0.201832 -0.230952
--0.417341 0.108667 -0.226035
-
--0.446502 0.201832 -0.230952
--0.474189 0.123469 -0.204654
--0.490139 0.221557 -0.190769
-
--0.520532 0.135536 -0.164471
--0.490139 0.221557 -0.190769
--0.474189 0.123469 -0.204654
-
--0.490139 0.221557 -0.190769
--0.520532 0.135536 -0.164471
--0.518621 0.234431 -0.136631
-
--0.55078 0.143412 -0.110333
--0.518621 0.234431 -0.136631
--0.520532 0.135536 -0.164471
-
--0.518621 0.234431 -0.136631
--0.55078 0.143412 -0.110333
--0.528513 0.238903 -0.0750672
-
--0.561285 0.146147 -0.0487695
--0.528513 0.238903 -0.0750672
--0.55078 0.143412 -0.110333
-
--0.561285 0.146147 -0.0487695
--0.577911 0.0491874 -0.0169001
--0.55078 0.143412 0.0127941
-
--0.567094 0.0482668 0.0446635
--0.55078 0.143412 0.0127941
--0.577911 0.0491874 -0.0169001
-
--0.55078 0.143412 0.0127941
--0.567094 0.0482668 0.0446635
--0.520532 0.135536 0.0669323
-
--0.53595 0.0456161 0.0988017
--0.520532 0.135536 0.0669323
--0.567094 0.0482668 0.0446635
-
--0.520532 0.135536 0.0669323
--0.53595 0.0456161 0.0988017
--0.474189 0.123469 0.107115
-
--0.488235 0.0415549 0.138984
--0.474189 0.123469 0.107115
--0.53595 0.0456161 0.0988017
-
--0.474189 0.123469 0.107115
--0.488235 0.0415549 0.138984
--0.417341 0.108667 0.128496
-
--0.429703 0.0365731 0.160365
--0.417341 0.108667 0.128496
--0.488235 0.0415549 0.138984
-
--0.417341 0.108667 0.128496
--0.429703 0.0365731 0.160365
--0.356845 0.0929152 0.128496
-
--0.367415 0.0312716 0.160365
--0.356845 0.0929152 0.128496
--0.429703 0.0365731 0.160365
-
--0.356845 0.0929152 0.128496
--0.367415 0.0312716 0.160365
--0.299997 0.0781132 0.107115
-
--0.308883 0.0262898 0.138984
--0.299997 0.0781132 0.107115
--0.367415 0.0312716 0.160365
-
--0.299997 0.0781132 0.107115
--0.308883 0.0262898 0.138984
--0.253654 0.0660465 0.0669323
-
--0.261168 0.0222287 0.0988017
--0.253654 0.0660465 0.0669323
--0.308883 0.0262898 0.138984
-
--0.253654 0.0660465 0.0669323
--0.261168 0.0222287 0.0988017
--0.223406 0.0581705 0.0127941
-
--0.230024 0.0195779 0.0446635
--0.223406 0.0581705 0.0127941
--0.261168 0.0222287 0.0988017
-
--0.223406 0.0581705 0.0127941
--0.230024 0.0195779 0.0446635
--0.212901 0.0554352 -0.0487695
-
--0.219207 0.0186573 -0.0169001
--0.212901 0.0554352 -0.0487695
--0.230024 0.0195779 0.0446635
-
--0.212901 0.0554352 -0.0487695
--0.219207 0.0186573 -0.0169001
--0.223406 0.0581705 -0.110333
-
--0.230024 0.0195779 -0.0784637
--0.223406 0.0581705 -0.110333
--0.219207 0.0186573 -0.0169001
-
--0.223406 0.0581705 -0.110333
--0.230024 0.0195779 -0.0784637
--0.253654 0.0660465 -0.164471
-
--0.261168 0.0222287 -0.132602
--0.253654 0.0660465 -0.164471
--0.230024 0.0195779 -0.0784637
-
--0.253654 0.0660465 -0.164471
--0.261168 0.0222287 -0.132602
--0.299997 0.0781132 -0.204654
-
--0.308883 0.0262898 -0.172785
--0.299997 0.0781132 -0.204654
--0.261168 0.0222287 -0.132602
-
--0.299997 0.0781132 -0.204654
--0.308883 0.0262898 -0.172785
--0.356845 0.0929152 -0.226035
-
--0.367415 0.0312716 -0.194165
--0.356845 0.0929152 -0.226035
--0.308883 0.0262898 -0.172785
-
--0.356845 0.0929152 -0.226035
--0.367415 0.0312716 -0.194165
--0.417341 0.108667 -0.226035
-
--0.429703 0.0365731 -0.194165
--0.417341 0.108667 -0.226035
--0.367415 0.0312716 -0.194165
-
--0.417341 0.108667 -0.226035
--0.429703 0.0365731 -0.194165
--0.474189 0.123469 -0.204654
-
--0.488235 0.0415549 -0.172785
--0.474189 0.123469 -0.204654
--0.429703 0.0365731 -0.194165
-
--0.474189 0.123469 -0.204654
--0.488235 0.0415549 -0.172785
--0.520532 0.135536 -0.164471
-
--0.53595 0.0456161 -0.132602
--0.520532 0.135536 -0.164471
--0.488235 0.0415549 -0.172785
-
--0.520532 0.135536 -0.164471
--0.53595 0.0456161 -0.132602
--0.55078 0.143412 -0.110333
-
--0.567094 0.0482668 -0.0784637
--0.55078 0.143412 -0.110333
--0.53595 0.0456161 -0.132602
-
--0.55078 0.143412 -0.110333
--0.567094 0.0482668 -0.0784637
--0.561285 0.146147 -0.0487695
-
--0.577911 0.0491874 -0.0169001
--0.561285 0.146147 -0.0487695
--0.567094 0.0482668 -0.0784637
-
--0.577911 0.0491874 -0.0169001
--0.577911 -0.0491874 0.0169001
--0.567094 0.0482668 0.0446635
-
--0.567094 -0.0482668 0.0784637
--0.567094 0.0482668 0.0446635
--0.577911 -0.0491874 0.0169001
-
--0.567094 0.0482668 0.0446635
--0.567094 -0.0482668 0.0784637
--0.53595 0.0456161 0.0988017
-
--0.53595 -0.0456161 0.132602
--0.53595 0.0456161 0.0988017
--0.567094 -0.0482668 0.0784637
-
--0.53595 0.0456161 0.0988017
--0.53595 -0.0456161 0.132602
--0.488235 0.0415549 0.138984
-
--0.488235 -0.0415549 0.172785
--0.488235 0.0415549 0.138984
--0.53595 -0.0456161 0.132602
-
--0.488235 0.0415549 0.138984
--0.488235 -0.0415549 0.172785
--0.429703 0.0365731 0.160365
-
--0.429703 -0.0365731 0.194165
--0.429703 0.0365731 0.160365
--0.488235 -0.0415549 0.172785
-
--0.429703 0.0365731 0.160365
--0.429703 -0.0365731 0.194165
--0.367415 0.0312716 0.160365
-
--0.367415 -0.0312716 0.194165
--0.367415 0.0312716 0.160365
--0.429703 -0.0365731 0.194165
-
--0.367415 0.0312716 0.160365
--0.367415 -0.0312716 0.194165
--0.308883 0.0262898 0.138984
-
--0.308883 -0.0262898 0.172785
--0.308883 0.0262898 0.138984
--0.367415 -0.0312716 0.194165
-
--0.308883 0.0262898 0.138984
--0.308883 -0.0262898 0.172785
--0.261168 0.0222287 0.0988017
-
--0.261168 -0.0222287 0.132602
--0.261168 0.0222287 0.0988017
--0.308883 -0.0262898 0.172785
-
--0.261168 0.0222287 0.0988017
--0.261168 -0.0222287 0.132602
--0.230024 0.0195779 0.0446635
-
--0.230024 -0.0195779 0.0784637
--0.230024 0.0195779 0.0446635
--0.261168 -0.0222287 0.132602
-
--0.230024 0.0195779 0.0446635
--0.230024 -0.0195779 0.0784637
--0.219207 0.0186573 -0.0169001
-
--0.219207 -0.0186573 0.0169001
--0.219207 0.0186573 -0.0169001
--0.230024 -0.0195779 0.0784637
-
--0.219207 0.0186573 -0.0169001
--0.219207 -0.0186573 0.0169001
--0.230024 0.0195779 -0.0784637
-
--0.230024 -0.0195779 -0.0446635
--0.230024 0.0195779 -0.0784637
--0.219207 -0.0186573 0.0169001
-
--0.230024 0.0195779 -0.0784637
--0.230024 -0.0195779 -0.0446635
--0.261168 0.0222287 -0.132602
-
--0.261168 -0.0222287 -0.0988017
--0.261168 0.0222287 -0.132602
--0.230024 -0.0195779 -0.0446635
-
--0.261168 0.0222287 -0.132602
--0.261168 -0.0222287 -0.0988017
--0.308883 0.0262898 -0.172785
-
--0.308883 -0.0262898 -0.138984
--0.308883 0.0262898 -0.172785
--0.261168 -0.0222287 -0.0988017
-
--0.308883 0.0262898 -0.172785
--0.308883 -0.0262898 -0.138984
--0.367415 0.0312716 -0.194165
-
--0.367415 -0.0312716 -0.160365
--0.367415 0.0312716 -0.194165
--0.308883 -0.0262898 -0.138984
-
--0.367415 0.0312716 -0.194165
--0.367415 -0.0312716 -0.160365
--0.429703 0.0365731 -0.194165
-
--0.429703 -0.0365731 -0.160365
--0.429703 0.0365731 -0.194165
--0.367415 -0.0312716 -0.160365
-
--0.429703 0.0365731 -0.194165
--0.429703 -0.0365731 -0.160365
--0.488235 0.0415549 -0.172785
-
--0.488235 -0.0415549 -0.138984
--0.488235 0.0415549 -0.172785
--0.429703 -0.0365731 -0.160365
-
--0.488235 0.0415549 -0.172785
--0.488235 -0.0415549 -0.138984
--0.53595 0.0456161 -0.132602
-
--0.53595 -0.0456161 -0.0988017
--0.53595 0.0456161 -0.132602
--0.488235 -0.0415549 -0.138984
-
--0.53595 0.0456161 -0.132602
--0.53595 -0.0456161 -0.0988017
--0.567094 0.0482668 -0.0784637
-
--0.567094 -0.0482668 -0.0446635
--0.567094 0.0482668 -0.0784637
--0.53595 -0.0456161 -0.0988017
-
--0.567094 0.0482668 -0.0784637
--0.567094 -0.0482668 -0.0446635
--0.577911 0.0491874 -0.0169001
-
--0.577911 -0.0491874 0.0169001
--0.577911 0.0491874 -0.0169001
--0.567094 -0.0482668 -0.0446635
-
--0.577911 -0.0491874 0.0169001
--0.561285 -0.146147 0.0487695
--0.567094 -0.0482668 0.0784637
-
--0.55078 -0.143412 0.110333
--0.567094 -0.0482668 0.0784637
--0.561285 -0.146147 0.0487695
-
--0.567094 -0.0482668 0.0784637
--0.55078 -0.143412 0.110333
--0.53595 -0.0456161 0.132602
-
--0.520532 -0.135536 0.164471
--0.53595 -0.0456161 0.132602
--0.55078 -0.143412 0.110333
-
--0.53595 -0.0456161 0.132602
--0.520532 -0.135536 0.164471
--0.488235 -0.0415549 0.172785
-
--0.474189 -0.123469 0.204654
--0.488235 -0.0415549 0.172785
--0.520532 -0.135536 0.164471
-
--0.488235 -0.0415549 0.172785
--0.474189 -0.123469 0.204654
--0.429703 -0.0365731 0.194165
-
--0.417341 -0.108667 0.226035
--0.429703 -0.0365731 0.194165
--0.474189 -0.123469 0.204654
-
--0.429703 -0.0365731 0.194165
--0.417341 -0.108667 0.226035
--0.367415 -0.0312716 0.194165
-
--0.356845 -0.0929152 0.226035
--0.367415 -0.0312716 0.194165
--0.417341 -0.108667 0.226035
-
--0.367415 -0.0312716 0.194165
--0.356845 -0.0929152 0.226035
--0.308883 -0.0262898 0.172785
-
--0.299997 -0.0781132 0.204654
--0.308883 -0.0262898 0.172785
--0.356845 -0.0929152 0.226035
-
--0.308883 -0.0262898 0.172785
--0.299997 -0.0781132 0.204654
--0.261168 -0.0222287 0.132602
-
--0.253654 -0.0660465 0.164471
--0.261168 -0.0222287 0.132602
--0.299997 -0.0781132 0.204654
-
--0.261168 -0.0222287 0.132602
--0.253654 -0.0660465 0.164471
--0.230024 -0.0195779 0.0784637
-
--0.223406 -0.0581705 0.110333
--0.230024 -0.0195779 0.0784637
--0.253654 -0.0660465 0.164471
-
--0.230024 -0.0195779 0.0784637
--0.223406 -0.0581705 0.110333
--0.219207 -0.0186573 0.0169001
-
--0.212901 -0.0554352 0.0487695
--0.219207 -0.0186573 0.0169001
--0.223406 -0.0581705 0.110333
-
--0.219207 -0.0186573 0.0169001
--0.212901 -0.0554352 0.0487695
--0.230024 -0.0195779 -0.0446635
-
--0.223406 -0.0581705 -0.0127941
--0.230024 -0.0195779 -0.0446635
--0.212901 -0.0554352 0.0487695
-
--0.230024 -0.0195779 -0.0446635
--0.223406 -0.0581705 -0.0127941
--0.261168 -0.0222287 -0.0988017
-
--0.253654 -0.0660465 -0.0669323
--0.261168 -0.0222287 -0.0988017
--0.223406 -0.0581705 -0.0127941
-
--0.261168 -0.0222287 -0.0988017
--0.253654 -0.0660465 -0.0669323
--0.308883 -0.0262898 -0.138984
-
--0.299997 -0.0781132 -0.107115
--0.308883 -0.0262898 -0.138984
--0.253654 -0.0660465 -0.0669323
-
--0.308883 -0.0262898 -0.138984
--0.299997 -0.0781132 -0.107115
--0.367415 -0.0312716 -0.160365
-
--0.356845 -0.0929152 -0.128496
--0.367415 -0.0312716 -0.160365
--0.299997 -0.0781132 -0.107115
-
--0.367415 -0.0312716 -0.160365
--0.356845 -0.0929152 -0.128496
--0.429703 -0.0365731 -0.160365
-
--0.417341 -0.108667 -0.128496
--0.429703 -0.0365731 -0.160365
--0.356845 -0.0929152 -0.128496
-
--0.429703 -0.0365731 -0.160365
--0.417341 -0.108667 -0.128496
--0.488235 -0.0415549 -0.138984
-
--0.474189 -0.123469 -0.107115
--0.488235 -0.0415549 -0.138984
--0.417341 -0.108667 -0.128496
-
--0.488235 -0.0415549 -0.138984
--0.474189 -0.123469 -0.107115
--0.53595 -0.0456161 -0.0988017
-
--0.520532 -0.135536 -0.0669323
--0.53595 -0.0456161 -0.0988017
--0.474189 -0.123469 -0.107115
-
--0.53595 -0.0456161 -0.0988017
--0.520532 -0.135536 -0.0669323
--0.567094 -0.0482668 -0.0446635
-
--0.55078 -0.143412 -0.0127941
--0.567094 -0.0482668 -0.0446635
--0.520532 -0.135536 -0.0669323
-
--0.567094 -0.0482668 -0.0446635
--0.55078 -0.143412 -0.0127941
--0.577911 -0.0491874 0.0169001
-
--0.561285 -0.146147 0.0487695
--0.577911 -0.0491874 0.0169001
--0.55078 -0.143412 -0.0127941
-
--0.561285 -0.146147 0.0487695
--0.528513 -0.238903 0.0750672
--0.55078 -0.143412 0.110333
-
--0.518621 -0.234431 0.136631
--0.55078 -0.143412 0.110333
--0.528513 -0.238903 0.0750672
-
--0.55078 -0.143412 0.110333
--0.518621 -0.234431 0.136631
--0.520532 -0.135536 0.164471
-
--0.490139 -0.221557 0.190769
--0.520532 -0.135536 0.164471
--0.518621 -0.234431 0.136631
-
--0.520532 -0.135536 0.164471
--0.490139 -0.221557 0.190769
--0.474189 -0.123469 0.204654
-
--0.446502 -0.201832 0.230952
--0.474189 -0.123469 0.204654
--0.490139 -0.221557 0.190769
-
--0.474189 -0.123469 0.204654
--0.446502 -0.201832 0.230952
--0.417341 -0.108667 0.226035
-
--0.392973 -0.177635 0.252333
--0.417341 -0.108667 0.226035
--0.446502 -0.201832 0.230952
-
--0.417341 -0.108667 0.226035
--0.392973 -0.177635 0.252333
--0.356845 -0.0929152 0.226035
-
--0.336009 -0.151886 0.252333
--0.356845 -0.0929152 0.226035
--0.392973 -0.177635 0.252333
-
--0.356845 -0.0929152 0.226035
--0.336009 -0.151886 0.252333
--0.299997 -0.0781132 0.204654
-
--0.282481 -0.127689 0.230952
--0.299997 -0.0781132 0.204654
--0.336009 -0.151886 0.252333
-
--0.299997 -0.0781132 0.204654
--0.282481 -0.127689 0.230952
--0.253654 -0.0660465 0.164471
-
--0.238844 -0.107964 0.190769
--0.253654 -0.0660465 0.164471
--0.282481 -0.127689 0.230952
-
--0.253654 -0.0660465 0.164471
--0.238844 -0.107964 0.190769
--0.223406 -0.0581705 0.110333
-
--0.210362 -0.0950896 0.136631
--0.223406 -0.0581705 0.110333
--0.238844 -0.107964 0.190769
-
--0.223406 -0.0581705 0.110333
--0.210362 -0.0950896 0.136631
--0.212901 -0.0554352 0.0487695
-
--0.20047 -0.0906183 0.0750672
--0.212901 -0.0554352 0.0487695
--0.210362 -0.0950896 0.136631
-
--0.212901 -0.0554352 0.0487695
--0.20047 -0.0906183 0.0750672
--0.223406 -0.0581705 -0.0127941
-
--0.210362 -0.0950896 0.0135036
--0.223406 -0.0581705 -0.0127941
--0.20047 -0.0906183 0.0750672
-
--0.223406 -0.0581705 -0.0127941
--0.210362 -0.0950896 0.0135036
--0.253654 -0.0660465 -0.0669323
-
--0.238844 -0.107964 -0.0406345
--0.253654 -0.0660465 -0.0669323
--0.210362 -0.0950896 0.0135036
-
--0.253654 -0.0660465 -0.0669323
--0.238844 -0.107964 -0.0406345
--0.299997 -0.0781132 -0.107115
-
--0.282481 -0.127689 -0.0808173
--0.299997 -0.0781132 -0.107115
--0.238844 -0.107964 -0.0406345
-
--0.299997 -0.0781132 -0.107115
--0.282481 -0.127689 -0.0808173
--0.356845 -0.0929152 -0.128496
-
--0.336009 -0.151886 -0.102198
--0.356845 -0.0929152 -0.128496
--0.282481 -0.127689 -0.0808173
-
--0.356845 -0.0929152 -0.128496
--0.336009 -0.151886 -0.102198
--0.417341 -0.108667 -0.128496
-
--0.392973 -0.177635 -0.102198
--0.417341 -0.108667 -0.128496
--0.336009 -0.151886 -0.102198
-
--0.417341 -0.108667 -0.128496
--0.392973 -0.177635 -0.102198
--0.474189 -0.123469 -0.107115
-
--0.446502 -0.201832 -0.0808173
--0.474189 -0.123469 -0.107115
--0.392973 -0.177635 -0.102198
-
--0.474189 -0.123469 -0.107115
--0.446502 -0.201832 -0.0808173
--0.520532 -0.135536 -0.0669323
-
--0.490139 -0.221557 -0.0406345
--0.520532 -0.135536 -0.0669323
--0.446502 -0.201832 -0.0808173
-
--0.520532 -0.135536 -0.0669323
--0.490139 -0.221557 -0.0406345
--0.55078 -0.143412 -0.0127941
-
--0.518621 -0.234431 0.0135036
--0.55078 -0.143412 -0.0127941
--0.490139 -0.221557 -0.0406345
-
--0.55078 -0.143412 -0.0127941
--0.518621 -0.234431 0.0135036
--0.561285 -0.146147 0.0487695
-
--0.528513 -0.238903 0.0750672
--0.561285 -0.146147 0.0487695
--0.518621 -0.234431 0.0135036
-
--0.528513 -0.238903 0.0750672
--0.480536 -0.324785 0.0927889
--0.518621 -0.234431 0.136631
-
--0.471542 -0.318707 0.154353
--0.518621 -0.234431 0.136631
--0.480536 -0.324785 0.0927889
-
--0.518621 -0.234431 0.136631
--0.471542 -0.318707 0.154353
--0.490139 -0.221557 0.190769
-
--0.445645 -0.301204 0.208491
--0.490139 -0.221557 0.190769
--0.471542 -0.318707 0.154353
-
--0.490139 -0.221557 0.190769
--0.445645 -0.301204 0.208491
--0.446502 -0.201832 0.230952
-
--0.40597 -0.274388 0.248673
--0.446502 -0.201832 0.230952
--0.445645 -0.301204 0.208491
-
--0.446502 -0.201832 0.230952
--0.40597 -0.274388 0.248673
--0.392973 -0.177635 0.252333
-
--0.3573 -0.241493 0.270054
--0.392973 -0.177635 0.252333
--0.40597 -0.274388 0.248673
-
--0.392973 -0.177635 0.252333
--0.3573 -0.241493 0.270054
--0.336009 -0.151886 0.252333
-
--0.305507 -0.206487 0.270054
--0.336009 -0.151886 0.252333
--0.3573 -0.241493 0.270054
-
--0.336009 -0.151886 0.252333
--0.305507 -0.206487 0.270054
--0.282481 -0.127689 0.230952
-
--0.256838 -0.173592 0.248673
--0.282481 -0.127689 0.230952
--0.305507 -0.206487 0.270054
-
--0.282481 -0.127689 0.230952
--0.256838 -0.173592 0.248673
--0.238844 -0.107964 0.190769
-
--0.217162 -0.146776 0.208491
--0.238844 -0.107964 0.190769
--0.256838 -0.173592 0.248673
-
--0.238844 -0.107964 0.190769
--0.217162 -0.146776 0.208491
--0.210362 -0.0950896 0.136631
-
--0.191266 -0.129273 0.154353
--0.210362 -0.0950896 0.136631
--0.217162 -0.146776 0.208491
-
--0.210362 -0.0950896 0.136631
--0.191266 -0.129273 0.154353
--0.20047 -0.0906183 0.0750672
-
--0.182272 -0.123194 0.0927889
--0.20047 -0.0906183 0.0750672
--0.191266 -0.129273 0.154353
-
--0.20047 -0.0906183 0.0750672
--0.182272 -0.123194 0.0927889
--0.210362 -0.0950896 0.0135036
-
--0.191266 -0.129273 0.0312253
--0.210362 -0.0950896 0.0135036
--0.182272 -0.123194 0.0927889
-
--0.210362 -0.0950896 0.0135036
--0.191266 -0.129273 0.0312253
--0.238844 -0.107964 -0.0406345
-
--0.217162 -0.146776 -0.0229129
--0.238844 -0.107964 -0.0406345
--0.191266 -0.129273 0.0312253
-
--0.238844 -0.107964 -0.0406345
--0.217162 -0.146776 -0.0229129
--0.282481 -0.127689 -0.0808173
-
--0.256838 -0.173592 -0.0630957
--0.282481 -0.127689 -0.0808173
--0.217162 -0.146776 -0.0229129
-
--0.282481 -0.127689 -0.0808173
--0.256838 -0.173592 -0.0630957
--0.336009 -0.151886 -0.102198
-
--0.305507 -0.206487 -0.0844765
--0.336009 -0.151886 -0.102198
--0.256838 -0.173592 -0.0630957
-
--0.336009 -0.151886 -0.102198
--0.305507 -0.206487 -0.0844765
--0.392973 -0.177635 -0.102198
-
--0.3573 -0.241493 -0.0844765
--0.392973 -0.177635 -0.102198
--0.305507 -0.206487 -0.0844765
-
--0.392973 -0.177635 -0.102198
--0.3573 -0.241493 -0.0844765
--0.446502 -0.201832 -0.0808173
-
--0.40597 -0.274388 -0.0630957
--0.446502 -0.201832 -0.0808173
--0.3573 -0.241493 -0.0844765
-
--0.446502 -0.201832 -0.0808173
--0.40597 -0.274388 -0.0630957
--0.490139 -0.221557 -0.0406345
-
--0.445645 -0.301204 -0.0229129
--0.490139 -0.221557 -0.0406345
--0.40597 -0.274388 -0.0630957
-
--0.490139 -0.221557 -0.0406345
--0.445645 -0.301204 -0.0229129
--0.518621 -0.234431 0.0135036
-
--0.471542 -0.318707 0.0312253
--0.518621 -0.234431 0.0135036
--0.445645 -0.301204 -0.0229129
-
--0.518621 -0.234431 0.0135036
--0.471542 -0.318707 0.0312253
--0.528513 -0.238903 0.0750672
-
--0.480536 -0.324785 0.0927889
--0.528513 -0.238903 0.0750672
--0.471542 -0.318707 0.0312253
-
--0.480536 -0.324785 0.0927889
--0.418735 -0.401325 0.0999099
--0.471542 -0.318707 0.154353
-
--0.410897 -0.393813 0.161474
--0.471542 -0.318707 0.154353
--0.418735 -0.401325 0.0999099
-
--0.471542 -0.318707 0.154353
--0.410897 -0.393813 0.161474
--0.445645 -0.301204 0.208491
-
--0.388332 -0.372186 0.215612
--0.445645 -0.301204 0.208491
--0.410897 -0.393813 0.161474
-
--0.445645 -0.301204 0.208491
--0.388332 -0.372186 0.215612
--0.40597 -0.274388 0.248673
-
--0.353758 -0.33905 0.255794
--0.40597 -0.274388 0.248673
--0.388332 -0.372186 0.215612
-
--0.40597 -0.274388 0.248673
--0.353758 -0.33905 0.255794
--0.3573 -0.241493 0.270054
-
--0.311348 -0.298403 0.277175
--0.3573 -0.241493 0.270054
--0.353758 -0.33905 0.255794
-
--0.3573 -0.241493 0.270054
--0.311348 -0.298403 0.277175
--0.305507 -0.206487 0.270054
-
--0.266216 -0.255148 0.277175
--0.305507 -0.206487 0.270054
--0.311348 -0.298403 0.277175
-
--0.305507 -0.206487 0.270054
--0.266216 -0.255148 0.277175
--0.256838 -0.173592 0.248673
-
--0.223806 -0.214501 0.255794
--0.256838 -0.173592 0.248673
--0.266216 -0.255148 0.277175
-
--0.256838 -0.173592 0.248673
--0.223806 -0.214501 0.255794
--0.217162 -0.146776 0.208491
-
--0.189233 -0.181365 0.215612
--0.217162 -0.146776 0.208491
--0.223806 -0.214501 0.255794
-
--0.217162 -0.146776 0.208491
--0.189233 -0.181365 0.215612
--0.191266 -0.129273 0.154353
-
--0.166667 -0.159738 0.161474
--0.191266 -0.129273 0.154353
--0.189233 -0.181365 0.215612
-
--0.191266 -0.129273 0.154353
--0.166667 -0.159738 0.161474
--0.182272 -0.123194 0.0927889
-
--0.15883 -0.152227 0.0999099
--0.182272 -0.123194 0.0927889
--0.166667 -0.159738 0.161474
-
--0.182272 -0.123194 0.0927889
--0.15883 -0.152227 0.0999099
--0.191266 -0.129273 0.0312253
-
--0.166667 -0.159738 0.0383463
--0.191266 -0.129273 0.0312253
--0.15883 -0.152227 0.0999099
-
--0.191266 -0.129273 0.0312253
--0.166667 -0.159738 0.0383463
--0.217162 -0.146776 -0.0229129
-
--0.189233 -0.181365 -0.0157919
--0.217162 -0.146776 -0.0229129
--0.166667 -0.159738 0.0383463
-
--0.217162 -0.146776 -0.0229129
--0.189233 -0.181365 -0.0157919
--0.256838 -0.173592 -0.0630957
-
--0.223806 -0.214501 -0.0559747
--0.256838 -0.173592 -0.0630957
--0.189233 -0.181365 -0.0157919
-
--0.256838 -0.173592 -0.0630957
--0.223806 -0.214501 -0.0559747
--0.305507 -0.206487 -0.0844765
-
--0.266216 -0.255148 -0.0773555
--0.305507 -0.206487 -0.0844765
--0.223806 -0.214501 -0.0559747
-
--0.305507 -0.206487 -0.0844765
--0.266216 -0.255148 -0.0773555
--0.3573 -0.241493 -0.0844765
-
--0.311348 -0.298403 -0.0773555
--0.3573 -0.241493 -0.0844765
--0.266216 -0.255148 -0.0773555
-
--0.3573 -0.241493 -0.0844765
--0.311348 -0.298403 -0.0773555
--0.40597 -0.274388 -0.0630957
-
--0.353758 -0.33905 -0.0559747
--0.40597 -0.274388 -0.0630957
--0.311348 -0.298403 -0.0773555
-
--0.40597 -0.274388 -0.0630957
--0.353758 -0.33905 -0.0559747
--0.445645 -0.301204 -0.0229129
-
--0.388332 -0.372186 -0.0157919
--0.445645 -0.301204 -0.0229129
--0.353758 -0.33905 -0.0559747
-
--0.445645 -0.301204 -0.0229129
--0.388332 -0.372186 -0.0157919
--0.471542 -0.318707 0.0312253
-
--0.410897 -0.393813 0.0383463
--0.471542 -0.318707 0.0312253
--0.388332 -0.372186 -0.0157919
-
--0.471542 -0.318707 0.0312253
--0.410897 -0.393813 0.0383463
--0.480536 -0.324785 0.0927889
-
--0.418735 -0.401325 0.0999099
--0.480536 -0.324785 0.0927889
--0.410897 -0.393813 0.0383463
-
--0.418735 -0.401325 0.0999099
--0.344887 -0.466318 0.0956167
--0.410897 -0.393813 0.161474
-
--0.338432 -0.457591 0.15718
--0.410897 -0.393813 0.161474
--0.344887 -0.466318 0.0956167
-
--0.410897 -0.393813 0.161474
--0.338432 -0.457591 0.15718
--0.388332 -0.372186 0.215612
-
--0.319846 -0.43246 0.211318
--0.388332 -0.372186 0.215612
--0.338432 -0.457591 0.15718
-
--0.388332 -0.372186 0.215612
--0.319846 -0.43246 0.211318
--0.353758 -0.33905 0.255794
-
--0.29137 -0.393959 0.251501
--0.353758 -0.33905 0.255794
--0.319846 -0.43246 0.211318
-
--0.353758 -0.33905 0.255794
--0.29137 -0.393959 0.251501
--0.311348 -0.298403 0.277175
-
--0.25644 -0.346729 0.272882
--0.311348 -0.298403 0.277175
--0.29137 -0.393959 0.251501
-
--0.311348 -0.298403 0.277175
--0.25644 -0.346729 0.272882
--0.266216 -0.255148 0.277175
-
--0.219267 -0.296469 0.272882
--0.266216 -0.255148 0.277175
--0.25644 -0.346729 0.272882
-
--0.266216 -0.255148 0.277175
--0.219267 -0.296469 0.272882
--0.223806 -0.214501 0.255794
-
--0.184336 -0.249239 0.251501
--0.223806 -0.214501 0.255794
--0.219267 -0.296469 0.272882
-
--0.223806 -0.214501 0.255794
--0.184336 -0.249239 0.251501
--0.189233 -0.181365 0.215612
-
--0.15586 -0.210737 0.211318
--0.189233 -0.181365 0.215612
--0.184336 -0.249239 0.251501
-
--0.189233 -0.181365 0.215612
--0.15586 -0.210737 0.211318
--0.166667 -0.159738 0.161474
-
--0.137274 -0.185607 0.15718
--0.166667 -0.159738 0.161474
--0.15586 -0.210737 0.211318
-
--0.166667 -0.159738 0.161474
--0.137274 -0.185607 0.15718
--0.15883 -0.152227 0.0999099
-
--0.130819 -0.176879 0.0956167
--0.15883 -0.152227 0.0999099
--0.137274 -0.185607 0.15718
-
--0.15883 -0.152227 0.0999099
--0.130819 -0.176879 0.0956167
--0.166667 -0.159738 0.0383463
-
--0.137274 -0.185607 0.034053
--0.166667 -0.159738 0.0383463
--0.130819 -0.176879 0.0956167
-
--0.166667 -0.159738 0.0383463
--0.137274 -0.185607 0.034053
--0.189233 -0.181365 -0.0157919
-
--0.15586 -0.210737 -0.0200851
--0.189233 -0.181365 -0.0157919
--0.137274 -0.185607 0.034053
-
--0.189233 -0.181365 -0.0157919
--0.15586 -0.210737 -0.0200851
--0.223806 -0.214501 -0.0559747
-
--0.184336 -0.249239 -0.0602679
--0.223806 -0.214501 -0.0559747
--0.15586 -0.210737 -0.0200851
-
--0.223806 -0.214501 -0.0559747
--0.184336 -0.249239 -0.0602679
--0.266216 -0.255148 -0.0773555
-
--0.219267 -0.296469 -0.0816487
--0.266216 -0.255148 -0.0773555
--0.184336 -0.249239 -0.0602679
-
--0.266216 -0.255148 -0.0773555
--0.219267 -0.296469 -0.0816487
--0.311348 -0.298403 -0.0773555
-
--0.25644 -0.346729 -0.0816487
--0.311348 -0.298403 -0.0773555
--0.219267 -0.296469 -0.0816487
-
--0.311348 -0.298403 -0.0773555
--0.25644 -0.346729 -0.0816487
--0.353758 -0.33905 -0.0559747
-
--0.29137 -0.393959 -0.0602679
--0.353758 -0.33905 -0.0559747
--0.25644 -0.346729 -0.0816487
-
--0.353758 -0.33905 -0.0559747
--0.29137 -0.393959 -0.0602679
--0.388332 -0.372186 -0.0157919
-
--0.319846 -0.43246 -0.0200851
--0.388332 -0.372186 -0.0157919
--0.29137 -0.393959 -0.0602679
-
--0.388332 -0.372186 -0.0157919
--0.319846 -0.43246 -0.0200851
--0.410897 -0.393813 0.0383463
-
--0.338432 -0.457591 0.034053
--0.410897 -0.393813 0.0383463
--0.319846 -0.43246 -0.0200851
-
--0.410897 -0.393813 0.0383463
--0.338432 -0.457591 0.034053
--0.418735 -0.401325 0.0999099
-
--0.344887 -0.466318 0.0956167
--0.418735 -0.401325 0.0999099
--0.338432 -0.457591 0.034053
-
--0.344887 -0.466318 0.0956167
--0.261118 -0.517897 0.0803997
--0.338432 -0.457591 0.15718
-
--0.256231 -0.508204 0.141963
--0.338432 -0.457591 0.15718
--0.261118 -0.517897 0.0803997
-
--0.338432 -0.457591 0.15718
--0.256231 -0.508204 0.141963
--0.319846 -0.43246 0.211318
-
--0.242159 -0.480294 0.196101
--0.319846 -0.43246 0.211318
--0.256231 -0.508204 0.141963
-
--0.319846 -0.43246 0.211318
--0.242159 -0.480294 0.196101
--0.29137 -0.393959 0.251501
-
--0.2206 -0.437534 0.236284
--0.29137 -0.393959 0.251501
--0.242159 -0.480294 0.196101
-
--0.29137 -0.393959 0.251501
--0.2206 -0.437534 0.236284
--0.25644 -0.346729 0.272882
-
--0.194153 -0.38508 0.257665
--0.25644 -0.346729 0.272882
--0.2206 -0.437534 0.236284
-
--0.25644 -0.346729 0.272882
--0.194153 -0.38508 0.257665
--0.219267 -0.296469 0.272882
-
--0.16601 -0.32926 0.257665
--0.219267 -0.296469 0.272882
--0.194153 -0.38508 0.257665
-
--0.219267 -0.296469 0.272882
--0.16601 -0.32926 0.257665
--0.184336 -0.249239 0.251501
-
--0.139563 -0.276807 0.236284
--0.184336 -0.249239 0.251501
--0.16601 -0.32926 0.257665
-
--0.184336 -0.249239 0.251501
--0.139563 -0.276807 0.236284
--0.15586 -0.210737 0.211318
-
--0.118004 -0.234047 0.196101
--0.15586 -0.210737 0.211318
--0.139563 -0.276807 0.236284
-
--0.15586 -0.210737 0.211318
--0.118004 -0.234047 0.196101
--0.137274 -0.185607 0.15718
-
--0.103932 -0.206137 0.141963
--0.137274 -0.185607 0.15718
--0.118004 -0.234047 0.196101
-
--0.137274 -0.185607 0.15718
--0.103932 -0.206137 0.141963
--0.130819 -0.176879 0.0956167
-
--0.0990448 -0.196444 0.0803997
--0.130819 -0.176879 0.0956167
--0.103932 -0.206137 0.141963
-
--0.130819 -0.176879 0.0956167
--0.0990448 -0.196444 0.0803997
--0.137274 -0.185607 0.034053
-
--0.103932 -0.206137 0.0188361
--0.137274 -0.185607 0.034053
--0.0990448 -0.196444 0.0803997
-
--0.137274 -0.185607 0.034053
--0.103932 -0.206137 0.0188361
--0.15586 -0.210737 -0.0200851
-
--0.118004 -0.234047 -0.0353021
--0.15586 -0.210737 -0.0200851
--0.103932 -0.206137 0.0188361
-
--0.15586 -0.210737 -0.0200851
--0.118004 -0.234047 -0.0353021
--0.184336 -0.249239 -0.0602679
-
--0.139563 -0.276807 -0.0754849
--0.184336 -0.249239 -0.0602679
--0.118004 -0.234047 -0.0353021
-
--0.184336 -0.249239 -0.0602679
--0.139563 -0.276807 -0.0754849
--0.219267 -0.296469 -0.0816487
-
--0.16601 -0.32926 -0.0968657
--0.219267 -0.296469 -0.0816487
--0.139563 -0.276807 -0.0754849
-
--0.219267 -0.296469 -0.0816487
--0.16601 -0.32926 -0.0968657
--0.25644 -0.346729 -0.0816487
-
--0.194153 -0.38508 -0.0968657
--0.25644 -0.346729 -0.0816487
--0.16601 -0.32926 -0.0968657
-
--0.25644 -0.346729 -0.0816487
--0.194153 -0.38508 -0.0968657
--0.29137 -0.393959 -0.0602679
-
--0.2206 -0.437534 -0.0754849
--0.29137 -0.393959 -0.0602679
--0.194153 -0.38508 -0.0968657
-
--0.29137 -0.393959 -0.0602679
--0.2206 -0.437534 -0.0754849
--0.319846 -0.43246 -0.0200851
-
--0.242159 -0.480294 -0.0353021
--0.319846 -0.43246 -0.0200851
--0.2206 -0.437534 -0.0754849
-
--0.319846 -0.43246 -0.0200851
--0.242159 -0.480294 -0.0353021
--0.338432 -0.457591 0.034053
-
--0.256231 -0.508204 0.0188361
--0.338432 -0.457591 0.034053
--0.242159 -0.480294 -0.0353021
-
--0.338432 -0.457591 0.034053
--0.256231 -0.508204 0.0188361
--0.344887 -0.466318 0.0956167
-
--0.261118 -0.517897 0.0803997
--0.344887 -0.466318 0.0956167
--0.256231 -0.508204 0.0188361
-
--0.261118 -0.517897 0.0803997
--0.169837 -0.554577 0.0559975
--0.256231 -0.508204 0.141963
-
--0.166659 -0.544197 0.117561
--0.256231 -0.508204 0.141963
--0.169837 -0.554577 0.0559975
-
--0.256231 -0.508204 0.141963
--0.166659 -0.544197 0.117561
--0.242159 -0.480294 0.196101
-
--0.157506 -0.514311 0.171699
--0.242159 -0.480294 0.196101
--0.166659 -0.544197 0.117561
-
--0.242159 -0.480294 0.196101
--0.157506 -0.514311 0.171699
--0.2206 -0.437534 0.236284
-
--0.143483 -0.468522 0.211882
--0.2206 -0.437534 0.236284
--0.157506 -0.514311 0.171699
-
--0.2206 -0.437534 0.236284
--0.143483 -0.468522 0.211882
--0.194153 -0.38508 0.257665
-
--0.126282 -0.412353 0.233263
--0.194153 -0.38508 0.257665
--0.143483 -0.468522 0.211882
-
--0.194153 -0.38508 0.257665
--0.126282 -0.412353 0.233263
--0.16601 -0.32926 0.257665
-
--0.107976 -0.35258 0.233263
--0.16601 -0.32926 0.257665
--0.126282 -0.412353 0.233263
-
--0.16601 -0.32926 0.257665
--0.107976 -0.35258 0.233263
--0.139563 -0.276807 0.236284
-
--0.0907751 -0.296412 0.211882
--0.139563 -0.276807 0.236284
--0.107976 -0.35258 0.233263
-
--0.139563 -0.276807 0.236284
--0.0907751 -0.296412 0.211882
--0.118004 -0.234047 0.196101
-
--0.0767524 -0.250623 0.171699
--0.118004 -0.234047 0.196101
--0.0907751 -0.296412 0.211882
-
--0.118004 -0.234047 0.196101
--0.0767524 -0.250623 0.171699
--0.103932 -0.206137 0.141963
-
--0.0675997 -0.220736 0.117561
--0.103932 -0.206137 0.141963
--0.0767524 -0.250623 0.171699
-
--0.103932 -0.206137 0.141963
--0.0675997 -0.220736 0.117561
--0.0990448 -0.196444 0.0803997
-
--0.064421 -0.210357 0.0559975
--0.0990448 -0.196444 0.0803997
--0.0675997 -0.220736 0.117561
-
--0.0990448 -0.196444 0.0803997
--0.064421 -0.210357 0.0559975
--0.103932 -0.206137 0.0188361
-
--0.0675997 -0.220736 -0.00556615
--0.103932 -0.206137 0.0188361
--0.064421 -0.210357 0.0559975
-
--0.103932 -0.206137 0.0188361
--0.0675997 -0.220736 -0.00556615
--0.118004 -0.234047 -0.0353021
-
--0.0767524 -0.250623 -0.0597043
--0.118004 -0.234047 -0.0353021
--0.0675997 -0.220736 -0.00556615
-
--0.118004 -0.234047 -0.0353021
--0.0767524 -0.250623 -0.0597043
--0.139563 -0.276807 -0.0754849
-
--0.0907751 -0.296412 -0.0998871
--0.139563 -0.276807 -0.0754849
--0.0767524 -0.250623 -0.0597043
-
--0.139563 -0.276807 -0.0754849
--0.0907751 -0.296412 -0.0998871
--0.16601 -0.32926 -0.0968657
-
--0.107976 -0.35258 -0.121268
--0.16601 -0.32926 -0.0968657
--0.0907751 -0.296412 -0.0998871
-
--0.16601 -0.32926 -0.0968657
--0.107976 -0.35258 -0.121268
--0.194153 -0.38508 -0.0968657
-
--0.126282 -0.412353 -0.121268
--0.194153 -0.38508 -0.0968657
--0.107976 -0.35258 -0.121268
-
--0.194153 -0.38508 -0.0968657
--0.126282 -0.412353 -0.121268
--0.2206 -0.437534 -0.0754849
-
--0.143483 -0.468522 -0.0998871
--0.2206 -0.437534 -0.0754849
--0.126282 -0.412353 -0.121268
-
--0.2206 -0.437534 -0.0754849
--0.143483 -0.468522 -0.0998871
--0.242159 -0.480294 -0.0353021
-
--0.157506 -0.514311 -0.0597043
--0.242159 -0.480294 -0.0353021
--0.143483 -0.468522 -0.0998871
-
--0.242159 -0.480294 -0.0353021
--0.157506 -0.514311 -0.0597043
--0.256231 -0.508204 0.0188361
-
--0.166659 -0.544197 -0.00556615
--0.256231 -0.508204 0.0188361
--0.157506 -0.514311 -0.0597043
-
--0.256231 -0.508204 0.0188361
--0.166659 -0.544197 -0.00556615
--0.261118 -0.517897 0.0803997
-
--0.169837 -0.554577 0.0559975
--0.261118 -0.517897 0.0803997
--0.166659 -0.544197 -0.00556615
-
--0.169837 -0.554577 0.0559975
--0.0736703 -0.575302 0.0251978
--0.166659 -0.544197 0.117561
-
--0.0722915 -0.564535 0.0867614
--0.166659 -0.544197 0.117561
--0.0736703 -0.575302 0.0251978
-
--0.166659 -0.544197 0.117561
--0.0722915 -0.564535 0.0867614
--0.157506 -0.514311 0.171699
-
--0.0683214 -0.533531 0.1409
--0.157506 -0.514311 0.171699
--0.0722915 -0.564535 0.0867614
-
--0.157506 -0.514311 0.171699
--0.0683214 -0.533531 0.1409
--0.143483 -0.468522 0.211882
-
--0.0622387 -0.486031 0.181082
--0.143483 -0.468522 0.211882
--0.0683214 -0.533531 0.1409
-
--0.143483 -0.468522 0.211882
--0.0622387 -0.486031 0.181082
--0.126282 -0.412353 0.233263
-
--0.0547773 -0.427764 0.202463
--0.126282 -0.412353 0.233263
--0.0622387 -0.486031 0.181082
-
--0.126282 -0.412353 0.233263
--0.0547773 -0.427764 0.202463
--0.107976 -0.35258 0.233263
-
--0.046837 -0.365757 0.202463
--0.107976 -0.35258 0.233263
--0.0547773 -0.427764 0.202463
-
--0.107976 -0.35258 0.233263
--0.046837 -0.365757 0.202463
--0.0907751 -0.296412 0.211882
-
--0.0393755 -0.307489 0.181082
--0.0907751 -0.296412 0.211882
--0.046837 -0.365757 0.202463
-
--0.0907751 -0.296412 0.211882
--0.0393755 -0.307489 0.181082
--0.0767524 -0.250623 0.171699
-
--0.0332929 -0.259989 0.1409
--0.0767524 -0.250623 0.171699
--0.0393755 -0.307489 0.181082
-
--0.0767524 -0.250623 0.171699
--0.0332929 -0.259989 0.1409
--0.0675997 -0.220736 0.117561
-
--0.0293227 -0.228986 0.0867614
--0.0675997 -0.220736 0.117561
--0.0332929 -0.259989 0.1409
-
--0.0675997 -0.220736 0.117561
--0.0293227 -0.228986 0.0867614
--0.064421 -0.210357 0.0559975
-
--0.0279439 -0.218218 0.0251978
--0.064421 -0.210357 0.0559975
--0.0293227 -0.228986 0.0867614
-
--0.064421 -0.210357 0.0559975
--0.0279439 -0.218218 0.0251978
--0.0675997 -0.220736 -0.00556615
-
--0.0293227 -0.228986 -0.0363658
--0.0675997 -0.220736 -0.00556615
--0.0279439 -0.218218 0.0251978
-
--0.0675997 -0.220736 -0.00556615
--0.0293227 -0.228986 -0.0363658
--0.0767524 -0.250623 -0.0597043
-
--0.0332929 -0.259989 -0.090504
--0.0767524 -0.250623 -0.0597043
--0.0293227 -0.228986 -0.0363658
-
--0.0767524 -0.250623 -0.0597043
--0.0332929 -0.259989 -0.090504
--0.0907751 -0.296412 -0.0998871
-
--0.0393755 -0.307489 -0.130687
--0.0907751 -0.296412 -0.0998871
--0.0332929 -0.259989 -0.090504
-
--0.0907751 -0.296412 -0.0998871
--0.0393755 -0.307489 -0.130687
--0.107976 -0.35258 -0.121268
-
--0.046837 -0.365757 -0.152068
--0.107976 -0.35258 -0.121268
--0.0393755 -0.307489 -0.130687
-
--0.107976 -0.35258 -0.121268
--0.046837 -0.365757 -0.152068
--0.126282 -0.412353 -0.121268
-
--0.0547773 -0.427764 -0.152068
--0.126282 -0.412353 -0.121268
--0.046837 -0.365757 -0.152068
-
--0.126282 -0.412353 -0.121268
--0.0547773 -0.427764 -0.152068
--0.143483 -0.468522 -0.0998871
-
--0.0622387 -0.486031 -0.130687
--0.143483 -0.468522 -0.0998871
--0.0547773 -0.427764 -0.152068
-
--0.143483 -0.468522 -0.0998871
--0.0622387 -0.486031 -0.130687
--0.157506 -0.514311 -0.0597043
-
--0.0683214 -0.533531 -0.090504
--0.157506 -0.514311 -0.0597043
--0.0622387 -0.486031 -0.130687
-
--0.157506 -0.514311 -0.0597043
--0.0683214 -0.533531 -0.090504
--0.166659 -0.544197 -0.00556615
-
--0.0722915 -0.564535 -0.0363658
--0.166659 -0.544197 -0.00556615
--0.0683214 -0.533531 -0.090504
-
--0.166659 -0.544197 -0.00556615
--0.0722915 -0.564535 -0.0363658
--0.169837 -0.554577 0.0559975
-
--0.0736703 -0.575302 0.0251978
--0.169837 -0.554577 0.0559975
--0.0722915 -0.564535 -0.0363658
-
--0.0736703 -0.575302 0.0251978
-0.0246159 -0.579477 -0.00848059
--0.0722915 -0.564535 0.0867614
-
-0.0241552 -0.568632 0.053083
--0.0722915 -0.564535 0.0867614
-0.0246159 -0.579477 -0.00848059
-
--0.0722915 -0.564535 0.0867614
-0.0241552 -0.568632 0.053083
--0.0683214 -0.533531 0.1409
-
-0.0228286 -0.537403 0.107221
--0.0683214 -0.533531 0.1409
-0.0241552 -0.568632 0.053083
-
--0.0683214 -0.533531 0.1409
-0.0228286 -0.537403 0.107221
--0.0622387 -0.486031 0.181082
-
-0.0207962 -0.489558 0.147404
--0.0622387 -0.486031 0.181082
-0.0228286 -0.537403 0.107221
-
--0.0622387 -0.486031 0.181082
-0.0207962 -0.489558 0.147404
--0.0547773 -0.427764 0.202463
-
-0.0183031 -0.430868 0.168785
--0.0547773 -0.427764 0.202463
-0.0207962 -0.489558 0.147404
-
--0.0547773 -0.427764 0.202463
-0.0183031 -0.430868 0.168785
--0.046837 -0.365757 0.202463
-
-0.0156499 -0.368411 0.168785
--0.046837 -0.365757 0.202463
-0.0183031 -0.430868 0.168785
-
--0.046837 -0.365757 0.202463
-0.0156499 -0.368411 0.168785
--0.0393755 -0.307489 0.181082
-
-0.0131568 -0.309721 0.147404
--0.0393755 -0.307489 0.181082
-0.0156499 -0.368411 0.168785
-
--0.0393755 -0.307489 0.181082
-0.0131568 -0.309721 0.147404
--0.0332929 -0.259989 0.1409
-
-0.0111243 -0.261876 0.107221
--0.0332929 -0.259989 0.1409
-0.0131568 -0.309721 0.147404
-
--0.0332929 -0.259989 0.1409
-0.0111243 -0.261876 0.107221
--0.0293227 -0.228986 0.0867614
-
-0.00979778 -0.230647 0.053083
--0.0293227 -0.228986 0.0867614
-0.0111243 -0.261876 0.107221
-
--0.0293227 -0.228986 0.0867614
-0.00979778 -0.230647 0.053083
--0.0279439 -0.218218 0.0251978
-
-0.00933706 -0.219802 -0.00848059
--0.0279439 -0.218218 0.0251978
-0.00979778 -0.230647 0.053083
-
--0.0279439 -0.218218 0.0251978
-0.00933706 -0.219802 -0.00848059
--0.0293227 -0.228986 -0.0363658
-
-0.00979778 -0.230647 -0.0700442
--0.0293227 -0.228986 -0.0363658
-0.00933706 -0.219802 -0.00848059
-
--0.0293227 -0.228986 -0.0363658
-0.00979778 -0.230647 -0.0700442
--0.0332929 -0.259989 -0.090504
-
-0.0111243 -0.261876 -0.124182
--0.0332929 -0.259989 -0.090504
-0.00979778 -0.230647 -0.0700442
-
--0.0332929 -0.259989 -0.090504
-0.0111243 -0.261876 -0.124182
--0.0393755 -0.307489 -0.130687
-
-0.0131568 -0.309721 -0.164365
--0.0393755 -0.307489 -0.130687
-0.0111243 -0.261876 -0.124182
-
--0.0393755 -0.307489 -0.130687
-0.0131568 -0.309721 -0.164365
--0.046837 -0.365757 -0.152068
-
-0.0156499 -0.368411 -0.185746
--0.046837 -0.365757 -0.152068
-0.0131568 -0.309721 -0.164365
-
--0.046837 -0.365757 -0.152068
-0.0156499 -0.368411 -0.185746
--0.0547773 -0.427764 -0.152068
-
-0.0183031 -0.430868 -0.185746
--0.0547773 -0.427764 -0.152068
-0.0156499 -0.368411 -0.185746
-
--0.0547773 -0.427764 -0.152068
-0.0183031 -0.430868 -0.185746
--0.0622387 -0.486031 -0.130687
-
-0.0207962 -0.489558 -0.164365
--0.0622387 -0.486031 -0.130687
-0.0183031 -0.430868 -0.185746
-
--0.0622387 -0.486031 -0.130687
-0.0207962 -0.489558 -0.164365
--0.0683214 -0.533531 -0.090504
-
-0.0228286 -0.537403 -0.124182
--0.0683214 -0.533531 -0.090504
-0.0207962 -0.489558 -0.164365
-
--0.0683214 -0.533531 -0.090504
-0.0228286 -0.537403 -0.124182
--0.0722915 -0.564535 -0.0363658
-
-0.0241552 -0.568632 -0.0700442
--0.0722915 -0.564535 -0.0363658
-0.0228286 -0.537403 -0.124182
-
--0.0722915 -0.564535 -0.0363658
-0.0241552 -0.568632 -0.0700442
--0.0736703 -0.575302 0.0251978
-
-0.0246159 -0.579477 -0.00848059
--0.0736703 -0.575302 0.0251978
-0.0241552 -0.568632 -0.0700442
-
-0.0246159 -0.579477 -0.00848059
-0.122194 -0.566982 -0.0411901
-0.0241552 -0.568632 0.053083
-
-0.119907 -0.55637 0.0203735
-0.0241552 -0.568632 0.053083
-0.122194 -0.566982 -0.0411901
-
-0.0241552 -0.568632 0.053083
-0.119907 -0.55637 0.0203735
-0.0228286 -0.537403 0.107221
-
-0.113322 -0.525815 0.0745116
-0.0228286 -0.537403 0.107221
-0.119907 -0.55637 0.0203735
-
-0.0228286 -0.537403 0.107221
-0.113322 -0.525815 0.0745116
-0.0207962 -0.489558 0.147404
-
-0.103233 -0.479002 0.114694
-0.0207962 -0.489558 0.147404
-0.113322 -0.525815 0.0745116
-
-0.0207962 -0.489558 0.147404
-0.103233 -0.479002 0.114694
-0.0183031 -0.430868 0.168785
-
-0.0908568 -0.421577 0.136075
-0.0183031 -0.430868 0.168785
-0.103233 -0.479002 0.114694
-
-0.0183031 -0.430868 0.168785
-0.0908568 -0.421577 0.136075
-0.0156499 -0.368411 0.168785
-
-0.0776866 -0.360467 0.136075
-0.0156499 -0.368411 0.168785
-0.0908568 -0.421577 0.136075
-
-0.0156499 -0.368411 0.168785
-0.0776866 -0.360467 0.136075
-0.0131568 -0.309721 0.147404
-
-0.0653106 -0.303042 0.114694
-0.0131568 -0.309721 0.147404
-0.0776866 -0.360467 0.136075
-
-0.0131568 -0.309721 0.147404
-0.0653106 -0.303042 0.114694
-0.0111243 -0.261876 0.107221
-
-0.0552216 -0.256229 0.0745116
-0.0111243 -0.261876 0.107221
-0.0653106 -0.303042 0.114694
-
-0.0111243 -0.261876 0.107221
-0.0552216 -0.256229 0.0745116
-0.00979778 -0.230647 0.053083
-
-0.0486364 -0.225674 0.0203735
-0.00979778 -0.230647 0.053083
-0.0552216 -0.256229 0.0745116
-
-0.00979778 -0.230647 0.053083
-0.0486364 -0.225674 0.0203735
-0.00933706 -0.219802 -0.00848059
-
-0.0463494 -0.215062 -0.0411901
-0.00933706 -0.219802 -0.00848059
-0.0486364 -0.225674 0.0203735
-
-0.00933706 -0.219802 -0.00848059
-0.0463494 -0.215062 -0.0411901
-0.00979778 -0.230647 -0.0700442
-
-0.0486364 -0.225674 -0.102754
-0.00979778 -0.230647 -0.0700442
-0.0463494 -0.215062 -0.0411901
-
-0.00979778 -0.230647 -0.0700442
-0.0486364 -0.225674 -0.102754
-0.0111243 -0.261876 -0.124182
-
-0.0552216 -0.256229 -0.156892
-0.0111243 -0.261876 -0.124182
-0.0486364 -0.225674 -0.102754
-
-0.0111243 -0.261876 -0.124182
-0.0552216 -0.256229 -0.156892
-0.0131568 -0.309721 -0.164365
-
-0.0653106 -0.303042 -0.197075
-0.0131568 -0.309721 -0.164365
-0.0552216 -0.256229 -0.156892
-
-0.0131568 -0.309721 -0.164365
-0.0653106 -0.303042 -0.197075
-0.0156499 -0.368411 -0.185746
-
-0.0776866 -0.360467 -0.218456
-0.0156499 -0.368411 -0.185746
-0.0653106 -0.303042 -0.197075
-
-0.0156499 -0.368411 -0.185746
-0.0776866 -0.360467 -0.218456
-0.0183031 -0.430868 -0.185746
-
-0.0908568 -0.421577 -0.218456
-0.0183031 -0.430868 -0.185746
-0.0776866 -0.360467 -0.218456
-
-0.0183031 -0.430868 -0.185746
-0.0908568 -0.421577 -0.218456
-0.0207962 -0.489558 -0.164365
-
-0.103233 -0.479002 -0.197075
-0.0207962 -0.489558 -0.164365
-0.0908568 -0.421577 -0.218456
-
-0.0207962 -0.489558 -0.164365
-0.103233 -0.479002 -0.197075
-0.0228286 -0.537403 -0.124182
-
-0.113322 -0.525815 -0.156892
-0.0228286 -0.537403 -0.124182
-0.103233 -0.479002 -0.197075
-
-0.0228286 -0.537403 -0.124182
-0.113322 -0.525815 -0.156892
-0.0241552 -0.568632 -0.0700442
-
-0.119907 -0.55637 -0.102754
-0.0241552 -0.568632 -0.0700442
-0.113322 -0.525815 -0.156892
-
-0.0241552 -0.568632 -0.0700442
-0.119907 -0.55637 -0.102754
-0.0246159 -0.579477 -0.00848059
-
-0.122194 -0.566982 -0.0411901
-0.0246159 -0.579477 -0.00848059
-0.119907 -0.55637 -0.102754
-
-0.122194 -0.566982 -0.0411901
-0.216257 -0.538176 -0.0691939
-0.119907 -0.55637 0.0203735
-
-0.212209 -0.528103 -0.00763026
-0.119907 -0.55637 0.0203735
-0.216257 -0.538176 -0.0691939
-
-0.119907 -0.55637 0.0203735
-0.212209 -0.528103 -0.00763026
-0.113322 -0.525815 0.0745116
-
-0.200555 -0.4991 0.0465079
-0.113322 -0.525815 0.0745116
-0.212209 -0.528103 -0.00763026
-
-0.113322 -0.525815 0.0745116
-0.200555 -0.4991 0.0465079
-0.103233 -0.479002 0.114694
-
-0.1827 -0.454666 0.0866907
-0.103233 -0.479002 0.114694
-0.200555 -0.4991 0.0465079
-
-0.103233 -0.479002 0.114694
-0.1827 -0.454666 0.0866907
-0.0908568 -0.421577 0.136075
-
-0.160797 -0.400158 0.108072
-0.0908568 -0.421577 0.136075
-0.1827 -0.454666 0.0866907
-
-0.0908568 -0.421577 0.136075
-0.160797 -0.400158 0.108072
-0.0776866 -0.360467 0.136075
-
-0.137488 -0.342153 0.108072
-0.0776866 -0.360467 0.136075
-0.160797 -0.400158 0.108072
-
-0.0776866 -0.360467 0.136075
-0.137488 -0.342153 0.108072
-0.0653106 -0.303042 0.114694
-
-0.115586 -0.287646 0.0866907
-0.0653106 -0.303042 0.114694
-0.137488 -0.342153 0.108072
-
-0.0653106 -0.303042 0.114694
-0.115586 -0.287646 0.0866907
-0.0552216 -0.256229 0.0745116
-
-0.0977302 -0.243211 0.0465079
-0.0552216 -0.256229 0.0745116
-0.115586 -0.287646 0.0866907
-
-0.0552216 -0.256229 0.0745116
-0.0977302 -0.243211 0.0465079
-0.0486364 -0.225674 0.0203735
-
-0.0860759 -0.214208 -0.00763026
-0.0486364 -0.225674 0.0203735
-0.0977302 -0.243211 0.0465079
-
-0.0486364 -0.225674 0.0203735
-0.0860759 -0.214208 -0.00763026
-0.0463494 -0.215062 -0.0411901
-
-0.0820284 -0.204136 -0.0691939
-0.0463494 -0.215062 -0.0411901
-0.0860759 -0.214208 -0.00763026
-
-0.0463494 -0.215062 -0.0411901
-0.0820284 -0.204136 -0.0691939
-0.0486364 -0.225674 -0.102754
-
-0.0860759 -0.214208 -0.130758
-0.0486364 -0.225674 -0.102754
-0.0820284 -0.204136 -0.0691939
-
-0.0486364 -0.225674 -0.102754
-0.0860759 -0.214208 -0.130758
-0.0552216 -0.256229 -0.156892
-
-0.0977302 -0.243211 -0.184896
-0.0552216 -0.256229 -0.156892
-0.0860759 -0.214208 -0.130758
-
-0.0552216 -0.256229 -0.156892
-0.0977302 -0.243211 -0.184896
-0.0653106 -0.303042 -0.197075
-
-0.115586 -0.287646 -0.225078
-0.0653106 -0.303042 -0.197075
-0.0977302 -0.243211 -0.184896
-
-0.0653106 -0.303042 -0.197075
-0.115586 -0.287646 -0.225078
-0.0776866 -0.360467 -0.218456
-
-0.137488 -0.342153 -0.246459
-0.0776866 -0.360467 -0.218456
-0.115586 -0.287646 -0.225078
-
-0.0776866 -0.360467 -0.218456
-0.137488 -0.342153 -0.246459
-0.0908568 -0.421577 -0.218456
-
-0.160797 -0.400158 -0.246459
-0.0908568 -0.421577 -0.218456
-0.137488 -0.342153 -0.246459
-
-0.0908568 -0.421577 -0.218456
-0.160797 -0.400158 -0.246459
-0.103233 -0.479002 -0.197075
-
-0.1827 -0.454666 -0.225078
-0.103233 -0.479002 -0.197075
-0.160797 -0.400158 -0.246459
-
-0.103233 -0.479002 -0.197075
-0.1827 -0.454666 -0.225078
-0.113322 -0.525815 -0.156892
-
-0.200555 -0.4991 -0.184896
-0.113322 -0.525815 -0.156892
-0.1827 -0.454666 -0.225078
-
-0.113322 -0.525815 -0.156892
-0.200555 -0.4991 -0.184896
-0.119907 -0.55637 -0.102754
-
-0.212209 -0.528103 -0.130758
-0.119907 -0.55637 -0.102754
-0.200555 -0.4991 -0.184896
-
-0.119907 -0.55637 -0.102754
-0.212209 -0.528103 -0.130758
-0.122194 -0.566982 -0.0411901
-
-0.216257 -0.538176 -0.0691939
-0.122194 -0.566982 -0.0411901
-0.212209 -0.528103 -0.130758
-
-0.216257 -0.538176 -0.0691939
-0.304098 -0.493887 -0.0892926
-0.212209 -0.528103 -0.00763026
-
-0.298407 -0.484643 -0.027729
-0.212209 -0.528103 -0.00763026
-0.304098 -0.493887 -0.0892926
-
-0.212209 -0.528103 -0.00763026
-0.298407 -0.484643 -0.027729
-0.200555 -0.4991 0.0465079
-
-0.282019 -0.458027 0.0264092
-0.200555 -0.4991 0.0465079
-0.298407 -0.484643 -0.027729
-
-0.200555 -0.4991 0.0465079
-0.282019 -0.458027 0.0264092
-0.1827 -0.454666 0.0866907
-
-0.256911 -0.417249 0.066592
-0.1827 -0.454666 0.0866907
-0.282019 -0.458027 0.0264092
-
-0.1827 -0.454666 0.0866907
-0.256911 -0.417249 0.066592
-0.160797 -0.400158 0.108072
-
-0.226111 -0.367228 0.0879728
-0.160797 -0.400158 0.108072
-0.256911 -0.417249 0.066592
-
-0.160797 -0.400158 0.108072
-0.226111 -0.367228 0.0879728
-0.137488 -0.342153 0.108072
-
-0.193335 -0.313996 0.0879728
-0.137488 -0.342153 0.108072
-0.226111 -0.367228 0.0879728
-
-0.137488 -0.342153 0.108072
-0.193335 -0.313996 0.0879728
-0.115586 -0.287646 0.0866907
-
-0.162535 -0.263974 0.066592
-0.115586 -0.287646 0.0866907
-0.193335 -0.313996 0.0879728
-
-0.115586 -0.287646 0.0866907
-0.162535 -0.263974 0.066592
-0.0977302 -0.243211 0.0465079
-
-0.137427 -0.223196 0.0264092
-0.0977302 -0.243211 0.0465079
-0.162535 -0.263974 0.066592
-
-0.0977302 -0.243211 0.0465079
-0.137427 -0.223196 0.0264092
-0.0860759 -0.214208 -0.00763026
-
-0.121039 -0.19658 -0.027729
-0.0860759 -0.214208 -0.00763026
-0.137427 -0.223196 0.0264092
-
-0.0860759 -0.214208 -0.00763026
-0.121039 -0.19658 -0.027729
-0.0820284 -0.204136 -0.0691939
-
-0.115348 -0.187336 -0.0892926
-0.0820284 -0.204136 -0.0691939
-0.121039 -0.19658 -0.027729
-
-0.0820284 -0.204136 -0.0691939
-0.115348 -0.187336 -0.0892926
-0.0860759 -0.214208 -0.130758
-
-0.121039 -0.19658 -0.150856
-0.0860759 -0.214208 -0.130758
-0.115348 -0.187336 -0.0892926
-
-0.0860759 -0.214208 -0.130758
-0.121039 -0.19658 -0.150856
-0.0977302 -0.243211 -0.184896
-
-0.137427 -0.223196 -0.204994
-0.0977302 -0.243211 -0.184896
-0.121039 -0.19658 -0.150856
-
-0.0977302 -0.243211 -0.184896
-0.137427 -0.223196 -0.204994
-0.115586 -0.287646 -0.225078
-
-0.162535 -0.263974 -0.245177
-0.115586 -0.287646 -0.225078
-0.137427 -0.223196 -0.204994
-
-0.115586 -0.287646 -0.225078
-0.162535 -0.263974 -0.245177
-0.137488 -0.342153 -0.246459
-
-0.193335 -0.313996 -0.266558
-0.137488 -0.342153 -0.246459
-0.162535 -0.263974 -0.245177
-
-0.137488 -0.342153 -0.246459
-0.193335 -0.313996 -0.266558
-0.160797 -0.400158 -0.246459
-
-0.226111 -0.367228 -0.266558
-0.160797 -0.400158 -0.246459
-0.193335 -0.313996 -0.266558
-
-0.160797 -0.400158 -0.246459
-0.226111 -0.367228 -0.266558
-0.1827 -0.454666 -0.225078
-
-0.256911 -0.417249 -0.245177
-0.1827 -0.454666 -0.225078
-0.226111 -0.367228 -0.266558
-
-0.1827 -0.454666 -0.225078
-0.256911 -0.417249 -0.245177
-0.200555 -0.4991 -0.184896
-
-0.282019 -0.458027 -0.204994
-0.200555 -0.4991 -0.184896
-0.256911 -0.417249 -0.245177
-
-0.200555 -0.4991 -0.184896
-0.282019 -0.458027 -0.204994
-0.212209 -0.528103 -0.130758
-
-0.298407 -0.484643 -0.150856
-0.212209 -0.528103 -0.130758
-0.282019 -0.458027 -0.204994
-
-0.212209 -0.528103 -0.130758
-0.298407 -0.484643 -0.150856
-0.216257 -0.538176 -0.0691939
-
-0.304098 -0.493887 -0.0892926
-0.216257 -0.538176 -0.0691939
-0.298407 -0.484643 -0.150856
-
-0.304098 -0.493887 -0.0892926
-0.383191 -0.43539 -0.09919
-0.298407 -0.484643 -0.027729
-
-0.376019 -0.427241 -0.0376264
-0.298407 -0.484643 -0.027729
-0.383191 -0.43539 -0.09919
-
-0.298407 -0.484643 -0.027729
-0.376019 -0.427241 -0.0376264
-0.282019 -0.458027 0.0264092
-
-0.355369 -0.403778 0.0165117
-0.282019 -0.458027 0.0264092
-0.376019 -0.427241 -0.0376264
-
-0.282019 -0.458027 0.0264092
-0.355369 -0.403778 0.0165117
-0.256911 -0.417249 0.066592
-
-0.323731 -0.367829 0.0566945
-0.256911 -0.417249 0.066592
-0.355369 -0.403778 0.0165117
-
-0.256911 -0.417249 0.066592
-0.323731 -0.367829 0.0566945
-0.226111 -0.367228 0.0879728
-
-0.28492 -0.323732 0.0780754
-0.226111 -0.367228 0.0879728
-0.323731 -0.367829 0.0566945
-
-0.226111 -0.367228 0.0879728
-0.28492 -0.323732 0.0780754
-0.193335 -0.313996 0.0879728
-
-0.243619 -0.276805 0.0780754
-0.193335 -0.313996 0.0879728
-0.28492 -0.323732 0.0780754
-
-0.193335 -0.313996 0.0879728
-0.243619 -0.276805 0.0780754
-0.162535 -0.263974 0.066592
-
-0.204809 -0.232708 0.0566945
-0.162535 -0.263974 0.066592
-0.243619 -0.276805 0.0780754
-
-0.162535 -0.263974 0.066592
-0.204809 -0.232708 0.0566945
-0.137427 -0.223196 0.0264092
-
-0.173171 -0.19676 0.0165117
-0.137427 -0.223196 0.0264092
-0.204809 -0.232708 0.0566945
-
-0.137427 -0.223196 0.0264092
-0.173171 -0.19676 0.0165117
-0.121039 -0.19658 -0.027729
-
-0.15252 -0.173297 -0.0376264
-0.121039 -0.19658 -0.027729
-0.173171 -0.19676 0.0165117
-
-0.121039 -0.19658 -0.027729
-0.15252 -0.173297 -0.0376264
-0.115348 -0.187336 -0.0892926
-
-0.145348 -0.165148 -0.09919
-0.115348 -0.187336 -0.0892926
-0.15252 -0.173297 -0.0376264
-
-0.115348 -0.187336 -0.0892926
-0.145348 -0.165148 -0.09919
-0.121039 -0.19658 -0.150856
-
-0.15252 -0.173297 -0.160754
-0.121039 -0.19658 -0.150856
-0.145348 -0.165148 -0.09919
-
-0.121039 -0.19658 -0.150856
-0.15252 -0.173297 -0.160754
-0.137427 -0.223196 -0.204994
-
-0.173171 -0.19676 -0.214892
-0.137427 -0.223196 -0.204994
-0.15252 -0.173297 -0.160754
-
-0.137427 -0.223196 -0.204994
-0.173171 -0.19676 -0.214892
-0.162535 -0.263974 -0.245177
-
-0.204809 -0.232708 -0.255075
-0.162535 -0.263974 -0.245177
-0.173171 -0.19676 -0.214892
-
-0.162535 -0.263974 -0.245177
-0.204809 -0.232708 -0.255075
-0.193335 -0.313996 -0.266558
-
-0.243619 -0.276805 -0.276455
-0.193335 -0.313996 -0.266558
-0.204809 -0.232708 -0.255075
-
-0.193335 -0.313996 -0.266558
-0.243619 -0.276805 -0.276455
-0.226111 -0.367228 -0.266558
-
-0.28492 -0.323732 -0.276455
-0.226111 -0.367228 -0.266558
-0.243619 -0.276805 -0.276455
-
-0.226111 -0.367228 -0.266558
-0.28492 -0.323732 -0.276455
-0.256911 -0.417249 -0.245177
-
-0.323731 -0.367829 -0.255075
-0.256911 -0.417249 -0.245177
-0.28492 -0.323732 -0.276455
-
-0.256911 -0.417249 -0.245177
-0.323731 -0.367829 -0.255075
-0.282019 -0.458027 -0.204994
-
-0.355369 -0.403778 -0.214892
-0.282019 -0.458027 -0.204994
-0.323731 -0.367829 -0.255075
-
-0.282019 -0.458027 -0.204994
-0.355369 -0.403778 -0.214892
-0.298407 -0.484643 -0.150856
-
-0.376019 -0.427241 -0.160754
-0.298407 -0.484643 -0.150856
-0.355369 -0.403778 -0.214892
-
-0.298407 -0.484643 -0.150856
-0.376019 -0.427241 -0.160754
-0.304098 -0.493887 -0.0892926
-
-0.383191 -0.43539 -0.09919
-0.304098 -0.493887 -0.0892926
-0.376019 -0.427241 -0.160754
-
-0.383191 -0.43539 -0.09919
-0.451261 -0.364368 -0.0977555
-0.376019 -0.427241 -0.0376264
-
-0.442815 -0.357548 -0.0361919
-0.376019 -0.427241 -0.0376264
-0.451261 -0.364368 -0.0977555
-
-0.376019 -0.427241 -0.0376264
-0.442815 -0.357548 -0.0361919
-0.355369 -0.403778 0.0165117
-
-0.418496 -0.337912 0.0179462
-0.355369 -0.403778 0.0165117
-0.442815 -0.357548 -0.0361919
-
-0.355369 -0.403778 0.0165117
-0.418496 -0.337912 0.0179462
-0.323731 -0.367829 0.0566945
-
-0.381238 -0.307828 0.058129
-0.323731 -0.367829 0.0566945
-0.418496 -0.337912 0.0179462
-
-0.323731 -0.367829 0.0566945
-0.381238 -0.307828 0.058129
-0.28492 -0.323732 0.0780754
-
-0.335533 -0.270924 0.0795099
-0.28492 -0.323732 0.0780754
-0.381238 -0.307828 0.058129
-
-0.28492 -0.323732 0.0780754
-0.335533 -0.270924 0.0795099
-0.243619 -0.276805 0.0780754
-
-0.286895 -0.231652 0.0795099
-0.243619 -0.276805 0.0780754
-0.335533 -0.270924 0.0795099
-
-0.243619 -0.276805 0.0780754
-0.286895 -0.231652 0.0795099
-0.204809 -0.232708 0.0566945
-
-0.241191 -0.194748 0.058129
-0.204809 -0.232708 0.0566945
-0.286895 -0.231652 0.0795099
-
-0.204809 -0.232708 0.0566945
-0.241191 -0.194748 0.058129
-0.173171 -0.19676 0.0165117
-
-0.203933 -0.164664 0.0179462
-0.173171 -0.19676 0.0165117
-0.241191 -0.194748 0.058129
-
-0.173171 -0.19676 0.0165117
-0.203933 -0.164664 0.0179462
-0.15252 -0.173297 -0.0376264
-
-0.179614 -0.145028 -0.0361919
-0.15252 -0.173297 -0.0376264
-0.203933 -0.164664 0.0179462
-
-0.15252 -0.173297 -0.0376264
-0.179614 -0.145028 -0.0361919
-0.145348 -0.165148 -0.09919
-
-0.171168 -0.138208 -0.0977555
-0.145348 -0.165148 -0.09919
-0.179614 -0.145028 -0.0361919
-
-0.145348 -0.165148 -0.09919
-0.171168 -0.138208 -0.0977555
-0.15252 -0.173297 -0.160754
-
-0.179614 -0.145028 -0.159319
-0.15252 -0.173297 -0.160754
-0.171168 -0.138208 -0.0977555
-
-0.15252 -0.173297 -0.160754
-0.179614 -0.145028 -0.159319
-0.173171 -0.19676 -0.214892
-
-0.203933 -0.164664 -0.213457
-0.173171 -0.19676 -0.214892
-0.179614 -0.145028 -0.159319
-
-0.173171 -0.19676 -0.214892
-0.203933 -0.164664 -0.213457
-0.204809 -0.232708 -0.255075
-
-0.241191 -0.194748 -0.25364
-0.204809 -0.232708 -0.255075
-0.203933 -0.164664 -0.213457
-
-0.204809 -0.232708 -0.255075
-0.241191 -0.194748 -0.25364
-0.243619 -0.276805 -0.276455
-
-0.286895 -0.231652 -0.275021
-0.243619 -0.276805 -0.276455
-0.241191 -0.194748 -0.25364
-
-0.243619 -0.276805 -0.276455
-0.286895 -0.231652 -0.275021
-0.28492 -0.323732 -0.276455
-
-0.335533 -0.270924 -0.275021
-0.28492 -0.323732 -0.276455
-0.286895 -0.231652 -0.275021
-
-0.28492 -0.323732 -0.276455
-0.335533 -0.270924 -0.275021
-0.323731 -0.367829 -0.255075
-
-0.381238 -0.307828 -0.25364
-0.323731 -0.367829 -0.255075
-0.335533 -0.270924 -0.275021
-
-0.323731 -0.367829 -0.255075
-0.381238 -0.307828 -0.25364
-0.355369 -0.403778 -0.214892
-
-0.418496 -0.337912 -0.213457
-0.355369 -0.403778 -0.214892
-0.381238 -0.307828 -0.25364
-
-0.355369 -0.403778 -0.214892
-0.418496 -0.337912 -0.213457
-0.376019 -0.427241 -0.160754
-
-0.442815 -0.357548 -0.159319
-0.376019 -0.427241 -0.160754
-0.418496 -0.337912 -0.213457
-
-0.376019 -0.427241 -0.160754
-0.442815 -0.357548 -0.159319
-0.383191 -0.43539 -0.09919
-
-0.451261 -0.364368 -0.0977555
-0.383191 -0.43539 -0.09919
-0.442815 -0.357548 -0.159319
-
-0.451261 -0.364368 -0.0977555
-0.506348 -0.282863 -0.0851529
-0.442815 -0.357548 -0.0361919
-
-0.496871 -0.277569 -0.0235893
-0.442815 -0.357548 -0.0361919
-0.506348 -0.282863 -0.0851529
-
-0.442815 -0.357548 -0.0361919
-0.496871 -0.277569 -0.0235893
-0.418496 -0.337912 0.0179462
-
-0.469584 -0.262325 0.0305489
-0.418496 -0.337912 0.0179462
-0.496871 -0.277569 -0.0235893
-
-0.418496 -0.337912 0.0179462
-0.469584 -0.262325 0.0305489
-0.381238 -0.307828 0.058129
-
-0.427777 -0.238971 0.0707317
-0.381238 -0.307828 0.058129
-0.469584 -0.262325 0.0305489
-
-0.381238 -0.307828 0.058129
-0.427777 -0.238971 0.0707317
-0.335533 -0.270924 0.0795099
-
-0.376493 -0.210322 0.0921125
-0.335533 -0.270924 0.0795099
-0.427777 -0.238971 0.0707317
-
-0.335533 -0.270924 0.0795099
-0.376493 -0.210322 0.0921125
-0.286895 -0.231652 0.0795099
-
-0.321918 -0.179834 0.0921125
-0.286895 -0.231652 0.0795099
-0.376493 -0.210322 0.0921125
-
-0.286895 -0.231652 0.0795099
-0.321918 -0.179834 0.0921125
-0.241191 -0.194748 0.058129
-
-0.270634 -0.151185 0.0707317
-0.241191 -0.194748 0.058129
-0.321918 -0.179834 0.0921125
-
-0.241191 -0.194748 0.058129
-0.270634 -0.151185 0.0707317
-0.203933 -0.164664 0.0179462
-
-0.228827 -0.127831 0.0305489
-0.203933 -0.164664 0.0179462
-0.270634 -0.151185 0.0707317
-
-0.203933 -0.164664 0.0179462
-0.228827 -0.127831 0.0305489
-0.179614 -0.145028 -0.0361919
-
-0.20154 -0.112587 -0.0235893
-0.179614 -0.145028 -0.0361919
-0.228827 -0.127831 0.0305489
-
-0.179614 -0.145028 -0.0361919
-0.20154 -0.112587 -0.0235893
-0.171168 -0.138208 -0.0977555
-
-0.192063 -0.107293 -0.0851529
-0.171168 -0.138208 -0.0977555
-0.20154 -0.112587 -0.0235893
-
-0.171168 -0.138208 -0.0977555
-0.192063 -0.107293 -0.0851529
-0.179614 -0.145028 -0.159319
-
-0.20154 -0.112587 -0.146717
-0.179614 -0.145028 -0.159319
-0.192063 -0.107293 -0.0851529
-
-0.179614 -0.145028 -0.159319
-0.20154 -0.112587 -0.146717
-0.203933 -0.164664 -0.213457
-
-0.228827 -0.127831 -0.200855
-0.203933 -0.164664 -0.213457
-0.20154 -0.112587 -0.146717
-
-0.203933 -0.164664 -0.213457
-0.228827 -0.127831 -0.200855
-0.241191 -0.194748 -0.25364
-
-0.270634 -0.151185 -0.241037
-0.241191 -0.194748 -0.25364
-0.228827 -0.127831 -0.200855
-
-0.241191 -0.194748 -0.25364
-0.270634 -0.151185 -0.241037
-0.286895 -0.231652 -0.275021
-
-0.321918 -0.179834 -0.262418
-0.286895 -0.231652 -0.275021
-0.270634 -0.151185 -0.241037
-
-0.286895 -0.231652 -0.275021
-0.321918 -0.179834 -0.262418
-0.335533 -0.270924 -0.275021
-
-0.376493 -0.210322 -0.262418
-0.335533 -0.270924 -0.275021
-0.321918 -0.179834 -0.262418
-
-0.335533 -0.270924 -0.275021
-0.376493 -0.210322 -0.262418
-0.381238 -0.307828 -0.25364
-
-0.427777 -0.238971 -0.241037
-0.381238 -0.307828 -0.25364
-0.376493 -0.210322 -0.262418
-
-0.381238 -0.307828 -0.25364
-0.427777 -0.238971 -0.241037
-0.418496 -0.337912 -0.213457
-
-0.469584 -0.262325 -0.200855
-0.418496 -0.337912 -0.213457
-0.427777 -0.238971 -0.241037
-
-0.418496 -0.337912 -0.213457
-0.469584 -0.262325 -0.200855
-0.442815 -0.357548 -0.159319
-
-0.496871 -0.277569 -0.146717
-0.442815 -0.357548 -0.159319
-0.469584 -0.262325 -0.200855
-
-0.442815 -0.357548 -0.159319
-0.496871 -0.277569 -0.146717
-0.451261 -0.364368 -0.0977555
-
-0.506348 -0.282863 -0.0851529
-0.451261 -0.364368 -0.0977555
-0.496871 -0.277569 -0.146717
-
-0.506348 -0.282863 -0.0851529
-0.546869 -0.193221 -0.062822
-0.496871 -0.277569 -0.0235893
-
-0.536634 -0.189605 -0.00125837
-0.496871 -0.277569 -0.0235893
-0.546869 -0.193221 -0.062822
-
-0.496871 -0.277569 -0.0235893
-0.536634 -0.189605 -0.00125837
-0.469584 -0.262325 0.0305489
-
-0.507162 -0.179192 0.0528798
-0.469584 -0.262325 0.0305489
-0.536634 -0.189605 -0.00125837
-
-0.469584 -0.262325 0.0305489
-0.507162 -0.179192 0.0528798
-0.427777 -0.238971 0.0707317
-
-0.46201 -0.163238 0.0930626
-0.427777 -0.238971 0.0707317
-0.507162 -0.179192 0.0528798
-
-0.427777 -0.238971 0.0707317
-0.46201 -0.163238 0.0930626
-0.376493 -0.210322 0.0921125
-
-0.406622 -0.143669 0.114443
-0.376493 -0.210322 0.0921125
-0.46201 -0.163238 0.0930626
-
-0.376493 -0.210322 0.0921125
-0.406622 -0.143669 0.114443
-0.321918 -0.179834 0.0921125
-
-0.34768 -0.122843 0.114443
-0.321918 -0.179834 0.0921125
-0.406622 -0.143669 0.114443
-
-0.321918 -0.179834 0.0921125
-0.34768 -0.122843 0.114443
-0.270634 -0.151185 0.0707317
-
-0.292292 -0.103273 0.0930626
-0.270634 -0.151185 0.0707317
-0.34768 -0.122843 0.114443
-
-0.270634 -0.151185 0.0707317
-0.292292 -0.103273 0.0930626
-0.228827 -0.127831 0.0305489
-
-0.247139 -0.0873199 0.0528798
-0.228827 -0.127831 0.0305489
-0.292292 -0.103273 0.0930626
-
-0.228827 -0.127831 0.0305489
-0.247139 -0.0873199 0.0528798
-0.20154 -0.112587 -0.0235893
-
-0.217668 -0.0769071 -0.00125837
-0.20154 -0.112587 -0.0235893
-0.247139 -0.0873199 0.0528798
-
-0.20154 -0.112587 -0.0235893
-0.217668 -0.0769071 -0.00125837
-0.192063 -0.107293 -0.0851529
-
-0.207433 -0.0732908 -0.062822
-0.192063 -0.107293 -0.0851529
-0.217668 -0.0769071 -0.00125837
-
-0.192063 -0.107293 -0.0851529
-0.207433 -0.0732908 -0.062822
-0.20154 -0.112587 -0.146717
-
-0.217668 -0.0769071 -0.124386
-0.20154 -0.112587 -0.146717
-0.207433 -0.0732908 -0.062822
-
-0.20154 -0.112587 -0.146717
-0.217668 -0.0769071 -0.124386
-0.228827 -0.127831 -0.200855
-
-0.247139 -0.0873199 -0.178524
-0.228827 -0.127831 -0.200855
-0.217668 -0.0769071 -0.124386
-
-0.228827 -0.127831 -0.200855
-0.247139 -0.0873199 -0.178524
-0.270634 -0.151185 -0.241037
-
-0.292292 -0.103273 -0.218707
-0.270634 -0.151185 -0.241037
-0.247139 -0.0873199 -0.178524
-
-0.270634 -0.151185 -0.241037
-0.292292 -0.103273 -0.218707
-0.321918 -0.179834 -0.262418
-
-0.34768 -0.122843 -0.240087
-0.321918 -0.179834 -0.262418
-0.292292 -0.103273 -0.218707
-
-0.321918 -0.179834 -0.262418
-0.34768 -0.122843 -0.240087
-0.376493 -0.210322 -0.262418
-
-0.406622 -0.143669 -0.240087
-0.376493 -0.210322 -0.262418
-0.34768 -0.122843 -0.240087
-
-0.376493 -0.210322 -0.262418
-0.406622 -0.143669 -0.240087
-0.427777 -0.238971 -0.241037
-
-0.46201 -0.163238 -0.218707
-0.427777 -0.238971 -0.241037
-0.406622 -0.143669 -0.240087
-
-0.427777 -0.238971 -0.241037
-0.46201 -0.163238 -0.218707
-0.469584 -0.262325 -0.200855
-
-0.507162 -0.179192 -0.178524
-0.469584 -0.262325 -0.200855
-0.46201 -0.163238 -0.218707
-
-0.469584 -0.262325 -0.200855
-0.507162 -0.179192 -0.178524
-0.496871 -0.277569 -0.146717
-
-0.536634 -0.189605 -0.124386
-0.496871 -0.277569 -0.146717
-0.507162 -0.179192 -0.178524
-
-0.496871 -0.277569 -0.146717
-0.536634 -0.189605 -0.124386
-0.506348 -0.282863 -0.0851529
-
-0.546869 -0.193221 -0.062822
-0.506348 -0.282863 -0.0851529
-0.536634 -0.189605 -0.124386
-
-0.546869 -0.193221 -0.062822
-0.571657 -0.0980205 -0.033314
-0.536634 -0.189605 -0.00125837
-
-0.560958 -0.0961859 0.0282496
-0.536634 -0.189605 -0.00125837
-0.571657 -0.0980205 -0.033314
-
-0.536634 -0.189605 -0.00125837
-0.560958 -0.0961859 0.0282496
-0.507162 -0.179192 0.0528798
-
-0.530151 -0.0909035 0.0823878
-0.507162 -0.179192 0.0528798
-0.560958 -0.0961859 0.0282496
-
-0.507162 -0.179192 0.0528798
-0.530151 -0.0909035 0.0823878
-0.46201 -0.163238 0.0930626
-
-0.482952 -0.0828104 0.122571
-0.46201 -0.163238 0.0930626
-0.530151 -0.0909035 0.0823878
-
-0.46201 -0.163238 0.0930626
-0.482952 -0.0828104 0.122571
-0.406622 -0.143669 0.114443
-
-0.425053 -0.0728827 0.143951
-0.406622 -0.143669 0.114443
-0.482952 -0.0828104 0.122571
-
-0.406622 -0.143669 0.114443
-0.425053 -0.0728827 0.143951
-0.34768 -0.122843 0.114443
-
-0.363439 -0.0623179 0.143951
-0.34768 -0.122843 0.114443
-0.425053 -0.0728827 0.143951
-
-0.34768 -0.122843 0.114443
-0.363439 -0.0623179 0.143951
-0.292292 -0.103273 0.0930626
-
-0.305541 -0.0523903 0.122571
-0.292292 -0.103273 0.0930626
-0.363439 -0.0623179 0.143951
-
-0.292292 -0.103273 0.0930626
-0.305541 -0.0523903 0.122571
-0.247139 -0.0873199 0.0528798
-
-0.258342 -0.0442971 0.0823878
-0.247139 -0.0873199 0.0528798
-0.305541 -0.0523903 0.122571
-
-0.247139 -0.0873199 0.0528798
-0.258342 -0.0442971 0.0823878
-0.217668 -0.0769071 -0.00125837
-
-0.227535 -0.0390147 0.0282496
-0.217668 -0.0769071 -0.00125837
-0.258342 -0.0442971 0.0823878
-
-0.217668 -0.0769071 -0.00125837
-0.227535 -0.0390147 0.0282496
-0.207433 -0.0732908 -0.062822
-
-0.216836 -0.0371802 -0.033314
-0.207433 -0.0732908 -0.062822
-0.227535 -0.0390147 0.0282496
-
-0.207433 -0.0732908 -0.062822
-0.216836 -0.0371802 -0.033314
-0.217668 -0.0769071 -0.124386
-
-0.227535 -0.0390147 -0.0948776
-0.217668 -0.0769071 -0.124386
-0.216836 -0.0371802 -0.033314
-
-0.217668 -0.0769071 -0.124386
-0.227535 -0.0390147 -0.0948776
-0.247139 -0.0873199 -0.178524
-
-0.258342 -0.0442971 -0.149016
-0.247139 -0.0873199 -0.178524
-0.227535 -0.0390147 -0.0948776
-
-0.247139 -0.0873199 -0.178524
-0.258342 -0.0442971 -0.149016
-0.292292 -0.103273 -0.218707
-
-0.305541 -0.0523903 -0.189199
-0.292292 -0.103273 -0.218707
-0.258342 -0.0442971 -0.149016
-
-0.292292 -0.103273 -0.218707
-0.305541 -0.0523903 -0.189199
-0.34768 -0.122843 -0.240087
-
-0.363439 -0.0623179 -0.210579
-0.34768 -0.122843 -0.240087
-0.305541 -0.0523903 -0.189199
-
-0.34768 -0.122843 -0.240087
-0.363439 -0.0623179 -0.210579
-0.406622 -0.143669 -0.240087
-
-0.425053 -0.0728827 -0.210579
-0.406622 -0.143669 -0.240087
-0.363439 -0.0623179 -0.210579
-
-0.406622 -0.143669 -0.240087
-0.425053 -0.0728827 -0.210579
-0.46201 -0.163238 -0.218707
-
-0.482952 -0.0828104 -0.189199
-0.46201 -0.163238 -0.218707
-0.425053 -0.0728827 -0.210579
-
-0.46201 -0.163238 -0.218707
-0.482952 -0.0828104 -0.189199
-0.507162 -0.179192 -0.178524
-
-0.530151 -0.0909035 -0.149016
-0.507162 -0.179192 -0.178524
-0.482952 -0.0828104 -0.189199
-
-0.507162 -0.179192 -0.178524
-0.530151 -0.0909035 -0.149016
-0.536634 -0.189605 -0.124386
-
-0.560958 -0.0961859 -0.0948776
-0.536634 -0.189605 -0.124386
-0.530151 -0.0909035 -0.149016
-
-0.536634 -0.189605 -0.124386
-0.560958 -0.0961859 -0.0948776
-0.546869 -0.193221 -0.062822
-
-0.571657 -0.0980205 -0.033314
-0.546869 -0.193221 -0.062822
-0.560958 -0.0961859 -0.0948776
-
-0.571657 -0.0980205 -0.033314
-0.58 0 0
-0.560958 -0.0961859 0.0282496
-
-0.569145 0 0.0615636
-0.560958 -0.0961859 0.0282496
-0.58 0 0
-
-0.560958 -0.0961859 0.0282496
-0.569145 0 0.0615636
-0.530151 -0.0909035 0.0823878
-
-0.537888 0 0.115702
-0.530151 -0.0909035 0.0823878
-0.569145 0 0.0615636
-
-0.530151 -0.0909035 0.0823878
-0.537888 0 0.115702
-0.482952 -0.0828104 0.122571
-
-0.49 0 0.155885
-0.482952 -0.0828104 0.122571
-0.537888 0 0.115702
-
-0.482952 -0.0828104 0.122571
-0.49 0 0.155885
-0.425053 -0.0728827 0.143951
-
-0.431257 0 0.177265
-0.425053 -0.0728827 0.143951
-0.49 0 0.155885
-
-0.425053 -0.0728827 0.143951
-0.431257 0 0.177265
-0.363439 -0.0623179 0.143951
-
-0.368743 0 0.177265
-0.363439 -0.0623179 0.143951
-0.431257 0 0.177265
-
-0.363439 -0.0623179 0.143951
-0.368743 0 0.177265
-0.305541 -0.0523903 0.122571
-
-0.31 0 0.155885
-0.305541 -0.0523903 0.122571
-0.368743 0 0.177265
-
-0.305541 -0.0523903 0.122571
-0.31 0 0.155885
-0.258342 -0.0442971 0.0823878
-
-0.262112 0 0.115702
-0.258342 -0.0442971 0.0823878
-0.31 0 0.155885
-
-0.258342 -0.0442971 0.0823878
-0.262112 0 0.115702
-0.227535 -0.0390147 0.0282496
-
-0.230855 0 0.0615636
-0.227535 -0.0390147 0.0282496
-0.262112 0 0.115702
-
-0.227535 -0.0390147 0.0282496
-0.230855 0 0.0615636
-0.216836 -0.0371802 -0.033314
-
-0.22 0 0
-0.216836 -0.0371802 -0.033314
-0.230855 0 0.0615636
-
-0.216836 -0.0371802 -0.033314
-0.22 0 0
-0.227535 -0.0390147 -0.0948776
-
-0.230855 0 -0.0615636
-0.227535 -0.0390147 -0.0948776
-0.22 0 0
-
-0.227535 -0.0390147 -0.0948776
-0.230855 0 -0.0615636
-0.258342 -0.0442971 -0.149016
-
-0.262112 0 -0.115702
-0.258342 -0.0442971 -0.149016
-0.230855 0 -0.0615636
-
-0.258342 -0.0442971 -0.149016
-0.262112 0 -0.115702
-0.305541 -0.0523903 -0.189199
-
-0.31 0 -0.155885
-0.305541 -0.0523903 -0.189199
-0.262112 0 -0.115702
-
-0.305541 -0.0523903 -0.189199
-0.31 0 -0.155885
-0.363439 -0.0623179 -0.210579
-
-0.368743 0 -0.177265
-0.363439 -0.0623179 -0.210579
-0.31 0 -0.155885
-
-0.363439 -0.0623179 -0.210579
-0.368743 0 -0.177265
-0.425053 -0.0728827 -0.210579
-
-0.431257 0 -0.177265
-0.425053 -0.0728827 -0.210579
-0.368743 0 -0.177265
-
-0.425053 -0.0728827 -0.210579
-0.431257 0 -0.177265
-0.482952 -0.0828104 -0.189199
-
-0.49 0 -0.155885
-0.482952 -0.0828104 -0.189199
-0.431257 0 -0.177265
-
-0.482952 -0.0828104 -0.189199
-0.49 0 -0.155885
-0.530151 -0.0909035 -0.149016
-
-0.537888 0 -0.115702
-0.530151 -0.0909035 -0.149016
-0.49 0 -0.155885
-
-0.530151 -0.0909035 -0.149016
-0.537888 0 -0.115702
-0.560958 -0.0961859 -0.0948776
-
-0.569145 0 -0.0615636
-0.560958 -0.0961859 -0.0948776
-0.537888 0 -0.115702
-
-0.560958 -0.0961859 -0.0948776
-0.569145 0 -0.0615636
-0.571657 -0.0980205 -0.033314
-
-0.58 0 0
-0.571657 -0.0980205 -0.033314
-0.569145 0 -0.0615636
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/include/BV.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/include/BV.h
deleted file mode 100644
index cfe42c73..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/include/BV.h
+++ /dev/null
@@ -1,94 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_BV_H
-#define PQP_BV_H
-
-#include <math.h>
-#include "Tri.h"
-#include "PQP_Compile.h"
-
-struct BV
-{
-  PQP_REAL R[3][3];     // orientation of RSS & OBB
-
-#if PQP_BV_TYPE & RSS_TYPE
-  PQP_REAL Tr[3];       // position of rectangle
-  PQP_REAL l[2];        // side lengths of rectangle
-  PQP_REAL r;           // radius of sphere summed with rectangle to form RSS
-#endif
-
-#if PQP_BV_TYPE & OBB_TYPE
-  PQP_REAL To[3];       // position of obb
-  PQP_REAL d[3];        // (half) dimensions of obb
-#endif
-
-  int first_child;      // positive value is index of first_child bv
-                        // negative value is -(index + 1) of triangle
-
-  BV();
-  ~BV();
-  int      Leaf()    { return first_child < 0; }
-  PQP_REAL GetSize(); 
-  void     FitToTris(PQP_REAL O[3][3], Tri *tris, int num_tris);
-};
-
-inline
-PQP_REAL 
-BV::GetSize()
-{
-#if PQP_BV_TYPE & RSS_TYPE
-  return (sqrt(l[0]*l[0] + l[1]*l[1]) + 2*r);
-#else
-  return (d[0]*d[0] + d[1]*d[1] + d[2]*d[2]);
-#endif
-}
-
-int
-BV_Overlap(PQP_REAL R[3][3], PQP_REAL T[3], BV *b1, BV *b2);
-
-#if PQP_BV_TYPE & RSS_TYPE
-PQP_REAL
-BV_Distance(PQP_REAL R[3][3], PQP_REAL T[3], BV *b1, BV *b2);
-#endif
-
-#endif
-
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/include/PQP.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/include/PQP.h
deleted file mode 100644
index f6f3e539..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/include/PQP.h
+++ /dev/null
@@ -1,338 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_H
-#define PQP_H
-
-#include "PQP_Compile.h"   
-#include "PQP_Internal.h"                             
-                        
-//----------------------------------------------------------------------------
-//
-//  PQP API Return Values
-//
-//----------------------------------------------------------------------------
-
-const int PQP_OK = 0; 
-  // Used by all API routines upon successful completion except
-  // constructors and destructors
-
-const int PQP_ERR_MODEL_OUT_OF_MEMORY = -1; 
-  // Returned when an API function cannot obtain enough memory to
-  // store or process a PQP_Model object.
-
-const int PQP_ERR_OUT_OF_MEMORY = -2;
-  // Returned when a PQP query cannot allocate enough storage to
-  // compute or hold query information.  In this case, the returned
-  // data should not be trusted.
-
-const int PQP_ERR_UNPROCESSED_MODEL = -3;
-  // Returned when an unprocessed model is passed to a function which
-  // expects only processed models, such as PQP_Collide() or
-  // PQP_Distance().
-
-const int PQP_ERR_BUILD_OUT_OF_SEQUENCE = -4;
-  // Returned when: 
-  //       1. AddTri() is called before BeginModel().  
-  //       2. BeginModel() is called immediately after AddTri().  
-  // This error code is something like a warning: the invoked
-  // operation takes place anyway, and PQP does what makes "most
-  // sense", but the returned error code may tip off the client that
-  // something out of the ordinary is happenning.
-
-const int PQP_ERR_BUILD_EMPTY_MODEL = -5; 
-  // Returned when EndModel() is called on a model to which no
-  // triangles have been added.  This is similar in spirit to the
-  // OUT_OF_SEQUENCE return code, except that the requested operation
-  // has FAILED -- the model remains "unprocessed", and the client may
-  // NOT use it in queries.
-
-//----------------------------------------------------------------------------
-//
-//  PQP_REAL 
-//
-//  The floating point type used throughout the package. The type is defined 
-//  in PQP_Compile.h, and by default is "double"
-//
-//----------------------------------------------------------------------------
-
-//----------------------------------------------------------------------------
-//
-//  PQP_Model
-//
-//  A PQP_Model stores geometry to be used in a proximity query.
-//  The geometry is loaded with a call to BeginModel(), at least one call to 
-//  AddTri(), and then a call to EndModel().
-//
-//  // create a two triangle model, m
-//
-//  PQP_Model m;
-//
-//  PQP_REAL p1[3],p2[3],p3[3];  // 3 points will make triangle p
-//  PQP_REAL q1[3],q2[3],q3[3];  // another 3 points for triangle q
-//
-//  // some initialization of these vertices not shown
-//
-//  m.BeginModel();              // begin the model
-//  m.AddTri(p1,p2,p3,0);        // add triangle p
-//  m.AddTri(q1,q2,q3,1);        // add triangle q
-//  m.EndModel();                // end (build) the model
-//
-//  The last parameter of AddTri() is the number to be associated with the 
-//  triangle. These numbers are used to identify the triangles that overlap.
-// 
-//  AddTri() copies into the PQP_Model the data pointed to by the three vertex 
-//  pointers, so that it is safe to delete vertex data after you have 
-//  passed it to AddTri().
-//
-//----------------------------------------------------------------------------
-//
-//  class PQP_Model  - declaration contained in PQP_Internal.h
-//  {
-//
-//  public:
-//    PQP_Model();
-//    ~PQP_Model();
-//
-//    int BeginModel(int num_tris = 8); // preallocate for num_tris triangles;
-//                                      // the parameter is optional, since
-//                                      // arrays are reallocated as needed
-//
-//    int AddTri(const PQP_REAL *p1, const PQP_REAL *p2, const PQP_REAL *p3, 
-//               int id);
-//
-//    int EndModel();
-//    int MemUsage(int msg);  // returns model mem usage in bytes
-//                            // prints message to stderr if msg == TRUE
-//  };
-
-//----------------------------------------------------------------------------
-//
-//  PQP_CollideResult 
-//
-//  This saves and reports results from a collision query.  
-//
-//----------------------------------------------------------------------------
-//
-//  struct PQP_CollideResult - declaration contained in PQP_Internal.h
-//  {
-//    // statistics
-//
-//    int NumBVTests();
-//    int NumTriTests();
-//    PQP_REAL QueryTimeSecs();
-//
-//    // free the list of contact pairs; ordinarily this list is reused
-//    // for each query, and only deleted in the destructor.
-//
-//    void FreePairsList(); 
-//
-//    // query results
-//
-//    int Colliding();
-//    int NumPairs();
-//    int Id1(int k);
-//    int Id2(int k);
-//  };
-
-//----------------------------------------------------------------------------
-//
-//  PQP_Collide() - detects collision between two PQP_Models
-//
-//
-//  Declare a PQP_CollideResult struct and pass its pointer to collect 
-//  collision data.
-//
-//  [R1, T1] is the placement of model 1 in the world &
-//  [R2, T2] is the placement of model 2 in the world.
-//  The columns of each 3x3 matrix are the basis vectors for the model
-//  in world coordinates, and the matrices are in row-major order:
-//  R(row r, col c) = R[r][c].
-//
-//  If PQP_ALL_CONTACTS is the flag value, after calling PQP_Collide(),
-//  the PQP_CollideResult object will contain an array with all
-//  colliding triangle pairs. Suppose CR is a pointer to the
-//  PQP_CollideResult object.  The number of pairs is gotten from
-//  CR->NumPairs(), and the ids of the 15'th pair of colliding
-//  triangles is gotten from CR->Id1(14) and CR->Id2(14).
-//
-//  If PQP_FIRST_CONTACT is the flag value, the PQP_CollideResult array
-//  will only get the first colliding triangle pair found.  Thus
-//  CR->NumPairs() will be at most 1, and if 1, CR->Id1(0) and
-//  CR->Id2(0) give the ids of the colliding triangle pair.
-//
-//----------------------------------------------------------------------------
-
-const int PQP_ALL_CONTACTS = 1;  // find all pairwise intersecting triangles
-const int PQP_FIRST_CONTACT = 2; // report first intersecting tri pair found
-
-int 
-PQP_Collide(PQP_CollideResult *result,
-            PQP_REAL R1[3][3], PQP_REAL T1[3], PQP_Model *o1,
-            PQP_REAL R2[3][3], PQP_REAL T2[3], PQP_Model *o2,
-            int flag = PQP_ALL_CONTACTS);
-
-
-#if PQP_BV_TYPE & RSS_TYPE  // this is true by default,
-                            // and explained in PQP_Compile.h
-
-//----------------------------------------------------------------------------
-//
-//  PQP_DistanceResult
-//
-//  This saves and reports results from a distance query.  
-//
-//----------------------------------------------------------------------------
-//
-//  struct PQP_DistanceResult - declaration contained in PQP_Internal.h
-//  {
-//    // statistics
-//  
-//    int NumBVTests();
-//    int NumTriTests();
-//    PQP_REAL QueryTimeSecs();
-//  
-//    // The following distance and points established the minimum distance
-//    // for the models, within the relative and absolute error bounds 
-//    // specified.
-//
-//    PQP_REAL Distance();
-//    const PQP_REAL *P1();  // pointers to three PQP_REALs
-//    const PQP_REAL *P2();  
-//  };
-
-//----------------------------------------------------------------------------
-//
-//  PQP_Distance() - computes the distance between two PQP_Models
-//
-//
-//  Declare a PQP_DistanceResult struct and pass its pointer to collect
-//  distance information.
-//
-//  "rel_err" is the relative error margin from actual distance.
-//  "abs_err" is the absolute error margin from actual distance.  The
-//  smaller of the two will be satisfied, so set one large to nullify
-//  its effect.
-//
-//  "qsize" is an optional parameter controlling the size of a priority
-//  queue used to direct the search for closest points.  A larger queue
-//  can help the algorithm discover the minimum with fewer steps, but
-//  will increase the cost of each step. It is not beneficial to increase
-//  qsize if the application has frame-to-frame coherence, i.e., the
-//  pair of models take small steps between each call, since another
-//  speedup trick already accelerates this situation with no overhead.
-//
-//  However, a queue size of 100 to 200 has been seen to save time in a
-//  planning application with "non-coherent" placements of models.
-//
-//----------------------------------------------------------------------------
-
-int 
-PQP_Distance(PQP_DistanceResult *result, 
-             PQP_REAL R1[3][3], PQP_REAL T1[3], PQP_Model *o1,
-             PQP_REAL R2[3][3], PQP_REAL T2[3], PQP_Model *o2,
-             PQP_REAL rel_err, PQP_REAL abs_err,
-             int qsize = 2);
-
-//----------------------------------------------------------------------------
-//
-//  PQP_ToleranceResult
-//
-//  This saves and reports results from a tolerance query.  
-//
-//----------------------------------------------------------------------------
-//
-//  struct PQP_ToleranceResult - declaration contained in PQP_Internal.h
-//  {
-//    // statistics
-//  
-//    int NumBVTests(); 
-//    int NumTriTests();
-//    PQP_REAL QueryTimeSecs();
-//  
-//    // If the models are closer than ( <= ) tolerance, these points 
-//    // and distance were what established this.  Otherwise, 
-//    // distance and point values are not meaningful.
-//  
-//    PQP_REAL Distance();
-//    const PQP_REAL *P1();
-//    const PQP_REAL *P2();
-//  
-//    // boolean says whether models are closer than tolerance distance
-//  
-//    int CloserThanTolerance();
-//  };
-
-//----------------------------------------------------------------------------
-//
-// PQP_Tolerance() - checks if distance between PQP_Models is <= tolerance
-//
-//
-// Declare a PQP_ToleranceResult and pass its pointer to collect
-// tolerance information.
-//
-// The algorithm returns whether the true distance is <= or >
-// "tolerance".  This routine does not simply compute true distance
-// and compare to the tolerance - models can often be shown closer or
-// farther than the tolerance more trivially.  In most cases this
-// query should run faster than a distance query would on the same
-// models and configurations.
-// 
-// "qsize" again controls the size of a priority queue used for
-// searching.  Not setting qsize is the current recommendation, since
-// increasing it has only slowed down our applications.
-//
-//----------------------------------------------------------------------------
-
-int
-PQP_Tolerance(PQP_ToleranceResult *res, 
-              PQP_REAL R1[3][3], PQP_REAL T1[3], PQP_Model *o1,
-              PQP_REAL R2[3][3], PQP_REAL T2[3], PQP_Model *o2,
-              PQP_REAL tolerance,
-              int qsize = 2);
-
-#endif 
-#endif
-
-
-
-
-
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/include/PQP_Compile.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/include/PQP_Compile.h
deleted file mode 100644
index f76c9813..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/include/PQP_Compile.h
+++ /dev/null
@@ -1,101 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_COMPILE_H
-#define PQP_COMPILE_H
-
-// prevents compiler warnings when PQP_REAL is float
-
-#include <math.h>
-inline float sqrt(float x) { return (float)sqrt((double)x); }
-inline float cos(float x) { return (float)cos((double)x); }
-inline float sin(float x) { return (float)sin((double)x); }
-inline float fabs(float x) { return (float)fabs((double)x); }
-
-//-------------------------------------------------------------------------
-//
-// PQP_REAL
-//
-// This is the floating point type used throughout PQP.  doubles are
-// recommended, both for their precision and because the software has
-// mainly been tested using them.  However, floats appear to be faster 
-// (by 60% on some machines).
-//
-//-------------------------------------------------------------------------
-
-typedef double PQP_REAL;
-
-//-------------------------------------------------------------------------
-//
-// PQP_BV_TYPE
-//
-// PQP introduces a bounding volume (BV) type known as the "rectangle
-// swept sphere" (RSS) - the volume created by sweeping a sphere so
-// that its center visits every point on a rectangle; it looks
-// something like a rounded box.
-//
-// In our experiments, the RSS type is comparable to the oriented 
-// bounding box (OBB) in terms of the number of BV-pair and triangle-pair 
-// tests incurred.  However, with our present implementations, overlap 
-// tests are cheaper for OBBs, while distance tests are cheaper for the 
-// RSS type (we used a public gjk implementation for the OBB distance test).
-//
-// Consequently, PQP is configured to use the RSS type in distance and 
-// tolerance queries (which use BV distance tests) and to use OBBs for
-// collision queries (which use BV overlap tests). Using both requires six
-// more PQP_REALs per BV node than using just one type. 
-//
-// To save space, you can configure PQP to use only one type, however, 
-// with RSS alone, collision queries will typically be slower.  With OBB's 
-// alone, distance and tolerance queries are currently not supported, since 
-// we have not developed our own OBB distance test.  The three options are:
-//
-// #define PQP_BV_TYPE  RSS_TYPE           
-// #define PQP_BV_TYPE  OBB_TYPE           
-// #define PQP_BV_TYPE  RSS_TYPE | OBB_TYPE
-//
-//-------------------------------------------------------------------------
-
-#define RSS_TYPE     1
-#define OBB_TYPE     2
-
-#define PQP_BV_TYPE  RSS_TYPE | OBB_TYPE
-
-#endif
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/include/PQP_Internal.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/include/PQP_Internal.h
deleted file mode 100644
index 90cedcfa..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/include/PQP_Internal.h
+++ /dev/null
@@ -1,203 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#include "Tri.h"
-#include "BV.h"
-
-class PQP_Model
-{
-
-public:
-
-  int build_state;
-
-  Tri *tris;  
-  int num_tris;
-  int num_tris_alloced;
-
-  BV *b;
-  int num_bvs;
-  int num_bvs_alloced;
-
-  Tri *last_tri;       // closest tri on this model in last distance test
-  
-  BV *child(int n) { return &b[n]; }
-
-  PQP_Model();
-  ~PQP_Model();
-
-  int BeginModel(int num_tris = 8); // preallocate for num_tris triangles;
-                                    // the parameter is optional, since
-                                    // arrays are reallocated as needed
-  int AddTri(const PQP_REAL *p1, const PQP_REAL *p2, const PQP_REAL *p3, 
-             int id);
-  int EndModel();
-  int MemUsage(int msg);  // returns model mem usage.  
-                          // prints message to stderr if msg == TRUE
-};
-
-struct CollisionPair
-{
-  int id1;
-  int id2;
-};
-
-struct PQP_CollideResult  
-{
-  // stats
-
-  int num_bv_tests;
-  int num_tri_tests;
-  double query_time_secs;
-
-  // xform from model 1 to model 2
-
-  PQP_REAL R[3][3];
-  PQP_REAL T[3];
-
-  int num_pairs_alloced;
-  int num_pairs;
-  CollisionPair *pairs;
-
-  void SizeTo(int n);    
-  void Add(int i1, int i2); 
-
-  PQP_CollideResult();
-  ~PQP_CollideResult();
-
-  // statistics
-
-  int NumBVTests() { return num_bv_tests; }
-  int NumTriTests() { return num_tri_tests; }
-  double QueryTimeSecs() { return query_time_secs; }
-
-  // free the list of contact pairs; ordinarily this list is reused
-  // for each query, and only deleted in the destructor.
-
-  void FreePairsList(); 
-
-  // query results
-
-  int Colliding() { return (num_pairs > 0); }
-  int NumPairs() { return num_pairs; }
-  int Id1(int k) { return pairs[k].id1; }
-  int Id2(int k) { return pairs[k].id2; }
-};
-
-#if PQP_BV_TYPE & RSS_TYPE // distance/tolerance are only available with RSS
-
-struct PQP_DistanceResult 
-{
-  // stats
-
-  int num_bv_tests;
-  int num_tri_tests;
-  double query_time_secs;
-
-  // xform from model 1 to model 2
-
-  PQP_REAL R[3][3];
-  PQP_REAL T[3];
-
-  PQP_REAL rel_err; 
-  PQP_REAL abs_err; 
-
-  PQP_REAL distance;
-  PQP_REAL p1[3]; 
-  PQP_REAL p2[3];
-  int qsize;
-  
-  // statistics
-
-  int NumBVTests() { return num_bv_tests; }
-  int NumTriTests() { return num_tri_tests; }
-  double QueryTimeSecs() { return query_time_secs; }
-
-  // The following distance and points established the minimum distance
-  // for the models, within the relative and absolute error bounds 
-  // specified.
-  // Points are defined: PQP_REAL p1[3], p2[3];
-
-  PQP_REAL Distance() { return distance; }
-  const PQP_REAL *P1() { return p1; }
-  const PQP_REAL *P2() { return p2; }
-};
-
-struct PQP_ToleranceResult 
-{
-  // stats
-
-  int num_bv_tests;
-  int num_tri_tests;
-  double query_time_secs;
-
-  // xform from model 1 to model 2
-
-  PQP_REAL R[3][3];
-  PQP_REAL T[3];
-
-  int    closer_than_tolerance;   
-  PQP_REAL tolerance;      
-
-  PQP_REAL distance;
-  PQP_REAL p1[3]; 
-  PQP_REAL p2[3]; 
-  int qsize;
-
-  // statistics
-
-  int NumBVTests() { return num_bv_tests; }
-  int NumTriTests() { return num_tri_tests; }
-  double QueryTimeSecs() { return query_time_secs; }
-
-  // If the models are closer than ( <= ) tolerance, these points 
-  // and distance were what established this.  Otherwise, 
-  // distance and point values are not meaningful.
-
-  PQP_REAL Distance() { return distance; }
-  const PQP_REAL *P1() { return p1; }
-  const PQP_REAL *P2() { return p2; }
-
-  // boolean says whether models are closer than tolerance distance
-
-  int CloserThanTolerance() { return closer_than_tolerance; }
-};
-
-#endif
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/include/Tri.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/include/Tri.h
deleted file mode 100644
index 496cddd9..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/include/Tri.h
+++ /dev/null
@@ -1,54 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_TRI_H
-#define PQP_TRI_H
-
-#include "PQP_Compile.h"
-
-struct Tri
-{
-  PQP_REAL p1[3];
-  PQP_REAL p2[3];
-  PQP_REAL p3[3];
-  int id;
-};
-
-#endif
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/BV.cpp b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/BV.cpp
deleted file mode 100644
index adbe2fc1..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/BV.cpp
+++ /dev/null
@@ -1,323 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#include <stdlib.h>
-#include <math.h>
-#include "BV.h"
-#include "MatVec.h"
-#include "RectDist.h"
-#include "OBB_Disjoint.h"
-
-BV::BV()
-{
-  first_child = 0;
-}
-
-BV::~BV()
-{
-}
-
-static
-inline 
-PQP_REAL 
-MaxOfTwo(PQP_REAL a, PQP_REAL b) 
-{
-  if (a > b) return a;
-  return b;
-}
-
-void
-BV::FitToTris(PQP_REAL O[3][3], Tri *tris, int num_tris)
-{
-  // store orientation
-
-  McM(R,O);
-
-  // project points of tris to R coordinates
-
-  int num_points = 3*num_tris;
-  PQP_REAL (*P)[3] = new PQP_REAL[num_points][3];
-  int point = 0;
-  int i;
-  for (i = 0; i < num_tris; i++) 
-  {
-    MTxV(P[point],R,tris[i].p1);
-    point++;
-
-    MTxV(P[point],R,tris[i].p2);
-    point++;
-
-    MTxV(P[point],R,tris[i].p3);
-    point++;
-  }
-
-  PQP_REAL minx, maxx, miny, maxy, minz, maxz, c[3];
-
-#if PQP_BV_TYPE & OBB_TYPE
-  minx = maxx = P[0][0];
-  miny = maxy = P[0][1];
-  minz = maxz = P[0][2];
-  for (i = 1; i < num_points; i++)
-  {
-    if (P[i][0] < minx) minx = P[i][0];
-    else if (P[i][0] > maxx) maxx = P[i][0];
-    if (P[i][1] < miny) miny = P[i][1];
-    else if (P[i][1] > maxy) maxy = P[i][1];
-    if (P[i][2] < minz) minz = P[i][2];
-    else if (P[i][2] > maxz) maxz = P[i][2];
-  }
-  c[0] = (PQP_REAL)0.5*(maxx + minx);
-  c[1] = (PQP_REAL)0.5*(maxy + miny);
-  c[2] = (PQP_REAL)0.5*(maxz + minz);
-  MxV(To,R,c);
-
-  d[0] = (PQP_REAL)0.5*(maxx - minx);
-  d[1] = (PQP_REAL)0.5*(maxy - miny);
-  d[2] = (PQP_REAL)0.5*(maxz - minz);
-#endif
-  
-#if PQP_BV_TYPE & RSS_TYPE
-
-  // compute thickness, which determines radius, and z of rectangle corner
-  
-  PQP_REAL cz,radsqr;
-  minz = maxz = P[0][2];
-  for (i = 1; i < num_points; i++) 
-  {
-    if (P[i][2] < minz) minz = P[i][2];
-    else if (P[i][2] > maxz) maxz = P[i][2];
-  }
-  r = (PQP_REAL)0.5*(maxz - minz);
-  radsqr = r*r;
-  cz = (PQP_REAL)0.5*(maxz + minz);
-
-  // compute an initial length of rectangle along x direction
-
-  // find minx and maxx as starting points
-
-  int minindex, maxindex;
-  minindex = maxindex = 0;
-  for (i = 1; i < num_points; i++) 
-  {
-    if (P[i][0] < P[minindex][0]) minindex = i; 
-    else if (P[i][0] > P[maxindex][0]) maxindex = i;
-  }
-  PQP_REAL x, dz;
-  dz = P[minindex][2] - cz;
-  minx = P[minindex][0] + sqrt(MaxOfTwo(radsqr - dz*dz,0));
-  dz = P[maxindex][2] - cz;
-  maxx = P[maxindex][0] - sqrt(MaxOfTwo(radsqr - dz*dz,0));
-
-  // grow minx
-
-  for (i = 0; i < num_points; i++) 
-  {
-    if (P[i][0] < minx) 
-    {
-      dz = P[i][2] - cz;
-      x = P[i][0] + sqrt(MaxOfTwo(radsqr - dz*dz,0));
-      if (x < minx) minx = x;
-    }
-  }
-
-  // grow maxx
-
-  for (i = 0; i < num_points; i++) 
-  {
-    if (P[i][0] > maxx) 
-    {
-      dz = P[i][2] - cz;
-      x = P[i][0] - sqrt(MaxOfTwo(radsqr - dz*dz,0));
-      if (x > maxx) maxx = x;
-    }
-  }
-  
-  // compute an initial length of rectangle along y direction
-
-  // find miny and maxy as starting points
-
-  minindex = maxindex = 0;
-  for (i = 1; i < num_points; i++) 
-  {
-    if (P[i][1] < P[minindex][1]) minindex = i;
-    else if (P[i][1] > P[maxindex][1]) maxindex = i;
-  }
-  PQP_REAL y;
-  dz = P[minindex][2] - cz;
-  miny = P[minindex][1] + sqrt(MaxOfTwo(radsqr - dz*dz,0));
-  dz = P[maxindex][2] - cz;
-  maxy = P[maxindex][1] - sqrt(MaxOfTwo(radsqr - dz*dz,0));
-
-  // grow miny
-
-  for (i = 0; i < num_points; i++) 
-  {
-    if (P[i][1] < miny) 
-    {
-      dz = P[i][2] - cz;
-      y = P[i][1] + sqrt(MaxOfTwo(radsqr - dz*dz,0));
-      if (y < miny) miny = y;
-    }
-  }
-
-  // grow maxy
-
-  for (i = 0; i < num_points; i++) 
-  {
-    if (P[i][1] > maxy) 
-    {
-      dz = P[i][2] - cz;
-      y = P[i][1] - sqrt(MaxOfTwo(radsqr - dz*dz,0));
-      if (y > maxy) maxy = y;
-    }
-  }
-  
-  // corners may have some points which are not covered - grow lengths if
-  // necessary
-  
-  PQP_REAL dx, dy, u, t;
-  PQP_REAL a = sqrt((PQP_REAL)0.5);
-  for (i = 0; i < num_points; i++) 
-  {
-    if (P[i][0] > maxx) 
-    {
-      if (P[i][1] > maxy) 
-      {
-        dx = P[i][0] - maxx;
-        dy = P[i][1] - maxy;
-        u = dx*a + dy*a;
-        t = (a*u - dx)*(a*u - dx) + 
-            (a*u - dy)*(a*u - dy) +
-            (cz - P[i][2])*(cz - P[i][2]);
-        u = u - sqrt(MaxOfTwo(radsqr - t,0));
-        if (u > 0) 
-        {
-          maxx += u*a;
-          maxy += u*a;
-        }
-      }
-      else if (P[i][1] < miny) 
-      {
-        dx = P[i][0] - maxx;
-        dy = P[i][1] - miny;
-        u = dx*a - dy*a;
-        t = (a*u - dx)*(a*u - dx) + 
-            (-a*u - dy)*(-a*u - dy) +
-            (cz - P[i][2])*(cz - P[i][2]);
-        u = u - sqrt(MaxOfTwo(radsqr - t,0));
-        if (u > 0) 
-        {
-          maxx += u*a;
-          miny -= u*a;
-        }
-      }
-    }
-    else if (P[i][0] < minx) 
-    {
-      if (P[i][1] > maxy) 
-      {
-        dx = P[i][0] - minx;
-        dy = P[i][1] - maxy;
-        u = dy*a - dx*a;
-        t = (-a*u - dx)*(-a*u - dx) + 
-            (a*u - dy)*(a*u - dy) +
-            (cz - P[i][2])*(cz - P[i][2]);
-        u = u - sqrt(MaxOfTwo(radsqr - t,0));
-        if (u > 0) 
-        {
-          minx -= u*a;
-          maxy += u*a;
-        }     
-      }
-      else if (P[i][1] < miny) 
-      {
-        dx = P[i][0] - minx;
-        dy = P[i][1] - miny;
-        u = -dx*a - dy*a;
-        t = (-a*u - dx)*(-a*u - dx) + 
-            (-a*u - dy)*(-a*u - dy) +
-            (cz - P[i][2])*(cz - P[i][2]);
-        u = u - sqrt(MaxOfTwo(radsqr - t,0));
-        if (u > 0) 
-        {
-          minx -= u*a; 
-          miny -= u*a;
-        }
-      }
-    }
-  }
-
-  c[0] = minx;
-  c[1] = miny;
-  c[2] = cz;
-  MxV(Tr,R,c);
-
-  l[0] = maxx - minx;  
-  if (l[0] < 0) l[0] = 0;
-  l[1] = maxy - miny;
-  if (l[1] < 0) l[1] = 0;
-#endif
-
-  delete [] P;
-}
-
-int 
-BV_Overlap(PQP_REAL R[3][3], PQP_REAL T[3], BV *b1, BV *b2)
-{
-#if PQP_BV_TYPE & OBB_TYPE
-  return (obb_disjoint(R,T,b1->d,b2->d) == 0);
-#else
-  PQP_REAL dist = RectDist(R,T,b1->l,b2->l);
-  if (dist <= (b1->r + b2->r)) return 1;
-  return 0;
-#endif
-}
-
-#if PQP_BV_TYPE & RSS_TYPE
-PQP_REAL
-BV_Distance(PQP_REAL R[3][3], PQP_REAL T[3], BV *b1, BV *b2)
-{
-  PQP_REAL dist = RectDist(R,T,b1->l,b2->l);
-  dist -= (b1->r + b2->r);
-  return (dist < (PQP_REAL)0.0)? (PQP_REAL)0.0 : dist;
-}
-#endif
-
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/BV.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/BV.h
deleted file mode 100644
index cfe42c73..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/BV.h
+++ /dev/null
@@ -1,94 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_BV_H
-#define PQP_BV_H
-
-#include <math.h>
-#include "Tri.h"
-#include "PQP_Compile.h"
-
-struct BV
-{
-  PQP_REAL R[3][3];     // orientation of RSS & OBB
-
-#if PQP_BV_TYPE & RSS_TYPE
-  PQP_REAL Tr[3];       // position of rectangle
-  PQP_REAL l[2];        // side lengths of rectangle
-  PQP_REAL r;           // radius of sphere summed with rectangle to form RSS
-#endif
-
-#if PQP_BV_TYPE & OBB_TYPE
-  PQP_REAL To[3];       // position of obb
-  PQP_REAL d[3];        // (half) dimensions of obb
-#endif
-
-  int first_child;      // positive value is index of first_child bv
-                        // negative value is -(index + 1) of triangle
-
-  BV();
-  ~BV();
-  int      Leaf()    { return first_child < 0; }
-  PQP_REAL GetSize(); 
-  void     FitToTris(PQP_REAL O[3][3], Tri *tris, int num_tris);
-};
-
-inline
-PQP_REAL 
-BV::GetSize()
-{
-#if PQP_BV_TYPE & RSS_TYPE
-  return (sqrt(l[0]*l[0] + l[1]*l[1]) + 2*r);
-#else
-  return (d[0]*d[0] + d[1]*d[1] + d[2]*d[2]);
-#endif
-}
-
-int
-BV_Overlap(PQP_REAL R[3][3], PQP_REAL T[3], BV *b1, BV *b2);
-
-#if PQP_BV_TYPE & RSS_TYPE
-PQP_REAL
-BV_Distance(PQP_REAL R[3][3], PQP_REAL T[3], BV *b1, BV *b2);
-#endif
-
-#endif
-
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/BVTQ.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/BVTQ.h
deleted file mode 100644
index 94a6fc78..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/BVTQ.h
+++ /dev/null
@@ -1,214 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_BVTQ_H
-#define PQP_BVTQ_H
-
-#include <stdio.h>
-#include <stdlib.h>
-#include "PQP_Compile.h"
-
-inline
-int 
-LChild(int p)  
-{ 
-  return (2*p + 1); 
-} 
-
-inline 
-int 
-Parent(int c)  
-{ 
-  return ((c - 1)/2); 
-} 
-
-struct BVT 
-{ 
-  PQP_REAL d;       // distance between the bvs
-  int b1, b2;       // bv numbers - b1 is from model 1, b2 from model 2
-  PQP_REAL R[3][3]; // the relative rotation from b1 to b2
-  PQP_REAL T[3];    // the relative translation from b1 to b2
-  int pindex;       // the index of the pointer that points to this -
-                    // needed when filling the hole left by an ExtractMin
-};
-
-class BVTQ 
-{ 
-  int size;       // max number of bv tests
-  int numtests;   // number of bv tests in queue
-  BVT *bvt;       // an array of bv tests - seems faster than 'new' for each
-  BVT **bvtp;     // the queue: an array of pointers to elts of bvt
-
-public:
-  BVTQ(int sz) 
-  {
-    size = sz;              
-    bvt = new BVT[size];    
-    bvtp = new BVT*[size];  
-    numtests = 0;
-  }
-  ~BVTQ() { delete [] bvt; delete [] bvtp; }
-  int Empty() { return (numtests == 0); }
-  int GetNumTests() { return numtests; }
-  int GetSize() { return size; }
-  PQP_REAL MinTest() { return bvtp[0]->d; }
-  BVT ExtractMinTest();
-  void AddTest(BVT &);
-};
-
-inline
-void 
-BVTQ::AddTest(BVT &t)
-{
-  bvtp[numtests] = &bvt[numtests];
-
-  *bvtp[numtests] = t;
-  bvtp[numtests]->pindex = numtests;
-  
-  BVT *temp;
-  int c = numtests;
-  int p;
-  
-  while ((c != 0) && (bvtp[(p = Parent(c))]->d >= bvtp[c]->d)) 
-  {
-    // swap p and c pointers
-
-    temp = bvtp[p];
-    bvtp[p] = bvtp[c];
-    bvtp[c] = temp;	 
-
-    // the bv tests pointed to by p and c need new indices
-
-    bvtp[p]->pindex = p;
-    bvtp[c]->pindex = c;
-
-    c = p;
-  } 
-  numtests++; 
-}
-
-inline
-BVT
-BVTQ::ExtractMinTest()
-{
-  // store min test to be extracted
-
-  BVT min_test = *bvtp[0];
-
-  // copy last bvt to the empty space;
-  // reset the pointer to this moved bvt
-
-  *bvtp[0] = bvt[numtests-1];
-  bvtp[bvt[numtests-1].pindex] = bvtp[0];
-
-  // copy the last pointer to the first
-
-  bvtp[0] = bvtp[numtests-1];
-
-  numtests--; 
-
-  BVT *temp;
-  int p = 0; 
-  int c1,c2,c; 
-
-  while(1) 
-  {     
-    c1 = LChild(p); 
-    c2 = c1+1; 
-  
-    if (c1 < numtests) 
-    { 
-      if (c2 < numtests) 
-      { 	
-        // p has both children, promote the minimum 
-
-        if (bvtp[c1]->d < bvtp[c2]->d) c = c1; else c = c2; 
-
-        if (bvtp[c]->d < bvtp[p]->d) 
-        { 
-          temp = bvtp[p];
-          bvtp[p] = bvtp[c];
-          bvtp[c] = temp; 
-
-          bvtp[p]->pindex = p;
-          bvtp[c]->pindex = c;
-
-          p = c; 
-        } 
-        else 
-        { 
-          break; 
-        } 
-      } 
-      else  
-      { 	
-        // p has only left child 
-
-        if (bvtp[c1]->d < bvtp[p]->d) 
-        { 
-          temp = bvtp[p]; 
-          bvtp[p] = bvtp[c1]; 
-          bvtp[c1] = temp; 
-
-          bvtp[p]->pindex = p;
-          bvtp[c1]->pindex = c1;
-
-          p = c1;	 
-        } 
-        else 
-        { 
-          break; 
-        } 
-      } 
-    } 
-    else 
-    {   
-      // p has no children 
-
-      break; 
-    } 
-  } 
-
-  return min_test;
-}
-
-#endif
-
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/Build.cpp b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/Build.cpp
deleted file mode 100644
index 4e37b16c..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/Build.cpp
+++ /dev/null
@@ -1,551 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include "PQP.h"
-#include "MatVec.h"
-
-// If this is set, build routines will use covariance matrix 
-// and mean finding code from RAPID 2.
-
-#define RAPID2_FIT 0
-
-#if RAPID2_FIT
-
-struct moment
-{
-  PQP_REAL A;  
-  PQP_REAL m[3];
-  PQP_REAL s[3][3];
-};
-
-struct accum
-{
-  PQP_REAL A;
-  PQP_REAL m[3];
-  PQP_REAL s[3][3];
-};
-
-inline
-void
-clear_accum(accum &a)
-{
-  a.m[0] = a.m[1] = a.m[2] = 0.0;
-  a.s[0][0] = a.s[0][1] = a.s[0][2] = 0.0;
-  a.s[1][0] = a.s[1][1] = a.s[1][2] = 0.0;
-  a.s[2][0] = a.s[2][1] = a.s[2][2] = 0.0;
-  a.A = 0.0;
-}
-
-inline
-void
-accum_moment(accum &a, moment &b)
-{
-  a.m[0] += b.m[0] * b.A;
-  a.m[1] += b.m[1] * b.A;
-  a.m[2] += b.m[2] * b.A;
-  
-  a.s[0][0] += b.s[0][0];
-  a.s[0][1] += b.s[0][1];
-  a.s[0][2] += b.s[0][2];
-  a.s[1][0] += b.s[1][0];
-  a.s[1][1] += b.s[1][1];
-  a.s[1][2] += b.s[1][2];
-  a.s[2][0] += b.s[2][0];
-  a.s[2][1] += b.s[2][1];
-  a.s[2][2] += b.s[2][2];
-
-  a.A += b.A;
-}
-
-inline
-void
-mean_from_moment(PQP_REAL M[3], moment &m)
-{
-  M[0] = m.m[0];
-  M[1] = m.m[1];
-  M[2] = m.m[2];
-}
-
-inline
-void
-mean_from_accum(PQP_REAL M[3], accum &a)
-{
-  M[0] = a.m[0] / a.A;
-  M[1] = a.m[1] / a.A;
-  M[2] = a.m[2] / a.A;
-}
-
-inline
-void
-covariance_from_accum(PQP_REAL C[3][3], accum &a)
-{
-  int i,j;
-  for(i=0; i<3; i++)
-    for(j=0; j<3; j++)
-      C[i][j] = a.s[i][j] - a.m[i]*a.m[j]/a.A;
-}
-
-inline
-void
-compute_moment(moment &M, PQP_REAL p[3], PQP_REAL q[3], PQP_REAL r[3])
-{
-  PQP_REAL u[3], v[3], w[3];
-
-  // compute the area of the triangle
-  VmV(u, q, p);
-  VmV(v, r, p);
-  VcrossV(w, u, v);
-  M.A = 0.5 * Vlength(w);
-
-  if (M.A == 0.0)
-    {
-      // This triangle has zero area.  The second order components
-      // would be eliminated with the usual formula, so, for the 
-      // sake of robustness we use an alternative form.  These are the 
-      // centroid and second-order components of the triangle's vertices.
-
-      // centroid
-      M.m[0] = (p[0] + q[0] + r[0]) /3;
-      M.m[1] = (p[1] + q[1] + r[1]) /3;
-      M.m[2] = (p[2] + q[2] + r[2]) /3;
-
-      // second-order components
-      M.s[0][0] = (p[0]*p[0] + q[0]*q[0] + r[0]*r[0]);
-      M.s[0][1] = (p[0]*p[1] + q[0]*q[1] + r[0]*r[1]);
-      M.s[0][2] = (p[0]*p[2] + q[0]*q[2] + r[0]*r[2]);
-      M.s[1][1] = (p[1]*p[1] + q[1]*q[1] + r[1]*r[1]);
-      M.s[1][2] = (p[1]*p[2] + q[1]*q[2] + r[1]*r[2]);
-      M.s[2][2] = (p[2]*p[2] + q[2]*q[2] + r[2]*r[2]);      
-      M.s[2][1] = M.s[1][2];
-      M.s[1][0] = M.s[0][1];
-      M.s[2][0] = M.s[0][2];
-
-      return;
-    }
-
-  // get the centroid
-  M.m[0] = (p[0] + q[0] + r[0])/3;
-  M.m[1] = (p[1] + q[1] + r[1])/3;
-  M.m[2] = (p[2] + q[2] + r[2])/3;
-
-  // get the second order components -- note the weighting by the area
-  M.s[0][0] = M.A*(9*M.m[0]*M.m[0]+p[0]*p[0]+q[0]*q[0]+r[0]*r[0])/12;
-  M.s[0][1] = M.A*(9*M.m[0]*M.m[1]+p[0]*p[1]+q[0]*q[1]+r[0]*r[1])/12;
-  M.s[1][1] = M.A*(9*M.m[1]*M.m[1]+p[1]*p[1]+q[1]*q[1]+r[1]*r[1])/12;
-  M.s[0][2] = M.A*(9*M.m[0]*M.m[2]+p[0]*p[2]+q[0]*q[2]+r[0]*r[2])/12;
-  M.s[1][2] = M.A*(9*M.m[1]*M.m[2]+p[1]*p[2]+q[1]*q[2]+r[1]*r[2])/12;
-  M.s[2][2] = M.A*(9*M.m[2]*M.m[2]+p[2]*p[2]+q[2]*q[2]+r[2]*r[2])/12;
-  M.s[2][1] = M.s[1][2];
-  M.s[1][0] = M.s[0][1];
-  M.s[2][0] = M.s[0][2];
-}
-
-inline
-void
-compute_moments(moment *M, Tri *tris, int num_tris)
-{
-  int i;
-
-  // first collect all the moments, and obtain the area of the 
-  // smallest nonzero area triangle.
-
-  PQP_REAL Amin = 0.0;
-  int zero = 0;
-  int nonzero = 0;
-  for(i=0; i<num_tris; i++)
-  {
-    compute_moment(M[i], 
-		   tris[i].p1,
-		   tris[i].p2, 
-		   tris[i].p3);  
-    if (M[i].A == 0.0)
-    {
-	    zero = 1;
-    }
-    else
-    {
-	    nonzero = 1;
-	    if (Amin == 0.0) Amin = M[i].A;
-	    else if (M[i].A < Amin) Amin = M[i].A;
-    }
-  }
-
-  if (zero)
-  {
-    fprintf(stderr, "----\n");
-    fprintf(stderr, "Warning!  Some triangles have zero area!\n");
-    fprintf(stderr, "----\n");
-
-    // if there are any zero area triangles, go back and set their area
-  
-    // if ALL the triangles have zero area, then set the area thingy
-    // to some arbitrary value.
-    if (Amin == 0.0) Amin = 1.0;
-
-    for(i=0; i<num_tris; i++)
-    {
-      if (M[i].A == 0.0) M[i].A = Amin;
-    }    
-  }
-}
-
-#else
-
-PQP_REAL max(PQP_REAL a, PQP_REAL b, PQP_REAL c, PQP_REAL d)
-{
-  PQP_REAL t = a;
-  if (b > t) t = b;
-  if (c > t) t = c;
-  if (d > t) t = d;
-  return t;
-}
-
-PQP_REAL min(PQP_REAL a, PQP_REAL b, PQP_REAL c, PQP_REAL d)
-{
-  PQP_REAL t = a;
-  if (b < t) t = b;
-  if (c < t) t = c;
-  if (d < t) t = d;
-  return t;
-}
-
-void
-get_centroid_triverts(PQP_REAL c[3], Tri *tris, int num_tris)
-{
-  int i;
-
-  c[0] = c[1] = c[2] = 0.0;
-
-  // get center of mass
-  for(i=0; i<num_tris; i++)
-  {
-    PQP_REAL *p1 = tris[i].p1;
-    PQP_REAL *p2 = tris[i].p2;
-    PQP_REAL *p3 = tris[i].p3;
-
-    c[0] += p1[0] + p2[0] + p3[0];
-    c[1] += p1[1] + p2[1] + p3[1];
-    c[2] += p1[2] + p2[2] + p3[2];      
-  }
-
-  PQP_REAL n = (PQP_REAL)(3 * num_tris);
-
-  c[0] /= n;
-  c[1] /= n;
-  c[2] /= n;
-}
-
-void
-get_covariance_triverts(PQP_REAL M[3][3], Tri *tris, int num_tris)
-{
-  int i;
-  PQP_REAL S1[3];
-  PQP_REAL S2[3][3];
-
-  S1[0] = S1[1] = S1[2] = 0.0;
-  S2[0][0] = S2[1][0] = S2[2][0] = 0.0;
-  S2[0][1] = S2[1][1] = S2[2][1] = 0.0;
-  S2[0][2] = S2[1][2] = S2[2][2] = 0.0;
-
-  // get center of mass
-  for(i=0; i<num_tris; i++)
-  {
-    PQP_REAL *p1 = tris[i].p1;
-    PQP_REAL *p2 = tris[i].p2;
-    PQP_REAL *p3 = tris[i].p3;
-
-    S1[0] += p1[0] + p2[0] + p3[0];
-    S1[1] += p1[1] + p2[1] + p3[1];
-    S1[2] += p1[2] + p2[2] + p3[2];
-
-    S2[0][0] += (p1[0] * p1[0] +  
-                 p2[0] * p2[0] +  
-                 p3[0] * p3[0]);
-    S2[1][1] += (p1[1] * p1[1] +  
-                 p2[1] * p2[1] +  
-                 p3[1] * p3[1]);
-    S2[2][2] += (p1[2] * p1[2] +  
-                 p2[2] * p2[2] +  
-                 p3[2] * p3[2]);
-    S2[0][1] += (p1[0] * p1[1] +  
-                 p2[0] * p2[1] +  
-                 p3[0] * p3[1]);
-    S2[0][2] += (p1[0] * p1[2] +  
-                 p2[0] * p2[2] +  
-                 p3[0] * p3[2]);
-    S2[1][2] += (p1[1] * p1[2] +  
-                 p2[1] * p2[2] +  
-                 p3[1] * p3[2]);
-  }
-
-  PQP_REAL n = (PQP_REAL)(3 * num_tris);
-
-  // now get covariances
-
-  M[0][0] = S2[0][0] - S1[0]*S1[0] / n;
-  M[1][1] = S2[1][1] - S1[1]*S1[1] / n;
-  M[2][2] = S2[2][2] - S1[2]*S1[2] / n;
-  M[0][1] = S2[0][1] - S1[0]*S1[1] / n;
-  M[1][2] = S2[1][2] - S1[1]*S1[2] / n;
-  M[0][2] = S2[0][2] - S1[0]*S1[2] / n;
-  M[1][0] = M[0][1];
-  M[2][0] = M[0][2];
-  M[2][1] = M[1][2];
-}
-
-#endif
-
-// given a list of triangles, a splitting axis, and a coordinate on
-// that axis, partition the triangles into two groups according to
-// where their centroids fall on the axis (under axial projection).
-// Returns the number of tris in the first half
-
-int 
-split_tris(Tri *tris, int num_tris, PQP_REAL a[3], PQP_REAL c)
-{
-  int i;
-  int c1 = 0;
-  PQP_REAL p[3];
-  PQP_REAL x;
-  Tri temp;
-
-  for(i = 0; i < num_tris; i++)
-  {
-    // loop invariant: up to (but not including) index c1 in group 1,
-    // then up to (but not including) index i in group 2
-    //
-    //  [1] [1] [1] [1] [2] [2] [2] [x] [x] ... [x]
-    //                   c1          i
-    //
-    VcV(p, tris[i].p1);
-    VpV(p, p, tris[i].p2);
-    VpV(p, p, tris[i].p3);      
-    x = VdotV(p, a);
-    x /= 3.0;
-    if (x <= c)
-    {
-	    // group 1
-	    temp = tris[i];
-	    tris[i] = tris[c1];
-	    tris[c1] = temp;
-	    c1++;
-    }
-    else
-    {
-	    // group 2 -- do nothing
-    }
-  }
-
-  // split arbitrarily if one group empty
-
-  if ((c1 == 0) || (c1 == num_tris)) c1 = num_tris/2;
-
-  return c1;
-}
-
-// Fits m->child(bn) to the num_tris triangles starting at first_tri
-// Then, if num_tris is greater than one, partitions the tris into two
-// sets, and recursively builds two children of m->child(bn)
-
-int
-build_recurse(PQP_Model *m, int bn, int first_tri, int num_tris)
-{
-  BV *b = m->child(bn);
-
-  // compute a rotation matrix
-
-  PQP_REAL C[3][3], E[3][3], R[3][3], s[3], axis[3], mean[3], coord;
-
-#if RAPID2_FIT
-  moment *tri_moment = new moment[num_tris];
-  compute_moments(tri_moment, &(m->tris[first_tri]), num_tris);  
-  accum acc;
-  clear_accum(acc);
-  for(int i = 0; i < num_tris; i++) accum_moment(acc, tri_moment[i]);
-  delete [] tri_moment;
-  covariance_from_accum(C,acc);
-#else
-  get_covariance_triverts(C,&m->tris[first_tri],num_tris);
-#endif
-
-  Meigen(E, s, C);
-
-  // place axes of E in order of increasing s
-
-  int min, mid, max;
-  if (s[0] > s[1]) { max = 0; min = 1; }
-  else { min = 0; max = 1; }
-  if (s[2] < s[min]) { mid = min; min = 2; }
-  else if (s[2] > s[max]) { mid = max; max = 2; }
-  else { mid = 2; }
-  McolcMcol(R,0,E,max);
-  McolcMcol(R,1,E,mid);
-  R[0][2] = E[1][max]*E[2][mid] - E[1][mid]*E[2][max];
-  R[1][2] = E[0][mid]*E[2][max] - E[0][max]*E[2][mid];
-  R[2][2] = E[0][max]*E[1][mid] - E[0][mid]*E[1][max];
-
-  // fit the BV
-
-  b->FitToTris(R, &m->tris[first_tri], num_tris);
-
-  if (num_tris == 1)
-  {
-    // BV is a leaf BV - first_child will index a triangle
-
-    b->first_child = -(first_tri + 1);
-  }
-  else if (num_tris > 1)
-  {
-    // BV not a leaf - first_child will index a BV
-
-    b->first_child = m->num_bvs;
-    m->num_bvs+=2;
-
-    // choose splitting axis and splitting coord
-
-    McolcV(axis,R,0);
-
-#if RAPID2_FIT
-    mean_from_accum(mean,acc);
-#else
-    get_centroid_triverts(mean,&m->tris[first_tri],num_tris);
-#endif
-    coord = VdotV(axis, mean);
-
-    // now split
-
-    int num_first_half = split_tris(&m->tris[first_tri], num_tris, 
-                                    axis, coord);
-
-    // recursively build the children
-
-    build_recurse(m, m->child(bn)->first_child, first_tri, num_first_half); 
-    build_recurse(m, m->child(bn)->first_child + 1,
-                  first_tri + num_first_half, num_tris - num_first_half); 
-  }
-  return PQP_OK;
-}
-
-// this descends the hierarchy, converting world-relative 
-// transforms to parent-relative transforms
-
-void 
-make_parent_relative(PQP_Model *m, int bn,
-                     const PQP_REAL parentR[3][3]
-#if PQP_BV_TYPE & RSS_TYPE
-                     ,const PQP_REAL parentTr[3]
-#endif
-#if PQP_BV_TYPE & OBB_TYPE
-                     ,const PQP_REAL parentTo[3]
-#endif
-                    )
-{
-  PQP_REAL Rpc[3][3], Tpc[3];
-
-  if (!m->child(bn)->Leaf())
-  {
-    // make children parent-relative
-
-    make_parent_relative(m,m->child(bn)->first_child, 
-                         m->child(bn)->R
-#if PQP_BV_TYPE & RSS_TYPE
-                         ,m->child(bn)->Tr
-#endif
-#if PQP_BV_TYPE & OBB_TYPE
-                         ,m->child(bn)->To
-#endif
-                         );
-    make_parent_relative(m,m->child(bn)->first_child+1, 
-                         m->child(bn)->R
-#if PQP_BV_TYPE & RSS_TYPE
-                         ,m->child(bn)->Tr
-#endif
-#if PQP_BV_TYPE & OBB_TYPE
-                         ,m->child(bn)->To
-#endif
-                         );
-  }
-
-  // make self parent relative
-
-  MTxM(Rpc,parentR,m->child(bn)->R);
-  McM(m->child(bn)->R,Rpc);
-#if PQP_BV_TYPE & RSS_TYPE
-  VmV(Tpc,m->child(bn)->Tr,parentTr);
-  MTxV(m->child(bn)->Tr,parentR,Tpc);
-#endif
-#if PQP_BV_TYPE & OBB_TYPE
-  VmV(Tpc,m->child(bn)->To,parentTo);
-  MTxV(m->child(bn)->To,parentR,Tpc);
-#endif
-
-}
-
-int
-build_model(PQP_Model *m)
-{
-  // set num_bvs to 1, the first index for a child bv
-
-  m->num_bvs = 1;
-
-  // build recursively
-
-  build_recurse(m, 0, 0, m->num_tris);
-
-  // change BV orientations from world-relative to parent-relative
-
-  PQP_REAL R[3][3],T[3];
-  Midentity(R);
-  Videntity(T);
-
-  make_parent_relative(m,0,R
-#if PQP_BV_TYPE & RSS_TYPE
-                      ,T
-#endif
-#if PQP_BV_TYPE & OBB_TYPE
-                      ,T
-#endif
-                      );
-
-  return PQP_OK;
-}
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/Build.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/Build.h
deleted file mode 100644
index bab05dd2..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/Build.h
+++ /dev/null
@@ -1,49 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_BUILD_H
-#define PQP_BUILD_H
-
-#include "PQP.h"
-
-int
-build_model(PQP_Model *m);
-
-#endif
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/GetTime.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/GetTime.h
deleted file mode 100644
index 5529a08f..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/GetTime.h
+++ /dev/null
@@ -1,71 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_GETTIME_H
-#define PQP_GETTIME_H
-
-#ifdef WIN32
-
-  #include <time.h>
-  #include <sys/timeb.h>
-  inline
-  double 
-  GetTime()
-  {
-    struct _timeb thistime;
-    _ftime(&thistime);    
-    return (thistime.time + thistime.millitm * 1e-3);
-  }
-
-#else
-
-  #include <sys/time.h>
-  inline
-  double 
-  GetTime()
-  {
-    struct timeval thistime;
-    gettimeofday(&thistime, 0);    
-    return (thistime.tv_sec + thistime.tv_usec * 1e-6);
-  }
-
-#endif
-
-#endif
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/MatVec.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/MatVec.h
deleted file mode 100644
index c0198ad7..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/MatVec.h
+++ /dev/null
@@ -1,877 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_MATVEC_H
-#define PQP_MATVEC_H
-
-#include <math.h>
-#include <stdio.h>
-#include "PQP_Compile.h"
-
-#ifndef M_PI
-const PQP_REAL M_PI = (PQP_REAL)3.14159265359;
-#endif
-
-#ifdef gnu
-#include "zzzz.h"
-
-#ifdef hppa
-#define myfabs(x) \
- ({double __value, __arg = (x); \
-   asm("fabs,dbl %1, %0": "=f" (__value): "f" (__arg)); \
-   __value; \
-});
-#endif
-
-#ifdef mips
-#define myfabs(x) \
- ({double __value, __arg = (x); \
-   asm("abs.d %0, %1": "=f" (__value): "f" (__arg)); \
-   __value; \
-});
-#endif
-
-#else  
-
-#define myfabs(x) ((x < 0) ? -x : x)
-
-#endif
-
-
-inline
-void
-Mprintg(const PQP_REAL M[3][3])
-{
-  printf("%g %g %g\n%g %g %g\n%g %g %g\n",
-	 M[0][0], M[0][1], M[0][2],
-	 M[1][0], M[1][1], M[1][2],
-	 M[2][0], M[2][1], M[2][2]);
-}
-
-
-inline
-void
-Mfprint(FILE *f, const PQP_REAL M[3][3])
-{
-  fprintf(f, "%g %g %g\n%g %g %g\n%g %g %g\n",
-	 M[0][0], M[0][1], M[0][2],
-	 M[1][0], M[1][1], M[1][2],
-	 M[2][0], M[2][1], M[2][2]);
-}
-
-inline
-void
-Mprint(const PQP_REAL M[3][3])
-{
-  printf("%g %g %g\n%g %g %g\n%g %g %g\n",
-	 M[0][0], M[0][1], M[0][2],
-	 M[1][0], M[1][1], M[1][2],
-	 M[2][0], M[2][1], M[2][2]);
-}
-
-inline
-void
-Vprintg(const PQP_REAL V[3])
-{
-  printf("%g %g %g\n", V[0], V[1], V[2]);
-}
-
-inline
-void
-Vfprint(FILE *f, const PQP_REAL V[3])
-{
-  fprintf(f, "%g %g %g\n", V[0], V[1], V[2]);
-}
-
-inline
-void
-Vprint(const PQP_REAL V[3])
-{
-  printf("%g %g %g\n", V[0], V[1], V[2]);
-}
-
-inline
-void
-Midentity(PQP_REAL M[3][3])
-{
-  M[0][0] = M[1][1] = M[2][2] = 1.0;
-  M[0][1] = M[1][2] = M[2][0] = 0.0;
-  M[0][2] = M[1][0] = M[2][1] = 0.0;
-}
-
-inline
-void
-Videntity(PQP_REAL T[3])
-{
-  T[0] = T[1] = T[2] = 0.0;
-}
-
-inline
-void
-McM(PQP_REAL Mr[3][3], const PQP_REAL M[3][3])
-{
-  Mr[0][0] = M[0][0];  Mr[0][1] = M[0][1];  Mr[0][2] = M[0][2];
-  Mr[1][0] = M[1][0];  Mr[1][1] = M[1][1];  Mr[1][2] = M[1][2];
-  Mr[2][0] = M[2][0];  Mr[2][1] = M[2][1];  Mr[2][2] = M[2][2];
-}
-
-inline
-void
-MTcM(PQP_REAL Mr[3][3], const PQP_REAL M[3][3])
-{
-  Mr[0][0] = M[0][0];  Mr[1][0] = M[0][1];  Mr[2][0] = M[0][2];
-  Mr[0][1] = M[1][0];  Mr[1][1] = M[1][1];  Mr[2][1] = M[1][2];
-  Mr[0][2] = M[2][0];  Mr[1][2] = M[2][1];  Mr[2][2] = M[2][2];
-}
-
-inline
-void
-VcV(PQP_REAL Vr[3], const PQP_REAL V[3])
-{
-  Vr[0] = V[0];  Vr[1] = V[1];  Vr[2] = V[2];
-}
-
-inline
-void
-McolcV(PQP_REAL Vr[3], const PQP_REAL M[3][3], int c)
-{
-  Vr[0] = M[0][c];
-  Vr[1] = M[1][c];
-  Vr[2] = M[2][c];
-}
-
-inline
-void
-McolcMcol(PQP_REAL Mr[3][3], int cr, const PQP_REAL M[3][3], int c)
-{
-  Mr[0][cr] = M[0][c];
-  Mr[1][cr] = M[1][c];
-  Mr[2][cr] = M[2][c];
-}
-
-inline
-void
-MxMpV(PQP_REAL Mr[3][3], const PQP_REAL M1[3][3], const PQP_REAL M2[3][3], const PQP_REAL T[3])
-{
-  Mr[0][0] = (M1[0][0] * M2[0][0] +
-	      M1[0][1] * M2[1][0] +
-	      M1[0][2] * M2[2][0] +
-	      T[0]);
-  Mr[1][0] = (M1[1][0] * M2[0][0] +
-	      M1[1][1] * M2[1][0] +
-	      M1[1][2] * M2[2][0] +
-	      T[1]);
-  Mr[2][0] = (M1[2][0] * M2[0][0] +
-	      M1[2][1] * M2[1][0] +
-	      M1[2][2] * M2[2][0] +
-	      T[2]);
-  Mr[0][1] = (M1[0][0] * M2[0][1] +
-	      M1[0][1] * M2[1][1] +
-	      M1[0][2] * M2[2][1] +
-	      T[0]);
-  Mr[1][1] = (M1[1][0] * M2[0][1] +
-	      M1[1][1] * M2[1][1] +
- 	      M1[1][2] * M2[2][1] +
-	      T[1]);
-  Mr[2][1] = (M1[2][0] * M2[0][1] +
-	      M1[2][1] * M2[1][1] +
-	      M1[2][2] * M2[2][1] +
-	      T[2]);
-  Mr[0][2] = (M1[0][0] * M2[0][2] +
-	      M1[0][1] * M2[1][2] +
-	      M1[0][2] * M2[2][2] +
-	      T[0]);
-  Mr[1][2] = (M1[1][0] * M2[0][2] +
-	      M1[1][1] * M2[1][2] +
-	      M1[1][2] * M2[2][2] +
-	      T[1]);
-  Mr[2][2] = (M1[2][0] * M2[0][2] +
-	      M1[2][1] * M2[1][2] +
-	      M1[2][2] * M2[2][2] +
-	      T[2]);
-}
-
-inline
-void
-MxM(PQP_REAL Mr[3][3], const PQP_REAL M1[3][3], const PQP_REAL M2[3][3])
-{
-  Mr[0][0] = (M1[0][0] * M2[0][0] +
-	      M1[0][1] * M2[1][0] +
-	      M1[0][2] * M2[2][0]);
-  Mr[1][0] = (M1[1][0] * M2[0][0] +
-	      M1[1][1] * M2[1][0] +
-	      M1[1][2] * M2[2][0]);
-  Mr[2][0] = (M1[2][0] * M2[0][0] +
-	      M1[2][1] * M2[1][0] +
-	      M1[2][2] * M2[2][0]);
-  Mr[0][1] = (M1[0][0] * M2[0][1] +
-	      M1[0][1] * M2[1][1] +
-	      M1[0][2] * M2[2][1]);
-  Mr[1][1] = (M1[1][0] * M2[0][1] +
-	      M1[1][1] * M2[1][1] +
- 	      M1[1][2] * M2[2][1]);
-  Mr[2][1] = (M1[2][0] * M2[0][1] +
-	      M1[2][1] * M2[1][1] +
-	      M1[2][2] * M2[2][1]);
-  Mr[0][2] = (M1[0][0] * M2[0][2] +
-	      M1[0][1] * M2[1][2] +
-	      M1[0][2] * M2[2][2]);
-  Mr[1][2] = (M1[1][0] * M2[0][2] +
-	      M1[1][1] * M2[1][2] +
-	      M1[1][2] * M2[2][2]);
-  Mr[2][2] = (M1[2][0] * M2[0][2] +
-	      M1[2][1] * M2[1][2] +
-	      M1[2][2] * M2[2][2]);
-}
-
-
-inline
-void
-MxMT(PQP_REAL Mr[3][3], const PQP_REAL M1[3][3], const PQP_REAL M2[3][3])
-{
-  Mr[0][0] = (M1[0][0] * M2[0][0] +
-	      M1[0][1] * M2[0][1] +
-	      M1[0][2] * M2[0][2]);
-  Mr[1][0] = (M1[1][0] * M2[0][0] +
-	      M1[1][1] * M2[0][1] +
-	      M1[1][2] * M2[0][2]);
-  Mr[2][0] = (M1[2][0] * M2[0][0] +
-	      M1[2][1] * M2[0][1] +
-	      M1[2][2] * M2[0][2]);
-  Mr[0][1] = (M1[0][0] * M2[1][0] +
-	      M1[0][1] * M2[1][1] +
-	      M1[0][2] * M2[1][2]);
-  Mr[1][1] = (M1[1][0] * M2[1][0] +
-	      M1[1][1] * M2[1][1] +
- 	      M1[1][2] * M2[1][2]);
-  Mr[2][1] = (M1[2][0] * M2[1][0] +
-	      M1[2][1] * M2[1][1] +
-	      M1[2][2] * M2[1][2]);
-  Mr[0][2] = (M1[0][0] * M2[2][0] +
-	      M1[0][1] * M2[2][1] +
-	      M1[0][2] * M2[2][2]);
-  Mr[1][2] = (M1[1][0] * M2[2][0] +
-	      M1[1][1] * M2[2][1] +
-	      M1[1][2] * M2[2][2]);
-  Mr[2][2] = (M1[2][0] * M2[2][0] +
-	      M1[2][1] * M2[2][1] +
-	      M1[2][2] * M2[2][2]);
-}
-
-inline
-void
-MTxM(PQP_REAL Mr[3][3], const PQP_REAL M1[3][3], const PQP_REAL M2[3][3])
-{
-  Mr[0][0] = (M1[0][0] * M2[0][0] +
-	      M1[1][0] * M2[1][0] +
-	      M1[2][0] * M2[2][0]);
-  Mr[1][0] = (M1[0][1] * M2[0][0] +
-	      M1[1][1] * M2[1][0] +
-	      M1[2][1] * M2[2][0]);
-  Mr[2][0] = (M1[0][2] * M2[0][0] +
-	      M1[1][2] * M2[1][0] +
-	      M1[2][2] * M2[2][0]);
-  Mr[0][1] = (M1[0][0] * M2[0][1] +
-	      M1[1][0] * M2[1][1] +
-	      M1[2][0] * M2[2][1]);
-  Mr[1][1] = (M1[0][1] * M2[0][1] +
-	      M1[1][1] * M2[1][1] +
- 	      M1[2][1] * M2[2][1]);
-  Mr[2][1] = (M1[0][2] * M2[0][1] +
-	      M1[1][2] * M2[1][1] +
-	      M1[2][2] * M2[2][1]);
-  Mr[0][2] = (M1[0][0] * M2[0][2] +
-	      M1[1][0] * M2[1][2] +
-	      M1[2][0] * M2[2][2]);
-  Mr[1][2] = (M1[0][1] * M2[0][2] +
-	      M1[1][1] * M2[1][2] +
-	      M1[2][1] * M2[2][2]);
-  Mr[2][2] = (M1[0][2] * M2[0][2] +
-	      M1[1][2] * M2[1][2] +
-	      M1[2][2] * M2[2][2]);
-}
-
-inline
-void
-MxV(PQP_REAL Vr[3], const PQP_REAL M1[3][3], const PQP_REAL V1[3])
-{
-  Vr[0] = (M1[0][0] * V1[0] +
-	   M1[0][1] * V1[1] + 
-	   M1[0][2] * V1[2]);
-  Vr[1] = (M1[1][0] * V1[0] +
-	   M1[1][1] * V1[1] + 
-	   M1[1][2] * V1[2]);
-  Vr[2] = (M1[2][0] * V1[0] +
-	   M1[2][1] * V1[1] + 
-	   M1[2][2] * V1[2]);
-}
-
-
-inline
-void
-MxVpV(PQP_REAL Vr[3], const PQP_REAL M1[3][3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = (M1[0][0] * V1[0] +
-	   M1[0][1] * V1[1] + 
-	   M1[0][2] * V1[2] + 
-	   V2[0]);
-  Vr[1] = (M1[1][0] * V1[0] +
-	   M1[1][1] * V1[1] + 
-	   M1[1][2] * V1[2] + 
-	   V2[1]);
-  Vr[2] = (M1[2][0] * V1[0] +
-	   M1[2][1] * V1[1] + 
-	   M1[2][2] * V1[2] + 
-	   V2[2]);
-}
-
-
-inline
-void
-sMxVpV(PQP_REAL Vr[3], PQP_REAL s1, const PQP_REAL M1[3][3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = s1 * (M1[0][0] * V1[0] +
-		M1[0][1] * V1[1] + 
-		M1[0][2] * V1[2]) +
-		V2[0];
-  Vr[1] = s1 * (M1[1][0] * V1[0] +
-		M1[1][1] * V1[1] + 
-		M1[1][2] * V1[2]) + 
-		V2[1];
-  Vr[2] = s1 * (M1[2][0] * V1[0] +
-		M1[2][1] * V1[1] + 
-		M1[2][2] * V1[2]) + 
-		V2[2];
-}
-
-inline
-void
-MTxV(PQP_REAL Vr[3], const PQP_REAL M1[3][3], const PQP_REAL V1[3])
-{
-  Vr[0] = (M1[0][0] * V1[0] +
-	   M1[1][0] * V1[1] + 
-	   M1[2][0] * V1[2]); 
-  Vr[1] = (M1[0][1] * V1[0] +
-	   M1[1][1] * V1[1] + 
-	   M1[2][1] * V1[2]);
-  Vr[2] = (M1[0][2] * V1[0] +
-	   M1[1][2] * V1[1] + 
-	   M1[2][2] * V1[2]); 
-}
-
-inline
-void
-sMTxV(PQP_REAL Vr[3], PQP_REAL s1, const PQP_REAL M1[3][3], const PQP_REAL V1[3])
-{
-  Vr[0] = s1*(M1[0][0] * V1[0] +
-	      M1[1][0] * V1[1] + 
-	      M1[2][0] * V1[2]); 
-  Vr[1] = s1*(M1[0][1] * V1[0] +
-	      M1[1][1] * V1[1] + 
-	      M1[2][1] * V1[2]);
-  Vr[2] = s1*(M1[0][2] * V1[0] +
-	      M1[1][2] * V1[1] + 
-	      M1[2][2] * V1[2]); 
-}
-
-inline
-void
-sMxV(PQP_REAL Vr[3], PQP_REAL s1, const PQP_REAL M1[3][3], const PQP_REAL V1[3])
-{
-  Vr[0] = s1*(M1[0][0] * V1[0] +
-	      M1[0][1] * V1[1] + 
-	      M1[0][2] * V1[2]); 
-  Vr[1] = s1*(M1[1][0] * V1[0] +
-	      M1[1][1] * V1[1] + 
-	      M1[1][2] * V1[2]);
-  Vr[2] = s1*(M1[2][0] * V1[0] +
-	      M1[2][1] * V1[1] + 
-	      M1[2][2] * V1[2]); 
-}
-
-
-inline
-void
-VmV(PQP_REAL Vr[3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = V1[0] - V2[0];
-  Vr[1] = V1[1] - V2[1];
-  Vr[2] = V1[2] - V2[2];
-}
-
-inline
-void
-VpV(PQP_REAL Vr[3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = V1[0] + V2[0];
-  Vr[1] = V1[1] + V2[1];
-  Vr[2] = V1[2] + V2[2];
-}
-
-inline
-void
-VpVxS(PQP_REAL Vr[3], const PQP_REAL V1[3], const PQP_REAL V2[3], PQP_REAL s)
-{
-  Vr[0] = V1[0] + V2[0] * s;
-  Vr[1] = V1[1] + V2[1] * s;
-  Vr[2] = V1[2] + V2[2] * s;
-}
-
-inline 
-void
-MskewV(PQP_REAL M[3][3], const PQP_REAL v[3])
-{
-  M[0][0] = M[1][1] = M[2][2] = 0.0;
-  M[1][0] = v[2];
-  M[0][1] = -v[2];
-  M[0][2] = v[1];
-  M[2][0] = -v[1];
-  M[1][2] = -v[0];
-  M[2][1] = v[0];
-}
-
-
-inline
-void
-VcrossV(PQP_REAL Vr[3], const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  Vr[0] = V1[1]*V2[2] - V1[2]*V2[1];
-  Vr[1] = V1[2]*V2[0] - V1[0]*V2[2];
-  Vr[2] = V1[0]*V2[1] - V1[1]*V2[0];
-}
-
-inline
-PQP_REAL
-Vlength(PQP_REAL V[3])
-{
-  return sqrt(V[0]*V[0] + V[1]*V[1] + V[2]*V[2]);
-}
-
-inline
-void
-Vnormalize(PQP_REAL V[3])
-{
-  PQP_REAL d = (PQP_REAL)1.0 / sqrt(V[0]*V[0] + V[1]*V[1] + V[2]*V[2]);
-  V[0] *= d;
-  V[1] *= d;
-  V[2] *= d;
-}
-
-inline
-PQP_REAL
-VdotV(const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  return (V1[0]*V2[0] + V1[1]*V2[1] + V1[2]*V2[2]);
-}
-
-inline
-PQP_REAL
-VdistV2(const PQP_REAL V1[3], const PQP_REAL V2[3])
-{
-  return ( (V1[0]-V2[0]) * (V1[0]-V2[0]) + 
-	   (V1[1]-V2[1]) * (V1[1]-V2[1]) + 
-	   (V1[2]-V2[2]) * (V1[2]-V2[2]));
-}
-
-inline
-void
-VxS(PQP_REAL Vr[3], const PQP_REAL V[3], PQP_REAL s)
-{
-  Vr[0] = V[0] * s;
-  Vr[1] = V[1] * s;
-  Vr[2] = V[2] * s;
-}
-
-inline
-void
-MRotZ(PQP_REAL Mr[3][3], PQP_REAL t)
-{
-  Mr[0][0] = cos(t);
-  Mr[1][0] = sin(t);
-  Mr[0][1] = -Mr[1][0];
-  Mr[1][1] = Mr[0][0];
-  Mr[2][0] = Mr[2][1] = 0.0;
-  Mr[0][2] = Mr[1][2] = 0.0;
-  Mr[2][2] = 1.0;
-}
-
-inline
-void
-MRotX(PQP_REAL Mr[3][3], PQP_REAL t)
-{
-  Mr[1][1] = cos(t);
-  Mr[2][1] = sin(t);
-  Mr[1][2] = -Mr[2][1];
-  Mr[2][2] = Mr[1][1];
-  Mr[0][1] = Mr[0][2] = 0.0;
-  Mr[1][0] = Mr[2][0] = 0.0;
-  Mr[0][0] = 1.0;
-}
-
-inline
-void
-MRotY(PQP_REAL Mr[3][3], PQP_REAL t)
-{
-  Mr[2][2] = cos(t);
-  Mr[0][2] = sin(t);
-  Mr[2][0] = -Mr[0][2];
-  Mr[0][0] = Mr[2][2];
-  Mr[1][2] = Mr[1][0] = 0.0;
-  Mr[2][1] = Mr[0][1] = 0.0;
-  Mr[1][1] = 1.0;
-}
-
-inline
-void
-MVtoOGL(double oglm[16], const PQP_REAL R[3][3], const PQP_REAL T[3])
-{
-  oglm[0] = (double)R[0][0]; 
-  oglm[1] = (double)R[1][0]; 
-  oglm[2] = (double)R[2][0]; 
-  oglm[3] = 0.0;
-  oglm[4] = (double)R[0][1]; 
-  oglm[5] = (double)R[1][1];
-  oglm[6] = (double)R[2][1];
-  oglm[7] = 0.0;
-  oglm[8] = (double)R[0][2];
-  oglm[9] = (double)R[1][2];
-  oglm[10] = (double)R[2][2];
-  oglm[11] = 0.0;
-  oglm[12] = (double)T[0];
-  oglm[13] = (double)T[1];
-  oglm[14] = (double)T[2];
-  oglm[15] = 1.0;
-}
-
-inline 
-void
-OGLtoMV(PQP_REAL R[3][3], PQP_REAL T[3], const double oglm[16])
-{
-  R[0][0] = (PQP_REAL)oglm[0];
-  R[1][0] = (PQP_REAL)oglm[1];
-  R[2][0] = (PQP_REAL)oglm[2];
-
-  R[0][1] = (PQP_REAL)oglm[4];
-  R[1][1] = (PQP_REAL)oglm[5];
-  R[2][1] = (PQP_REAL)oglm[6];
-
-  R[0][2] = (PQP_REAL)oglm[8];
-  R[1][2] = (PQP_REAL)oglm[9];
-  R[2][2] = (PQP_REAL)oglm[10];
-
-  T[0] = (PQP_REAL)oglm[12];
-  T[1] = (PQP_REAL)oglm[13];
-  T[2] = (PQP_REAL)oglm[14];
-}
-
-// taken from quatlib, written by Richard Holloway
-const int QX = 0;
-const int QY = 1;
-const int QZ = 2;
-const int QW = 3;
-
-inline
-void 
-MRotQ(PQP_REAL destMatrix[3][3], PQP_REAL srcQuat[4])
-{
-  PQP_REAL  s;
-  PQP_REAL  xs, ys, zs,
-    	    wx, wy, wz,
-	        xx, xy, xz,
-	        yy, yz, zz;
-
-  /* 
-   * For unit srcQuat, just set s = 2.0; or set xs = srcQuat[QX] + 
-   *   srcQuat[QX], etc. 
-   */
-
-  s = (PQP_REAL)2.0 / (srcQuat[QX]*srcQuat[QX] + srcQuat[QY]*srcQuat[QY] + 
-    	     srcQuat[QZ]*srcQuat[QZ] + srcQuat[QW]*srcQuat[QW]);
-
-  xs = srcQuat[QX] * s;   ys = srcQuat[QY] * s;   zs = srcQuat[QZ] * s;
-  wx = srcQuat[QW] * xs;  wy = srcQuat[QW] * ys;  wz = srcQuat[QW] * zs;
-  xx = srcQuat[QX] * xs;  xy = srcQuat[QX] * ys;  xz = srcQuat[QX] * zs;
-  yy = srcQuat[QY] * ys;  yz = srcQuat[QY] * zs;  zz = srcQuat[QZ] * zs;
-
-  destMatrix[QX][QX] = (PQP_REAL)1.0 - (yy + zz);
-  destMatrix[QX][QY] = xy + wz;
-  destMatrix[QX][QZ] = xz - wy;
-
-  destMatrix[QY][QX] = xy - wz;
-  destMatrix[QY][QY] = (PQP_REAL)1.0 - (xx + zz);
-  destMatrix[QY][QZ] = yz + wx;
-
-  destMatrix[QZ][QX] = xz + wy;
-  destMatrix[QZ][QY] = yz - wx;
-  destMatrix[QZ][QZ] = (PQP_REAL)1.0 - (xx + yy);
-} 
-
-inline
-void
-Mqinverse(PQP_REAL Mr[3][3], PQP_REAL m[3][3])
-{
-  int i,j;
-
-  for(i=0; i<3; i++)
-    for(j=0; j<3; j++)
-    {
-      int i1 = (i+1)%3;
-      int i2 = (i+2)%3;
-      int j1 = (j+1)%3;
-      int j2 = (j+2)%3;
-      Mr[i][j] = (m[j1][i1]*m[j2][i2] - m[j1][i2]*m[j2][i1]);
-    }
-}
-
-// Meigen from Numerical Recipes in C
-
-#if 0
-
-#define rfabs(x) ((x < 0) ? -x : x)
-
-#define ROT(a,i,j,k,l) g=a[i][j]; h=a[k][l]; a[i][j]=g-s*(h+g*tau); a[k][l]=h+s*(g-h*tau);
-
-int
-inline
-Meigen(PQP_REAL vout[3][3], PQP_REAL dout[3], PQP_REAL a[3][3])
-{
-  int i;
-  PQP_REAL tresh,theta,tau,t,sm,s,h,g,c;
-  int nrot;
-  PQP_REAL b[3];
-  PQP_REAL z[3];
-  PQP_REAL v[3][3];
-  PQP_REAL d[3];
-
-  v[0][0] = v[1][1] = v[2][2] = 1.0;
-  v[0][1] = v[1][2] = v[2][0] = 0.0;
-  v[0][2] = v[1][0] = v[2][1] = 0.0;
-  
-  b[0] = a[0][0]; d[0] = a[0][0]; z[0] = 0.0;
-  b[1] = a[1][1]; d[1] = a[1][1]; z[1] = 0.0;
-  b[2] = a[2][2]; d[2] = a[2][2]; z[2] = 0.0;
-
-  nrot = 0;
-
-  
-  for(i=0; i<50; i++)
-    {
-
-      printf("2\n");
-
-      sm=0.0; sm+=fabs(a[0][1]); sm+=fabs(a[0][2]); sm+=fabs(a[1][2]);
-      if (sm == 0.0) { McM(vout,v); VcV(dout,d); return i; }
-      
-      if (i < 3) tresh=0.2*sm/(3*3); else tresh=0.0;
-      
-      {
-	g = 100.0*rfabs(a[0][1]);  
-	if (i>3 && rfabs(d[0])+g==rfabs(d[0]) && rfabs(d[1])+g==rfabs(d[1]))
-	  a[0][1]=0.0;
-	else if (rfabs(a[0][1])>tresh)
-	  {
-	    h = d[1]-d[0];
-	    if (rfabs(h)+g == rfabs(h)) t=(a[0][1])/h;
-	    else
-	      {
-		theta=0.5*h/(a[0][1]);
-		t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
-		if (theta < 0.0) t = -t;
-	      }
-	    c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[0][1];
-	    z[0] -= h; z[1] += h; d[0] -= h; d[1] += h;
-	    a[0][1]=0.0;
-	    ROT(a,0,2,1,2); ROT(v,0,0,0,1); ROT(v,1,0,1,1); ROT(v,2,0,2,1); 
-	    nrot++;
-	  }
-      }
-
-      {
-	g = 100.0*rfabs(a[0][2]);
-	if (i>3 && rfabs(d[0])+g==rfabs(d[0]) && rfabs(d[2])+g==rfabs(d[2]))
-	  a[0][2]=0.0;
-	else if (rfabs(a[0][2])>tresh)
-	  {
-	    h = d[2]-d[0];
-	    if (rfabs(h)+g == rfabs(h)) t=(a[0][2])/h;
-	    else
-	      {
-		theta=0.5*h/(a[0][2]);
-		t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
-		if (theta < 0.0) t = -t;
-	      }
-	    c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[0][2];
-	    z[0] -= h; z[2] += h; d[0] -= h; d[2] += h;
-	    a[0][2]=0.0;
-	    ROT(a,0,1,1,2); ROT(v,0,0,0,2); ROT(v,1,0,1,2); ROT(v,2,0,2,2); 
-	    nrot++;
-	  }
-      }
-
-
-      {
-	g = 100.0*rfabs(a[1][2]);
-	if (i>3 && rfabs(d[1])+g==rfabs(d[1]) && rfabs(d[2])+g==rfabs(d[2]))
-	  a[1][2]=0.0;
-	else if (rfabs(a[1][2])>tresh)
-	  {
-	    h = d[2]-d[1];
-	    if (rfabs(h)+g == rfabs(h)) t=(a[1][2])/h;
-	    else
-	      {
-		theta=0.5*h/(a[1][2]);
-		t=1.0/(rfabs(theta)+sqrt(1.0+theta*theta));
-		if (theta < 0.0) t = -t;
-	      }
-	    c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*a[1][2];
-	    z[1] -= h; z[2] += h; d[1] -= h; d[2] += h;
-	    a[1][2]=0.0;
-	    ROT(a,0,1,0,2); ROT(v,0,1,0,2); ROT(v,1,1,1,2); ROT(v,2,1,2,2); 
-	    nrot++;
-	  }
-      }
-
-      b[0] += z[0]; d[0] = b[0]; z[0] = 0.0;
-      b[1] += z[1]; d[1] = b[1]; z[1] = 0.0;
-      b[2] += z[2]; d[2] = b[2]; z[2] = 0.0;
-      
-    }
-
-  fprintf(stderr, "eigen: too many iterations in Jacobi transform (%d).\n", i);
-
-  return i;
-}
-
-#else
-
-
-
-#define ROTATE(a,i,j,k,l) g=a[i][j]; h=a[k][l]; a[i][j]=g-s*(h+g*tau); a[k][l]=h+s*(g-h*tau);
-
-void
-inline
-Meigen(PQP_REAL vout[3][3], PQP_REAL dout[3], PQP_REAL a[3][3])
-{
-  int n = 3;
-  int j,iq,ip,i;
-  PQP_REAL tresh,theta,tau,t,sm,s,h,g,c;
-  int nrot;
-  PQP_REAL b[3];
-  PQP_REAL z[3];
-  PQP_REAL v[3][3];
-  PQP_REAL d[3];
-  
-  Midentity(v);
-  for(ip=0; ip<n; ip++) 
-    {
-      b[ip] = a[ip][ip];
-      d[ip] = a[ip][ip];
-      z[ip] = 0.0;
-    }
-  
-  nrot = 0;
-  
-  for(i=0; i<50; i++)
-    {
-
-      sm=0.0;
-      for(ip=0;ip<n;ip++) for(iq=ip+1;iq<n;iq++) sm+=fabs(a[ip][iq]);
-      if (sm == 0.0)
-	{
-	  McM(vout, v);
-	  VcV(dout, d);
-	  return;
-	}
-      
-      
-      if (i < 3) tresh=(PQP_REAL)0.2*sm/(n*n);
-      else tresh=0.0;
-      
-      for(ip=0; ip<n; ip++) for(iq=ip+1; iq<n; iq++)
-	{
-	  g = (PQP_REAL)100.0*fabs(a[ip][iq]);
-	  if (i>3 && 
-	      fabs(d[ip])+g==fabs(d[ip]) && 
-	      fabs(d[iq])+g==fabs(d[iq]))
-	    a[ip][iq]=0.0;
-	  else if (fabs(a[ip][iq])>tresh)
-	    {
-	      h = d[iq]-d[ip];
-	      if (fabs(h)+g == fabs(h)) t=(a[ip][iq])/h;
-	      else
-		{
-		  theta=(PQP_REAL)0.5*h/(a[ip][iq]);
-		  t=(PQP_REAL)(1.0/(fabs(theta)+sqrt(1.0+theta*theta)));
-		  if (theta < 0.0) t = -t;
-		}
-	      c=(PQP_REAL)1.0/sqrt(1+t*t);
-	      s=t*c;
-	      tau=s/((PQP_REAL)1.0+c);
-	      h=t*a[ip][iq];
-	      z[ip] -= h;
-	      z[iq] += h;
-	      d[ip] -= h;
-	      d[iq] += h;
-	      a[ip][iq]=0.0;
-	      for(j=0;j<ip;j++) { ROTATE(a,j,ip,j,iq); } 
-	      for(j=ip+1;j<iq;j++) { ROTATE(a,ip,j,j,iq); } 
-	      for(j=iq+1;j<n;j++) { ROTATE(a,ip,j,iq,j); } 
-	      for(j=0;j<n;j++) { ROTATE(v,j,ip,j,iq); } 
-	      nrot++;
-	    }
-	}
-      for(ip=0;ip<n;ip++)
-	{
-	  b[ip] += z[ip];
-	  d[ip] = b[ip];
-	  z[ip] = 0.0;
-	}
-    }
-
-  fprintf(stderr, "eigen: too many iterations in Jacobi transform.\n");
-
-  return;
-}
-
-
-#endif
-
-#endif
-// MATVEC_H
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/OBB_Disjoint.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/OBB_Disjoint.h
deleted file mode 100644
index 4a732031..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/OBB_Disjoint.h
+++ /dev/null
@@ -1,216 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_OBB_DISJOINT
-#define PQP_OBB_DISJOINT
-
-#include "MatVec.h"
-#include "PQP_Compile.h"
-
-// int
-// obb_disjoint(PQP_REAL B[3][3], PQP_REAL T[3], PQP_REAL a[3], PQP_REAL b[3]);
-//
-// This is a test between two boxes, box A and box B.  It is assumed that
-// the coordinate system is aligned and centered on box A.  The 3x3
-// matrix B specifies box B's orientation with respect to box A.
-// Specifically, the columns of B are the basis vectors (axis vectors) of
-// box B.  The center of box B is located at the vector T.  The
-// dimensions of box B are given in the array b.  The orientation and
-// placement of box A, in this coordinate system, are the identity matrix
-// and zero vector, respectively, so they need not be specified.  The
-// dimensions of box A are given in array a.
-
-inline
-int
-obb_disjoint(PQP_REAL B[3][3], PQP_REAL T[3], PQP_REAL a[3], PQP_REAL b[3])
-{
-  register PQP_REAL t, s;
-  register int r;
-  PQP_REAL Bf[3][3];
-  const PQP_REAL reps = (PQP_REAL)1e-6;
-  
-  // Bf = fabs(B)
-  Bf[0][0] = myfabs(B[0][0]);  Bf[0][0] += reps;
-  Bf[0][1] = myfabs(B[0][1]);  Bf[0][1] += reps;
-  Bf[0][2] = myfabs(B[0][2]);  Bf[0][2] += reps;
-  Bf[1][0] = myfabs(B[1][0]);  Bf[1][0] += reps;
-  Bf[1][1] = myfabs(B[1][1]);  Bf[1][1] += reps;
-  Bf[1][2] = myfabs(B[1][2]);  Bf[1][2] += reps;
-  Bf[2][0] = myfabs(B[2][0]);  Bf[2][0] += reps;
-  Bf[2][1] = myfabs(B[2][1]);  Bf[2][1] += reps;
-  Bf[2][2] = myfabs(B[2][2]);  Bf[2][2] += reps;
-
-  // if any of these tests are one-sided, then the polyhedra are disjoint
-  r = 1;
-
-  // A1 x A2 = A0
-  t = myfabs(T[0]);
-  
-  r &= (t <= 
-	  (a[0] + b[0] * Bf[0][0] + b[1] * Bf[0][1] + b[2] * Bf[0][2]));
-  if (!r) return 1;
-  
-  // B1 x B2 = B0
-  s = T[0]*B[0][0] + T[1]*B[1][0] + T[2]*B[2][0];
-  t = myfabs(s);
-
-  r &= ( t <=
-	  (b[0] + a[0] * Bf[0][0] + a[1] * Bf[1][0] + a[2] * Bf[2][0]));
-  if (!r) return 2;
-    
-  // A2 x A0 = A1
-  t = myfabs(T[1]);
-  
-  r &= ( t <= 
-	  (a[1] + b[0] * Bf[1][0] + b[1] * Bf[1][1] + b[2] * Bf[1][2]));
-  if (!r) return 3;
-
-  // A0 x A1 = A2
-  t = myfabs(T[2]);
-
-  r &= ( t <= 
-	  (a[2] + b[0] * Bf[2][0] + b[1] * Bf[2][1] + b[2] * Bf[2][2]));
-  if (!r) return 4;
-
-  // B2 x B0 = B1
-  s = T[0]*B[0][1] + T[1]*B[1][1] + T[2]*B[2][1];
-  t = myfabs(s);
-
-  r &= ( t <=
-	  (b[1] + a[0] * Bf[0][1] + a[1] * Bf[1][1] + a[2] * Bf[2][1]));
-  if (!r) return 5;
-
-  // B0 x B1 = B2
-  s = T[0]*B[0][2] + T[1]*B[1][2] + T[2]*B[2][2];
-  t = myfabs(s);
-
-  r &= ( t <=
-	  (b[2] + a[0] * Bf[0][2] + a[1] * Bf[1][2] + a[2] * Bf[2][2]));
-  if (!r) return 6;
-
-  // A0 x B0
-  s = T[2] * B[1][0] - T[1] * B[2][0];
-  t = myfabs(s);
-  
-  r &= ( t <= 
-	(a[1] * Bf[2][0] + a[2] * Bf[1][0] +
-	 b[1] * Bf[0][2] + b[2] * Bf[0][1]));
-  if (!r) return 7;
-  
-  // A0 x B1
-  s = T[2] * B[1][1] - T[1] * B[2][1];
-  t = myfabs(s);
-
-  r &= ( t <=
-	(a[1] * Bf[2][1] + a[2] * Bf[1][1] +
-	 b[0] * Bf[0][2] + b[2] * Bf[0][0]));
-  if (!r) return 8;
-
-  // A0 x B2
-  s = T[2] * B[1][2] - T[1] * B[2][2];
-  t = myfabs(s);
-
-  r &= ( t <=
-	  (a[1] * Bf[2][2] + a[2] * Bf[1][2] +
-	   b[0] * Bf[0][1] + b[1] * Bf[0][0]));
-  if (!r) return 9;
-
-  // A1 x B0
-  s = T[0] * B[2][0] - T[2] * B[0][0];
-  t = myfabs(s);
-
-  r &= ( t <=
-	  (a[0] * Bf[2][0] + a[2] * Bf[0][0] +
-	   b[1] * Bf[1][2] + b[2] * Bf[1][1]));
-  if (!r) return 10;
-
-  // A1 x B1
-  s = T[0] * B[2][1] - T[2] * B[0][1];
-  t = myfabs(s);
-
-  r &= ( t <=
-	  (a[0] * Bf[2][1] + a[2] * Bf[0][1] +
-	   b[0] * Bf[1][2] + b[2] * Bf[1][0]));
-  if (!r) return 11;
-
-  // A1 x B2
-  s = T[0] * B[2][2] - T[2] * B[0][2];
-  t = myfabs(s);
-
-  r &= (t <=
-	  (a[0] * Bf[2][2] + a[2] * Bf[0][2] +
-	   b[0] * Bf[1][1] + b[1] * Bf[1][0]));
-  if (!r) return 12;
-
-  // A2 x B0
-  s = T[1] * B[0][0] - T[0] * B[1][0];
-  t = myfabs(s);
-
-  r &= (t <=
-	  (a[0] * Bf[1][0] + a[1] * Bf[0][0] +
-	   b[1] * Bf[2][2] + b[2] * Bf[2][1]));
-  if (!r) return 13;
-
-  // A2 x B1
-  s = T[1] * B[0][1] - T[0] * B[1][1];
-  t = myfabs(s);
-
-  r &= ( t <=
-	  (a[0] * Bf[1][1] + a[1] * Bf[0][1] +
-	   b[0] * Bf[2][2] + b[2] * Bf[2][0]));
-  if (!r) return 14;
-
-  // A2 x B2
-  s = T[1] * B[0][2] - T[0] * B[1][2];
-  t = myfabs(s);
-
-  r &= ( t <=
-	  (a[0] * Bf[1][2] + a[1] * Bf[0][2] +
-	   b[0] * Bf[2][1] + b[1] * Bf[2][0]));
-  if (!r) return 15;
-
-  return 0;  // should equal 0
-}
-
-#endif
-
-
-
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP.cpp b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP.cpp
deleted file mode 100644
index c1857503..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP.cpp
+++ /dev/null
@@ -1,1376 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#include <stdio.h>
-#include <string.h>
-#include "PQP.h"
-#include "BVTQ.h"
-#include "Build.h"
-#include "MatVec.h"
-#include "GetTime.h"
-#include "TriDist.h"
-
-enum BUILD_STATE
-{ 
-  PQP_BUILD_STATE_EMPTY,     // empty state, immediately after constructor
-  PQP_BUILD_STATE_BEGUN,     // after BeginModel(), state for adding triangles
-  PQP_BUILD_STATE_PROCESSED  // after tree has been built, ready to use
-};
-
-PQP_Model::PQP_Model()
-{
-  // no bounding volume tree yet
-
-  b = 0;  
-  num_bvs_alloced = 0;
-  num_bvs = 0;
-
-  // no tri list yet
-
-  tris = 0;
-  num_tris = 0;
-  num_tris_alloced = 0;
-
-  last_tri = 0;
-
-  build_state = PQP_BUILD_STATE_EMPTY;
-}
-
-PQP_Model::~PQP_Model()
-{
-  if (b != NULL)
-    delete [] b;
-  if (tris != NULL)
-    delete [] tris;
-}
-
-int
-PQP_Model::BeginModel(int n)
-{
-  // reset to initial state if necessary
-
-  if (build_state != PQP_BUILD_STATE_EMPTY) 
-  {
-    delete [] b;
-    delete [] tris;
-  
-    num_tris = num_bvs = num_tris_alloced = num_bvs_alloced = 0;
-  }
-
-  // prepare model for addition of triangles
-
-  if (n <= 0) n = 8;
-  num_tris_alloced = n;
-  tris = new Tri[n];
-  if (!tris) 
-  {
-    fprintf(stderr, "PQP Error!  Out of memory for tri array on "
-                    "BeginModel() call!\n");
-    return PQP_ERR_MODEL_OUT_OF_MEMORY;  
-  }
-
-  // give a warning if called out of sequence
-
-  if (build_state != PQP_BUILD_STATE_EMPTY)
-  {
-    fprintf(stderr,
-            "PQP Warning! Called BeginModel() on a PQP_Model that \n"
-            "was not empty. This model was cleared and previous\n"
-            "triangle additions were lost.\n");
-    build_state = PQP_BUILD_STATE_BEGUN;
-    return PQP_ERR_BUILD_OUT_OF_SEQUENCE;
-  }
-
-  build_state = PQP_BUILD_STATE_BEGUN;
-  return PQP_OK;
-}
-
-int
-PQP_Model::AddTri(const PQP_REAL *p1, 
-                  const PQP_REAL *p2, 
-                  const PQP_REAL *p3, 
-                  int id)
-{
-  if (build_state == PQP_BUILD_STATE_EMPTY)
-  {
-    BeginModel();
-  }
-  else if (build_state == PQP_BUILD_STATE_PROCESSED)
-  {
-    fprintf(stderr,"PQP Warning! Called AddTri() on PQP_Model \n"
-                   "object that was already ended. AddTri() was\n"
-                   "ignored.  Must do a BeginModel() to clear the\n"
-                   "model for addition of new triangles\n");
-    return PQP_ERR_BUILD_OUT_OF_SEQUENCE;
-  }
-        
-  // allocate for new triangles
-
-  if (num_tris >= num_tris_alloced)
-  {
-    Tri *temp;
-    temp = new Tri[num_tris_alloced*2];
-    if (!temp)
-    {
-      fprintf(stderr, "PQP Error!  Out of memory for tri array on"
-	              " AddTri() call!\n");
-      return PQP_ERR_MODEL_OUT_OF_MEMORY;  
-    }
-    memcpy(temp, tris, sizeof(Tri)*num_tris);
-    delete [] tris;
-    tris = temp;
-    num_tris_alloced = num_tris_alloced*2;
-  }
-  
-  // initialize the new triangle
-
-  tris[num_tris].p1[0] = p1[0];
-  tris[num_tris].p1[1] = p1[1];
-  tris[num_tris].p1[2] = p1[2];
-
-  tris[num_tris].p2[0] = p2[0];
-  tris[num_tris].p2[1] = p2[1];
-  tris[num_tris].p2[2] = p2[2];
-
-  tris[num_tris].p3[0] = p3[0];
-  tris[num_tris].p3[1] = p3[1];
-  tris[num_tris].p3[2] = p3[2];
-
-  tris[num_tris].id = id;
-
-  num_tris += 1;
-
-  return PQP_OK;
-}
-
-int
-PQP_Model::EndModel()
-{
-  if (build_state == PQP_BUILD_STATE_PROCESSED)
-  {
-    fprintf(stderr,"PQP Warning! Called EndModel() on PQP_Model \n"
-                   "object that was already ended. EndModel() was\n"
-                   "ignored.  Must do a BeginModel() to clear the\n"
-                   "model for addition of new triangles\n");
-    return PQP_ERR_BUILD_OUT_OF_SEQUENCE;
-  }
-
-  // report error is no tris
-
-  if (num_tris == 0)
-  {
-    fprintf(stderr,"PQP Error! EndModel() called on model with"
-                   " no triangles\n");
-    return PQP_ERR_BUILD_EMPTY_MODEL;
-  }
-
-  // shrink fit tris array 
-
-  if (num_tris_alloced > num_tris)
-  {
-    Tri *new_tris = new Tri[num_tris];
-    if (!new_tris) 
-    {
-      fprintf(stderr, "PQP Error!  Out of memory for tri array "
-                      "in EndModel() call!\n");
-      return PQP_ERR_MODEL_OUT_OF_MEMORY;  
-    }
-    memcpy(new_tris, tris, sizeof(Tri)*num_tris);
-    delete [] tris;
-    tris = new_tris;
-    num_tris_alloced = num_tris;
-  }
-
-  // create an array of BVs for the model
-
-  b = new BV[2*num_tris - 1];
-  if (!b)
-  {
-    fprintf(stderr,"PQP Error! out of memory for BV array "
-                   "in EndModel()\n");
-    return PQP_ERR_MODEL_OUT_OF_MEMORY;
-  }
-  num_bvs_alloced = 2*num_tris - 1;
-  num_bvs = 0;
-
-  // we should build the model now.
-
-  build_model(this);
-  build_state = PQP_BUILD_STATE_PROCESSED;
-
-  last_tri = tris;
-
-  return PQP_OK;
-}
-
-int
-PQP_Model::MemUsage(int msg)
-{
-  int mem_bv_list = sizeof(BV)*num_bvs;
-  int mem_tri_list = sizeof(Tri)*num_tris;
-
-  int total_mem = mem_bv_list + mem_tri_list + sizeof(PQP_Model);
-
-  if (msg) 
-  {
-    fprintf(stderr,"Total for model %x: %d bytes\n", this, total_mem);
-    fprintf(stderr,"BVs: %d alloced, take %d bytes each\n", 
-            num_bvs, sizeof(BV));
-    fprintf(stderr,"Tris: %d alloced, take %d bytes each\n", 
-            num_tris, sizeof(Tri));
-  }
-  
-  return total_mem;
-}
-
-//  COLLIDE STUFF
-//
-//--------------------------------------------------------------------------
-
-PQP_CollideResult::PQP_CollideResult()
-{
-  pairs = 0;
-  num_pairs = num_pairs_alloced = 0;
-  num_bv_tests = 0;
-  num_tri_tests = 0;
-}
-
-PQP_CollideResult::~PQP_CollideResult()
-{
-  delete [] pairs;
-}
-
-void
-PQP_CollideResult::FreePairsList()
-{
-  num_pairs = num_pairs_alloced = 0;
-  delete [] pairs;
-  pairs = 0;
-}
-
-// may increase OR reduce mem usage
-void
-PQP_CollideResult::SizeTo(int n)
-{
-  CollisionPair *temp;
-
-  if (n < num_pairs) 
-  {
-    fprintf(stderr, "PQP Error: Internal error in "
-                    "'PQP_CollideResult::SizeTo(int n)'\n");
-    fprintf(stderr, "       n = %d, but num_pairs = %d\n", n, num_pairs);
-    return;
-  }
-  
-  temp = new CollisionPair[n];
-  memcpy(temp, pairs, num_pairs*sizeof(CollisionPair));
-  delete [] pairs;
-  pairs = temp;
-  num_pairs_alloced = n;
-  return;
-}
-
-void
-PQP_CollideResult::Add(int a, int b)
-{
-  if (num_pairs >= num_pairs_alloced) 
-  {
-    // allocate more
-
-    SizeTo(num_pairs_alloced*2+8);
-  }
-
-  // now proceed as usual
-
-  pairs[num_pairs].id1 = a;
-  pairs[num_pairs].id2 = b;
-  num_pairs++;
-}
-
-// TRIANGLE OVERLAP TEST
-       
-inline
-PQP_REAL
-max(PQP_REAL a, PQP_REAL b, PQP_REAL c)
-{
-  PQP_REAL t = a;
-  if (b > t) t = b;
-  if (c > t) t = c;
-  return t;
-}
-
-inline
-PQP_REAL
-min(PQP_REAL a, PQP_REAL b, PQP_REAL c)
-{
-  PQP_REAL t = a;
-  if (b < t) t = b;
-  if (c < t) t = c;
-  return t;
-}
-
-int
-project6(PQP_REAL *ax, 
-         PQP_REAL *p1, PQP_REAL *p2, PQP_REAL *p3, 
-         PQP_REAL *q1, PQP_REAL *q2, PQP_REAL *q3)
-{
-  PQP_REAL P1 = VdotV(ax, p1);
-  PQP_REAL P2 = VdotV(ax, p2);
-  PQP_REAL P3 = VdotV(ax, p3);
-  PQP_REAL Q1 = VdotV(ax, q1);
-  PQP_REAL Q2 = VdotV(ax, q2);
-  PQP_REAL Q3 = VdotV(ax, q3);
-  
-  PQP_REAL mx1 = max(P1, P2, P3);
-  PQP_REAL mn1 = min(P1, P2, P3);
-  PQP_REAL mx2 = max(Q1, Q2, Q3);
-  PQP_REAL mn2 = min(Q1, Q2, Q3);
-
-  if (mn1 > mx2) return 0;
-  if (mn2 > mx1) return 0;
-  return 1;
-}
-
-// very robust triangle intersection test
-// uses no divisions
-// works on coplanar triangles
-int 
-TriContact(PQP_REAL *P1, PQP_REAL *P2, PQP_REAL *P3,
-           PQP_REAL *Q1, PQP_REAL *Q2, PQP_REAL *Q3) 
-{
-
-  // One triangle is (p1,p2,p3).  Other is (q1,q2,q3).
-  // Edges are (e1,e2,e3) and (f1,f2,f3).
-  // Normals are n1 and m1
-  // Outwards are (g1,g2,g3) and (h1,h2,h3).
-  //  
-  // We assume that the triangle vertices are in the same coordinate system.
-  //
-  // First thing we do is establish a new c.s. so that p1 is at (0,0,0).
-
-  PQP_REAL p1[3], p2[3], p3[3];
-  PQP_REAL q1[3], q2[3], q3[3];
-  PQP_REAL e1[3], e2[3], e3[3];
-  PQP_REAL f1[3], f2[3], f3[3];
-  PQP_REAL g1[3], g2[3], g3[3];
-  PQP_REAL h1[3], h2[3], h3[3];
-  PQP_REAL n1[3], m1[3];
-
-  PQP_REAL ef11[3], ef12[3], ef13[3];
-  PQP_REAL ef21[3], ef22[3], ef23[3];
-  PQP_REAL ef31[3], ef32[3], ef33[3];
-  
-  p1[0] = P1[0] - P1[0];  p1[1] = P1[1] - P1[1];  p1[2] = P1[2] - P1[2];
-  p2[0] = P2[0] - P1[0];  p2[1] = P2[1] - P1[1];  p2[2] = P2[2] - P1[2];
-  p3[0] = P3[0] - P1[0];  p3[1] = P3[1] - P1[1];  p3[2] = P3[2] - P1[2];
-  
-  q1[0] = Q1[0] - P1[0];  q1[1] = Q1[1] - P1[1];  q1[2] = Q1[2] - P1[2];
-  q2[0] = Q2[0] - P1[0];  q2[1] = Q2[1] - P1[1];  q2[2] = Q2[2] - P1[2];
-  q3[0] = Q3[0] - P1[0];  q3[1] = Q3[1] - P1[1];  q3[2] = Q3[2] - P1[2];
-  
-  e1[0] = p2[0] - p1[0];  e1[1] = p2[1] - p1[1];  e1[2] = p2[2] - p1[2];
-  e2[0] = p3[0] - p2[0];  e2[1] = p3[1] - p2[1];  e2[2] = p3[2] - p2[2];
-  e3[0] = p1[0] - p3[0];  e3[1] = p1[1] - p3[1];  e3[2] = p1[2] - p3[2];
-
-  f1[0] = q2[0] - q1[0];  f1[1] = q2[1] - q1[1];  f1[2] = q2[2] - q1[2];
-  f2[0] = q3[0] - q2[0];  f2[1] = q3[1] - q2[1];  f2[2] = q3[2] - q2[2];
-  f3[0] = q1[0] - q3[0];  f3[1] = q1[1] - q3[1];  f3[2] = q1[2] - q3[2];
-  
-  VcrossV(n1, e1, e2);
-  VcrossV(m1, f1, f2);
-
-  VcrossV(g1, e1, n1);
-  VcrossV(g2, e2, n1);
-  VcrossV(g3, e3, n1);
-  VcrossV(h1, f1, m1);
-  VcrossV(h2, f2, m1);
-  VcrossV(h3, f3, m1);
-
-  VcrossV(ef11, e1, f1);
-  VcrossV(ef12, e1, f2);
-  VcrossV(ef13, e1, f3);
-  VcrossV(ef21, e2, f1);
-  VcrossV(ef22, e2, f2);
-  VcrossV(ef23, e2, f3);
-  VcrossV(ef31, e3, f1);
-  VcrossV(ef32, e3, f2);
-  VcrossV(ef33, e3, f3);
-  
-  // now begin the series of tests
-
-  if (!project6(n1, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(m1, p1, p2, p3, q1, q2, q3)) return 0;
-  
-  if (!project6(ef11, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(ef12, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(ef13, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(ef21, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(ef22, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(ef23, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(ef31, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(ef32, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(ef33, p1, p2, p3, q1, q2, q3)) return 0;
-
-  if (!project6(g1, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(g2, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(g3, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(h1, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(h2, p1, p2, p3, q1, q2, q3)) return 0;
-  if (!project6(h3, p1, p2, p3, q1, q2, q3)) return 0;
-
-  return 1;
-}
-
-inline
-PQP_REAL
-TriDistance(PQP_REAL R[3][3], PQP_REAL T[3], Tri *t1, Tri *t2,
-            PQP_REAL p[3], PQP_REAL q[3])
-{
-  // transform tri 2 into same space as tri 1
-
-  PQP_REAL tri1[3][3], tri2[3][3];
-
-  VcV(tri1[0], t1->p1);
-  VcV(tri1[1], t1->p2);
-  VcV(tri1[2], t1->p3);
-  MxVpV(tri2[0], R, t2->p1, T);
-  MxVpV(tri2[1], R, t2->p2, T);
-  MxVpV(tri2[2], R, t2->p3, T);
-                                
-  return TriDist(p,q,tri1,tri2);
-}
-
-
-void
-CollideRecurse(PQP_CollideResult *res,
-               PQP_REAL R[3][3], PQP_REAL T[3], // b2 relative to b1
-               PQP_Model *o1, int b1, 
-               PQP_Model *o2, int b2, int flag)
-{
-  // first thing, see if we're overlapping
-
-  res->num_bv_tests++;
-
-  if (!BV_Overlap(R, T, o1->child(b1), o2->child(b2))) return;
-
-  // if we are, see if we test triangles next
-
-  int l1 = o1->child(b1)->Leaf();
-  int l2 = o2->child(b2)->Leaf();
-
-  if (l1 && l2) 
-  {
-    res->num_tri_tests++;
-
-#if 1
-    // transform the points in b2 into space of b1, then compare
-
-    Tri *t1 = &o1->tris[-o1->child(b1)->first_child - 1];
-    Tri *t2 = &o2->tris[-o2->child(b2)->first_child - 1];
-    PQP_REAL q1[3], q2[3], q3[3];
-    PQP_REAL *p1 = t1->p1;
-    PQP_REAL *p2 = t1->p2;
-    PQP_REAL *p3 = t1->p3;    
-    MxVpV(q1, res->R, t2->p1, res->T);
-    MxVpV(q2, res->R, t2->p2, res->T);
-    MxVpV(q3, res->R, t2->p3, res->T);
-    if (TriContact(p1, p2, p3, q1, q2, q3)) 
-    {
-      // add this to result
-
-      res->Add(t1->id, t2->id);
-    }
-#else
-    PQP_REAL p[3], q[3];
-
-    Tri *t1 = &o1->tris[-o1->child(b1)->first_child - 1];
-    Tri *t2 = &o2->tris[-o2->child(b2)->first_child - 1];
-
-    if (TriDistance(res->R,res->T,t1,t2,p,q) == 0.0)
-    {
-      // add this to result
-
-      res->Add(t1->id, t2->id);
-    }
-#endif
-
-    return;
-  }
-
-  // we dont, so decide whose children to visit next
-
-  PQP_REAL sz1 = o1->child(b1)->GetSize();
-  PQP_REAL sz2 = o2->child(b2)->GetSize();
-
-  PQP_REAL Rc[3][3],Tc[3],Ttemp[3];
-    
-  if (l2 || (!l1 && (sz1 > sz2)))
-  {
-    int c1 = o1->child(b1)->first_child;
-    int c2 = c1 + 1;
-
-    MTxM(Rc,o1->child(c1)->R,R);
-#if PQP_BV_TYPE & OBB_TYPE
-    VmV(Ttemp,T,o1->child(c1)->To);
-#else
-    VmV(Ttemp,T,o1->child(c1)->Tr);
-#endif
-    MTxV(Tc,o1->child(c1)->R,Ttemp);
-    CollideRecurse(res,Rc,Tc,o1,c1,o2,b2,flag);
-
-    if ((flag == PQP_FIRST_CONTACT) && (res->num_pairs > 0)) return;
-
-    MTxM(Rc,o1->child(c2)->R,R);
-#if PQP_BV_TYPE & OBB_TYPE
-    VmV(Ttemp,T,o1->child(c2)->To);
-#else
-    VmV(Ttemp,T,o1->child(c2)->Tr);
-#endif
-    MTxV(Tc,o1->child(c2)->R,Ttemp);
-    CollideRecurse(res,Rc,Tc,o1,c2,o2,b2,flag);
-  }
-  else 
-  {
-    int c1 = o2->child(b2)->first_child;
-    int c2 = c1 + 1;
-
-    MxM(Rc,R,o2->child(c1)->R);
-#if PQP_BV_TYPE & OBB_TYPE
-    MxVpV(Tc,R,o2->child(c1)->To,T);
-#else
-    MxVpV(Tc,R,o2->child(c1)->Tr,T);
-#endif
-    CollideRecurse(res,Rc,Tc,o1,b1,o2,c1,flag);
-
-    if ((flag == PQP_FIRST_CONTACT) && (res->num_pairs > 0)) return;
-
-    MxM(Rc,R,o2->child(c2)->R);
-#if PQP_BV_TYPE & OBB_TYPE
-    MxVpV(Tc,R,o2->child(c2)->To,T);
-#else
-    MxVpV(Tc,R,o2->child(c2)->Tr,T);
-#endif
-    CollideRecurse(res,Rc,Tc,o1,b1,o2,c2,flag);
-  }
-}
-
-int 
-PQP_Collide(PQP_CollideResult *res,
-            PQP_REAL R1[3][3], PQP_REAL T1[3], PQP_Model *o1,
-            PQP_REAL R2[3][3], PQP_REAL T2[3], PQP_Model *o2,
-            int flag)
-{
-  double t1 = GetTime();
-
-  // make sure that the models are built
-
-  if (o1->build_state != PQP_BUILD_STATE_PROCESSED) 
-    return PQP_ERR_UNPROCESSED_MODEL;
-  if (o2->build_state != PQP_BUILD_STATE_PROCESSED) 
-    return PQP_ERR_UNPROCESSED_MODEL;
-
-  // clear the stats
-
-  res->num_bv_tests = 0;
-  res->num_tri_tests = 0;
-  
-  // don't release the memory, but reset the num_pairs counter
-
-  res->num_pairs = 0;
-  
-  // Okay, compute what transform [R,T] that takes us from cs1 to cs2.
-  // [R,T] = [R1,T1]'[R2,T2] = [R1',-R1'T][R2,T2] = [R1'R2, R1'(T2-T1)]
-  // First compute the rotation part, then translation part
-
-  MTxM(res->R,R1,R2);
-  PQP_REAL Ttemp[3];
-  VmV(Ttemp, T2, T1);  
-  MTxV(res->T, R1, Ttemp);
-  
-  // compute the transform from o1->child(0) to o2->child(0)
-
-  PQP_REAL Rtemp[3][3], R[3][3], T[3];
-
-  MxM(Rtemp,res->R,o2->child(0)->R);
-  MTxM(R,o1->child(0)->R,Rtemp);
-
-#if PQP_BV_TYPE & OBB_TYPE
-  MxVpV(Ttemp,res->R,o2->child(0)->To,res->T);
-  VmV(Ttemp,Ttemp,o1->child(0)->To);
-#else
-  MxVpV(Ttemp,res->R,o2->child(0)->Tr,res->T);
-  VmV(Ttemp,Ttemp,o1->child(0)->Tr);
-#endif
-
-  MTxV(T,o1->child(0)->R,Ttemp);
-
-  // now start with both top level BVs  
-
-  CollideRecurse(res,R,T,o1,0,o2,0,flag);
-  
-  double t2 = GetTime();
-  res->query_time_secs = t2 - t1;
-  
-  return PQP_OK; 
-}
-
-#if PQP_BV_TYPE & RSS_TYPE // distance/tolerance only available with RSS
-                           // unless an OBB distance test is supplied in 
-                           // BV.cpp
-
-// DISTANCE STUFF
-//
-//--------------------------------------------------------------------------
-
-void
-DistanceRecurse(PQP_DistanceResult *res,
-                PQP_REAL R[3][3], PQP_REAL T[3], // b2 relative to b1
-                PQP_Model *o1, int b1,
-                PQP_Model *o2, int b2)
-{
-  PQP_REAL sz1 = o1->child(b1)->GetSize();
-  PQP_REAL sz2 = o2->child(b2)->GetSize();
-  int l1 = o1->child(b1)->Leaf();
-  int l2 = o2->child(b2)->Leaf();
-
-  if (l1 && l2)
-  {
-    // both leaves.  Test the triangles beneath them.
-
-    res->num_tri_tests++;
-
-    PQP_REAL p[3], q[3];
-
-    Tri *t1 = &o1->tris[-o1->child(b1)->first_child - 1];
-    Tri *t2 = &o2->tris[-o2->child(b2)->first_child - 1];
-
-    PQP_REAL d = TriDistance(res->R,res->T,t1,t2,p,q);
-  
-    if (d < res->distance) 
-    {
-      res->distance = d;
-
-      VcV(res->p1, p);         // p already in c.s. 1
-      VcV(res->p2, q);         // q must be transformed 
-                               // into c.s. 2 later
-      o1->last_tri = t1;
-      o2->last_tri = t2;
-    }
-
-    return;
-  }
-
-  // First, perform distance tests on the children. Then traverse 
-  // them recursively, but test the closer pair first, the further 
-  // pair second.
-
-  int a1,a2,c1,c2;  // new bv tests 'a' and 'c'
-  PQP_REAL R1[3][3], T1[3], R2[3][3], T2[3], Ttemp[3];
-
-  if (l2 || (!l1 && (sz1 > sz2)))
-  {
-    // visit the children of b1
-
-    a1 = o1->child(b1)->first_child;
-    a2 = b2;
-    c1 = o1->child(b1)->first_child+1;
-    c2 = b2;
-    
-    MTxM(R1,o1->child(a1)->R,R);
-#if PQP_BV_TYPE & RSS_TYPE
-    VmV(Ttemp,T,o1->child(a1)->Tr);
-#else
-    VmV(Ttemp,T,o1->child(a1)->To);
-#endif
-    MTxV(T1,o1->child(a1)->R,Ttemp);
-
-    MTxM(R2,o1->child(c1)->R,R);
-#if PQP_BV_TYPE & RSS_TYPE
-    VmV(Ttemp,T,o1->child(c1)->Tr);
-#else
-    VmV(Ttemp,T,o1->child(c1)->To);
-#endif
-    MTxV(T2,o1->child(c1)->R,Ttemp);
-  }
-  else 
-  {
-    // visit the children of b2
-
-    a1 = b1;
-    a2 = o2->child(b2)->first_child;
-    c1 = b1;
-    c2 = o2->child(b2)->first_child+1;
-
-    MxM(R1,R,o2->child(a2)->R);
-#if PQP_BV_TYPE & RSS_TYPE
-    MxVpV(T1,R,o2->child(a2)->Tr,T);
-#else
-    MxVpV(T1,R,o2->child(a2)->To,T);
-#endif
-
-    MxM(R2,R,o2->child(c2)->R);
-#if PQP_BV_TYPE & RSS_TYPE
-    MxVpV(T2,R,o2->child(c2)->Tr,T);
-#else
-    MxVpV(T2,R,o2->child(c2)->To,T);
-#endif
-  }
-
-  res->num_bv_tests += 2;
-
-  PQP_REAL d1 = BV_Distance(R1, T1, o1->child(a1), o2->child(a2));
-  PQP_REAL d2 = BV_Distance(R2, T2, o1->child(c1), o2->child(c2));
-
-  if (d2 < d1)
-  {
-    if ((d2 < (res->distance - res->abs_err)) || 
-        (d2*(1 + res->rel_err) < res->distance)) 
-    {      
-      DistanceRecurse(res, R2, T2, o1, c1, o2, c2);      
-    }
-
-    if ((d1 < (res->distance - res->abs_err)) || 
-        (d1*(1 + res->rel_err) < res->distance)) 
-    {      
-      DistanceRecurse(res, R1, T1, o1, a1, o2, a2);
-    }
-  }
-  else 
-  {
-    if ((d1 < (res->distance - res->abs_err)) || 
-        (d1*(1 + res->rel_err) < res->distance)) 
-    {      
-      DistanceRecurse(res, R1, T1, o1, a1, o2, a2);
-    }
-
-    if ((d2 < (res->distance - res->abs_err)) || 
-        (d2*(1 + res->rel_err) < res->distance)) 
-    {      
-      DistanceRecurse(res, R2, T2, o1, c1, o2, c2);      
-    }
-  }
-}
-
-void
-DistanceQueueRecurse(PQP_DistanceResult *res, 
-                     PQP_REAL R[3][3], PQP_REAL T[3],
-                     PQP_Model *o1, int b1,
-                     PQP_Model *o2, int b2)
-{
-  BVTQ bvtq(res->qsize);
-
-  BVT min_test;
-  min_test.b1 = b1;
-  min_test.b2 = b2;
-  McM(min_test.R,R);
-  VcV(min_test.T,T);
-
-  while(1) 
-  {  
-    int l1 = o1->child(min_test.b1)->Leaf();
-    int l2 = o2->child(min_test.b2)->Leaf();
-    
-    if (l1 && l2) 
-    {  
-      // both leaves.  Test the triangles beneath them.
-
-      res->num_tri_tests++;
-
-      PQP_REAL p[3], q[3];
-
-      Tri *t1 = &o1->tris[-o1->child(min_test.b1)->first_child - 1];
-      Tri *t2 = &o2->tris[-o2->child(min_test.b2)->first_child - 1];
-
-      PQP_REAL d = TriDistance(res->R,res->T,t1,t2,p,q);
-  
-      if (d < res->distance)
-      {
-        res->distance = d;
-
-        VcV(res->p1, p);         // p already in c.s. 1
-        VcV(res->p2, q);         // q must be transformed 
-                                 // into c.s. 2 later
-        o1->last_tri = t1;
-        o2->last_tri = t2;
-      }
-    }		 
-    else if (bvtq.GetNumTests() == bvtq.GetSize() - 1) 
-    {  
-      // queue can't get two more tests, recur
-      
-      DistanceQueueRecurse(res,min_test.R,min_test.T,
-                           o1,min_test.b1,o2,min_test.b2);
-    }
-    else 
-    {  
-      // decide how to descend to children
-      
-      PQP_REAL sz1 = o1->child(min_test.b1)->GetSize();
-      PQP_REAL sz2 = o2->child(min_test.b2)->GetSize();
-
-      res->num_bv_tests += 2;
- 
-      BVT bvt1,bvt2;
-      PQP_REAL Ttemp[3];
-
-      if (l2 || (!l1 && (sz1 > sz2)))	
-      {  
-        // put new tests on queue consisting of min_test.b2 
-        // with children of min_test.b1 
-      
-        int c1 = o1->child(min_test.b1)->first_child;
-        int c2 = c1 + 1;
-
-        // init bv test 1
-
-        bvt1.b1 = c1;
-        bvt1.b2 = min_test.b2;
-        MTxM(bvt1.R,o1->child(c1)->R,min_test.R);
-#if PQP_BV_TYPE & RSS_TYPE
-        VmV(Ttemp,min_test.T,o1->child(c1)->Tr);
-#else
-        VmV(Ttemp,min_test.T,o1->child(c1)->To);
-#endif
-        MTxV(bvt1.T,o1->child(c1)->R,Ttemp);
-        bvt1.d = BV_Distance(bvt1.R,bvt1.T,
-                            o1->child(bvt1.b1),o2->child(bvt1.b2));
-
-        // init bv test 2
-
-        bvt2.b1 = c2;
-        bvt2.b2 = min_test.b2;
-        MTxM(bvt2.R,o1->child(c2)->R,min_test.R);
-#if PQP_BV_TYPE & RSS_TYPE
-        VmV(Ttemp,min_test.T,o1->child(c2)->Tr);
-#else
-        VmV(Ttemp,min_test.T,o1->child(c2)->To);
-#endif
-        MTxV(bvt2.T,o1->child(c2)->R,Ttemp);
-        bvt2.d = BV_Distance(bvt2.R,bvt2.T,
-                            o1->child(bvt2.b1),o2->child(bvt2.b2));
-      }
-      else 
-      {
-        // put new tests on queue consisting of min_test.b1 
-        // with children of min_test.b2
-      
-        int c1 = o2->child(min_test.b2)->first_child;
-        int c2 = c1 + 1;
-
-        // init bv test 1
-
-        bvt1.b1 = min_test.b1;
-        bvt1.b2 = c1;
-        MxM(bvt1.R,min_test.R,o2->child(c1)->R);
-#if PQP_BV_TYPE & RSS_TYPE
-        MxVpV(bvt1.T,min_test.R,o2->child(c1)->Tr,min_test.T);
-#else
-        MxVpV(bvt1.T,min_test.R,o2->child(c1)->To,min_test.T);
-#endif
-        bvt1.d = BV_Distance(bvt1.R,bvt1.T,
-                            o1->child(bvt1.b1),o2->child(bvt1.b2));
-
-        // init bv test 2
-
-        bvt2.b1 = min_test.b1;
-        bvt2.b2 = c2;
-        MxM(bvt2.R,min_test.R,o2->child(c2)->R);
-#if PQP_BV_TYPE & RSS_TYPE
-        MxVpV(bvt2.T,min_test.R,o2->child(c2)->Tr,min_test.T);
-#else
-        MxVpV(bvt2.T,min_test.R,o2->child(c2)->To,min_test.T);
-#endif
-        bvt2.d = BV_Distance(bvt2.R,bvt2.T,
-                            o1->child(bvt2.b1),o2->child(bvt2.b2));
-      }
-
-      bvtq.AddTest(bvt1);	
-      bvtq.AddTest(bvt2);
-    }
-
-    if (bvtq.Empty())
-    {
-      break;
-    }
-    else
-    {
-      min_test = bvtq.ExtractMinTest();
-
-      if ((min_test.d + res->abs_err >= res->distance) && 
-         ((min_test.d * (1 + res->rel_err)) >= res->distance)) 
-      {
-        break;
-      }
-    }
-  }  
-}	
-
-int 
-PQP_Distance(PQP_DistanceResult *res,
-             PQP_REAL R1[3][3], PQP_REAL T1[3], PQP_Model *o1,
-             PQP_REAL R2[3][3], PQP_REAL T2[3], PQP_Model *o2,
-             PQP_REAL rel_err, PQP_REAL abs_err,
-             int qsize)
-{
-  
-  double time1 = GetTime();
-  
-  // make sure that the models are built
-
-  if (o1->build_state != PQP_BUILD_STATE_PROCESSED) 
-    return PQP_ERR_UNPROCESSED_MODEL;
-  if (o2->build_state != PQP_BUILD_STATE_PROCESSED) 
-    return PQP_ERR_UNPROCESSED_MODEL;
-
-  // Okay, compute what transform [R,T] that takes us from cs2 to cs1.
-  // [R,T] = [R1,T1]'[R2,T2] = [R1',-R1'T][R2,T2] = [R1'R2, R1'(T2-T1)]
-  // First compute the rotation part, then translation part
-
-  MTxM(res->R,R1,R2);
-  PQP_REAL Ttemp[3];
-  VmV(Ttemp, T2, T1);  
-  MTxV(res->T, R1, Ttemp);
-  
-  // establish initial upper bound using last triangles which 
-  // provided the minimum distance
-
-  PQP_REAL p[3],q[3];
-  res->distance = TriDistance(res->R,res->T,o1->last_tri,o2->last_tri,p,q);
-  VcV(res->p1,p);
-  VcV(res->p2,q);
-
-  // initialize error bounds
-
-  res->abs_err = abs_err;
-  res->rel_err = rel_err;
-  
-  // clear the stats
-
-  res->num_bv_tests = 0;
-  res->num_tri_tests = 0;
-  
-  // compute the transform from o1->child(0) to o2->child(0)
-
-  PQP_REAL Rtemp[3][3], R[3][3], T[3];
-
-  MxM(Rtemp,res->R,o2->child(0)->R);
-  MTxM(R,o1->child(0)->R,Rtemp);
-  
-#if PQP_BV_TYPE & RSS_TYPE
-  MxVpV(Ttemp,res->R,o2->child(0)->Tr,res->T);
-  VmV(Ttemp,Ttemp,o1->child(0)->Tr);
-#else
-  MxVpV(Ttemp,res->R,o2->child(0)->To,res->T);
-  VmV(Ttemp,Ttemp,o1->child(0)->To);
-#endif
-  MTxV(T,o1->child(0)->R,Ttemp);
-
-  // choose routine according to queue size
-  
-  if (qsize <= 2)
-  {
-    DistanceRecurse(res,R,T,o1,0,o2,0);    
-  }
-  else 
-  { 
-    res->qsize = qsize;
-
-    DistanceQueueRecurse(res,R,T,o1,0,o2,0);
-  }
-
-  // res->p2 is in cs 1 ; transform it to cs 2
-
-  PQP_REAL u[3];
-  VmV(u, res->p2, res->T);
-  MTxV(res->p2, res->R, u);
-
-  double time2 = GetTime();
-  res->query_time_secs = time2 - time1;  
-
-  return PQP_OK;
-}
-
-// Tolerance Stuff
-//
-//---------------------------------------------------------------------------
-void 
-ToleranceRecurse(PQP_ToleranceResult *res, 
-                 PQP_REAL R[3][3], PQP_REAL T[3],
-                 PQP_Model *o1, int b1, PQP_Model *o2, int b2)
-{
-  PQP_REAL sz1 = o1->child(b1)->GetSize();
-  PQP_REAL sz2 = o2->child(b2)->GetSize();
-  int l1 = o1->child(b1)->Leaf();
-  int l2 = o2->child(b2)->Leaf();
-
-  if (l1 && l2) 
-  {
-    // both leaves - find if tri pair within tolerance
-    
-    res->num_tri_tests++;
-
-    PQP_REAL p[3], q[3];
-
-    Tri *t1 = &o1->tris[-o1->child(b1)->first_child - 1];
-    Tri *t2 = &o2->tris[-o2->child(b2)->first_child - 1];
-
-    PQP_REAL d = TriDistance(res->R,res->T,t1,t2,p,q);
-    
-    if (d <= res->tolerance)  
-    {  
-      // triangle pair distance less than tolerance
-
-      res->closer_than_tolerance = 1;
-      res->distance = d;
-      VcV(res->p1, p);         // p already in c.s. 1
-      VcV(res->p2, q);         // q must be transformed 
-                               // into c.s. 2 later
-    }
-
-    return;
-  }
-
-  int a1,a2,c1,c2;  // new bv tests 'a' and 'c'
-  PQP_REAL R1[3][3], T1[3], R2[3][3], T2[3], Ttemp[3];
-
-  if (l2 || (!l1 && (sz1 > sz2)))
-  {
-    // visit the children of b1
-
-    a1 = o1->child(b1)->first_child;
-    a2 = b2;
-    c1 = o1->child(b1)->first_child+1;
-    c2 = b2;
-    
-    MTxM(R1,o1->child(a1)->R,R);
-#if PQP_BV_TYPE & RSS_TYPE
-    VmV(Ttemp,T,o1->child(a1)->Tr);
-#else
-    VmV(Ttemp,T,o1->child(a1)->To);
-#endif
-    MTxV(T1,o1->child(a1)->R,Ttemp);
-
-    MTxM(R2,o1->child(c1)->R,R);
-#if PQP_BV_TYPE & RSS_TYPE
-    VmV(Ttemp,T,o1->child(c1)->Tr);
-#else
-    VmV(Ttemp,T,o1->child(c1)->To);
-#endif
-    MTxV(T2,o1->child(c1)->R,Ttemp);
-  }
-  else 
-  {
-    // visit the children of b2
-
-    a1 = b1;
-    a2 = o2->child(b2)->first_child;
-    c1 = b1;
-    c2 = o2->child(b2)->first_child+1;
-
-    MxM(R1,R,o2->child(a2)->R);
-#if PQP_BV_TYPE & RSS_TYPE
-    MxVpV(T1,R,o2->child(a2)->Tr,T);
-#else
-    MxVpV(T1,R,o2->child(a2)->To,T);
-#endif
-    MxM(R2,R,o2->child(c2)->R);
-#if PQP_BV_TYPE & RSS_TYPE
-    MxVpV(T2,R,o2->child(c2)->Tr,T);
-#else
-    MxVpV(T2,R,o2->child(c2)->To,T);
-#endif
-  }
-
-  res->num_bv_tests += 2;
-
-  PQP_REAL d1 = BV_Distance(R1, T1, o1->child(a1), o2->child(a2));
-  PQP_REAL d2 = BV_Distance(R2, T2, o1->child(c1), o2->child(c2));
-
-  if (d2 < d1) 
-  {
-    if (d2 <= res->tolerance) ToleranceRecurse(res, R2, T2, o1, c1, o2, c2);
-    if (res->closer_than_tolerance) return;
-    if (d1 <= res->tolerance) ToleranceRecurse(res, R1, T1, o1, a1, o2, a2);
-  }
-  else 
-  {
-    if (d1 <= res->tolerance) ToleranceRecurse(res, R1, T1, o1, a1, o2, a2);
-    if (res->closer_than_tolerance) return;
-    if (d2 <= res->tolerance) ToleranceRecurse(res, R2, T2, o1, c1, o2, c2);
-  }
-}
-
-void
-ToleranceQueueRecurse(PQP_ToleranceResult *res,
-                      PQP_REAL R[3][3], PQP_REAL T[3],
-                      PQP_Model *o1, int b1,
-                      PQP_Model *o2, int b2)
-{
-  BVTQ bvtq(res->qsize);
-  BVT min_test;
-  min_test.b1 = b1;
-  min_test.b2 = b2;
-  McM(min_test.R,R);
-  VcV(min_test.T,T);
-
-  while(1)
-  {  
-    int l1 = o1->child(min_test.b1)->Leaf();
-    int l2 = o2->child(min_test.b2)->Leaf();
-    
-    if (l1 && l2) 
-    {  
-      // both leaves - find if tri pair within tolerance
-    
-      res->num_tri_tests++;
-
-      PQP_REAL p[3], q[3];
-
-      Tri *t1 = &o1->tris[-o1->child(min_test.b1)->first_child - 1];
-      Tri *t2 = &o2->tris[-o2->child(min_test.b2)->first_child - 1];
-
-      PQP_REAL d = TriDistance(res->R,res->T,t1,t2,p,q);
-    
-      if (d <= res->tolerance)  
-      {  
-        // triangle pair distance less than tolerance
-
-        res->closer_than_tolerance = 1;
-        res->distance = d;
-        VcV(res->p1, p);         // p already in c.s. 1
-        VcV(res->p2, q);         // q must be transformed 
-                                 // into c.s. 2 later
-        return;
-      }
-    }
-    else if (bvtq.GetNumTests() == bvtq.GetSize() - 1)
-    {  
-      // queue can't get two more tests, recur
-      
-      ToleranceQueueRecurse(res,min_test.R,min_test.T,
-                            o1,min_test.b1,o2,min_test.b2);
-      if (res->closer_than_tolerance == 1) return;
-    }
-    else 
-    {  
-      // decide how to descend to children
-      
-      PQP_REAL sz1 = o1->child(min_test.b1)->GetSize();
-      PQP_REAL sz2 = o2->child(min_test.b2)->GetSize();
-
-      res->num_bv_tests += 2;
-      
-      BVT bvt1,bvt2;
-      PQP_REAL Ttemp[3];
-
-      if (l2 || (!l1 && (sz1 > sz2)))	
-      {
-	      // add two new tests to queue, consisting of min_test.b2
-        // with the children of min_test.b1
-
-        int c1 = o1->child(min_test.b1)->first_child;
-        int c2 = c1 + 1;
-
-        // init bv test 1
-
-        bvt1.b1 = c1;
-        bvt1.b2 = min_test.b2;
-        MTxM(bvt1.R,o1->child(c1)->R,min_test.R);
-#if PQP_BV_TYPE & RSS_TYPE
-        VmV(Ttemp,min_test.T,o1->child(c1)->Tr);
-#else
-        VmV(Ttemp,min_test.T,o1->child(c1)->To);
-#endif
-        MTxV(bvt1.T,o1->child(c1)->R,Ttemp);
-        bvt1.d = BV_Distance(bvt1.R,bvt1.T,
-                            o1->child(bvt1.b1),o2->child(bvt1.b2));
-
-	      // init bv test 2
-
-	      bvt2.b1 = c2;
-	      bvt2.b2 = min_test.b2;
-	      MTxM(bvt2.R,o1->child(c2)->R,min_test.R);
-#if PQP_BV_TYPE & RSS_TYPE
-	      VmV(Ttemp,min_test.T,o1->child(c2)->Tr);
-#else
-	      VmV(Ttemp,min_test.T,o1->child(c2)->To);
-#endif
-	      MTxV(bvt2.T,o1->child(c2)->R,Ttemp);
-        bvt2.d = BV_Distance(bvt2.R,bvt2.T,
-                            o1->child(bvt2.b1),o2->child(bvt2.b2));
-      }
-      else 
-      {
-        // add two new tests to queue, consisting of min_test.b1
-        // with the children of min_test.b2
-
-        int c1 = o2->child(min_test.b2)->first_child;
-        int c2 = c1 + 1;
-
-        // init bv test 1
-
-        bvt1.b1 = min_test.b1;
-        bvt1.b2 = c1;
-        MxM(bvt1.R,min_test.R,o2->child(c1)->R);
-#if PQP_BV_TYPE & RSS_TYPE
-        MxVpV(bvt1.T,min_test.R,o2->child(c1)->Tr,min_test.T);
-#else
-        MxVpV(bvt1.T,min_test.R,o2->child(c1)->To,min_test.T);
-#endif
-        bvt1.d = BV_Distance(bvt1.R,bvt1.T,
-                            o1->child(bvt1.b1),o2->child(bvt1.b2));
-
-        // init bv test 2
-
-        bvt2.b1 = min_test.b1;
-        bvt2.b2 = c2;
-        MxM(bvt2.R,min_test.R,o2->child(c2)->R);
-#if PQP_BV_TYPE & RSS_TYPE
-        MxVpV(bvt2.T,min_test.R,o2->child(c2)->Tr,min_test.T);
-#else
-        MxVpV(bvt2.T,min_test.R,o2->child(c2)->To,min_test.T);
-#endif
-        bvt2.d = BV_Distance(bvt2.R,bvt2.T,
-                            o1->child(bvt2.b1),o2->child(bvt2.b2));
-      }
-
-      // put children tests in queue
-
-      if (bvt1.d <= res->tolerance) bvtq.AddTest(bvt1);
-      if (bvt2.d <= res->tolerance) bvtq.AddTest(bvt2);
-    }
-
-    if (bvtq.Empty() || (bvtq.MinTest() > res->tolerance)) 
-    {
-      res->closer_than_tolerance = 0;
-      return;
-    }
-    else 
-    {
-      min_test = bvtq.ExtractMinTest();
-    }
-  }  
-}	
-
-int
-PQP_Tolerance(PQP_ToleranceResult *res,
-              PQP_REAL R1[3][3], PQP_REAL T1[3], PQP_Model *o1,
-              PQP_REAL R2[3][3], PQP_REAL T2[3], PQP_Model *o2,
-              PQP_REAL tolerance,
-              int qsize)
-{
-  double time1 = GetTime();
-
-  // make sure that the models are built
-
-  if (o1->build_state != PQP_BUILD_STATE_PROCESSED) 
-    return PQP_ERR_UNPROCESSED_MODEL;
-  if (o2->build_state != PQP_BUILD_STATE_PROCESSED) 
-    return PQP_ERR_UNPROCESSED_MODEL;
-  
-  // Compute the transform [R,T] that takes us from cs2 to cs1.
-  // [R,T] = [R1,T1]'[R2,T2] = [R1',-R1'T][R2,T2] = [R1'R2, R1'(T2-T1)]
-
-  MTxM(res->R,R1,R2);
-  PQP_REAL Ttemp[3];
-  VmV(Ttemp, T2, T1);
-  MTxV(res->T, R1, Ttemp);
-
-  // set tolerance, used to prune the search
-
-  if (tolerance < 0.0) tolerance = 0.0;
-  res->tolerance = tolerance;
-  
-  // clear the stats
-
-  res->num_bv_tests = 0;
-  res->num_tri_tests = 0;
-
-  // initially assume not closer than tolerance
-
-  res->closer_than_tolerance = 0;
-  
-  // compute the transform from o1->child(0) to o2->child(0)
-
-  PQP_REAL Rtemp[3][3], R[3][3], T[3];
-
-  MxM(Rtemp,res->R,o2->child(0)->R);
-  MTxM(R,o1->child(0)->R,Rtemp);
-#if PQP_BV_TYPE & RSS_TYPE
-  MxVpV(Ttemp,res->R,o2->child(0)->Tr,res->T);
-  VmV(Ttemp,Ttemp,o1->child(0)->Tr);
-#else
-  MxVpV(Ttemp,res->R,o2->child(0)->To,res->T);
-  VmV(Ttemp,Ttemp,o1->child(0)->To);
-#endif
-  MTxV(T,o1->child(0)->R,Ttemp);
-
-  // find a distance lower bound for trivial reject
-
-  PQP_REAL d = BV_Distance(R, T, o1->child(0), o2->child(0));
-  
-  if (d <= res->tolerance)
-  {
-    // more work needed - choose routine according to queue size
-
-    if (qsize <= 2) 
-    {
-      ToleranceRecurse(res, R, T, o1, 0, o2, 0);
-    }
-    else 
-    {
-      res->qsize = qsize;
-      ToleranceQueueRecurse(res, R, T, o1, 0, o2, 0);
-    }
-  }
-
-  // res->p2 is in cs 1 ; transform it to cs 2
-
-  PQP_REAL u[3];
-  VmV(u, res->p2, res->T);
-  MTxV(res->p2, res->R, u);
-
-  double time2 = GetTime();
-  res->query_time_secs = time2 - time1;
-
-  return PQP_OK;
-}
-
-#endif
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP.h
deleted file mode 100644
index f6f3e539..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP.h
+++ /dev/null
@@ -1,338 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_H
-#define PQP_H
-
-#include "PQP_Compile.h"   
-#include "PQP_Internal.h"                             
-                        
-//----------------------------------------------------------------------------
-//
-//  PQP API Return Values
-//
-//----------------------------------------------------------------------------
-
-const int PQP_OK = 0; 
-  // Used by all API routines upon successful completion except
-  // constructors and destructors
-
-const int PQP_ERR_MODEL_OUT_OF_MEMORY = -1; 
-  // Returned when an API function cannot obtain enough memory to
-  // store or process a PQP_Model object.
-
-const int PQP_ERR_OUT_OF_MEMORY = -2;
-  // Returned when a PQP query cannot allocate enough storage to
-  // compute or hold query information.  In this case, the returned
-  // data should not be trusted.
-
-const int PQP_ERR_UNPROCESSED_MODEL = -3;
-  // Returned when an unprocessed model is passed to a function which
-  // expects only processed models, such as PQP_Collide() or
-  // PQP_Distance().
-
-const int PQP_ERR_BUILD_OUT_OF_SEQUENCE = -4;
-  // Returned when: 
-  //       1. AddTri() is called before BeginModel().  
-  //       2. BeginModel() is called immediately after AddTri().  
-  // This error code is something like a warning: the invoked
-  // operation takes place anyway, and PQP does what makes "most
-  // sense", but the returned error code may tip off the client that
-  // something out of the ordinary is happenning.
-
-const int PQP_ERR_BUILD_EMPTY_MODEL = -5; 
-  // Returned when EndModel() is called on a model to which no
-  // triangles have been added.  This is similar in spirit to the
-  // OUT_OF_SEQUENCE return code, except that the requested operation
-  // has FAILED -- the model remains "unprocessed", and the client may
-  // NOT use it in queries.
-
-//----------------------------------------------------------------------------
-//
-//  PQP_REAL 
-//
-//  The floating point type used throughout the package. The type is defined 
-//  in PQP_Compile.h, and by default is "double"
-//
-//----------------------------------------------------------------------------
-
-//----------------------------------------------------------------------------
-//
-//  PQP_Model
-//
-//  A PQP_Model stores geometry to be used in a proximity query.
-//  The geometry is loaded with a call to BeginModel(), at least one call to 
-//  AddTri(), and then a call to EndModel().
-//
-//  // create a two triangle model, m
-//
-//  PQP_Model m;
-//
-//  PQP_REAL p1[3],p2[3],p3[3];  // 3 points will make triangle p
-//  PQP_REAL q1[3],q2[3],q3[3];  // another 3 points for triangle q
-//
-//  // some initialization of these vertices not shown
-//
-//  m.BeginModel();              // begin the model
-//  m.AddTri(p1,p2,p3,0);        // add triangle p
-//  m.AddTri(q1,q2,q3,1);        // add triangle q
-//  m.EndModel();                // end (build) the model
-//
-//  The last parameter of AddTri() is the number to be associated with the 
-//  triangle. These numbers are used to identify the triangles that overlap.
-// 
-//  AddTri() copies into the PQP_Model the data pointed to by the three vertex 
-//  pointers, so that it is safe to delete vertex data after you have 
-//  passed it to AddTri().
-//
-//----------------------------------------------------------------------------
-//
-//  class PQP_Model  - declaration contained in PQP_Internal.h
-//  {
-//
-//  public:
-//    PQP_Model();
-//    ~PQP_Model();
-//
-//    int BeginModel(int num_tris = 8); // preallocate for num_tris triangles;
-//                                      // the parameter is optional, since
-//                                      // arrays are reallocated as needed
-//
-//    int AddTri(const PQP_REAL *p1, const PQP_REAL *p2, const PQP_REAL *p3, 
-//               int id);
-//
-//    int EndModel();
-//    int MemUsage(int msg);  // returns model mem usage in bytes
-//                            // prints message to stderr if msg == TRUE
-//  };
-
-//----------------------------------------------------------------------------
-//
-//  PQP_CollideResult 
-//
-//  This saves and reports results from a collision query.  
-//
-//----------------------------------------------------------------------------
-//
-//  struct PQP_CollideResult - declaration contained in PQP_Internal.h
-//  {
-//    // statistics
-//
-//    int NumBVTests();
-//    int NumTriTests();
-//    PQP_REAL QueryTimeSecs();
-//
-//    // free the list of contact pairs; ordinarily this list is reused
-//    // for each query, and only deleted in the destructor.
-//
-//    void FreePairsList(); 
-//
-//    // query results
-//
-//    int Colliding();
-//    int NumPairs();
-//    int Id1(int k);
-//    int Id2(int k);
-//  };
-
-//----------------------------------------------------------------------------
-//
-//  PQP_Collide() - detects collision between two PQP_Models
-//
-//
-//  Declare a PQP_CollideResult struct and pass its pointer to collect 
-//  collision data.
-//
-//  [R1, T1] is the placement of model 1 in the world &
-//  [R2, T2] is the placement of model 2 in the world.
-//  The columns of each 3x3 matrix are the basis vectors for the model
-//  in world coordinates, and the matrices are in row-major order:
-//  R(row r, col c) = R[r][c].
-//
-//  If PQP_ALL_CONTACTS is the flag value, after calling PQP_Collide(),
-//  the PQP_CollideResult object will contain an array with all
-//  colliding triangle pairs. Suppose CR is a pointer to the
-//  PQP_CollideResult object.  The number of pairs is gotten from
-//  CR->NumPairs(), and the ids of the 15'th pair of colliding
-//  triangles is gotten from CR->Id1(14) and CR->Id2(14).
-//
-//  If PQP_FIRST_CONTACT is the flag value, the PQP_CollideResult array
-//  will only get the first colliding triangle pair found.  Thus
-//  CR->NumPairs() will be at most 1, and if 1, CR->Id1(0) and
-//  CR->Id2(0) give the ids of the colliding triangle pair.
-//
-//----------------------------------------------------------------------------
-
-const int PQP_ALL_CONTACTS = 1;  // find all pairwise intersecting triangles
-const int PQP_FIRST_CONTACT = 2; // report first intersecting tri pair found
-
-int 
-PQP_Collide(PQP_CollideResult *result,
-            PQP_REAL R1[3][3], PQP_REAL T1[3], PQP_Model *o1,
-            PQP_REAL R2[3][3], PQP_REAL T2[3], PQP_Model *o2,
-            int flag = PQP_ALL_CONTACTS);
-
-
-#if PQP_BV_TYPE & RSS_TYPE  // this is true by default,
-                            // and explained in PQP_Compile.h
-
-//----------------------------------------------------------------------------
-//
-//  PQP_DistanceResult
-//
-//  This saves and reports results from a distance query.  
-//
-//----------------------------------------------------------------------------
-//
-//  struct PQP_DistanceResult - declaration contained in PQP_Internal.h
-//  {
-//    // statistics
-//  
-//    int NumBVTests();
-//    int NumTriTests();
-//    PQP_REAL QueryTimeSecs();
-//  
-//    // The following distance and points established the minimum distance
-//    // for the models, within the relative and absolute error bounds 
-//    // specified.
-//
-//    PQP_REAL Distance();
-//    const PQP_REAL *P1();  // pointers to three PQP_REALs
-//    const PQP_REAL *P2();  
-//  };
-
-//----------------------------------------------------------------------------
-//
-//  PQP_Distance() - computes the distance between two PQP_Models
-//
-//
-//  Declare a PQP_DistanceResult struct and pass its pointer to collect
-//  distance information.
-//
-//  "rel_err" is the relative error margin from actual distance.
-//  "abs_err" is the absolute error margin from actual distance.  The
-//  smaller of the two will be satisfied, so set one large to nullify
-//  its effect.
-//
-//  "qsize" is an optional parameter controlling the size of a priority
-//  queue used to direct the search for closest points.  A larger queue
-//  can help the algorithm discover the minimum with fewer steps, but
-//  will increase the cost of each step. It is not beneficial to increase
-//  qsize if the application has frame-to-frame coherence, i.e., the
-//  pair of models take small steps between each call, since another
-//  speedup trick already accelerates this situation with no overhead.
-//
-//  However, a queue size of 100 to 200 has been seen to save time in a
-//  planning application with "non-coherent" placements of models.
-//
-//----------------------------------------------------------------------------
-
-int 
-PQP_Distance(PQP_DistanceResult *result, 
-             PQP_REAL R1[3][3], PQP_REAL T1[3], PQP_Model *o1,
-             PQP_REAL R2[3][3], PQP_REAL T2[3], PQP_Model *o2,
-             PQP_REAL rel_err, PQP_REAL abs_err,
-             int qsize = 2);
-
-//----------------------------------------------------------------------------
-//
-//  PQP_ToleranceResult
-//
-//  This saves and reports results from a tolerance query.  
-//
-//----------------------------------------------------------------------------
-//
-//  struct PQP_ToleranceResult - declaration contained in PQP_Internal.h
-//  {
-//    // statistics
-//  
-//    int NumBVTests(); 
-//    int NumTriTests();
-//    PQP_REAL QueryTimeSecs();
-//  
-//    // If the models are closer than ( <= ) tolerance, these points 
-//    // and distance were what established this.  Otherwise, 
-//    // distance and point values are not meaningful.
-//  
-//    PQP_REAL Distance();
-//    const PQP_REAL *P1();
-//    const PQP_REAL *P2();
-//  
-//    // boolean says whether models are closer than tolerance distance
-//  
-//    int CloserThanTolerance();
-//  };
-
-//----------------------------------------------------------------------------
-//
-// PQP_Tolerance() - checks if distance between PQP_Models is <= tolerance
-//
-//
-// Declare a PQP_ToleranceResult and pass its pointer to collect
-// tolerance information.
-//
-// The algorithm returns whether the true distance is <= or >
-// "tolerance".  This routine does not simply compute true distance
-// and compare to the tolerance - models can often be shown closer or
-// farther than the tolerance more trivially.  In most cases this
-// query should run faster than a distance query would on the same
-// models and configurations.
-// 
-// "qsize" again controls the size of a priority queue used for
-// searching.  Not setting qsize is the current recommendation, since
-// increasing it has only slowed down our applications.
-//
-//----------------------------------------------------------------------------
-
-int
-PQP_Tolerance(PQP_ToleranceResult *res, 
-              PQP_REAL R1[3][3], PQP_REAL T1[3], PQP_Model *o1,
-              PQP_REAL R2[3][3], PQP_REAL T2[3], PQP_Model *o2,
-              PQP_REAL tolerance,
-              int qsize = 2);
-
-#endif 
-#endif
-
-
-
-
-
-
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP_Compile.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP_Compile.h
deleted file mode 100644
index f76c9813..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP_Compile.h
+++ /dev/null
@@ -1,101 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_COMPILE_H
-#define PQP_COMPILE_H
-
-// prevents compiler warnings when PQP_REAL is float
-
-#include <math.h>
-inline float sqrt(float x) { return (float)sqrt((double)x); }
-inline float cos(float x) { return (float)cos((double)x); }
-inline float sin(float x) { return (float)sin((double)x); }
-inline float fabs(float x) { return (float)fabs((double)x); }
-
-//-------------------------------------------------------------------------
-//
-// PQP_REAL
-//
-// This is the floating point type used throughout PQP.  doubles are
-// recommended, both for their precision and because the software has
-// mainly been tested using them.  However, floats appear to be faster 
-// (by 60% on some machines).
-//
-//-------------------------------------------------------------------------
-
-typedef double PQP_REAL;
-
-//-------------------------------------------------------------------------
-//
-// PQP_BV_TYPE
-//
-// PQP introduces a bounding volume (BV) type known as the "rectangle
-// swept sphere" (RSS) - the volume created by sweeping a sphere so
-// that its center visits every point on a rectangle; it looks
-// something like a rounded box.
-//
-// In our experiments, the RSS type is comparable to the oriented 
-// bounding box (OBB) in terms of the number of BV-pair and triangle-pair 
-// tests incurred.  However, with our present implementations, overlap 
-// tests are cheaper for OBBs, while distance tests are cheaper for the 
-// RSS type (we used a public gjk implementation for the OBB distance test).
-//
-// Consequently, PQP is configured to use the RSS type in distance and 
-// tolerance queries (which use BV distance tests) and to use OBBs for
-// collision queries (which use BV overlap tests). Using both requires six
-// more PQP_REALs per BV node than using just one type. 
-//
-// To save space, you can configure PQP to use only one type, however, 
-// with RSS alone, collision queries will typically be slower.  With OBB's 
-// alone, distance and tolerance queries are currently not supported, since 
-// we have not developed our own OBB distance test.  The three options are:
-//
-// #define PQP_BV_TYPE  RSS_TYPE           
-// #define PQP_BV_TYPE  OBB_TYPE           
-// #define PQP_BV_TYPE  RSS_TYPE | OBB_TYPE
-//
-//-------------------------------------------------------------------------
-
-#define RSS_TYPE     1
-#define OBB_TYPE     2
-
-#define PQP_BV_TYPE  RSS_TYPE | OBB_TYPE
-
-#endif
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP_Internal.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP_Internal.h
deleted file mode 100644
index 90cedcfa..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/PQP_Internal.h
+++ /dev/null
@@ -1,203 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk, E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#include "Tri.h"
-#include "BV.h"
-
-class PQP_Model
-{
-
-public:
-
-  int build_state;
-
-  Tri *tris;  
-  int num_tris;
-  int num_tris_alloced;
-
-  BV *b;
-  int num_bvs;
-  int num_bvs_alloced;
-
-  Tri *last_tri;       // closest tri on this model in last distance test
-  
-  BV *child(int n) { return &b[n]; }
-
-  PQP_Model();
-  ~PQP_Model();
-
-  int BeginModel(int num_tris = 8); // preallocate for num_tris triangles;
-                                    // the parameter is optional, since
-                                    // arrays are reallocated as needed
-  int AddTri(const PQP_REAL *p1, const PQP_REAL *p2, const PQP_REAL *p3, 
-             int id);
-  int EndModel();
-  int MemUsage(int msg);  // returns model mem usage.  
-                          // prints message to stderr if msg == TRUE
-};
-
-struct CollisionPair
-{
-  int id1;
-  int id2;
-};
-
-struct PQP_CollideResult  
-{
-  // stats
-
-  int num_bv_tests;
-  int num_tri_tests;
-  double query_time_secs;
-
-  // xform from model 1 to model 2
-
-  PQP_REAL R[3][3];
-  PQP_REAL T[3];
-
-  int num_pairs_alloced;
-  int num_pairs;
-  CollisionPair *pairs;
-
-  void SizeTo(int n);    
-  void Add(int i1, int i2); 
-
-  PQP_CollideResult();
-  ~PQP_CollideResult();
-
-  // statistics
-
-  int NumBVTests() { return num_bv_tests; }
-  int NumTriTests() { return num_tri_tests; }
-  double QueryTimeSecs() { return query_time_secs; }
-
-  // free the list of contact pairs; ordinarily this list is reused
-  // for each query, and only deleted in the destructor.
-
-  void FreePairsList(); 
-
-  // query results
-
-  int Colliding() { return (num_pairs > 0); }
-  int NumPairs() { return num_pairs; }
-  int Id1(int k) { return pairs[k].id1; }
-  int Id2(int k) { return pairs[k].id2; }
-};
-
-#if PQP_BV_TYPE & RSS_TYPE // distance/tolerance are only available with RSS
-
-struct PQP_DistanceResult 
-{
-  // stats
-
-  int num_bv_tests;
-  int num_tri_tests;
-  double query_time_secs;
-
-  // xform from model 1 to model 2
-
-  PQP_REAL R[3][3];
-  PQP_REAL T[3];
-
-  PQP_REAL rel_err; 
-  PQP_REAL abs_err; 
-
-  PQP_REAL distance;
-  PQP_REAL p1[3]; 
-  PQP_REAL p2[3];
-  int qsize;
-  
-  // statistics
-
-  int NumBVTests() { return num_bv_tests; }
-  int NumTriTests() { return num_tri_tests; }
-  double QueryTimeSecs() { return query_time_secs; }
-
-  // The following distance and points established the minimum distance
-  // for the models, within the relative and absolute error bounds 
-  // specified.
-  // Points are defined: PQP_REAL p1[3], p2[3];
-
-  PQP_REAL Distance() { return distance; }
-  const PQP_REAL *P1() { return p1; }
-  const PQP_REAL *P2() { return p2; }
-};
-
-struct PQP_ToleranceResult 
-{
-  // stats
-
-  int num_bv_tests;
-  int num_tri_tests;
-  double query_time_secs;
-
-  // xform from model 1 to model 2
-
-  PQP_REAL R[3][3];
-  PQP_REAL T[3];
-
-  int    closer_than_tolerance;   
-  PQP_REAL tolerance;      
-
-  PQP_REAL distance;
-  PQP_REAL p1[3]; 
-  PQP_REAL p2[3]; 
-  int qsize;
-
-  // statistics
-
-  int NumBVTests() { return num_bv_tests; }
-  int NumTriTests() { return num_tri_tests; }
-  double QueryTimeSecs() { return query_time_secs; }
-
-  // If the models are closer than ( <= ) tolerance, these points 
-  // and distance were what established this.  Otherwise, 
-  // distance and point values are not meaningful.
-
-  PQP_REAL Distance() { return distance; }
-  const PQP_REAL *P1() { return p1; }
-  const PQP_REAL *P2() { return p2; }
-
-  // boolean says whether models are closer than tolerance distance
-
-  int CloserThanTolerance() { return closer_than_tolerance; }
-};
-
-#endif
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/RectDist.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/RectDist.h
deleted file mode 100644
index 429d2c71..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/RectDist.h
+++ /dev/null
@@ -1,753 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_RECTDIST_H
-#define PQP_RECTDIST_H
-
-#include <math.h>
-#include "MatVec.h" 
-#include "PQP_Compile.h"
-  
-// ClipToRange
-//
-// clips val between a and b
-
-inline 
-void
-ClipToRange(PQP_REAL &val, const PQP_REAL &a, const PQP_REAL &b)
-{
-  if (val < a) val = a;
-  else if (val > b) val = b;
-}
-
-// SegCoords
-//
-// finds the parameters t & u corresponding to the two closest points 
-// on a pair of line segments 
-//
-// The first segment is defined as 
-//
-// Pa + A*t, 0 <= t <= a, 
-// 
-// where "Pa" is one endpoint of the segment, "A" is a unit vector 
-// pointing to the other endpoint, and t is a scalar that produces
-// all the points between the two endpoints. Since "A" is a unit
-// vector, "a" is the segment's length.
-//
-// The second segment is 
-//
-// Pb + B*u, 0 <= u <= b
-//
-// In my application, many of the terms needed by the algorithm
-// are already computed for other purposes, so I pass these terms to 
-// the function instead of complete specifications of each segment. 
-// "T" in the dot products is the vector between Pa and Pb.
-//
-// The algorithm is from
-//
-// Vladimir J. Lumelsky,
-// On fast computation of distance between line segments.
-// In Information Processing Letters, no. 21, pages 55-61, 1985.   
-
-inline
-void 
-SegCoords(PQP_REAL& t, PQP_REAL& u, 
-          const PQP_REAL& a, const PQP_REAL& b, 
-          const PQP_REAL& A_dot_B, 
-          const PQP_REAL& A_dot_T, 
-          const PQP_REAL& B_dot_T)
-{  
-  PQP_REAL denom = 1 - (A_dot_B)*(A_dot_B);
-
-  if (denom == 0) t = 0;
-  else
-  {
-    t = (A_dot_T - B_dot_T*A_dot_B)/denom;
-    ClipToRange(t,0,a);
-  }
-  
-  u = t*A_dot_B - B_dot_T;
-  if (u < 0) 
-  {
-    u = 0;
-    t = A_dot_T;
-    ClipToRange(t,0,a);
-  }
-  else if (u > b) 
-  {
-    u = b;
-    t = u*A_dot_B + A_dot_T;
-    ClipToRange(t,0,a);
-  }
-}
-
-// InVoronoi
-//
-// returns whether the nearest point on rectangle edge 
-// Pb + B*u, 0 <= u <= b, to the rectangle edge,
-// Pa + A*t, 0 <= t <= a, is within the half space 
-// determined by the point Pa and the direction Anorm.
-//
-// A,B, and Anorm are unit vectors.
-// T is the vector between Pa and Pb.
-
-inline
-int 
-InVoronoi(const PQP_REAL &a, 
-          const PQP_REAL &b,  
-          const PQP_REAL &Anorm_dot_B, 
-          const PQP_REAL &Anorm_dot_T,  
-          const PQP_REAL &A_dot_B,
-          const PQP_REAL &A_dot_T,
-          const PQP_REAL &B_dot_T)
-{ 
-  if (myfabs(Anorm_dot_B) < 1e-7) return 0;
-
-  PQP_REAL t, u, v;
- 
-  u = -Anorm_dot_T / Anorm_dot_B; 
-  ClipToRange(u,0,b); 
-  
-  t = u*A_dot_B + A_dot_T; 
-  ClipToRange(t,0,a); 
-  
-  v = t*A_dot_B - B_dot_T; 
-  
-  if (Anorm_dot_B > 0) 
-  {
-    if (v > (u + 1e-7)) return 1;
-  }
-  else 
-  {
-    if (v < (u - 1e-7)) return 1;
-  }
-  return 0; 
-} 
-
-
-// RectDist
-//
-// Finds the distance between two rectangles A and B.  A is assumed
-// to have its corner on the origin, one side aligned with
-// x, the other side aligned with y, and its normal aligned with z.
-// 
-// [Rab,Tab] gives the orientation and corner position of rectangle B
-// 
-// a[2] are the side lengths of A, b[2] are the side lengths of B
-
-inline
-PQP_REAL
-RectDist(PQP_REAL Rab[3][3], PQP_REAL Tab[3], 
-          PQP_REAL a[2], PQP_REAL b[2])
-{
-  PQP_REAL A0_dot_B0, A0_dot_B1, A1_dot_B0, A1_dot_B1;
-
-  A0_dot_B0 = Rab[0][0];
-  A0_dot_B1 = Rab[0][1];
-  A1_dot_B0 = Rab[1][0];
-  A1_dot_B1 = Rab[1][1];
-
-  PQP_REAL aA0_dot_B0, aA0_dot_B1, aA1_dot_B0, aA1_dot_B1;
-  PQP_REAL bA0_dot_B0, bA0_dot_B1, bA1_dot_B0, bA1_dot_B1; 
- 
-  aA0_dot_B0 = a[0]*A0_dot_B0;
-  aA0_dot_B1 = a[0]*A0_dot_B1;
-  aA1_dot_B0 = a[1]*A1_dot_B0;
-  aA1_dot_B1 = a[1]*A1_dot_B1;
-  bA0_dot_B0 = b[0]*A0_dot_B0;
-  bA1_dot_B0 = b[0]*A1_dot_B0;
-  bA0_dot_B1 = b[1]*A0_dot_B1;
-  bA1_dot_B1 = b[1]*A1_dot_B1;
-
-  PQP_REAL Tba[3];
-  MTxV(Tba,Rab,Tab);
-
-  PQP_REAL S[3], t, u;
-
-  // determine if any edge pair contains the closest points
-
-  PQP_REAL ALL_x, ALU_x, AUL_x, AUU_x;
-  PQP_REAL BLL_x, BLU_x, BUL_x, BUU_x;
-  PQP_REAL LA1_lx, LA1_ux, UA1_lx, UA1_ux, LB1_lx, LB1_ux, UB1_lx, UB1_ux;
-
-  ALL_x = -Tba[0];
-  ALU_x = ALL_x + aA1_dot_B0;
-  AUL_x = ALL_x + aA0_dot_B0;
-  AUU_x = ALU_x + aA0_dot_B0;
-
-  if (ALL_x < ALU_x)
-  { 
-    LA1_lx = ALL_x;
-    LA1_ux = ALU_x;
-    UA1_lx = AUL_x;    
-    UA1_ux = AUU_x;
-  }
-  else
-  { 
-    LA1_lx = ALU_x;
-    LA1_ux = ALL_x;
-    UA1_lx = AUU_x;    
-    UA1_ux = AUL_x;
-  }
-
-  BLL_x = Tab[0];
-  BLU_x = BLL_x + bA0_dot_B1;
-  BUL_x = BLL_x + bA0_dot_B0;
-  BUU_x = BLU_x + bA0_dot_B0;
-  
-  if (BLL_x < BLU_x)
-  { 
-    LB1_lx = BLL_x;
-    LB1_ux = BLU_x;
-    UB1_lx = BUL_x;    
-    UB1_ux = BUU_x;
-  }
-  else
-  { 
-    LB1_lx = BLU_x;
-    LB1_ux = BLL_x;
-    UB1_lx = BUU_x;    
-    UB1_ux = BUL_x;
-  }
-
-  // UA1, UB1
-  
-  if ((UA1_ux > b[0]) && (UB1_ux > a[0]))
-  {
-    if (((UA1_lx > b[0]) || 
-          InVoronoi(b[1],a[1],A1_dot_B0,aA0_dot_B0 - b[0] - Tba[0],
-		                A1_dot_B1, aA0_dot_B1 - Tba[1], 
-                    -Tab[1] - bA1_dot_B0))
-        &&
-	
-        ((UB1_lx > a[0]) || 
-          InVoronoi(a[1],b[1],A0_dot_B1,Tab[0] + bA0_dot_B0 - a[0],
-                    A1_dot_B1,Tab[1] + bA1_dot_B0,Tba[1] - aA0_dot_B1)))
-    {            
-      SegCoords(t,u,a[1],b[1],A1_dot_B1,Tab[1] + bA1_dot_B0,
-                Tba[1] - aA0_dot_B1);
-      
-      S[0] = Tab[0] + Rab[0][0]*b[0] + Rab[0][1]*u - a[0] ;
-      S[1] = Tab[1] + Rab[1][0]*b[0] + Rab[1][1]*u - t;
-      S[2] = Tab[2] + Rab[2][0]*b[0] + Rab[2][1]*u;
-      return sqrt(VdotV(S,S));
-    }    
-  }
-
-
-  // UA1, LB1
-
-  if ((UA1_lx < 0) && (LB1_ux > a[0]))
-  {
-    if (((UA1_ux < 0) ||
-          InVoronoi(b[1],a[1],-A1_dot_B0,Tba[0] - aA0_dot_B0,
-                    A1_dot_B1, aA0_dot_B1 - Tba[1], -Tab[1]))
-        &&
-
-        ((LB1_lx > a[0]) ||
-          InVoronoi(a[1],b[1],A0_dot_B1,Tab[0] - a[0],
-                    A1_dot_B1,Tab[1],Tba[1] - aA0_dot_B1)))
-    {
-      SegCoords(t,u,a[1],b[1],A1_dot_B1,Tab[1],Tba[1] - aA0_dot_B1);
-
-      S[0] = Tab[0] + Rab[0][1]*u - a[0];
-      S[1] = Tab[1] + Rab[1][1]*u - t;
-      S[2] = Tab[2] + Rab[2][1]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-
-  // LA1, UB1
-
-  if ((LA1_ux > b[0]) && (UB1_lx < 0))
-  {
-    if (((LA1_lx > b[0]) || 
-          InVoronoi(b[1],a[1],A1_dot_B0,-Tba[0] - b[0],
-                    A1_dot_B1,-Tba[1], -Tab[1] - bA1_dot_B0))
-          &&
-	
-        ((UB1_ux < 0) || 
-          InVoronoi(a[1],b[1],-A0_dot_B1, -Tab[0] - bA0_dot_B0,
-                    A1_dot_B1, Tab[1] + bA1_dot_B0,Tba[1])))
-    {
-
-      SegCoords(t,u,a[1],b[1],A1_dot_B1,Tab[1] + bA1_dot_B0,Tba[1]);
-
-      S[0] = Tab[0] + Rab[0][0]*b[0] + Rab[0][1]*u;
-      S[1] = Tab[1] + Rab[1][0]*b[0] + Rab[1][1]*u - t;
-      S[2] = Tab[2] + Rab[2][0]*b[0] + Rab[2][1]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-
-  // LA1, LB1
-
-  if ((LA1_lx < 0) && (LB1_lx < 0))
-  {   
-    if (((LA1_ux < 0) || 
-          InVoronoi(b[1],a[1],-A1_dot_B0,Tba[0],A1_dot_B1,
-                    -Tba[1],-Tab[1]))
-          &&
-
-        ((LB1_ux < 0) || 
-          InVoronoi(a[1],b[1],-A0_dot_B1,-Tab[0],A1_dot_B1,
-                    Tab[1], Tba[1])))
-    {
-      SegCoords(t,u,a[1],b[1],A1_dot_B1,Tab[1],Tba[1]);    
-
-      S[0] = Tab[0] + Rab[0][1]*u;
-      S[1] = Tab[1] + Rab[1][1]*u - t;
-      S[2] = Tab[2] + Rab[2][1]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-
-  PQP_REAL ALL_y, ALU_y, AUL_y, AUU_y;
-
-  ALL_y = -Tba[1];
-  ALU_y = ALL_y + aA1_dot_B1;
-  AUL_y = ALL_y + aA0_dot_B1;
-  AUU_y = ALU_y + aA0_dot_B1;
-  
-  PQP_REAL LA1_ly, LA1_uy, UA1_ly, UA1_uy, LB0_lx, LB0_ux, UB0_lx, UB0_ux;
-
-  if (ALL_y < ALU_y)
-  { 
-    LA1_ly = ALL_y;
-    LA1_uy = ALU_y;
-    UA1_ly = AUL_y;    
-    UA1_uy = AUU_y;
-  }
-  else
-  { 
-    LA1_ly = ALU_y;
-    LA1_uy = ALL_y;
-    UA1_ly = AUU_y;    
-    UA1_uy = AUL_y;
-  }
-
-  if (BLL_x < BUL_x)
-  {
-    LB0_lx = BLL_x;
-    LB0_ux = BUL_x;
-    UB0_lx = BLU_x;
-    UB0_ux = BUU_x;
-  }
-  else
-  {
-    LB0_lx = BUL_x;
-    LB0_ux = BLL_x;
-    UB0_lx = BUU_x;
-    UB0_ux = BLU_x;
-  }
-
-  // UA1, UB0
-
-  if ((UA1_uy > b[1]) && (UB0_ux > a[0]))
-  {   
-    if (((UA1_ly > b[1]) || 
-          InVoronoi(b[0],a[1],A1_dot_B1, aA0_dot_B1 - Tba[1] - b[1],
-                    A1_dot_B0, aA0_dot_B0 - Tba[0], -Tab[1] - bA1_dot_B1))
-          &&
-	
-        ((UB0_lx > a[0]) || 
-          InVoronoi(a[1],b[0],A0_dot_B0, Tab[0] - a[0] + bA0_dot_B1,
-                    A1_dot_B0, Tab[1] + bA1_dot_B1, Tba[0] - aA0_dot_B0)))
-    {
-      SegCoords(t,u,a[1],b[0],A1_dot_B0,Tab[1] + bA1_dot_B1,
-                Tba[0] - aA0_dot_B0);
-
-      S[0] = Tab[0] + Rab[0][1]*b[1] + Rab[0][0]*u - a[0] ;
-      S[1] = Tab[1] + Rab[1][1]*b[1] + Rab[1][0]*u - t;
-      S[2] = Tab[2] + Rab[2][1]*b[1] + Rab[2][0]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-
-  // UA1, LB0
-
-  if ((UA1_ly < 0) && (LB0_ux > a[0]))
-  {
-    if (((UA1_uy < 0) || 
-          InVoronoi(b[0],a[1],-A1_dot_B1, Tba[1] - aA0_dot_B1,A1_dot_B0,
-                    aA0_dot_B0 - Tba[0], -Tab[1]))
-          &&
-
-        ((LB0_lx > a[0]) || 
-          InVoronoi(a[1],b[0],A0_dot_B0,Tab[0] - a[0],
-                    A1_dot_B0,Tab[1],Tba[0] - aA0_dot_B0)))
-    {
-      SegCoords(t,u,a[1],b[0],A1_dot_B0,Tab[1],Tba[0] - aA0_dot_B0);
-
-      S[0] = Tab[0] + Rab[0][0]*u - a[0];
-      S[1] = Tab[1] + Rab[1][0]*u - t;
-      S[2] = Tab[2] + Rab[2][0]*u;
-      return sqrt(VdotV(S,S)); 
-    }
-  }
-
-  // LA1, UB0
-
-  if ((LA1_uy > b[1]) && (UB0_lx < 0))
-  {
-    if (((LA1_ly > b[1]) || 
-        InVoronoi(b[0],a[1],A1_dot_B1,-Tba[1] - b[1],
-                  A1_dot_B0, -Tba[0], -Tab[1] - bA1_dot_B1))     
-        &&
-
-        ((UB0_ux < 0) ||             
-          InVoronoi(a[1],b[0],-A0_dot_B0, -Tab[0] - bA0_dot_B1,A1_dot_B0,
-                    Tab[1] + bA1_dot_B1,Tba[0])))
-    {
-      SegCoords(t,u,a[1],b[0],A1_dot_B0,Tab[1] + bA1_dot_B1,Tba[0]);
-
-      S[0] = Tab[0] + Rab[0][1]*b[1] + Rab[0][0]*u;
-      S[1] = Tab[1] + Rab[1][1]*b[1] + Rab[1][0]*u - t;
-      S[2] = Tab[2] + Rab[2][1]*b[1] + Rab[2][0]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-
-  // LA1, LB0
-
-  if ((LA1_ly < 0) && (LB0_lx < 0))
-  {
-    if (((LA1_uy < 0) || 
-          InVoronoi(b[0],a[1],-A1_dot_B1,Tba[1],A1_dot_B0,
-                    -Tba[0],-Tab[1]))
-        && 
-
-        ((LB0_ux < 0) || 
-          InVoronoi(a[1],b[0],-A0_dot_B0,-Tab[0],A1_dot_B0,
-                    Tab[1],Tba[0])))
-    {
-      SegCoords(t,u,a[1],b[0],A1_dot_B0,Tab[1],Tba[0]);
-	
-      S[0] = Tab[0] + Rab[0][0]*u;
-      S[1] = Tab[1] + Rab[1][0]*u - t;
-      S[2] = Tab[2] + Rab[2][0]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-
-  PQP_REAL BLL_y, BLU_y, BUL_y, BUU_y;
-
-  BLL_y = Tab[1];
-  BLU_y = BLL_y + bA1_dot_B1;
-  BUL_y = BLL_y + bA1_dot_B0;
-  BUU_y = BLU_y + bA1_dot_B0;
-
-  PQP_REAL LA0_lx, LA0_ux, UA0_lx, UA0_ux, LB1_ly, LB1_uy, UB1_ly, UB1_uy;
-
-  if (ALL_x < AUL_x)
-  {
-    LA0_lx = ALL_x;
-    LA0_ux = AUL_x;
-    UA0_lx = ALU_x;
-    UA0_ux = AUU_x;
-  }
-  else
-  {
-    LA0_lx = AUL_x;
-    LA0_ux = ALL_x;
-    UA0_lx = AUU_x;
-    UA0_ux = ALU_x;
-  }
-
-  if (BLL_y < BLU_y)
-  {
-    LB1_ly = BLL_y;
-    LB1_uy = BLU_y;
-    UB1_ly = BUL_y;
-    UB1_uy = BUU_y;
-  }
-  else
-  {
-    LB1_ly = BLU_y;
-    LB1_uy = BLL_y;
-    UB1_ly = BUU_y;
-    UB1_uy = BUL_y;
-  }
-    
-  // UA0, UB1
-  
-  if ((UA0_ux > b[0]) && (UB1_uy > a[1]))
-  {
-    if (((UA0_lx > b[0]) || 
-          InVoronoi(b[1],a[0],A0_dot_B0, aA1_dot_B0 - Tba[0] - b[0],
-                    A0_dot_B1,aA1_dot_B1 - Tba[1], -Tab[0] - bA0_dot_B0))
-        &&
-	
-        ((UB1_ly > a[1]) || 
-          InVoronoi(a[0],b[1],A1_dot_B1, Tab[1] - a[1] + bA1_dot_B0,
-                    A0_dot_B1,Tab[0] + bA0_dot_B0, Tba[1] - aA1_dot_B1)))
-    {
-      SegCoords(t,u,a[0],b[1],A0_dot_B1,Tab[0] + bA0_dot_B0,
-                Tba[1] - aA1_dot_B1);
-    
-      S[0] = Tab[0] + Rab[0][0]*b[0] + Rab[0][1]*u - t;
-      S[1] = Tab[1] + Rab[1][0]*b[0] + Rab[1][1]*u - a[1];
-      S[2] = Tab[2] + Rab[2][0]*b[0] + Rab[2][1]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-
-  // UA0, LB1
-
-  if ((UA0_lx < 0) && (LB1_uy > a[1]))
-  {
-    if (((UA0_ux < 0) || 
-          InVoronoi(b[1],a[0],-A0_dot_B0, Tba[0] - aA1_dot_B0,A0_dot_B1,
-                    aA1_dot_B1 - Tba[1],-Tab[0]))
-        &&
-
-        ((LB1_ly > a[1]) || 
-          InVoronoi(a[0],b[1],A1_dot_B1,Tab[1] - a[1],A0_dot_B1,Tab[0],
-                    Tba[1] - aA1_dot_B1)))
-    {
-      SegCoords(t,u,a[0],b[1],A0_dot_B1,Tab[0],Tba[1] - aA1_dot_B1);
-
-      S[0] = Tab[0] + Rab[0][1]*u - t;
-      S[1] = Tab[1] + Rab[1][1]*u - a[1];
-      S[2] = Tab[2] + Rab[2][1]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-
-  // LA0, UB1
-
-  if ((LA0_ux > b[0]) && (UB1_ly < 0))
-  {
-    if (((LA0_lx > b[0]) || 
-          InVoronoi(b[1],a[0],A0_dot_B0,-b[0] - Tba[0],A0_dot_B1,-Tba[1],
-                    -bA0_dot_B0 - Tab[0]))
-        &&
-
-        ((UB1_uy < 0) || 
-          InVoronoi(a[0],b[1],-A1_dot_B1, -Tab[1] - bA1_dot_B0,A0_dot_B1,
-                    Tab[0] + bA0_dot_B0,Tba[1])))
-    {
-      SegCoords(t,u,a[0],b[1],A0_dot_B1,Tab[0] + bA0_dot_B0,Tba[1]);
-
-      S[0] = Tab[0] + Rab[0][0]*b[0] + Rab[0][1]*u - t;
-      S[1] = Tab[1] + Rab[1][0]*b[0] + Rab[1][1]*u;
-      S[2] = Tab[2] + Rab[2][0]*b[0] + Rab[2][1]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-  
-  // LA0, LB1
-
-  if ((LA0_lx < 0) && (LB1_ly < 0))
-  {
-    if (((LA0_ux < 0) || 
-          InVoronoi(b[1],a[0],-A0_dot_B0,Tba[0],A0_dot_B1,-Tba[1],
-                    -Tab[0]))
-        &&
-	
-        ((LB1_uy < 0) || 
-          InVoronoi(a[0],b[1],-A1_dot_B1,-Tab[1],A0_dot_B1,
-                    Tab[0],Tba[1])))
-    {
-      SegCoords(t,u,a[0],b[1],A0_dot_B1,Tab[0],Tba[1]);
-
-      S[0] = Tab[0] + Rab[0][1]*u - t;
-      S[1] = Tab[1] + Rab[1][1]*u;
-      S[2] = Tab[2] + Rab[2][1]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-
-  PQP_REAL LA0_ly, LA0_uy, UA0_ly, UA0_uy, LB0_ly, LB0_uy, UB0_ly, UB0_uy;
-
-  if (ALL_y < AUL_y)
-  {
-    LA0_ly = ALL_y;
-    LA0_uy = AUL_y;
-    UA0_ly = ALU_y;
-    UA0_uy = AUU_y;
-  }
-  else
-  {
-    LA0_ly = AUL_y;
-    LA0_uy = ALL_y;
-    UA0_ly = AUU_y;
-    UA0_uy = ALU_y;
-  }
-
-  if (BLL_y < BUL_y)
-  {
-    LB0_ly = BLL_y;
-    LB0_uy = BUL_y;
-    UB0_ly = BLU_y;
-    UB0_uy = BUU_y;
-  }
-  else
-  {
-    LB0_ly = BUL_y;
-    LB0_uy = BLL_y;
-    UB0_ly = BUU_y;
-    UB0_uy = BLU_y;
-  }
-
-  // UA0, UB0
-
-  if ((UA0_uy > b[1]) && (UB0_uy > a[1]))
-  {
-    if (((UA0_ly > b[1]) || 
-          InVoronoi(b[0],a[0],A0_dot_B1, aA1_dot_B1 - Tba[1] - b[1],
-                    A0_dot_B0, aA1_dot_B0 - Tba[0], -Tab[0] - bA0_dot_B1))
-        &&
-	
-        ((UB0_ly > a[1]) || 
-          InVoronoi(a[0],b[0],A1_dot_B0,Tab[1] - a[1] + bA1_dot_B1,A0_dot_B0,
-                    Tab[0] + bA0_dot_B1, Tba[0] - aA1_dot_B0)))
-    {
-      SegCoords(t,u,a[0],b[0],A0_dot_B0,Tab[0] + bA0_dot_B1,
-                Tba[0] - aA1_dot_B0);
-      
-      S[0] = Tab[0] + Rab[0][1]*b[1] + Rab[0][0]*u - t;
-      S[1] = Tab[1] + Rab[1][1]*b[1] + Rab[1][0]*u - a[1];
-      S[2] = Tab[2] + Rab[2][1]*b[1] + Rab[2][0]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-
-  // UA0, LB0
-
-  if ((UA0_ly < 0) && (LB0_uy > a[1]))
-  {
-    if (((UA0_uy < 0) || 
-          InVoronoi(b[0],a[0],-A0_dot_B1,Tba[1] - aA1_dot_B1,A0_dot_B0,
-                    aA1_dot_B0 - Tba[0],-Tab[0]))
-        &&      
-
-        ((LB0_ly > a[1]) || 
-          InVoronoi(a[0],b[0],A1_dot_B0,Tab[1] - a[1],
-                    A0_dot_B0,Tab[0],Tba[0] - aA1_dot_B0)))
-    {
-      SegCoords(t,u,a[0],b[0],A0_dot_B0,Tab[0],Tba[0] - aA1_dot_B0);
-
-      S[0] = Tab[0] + Rab[0][0]*u - t;
-      S[1] = Tab[1] + Rab[1][0]*u - a[1];
-      S[2] = Tab[2] + Rab[2][0]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-
-  // LA0, UB0
-
-  if ((LA0_uy > b[1]) && (UB0_ly < 0))
-  {  
-    if (((LA0_ly > b[1]) ||
-          InVoronoi(b[0],a[0],A0_dot_B1,-Tba[1] - b[1], A0_dot_B0,-Tba[0],
-                    -Tab[0] - bA0_dot_B1))
-        &&
-	
-        ((UB0_uy < 0) ||
-          InVoronoi(a[0],b[0],-A1_dot_B0, -Tab[1] - bA1_dot_B1, A0_dot_B0,
-                    Tab[0] + bA0_dot_B1,Tba[0])))
-    {
-      SegCoords(t,u,a[0],b[0],A0_dot_B0,Tab[0] + bA0_dot_B1,Tba[0]);
-      
-      S[0] = Tab[0] + Rab[0][1]*b[1] + Rab[0][0]*u - t;
-      S[1] = Tab[1] + Rab[1][1]*b[1] + Rab[1][0]*u;
-      S[2] = Tab[2] + Rab[2][1]*b[1] + Rab[2][0]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-
-  // LA0, LB0
-
-  if ((LA0_ly < 0) && (LB0_ly < 0))
-  {   
-    if (((LA0_uy < 0) || 
-          InVoronoi(b[0],a[0],-A0_dot_B1,Tba[1],A0_dot_B0,
-                    -Tba[0],-Tab[0]))
-        &&
-	
-        ((LB0_uy < 0) || 
-          InVoronoi(a[0],b[0],-A1_dot_B0,-Tab[1],A0_dot_B0,
-                    Tab[0],Tba[0])))
-    {
-      SegCoords(t,u,a[0],b[0],A0_dot_B0,Tab[0],Tba[0]);
-
-      S[0] = Tab[0] + Rab[0][0]*u - t;
-      S[1] = Tab[1] + Rab[1][0]*u;
-      S[2] = Tab[2] + Rab[2][0]*u;
-      return sqrt(VdotV(S,S));
-    }
-  }
-
-  // no edges passed, take max separation along face normals
-
-  PQP_REAL sep1, sep2;
- 
-  if (Tab[2] > 0.0)
-  {
-    sep1 = Tab[2];
-    if (Rab[2][0] < 0.0) sep1 += b[0]*Rab[2][0];
-    if (Rab[2][1] < 0.0) sep1 += b[1]*Rab[2][1];
-  }
-  else
-  {
-    sep1 = -Tab[2];
-    if (Rab[2][0] > 0.0) sep1 -= b[0]*Rab[2][0];
-    if (Rab[2][1] > 0.0) sep1 -= b[1]*Rab[2][1];
-  }
-  
-  if (Tba[2] < 0)
-  {
-    sep2 = -Tba[2];
-    if (Rab[0][2] < 0.0) sep2 += a[0]*Rab[0][2];
-    if (Rab[1][2] < 0.0) sep2 += a[1]*Rab[1][2];
-  }
-  else
-  {
-    sep2 = Tba[2];
-    if (Rab[0][2] > 0.0) sep2 -= a[0]*Rab[0][2];
-    if (Rab[1][2] > 0.0) sep2 -= a[1]*Rab[1][2];
-  }
-
-  PQP_REAL sep = (sep1 > sep2? sep1 : sep2);
-  return (sep > 0? sep : 0);
-}
-
-#endif
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/Tri.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/Tri.h
deleted file mode 100644
index 496cddd9..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/Tri.h
+++ /dev/null
@@ -1,54 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             S. Gottschalk
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_TRI_H
-#define PQP_TRI_H
-
-#include "PQP_Compile.h"
-
-struct Tri
-{
-  PQP_REAL p1[3];
-  PQP_REAL p2[3];
-  PQP_REAL p3[3];
-  int id;
-};
-
-#endif
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/TriDist.cpp b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/TriDist.cpp
deleted file mode 100644
index 3cbd438b..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/TriDist.cpp
+++ /dev/null
@@ -1,407 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-//--------------------------------------------------------------------------
-// File:   TriDist.cpp
-// Author: Eric Larsen
-// Description:
-// contains SegPoints() for finding closest points on a pair of line
-// segments and TriDist() for finding closest points on a pair of triangles
-//--------------------------------------------------------------------------
-
-#include "MatVec.h"
-#ifdef _WIN32
-#include <float.h>
-#define isnan _isnan
-#endif
-
-//--------------------------------------------------------------------------
-// SegPoints() 
-//
-// Returns closest points between an segment pair.
-// Implemented from an algorithm described in
-//
-// Vladimir J. Lumelsky,
-// On fast computation of distance between line segments.
-// In Information Processing Letters, no. 21, pages 55-61, 1985.   
-//--------------------------------------------------------------------------
-
-void
-SegPoints(PQP_REAL VEC[3], 
-	  PQP_REAL X[3], PQP_REAL Y[3],             // closest points
-          const PQP_REAL P[3], const PQP_REAL A[3], // seg 1 origin, vector
-          const PQP_REAL Q[3], const PQP_REAL B[3]) // seg 2 origin, vector
-{
-  PQP_REAL T[3], A_dot_A, B_dot_B, A_dot_B, A_dot_T, B_dot_T;
-  PQP_REAL TMP[3];
-
-  VmV(T,Q,P);
-  A_dot_A = VdotV(A,A);
-  B_dot_B = VdotV(B,B);
-  A_dot_B = VdotV(A,B);
-  A_dot_T = VdotV(A,T);
-  B_dot_T = VdotV(B,T);
-
-  // t parameterizes ray P,A 
-  // u parameterizes ray Q,B 
-
-  PQP_REAL t,u;
-
-  // compute t for the closest point on ray P,A to
-  // ray Q,B
-
-  PQP_REAL denom = A_dot_A*B_dot_B - A_dot_B*A_dot_B;
-
-  t = (A_dot_T*B_dot_B - B_dot_T*A_dot_B) / denom;
-
-  // clamp result so t is on the segment P,A
-
-  if ((t < 0) || isnan(t)) t = 0; else if (t > 1) t = 1;
-
-  // find u for point on ray Q,B closest to point at t
-
-  u = (t*A_dot_B - B_dot_T) / B_dot_B;
-
-  // if u is on segment Q,B, t and u correspond to 
-  // closest points, otherwise, clamp u, recompute and
-  // clamp t 
-
-  if ((u <= 0) || isnan(u)) {
-
-    VcV(Y, Q);
-
-    t = A_dot_T / A_dot_A;
-
-    if ((t <= 0) || isnan(t)) {
-      VcV(X, P);
-      VmV(VEC, Q, P);
-    }
-    else if (t >= 1) {
-      VpV(X, P, A);
-      VmV(VEC, Q, X);
-    }
-    else {
-      VpVxS(X, P, A, t);
-      VcrossV(TMP, T, A);
-      VcrossV(VEC, A, TMP);
-    }
-  }
-  else if (u >= 1) {
-
-    VpV(Y, Q, B);
-
-    t = (A_dot_B + A_dot_T) / A_dot_A;
-
-    if ((t <= 0) || isnan(t)) {
-      VcV(X, P);
-      VmV(VEC, Y, P);
-    }
-    else if (t >= 1) {
-      VpV(X, P, A);
-      VmV(VEC, Y, X);
-    }
-    else {
-      VpVxS(X, P, A, t);
-      VmV(T, Y, P);
-      VcrossV(TMP, T, A);
-      VcrossV(VEC, A, TMP);
-    }
-  }
-  else {
-
-    VpVxS(Y, Q, B, u);
-
-    if ((t <= 0) || isnan(t)) {
-      VcV(X, P);
-      VcrossV(TMP, T, B);
-      VcrossV(VEC, B, TMP);
-    }
-    else if (t >= 1) {
-      VpV(X, P, A);
-      VmV(T, Q, X);
-      VcrossV(TMP, T, B);
-      VcrossV(VEC, B, TMP);
-    }
-    else {
-      VpVxS(X, P, A, t);
-      VcrossV(VEC, A, B);
-      if (VdotV(VEC, T) < 0) {
-        VxS(VEC, VEC, -1);
-      }
-    }
-  }
-}
-
-//--------------------------------------------------------------------------
-// TriDist() 
-//
-// Computes the closest points on two triangles, and returns the 
-// distance between them.
-// 
-// S and T are the triangles, stored tri[point][dimension].
-//
-// If the triangles are disjoint, P and Q give the closest points of 
-// S and T respectively. However, if the triangles overlap, P and Q 
-// are basically a random pair of points from the triangles, not 
-// coincident points on the intersection of the triangles, as might 
-// be expected.
-//--------------------------------------------------------------------------
-
-PQP_REAL 
-TriDist(PQP_REAL P[3], PQP_REAL Q[3],
-        const PQP_REAL S[3][3], const PQP_REAL T[3][3])  
-{
-  // Compute vectors along the 6 sides
-
-  PQP_REAL Sv[3][3], Tv[3][3];
-  PQP_REAL VEC[3];
-
-  VmV(Sv[0],S[1],S[0]);
-  VmV(Sv[1],S[2],S[1]);
-  VmV(Sv[2],S[0],S[2]);
-
-  VmV(Tv[0],T[1],T[0]);
-  VmV(Tv[1],T[2],T[1]);
-  VmV(Tv[2],T[0],T[2]);
-
-  // For each edge pair, the vector connecting the closest points 
-  // of the edges defines a slab (parallel planes at head and tail
-  // enclose the slab). If we can show that the off-edge vertex of 
-  // each triangle is outside of the slab, then the closest points
-  // of the edges are the closest points for the triangles.
-  // Even if these tests fail, it may be helpful to know the closest
-  // points found, and whether the triangles were shown disjoint
-
-  PQP_REAL V[3];
-  PQP_REAL Z[3];
-  PQP_REAL minP[3], minQ[3], mindd;
-  int shown_disjoint = 0;
-
-  mindd = VdistV2(S[0],T[0]) + 1;  // Set first minimum safely high
-
-  for (int i = 0; i < 3; i++)
-  {
-    for (int j = 0; j < 3; j++)
-    {
-      // Find closest points on edges i & j, plus the 
-      // vector (and distance squared) between these points
-
-      SegPoints(VEC,P,Q,S[i],Sv[i],T[j],Tv[j]);
-      
-      VmV(V,Q,P);
-      PQP_REAL dd = VdotV(V,V);
-
-      // Verify this closest point pair only if the distance 
-      // squared is less than the minimum found thus far.
-
-      if (dd <= mindd)
-      {
-        VcV(minP,P);
-        VcV(minQ,Q);
-        mindd = dd;
-
-        VmV(Z,S[(i+2)%3],P);
-        PQP_REAL a = VdotV(Z,VEC);
-        VmV(Z,T[(j+2)%3],Q);
-        PQP_REAL b = VdotV(Z,VEC);
-
-        if ((a <= 0) && (b >= 0)) return sqrt(dd);
-
-        PQP_REAL p = VdotV(V, VEC);
-
-        if (a < 0) a = 0;
-        if (b > 0) b = 0;
-        if ((p - a + b) > 0) shown_disjoint = 1;	
-      }
-    }
-  }
-
-  // No edge pairs contained the closest points.  
-  // either:
-  // 1. one of the closest points is a vertex, and the
-  //    other point is interior to a face.
-  // 2. the triangles are overlapping.
-  // 3. an edge of one triangle is parallel to the other's face. If
-  //    cases 1 and 2 are not true, then the closest points from the 9
-  //    edge pairs checks above can be taken as closest points for the
-  //    triangles.
-  // 4. possibly, the triangles were degenerate.  When the 
-  //    triangle points are nearly colinear or coincident, one 
-  //    of above tests might fail even though the edges tested
-  //    contain the closest points.
-
-  // First check for case 1
-
-  PQP_REAL Sn[3], Snl;       
-  VcrossV(Sn,Sv[0],Sv[1]); // Compute normal to S triangle
-  Snl = VdotV(Sn,Sn);      // Compute square of length of normal
-  
-  // If cross product is long enough,
-
-  if (Snl > 1e-15)  
-  {
-    // Get projection lengths of T points
-
-    PQP_REAL Tp[3]; 
-
-    VmV(V,S[0],T[0]);
-    Tp[0] = VdotV(V,Sn);
-
-    VmV(V,S[0],T[1]);
-    Tp[1] = VdotV(V,Sn);
-
-    VmV(V,S[0],T[2]);
-    Tp[2] = VdotV(V,Sn);
-
-    // If Sn is a separating direction,
-    // find point with smallest projection
-
-    int point = -1;
-    if ((Tp[0] > 0) && (Tp[1] > 0) && (Tp[2] > 0))
-    {
-      if (Tp[0] < Tp[1]) point = 0; else point = 1;
-      if (Tp[2] < Tp[point]) point = 2;
-    }
-    else if ((Tp[0] < 0) && (Tp[1] < 0) && (Tp[2] < 0))
-    {
-      if (Tp[0] > Tp[1]) point = 0; else point = 1;
-      if (Tp[2] > Tp[point]) point = 2;
-    }
-
-    // If Sn is a separating direction, 
-
-    if (point >= 0) 
-    {
-      shown_disjoint = 1;
-
-      // Test whether the point found, when projected onto the 
-      // other triangle, lies within the face.
-    
-      VmV(V,T[point],S[0]);
-      VcrossV(Z,Sn,Sv[0]);
-      if (VdotV(V,Z) > 0)
-      {
-        VmV(V,T[point],S[1]);
-        VcrossV(Z,Sn,Sv[1]);
-        if (VdotV(V,Z) > 0)
-        {
-          VmV(V,T[point],S[2]);
-          VcrossV(Z,Sn,Sv[2]);
-          if (VdotV(V,Z) > 0)
-          {
-            // T[point] passed the test - it's a closest point for 
-            // the T triangle; the other point is on the face of S
-
-            VpVxS(P,T[point],Sn,Tp[point]/Snl);
-            VcV(Q,T[point]);
-            return sqrt(VdistV2(P,Q));
-          }
-        }
-      }
-    }
-  }
-
-  PQP_REAL Tn[3], Tnl;       
-  VcrossV(Tn,Tv[0],Tv[1]); 
-  Tnl = VdotV(Tn,Tn);      
-  
-  if (Tnl > 1e-15)  
-  {
-    PQP_REAL Sp[3]; 
-
-    VmV(V,T[0],S[0]);
-    Sp[0] = VdotV(V,Tn);
-
-    VmV(V,T[0],S[1]);
-    Sp[1] = VdotV(V,Tn);
-
-    VmV(V,T[0],S[2]);
-    Sp[2] = VdotV(V,Tn);
-
-    int point = -1;
-    if ((Sp[0] > 0) && (Sp[1] > 0) && (Sp[2] > 0))
-    {
-      if (Sp[0] < Sp[1]) point = 0; else point = 1;
-      if (Sp[2] < Sp[point]) point = 2;
-    }
-    else if ((Sp[0] < 0) && (Sp[1] < 0) && (Sp[2] < 0))
-    {
-      if (Sp[0] > Sp[1]) point = 0; else point = 1;
-      if (Sp[2] > Sp[point]) point = 2;
-    }
-
-    if (point >= 0) 
-    { 
-      shown_disjoint = 1;
-
-      VmV(V,S[point],T[0]);
-      VcrossV(Z,Tn,Tv[0]);
-      if (VdotV(V,Z) > 0)
-      {
-        VmV(V,S[point],T[1]);
-        VcrossV(Z,Tn,Tv[1]);
-        if (VdotV(V,Z) > 0)
-        {
-          VmV(V,S[point],T[2]);
-          VcrossV(Z,Tn,Tv[2]);
-          if (VdotV(V,Z) > 0)
-          {
-            VcV(P,S[point]);
-            VpVxS(Q,S[point],Tn,Sp[point]/Tnl);
-            return sqrt(VdistV2(P,Q));
-          }
-        }
-      }
-    }
-  }
-
-  // Case 1 can't be shown.
-  // If one of these tests showed the triangles disjoint,
-  // we assume case 3 or 4, otherwise we conclude case 2, 
-  // that the triangles overlap.
-  
-  if (shown_disjoint)
-  {
-    VcV(P,minP);
-    VcV(Q,minQ);
-    return sqrt(mindd);
-  }
-  else return 0;
-}
diff --git a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/TriDist.h b/trunk/PQP/build/pqp-tar/PQP_v1.3/src/TriDist.h
deleted file mode 100644
index dd20a8c3..00000000
--- a/trunk/PQP/build/pqp-tar/PQP_v1.3/src/TriDist.h
+++ /dev/null
@@ -1,63 +0,0 @@
-/*************************************************************************\
-
-  Copyright 1999 The University of North Carolina at Chapel Hill.
-  All Rights Reserved.
-
-  Permission to use, copy, modify and distribute this software and its
-  documentation for educational, research and non-profit purposes, without
-  fee, and without a written agreement is hereby granted, provided that the
-  above copyright notice and the following three paragraphs appear in all
-  copies.
-
-  IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL BE
-  LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
-  CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
-  USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
-  OF NORTH CAROLINA HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
-  DAMAGES.
-
-  THE UNIVERSITY OF NORTH CAROLINA SPECIFICALLY DISCLAIM ANY
-  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
-  PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
-  NORTH CAROLINA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
-  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
-
-  The authors may be contacted via:
-
-  US Mail:             E. Larsen
-                       Department of Computer Science
-                       Sitterson Hall, CB #3175
-                       University of N. Carolina
-                       Chapel Hill, NC 27599-3175
-
-  Phone:               (919)962-1749
-
-  EMail:               geom@cs.unc.edu
-
-
-\**************************************************************************/
-
-#ifndef PQP_TRIDIST_H
-#define PQP_TRIDIST_H
-
-#include "PQP_Compile.h"
-
-// TriDist()
-//
-// computes the closest points on two triangles, and returns the 
-// distance between them.
-// 
-// s and t are the triangles, stored tri[point][dimension].
-//
-// If the triangles are disjoint, p and q give the closest points of 
-// s and t respectively. However, if the triangles overlap, p and q 
-// are basically a random pair of points from the triangles, not 
-// coincident points on the intersection of the triangles, as might 
-// be expected.
-
-PQP_REAL 
-TriDist(PQP_REAL p[3], PQP_REAL q[3], 
-        const PQP_REAL s[3][3], const PQP_REAL t[3][3]);
-
-#endif
diff --git a/trunk/PQP/build/pqp-tar/unpacked b/trunk/PQP/build/pqp-tar/unpacked
deleted file mode 100644
index e69de29b..00000000
diff --git a/trunk/PQP/installed b/trunk/PQP/installed
deleted file mode 100644
index e69de29b..00000000
diff --git a/trunk/PQP/mainpage.dox b/trunk/PQP/mainpage.dox
deleted file mode 100644
index c315b415..00000000
--- a/trunk/PQP/mainpage.dox
+++ /dev/null
@@ -1,26 +0,0 @@
-/**
-\mainpage
-\htmlinclude manifest.html
-
-\b PQP is ... 
-
-<!-- 
-Provide an overview of your package.
--->
-
-
-\section codeapi Code API
-
-<!--
-Provide links to specific auto-generated API documentation within your
-package that is of particular interest to a reader. Doxygen will
-document pretty much every part of your code, so do your best here to
-point the reader to the actual API.
-
-If your codebase is fairly large or has different sets of APIs, you
-should use the doxygen 'group' tag to keep these APIs together. For
-example, the roscpp documentation has 'libros' group.
--->
-
-
-*/
diff --git a/trunk/PQP/manifest.xml b/trunk/PQP/manifest.xml
deleted file mode 100644
index 6e801466..00000000
--- a/trunk/PQP/manifest.xml
+++ /dev/null
@@ -1,15 +0,0 @@
-<package>
-  <description brief="PQP">
-    This package is a wrapper on the PQP library available from <a href="http://gamma.cs.unc.edu/software/downloads/SSV">here</a>. This package does not modify the contents of the original library in any manner and only wraps it for easy distribution with the ROS packaging system. PQP is not under BSD license and is optional for FCL. Users can choose to use PQP by setting flag USE_PQP=1 in FCL.
-  </description>
-  <author>Maintained by Jia Pan and Sachin Chitta</author>
-  <license>BSD</license>
-  <review status="unreviewed" notes=""/>
-  <url>http://ros.org/wiki/PQP</url>
-  <export>
-    <cpp cflags="-I${prefix}/PQP/include" lflags="-L${prefix}/PQP/lib -Wl,-rpath,${prefix}/PQP/lib -lPQP"/>
-  </export>
-
-</package>
-
-
diff --git a/trunk/PQP/pqp.diff b/trunk/PQP/pqp.diff
deleted file mode 100644
index 9a972d99..00000000
--- a/trunk/PQP/pqp.diff
+++ /dev/null
@@ -1,10 +0,0 @@
---- PQP_v1.3/Makefile	2002-04-21 12:55:38.000000000 -0400
-+++ PQP_v1.3/Makefile	2011-09-06 23:17:24.535133167 -0400
-@@ -1,6 +1,6 @@
- CC = g++
- 
--CFLAGS		= -O2 -I.
-+CFLAGS		= -O2 -fPIC -I.
- 
- .SUFFIXES: .C .cpp
- 
diff --git a/trunk/PQP/wiped b/trunk/PQP/wiped
deleted file mode 100644
index e69de29b..00000000
diff --git a/trunk/svm_light/Makefile b/trunk/svm_light/Makefile
deleted file mode 100644
index 3a68c58d..00000000
--- a/trunk/svm_light/Makefile
+++ /dev/null
@@ -1,37 +0,0 @@
-all: installed
-
-#
-# Download, extract and compile from a released tarball:
-#
-TARBALL = build/svm_light.tar.gz
-TARBALL_URL = http://download.joachims.org/svm_light/current/svm_light.tar.gz
-TARBALL_PATCH = svm_light.diff
-UNPACK_CMD = mkdir svm_light; tar -C svm_light -xzf
-INITIAL_DIR = build/svm_light
-SOURCE_DIR = build/svm_light-tar
-include $(shell rospack find mk)/download_unpack_build.mk
-
-INSTALL_DIR = svm_light
-CMAKE = cmake 
-CMAKE_ARGS = -D CMAKE_BUILD_TYPE="Release" -D CMAKE_INSTALL_PREFIX=`rospack find svm_light`/$(INSTALL_DIR) 
-MAKE = make
-
-installed: wiped $(SOURCE_DIR)/unpacked
-	cd $(SOURCE_DIR) && make libsvmlight_hideo $(ROS_PARALLEL_JOBS)
-	mkdir -p $(INSTALL_DIR)/lib
-	mkdir -p $(INSTALL_DIR)/include
-	mkdir -p $(INSTALL_DIR)/include/svm_light
-	cp -r $(SOURCE_DIR)/*.h $(INSTALL_DIR)/include/svm_light
-	cp -r $(SOURCE_DIR)/*.so $(INSTALL_DIR)/lib
-	touch installed
-
-clean:
-	rm -rf build
-	rm -rf $(INSTALL_DIR) installed
-
-wiped: Makefile
-	make wipe
-	touch wiped
-
-wipe: clean
-	rm -rf build patched
diff --git a/trunk/svm_light/build/svm_light-tar/LICENSE.txt b/trunk/svm_light/build/svm_light-tar/LICENSE.txt
deleted file mode 100755
index 28d6db09..00000000
--- a/trunk/svm_light/build/svm_light-tar/LICENSE.txt
+++ /dev/null
@@ -1,59 +0,0 @@
-SVM-Light
----------
-
-Available at http://svmlight.joachims.org/
-
-Author: Thorsten Joachims
-	thorsten@joachims.org
-
-	Cornell University
-	Department of Computer Science
-	4153 Upson Hall
-	Ithaca, NY 14853
-	USA
-
-LICENSING TERMS 
-
-This program is granted free of charge for research and education
-purposes. However you must obtain a license from the author to use it
-for commercial purposes.
-
-Scientific results produced using the software provided shall
-acknowledge the use of SVM-Light. Please cite as  
-
-       T. Joachims, Making large-Scale SVM Learning
-       Practical. Advances in Kernel Methods - Support Vector
-       Learning, B. Schölkopf and C. Burges and A. Smola (ed.),
-       MIT-Press, 1999. 
-       http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99a.pdf
-
-Moreover shall the author of SVM-Light be informed about the
-publication.
-
-The software must not be modified and distributed without prior
-permission of the author.
-
-By using SVM-Light you agree to the licensing terms.
-
-
-NO WARRANTY 
-
-BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
-FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
-WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
-PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
-EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
-PROGRAM IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
-THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
-
-IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
-WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
-REDISTRIBUTE THE PROGRAM, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
-GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
-THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
-LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
-YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
-OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
-OF THE POSSIBILITY OF SUCH DAMAGES.
diff --git a/trunk/svm_light/build/svm_light-tar/Makefile b/trunk/svm_light/build/svm_light-tar/Makefile
deleted file mode 100755
index 7bb16482..00000000
--- a/trunk/svm_light/build/svm_light-tar/Makefile
+++ /dev/null
@@ -1,105 +0,0 @@
-#
-# makefile for svm_light 
-#
-# Thorsten Joachims, 2002
-#
-
-#Use the following to compile under unix or cygwin
-CC = gcc
-LD = gcc
-
-#Uncomment the following line to make CYGWIN produce stand-alone Windows executables
-#SFLAGS= -mno-cygwin
-
-CFLAGS=  $(SFLAGS) -fPIC -O3                     # release C-Compiler flags
-LFLAGS=  $(SFLAGS) -O3                     # release linker flags
-#CFLAGS= $(SFLAGS) -pg -Wall -pedantic      # debugging C-Compiler flags
-#LFLAGS= $(SFLAGS) -pg                      # debugging linker flags
-LIBS=-L. -lm                               # used libraries
-
-all: svm_learn_hideo svm_classify
-
-tidy: 
-	rm -f *.o 
-	rm -f pr_loqo/*.o
-
-clean:	tidy
-	rm -f svm_learn
-	rm -f svm_classify
-	rm -f libsvmlight.so
-
-help:   info
-
-info:
-	@echo
-	@echo "make for SVM-light               Thorsten Joachims, 1998"
-	@echo
-	@echo "Thanks to Ralf Herbrich for the initial version."
-	@echo 
-	@echo "USAGE: make [svm_learn | svm_learn_loqo | svm_learn_hideo | "
-	@echo "             libsvmlight_hideo | libsvmlight_loqo | "
-	@echo "             svm_classify | all | clean | tidy]"
-	@echo 
-	@echo "    svm_learn           builds the learning module (prefers HIDEO)"
-	@echo "    svm_learn_hideo     builds the learning module using HIDEO optimizer"
-	@echo "    svm_learn_loqo      builds the learning module using PR_LOQO optimizer"
-	@echo "    svm_classify        builds the classfication module"
-	@echo "    libsvmlight_hideo   builds shared object library that can be linked into"
-	@echo "                        other code using HIDEO"
-	@echo "    libsvmlight_loqo    builds shared object library that can be linked into"
-	@echo "                        other code using PR_LOQO"
-	@echo "    all (default)       builds svm_learn + svm_classify"
-	@echo "    clean               removes .o and target files"
-	@echo "    tidy                removes .o files"
-	@echo
-
-# Create executables svm_learn and svm_classify
-
-svm_learn_hideo: svm_learn_main.o svm_learn.o svm_common.o svm_hideo.o 
-	$(LD) $(LFLAGS) svm_learn_main.o svm_learn.o svm_common.o svm_hideo.o -o svm_learn $(LIBS)
-
-#svm_learn_loqo: svm_learn_main.o svm_learn.o svm_common.o svm_loqo.o loqo
-#	$(LD) $(LFLAGS) svm_learn_main.o svm_learn.o svm_common.o svm_loqo.o pr_loqo/pr_loqo.o -o svm_learn $(LIBS)
-
-svm_classify: svm_classify.o svm_common.o 
-	$(LD) $(LFLAGS) svm_classify.o svm_common.o -o svm_classify $(LIBS)
-
-
-# Create library libsvmlight.so, so that external code can get access to the
-# learning and classification functions of svm-light by linking this library.
-
-svm_learn_hideo_noexe: svm_learn_main.o svm_learn.o svm_common.o svm_hideo.o 
-
-libsvmlight_hideo: svm_learn_main.o svm_learn.o svm_common.o svm_hideo.o 
-	$(LD) -shared svm_learn.o svm_common.o svm_hideo.o -o libsvmlight.so
-
-#svm_learn_loqo_noexe: svm_learn_main.o svm_learn.o svm_common.o svm_loqo.o loqo
-
-#libsvmlight_loqo: svm_learn_main.o svm_learn.o svm_common.o svm_loqo.o 
-#	$(LD) -shared svm_learn.o svm_common.o svm_loqo.o  pr_loqo/pr_loqo.o -o libsvmlight.so
-
-# Compile components
-
-svm_hideo.o: svm_hideo.c
-	$(CC) -c $(CFLAGS) svm_hideo.c -o svm_hideo.o 
-
-#svm_loqo.o: svm_loqo.c 
-#	$(CC) -c $(CFLAGS) svm_loqo.c -o svm_loqo.o 
-
-svm_common.o: svm_common.c svm_common.h kernel.h
-	$(CC) -c $(CFLAGS) svm_common.c -o svm_common.o 
-
-svm_learn.o: svm_learn.c svm_common.h
-	$(CC) -c $(CFLAGS) svm_learn.c -o svm_learn.o 
-
-svm_learn_main.o: svm_learn_main.c svm_learn.h svm_common.h
-	$(CC) -c $(CFLAGS) svm_learn_main.c -o svm_learn_main.o 
-
-svm_classify.o: svm_classify.c svm_common.h kernel.h
-	$(CC) -c $(CFLAGS) svm_classify.c -o svm_classify.o
-
-#loqo: pr_loqo/pr_loqo.o
-
-#pr_loqo/pr_loqo.o: pr_loqo/pr_loqo.c
-#	$(CC) -c $(CFLAGS) pr_loqo/pr_loqo.c -o pr_loqo/pr_loqo.o
-
diff --git a/trunk/svm_light/build/svm_light-tar/kernel.h b/trunk/svm_light/build/svm_light-tar/kernel.h
deleted file mode 100755
index 0133b006..00000000
--- a/trunk/svm_light/build/svm_light-tar/kernel.h
+++ /dev/null
@@ -1,40 +0,0 @@
-/************************************************************************/
-/*                                                                      */
-/*   kernel.h                                                           */
-/*                                                                      */
-/*   User defined kernel function. Feel free to plug in your own.       */
-/*                                                                      */
-/*   Copyright: Thorsten Joachims                                       */
-/*   Date: 16.12.97                                                     */
-/*                                                                      */
-/************************************************************************/
-
-/* KERNEL_PARM is defined in svm_common.h The field 'custom' is reserved for */
-/* parameters of the user defined kernel. You can also access and use */
-/* the parameters of the other kernels. Just replace the line 
-             return((double)(1.0)); 
-   with your own kernel. */
-
-  /* Example: The following computes the polynomial kernel. sprod_ss
-              computes the inner product between two sparse vectors. 
-
-      return((CFLOAT)pow(kernel_parm->coef_lin*sprod_ss(a->words,b->words)
-             +kernel_parm->coef_const,(double)kernel_parm->poly_degree)); 
-  */
-
-/* If you are implementing a kernel that is not based on a
-   feature/value representation, you might want to make use of the
-   field "userdefined" in SVECTOR. By default, this field will contain
-   whatever string you put behind a # sign in the example file. So, if
-   a line in your training file looks like
-
-   -1 1:3 5:6 #abcdefg
-
-   then the SVECTOR field "words" will contain the vector 1:3 5:6, and
-   "userdefined" will contain the string "abcdefg". */
-
-double custom_kernel(KERNEL_PARM *kernel_parm, SVECTOR *a, SVECTOR *b) 
-     /* plug in you favorite kernel */                          
-{
-  return((double)(1.0)); 
-}
diff --git a/trunk/svm_light/build/svm_light-tar/svm_classify.c b/trunk/svm_light/build/svm_light-tar/svm_classify.c
deleted file mode 100755
index 0b0333b0..00000000
--- a/trunk/svm_light/build/svm_light-tar/svm_classify.c
+++ /dev/null
@@ -1,197 +0,0 @@
-/***********************************************************************/
-/*                                                                     */
-/*   svm_classify.c                                                    */
-/*                                                                     */
-/*   Classification module of Support Vector Machine.                  */
-/*                                                                     */
-/*   Author: Thorsten Joachims                                         */
-/*   Date: 02.07.02                                                    */
-/*                                                                     */
-/*   Copyright (c) 2002  Thorsten Joachims - All rights reserved       */
-/*                                                                     */
-/*   This software is available for non-commercial use only. It must   */
-/*   not be modified and distributed without prior permission of the   */
-/*   author. The author is not responsible for implications from the   */
-/*   use of this software.                                             */
-/*                                                                     */
-/************************************************************************/
-
-# include "svm_common.h"
-
-char docfile[200];
-char modelfile[200];
-char predictionsfile[200];
-
-void read_input_parameters(int, char **, char *, char *, char *, long *, 
-			   long *);
-void print_help(void);
-
-
-int main (int argc, char* argv[])
-{
-  DOC *doc;   /* test example */
-  WORD *words;
-  long max_docs,max_words_doc,lld;
-  long totdoc=0,queryid,slackid;
-  long correct=0,incorrect=0,no_accuracy=0;
-  long res_a=0,res_b=0,res_c=0,res_d=0,wnum,pred_format;
-  long j;
-  double t1,runtime=0;
-  double dist,doc_label,costfactor;
-  char *line,*comment; 
-  FILE *predfl,*docfl;
-  MODEL *model; 
-
-  read_input_parameters(argc,argv,docfile,modelfile,predictionsfile,
-			&verbosity,&pred_format);
-
-  nol_ll(docfile,&max_docs,&max_words_doc,&lld); /* scan size of input file */
-  max_words_doc+=2;
-  lld+=2;
-
-  line = (char *)my_malloc(sizeof(char)*lld);
-  words = (WORD *)my_malloc(sizeof(WORD)*(max_words_doc+10));
-
-  model=read_model(modelfile);
-
-  if(model->kernel_parm.kernel_type == 0) { /* linear kernel */
-    /* compute weight vector */
-    add_weight_vector_to_linear_model(model);
-  }
-  
-  if(verbosity>=2) {
-    printf("Classifying test examples.."); fflush(stdout);
-  }
-
-  if ((docfl = fopen (docfile, "r")) == NULL)
-  { perror (docfile); exit (1); }
-  if ((predfl = fopen (predictionsfile, "w")) == NULL)
-  { perror (predictionsfile); exit (1); }
-
-  while((!feof(docfl)) && fgets(line,(int)lld,docfl)) {
-    if(line[0] == '#') continue;  /* line contains comments */
-    parse_document(line,words,&doc_label,&queryid,&slackid,&costfactor,&wnum,
-		   max_words_doc,&comment);
-    totdoc++;
-    if(model->kernel_parm.kernel_type == 0) {   /* linear kernel */
-      for(j=0;(words[j]).wnum != 0;j++) {  /* Check if feature numbers   */
-	if((words[j]).wnum>model->totwords) /* are not larger than in     */
-	  (words[j]).wnum=0;               /* model. Remove feature if   */
-      }                                        /* necessary.                 */
-      doc = create_example(-1,0,0,0.0,create_svector(words,comment,1.0));
-      t1=get_runtime();
-      dist=classify_example_linear(model,doc);
-      runtime+=(get_runtime()-t1);
-      free_example(doc,1);
-    }
-    else {                             /* non-linear kernel */
-      doc = create_example(-1,0,0,0.0,create_svector(words,comment,1.0));
-      t1=get_runtime();
-      dist=classify_example(model,doc);
-      runtime+=(get_runtime()-t1);
-      free_example(doc,1);
-    }
-    if(dist>0) {
-      if(pred_format==0) { /* old weired output format */
-	fprintf(predfl,"%.8g:+1 %.8g:-1\n",dist,-dist);
-      }
-      if(doc_label>0) correct++; else incorrect++;
-      if(doc_label>0) res_a++; else res_b++;
-    }
-    else {
-      if(pred_format==0) { /* old weired output format */
-	fprintf(predfl,"%.8g:-1 %.8g:+1\n",-dist,dist);
-      }
-      if(doc_label<0) correct++; else incorrect++;
-      if(doc_label>0) res_c++; else res_d++;
-    }
-    if(pred_format==1) { /* output the value of decision function */
-      fprintf(predfl,"%.8g\n",dist);
-    }
-    if((int)(0.01+(doc_label*doc_label)) != 1) 
-      { no_accuracy=1; } /* test data is not binary labeled */
-    if(verbosity>=2) {
-      if(totdoc % 100 == 0) {
-	printf("%ld..",totdoc); fflush(stdout);
-      }
-    }
-  }  
-  fclose(predfl);
-  fclose(docfl);
-  free(line);
-  free(words);
-  free_model(model,1);
-
-  if(verbosity>=2) {
-    printf("done\n");
-
-/*   Note by Gary Boone                     Date: 29 April 2000        */
-/*      o Timing is inaccurate. The timer has 0.01 second resolution.  */
-/*        Because classification of a single vector takes less than    */
-/*        0.01 secs, the timer was underflowing.                       */
-    printf("Runtime (without IO) in cpu-seconds: %.2f\n",
-	   (float)(runtime/100.0));
-    
-  }
-  if((!no_accuracy) && (verbosity>=1)) {
-    printf("Accuracy on test set: %.2f%% (%ld correct, %ld incorrect, %ld total)\n",(float)(correct)*100.0/totdoc,correct,incorrect,totdoc);
-    printf("Precision/recall on test set: %.2f%%/%.2f%%\n",(float)(res_a)*100.0/(res_a+res_b),(float)(res_a)*100.0/(res_a+res_c));
-  }
-
-  return(0);
-}
-
-void read_input_parameters(int argc, char **argv, char *docfile, 
-			   char *modelfile, char *predictionsfile, 
-			   long int *verbosity, long int *pred_format)
-{
-  long i;
-  
-  /* set default */
-  strcpy (modelfile, "svm_model");
-  strcpy (predictionsfile, "svm_predictions"); 
-  (*verbosity)=2;
-  (*pred_format)=1;
-
-  for(i=1;(i<argc) && ((argv[i])[0] == '-');i++) {
-    switch ((argv[i])[1]) 
-      { 
-      case 'h': print_help(); exit(0);
-      case 'v': i++; (*verbosity)=atol(argv[i]); break;
-      case 'f': i++; (*pred_format)=atol(argv[i]); break;
-      default: printf("\nUnrecognized option %s!\n\n",argv[i]);
-	       print_help();
-	       exit(0);
-      }
-  }
-  if((i+1)>=argc) {
-    printf("\nNot enough input parameters!\n\n");
-    print_help();
-    exit(0);
-  }
-  strcpy (docfile, argv[i]);
-  strcpy (modelfile, argv[i+1]);
-  if((i+2)<argc) {
-    strcpy (predictionsfile, argv[i+2]);
-  }
-  if(((*pred_format) != 0) && ((*pred_format) != 1)) {
-    printf("\nOutput format can only take the values 0 or 1!\n\n");
-    print_help();
-    exit(0);
-  }
-}
-
-void print_help(void)
-{
-  printf("\nSVM-light %s: Support Vector Machine, classification module     %s\n",VERSION,VERSION_DATE);
-  copyright_notice();
-  printf("   usage: svm_classify [options] example_file model_file output_file\n\n");
-  printf("options: -h         -> this help\n");
-  printf("         -v [0..3]  -> verbosity level (default 2)\n");
-  printf("         -f [0,1]   -> 0: old output format of V1.0\n");
-  printf("                    -> 1: output the value of decision function (default)\n\n");
-}
-
-
-
-
diff --git a/trunk/svm_light/build/svm_light-tar/svm_common.c b/trunk/svm_light/build/svm_light-tar/svm_common.c
deleted file mode 100755
index 61e72800..00000000
--- a/trunk/svm_light/build/svm_light-tar/svm_common.c
+++ /dev/null
@@ -1,985 +0,0 @@
-/************************************************************************/
-/*                                                                      */
-/*   svm_common.c                                                       */
-/*                                                                      */
-/*   Definitions and functions used in both svm_learn and svm_classify. */
-/*                                                                      */
-/*   Author: Thorsten Joachims                                          */
-/*   Date: 02.07.04                                                     */
-/*                                                                      */
-/*   Copyright (c) 2004  Thorsten Joachims - All rights reserved        */
-/*                                                                      */
-/*   This software is available for non-commercial use only. It must    */
-/*   not be modified and distributed without prior permission of the    */
-/*   author. The author is not responsible for implications from the    */
-/*   use of this software.                                              */
-/*                                                                      */
-/************************************************************************/
-
-# include "ctype.h"
-# include "svm_common.h"
-# include "kernel.h"           /* this contains a user supplied kernel */
-
-long   verbosity;              /* verbosity level (0-4) */
-long   kernel_cache_statistic;
-
-double classify_example(MODEL *model, DOC *ex) 
-     /* classifies one example */
-{
-  register long i;
-  register double dist;
-
-  if((model->kernel_parm.kernel_type == LINEAR) && (model->lin_weights))
-    return(classify_example_linear(model,ex));
-	   
-  dist=0;
-  for(i=1;i<model->sv_num;i++) {  
-    dist+=kernel(&model->kernel_parm,model->supvec[i],ex)*model->alpha[i];
-  }
-  return(dist-model->b);
-}
-
-double classify_example_linear(MODEL *model, DOC *ex) 
-     /* classifies example for linear kernel */
-     
-     /* important: the model must have the linear weight vector computed */
-     /* use: add_weight_vector_to_linear_model(&model); */
-
-
-     /* important: the feature numbers in the example to classify must */
-     /*            not be larger than the weight vector!               */
-{
-  double sum=0;
-  SVECTOR *f;
-
-  for(f=ex->fvec;f;f=f->next)  
-    sum+=f->factor*sprod_ns(model->lin_weights,f);
-  return(sum-model->b);
-}
-
-
-double kernel(KERNEL_PARM *kernel_parm, DOC *a, DOC *b) 
-     /* calculate the kernel function */
-{
-  double sum=0;
-  SVECTOR *fa,*fb;
-
-  /* in case the constraints are sums of feature vector as represented
-     as a list of SVECTOR's with their coefficient factor in the sum,
-     take the kernel between all pairs */ 
-  for(fa=a->fvec;fa;fa=fa->next) { 
-    for(fb=b->fvec;fb;fb=fb->next) {
-      if(fa->kernel_id == fb->kernel_id)
-	sum+=fa->factor*fb->factor*single_kernel(kernel_parm,fa,fb);
-    }
-  }
-  return(sum);
-}
-
-double single_kernel(KERNEL_PARM *kernel_parm, SVECTOR *a, SVECTOR *b) 
-     /* calculate the kernel function between two vectors */
-{
-  kernel_cache_statistic++;
-  switch(kernel_parm->kernel_type) {
-    case 0: /* linear */ 
-            return(sprod_ss(a,b)); 
-    case 1: /* polynomial */
-            return(pow(kernel_parm->coef_lin*sprod_ss(a,b)+kernel_parm->coef_const,(double)kernel_parm->poly_degree)); 
-    case 2: /* radial basis function */
-            return(exp(-kernel_parm->rbf_gamma*(a->twonorm_sq-2*sprod_ss(a,b)+b->twonorm_sq)));
-    case 3: /* sigmoid neural net */
-            return(tanh(kernel_parm->coef_lin*sprod_ss(a,b)+kernel_parm->coef_const)); 
-    case 4: /* custom-kernel supplied in file kernel.h*/
-            return(custom_kernel(kernel_parm,a,b)); 
-    default: printf("Error: Unknown kernel function\n"); exit(1);
-  }
-}
-
-
-SVECTOR *create_svector(WORD *words,char *userdefined,double factor)
-{
-  SVECTOR *vec;
-  long    fnum,i;
-
-  fnum=0;
-  while(words[fnum].wnum) {
-    fnum++;
-  }
-  fnum++;
-  vec = (SVECTOR *)my_malloc(sizeof(SVECTOR));
-  vec->words = (WORD *)my_malloc(sizeof(WORD)*(fnum));
-  for(i=0;i<fnum;i++) { 
-      vec->words[i]=words[i];
-  }
-  vec->twonorm_sq=sprod_ss(vec,vec);
-
-  fnum=0;
-  while(userdefined[fnum]) {
-    fnum++;
-  }
-  fnum++;
-  vec->userdefined = (char *)my_malloc(sizeof(char)*(fnum));
-  for(i=0;i<fnum;i++) { 
-      vec->userdefined[i]=userdefined[i];
-  }
-  vec->kernel_id=0;
-  vec->next=NULL;
-  vec->factor=factor;
-  return(vec);
-}
-
-SVECTOR *copy_svector(SVECTOR *vec)
-{
-  SVECTOR *newvec=NULL;
-  if(vec) {
-    newvec=create_svector(vec->words,vec->userdefined,vec->factor);
-    newvec->next=copy_svector(vec->next);
-  }
-  return(newvec);
-}
-    
-void free_svector(SVECTOR *vec)
-{
-  if(vec) {
-    free(vec->words);
-    if(vec->userdefined)
-      free(vec->userdefined);
-    free_svector(vec->next);
-    free(vec);
-  }
-}
-
-double sprod_ss(SVECTOR *a, SVECTOR *b) 
-     /* compute the inner product of two sparse vectors */
-{
-    register double sum=0;
-    register WORD *ai,*bj;
-    ai=a->words;
-    bj=b->words;
-    while (ai->wnum && bj->wnum) {
-      if(ai->wnum > bj->wnum) {
-	bj++;
-      }
-      else if (ai->wnum < bj->wnum) {
-	ai++;
-      }
-      else {
-	sum+=(ai->weight) * (bj->weight);
-	ai++;
-	bj++;
-      }
-    }
-    return((double)sum);
-}
-
-SVECTOR* sub_ss(SVECTOR *a, SVECTOR *b) 
-     /* compute the difference a-b of two sparse vectors */
-     /* Note: SVECTOR lists are not followed, but only the first
-	SVECTOR is used */
-{
-    SVECTOR *vec;
-    register WORD *sum,*sumi;
-    register WORD *ai,*bj;
-    long veclength;
-  
-    ai=a->words;
-    bj=b->words;
-    veclength=0;
-    while (ai->wnum && bj->wnum) {
-      if(ai->wnum > bj->wnum) {
-	veclength++;
-	bj++;
-      }
-      else if (ai->wnum < bj->wnum) {
-	veclength++;
-	ai++;
-      }
-      else {
-	veclength++;
-	ai++;
-	bj++;
-      }
-    }
-    while (bj->wnum) {
-      veclength++;
-      bj++;
-    }
-    while (ai->wnum) {
-      veclength++;
-      ai++;
-    }
-    veclength++;
-
-    sum=(WORD *)my_malloc(sizeof(WORD)*veclength);
-    sumi=sum;
-    ai=a->words;
-    bj=b->words;
-    while (ai->wnum && bj->wnum) {
-      if(ai->wnum > bj->wnum) {
-	(*sumi)=(*bj);
-	sumi->weight*=(-1);
-	sumi++;
-	bj++;
-      }
-      else if (ai->wnum < bj->wnum) {
-	(*sumi)=(*ai);
-	sumi++;
-	ai++;
-      }
-      else {
-	(*sumi)=(*ai);
-	sumi->weight-=bj->weight;
-	if(sumi->weight != 0)
-	  sumi++;
-	ai++;
-	bj++;
-      }
-    }
-    while (bj->wnum) {
-      (*sumi)=(*bj);
-      sumi->weight*=(-1);
-      sumi++;
-      bj++;
-    }
-    while (ai->wnum) {
-      (*sumi)=(*ai);
-      sumi++;
-      ai++;
-    }
-    sumi->wnum=0;
-
-    vec=create_svector(sum,"",1.0);
-    free(sum);
-
-    return(vec);
-}
-
-SVECTOR* add_ss(SVECTOR *a, SVECTOR *b) 
-     /* compute the sum a+b of two sparse vectors */
-     /* Note: SVECTOR lists are not followed, but only the first
-	SVECTOR is used */
-{
-    SVECTOR *vec;
-    register WORD *sum,*sumi;
-    register WORD *ai,*bj;
-    long veclength;
-  
-    ai=a->words;
-    bj=b->words;
-    veclength=0;
-    while (ai->wnum && bj->wnum) {
-      if(ai->wnum > bj->wnum) {
-	veclength++;
-	bj++;
-      }
-      else if (ai->wnum < bj->wnum) {
-	veclength++;
-	ai++;
-      }
-      else {
-	veclength++;
-	ai++;
-	bj++;
-      }
-    }
-    while (bj->wnum) {
-      veclength++;
-      bj++;
-    }
-    while (ai->wnum) {
-      veclength++;
-      ai++;
-    }
-    veclength++;
-
-    /*** is veclength=lengSequence(a)+lengthSequence(b)? ***/
-
-    sum=(WORD *)my_malloc(sizeof(WORD)*veclength);
-    sumi=sum;
-    ai=a->words;
-    bj=b->words;
-    while (ai->wnum && bj->wnum) {
-      if(ai->wnum > bj->wnum) {
-	(*sumi)=(*bj);
-	sumi++;
-	bj++;
-      }
-      else if (ai->wnum < bj->wnum) {
-	(*sumi)=(*ai);
-	sumi++;
-	ai++;
-      }
-      else {
-	(*sumi)=(*ai);
-	sumi->weight+=bj->weight;
-	if(sumi->weight != 0)
-	  sumi++;
-	ai++;
-	bj++;
-      }
-    }
-    while (bj->wnum) {
-      (*sumi)=(*bj);
-      sumi++;
-      bj++;
-    }
-    while (ai->wnum) {
-      (*sumi)=(*ai);
-      sumi++;
-      ai++;
-    }
-    sumi->wnum=0;
-
-    vec=create_svector(sum,"",1.0);
-    free(sum);
-
-    return(vec);
-}
-
-SVECTOR* add_list_ss(SVECTOR *a) 
-     /* computes the linear combination of the SVECTOR list weighted
-	by the factor of each SVECTOR */
-{
-  SVECTOR *scaled,*oldsum,*sum,*f;
-  WORD    empty[2];
-    
-  if(a){
-    sum=smult_s(a,a->factor);
-    for(f=a->next;f;f=f->next) {
-      scaled=smult_s(f,f->factor);
-      oldsum=sum;
-      sum=add_ss(sum,scaled);
-      free_svector(oldsum);
-      free_svector(scaled);
-    }
-    sum->factor=1.0;
-  }
-  else {
-    empty[0].wnum=0;
-    sum=create_svector(empty,"",1.0);
-  }
-  return(sum);
-}
-
-void append_svector_list(SVECTOR *a, SVECTOR *b) 
-     /* appends SVECTOR b to the end of SVECTOR a. */
-{
-    SVECTOR *f;
-    
-    for(f=a;f->next;f=f->next);  /* find end of first vector list */
-    f->next=b;                   /* append the two vector lists */
-}
-
-SVECTOR* smult_s(SVECTOR *a, double factor) 
-     /* scale sparse vector a by factor */
-{
-    SVECTOR *vec;
-    register WORD *sum,*sumi;
-    register WORD *ai;
-    long veclength;
-  
-    ai=a->words;
-    veclength=0;
-    while (ai->wnum) {
-      veclength++;
-      ai++;
-    }
-    veclength++;
-
-    sum=(WORD *)my_malloc(sizeof(WORD)*veclength);
-    sumi=sum;
-    ai=a->words;
-    while (ai->wnum) {
-	(*sumi)=(*ai);
-	sumi->weight*=factor;
-	if(sumi->weight != 0)
-	  sumi++;
-	ai++;
-    }
-    sumi->wnum=0;
-
-    vec=create_svector(sum,a->userdefined,a->factor);
-    free(sum);
-
-    return(vec);
-}
-
-int featvec_eq(SVECTOR *a, SVECTOR *b)
-     /* tests two sparse vectors for equality */
-{
-    register WORD *ai,*bj;
-    ai=a->words;
-    bj=b->words;
-    while (ai->wnum && bj->wnum) {
-      if(ai->wnum > bj->wnum) {
-	if((bj->weight) != 0)
-	  return(0);
-	bj++;
-      }
-      else if (ai->wnum < bj->wnum) {
-	if((ai->weight) != 0)
-	  return(0);
-	ai++;
-      }
-      else {
-	if((ai->weight) != (bj->weight)) 
-	  return(0);
-	ai++;
-	bj++;
-      }
-    }
-    return(1);
-}
-
-double model_length_s(MODEL *model, KERNEL_PARM *kernel_parm) 
-     /* compute length of weight vector */
-{
-  register long i,j;
-  register double sum=0,alphai;
-  register DOC *supveci;
-
-  for(i=1;i<model->sv_num;i++) {  
-    alphai=model->alpha[i];
-    supveci=model->supvec[i];
-    for(j=1;j<model->sv_num;j++) {
-      sum+=alphai*model->alpha[j]
-	   *kernel(kernel_parm,supveci,model->supvec[j]);
-    }
-  }
-  return(sqrt(sum));
-}
-
-void clear_vector_n(double *vec, long int n)
-{
-  register long i;
-  for(i=0;i<=n;i++) vec[i]=0;
-}
-
-void add_vector_ns(double *vec_n, SVECTOR *vec_s, double faktor)
-{
-  register WORD *ai;
-  ai=vec_s->words;
-  while (ai->wnum) {
-    vec_n[ai->wnum]+=(faktor*ai->weight);
-    ai++;
-  }
-}
-
-double sprod_ns(double *vec_n, SVECTOR *vec_s)
-{
-  register double sum=0;
-  register WORD *ai;
-  ai=vec_s->words;
-  while (ai->wnum) {
-    sum+=(vec_n[ai->wnum]*ai->weight);
-    ai++;
-  }
-  return(sum);
-}
-
-void add_weight_vector_to_linear_model(MODEL *model)
-     /* compute weight vector in linear case and add to model */
-{
-  long i;
-  SVECTOR *f;
-
-  model->lin_weights=(double *)my_malloc(sizeof(double)*(model->totwords+1));
-  clear_vector_n(model->lin_weights,model->totwords);
-  for(i=1;i<model->sv_num;i++) {
-    for(f=(model->supvec[i])->fvec;f;f=f->next)  
-      add_vector_ns(model->lin_weights,f,f->factor*model->alpha[i]);
-  }
-}
-
-
-DOC *create_example(long docnum, long queryid, long slackid, 
-		    double costfactor, SVECTOR *fvec)
-{
-  DOC *example;
-  example = (DOC *)my_malloc(sizeof(DOC));
-  example->docnum=docnum;
-  example->queryid=queryid;
-  example->slackid=slackid;
-  example->costfactor=costfactor;
-  example->fvec=fvec;
-  return(example);
-}
-
-void free_example(DOC *example, long deep)
-{
-  if(example) {
-    if(deep) {
-      if(example->fvec)
-	free_svector(example->fvec);
-    }
-    free(example);
-  }
-}
-
-void write_model(char *modelfile, MODEL *model)
-{
-  FILE *modelfl;
-  long j,i,sv_num;
-  SVECTOR *v;
-
-  if(verbosity>=1) {
-    printf("Writing model file..."); fflush(stdout);
-  }
-  if ((modelfl = fopen (modelfile, "w")) == NULL)
-  { perror (modelfile); exit (1); }
-  fprintf(modelfl,"SVM-light Version %s\n",VERSION);
-  fprintf(modelfl,"%ld # kernel type\n",
-	  model->kernel_parm.kernel_type);
-  fprintf(modelfl,"%ld # kernel parameter -d \n",
-	  model->kernel_parm.poly_degree);
-  fprintf(modelfl,"%.8g # kernel parameter -g \n",
-	  model->kernel_parm.rbf_gamma);
-  fprintf(modelfl,"%.8g # kernel parameter -s \n",
-	  model->kernel_parm.coef_lin);
-  fprintf(modelfl,"%.8g # kernel parameter -r \n",
-	  model->kernel_parm.coef_const);
-  fprintf(modelfl,"%s# kernel parameter -u \n",model->kernel_parm.custom);
-  fprintf(modelfl,"%ld # highest feature index \n",model->totwords);
-  fprintf(modelfl,"%ld # number of training documents \n",model->totdoc);
- 
-  sv_num=1;
-  for(i=1;i<model->sv_num;i++) {
-    for(v=model->supvec[i]->fvec;v;v=v->next) 
-      sv_num++;
-  }
-  fprintf(modelfl,"%ld # number of support vectors plus 1 \n",sv_num);
-  fprintf(modelfl,"%.8g # threshold b, each following line is a SV (starting with alpha*y)\n",model->b);
-
-  for(i=1;i<model->sv_num;i++) {
-    for(v=model->supvec[i]->fvec;v;v=v->next) {
-      fprintf(modelfl,"%.32g ",model->alpha[i]*v->factor);
-      for (j=0; (v->words[j]).wnum; j++) {
-	fprintf(modelfl,"%ld:%.8g ",
-		(long)(v->words[j]).wnum,
-		(double)(v->words[j]).weight);
-      }
-      fprintf(modelfl,"#%s\n",v->userdefined);
-    /* NOTE: this could be made more efficient by summing the
-       alpha's of identical vectors before writing them to the
-       file. */
-    }
-  }
-  fclose(modelfl);
-  if(verbosity>=1) {
-    printf("done\n");
-  }
-}
-
-
-MODEL *read_model(char *modelfile)
-{
-  FILE *modelfl;
-  long i,queryid,slackid;
-  double costfactor;
-  long max_sv,max_words,ll,wpos;
-  char *line,*comment;
-  WORD *words;
-  char version_buffer[100];
-  MODEL *model;
-
-  if(verbosity>=1) {
-    printf("Reading model..."); fflush(stdout);
-  }
-
-  nol_ll(modelfile,&max_sv,&max_words,&ll); /* scan size of model file */
-  max_words+=2;
-  ll+=2;
-
-  words = (WORD *)my_malloc(sizeof(WORD)*(max_words+10));
-  line = (char *)my_malloc(sizeof(char)*ll);
-  model = (MODEL *)my_malloc(sizeof(MODEL));
-
-  if ((modelfl = fopen (modelfile, "r")) == NULL)
-  { perror (modelfile); exit (1); }
-
-  fscanf(modelfl,"SVM-light Version %s\n",version_buffer);
-  if(strcmp(version_buffer,VERSION)) {
-    perror ("Version of model-file does not match version of svm_classify!"); 
-    exit (1); 
-  }
-  fscanf(modelfl,"%ld%*[^\n]\n", &model->kernel_parm.kernel_type);  
-  fscanf(modelfl,"%ld%*[^\n]\n", &model->kernel_parm.poly_degree);
-  fscanf(modelfl,"%lf%*[^\n]\n", &model->kernel_parm.rbf_gamma);
-  fscanf(modelfl,"%lf%*[^\n]\n", &model->kernel_parm.coef_lin);
-  fscanf(modelfl,"%lf%*[^\n]\n", &model->kernel_parm.coef_const);
-  fscanf(modelfl,"%[^#]%*[^\n]\n", model->kernel_parm.custom);
-
-  fscanf(modelfl,"%ld%*[^\n]\n", &model->totwords);
-  fscanf(modelfl,"%ld%*[^\n]\n", &model->totdoc);
-  fscanf(modelfl,"%ld%*[^\n]\n", &model->sv_num);
-  fscanf(modelfl,"%lf%*[^\n]\n", &model->b);
-
-  model->supvec = (DOC **)my_malloc(sizeof(DOC *)*model->sv_num);
-  model->alpha = (double *)my_malloc(sizeof(double)*model->sv_num);
-  model->index=NULL;
-  model->lin_weights=NULL;
-
-  for(i=1;i<model->sv_num;i++) {
-    fgets(line,(int)ll,modelfl);
-    if(!parse_document(line,words,&(model->alpha[i]),&queryid,&slackid,
-		       &costfactor,&wpos,max_words,&comment)) {
-      printf("\nParsing error while reading model file in SV %ld!\n%s",
-	     i,line);
-      exit(1);
-    }
-    model->supvec[i] = create_example(-1,
-				      0,0,
-				      0.0,
-				      create_svector(words,comment,1.0));
-  }
-  fclose(modelfl);
-  free(line);
-  free(words);
-  if(verbosity>=1) {
-    fprintf(stdout, "OK. (%d support vectors read)\n",(int)(model->sv_num-1));
-  }
-  return(model);
-}
-
-MODEL *copy_model(MODEL *model)
-{
-  MODEL *newmodel;
-  long  i;
-
-  newmodel=(MODEL *)my_malloc(sizeof(MODEL));
-  (*newmodel)=(*model);
-  newmodel->supvec = (DOC **)my_malloc(sizeof(DOC *)*model->sv_num);
-  newmodel->alpha = (double *)my_malloc(sizeof(double)*model->sv_num);
-  newmodel->index = NULL; /* index is not copied */
-  newmodel->supvec[0] = NULL;
-  newmodel->alpha[0] = 0;
-  for(i=1;i<model->sv_num;i++) {
-    newmodel->alpha[i]=model->alpha[i];
-    newmodel->supvec[i]=create_example(model->supvec[i]->docnum,
-				       model->supvec[i]->queryid,0,
-				       model->supvec[i]->costfactor,
-				       copy_svector(model->supvec[i]->fvec));
-  }
-  if(model->lin_weights) {
-    newmodel->lin_weights = (double *)my_malloc(sizeof(double)*(model->totwords+1));
-    for(i=0;i<model->totwords+1;i++) 
-      newmodel->lin_weights[i]=model->lin_weights[i];
-  }
-  return(newmodel);
-}
-
-void free_model(MODEL *model, int deep)
-{
-  long i;
-
-  if(model->supvec) {
-    if(deep) {
-      for(i=1;i<model->sv_num;i++) {
-	free_example(model->supvec[i],1);
-      }
-    }
-    free(model->supvec);
-  }
-  if(model->alpha) free(model->alpha);
-  if(model->index) free(model->index);
-  if(model->lin_weights) free(model->lin_weights);
-  free(model);
-}
-
-
-void read_documents(char *docfile, DOC ***docs, double **label, 
-		    long int *totwords, long int *totdoc)
-{
-  char *line,*comment;
-  WORD *words;
-  long dnum=0,wpos,dpos=0,dneg=0,dunlab=0,queryid,slackid,max_docs;
-  long max_words_doc, ll;
-  double doc_label,costfactor;
-  FILE *docfl;
-
-  if(verbosity>=1) {
-    printf("Scanning examples..."); fflush(stdout);
-  }
-  nol_ll(docfile,&max_docs,&max_words_doc,&ll); /* scan size of input file */
-  max_words_doc+=2;
-  ll+=2;
-  max_docs+=2;
-  if(verbosity>=1) {
-    printf("done\n"); fflush(stdout);
-  }
-
-  (*docs) = (DOC **)my_malloc(sizeof(DOC *)*max_docs);    /* feature vectors */
-  (*label) = (double *)my_malloc(sizeof(double)*max_docs); /* target values */
-  line = (char *)my_malloc(sizeof(char)*ll);
-
-  if ((docfl = fopen (docfile, "r")) == NULL)
-  { perror (docfile); exit (1); }
-
-  words = (WORD *)my_malloc(sizeof(WORD)*(max_words_doc+10));
-  if(verbosity>=1) {
-    printf("Reading examples into memory..."); fflush(stdout);
-  }
-  dnum=0;
-  (*totwords)=0;
-  while((!feof(docfl)) && fgets(line,(int)ll,docfl)) {
-    if(line[0] == '#') continue;  /* line contains comments */
-    if(!parse_document(line,words,&doc_label,&queryid,&slackid,&costfactor,
-		       &wpos,max_words_doc,&comment)) {
-      printf("\nParsing error in line %ld!\n%s",dnum,line);
-      exit(1);
-    }
-    (*label)[dnum]=doc_label;
-    /* printf("docnum=%ld: Class=%f ",dnum,doc_label); */
-    if(doc_label > 0) dpos++;
-    if (doc_label < 0) dneg++;
-    if (doc_label == 0) dunlab++;
-    if((wpos>1) && ((words[wpos-2]).wnum>(*totwords))) 
-      (*totwords)=(words[wpos-2]).wnum;
-    if((*totwords) > MAXFEATNUM) {
-      printf("\nMaximum feature number exceeds limit defined in MAXFEATNUM!\n");
-      printf("LINE: %s\n",line);
-      exit(1);
-    }
-    (*docs)[dnum] = create_example(dnum,queryid,slackid,costfactor,
-				   create_svector(words,comment,1.0));
-    /* printf("\nNorm=%f\n",((*docs)[dnum]->fvec)->twonorm_sq);  */
-    dnum++;  
-    if(verbosity>=1) {
-      if((dnum % 100) == 0) {
-	printf("%ld..",dnum); fflush(stdout);
-      }
-    }
-  } 
-
-  fclose(docfl);
-  free(line);
-  free(words);
-  if(verbosity>=1) {
-    fprintf(stdout, "OK. (%ld examples read)\n", dnum);
-  }
-  (*totdoc)=dnum;
-}
-
-int parse_document(char *line, WORD *words, double *label,
-		   long *queryid, long *slackid, double *costfactor,
-		   long int *numwords, long int max_words_doc,
-		   char **comment)
-{
-  register long wpos,pos;
-  long wnum;
-  double weight;
-  int numread;
-  char featurepair[1000],junk[1000];
-
-  (*queryid)=0;
-  (*slackid)=0;
-  (*costfactor)=1;
-
-  pos=0;
-  (*comment)=NULL;
-  while(line[pos] ) {      /* cut off comments */
-    if((line[pos] == '#') && (!(*comment))) {
-      line[pos]=0;
-      (*comment)=&(line[pos+1]);
-    }
-    if(line[pos] == '\n') { /* strip the CR */
-      line[pos]=0;
-    }
-    pos++;
-  }
-  if(!(*comment)) (*comment)=&(line[pos]);
-  /* printf("Comment: '%s'\n",(*comment)); */
-
-  wpos=0;
-  /* check, that line starts with target value or zero, but not with
-     feature pair */
-  if(sscanf(line,"%s",featurepair) == EOF) return(0);
-  pos=0;
-  while((featurepair[pos] != ':') && featurepair[pos]) pos++;
-  if(featurepair[pos] == ':') {
-	perror ("Line must start with label or 0!!!\n"); 
-	printf("LINE: %s\n",line);
-	exit (1); 
-  }
-  /* read the target value */
-  if(sscanf(line,"%lf",label) == EOF) return(0);
-  pos=0;
-  while(space_or_null((int)line[pos])) pos++;
-  while((!space_or_null((int)line[pos])) && line[pos]) pos++;
-  while(((numread=sscanf(line+pos,"%s",featurepair)) != EOF) && 
-	(numread > 0) && 
-	(wpos<max_words_doc)) {
-    /* printf("%s\n",featurepair); */
-    while(space_or_null((int)line[pos])) pos++;
-    while((!space_or_null((int)line[pos])) && line[pos]) pos++;
-    if(sscanf(featurepair,"qid:%ld%s",&wnum,junk)==1) {
-      /* it is the query id */
-      (*queryid)=(long)wnum;
-    }
-    else if(sscanf(featurepair,"sid:%ld%s",&wnum,junk)==1) {
-      /* it is the slack id */
-      if(wnum > 0) 
-	(*slackid)=(long)wnum;
-      else {
-	perror ("Slack-id must be greater or equal to 1!!!\n"); 
-	printf("LINE: %s\n",line);
-	exit (1); 
-      }
-    }
-    else if(sscanf(featurepair,"cost:%lf%s",&weight,junk)==1) {
-      /* it is the example-dependent cost factor */
-      (*costfactor)=(double)weight;
-    }
-    else if(sscanf(featurepair,"%ld:%lf%s",&wnum,&weight,junk)==2) {
-      /* it is a regular feature */
-      if(wnum<=0) { 
-	perror ("Feature numbers must be larger or equal to 1!!!\n"); 
-	printf("LINE: %s\n",line);
-	exit (1); 
-      }
-      if((wpos>0) && ((words[wpos-1]).wnum >= wnum)) { 
-	perror ("Features must be in increasing order!!!\n"); 
-	printf("LINE: %s\n",line);
-	exit (1); 
-      }
-      (words[wpos]).wnum=wnum;
-      (words[wpos]).weight=(FVAL)weight; 
-      wpos++;
-    }
-    else {
-      perror ("Cannot parse feature/value pair!!!\n"); 
-      printf("'%s' in LINE: %s\n",featurepair,line);
-      exit (1); 
-    }
-  }
-  (words[wpos]).wnum=0;
-  (*numwords)=wpos+1;
-  return(1);
-}
-
-double *read_alphas(char *alphafile,long totdoc)
-     /* reads the alpha vector from a file as written by the
-        write_alphas function */
-{
-  FILE *fl;
-  double *alpha;
-  long dnum;
-
-  if ((fl = fopen (alphafile, "r")) == NULL)
-  { perror (alphafile); exit (1); }
-
-  alpha = (double *)my_malloc(sizeof(double)*totdoc);
-  if(verbosity>=1) {
-    printf("Reading alphas..."); fflush(stdout);
-  }
-  dnum=0;
-  while((!feof(fl)) && fscanf(fl,"%lf\n",&alpha[dnum]) && (dnum<totdoc)) {
-    dnum++;
-  }
-  if(dnum != totdoc)
-  { perror ("\nNot enough values in alpha file!"); exit (1); }
-  fclose(fl);
-
-  if(verbosity>=1) {
-    printf("done\n"); fflush(stdout);
-  }
-
-  return(alpha);
-}
-
-void nol_ll(char *file, long int *nol, long int *wol, long int *ll) 
-     /* Grep through file and count number of lines, maximum number of
-        spaces per line, and longest line. */
-{
-  FILE *fl;
-  int ic;
-  char c;
-  long current_length,current_wol;
-
-  if ((fl = fopen (file, "r")) == NULL)
-  { perror (file); exit (1); }
-  current_length=0;
-  current_wol=0;
-  (*ll)=0;
-  (*nol)=1;
-  (*wol)=0;
-  while((ic=getc(fl)) != EOF) {
-    c=(char)ic;
-    current_length++;
-    if(space_or_null((int)c)) {
-      current_wol++;
-    }
-    if(c == '\n') {
-      (*nol)++;
-      if(current_length>(*ll)) {
-	(*ll)=current_length;
-      }
-      if(current_wol>(*wol)) {
-	(*wol)=current_wol;
-      }
-      current_length=0;
-      current_wol=0;
-    }
-  }
-  fclose(fl);
-}
-
-long minl(long int a, long int b)
-{
-  if(a<b)
-    return(a);
-  else
-    return(b);
-}
-
-long maxl(long int a, long int b)
-{
-  if(a>b)
-    return(a);
-  else
-    return(b);
-}
-
-long get_runtime(void)
-{
-  clock_t start;
-  start = clock();
-  return((long)((double)start*100.0/(double)CLOCKS_PER_SEC));
-}
-
-
-# ifdef _MSC_VER
-
-int isnan(double a)
-{
-  return(_isnan(a));
-}
-
-# endif 
-
-int space_or_null(int c) {
-  if (c==0)
-    return 1;
-  return isspace((unsigned char)c);
-}
-
-void *my_malloc(size_t size)
-{
-  void *ptr;
-  if(size<=0) size=1; /* for AIX compatibility */
-  ptr=(void *)malloc(size);
-  if(!ptr) { 
-    perror ("Out of memory!\n"); 
-    exit (1); 
-  }
-  return(ptr);
-}
-
-void copyright_notice(void)
-{
-  printf("\nCopyright: Thorsten Joachims, thorsten@joachims.org\n\n");
-  printf("This software is available for non-commercial use only. It must not\n");
-  printf("be modified and distributed without prior permission of the author.\n");
-  printf("The author is not responsible for implications from the use of this\n");
-  printf("software.\n\n");
-}
diff --git a/trunk/svm_light/build/svm_light-tar/svm_common.h b/trunk/svm_light/build/svm_light-tar/svm_common.h
deleted file mode 100755
index 6487fa1d..00000000
--- a/trunk/svm_light/build/svm_light-tar/svm_common.h
+++ /dev/null
@@ -1,301 +0,0 @@
-/************************************************************************/
-/*                                                                      */
-/*   svm_common.h                                                       */
-/*                                                                      */
-/*   Definitions and functions used in both svm_learn and svm_classify. */
-/*                                                                      */
-/*   Author: Thorsten Joachims                                          */
-/*   Date: 02.07.02                                                     */
-/*                                                                      */
-/*   Copyright (c) 2002  Thorsten Joachims - All rights reserved        */
-/*                                                                      */
-/*   This software is available for non-commercial use only. It must    */
-/*   not be modified and distributed without prior permission of the    */
-/*   author. The author is not responsible for implications from the    */
-/*   use of this software.                                              */
-/*                                                                      */
-/************************************************************************/
-
-#ifndef SVM_COMMON
-#define SVM_COMMON
-
-# include <stdio.h>
-# include <ctype.h>
-# include <math.h>
-# include <string.h>
-# include <stdlib.h>
-# include <time.h> 
-# include <float.h>
-
-# define VERSION       "V6.02"
-# define VERSION_DATE  "14.08.08"
-
-# define CFLOAT  float       /* the type of float to use for caching */
-                             /* kernel evaluations. Using float saves */
-                             /* us some memory, but you can use double, too */
-# define FNUM    long        /* the type used for storing feature ids */
-# define FVAL    float       /* the type used for storing feature values */
-# define MAXFEATNUM 99999999 /* maximum feature number (must be in
-			  	valid range of FNUM type and long int!) */
-
-# define LINEAR  0           /* linear kernel type */
-# define POLY    1           /* polynoial kernel type */
-# define RBF     2           /* rbf kernel type */
-# define SIGMOID 3           /* sigmoid kernel type */
-
-# define CLASSIFICATION 1    /* train classification model */
-# define REGRESSION     2    /* train regression model */
-# define RANKING        3    /* train ranking model */
-# define OPTIMIZATION   4    /* train on general set of constraints */
-
-# define MAXSHRINK     50000    /* maximum number of shrinking rounds */
-
-typedef struct word {
-  FNUM    wnum;	               /* word number */
-  FVAL    weight;              /* word weight */
-} WORD;
-
-typedef struct svector {
-  WORD    *words;              /* The features/values in the vector by
-				  increasing feature-number. Feature
-				  numbers that are skipped are
-				  interpreted as having value zero. */
-  double  twonorm_sq;          /* The squared euclidian length of the
-                                  vector. Used to speed up the RBF kernel. */
-  char    *userdefined;        /* You can put additional information
-				  here. This can be useful, if you are
-				  implementing your own kernel that
-				  does not work with feature/values
-				  representations (for example a
-				  string kernel). By default,
-				  svm-light will put here the string
-				  after the # sign from each line of
-				  the input file. */
-  long    kernel_id;           /* Feature vectors with different
-				  kernel_id's are orthogonal (ie. the
-				  feature number do not match). This
-				  is used for computing component
-				  kernels for linear constraints which
-				  are a sum of several different
-				  weight vectors. (currently not
-				  implemented). */
-  struct svector *next;        /* Let's you set up a list of SVECTOR's
-				  for linear constraints which are a
-				  sum of multiple feature
-				  vectors. List is terminated by
-				  NULL. */
-  double  factor;              /* Factor by which this feature vector
-				  is multiplied in the sum. */
-} SVECTOR;
-
-typedef struct doc {
-  long    docnum;              /* Document ID. This has to be the position of 
-                                  the document in the training set array. */
-  long    queryid;             /* for learning rankings, constraints are 
-				  generated for documents with the same 
-				  queryID. */
-  double  costfactor;          /* Scales the cost of misclassifying this
-				  document by this factor. The effect of this
-				  value is, that the upper bound on the alpha
-				  for this example is scaled by this factor.
-				  The factors are set by the feature 
-				  'cost:<val>' in the training data. */
-  long    slackid;             /* Index of the slack variable
-				  corresponding to this
-				  constraint. All constraints with the
-				  same slackid share the same slack
-				  variable. This can only be used for
-				  svm_learn_optimization. */
-  SVECTOR *fvec;               /* Feature vector of the example. The
-				  feature vector can actually be a
-				  list of feature vectors. For
-				  example, the list will have two
-				  elements, if this DOC is a
-				  preference constraint. The one
-				  vector that is supposed to be ranked
-				  higher, will have a factor of +1,
-				  the lower ranked one should have a
-				  factor of -1. */
-} DOC;
-
-typedef struct learn_parm {
-  long   type;                 /* selects between regression and
-				  classification */
-  double svm_c;                /* upper bound C on alphas */
-  double eps;                  /* regression epsilon (eps=1.0 for
-				  classification */
-  double svm_costratio;        /* factor to multiply C for positive examples */
-  double transduction_posratio;/* fraction of unlabeled examples to be */
-                               /* classified as positives */
-  long   biased_hyperplane;    /* if nonzero, use hyperplane w*x+b=0 
-				  otherwise w*x=0 */
-  long   sharedslack;          /* if nonzero, it will use the shared
-                                  slack variable mode in
-                                  svm_learn_optimization. It requires
-                                  that the slackid is set for every
-                                  training example */
-  long   svm_maxqpsize;        /* size q of working set */
-  long   svm_newvarsinqp;      /* new variables to enter the working set 
-				  in each iteration */
-  long   kernel_cache_size;    /* size of kernel cache in megabytes */
-  double epsilon_crit;         /* tolerable error for distances used 
-				  in stopping criterion */
-  double epsilon_shrink;       /* how much a multiplier should be above 
-				  zero for shrinking */
-  long   svm_iter_to_shrink;   /* iterations h after which an example can
-				  be removed by shrinking */
-  long   maxiter;              /* number of iterations after which the
-				  optimizer terminates, if there was
-				  no progress in maxdiff */
-  long   remove_inconsistent;  /* exclude examples with alpha at C and 
-				  retrain */
-  long   skip_final_opt_check; /* do not check KT-Conditions at the end of
-				  optimization for examples removed by 
-				  shrinking. WARNING: This might lead to 
-				  sub-optimal solutions! */
-  long   compute_loo;          /* if nonzero, computes leave-one-out
-				  estimates */
-  double rho;                  /* parameter in xi/alpha-estimates and for
-				  pruning leave-one-out range [1..2] */
-  long   xa_depth;             /* parameter in xi/alpha-estimates upper
-				  bounding the number of SV the current
-				  alpha_t is distributed over */
-  char predfile[200];          /* file for predicitions on unlabeled examples
-				  in transduction */
-  char alphafile[200];         /* file to store optimal alphas in. use  
-				  empty string if alphas should not be 
-				  output */
-
-  /* you probably do not want to touch the following */
-  double epsilon_const;        /* tolerable error on eq-constraint */
-  double epsilon_a;            /* tolerable error on alphas at bounds */
-  double opt_precision;        /* precision of solver, set to e.g. 1e-21 
-				  if you get convergence problems */
-
-  /* the following are only for internal use */
-  long   svm_c_steps;          /* do so many steps for finding optimal C */
-  double svm_c_factor;         /* increase C by this factor every step */
-  double svm_costratio_unlab;
-  double svm_unlabbound;
-  double *svm_cost;            /* individual upper bounds for each var */
-  long   totwords;             /* number of features */
-} LEARN_PARM;
-
-typedef struct kernel_parm {
-  long    kernel_type;   /* 0=linear, 1=poly, 2=rbf, 3=sigmoid, 4=custom */
-  long    poly_degree;
-  double  rbf_gamma;
-  double  coef_lin;
-  double  coef_const;
-  char    custom[50];    /* for user supplied kernel */
-} KERNEL_PARM;
-
-typedef struct model {
-  long    sv_num;	
-  long    at_upper_bound;
-  double  b;
-  DOC     **supvec;
-  double  *alpha;
-  long    *index;       /* index from docnum to position in model */
-  long    totwords;     /* number of features */
-  long    totdoc;       /* number of training documents */
-  KERNEL_PARM kernel_parm; /* kernel */
-
-  /* the following values are not written to file */
-  double  loo_error,loo_recall,loo_precision; /* leave-one-out estimates */
-  double  xa_error,xa_recall,xa_precision;    /* xi/alpha estimates */
-  double  *lin_weights;                       /* weights for linear case using
-						 folding */
-  double  maxdiff;                            /* precision, up to which this 
-						 model is accurate */
-} MODEL;
-
-typedef struct quadratic_program {
-  long   opt_n;            /* number of variables */
-  long   opt_m;            /* number of linear equality constraints */
-  double *opt_ce,*opt_ce0; /* linear equality constraints */
-  double *opt_g;           /* hessian of objective */
-  double *opt_g0;          /* linear part of objective */
-  double *opt_xinit;       /* initial value for variables */
-  double *opt_low,*opt_up; /* box constraints */
-} QP;
-
-typedef struct kernel_cache {
-  long   *index;  /* cache some kernel evalutations */
-  CFLOAT *buffer; /* to improve speed */
-  long   *invindex;
-  long   *active2totdoc;
-  long   *totdoc2active;
-  long   *lru;
-  long   *occu;
-  long   elems;
-  long   max_elems;
-  long   time;
-  long   activenum;
-  long   buffsize;
-} KERNEL_CACHE;
-
-
-typedef struct timing_profile {
-  long   time_kernel;
-  long   time_opti;
-  long   time_shrink;
-  long   time_update;
-  long   time_model;
-  long   time_check;
-  long   time_select;
-} TIMING;
-
-typedef struct shrink_state {
-  long   *active;
-  long   *inactive_since;
-  long   deactnum;
-  double **a_history;  /* for shrinking with non-linear kernel */
-  long   maxhistory;
-  double *last_a;      /* for shrinking with linear kernel */
-  double *last_lin;    /* for shrinking with linear kernel */
-} SHRINK_STATE;
-
-double classify_example(MODEL *, DOC *);
-double classify_example_linear(MODEL *, DOC *);
-double kernel(KERNEL_PARM *, DOC *, DOC *); 
-double single_kernel(KERNEL_PARM *, SVECTOR *, SVECTOR *); 
-double custom_kernel(KERNEL_PARM *, SVECTOR *, SVECTOR *); 
-SVECTOR *create_svector(WORD *, char *, double);
-SVECTOR *copy_svector(SVECTOR *);
-void   free_svector(SVECTOR *);
-double    sprod_ss(SVECTOR *, SVECTOR *);
-SVECTOR*  sub_ss(SVECTOR *, SVECTOR *); 
-SVECTOR*  add_ss(SVECTOR *, SVECTOR *); 
-SVECTOR*  add_list_ss(SVECTOR *); 
-void      append_svector_list(SVECTOR *a, SVECTOR *b);
-SVECTOR*  smult_s(SVECTOR *, double);
-int       featvec_eq(SVECTOR *, SVECTOR *); 
-double model_length_s(MODEL *, KERNEL_PARM *);
-void   clear_vector_n(double *, long);
-void   add_vector_ns(double *, SVECTOR *, double);
-double sprod_ns(double *, SVECTOR *);
-void   add_weight_vector_to_linear_model(MODEL *);
-DOC    *create_example(long, long, long, double, SVECTOR *);
-void   free_example(DOC *, long);
-MODEL  *read_model(char *);
-MODEL  *copy_model(MODEL *);
-void   free_model(MODEL *, int);
-void   read_documents(char *, DOC ***, double **, long *, long *);
-int    parse_document(char *, WORD *, double *, long *, long *, double *, long *, long, char **);
-double *read_alphas(char *,long);
-void   nol_ll(char *, long *, long *, long *);
-long   minl(long, long);
-long   maxl(long, long);
-long   get_runtime(void);
-int    space_or_null(int);
-void   *my_malloc(size_t); 
-void   copyright_notice(void);
-# ifdef _MSC_VER
-   int isnan(double);
-# endif
-
-extern long   verbosity;              /* verbosity level (0-4) */
-extern long   kernel_cache_statistic;
-
-#endif
diff --git a/trunk/svm_light/build/svm_light-tar/svm_hideo.c b/trunk/svm_light/build/svm_light-tar/svm_hideo.c
deleted file mode 100755
index ffad2d3c..00000000
--- a/trunk/svm_light/build/svm_light-tar/svm_hideo.c
+++ /dev/null
@@ -1,1062 +0,0 @@
-/***********************************************************************/
-/*                                                                     */
-/*   svm_hideo.c                                                       */
-/*                                                                     */
-/*   The Hildreth and D'Espo solver specialized for SVMs.              */
-/*                                                                     */
-/*   Author: Thorsten Joachims                                         */
-/*   Date: 02.07.02                                                    */
-/*                                                                     */
-/*   Copyright (c) 2002  Thorsten Joachims - All rights reserved       */
-/*                                                                     */
-/*   This software is available for non-commercial use only. It must   */
-/*   not be modified and distributed without prior permission of the   */
-/*   author. The author is not responsible for implications from the   */
-/*   use of this software.                                             */
-/*                                                                     */
-/***********************************************************************/
-
-# include <math.h>
-# include "svm_common.h"
-
-/* 
-  solve the quadratic programming problem
- 
-  minimize   g0 * x + 1/2 x' * G * x
-  subject to ce*x = ce0
-             l <= x <= u
- 
-  The linear constraint vector ce can only have -1/+1 as entries 
-*/
-
-/* Common Block Declarations */
-
-long verbosity;
-
-# define PRIMAL_OPTIMAL      1
-# define DUAL_OPTIMAL        2
-# define MAXITER_EXCEEDED    3
-# define NAN_SOLUTION        4
-# define ONLY_ONE_VARIABLE   5
-
-# define LARGEROUND          0
-# define SMALLROUND          1
-
-/* /////////////////////////////////////////////////////////////// */
-
-# define DEF_PRECISION          1E-5
-# define DEF_MAX_ITERATIONS     200
-# define DEF_LINDEP_SENSITIVITY 1E-8
-# define EPSILON_HIDEO          1E-20
-# define EPSILON_EQ             1E-5
-
-double *optimize_qp(QP *, double *, long, double *, LEARN_PARM *);
-double *primal=0,*dual=0;
-long   precision_violations=0;
-double opt_precision=DEF_PRECISION;
-long   maxiter=DEF_MAX_ITERATIONS;
-double lindep_sensitivity=DEF_LINDEP_SENSITIVITY;
-double *buffer;
-long   *nonoptimal;
-
-long  smallroundcount=0;
-long  roundnumber=0;
-
-/* /////////////////////////////////////////////////////////////// */
-
-void *my_malloc();
-
-int optimize_hildreth_despo(long,long,double,double,double,long,long,long,double,double *,
-			    double *,double *,double *,double *,double *,
-			    double *,double *,double *,long *,double *,double *);
-int solve_dual(long,long,double,double,long,double *,double *,double *,
-	       double *,double *,double *,double *,double *,double *,
-	       double *,double *,double *,double *,long);
-
-void linvert_matrix(double *, long, double *, double, long *);
-void lprint_matrix(double *, long);
-void ladd_matrix(double *, long, double);
-void lcopy_matrix(double *, long, double *);
-void lswitch_rows_matrix(double *, long, long, long);
-void lswitchrk_matrix(double *, long, long, long);
-
-double calculate_qp_objective(long, double *, double *, double *);
-
-
-
-double *optimize_qp(qp,epsilon_crit,nx,threshold,learn_parm)
-QP *qp;
-double *epsilon_crit;
-long nx; /* Maximum number of variables in QP */
-double *threshold; 
-LEARN_PARM *learn_parm;
-/* start the optimizer and return the optimal values */
-/* The HIDEO optimizer does not necessarily fully solve the problem. */
-/* Since it requires a strictly positive definite hessian, the solution */
-/* is restricted to a linear independent subset in case the matrix is */
-/* only semi-definite. */
-{
-  long i,j;
-  int result;
-  double eq,progress;
-
-  roundnumber++;
-
-  if(!primal) { /* allocate memory at first call */
-    primal=(double *)my_malloc(sizeof(double)*nx);
-    dual=(double *)my_malloc(sizeof(double)*((nx+1)*2));
-    nonoptimal=(long *)my_malloc(sizeof(long)*(nx));
-    buffer=(double *)my_malloc(sizeof(double)*((nx+1)*2*(nx+1)*2+
-					       nx*nx+2*(nx+1)*2+2*nx+1+2*nx+
-					       nx+nx+nx*nx));
-    (*threshold)=0;
-    for(i=0;i<nx;i++) {
-      primal[i]=0;
-    }
-  }
-
-  if(verbosity>=4) { /* really verbose */
-    printf("\n\n");
-    eq=qp->opt_ce0[0];
-    for(i=0;i<qp->opt_n;i++) {
-      eq+=qp->opt_xinit[i]*qp->opt_ce[i];
-      printf("%f: ",qp->opt_g0[i]);
-      for(j=0;j<qp->opt_n;j++) {
-	printf("%f ",qp->opt_g[i*qp->opt_n+j]);
-      }
-      printf(": a=%.10f < %f",qp->opt_xinit[i],qp->opt_up[i]);
-      printf(": y=%f\n",qp->opt_ce[i]);
-    }
-    if(qp->opt_m) {
-      printf("EQ: %f*x0",qp->opt_ce[0]);
-      for(i=1;i<qp->opt_n;i++) {
-	printf(" + %f*x%ld",qp->opt_ce[i],i);
-      }
-      printf(" = %f\n\n",-qp->opt_ce0[0]);
-    }
-  }
-
-  result=optimize_hildreth_despo(qp->opt_n,qp->opt_m,
-				 opt_precision,(*epsilon_crit),
-				 learn_parm->epsilon_a,maxiter,
-				 /* (long)PRIMAL_OPTIMAL, */
-				 (long)0, (long)0,
-				 lindep_sensitivity,
-				 qp->opt_g,qp->opt_g0,qp->opt_ce,qp->opt_ce0,
-				 qp->opt_low,qp->opt_up,primal,qp->opt_xinit,
-				 dual,nonoptimal,buffer,&progress);
-  if(verbosity>=3) { 
-    printf("return(%d)...",result);
-  }
-
-  if(learn_parm->totwords < learn_parm->svm_maxqpsize) { 
-    /* larger working sets will be linear dependent anyway */
-    learn_parm->svm_maxqpsize=maxl(learn_parm->totwords,(long)2);
-  }
-
-  if(result == NAN_SOLUTION) {
-    lindep_sensitivity*=2;  /* throw out linear dependent examples more */
-                            /* generously */
-    if(learn_parm->svm_maxqpsize>2) {
-      learn_parm->svm_maxqpsize--;  /* decrease size of qp-subproblems */
-    }
-    precision_violations++;
-  }
-
-  /* take one round of only two variable to get unstuck */
-  if((result != PRIMAL_OPTIMAL) || (!(roundnumber % 31)) || (progress <= 0)) {
-
-    smallroundcount++;
-
-    result=optimize_hildreth_despo(qp->opt_n,qp->opt_m,
-				   opt_precision,(*epsilon_crit),
-				   learn_parm->epsilon_a,(long)maxiter,
-				   (long)PRIMAL_OPTIMAL,(long)SMALLROUND,
-				   lindep_sensitivity,
-				   qp->opt_g,qp->opt_g0,qp->opt_ce,qp->opt_ce0,
-				   qp->opt_low,qp->opt_up,primal,qp->opt_xinit,
-				   dual,nonoptimal,buffer,&progress);
-    if(verbosity>=3) { 
-      printf("return_srd(%d)...",result);
-    }
-
-    if(result != PRIMAL_OPTIMAL) {
-      if(result != ONLY_ONE_VARIABLE) 
-	precision_violations++;
-      if(result == MAXITER_EXCEEDED) 
-	maxiter+=100;
-      if(result == NAN_SOLUTION) {
-	lindep_sensitivity*=2;  /* throw out linear dependent examples more */
-	                        /* generously */
-	/* results not valid, so return inital values */
-	for(i=0;i<qp->opt_n;i++) {
-	  primal[i]=qp->opt_xinit[i];
-	}
-      }
-    }
-  }
-
-
-  if(precision_violations > 50) {
-    precision_violations=0;
-    (*epsilon_crit)*=10.0; 
-    if(verbosity>=1) {
-      printf("\nWARNING: Relaxing epsilon on KT-Conditions (%f).\n",
-	     (*epsilon_crit));
-    }
-  }	  
-
-  if((qp->opt_m>0) && (result != NAN_SOLUTION) && (!isnan(dual[1]-dual[0])))
-    (*threshold)=dual[1]-dual[0];
-  else
-    (*threshold)=0;
-
-  if(verbosity>=4) { /* really verbose */
-    printf("\n\n");
-    eq=qp->opt_ce0[0];
-    for(i=0;i<qp->opt_n;i++) {
-      eq+=primal[i]*qp->opt_ce[i];
-      printf("%f: ",qp->opt_g0[i]);
-      for(j=0;j<qp->opt_n;j++) {
-	printf("%f ",qp->opt_g[i*qp->opt_n+j]);
-      }
-      printf(": a=%.30f",primal[i]);
-      printf(": nonopti=%ld",nonoptimal[i]);
-      printf(": y=%f\n",qp->opt_ce[i]);
-    }
-    printf("eq-constraint=%.30f\n",eq);
-    printf("b=%f\n",(*threshold));
-    printf(" smallroundcount=%ld ",smallroundcount);
-  }
-
-  return(primal);
-}
-
-
-
-int optimize_hildreth_despo(n,m,precision,epsilon_crit,epsilon_a,maxiter,goal,
-			    smallround,lindep_sensitivity,g,g0,ce,ce0,low,up,
-			    primal,init,dual,lin_dependent,buffer,progress)
-     long   n;            /* number of variables */
-     long   m;            /* number of linear equality constraints [0,1] */
-     double precision;    /* solve at least to this dual precision */
-     double epsilon_crit; /* stop, if KT-Conditions approx fulfilled */
-     double epsilon_a;    /* precision of alphas at bounds */
-     long   maxiter;      /* stop after this many iterations */
-     long   goal;         /* keep going until goal fulfilled */
-     long   smallround;   /* use only two variables of steepest descent */
-     double lindep_sensitivity; /* epsilon for detecting linear dependent ex */
-     double *g;           /* hessian of objective */
-     double *g0;          /* linear part of objective */
-     double *ce,*ce0;     /* linear equality constraints */
-     double *low,*up;     /* box constraints */
-     double *primal;      /* primal variables */
-     double *init;        /* initial values of primal */
-     double *dual;        /* dual variables */
-     long   *lin_dependent;
-     double *buffer;
-     double *progress;    /* delta in the objective function between
-                             before and after */
-{
-  long i,j,k,from,to,n_indep,changed;
-  double sum,bmin=0,bmax=0;
-  double *d,*d0,*ig,*dual_old,*temp,*start;       
-  double *g0_new,*g_new,*ce_new,*ce0_new,*low_new,*up_new;
-  double add,t;
-  int result;
-  double obj_before,obj_after; 
-  long b1,b2;
-  double g0_b1,g0_b2,ce0_b;
-
-  g0_new=&(buffer[0]);    /* claim regions of buffer */
-  d=&(buffer[n]);
-  d0=&(buffer[n+(n+m)*2*(n+m)*2]);
-  ce_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2]);
-  ce0_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n]);
-  ig=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m]);
-  dual_old=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n]);
-  low_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2]);
-  up_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n]);
-  start=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n]);
-  g_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n+n]);
-  temp=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n+n+n*n]);
-
-  b1=-1;
-  b2=-1;
-  for(i=0;i<n;i++) {   /* get variables with steepest feasible descent */
-    sum=g0[i];         
-    for(j=0;j<n;j++) 
-      sum+=init[j]*g[i*n+j];
-    sum=sum*ce[i];
-    if(((b1==-1) || (sum<bmin)) 
-       && (!((init[i]<=(low[i]+epsilon_a)) && (ce[i]<0.0)))
-       && (!((init[i]>=( up[i]-epsilon_a)) && (ce[i]>0.0)))
-       ) {
-      bmin=sum;
-      b1=i;
-    }
-    if(((b2==-1) || (sum>=bmax)) 
-       && (!((init[i]<=(low[i]+epsilon_a)) && (ce[i]>0.0)))
-       && (!((init[i]>=( up[i]-epsilon_a)) && (ce[i]<0.0)))
-       ) {
-      bmax=sum;
-      b2=i;
-    }
-  }
-  /* in case of unbiased hyperplane, the previous projection on */
-  /* equality constraint can lead to b1 or b2 being -1. */
-  if((b1 == -1) || (b2 == -1)) {
-    b1=maxl(b1,b2);
-    b2=maxl(b1,b2);
-  }
-
-  for(i=0;i<n;i++) {
-    start[i]=init[i];
-  }
-
-  /* in case both example vectors are linearly dependent */
-  /* WARNING: Assumes that ce[] in {-1,1} */
-  add=0;
-  changed=0;
-  if((b1 != b2) && (m==1)) {
-    for(i=0;i<n;i++) {  /* fix other vectors */
-      if(i==b1) 
-	g0_b1=g0[i];
-      if(i==b2) 
-	g0_b2=g0[i];
-    }
-    ce0_b=ce0[0];
-    for(i=0;i<n;i++) {  
-      if((i!=b1) && (i!=b2)) {
-	for(j=0;j<n;j++) {
-	  if(j==b1) 
-	    g0_b1+=start[i]*g[i*n+j];
-	  if(j==b2) 
-	    g0_b2+=start[i]*g[i*n+j];
-	}
-	ce0_b-=(start[i]*ce[i]);
-      }
-    }
-    if((g[b1*n+b2] == g[b1*n+b1]) && (g[b1*n+b2] == g[b2*n+b2])) {
-      /* printf("euqal\n"); */
-      if(ce[b1] == ce[b2]) { 
-	if(g0_b1 <= g0_b2) { /* set b1 to upper bound */
-	  /* printf("case +=<\n"); */
-	  changed=1;
-	  t=up[b1]-init[b1];
-	  if((init[b2]-low[b2]) < t) {
-	    t=init[b2]-low[b2];
-	  }
-	  start[b1]=init[b1]+t;
-	  start[b2]=init[b2]-t;
-	}
-	else if(g0_b1 > g0_b2) { /* set b2 to upper bound */
-	  /* printf("case +=>\n"); */
-	  changed=1;
-	  t=up[b2]-init[b2];
-	  if((init[b1]-low[b1]) < t) {
-	    t=init[b1]-low[b1];
-	  }
-	  start[b1]=init[b1]-t;
-	  start[b2]=init[b2]+t;
-	}
-      }
-      else if(((g[b1*n+b1]>0) || (g[b2*n+b2]>0))) { /* (ce[b1] != ce[b2]) */ 
-	/* printf("case +!\n"); */
-	t=((ce[b2]/ce[b1])*g0[b1]-g0[b2]+ce0[0]*(g[b1*n+b1]*ce[b2]/ce[b1]-g[b1*n+b2]/ce[b1]))/((ce[b2]*ce[b2]/(ce[b1]*ce[b1]))*g[b1*n+b1]+g[b2*n+b2]-2*(g[b1*n+b2]*ce[b2]/ce[b1]))-init[b2];
-	changed=1;
-	if((up[b2]-init[b2]) < t) {
-	  t=up[b2]-init[b2];
-	}
-	if((init[b2]-low[b2]) < -t) {
-	  t=-(init[b2]-low[b2]);
-	}
-	if((up[b1]-init[b1]) < t) {
-	  t=(up[b1]-init[b1]);
-	}
-	if((init[b1]-low[b1]) < -t) {
-	  t=-(init[b1]-low[b1]);
-	}
-	start[b1]=init[b1]+t;
-	start[b2]=init[b2]+t;
-      }
-    }
-    if((-g[b1*n+b2] == g[b1*n+b1]) && (-g[b1*n+b2] == g[b2*n+b2])) {
-      /* printf("diffeuqal\n"); */
-      if(ce[b1] != ce[b2]) {
-	if((g0_b1+g0_b2) < 0) { /* set b1 and b2 to upper bound */
-	  /* printf("case -!<\n"); */
-	  changed=1;
-	  t=up[b1]-init[b1];
-	  if((up[b2]-init[b2]) < t) {
-	    t=up[b2]-init[b2];
-	  }
-	  start[b1]=init[b1]+t;
-	  start[b2]=init[b2]+t;
-	}     
-	else if((g0_b1+g0_b2) >= 0) { /* set b1 and b2 to lower bound */
-	  /* printf("case -!>\n"); */
-	  changed=1;
-	  t=init[b1]-low[b1];
-	  if((init[b2]-low[b2]) < t) {
-	    t=init[b2]-low[b2];
-	  }
-	  start[b1]=init[b1]-t;
-	  start[b2]=init[b2]-t;
-	}
-      }
-      else if(((g[b1*n+b1]>0) || (g[b2*n+b2]>0))) { /* (ce[b1]==ce[b2]) */
-	/*  printf("case -=\n"); */
-	t=((ce[b2]/ce[b1])*g0[b1]-g0[b2]+ce0[0]*(g[b1*n+b1]*ce[b2]/ce[b1]-g[b1*n+b2]/ce[b1]))/((ce[b2]*ce[b2]/(ce[b1]*ce[b1]))*g[b1*n+b1]+g[b2*n+b2]-2*(g[b1*n+b2]*ce[b2]/ce[b1]))-init[b2];
-	changed=1;
-	if((up[b2]-init[b2]) < t) {
-	  t=up[b2]-init[b2];
-	}
-	if((init[b2]-low[b2]) < -t) {
-	  t=-(init[b2]-low[b2]);
-	}
-	if((up[b1]-init[b1]) < -t) {
-	  t=-(up[b1]-init[b1]);
-	}
-	if((init[b1]-low[b1]) < t) {
-	  t=init[b1]-low[b1];
-	}
-	start[b1]=init[b1]-t;
-	start[b2]=init[b2]+t;
-      }	
-    }
-  }
-  /* if we have a biased hyperplane, then adding a constant to the */
-  /* hessian does not change the solution. So that is done for examples */
-  /* with zero diagonal entry, since HIDEO cannot handle them. */
-  if((m>0) 
-     && ((fabs(g[b1*n+b1]) < lindep_sensitivity) 
-	 || (fabs(g[b2*n+b2]) < lindep_sensitivity))) {
-    /* printf("Case 0\n"); */
-    add+=0.093274;
-  }    
-  /* in case both examples are linear dependent */
-  else if((m>0) 
-	  && (g[b1*n+b2] != 0 && g[b2*n+b2] != 0)
-	  && (fabs(g[b1*n+b1]/g[b1*n+b2] - g[b1*n+b2]/g[b2*n+b2])
-	      < lindep_sensitivity)) { 
-    /* printf("Case lindep\n"); */
-    add+=0.078274;
-  }
-
-  /* special case for zero diagonal entry on unbiased hyperplane */
-  if((m==0) && (b1>=0))  {
-    if(fabs(g[b1*n+b1]) < lindep_sensitivity) { 
-      /* printf("Case 0b1\n"); */
-      for(i=0;i<n;i++) {  /* fix other vectors */
-	if(i==b1) 
-	  g0_b1=g0[i];
-      }
-      for(i=0;i<n;i++) {  
-	if(i!=b1) {
-	  for(j=0;j<n;j++) {
-	    if(j==b1) 
-	      g0_b1+=start[i]*g[i*n+j];
-	  }
-	}
-      }
-      if(g0_b1<0)
-	start[b1]=up[b1];
-      if(g0_b1>=0)
-	start[b1]=low[b1];
-    }
-  }
-  if((m==0) && (b2>=0))  {
-    if(fabs(g[b2*n+b2]) < lindep_sensitivity) { 
-      /* printf("Case 0b2\n"); */
-      for(i=0;i<n;i++) {  /* fix other vectors */
-	if(i==b2) 
-	  g0_b2=g0[i];
-      }
-      for(i=0;i<n;i++) {  
-	if(i!=b2) {
-	  for(j=0;j<n;j++) {
-	    if(j==b2) 
-	      g0_b2+=start[i]*g[i*n+j];
-	  }
-	}
-      }
-      if(g0_b2<0)
-	start[b2]=up[b2];
-      if(g0_b2>=0)
-	start[b2]=low[b2];
-    }
-  }
-
-  /* printf("b1=%ld,b2=%ld\n",b1,b2); */
-
-  lcopy_matrix(g,n,d);
-  if((m==1) && (add>0.0)) {
-    for(j=0;j<n;j++) {
-      for(k=0;k<n;k++) {
-	d[j*n+k]+=add*ce[j]*ce[k];
-      }
-    }
-  }
-  else {
-    add=0.0;
-  }
-
-  if(n>2) {                    /* switch, so that variables are better mixed */
-    lswitchrk_matrix(d,n,b1,(long)0); 
-    if(b2 == 0) 
-      lswitchrk_matrix(d,n,b1,(long)1); 
-    else
-      lswitchrk_matrix(d,n,b2,(long)1); 
-  }
-  if(smallround == SMALLROUND) {
-    for(i=2;i<n;i++) {
-      lin_dependent[i]=1;
-    }
-    if(m>0) { /* for biased hyperplane, pick two variables */
-      lin_dependent[0]=0;
-      lin_dependent[1]=0;
-    }
-    else {    /* for unbiased hyperplane, pick only one variable */
-      lin_dependent[0]=smallroundcount % 2;
-      lin_dependent[1]=(smallroundcount+1) % 2;
-    }
-  }
-  else {
-    for(i=0;i<n;i++) {
-      lin_dependent[i]=0;
-    }
-  }
-  linvert_matrix(d,n,ig,lindep_sensitivity,lin_dependent);
-  if(n>2) {                    /* now switch back */
-    if(b2 == 0) {
-      lswitchrk_matrix(ig,n,b1,(long)1); 
-      i=lin_dependent[1];  
-      lin_dependent[1]=lin_dependent[b1];
-      lin_dependent[b1]=i;
-    }
-    else {
-      lswitchrk_matrix(ig,n,b2,(long)1); 
-      i=lin_dependent[1];  
-      lin_dependent[1]=lin_dependent[b2];
-      lin_dependent[b2]=i;
-    }
-    lswitchrk_matrix(ig,n,b1,(long)0); 
-    i=lin_dependent[0];  
-    lin_dependent[0]=lin_dependent[b1];
-    lin_dependent[b1]=i;
-  }
-  /* lprint_matrix(d,n); */
-  /* lprint_matrix(ig,n); */
-
-  lcopy_matrix(g,n,g_new);   /* restore g_new matrix */
-  if(add>0)
-    for(j=0;j<n;j++) {
-      for(k=0;k<n;k++) {
-	g_new[j*n+k]+=add*ce[j]*ce[k];
-      }
-    }
-
-  for(i=0;i<n;i++) {  /* fix linear dependent vectors */
-    g0_new[i]=g0[i]+add*ce0[0]*ce[i];
-  }
-  if(m>0) ce0_new[0]=-ce0[0];
-  for(i=0;i<n;i++) {  /* fix linear dependent vectors */
-    if(lin_dependent[i]) {
-      for(j=0;j<n;j++) {
-	if(!lin_dependent[j]) {
-	  g0_new[j]+=start[i]*g_new[i*n+j];
-	}
-      }
-      if(m>0) ce0_new[0]-=(start[i]*ce[i]);
-    }
-  }
-  from=0;   /* remove linear dependent vectors */
-  to=0;
-  n_indep=0;
-  for(i=0;i<n;i++) {
-    if(!lin_dependent[i]) {
-      g0_new[n_indep]=g0_new[i];
-      ce_new[n_indep]=ce[i]; 
-      low_new[n_indep]=low[i];
-      up_new[n_indep]=up[i];
-      primal[n_indep]=start[i];
-      n_indep++;
-    }
-    for(j=0;j<n;j++) {
-      if((!lin_dependent[i]) && (!lin_dependent[j])) {
-        ig[to]=ig[from];
-        g_new[to]=g_new[from];
-	to++;
-      }
-      from++;
-    }
-  }
-
-  if(verbosity>=3) {
-    printf("real_qp_size(%ld)...",n_indep);
-  }
-  
-  /* cannot optimize with only one variable */
-  if((n_indep<=1) && (m>0) && (!changed)) { 
-    for(i=n-1;i>=0;i--) {
-      primal[i]=init[i];
-    }
-    return((int)ONLY_ONE_VARIABLE);
-  }
-
-  if((!changed) || (n_indep>1)) { 
-    result=solve_dual(n_indep,m,precision,epsilon_crit,maxiter,g_new,g0_new,
-		      ce_new,ce0_new,low_new,up_new,primal,d,d0,ig,
-		      dual,dual_old,temp,goal);
-  }
-  else {
-    result=PRIMAL_OPTIMAL;
-  }
-  
-  j=n_indep;
-  for(i=n-1;i>=0;i--) {
-    if(!lin_dependent[i]) {
-      j--;
-      primal[i]=primal[j];
-    }
-    else {
-      primal[i]=start[i];  /* leave as is */
-    }
-    temp[i]=primal[i];
-  }
-   
-  obj_before=calculate_qp_objective(n,g,g0,init);
-  obj_after=calculate_qp_objective(n,g,g0,primal);
-  (*progress)=obj_before-obj_after;
-  if(verbosity>=3) {
-    printf("before(%.30f)...after(%.30f)...result_sd(%d)...",
-	   obj_before,obj_after,result); 
-  }
-
-  return((int)result);
-}
-
-
-int solve_dual(n,m,precision,epsilon_crit,maxiter,g,g0,ce,ce0,low,up,primal,
-	       d,d0,ig,dual,dual_old,temp,goal)
-     /* Solves the dual using the method of Hildreth and D'Espo. */
-     /* Can only handle problems with zero or exactly one */
-     /* equality constraints. */
-
-     long   n;            /* number of variables */
-     long   m;            /* number of linear equality constraints */
-     double precision;    /* solve at least to this dual precision */
-     double epsilon_crit; /* stop, if KT-Conditions approx fulfilled */
-     long   maxiter;      /* stop after that many iterations */
-     double *g;
-     double *g0;          /* linear part of objective */
-     double *ce,*ce0;     /* linear equality constraints */
-     double *low,*up;     /* box constraints */
-     double *primal;      /* variables (with initial values) */
-     double *d,*d0,*ig,*dual,*dual_old,*temp;       /* buffer  */
-     long goal;
-{
-  long i,j,k,iter;
-  double sum,w,maxviol,viol,temp1,temp2,isnantest;
-  double model_b,dist;
-  long retrain,maxfaktor,primal_optimal=0,at_bound,scalemaxiter;
-  double epsilon_a=1E-15,epsilon_hideo;
-  double eq; 
-
-  if((m<0) || (m>1)) 
-    perror("SOLVE DUAL: inappropriate number of eq-constrains!");
-
-  /*  
-  printf("\n");
-  for(i=0;i<n;i++) {
-    printf("%f: ",g0[i]);
-    for(j=0;j<n;j++) {
-      printf("%f ",g[i*n+j]);
-    }
-    printf(": a=%.30f",primal[i]);
-    printf(": y=%f\n",ce[i]);
-  }
-  */
-
-  for(i=0;i<2*(n+m);i++) {
-    dual[i]=0;
-    dual_old[i]=0;
-  }
-  for(i=0;i<n;i++) {   
-    for(j=0;j<n;j++) {   /* dual hessian for box constraints */
-      d[i*2*(n+m)+j]=ig[i*n+j];
-      d[(i+n)*2*(n+m)+j]=-ig[i*n+j];
-      d[i*2*(n+m)+j+n]=-ig[i*n+j];
-      d[(i+n)*2*(n+m)+j+n]=ig[i*n+j];
-    }
-    if(m>0) {
-      sum=0;              /* dual hessian for eq constraints */
-      for(j=0;j<n;j++) {
-	sum+=(ce[j]*ig[i*n+j]);
-      }
-      d[i*2*(n+m)+2*n]=sum;
-      d[i*2*(n+m)+2*n+1]=-sum;
-      d[(n+i)*2*(n+m)+2*n]=-sum;
-      d[(n+i)*2*(n+m)+2*n+1]=sum;
-      d[(n+n)*2*(n+m)+i]=sum;
-      d[(n+n+1)*2*(n+m)+i]=-sum;
-      d[(n+n)*2*(n+m)+(n+i)]=-sum;
-      d[(n+n+1)*2*(n+m)+(n+i)]=sum;
-      
-      sum=0;
-      for(j=0;j<n;j++) {
-	for(k=0;k<n;k++) {
-	  sum+=(ce[k]*ce[j]*ig[j*n+k]);
-	}
-      }
-      d[(n+n)*2*(n+m)+2*n]=sum;
-      d[(n+n)*2*(n+m)+2*n+1]=-sum;
-      d[(n+n+1)*2*(n+m)+2*n]=-sum;
-      d[(n+n+1)*2*(n+m)+2*n+1]=sum;
-    } 
-  }
-
-  for(i=0;i<n;i++) {   /* dual linear component for the box constraints */
-    w=0;
-    for(j=0;j<n;j++) {
-      w+=(ig[i*n+j]*g0[j]); 
-    }
-    d0[i]=up[i]+w;
-    d0[i+n]=-low[i]-w;
-  }
-
-  if(m>0) {  
-    sum=0;             /* dual linear component for eq constraints */
-    for(j=0;j<n;j++) {
-      for(k=0;k<n;k++) {
-	sum+=(ce[k]*ig[k*n+j]*g0[j]); 
-      }
-    }
-    d0[2*n]=ce0[0]+sum;
-    d0[2*n+1]=-ce0[0]-sum;
-  }
-
-  maxviol=999999;
-  iter=0;
-  retrain=1;
-  maxfaktor=1;
-  scalemaxiter=maxiter/5;
-  while((retrain) && (maxviol > 0) && (iter < (scalemaxiter*maxfaktor))) {
-    iter++;
-    
-    while((maxviol > precision) && (iter < (scalemaxiter*maxfaktor))) {
-      iter++;
-      maxviol=0;
-      for(i=0;i<2*(n+m);i++) {
-	sum=d0[i];
-	for(j=0;j<2*(n+m);j++) {
-	  sum+=d[i*2*(n+m)+j]*dual_old[j];
-	}
-	sum-=d[i*2*(n+m)+i]*dual_old[i];
-	dual[i]=-sum/d[i*2*(n+m)+i];
-	if(dual[i]<0) dual[i]=0;
-	
-	viol=fabs(dual[i]-dual_old[i]);
-	if(viol>maxviol) 
-	  maxviol=viol;
-	dual_old[i]=dual[i];
-      }
-      /*
-      printf("%d) maxviol=%20f precision=%f\n",iter,maxviol,precision); 
-      */
-    }
-  
-    if(m>0) {
-      for(i=0;i<n;i++) {
-	temp[i]=dual[i]-dual[i+n]+ce[i]*(dual[n+n]-dual[n+n+1])+g0[i];
-      }
-    } 
-    else {
-      for(i=0;i<n;i++) {
-	temp[i]=dual[i]-dual[i+n]+g0[i];
-      }
-    }
-    for(i=0;i<n;i++) {
-      primal[i]=0;             /* calc value of primal variables */
-      for(j=0;j<n;j++) {
-	primal[i]+=ig[i*n+j]*temp[j];
-      }
-      primal[i]*=-1.0;
-      if(primal[i]<=(low[i])) {  /* clip conservatively */
-	primal[i]=low[i];
-      }
-      else if(primal[i]>=(up[i])) {
-	primal[i]=up[i];
-      }
-    }
-
-    if(m>0) 
-      model_b=dual[n+n+1]-dual[n+n];
-    else
-      model_b=0;
-
-    epsilon_hideo=EPSILON_HIDEO;
-    for(i=0;i<n;i++) {           /* check precision of alphas */
-      dist=-model_b*ce[i]; 
-      dist+=(g0[i]+1.0);
-      for(j=0;j<i;j++) {
-	dist+=(primal[j]*g[j*n+i]);
-      }
-      for(j=i;j<n;j++) {
-	dist+=(primal[j]*g[i*n+j]);
-      }
-      if((primal[i]<(up[i]-epsilon_hideo)) && (dist < (1.0-epsilon_crit))) {
-	epsilon_hideo=(up[i]-primal[i])*2.0;
-      }
-      else if((primal[i]>(low[i]+epsilon_hideo)) &&(dist>(1.0+epsilon_crit))) {
-	epsilon_hideo=(primal[i]-low[i])*2.0;
-      }
-    }
-    /* printf("\nEPSILON_HIDEO=%.30f\n",epsilon_hideo); */
-
-    for(i=0;i<n;i++) {           /* clip alphas to bounds */
-      if(primal[i]<=(low[i]+epsilon_hideo)) {
-	primal[i]=low[i];
-      }
-      else if(primal[i]>=(up[i]-epsilon_hideo)) {
-	primal[i]=up[i];
-      }
-    }
-
-    retrain=0;
-    primal_optimal=1;
-    at_bound=0;
-    for(i=0;(i<n);i++) {  /* check primal KT-Conditions */
-      dist=-model_b*ce[i]; 
-      dist+=(g0[i]+1.0);
-      for(j=0;j<i;j++) {
-	dist+=(primal[j]*g[j*n+i]);
-      }
-      for(j=i;j<n;j++) {
-	dist+=(primal[j]*g[i*n+j]);
-      }
-      if((primal[i]<(up[i]-epsilon_a)) && (dist < (1.0-epsilon_crit))) {
-	retrain=1;
-	primal_optimal=0;
-      }
-      else if((primal[i]>(low[i]+epsilon_a)) && (dist > (1.0+epsilon_crit))) {
-	retrain=1;
-	primal_optimal=0;
-      }
-      if((primal[i]<=(low[i]+epsilon_a)) || (primal[i]>=(up[i]-epsilon_a))) {
-	at_bound++;
-      }
-      /*    printf("HIDEOtemp: a[%ld]=%.30f, dist=%.6f, b=%f, at_bound=%ld\n",i,primal[i],dist,model_b,at_bound);  */
-    }
-    if(m>0) {
-      eq=-ce0[0];               /* check precision of eq-constraint */
-      for(i=0;i<n;i++) { 
-	eq+=(ce[i]*primal[i]);
-      }
-      if((EPSILON_EQ < fabs(eq)) 
-	 /*
-	 && !((goal==PRIMAL_OPTIMAL) 
-	       && (at_bound==n)) */
-	 ) {
-	retrain=1;
-	primal_optimal=0;
-      }
-      /* printf("\n eq=%.30f ce0=%f at-bound=%ld\n",eq,ce0[0],at_bound);  */
-    }
-
-    if(retrain) {
-      precision/=10;
-      if(((goal == PRIMAL_OPTIMAL) && (maxfaktor < 50000))
-	 || (maxfaktor < 5)) {
-	maxfaktor++;
-      }
-    }
-  }
-
-  if(!primal_optimal) {
-    for(i=0;i<n;i++) {
-      primal[i]=0;             /* calc value of primal variables */
-      for(j=0;j<n;j++) {
-	primal[i]+=ig[i*n+j]*temp[j];
-      }
-      primal[i]*=-1.0;
-      if(primal[i]<=(low[i]+epsilon_a)) {  /* clip conservatively */
-	primal[i]=low[i];
-      }
-      else if(primal[i]>=(up[i]-epsilon_a)) {
-	primal[i]=up[i];
-      }
-    }
-  }
-
-  isnantest=0;
-  for(i=0;i<n;i++) {           /* check for isnan */
-    isnantest+=primal[i];
-  }
-
-  if(m>0) {
-    temp1=dual[n+n+1];   /* copy the dual variables for the eq */
-    temp2=dual[n+n];     /* constraints to a handier location */
-    for(i=n+n+1;i>=2;i--) {
-      dual[i]=dual[i-2];
-    }
-    dual[0]=temp2;
-    dual[1]=temp1;
-    isnantest+=temp1+temp2;
-  }
-
-  if(isnan(isnantest)) {
-    return((int)NAN_SOLUTION);
-  }
-  else if(primal_optimal) {
-    return((int)PRIMAL_OPTIMAL);
-  }
-  else if(maxviol == 0.0) {
-    return((int)DUAL_OPTIMAL);
-  }
-  else {
-    return((int)MAXITER_EXCEEDED);
-  }
-}
-
-
-void linvert_matrix(matrix,depth,inverse,lindep_sensitivity,lin_dependent)
-double *matrix;
-long depth;
-double *inverse,lindep_sensitivity;
-long *lin_dependent;  /* indicates the active parts of matrix on 
-			 input and output*/
-{
-  long i,j,k;
-  double factor;
-
-  for(i=0;i<depth;i++) {
-    /*    lin_dependent[i]=0; */
-    for(j=0;j<depth;j++) {
-      inverse[i*depth+j]=0.0;
-    }
-    inverse[i*depth+i]=1.0;
-  }
-  for(i=0;i<depth;i++) {
-    if(lin_dependent[i] || (fabs(matrix[i*depth+i])<lindep_sensitivity)) {
-      lin_dependent[i]=1;
-    }
-    else {
-      for(j=i+1;j<depth;j++) {
-	factor=matrix[j*depth+i]/matrix[i*depth+i];
-	for(k=i;k<depth;k++) {
-	  matrix[j*depth+k]-=(factor*matrix[i*depth+k]);
-	}
-	for(k=0;k<depth;k++) {
-	  inverse[j*depth+k]-=(factor*inverse[i*depth+k]);
-	}
-      }
-    }
-  }
-  for(i=depth-1;i>=0;i--) {
-    if(!lin_dependent[i]) {
-      factor=1/matrix[i*depth+i];
-      for(k=0;k<depth;k++) {
-	inverse[i*depth+k]*=factor;
-      }
-      matrix[i*depth+i]=1;
-      for(j=i-1;j>=0;j--) {
-	factor=matrix[j*depth+i];
-	matrix[j*depth+i]=0;
-	for(k=0;k<depth;k++) {
-	  inverse[j*depth+k]-=(factor*inverse[i*depth+k]);
-	}
-      }
-    }
-  }
-}
-
-void lprint_matrix(matrix,depth)
-double *matrix;
-long depth;
-{
-  long i,j;
-  for(i=0;i<depth;i++) {
-    for(j=0;j<depth;j++) {
-      printf("%5.2f ",(double)(matrix[i*depth+j]));
-    }
-    printf("\n");
-  }
-  printf("\n");
-}
-
-void ladd_matrix(matrix,depth,scalar)
-double *matrix;
-long depth;
-double scalar;
-{
-  long i,j;
-  for(i=0;i<depth;i++) {
-    for(j=0;j<depth;j++) {
-      matrix[i*depth+j]+=scalar;
-    }
-  }
-}
-
-void lcopy_matrix(matrix,depth,matrix2) 
-double *matrix;
-long depth;
-double *matrix2;
-{
-  long i;
-  
-  for(i=0;i<(depth)*(depth);i++) {
-    matrix2[i]=matrix[i];
-  }
-}
-
-void lswitch_rows_matrix(matrix,depth,r1,r2) 
-double *matrix;
-long depth,r1,r2;
-{
-  long i;
-  double temp;
-
-  for(i=0;i<depth;i++) {
-    temp=matrix[r1*depth+i];
-    matrix[r1*depth+i]=matrix[r2*depth+i];
-    matrix[r2*depth+i]=temp;
-  }
-}
-
-void lswitchrk_matrix(matrix,depth,rk1,rk2) 
-double *matrix;
-long depth,rk1,rk2;
-{
-  long i;
-  double temp;
-
-  for(i=0;i<depth;i++) {
-    temp=matrix[rk1*depth+i];
-    matrix[rk1*depth+i]=matrix[rk2*depth+i];
-    matrix[rk2*depth+i]=temp;
-  }
-  for(i=0;i<depth;i++) {
-    temp=matrix[i*depth+rk1];
-    matrix[i*depth+rk1]=matrix[i*depth+rk2];
-    matrix[i*depth+rk2]=temp;
-  }
-}
-
-double calculate_qp_objective(opt_n,opt_g,opt_g0,alpha)
-long opt_n;
-double *opt_g,*opt_g0,*alpha;
-{
-  double obj;
-  long i,j;
-  obj=0;  /* calculate objective  */
-  for(i=0;i<opt_n;i++) {
-    obj+=(opt_g0[i]*alpha[i]);
-    obj+=(0.5*alpha[i]*alpha[i]*opt_g[i*opt_n+i]);
-    for(j=0;j<i;j++) {
-      obj+=(alpha[j]*alpha[i]*opt_g[j*opt_n+i]);
-    }
-  }
-  return(obj);
-}
diff --git a/trunk/svm_light/build/svm_light-tar/svm_learn.c b/trunk/svm_light/build/svm_light-tar/svm_learn.c
deleted file mode 100755
index d2b5a89b..00000000
--- a/trunk/svm_light/build/svm_light-tar/svm_learn.c
+++ /dev/null
@@ -1,4650 +0,0 @@
-/***********************************************************************/
-/*                                                                     */
-/*   svm_learn.c                                                       */
-/*                                                                     */
-/*   Learning module of Support Vector Machine.                        */
-/*                                                                     */
-/*   Author: Thorsten Joachims                                         */
-/*   Date: 02.07.02                                                    */
-/*                                                                     */
-/*   Copyright (c) 2002  Thorsten Joachims - All rights reserved       */
-/*                                                                     */
-/*   This software is available for non-commercial use only. It must   */
-/*   not be modified and distributed without prior permission of the   */
-/*   author. The author is not responsible for implications from the   */
-/*   use of this software.                                             */
-/*                                                                     */
-/***********************************************************************/
-
-
-# include "svm_common.h"
-# include "svm_learn.h"
-
-
-/* interface to QP-solver */
-double *optimize_qp(QP *, double *, long, double *, LEARN_PARM *);
-
-/*---------------------------------------------------------------------------*/
-
-void svm_learn_classification_extend(DOC **docs, double *class, long int
-                              totdoc, long int totwords,
-                              LEARN_PARM *learn_parm,
-                              KERNEL_PARM *kernel_parm,
-                              KERNEL_CACHE *kernel_cache,
-                              MODEL *model,
-                              double *alpha,
-                              int* nerrors,
-                              double* maxerror)
-{
-	long *inconsistent, i, *label;
-	long inconsistentnum;
-	long misclassified, upsupvecnum;
-	double loss, model_length, example_length;
-	double maxdiff, *lin, *a, *c;
-	long runtime_start, runtime_end;
-	long iterations;
-	long *unlabeled, transduction;
-	long heldout;
-	long loo_count = 0, loo_count_pos = 0, loo_count_neg = 0, trainpos = 0, trainneg = 0;
-	long loocomputed = 0, runtime_start_loo = 0, runtime_start_xa = 0;
-	double heldout_c = 0, r_delta_sq = 0, r_delta, r_delta_avg;
-	long *index, *index2dnum;
-	double *weights;
-	CFLOAT *aicache;  /* buffer to keep one row of hessian */
-	
-	double *xi_fullset; /* buffer for storing xi on full sample in loo */
-	double *a_fullset;  /* buffer for storing alpha on full sample in loo */
-	TIMING timing_profile;
-	SHRINK_STATE shrink_state;
-	
-	runtime_start = get_runtime();
-	timing_profile.time_kernel = 0;
-	timing_profile.time_opti = 0;
-	timing_profile.time_shrink = 0;
-	timing_profile.time_update = 0;
-	timing_profile.time_model = 0;
-	timing_profile.time_check = 0;
-	timing_profile.time_select = 0;
-	kernel_cache_statistic = 0;
-	
-	learn_parm->totwords = totwords;
-	
-	/* make sure -n value is reasonable */
-	if ((learn_parm->svm_newvarsinqp < 2)
-	        || (learn_parm->svm_newvarsinqp > learn_parm->svm_maxqpsize))
-	{
-		learn_parm->svm_newvarsinqp = learn_parm->svm_maxqpsize;
-	}
-	
-	init_shrink_state(&shrink_state, totdoc, (long)MAXSHRINK);
-	
-	label = (long *)my_malloc(sizeof(long) * totdoc);
-	inconsistent = (long *)my_malloc(sizeof(long) * totdoc);
-	unlabeled = (long *)my_malloc(sizeof(long) * totdoc);
-	c = (double *)my_malloc(sizeof(double) * totdoc);
-	a = (double *)my_malloc(sizeof(double) * totdoc);
-	a_fullset = (double *)my_malloc(sizeof(double) * totdoc);
-	xi_fullset = (double *)my_malloc(sizeof(double) * totdoc);
-	lin = (double *)my_malloc(sizeof(double) * totdoc);
-	learn_parm->svm_cost = (double *)my_malloc(sizeof(double) * totdoc);
-	model->supvec = (DOC **)my_malloc(sizeof(DOC *) * (totdoc + 2));
-	model->alpha = (double *)my_malloc(sizeof(double) * (totdoc + 2));
-	model->index = (long *)my_malloc(sizeof(long) * (totdoc + 2));
-	
-	model->at_upper_bound = 0;
-	model->b = 0;
-	model->supvec[0] = 0;  /* element 0 reserved and empty for now */
-	model->alpha[0] = 0;
-	model->lin_weights = NULL;
-	model->totwords = totwords;
-	model->totdoc = totdoc;
-	model->kernel_parm = (*kernel_parm);
-	model->sv_num = 1;
-	model->loo_error = -1;
-	model->loo_recall = -1;
-	model->loo_precision = -1;
-	model->xa_error = -1;
-	model->xa_recall = -1;
-	model->xa_precision = -1;
-	inconsistentnum = 0;
-	transduction = 0;
-	
-	r_delta = estimate_r_delta(docs, totdoc, kernel_parm);
-	r_delta_sq = r_delta * r_delta;
-	
-	r_delta_avg = estimate_r_delta_average(docs, totdoc, kernel_parm);
-	if (learn_parm->svm_c == 0.0)   /* default value for C */
-	{
-		learn_parm->svm_c = 1.0 / (r_delta_avg * r_delta_avg);
-		if (verbosity >= 1)
-			printf("Setting default regularization parameter C=%.4f\n",
-			       learn_parm->svm_c);
-	}
-	
-	learn_parm->eps = -1.0;      /* equivalent regression epsilon for
-				classification */
-
-	for (i = 0; i < totdoc; i++)      /* various inits */
-	{
-		docs[i]->docnum = i;
-		inconsistent[i] = 0;
-		a[i] = 0;
-		lin[i] = 0;
-		c[i] = 0.0;
-		unlabeled[i] = 0;
-		if (class[i] == 0)
-		{
-			unlabeled[i] = 1;
-			label[i] = 0;
-			transduction = 1;
-		}
-		if (class[i] > 0)
-		{
-			learn_parm->svm_cost[i] = learn_parm->svm_c * learn_parm->svm_costratio *
-			                          docs[i]->costfactor;
-			label[i] = 1;
-			trainpos++;
-		}
-		else if (class[i] < 0)
-		{
-			learn_parm->svm_cost[i] = learn_parm->svm_c * docs[i]->costfactor;
-			label[i] = -1;
-			trainneg++;
-		}
-		else
-		{
-			learn_parm->svm_cost[i] = 0;
-		}
-	}
-	if (verbosity >= 2)
-	{
-		printf("%ld positive, %ld negative, and %ld unlabeled examples.\n", trainpos, trainneg, totdoc - trainpos - trainneg);
-		fflush(stdout);
-	}
-	
-	/* caching makes no sense for linear kernel */
-	if (kernel_parm->kernel_type == LINEAR)
-	{
-		kernel_cache = NULL;
-	}
-	
-	/* compute starting state for initial alpha values */
-	if (alpha)
-	{
-		if (verbosity >= 1)
-		{
-			printf("Computing starting state...");
-			fflush(stdout);
-		}
-		index = (long *)my_malloc(sizeof(long) * totdoc);
-		index2dnum = (long *)my_malloc(sizeof(long) * (totdoc + 11));
-		weights = (double *)my_malloc(sizeof(double) * (totwords + 1));
-		aicache = (CFLOAT *)my_malloc(sizeof(CFLOAT) * totdoc);
-		for (i = 0; i < totdoc; i++)      /* create full index and clip alphas */
-		{
-			index[i] = 1;
-			alpha[i] = fabs(alpha[i]);
-			if (alpha[i] < 0) alpha[i] = 0;
-			if (alpha[i] > learn_parm->svm_cost[i]) alpha[i] = learn_parm->svm_cost[i];
-		}
-		if (kernel_parm->kernel_type != LINEAR)
-		{
-			for (i = 0; i < totdoc; i++)     /* fill kernel cache with unbounded SV */
-				if ((alpha[i] > 0) && (alpha[i] < learn_parm->svm_cost[i])
-				        && (kernel_cache_space_available(kernel_cache)))
-					cache_kernel_row(kernel_cache, docs, i, kernel_parm);
-			for (i = 0; i < totdoc; i++)     /* fill rest of kernel cache with bounded SV */
-				if ((alpha[i] == learn_parm->svm_cost[i])
-				        && (kernel_cache_space_available(kernel_cache)))
-					cache_kernel_row(kernel_cache, docs, i, kernel_parm);
-		}
-		(void)compute_index(index, totdoc, index2dnum);
-		update_linear_component(docs, label, index2dnum, alpha, a, index2dnum, totdoc,
-		                        totwords, kernel_parm, kernel_cache, lin, aicache,
-		                        weights);
-		(void)calculate_svm_model(docs, label, unlabeled, lin, alpha, a, c,
-		                          learn_parm, index2dnum, index2dnum, model);
-		for (i = 0; i < totdoc; i++)      /* copy initial alphas */
-		{
-			a[i] = alpha[i];
-		}
-		free(index);
-		free(index2dnum);
-		free(weights);
-		free(aicache);
-		if (verbosity >= 1)
-		{
-			printf("done.\n");
-			fflush(stdout);
-		}
-	}
-	
-	if (transduction)
-	{
-		learn_parm->svm_iter_to_shrink = 99999999;
-		if (verbosity >= 1)
-			printf("\nDeactivating Shrinking due to an incompatibility with the transductive \nlearner in the current version.\n\n");
-	}
-
-	
-	if (transduction && learn_parm->compute_loo)
-	{
-		learn_parm->compute_loo = 0;
-		if (verbosity >= 1)
-			printf("\nCannot compute leave-one-out estimates for transductive learner.\n\n");
-	}
-	
-	if (learn_parm->remove_inconsistent && learn_parm->compute_loo)
-	{
-		learn_parm->compute_loo = 0;
-		printf("\nCannot compute leave-one-out estimates when removing inconsistent examples.\n\n");
-	}
-	
-	if (learn_parm->compute_loo && ((trainpos == 1) || (trainneg == 1)))
-	{
-		learn_parm->compute_loo = 0;
-		printf("\nCannot compute leave-one-out with only one example in one class.\n\n");
-	}
-	
-	
-	if (verbosity == 1)
-	{
-		printf("Optimizing");
-		fflush(stdout);
-	}
-	
-	/* train the svm */
-	iterations = optimize_to_convergence(docs, label, totdoc, totwords, learn_parm,
-	                                     kernel_parm, kernel_cache, &shrink_state, model,
-	                                     inconsistent, unlabeled, a, lin,
-	                                     c, &timing_profile,
-	                                     &maxdiff, (long) - 1,
-	                                     (long)1);
-
-	misclassified = 0;
-	double maxerror_ = 0;
-	for (i = 0; (i < totdoc); i++)   /* get final statistic */
-	{
-		if ((lin[i] - model->b)*(double)label[i] <= 0.0)
-		{
-			misclassified++;
-			if(maxerror_ < -(lin[i] - model->b)*(double)label[i])
-				maxerror_ = -(lin[i] - model->b)*(double)label[i];
-		}
-	}
-
-	*nerrors = misclassified;
-	*maxerror = maxerror_;
-	                                     
-	if (verbosity >= 1)
-	{
-		if (verbosity == 1) printf("done. (%ld iterations)\n", iterations);
-		
-		misclassified = 0;
-		for (i = 0; (i < totdoc); i++)   /* get final statistic */
-		{
-			if ((lin[i] - model->b)*(double)label[i] <= 0.0)
-				misclassified++;
-		}
-		
-		printf("Optimization finished (%ld misclassified, maxdiff=%.5f).\n",
-		       misclassified, maxdiff);
-		       
-		runtime_end = get_runtime();
-		if (verbosity >= 2)
-		{
-			printf("Runtime in cpu-seconds: %.2f (%.2f%% for kernel/%.2f%% for optimizer/%.2f%% for final/%.2f%% for update/%.2f%% for model/%.2f%% for check/%.2f%% for select)\n",
-			       ((float)runtime_end - (float)runtime_start) / 100.0,
-			       (100.0*timing_profile.time_kernel) / (float)(runtime_end - runtime_start),
-			       (100.0*timing_profile.time_opti) / (float)(runtime_end - runtime_start),
-			       (100.0*timing_profile.time_shrink) / (float)(runtime_end - runtime_start),
-			       (100.0*timing_profile.time_update) / (float)(runtime_end - runtime_start),
-			       (100.0*timing_profile.time_model) / (float)(runtime_end - runtime_start),
-			       (100.0*timing_profile.time_check) / (float)(runtime_end - runtime_start),
-			       (100.0*timing_profile.time_select) / (float)(runtime_end - runtime_start));
-		}
-		else
-		{
-			printf("Runtime in cpu-seconds: %.2f\n",
-			       (runtime_end - runtime_start) / 100.0);
-		}
-		
-		if (learn_parm->remove_inconsistent)
-		{
-			inconsistentnum = 0;
-			for (i = 0; i < totdoc; i++)
-				if (inconsistent[i])
-					inconsistentnum++;
-			printf("Number of SV: %ld (plus %ld inconsistent examples)\n",
-			       model->sv_num - 1, inconsistentnum);
-		}
-		else
-		{
-			upsupvecnum = 0;
-			for (i = 1; i < model->sv_num; i++)
-			{
-				if (fabs(model->alpha[i]) >=
-				        (learn_parm->svm_cost[(model->supvec[i])->docnum] -
-				         learn_parm->epsilon_a))
-					upsupvecnum++;
-			}
-			printf("Number of SV: %ld (including %ld at upper bound)\n",
-			       model->sv_num - 1, upsupvecnum);
-		}
-		
-		if ((verbosity >= 1) && (!learn_parm->skip_final_opt_check))
-		{
-			loss = 0;
-			model_length = 0;
-			for (i = 0; i < totdoc; i++)
-			{
-				if ((lin[i] - model->b)*(double)label[i] < 1.0 - learn_parm->epsilon_crit)
-					loss += 1.0 - (lin[i] - model->b) * (double)label[i];
-				model_length += a[i] * label[i] * lin[i];
-			}
-			model_length = sqrt(model_length);
-			fprintf(stdout, "L1 loss: loss=%.5f\n", loss);
-			fprintf(stdout, "Norm of weight vector: |w|=%.5f\n", model_length);
-			example_length = estimate_sphere(model, kernel_parm);
-			fprintf(stdout, "Norm of longest example vector: |x|=%.5f\n",
-			        length_of_longest_document_vector(docs, totdoc, kernel_parm));
-			fprintf(stdout, "Estimated VCdim of classifier: VCdim<=%.5f\n",
-			        estimate_margin_vcdim(model, model_length, example_length,
-			                              kernel_parm));
-			if ((!learn_parm->remove_inconsistent) && (!transduction))
-			{
-				runtime_start_xa = get_runtime();
-				if (verbosity >= 1)
-				{
-					printf("Computing XiAlpha-estimates...");
-					fflush(stdout);
-				}
-				compute_xa_estimates(model, label, unlabeled, totdoc, docs, lin, a,
-				                     kernel_parm, learn_parm, &(model->xa_error),
-				                     &(model->xa_recall), &(model->xa_precision));
-				if (verbosity >= 1)
-				{
-					printf("done\n");
-				}
-				printf("Runtime for XiAlpha-estimates in cpu-seconds: %.2f\n",
-				       (get_runtime() - runtime_start_xa) / 100.0);
-				       
-				fprintf(stdout, "XiAlpha-estimate of the error: error<=%.2f%% (rho=%.2f,depth=%ld)\n",
-				        model->xa_error, learn_parm->rho, learn_parm->xa_depth);
-				fprintf(stdout, "XiAlpha-estimate of the recall: recall=>%.2f%% (rho=%.2f,depth=%ld)\n",
-				        model->xa_recall, learn_parm->rho, learn_parm->xa_depth);
-				fprintf(stdout, "XiAlpha-estimate of the precision: precision=>%.2f%% (rho=%.2f,depth=%ld)\n",
-				        model->xa_precision, learn_parm->rho, learn_parm->xa_depth);
-			}
-			else if (!learn_parm->remove_inconsistent)
-			{
-				estimate_transduction_quality(model, label, unlabeled, totdoc, docs, lin);
-			}
-		}
-		if (verbosity >= 1)
-		{
-			printf("Number of kernel evaluations: %ld\n", kernel_cache_statistic);
-		}
-	}
-	
-	
-	/* leave-one-out testing starts now */
-	if (learn_parm->compute_loo)
-	{
-		/* save results of training on full dataset for leave-one-out */
-		runtime_start_loo = get_runtime();
-		for (i = 0; i < totdoc; i++)
-		{
-			xi_fullset[i] = 1.0 - ((lin[i] - model->b) * (double)label[i]);
-			if (xi_fullset[i] < 0) xi_fullset[i] = 0;
-			a_fullset[i] = a[i];
-		}
-		if (verbosity >= 1)
-		{
-			printf("Computing leave-one-out");
-		}
-		
-		/* repeat this loop for every held-out example */
-		for (heldout = 0; (heldout < totdoc); heldout++)
-		{
-			if (learn_parm->rho*a_fullset[heldout]*r_delta_sq + xi_fullset[heldout]
-			        < 1.0)
-			{
-				/* guaranteed to not produce a leave-one-out error */
-				if (verbosity == 1)
-				{
-					printf("+");
-					fflush(stdout);
-				}
-			}
-			else if (xi_fullset[heldout] > 1.0)
-			{
-				/* guaranteed to produce a leave-one-out error */
-				loo_count++;
-				if (label[heldout] > 0)  loo_count_pos++;
-				else loo_count_neg++;
-				if (verbosity == 1)
-				{
-					printf("-");
-					fflush(stdout);
-				}
-			}
-			else
-			{
-				loocomputed++;
-				heldout_c = learn_parm->svm_cost[heldout]; /* set upper bound to zero */
-				learn_parm->svm_cost[heldout] = 0;
-				/* make sure heldout example is not currently  */
-				/* shrunk away. Assumes that lin is up to date! */
-				shrink_state.active[heldout] = 1;
-				if (verbosity >= 2)
-					printf("\nLeave-One-Out test on example %ld\n", heldout);
-				if (verbosity >= 1)
-				{
-					printf("(?[%ld]", heldout);
-					fflush(stdout);
-				}
-				
-				optimize_to_convergence(docs, label, totdoc, totwords, learn_parm,
-				                        kernel_parm,
-				                        kernel_cache, &shrink_state, model, inconsistent, unlabeled,
-				                        a, lin, c, &timing_profile,
-				                        &maxdiff, heldout, (long)2);
-				                        
-				/* printf("%.20f\n",(lin[heldout]-model->b)*(double)label[heldout]); */
-				
-				if (((lin[heldout] - model->b)*(double)label[heldout]) <= 0.0)
-				{
-					loo_count++;                            /* there was a loo-error */
-					if (label[heldout] > 0)  loo_count_pos++;
-					else loo_count_neg++;
-					if (verbosity >= 1)
-					{
-						printf("-)");
-						fflush(stdout);
-					}
-				}
-				else
-				{
-					if (verbosity >= 1)
-					{
-						printf("+)");
-						fflush(stdout);
-					}
-				}
-				/* now we need to restore the original data set*/
-				learn_parm->svm_cost[heldout] = heldout_c; /* restore upper bound */
-			}
-		} /* end of leave-one-out loop */
-		
-		
-		if (verbosity >= 1)
-		{
-			printf("\nRetrain on full problem");
-			fflush(stdout);
-		}
-		optimize_to_convergence(docs, label, totdoc, totwords, learn_parm,
-		                        kernel_parm,
-		                        kernel_cache, &shrink_state, model, inconsistent, unlabeled,
-		                        a, lin, c, &timing_profile,
-		                        &maxdiff, (long) - 1, (long)1);
-		if (verbosity >= 1)
-			printf("done.\n");
-			
-			
-		/* after all leave-one-out computed */
-		model->loo_error = 100.0 * loo_count / (double)totdoc;
-
-		model->loo_recall = (1.0 - (double)loo_count_pos / (double)trainpos) * 100.0;
-		model->loo_precision = (trainpos - loo_count_pos) /
-		                       (double)(trainpos - loo_count_pos + loo_count_neg) * 100.0;
-		if (verbosity >= 1)
-		{
-			fprintf(stdout, "Leave-one-out estimate of the error: error=%.2f%%\n",
-			        model->loo_error);
-			fprintf(stdout, "Leave-one-out estimate of the recall: recall=%.2f%%\n",
-			        model->loo_recall);
-			fprintf(stdout, "Leave-one-out estimate of the precision: precision=%.2f%%\n",
-			        model->loo_precision);
-			fprintf(stdout, "Actual leave-one-outs computed:  %ld (rho=%.2f)\n",
-			        loocomputed, learn_parm->rho);
-			printf("Runtime for leave-one-out in cpu-seconds: %.2f\n",
-			       (double)(get_runtime() - runtime_start_loo) / 100.0);
-		}
-	}
-	
-	if (learn_parm->alphafile[0])
-		write_alphas(learn_parm->alphafile, a, label, totdoc);
-		
-	shrink_state_cleanup(&shrink_state);
-	free(label);
-	free(inconsistent);
-	free(unlabeled);
-	free(c);
-	free(a);
-	free(a_fullset);
-	free(xi_fullset);
-	free(lin);
-	free(learn_parm->svm_cost);	
-}
-
-
-/* Learns an SVM classification model based on the training data in
-   docs/label. The resulting model is returned in the structure
-   model. */
-
-void svm_learn_classification(DOC **docs, double *class, long int
-			      totdoc, long int totwords, 
-			      LEARN_PARM *learn_parm, 
-			      KERNEL_PARM *kernel_parm, 
-			      KERNEL_CACHE *kernel_cache, 
-			      MODEL *model,
-			      double *alpha)
-     /* docs:        Training vectors (x-part) */
-     /* class:       Training labels (y-part, zero if test example for
-                     transduction) */
-     /* totdoc:      Number of examples in docs/label */
-     /* totwords:    Number of features (i.e. highest feature index) */
-     /* learn_parm:  Learning paramenters */
-     /* kernel_parm: Kernel paramenters */
-     /* kernel_cache:Initialized Cache of size totdoc, if using a kernel. 
-                     NULL if linear.*/
-     /* model:       Returns learning result (assumed empty before called) */
-     /* alpha:       Start values for the alpha variables or NULL
-	             pointer. The new alpha values are returned after 
-		     optimization if not NULL. Array must be of size totdoc. */
-{
-  long *inconsistent,i,*label;
-  long inconsistentnum;
-  long misclassified,upsupvecnum;
-  double loss,model_length,example_length;
-  double maxdiff,*lin,*a,*c;
-  long runtime_start,runtime_end;
-  long iterations;
-  long *unlabeled,transduction;
-  long heldout;
-  long loo_count=0,loo_count_pos=0,loo_count_neg=0,trainpos=0,trainneg=0;
-  long loocomputed=0,runtime_start_loo=0,runtime_start_xa=0;
-  double heldout_c=0,r_delta_sq=0,r_delta,r_delta_avg;
-  long *index,*index2dnum;
-  double *weights;
-  CFLOAT *aicache;  /* buffer to keep one row of hessian */
-
-  double *xi_fullset; /* buffer for storing xi on full sample in loo */
-  double *a_fullset;  /* buffer for storing alpha on full sample in loo */
-  TIMING timing_profile;
-  SHRINK_STATE shrink_state;
-
-  runtime_start=get_runtime();
-  timing_profile.time_kernel=0;
-  timing_profile.time_opti=0;
-  timing_profile.time_shrink=0;
-  timing_profile.time_update=0;
-  timing_profile.time_model=0;
-  timing_profile.time_check=0;
-  timing_profile.time_select=0;
-  kernel_cache_statistic=0;
-
-  learn_parm->totwords=totwords;
-
-  /* make sure -n value is reasonable */
-  if((learn_parm->svm_newvarsinqp < 2) 
-     || (learn_parm->svm_newvarsinqp > learn_parm->svm_maxqpsize)) {
-    learn_parm->svm_newvarsinqp=learn_parm->svm_maxqpsize;
-  }
-
-  init_shrink_state(&shrink_state,totdoc,(long)MAXSHRINK);
-
-  label = (long *)my_malloc(sizeof(long)*totdoc);
-  inconsistent = (long *)my_malloc(sizeof(long)*totdoc);
-  unlabeled = (long *)my_malloc(sizeof(long)*totdoc);
-  c = (double *)my_malloc(sizeof(double)*totdoc);
-  a = (double *)my_malloc(sizeof(double)*totdoc);
-  a_fullset = (double *)my_malloc(sizeof(double)*totdoc);
-  xi_fullset = (double *)my_malloc(sizeof(double)*totdoc);
-  lin = (double *)my_malloc(sizeof(double)*totdoc);
-  learn_parm->svm_cost = (double *)my_malloc(sizeof(double)*totdoc);
-  model->supvec = (DOC **)my_malloc(sizeof(DOC *)*(totdoc+2));
-  model->alpha = (double *)my_malloc(sizeof(double)*(totdoc+2));
-  model->index = (long *)my_malloc(sizeof(long)*(totdoc+2));
-
-  model->at_upper_bound=0;
-  model->b=0;	       
-  model->supvec[0]=0;  /* element 0 reserved and empty for now */
-  model->alpha[0]=0;
-  model->lin_weights=NULL;
-  model->totwords=totwords;
-  model->totdoc=totdoc;
-  model->kernel_parm=(*kernel_parm);
-  model->sv_num=1;
-  model->loo_error=-1;
-  model->loo_recall=-1;
-  model->loo_precision=-1;
-  model->xa_error=-1;
-  model->xa_recall=-1;
-  model->xa_precision=-1;
-  inconsistentnum=0;
-  transduction=0;
-
-  r_delta=estimate_r_delta(docs,totdoc,kernel_parm);
-  r_delta_sq=r_delta*r_delta;
-
-  r_delta_avg=estimate_r_delta_average(docs,totdoc,kernel_parm);
-  if(learn_parm->svm_c == 0.0) {  /* default value for C */
-    learn_parm->svm_c=1.0/(r_delta_avg*r_delta_avg);
-    if(verbosity>=1) 
-      printf("Setting default regularization parameter C=%.4f\n",
-	     learn_parm->svm_c);
-  }
-
-  learn_parm->eps=-1.0;      /* equivalent regression epsilon for
-				classification */
-
-  for(i=0;i<totdoc;i++) {    /* various inits */
-    docs[i]->docnum=i;
-    inconsistent[i]=0;
-    a[i]=0;
-    lin[i]=0;
-    c[i]=0.0;
-    unlabeled[i]=0;
-    if(class[i] == 0) {
-      unlabeled[i]=1;
-      label[i]=0;
-      transduction=1;
-    }
-    if(class[i] > 0) {
-      learn_parm->svm_cost[i]=learn_parm->svm_c*learn_parm->svm_costratio*
-	docs[i]->costfactor;
-      label[i]=1;
-      trainpos++;
-    }
-    else if(class[i] < 0) {
-      learn_parm->svm_cost[i]=learn_parm->svm_c*docs[i]->costfactor;
-      label[i]=-1;
-      trainneg++;
-    }
-    else {
-      learn_parm->svm_cost[i]=0;
-    }
-  }
-  if(verbosity>=2) {
-    printf("%ld positive, %ld negative, and %ld unlabeled examples.\n",trainpos,trainneg,totdoc-trainpos-trainneg); fflush(stdout);
-  }
-
-  /* caching makes no sense for linear kernel */
-  if(kernel_parm->kernel_type == LINEAR) {
-    kernel_cache = NULL;   
-  } 
-
-  /* compute starting state for initial alpha values */
-  if(alpha) {
-    if(verbosity>=1) {
-      printf("Computing starting state..."); fflush(stdout);
-    }
-    index = (long *)my_malloc(sizeof(long)*totdoc);
-    index2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));
-    weights=(double *)my_malloc(sizeof(double)*(totwords+1));
-    aicache = (CFLOAT *)my_malloc(sizeof(CFLOAT)*totdoc);
-    for(i=0;i<totdoc;i++) {    /* create full index and clip alphas */
-      index[i]=1;
-      alpha[i]=fabs(alpha[i]);
-      if(alpha[i]<0) alpha[i]=0;
-      if(alpha[i]>learn_parm->svm_cost[i]) alpha[i]=learn_parm->svm_cost[i];
-    }
-    if(kernel_parm->kernel_type != LINEAR) {
-      for(i=0;i<totdoc;i++)     /* fill kernel cache with unbounded SV */
-	if((alpha[i]>0) && (alpha[i]<learn_parm->svm_cost[i]) 
-	   && (kernel_cache_space_available(kernel_cache))) 
-	  cache_kernel_row(kernel_cache,docs,i,kernel_parm);
-      for(i=0;i<totdoc;i++)     /* fill rest of kernel cache with bounded SV */
-	if((alpha[i]==learn_parm->svm_cost[i]) 
-	   && (kernel_cache_space_available(kernel_cache))) 
-	  cache_kernel_row(kernel_cache,docs,i,kernel_parm);
-    }
-    (void)compute_index(index,totdoc,index2dnum);
-    update_linear_component(docs,label,index2dnum,alpha,a,index2dnum,totdoc,
-			    totwords,kernel_parm,kernel_cache,lin,aicache,
-			    weights);
-    (void)calculate_svm_model(docs,label,unlabeled,lin,alpha,a,c,
-			      learn_parm,index2dnum,index2dnum,model);
-    for(i=0;i<totdoc;i++) {    /* copy initial alphas */
-      a[i]=alpha[i];
-    }
-    free(index);
-    free(index2dnum);
-    free(weights);
-    free(aicache);
-    if(verbosity>=1) {
-      printf("done.\n");  fflush(stdout);
-    }   
-  } 
-
-  if(transduction) {
-    learn_parm->svm_iter_to_shrink=99999999;
-    if(verbosity >= 1)
-      printf("\nDeactivating Shrinking due to an incompatibility with the transductive \nlearner in the current version.\n\n");
-  }
-
-  if(transduction && learn_parm->compute_loo) {
-    learn_parm->compute_loo=0;
-    if(verbosity >= 1)
-      printf("\nCannot compute leave-one-out estimates for transductive learner.\n\n");
-  }    
-
-  if(learn_parm->remove_inconsistent && learn_parm->compute_loo) {
-    learn_parm->compute_loo=0;
-    printf("\nCannot compute leave-one-out estimates when removing inconsistent examples.\n\n");
-  }    
-
-  if(learn_parm->compute_loo && ((trainpos == 1) || (trainneg == 1))) {
-    learn_parm->compute_loo=0;
-    printf("\nCannot compute leave-one-out with only one example in one class.\n\n");
-  }    
-
-
-  if(verbosity==1) {
-    printf("Optimizing"); fflush(stdout);
-  }
-
-  /* train the svm */
-  iterations=optimize_to_convergence(docs,label,totdoc,totwords,learn_parm,
-				     kernel_parm,kernel_cache,&shrink_state,model,
-				     inconsistent,unlabeled,a,lin,
-				     c,&timing_profile,
-				     &maxdiff,(long)-1,
-				     (long)1);
-  
-  if(verbosity>=1) {
-    if(verbosity==1) printf("done. (%ld iterations)\n",iterations);
-
-    misclassified=0;
-    for(i=0;(i<totdoc);i++) { /* get final statistic */
-      if((lin[i]-model->b)*(double)label[i] <= 0.0) 
-	misclassified++;
-    }
-
-    printf("Optimization finished (%ld misclassified, maxdiff=%.5f).\n",
-	   misclassified,maxdiff); 
-
-    runtime_end=get_runtime();
-    if(verbosity>=2) {
-      printf("Runtime in cpu-seconds: %.2f (%.2f%% for kernel/%.2f%% for optimizer/%.2f%% for final/%.2f%% for update/%.2f%% for model/%.2f%% for check/%.2f%% for select)\n",
-        ((float)runtime_end-(float)runtime_start)/100.0,
-        (100.0*timing_profile.time_kernel)/(float)(runtime_end-runtime_start),
-	(100.0*timing_profile.time_opti)/(float)(runtime_end-runtime_start),
-	(100.0*timing_profile.time_shrink)/(float)(runtime_end-runtime_start),
-        (100.0*timing_profile.time_update)/(float)(runtime_end-runtime_start),
-        (100.0*timing_profile.time_model)/(float)(runtime_end-runtime_start),
-        (100.0*timing_profile.time_check)/(float)(runtime_end-runtime_start),
-        (100.0*timing_profile.time_select)/(float)(runtime_end-runtime_start));
-    }
-    else {
-      printf("Runtime in cpu-seconds: %.2f\n",
-	     (runtime_end-runtime_start)/100.0);
-    }
-
-    if(learn_parm->remove_inconsistent) {	  
-      inconsistentnum=0;
-      for(i=0;i<totdoc;i++) 
-	if(inconsistent[i]) 
-	  inconsistentnum++;
-      printf("Number of SV: %ld (plus %ld inconsistent examples)\n",
-	     model->sv_num-1,inconsistentnum);
-    }
-    else {
-      upsupvecnum=0;
-      for(i=1;i<model->sv_num;i++) {
-	if(fabs(model->alpha[i]) >= 
-	   (learn_parm->svm_cost[(model->supvec[i])->docnum]-
-	    learn_parm->epsilon_a)) 
-	  upsupvecnum++;
-      }
-      printf("Number of SV: %ld (including %ld at upper bound)\n",
-	     model->sv_num-1,upsupvecnum);
-    }
-    
-    if((verbosity>=1) && (!learn_parm->skip_final_opt_check)) {
-      loss=0;
-      model_length=0; 
-      for(i=0;i<totdoc;i++) {
-	if((lin[i]-model->b)*(double)label[i] < 1.0-learn_parm->epsilon_crit)
-	  loss+=1.0-(lin[i]-model->b)*(double)label[i];
-	model_length+=a[i]*label[i]*lin[i];
-      }
-      model_length=sqrt(model_length);
-      fprintf(stdout,"L1 loss: loss=%.5f\n",loss);
-      fprintf(stdout,"Norm of weight vector: |w|=%.5f\n",model_length);
-      example_length=estimate_sphere(model,kernel_parm); 
-      fprintf(stdout,"Norm of longest example vector: |x|=%.5f\n",
-	      length_of_longest_document_vector(docs,totdoc,kernel_parm));
-      fprintf(stdout,"Estimated VCdim of classifier: VCdim<=%.5f\n",
-	      estimate_margin_vcdim(model,model_length,example_length,
-				    kernel_parm));
-      if((!learn_parm->remove_inconsistent) && (!transduction)) {
-	runtime_start_xa=get_runtime();
-	if(verbosity>=1) {
-	  printf("Computing XiAlpha-estimates..."); fflush(stdout);
-	}
-	compute_xa_estimates(model,label,unlabeled,totdoc,docs,lin,a,
-			     kernel_parm,learn_parm,&(model->xa_error),
-			     &(model->xa_recall),&(model->xa_precision));
-	if(verbosity>=1) {
-	  printf("done\n");
-	}
-	printf("Runtime for XiAlpha-estimates in cpu-seconds: %.2f\n",
-	       (get_runtime()-runtime_start_xa)/100.0);
-	
-	fprintf(stdout,"XiAlpha-estimate of the error: error<=%.2f%% (rho=%.2f,depth=%ld)\n",
-		model->xa_error,learn_parm->rho,learn_parm->xa_depth);
-	fprintf(stdout,"XiAlpha-estimate of the recall: recall=>%.2f%% (rho=%.2f,depth=%ld)\n",
-		model->xa_recall,learn_parm->rho,learn_parm->xa_depth);
-	fprintf(stdout,"XiAlpha-estimate of the precision: precision=>%.2f%% (rho=%.2f,depth=%ld)\n",
-		model->xa_precision,learn_parm->rho,learn_parm->xa_depth);
-      }
-      else if(!learn_parm->remove_inconsistent) {
-	estimate_transduction_quality(model,label,unlabeled,totdoc,docs,lin);
-      }
-    }
-    if(verbosity>=1) {
-      printf("Number of kernel evaluations: %ld\n",kernel_cache_statistic);
-    }
-  }
-
-
-  /* leave-one-out testing starts now */
-  if(learn_parm->compute_loo) {
-    /* save results of training on full dataset for leave-one-out */
-    runtime_start_loo=get_runtime();
-    for(i=0;i<totdoc;i++) {
-      xi_fullset[i]=1.0-((lin[i]-model->b)*(double)label[i]);
-      if(xi_fullset[i]<0) xi_fullset[i]=0;
-      a_fullset[i]=a[i];
-    }
-    if(verbosity>=1) {
-      printf("Computing leave-one-out");
-    }
-    
-    /* repeat this loop for every held-out example */
-    for(heldout=0;(heldout<totdoc);heldout++) {
-      if(learn_parm->rho*a_fullset[heldout]*r_delta_sq+xi_fullset[heldout]
-	 < 1.0) { 
-	/* guaranteed to not produce a leave-one-out error */
-	if(verbosity==1) {
-	  printf("+"); fflush(stdout); 
-	}
-      }
-      else if(xi_fullset[heldout] > 1.0) {
-	/* guaranteed to produce a leave-one-out error */
-	loo_count++;
-	if(label[heldout] > 0)  loo_count_pos++; else loo_count_neg++;
-	if(verbosity==1) {
-	  printf("-"); fflush(stdout); 
-	}
-      }
-      else {
-	loocomputed++;
-	heldout_c=learn_parm->svm_cost[heldout]; /* set upper bound to zero */
-	learn_parm->svm_cost[heldout]=0;
-	/* make sure heldout example is not currently  */
-	/* shrunk away. Assumes that lin is up to date! */
-	shrink_state.active[heldout]=1;  
-	if(verbosity>=2) 
-	  printf("\nLeave-One-Out test on example %ld\n",heldout);
-	if(verbosity>=1) {
-	  printf("(?[%ld]",heldout); fflush(stdout); 
-	}
-	
-	optimize_to_convergence(docs,label,totdoc,totwords,learn_parm,
-				kernel_parm,
-				kernel_cache,&shrink_state,model,inconsistent,unlabeled,
-				a,lin,c,&timing_profile,
-				&maxdiff,heldout,(long)2);
-
-	/* printf("%.20f\n",(lin[heldout]-model->b)*(double)label[heldout]); */
-
-	if(((lin[heldout]-model->b)*(double)label[heldout]) <= 0.0) { 
-	  loo_count++;                            /* there was a loo-error */
-	  if(label[heldout] > 0)  loo_count_pos++; else loo_count_neg++;
-	  if(verbosity>=1) {
-	    printf("-)"); fflush(stdout); 
-	  }
-	}
-	else {
-	  if(verbosity>=1) {
-	    printf("+)"); fflush(stdout); 
-	  }
-	}
-	/* now we need to restore the original data set*/
-	learn_parm->svm_cost[heldout]=heldout_c; /* restore upper bound */
-      }
-    } /* end of leave-one-out loop */
-
-
-    if(verbosity>=1) {
-      printf("\nRetrain on full problem"); fflush(stdout); 
-    }
-    optimize_to_convergence(docs,label,totdoc,totwords,learn_parm,
-			    kernel_parm,
-			    kernel_cache,&shrink_state,model,inconsistent,unlabeled,
-			    a,lin,c,&timing_profile,
-			    &maxdiff,(long)-1,(long)1);
-    if(verbosity >= 1) 
-      printf("done.\n");
-    
-    
-    /* after all leave-one-out computed */
-    model->loo_error=100.0*loo_count/(double)totdoc;
-    model->loo_recall=(1.0-(double)loo_count_pos/(double)trainpos)*100.0;
-    model->loo_precision=(trainpos-loo_count_pos)/
-      (double)(trainpos-loo_count_pos+loo_count_neg)*100.0;
-    if(verbosity >= 1) {
-      fprintf(stdout,"Leave-one-out estimate of the error: error=%.2f%%\n",
-	      model->loo_error);
-      fprintf(stdout,"Leave-one-out estimate of the recall: recall=%.2f%%\n",
-	      model->loo_recall);
-      fprintf(stdout,"Leave-one-out estimate of the precision: precision=%.2f%%\n",
-	      model->loo_precision);
-      fprintf(stdout,"Actual leave-one-outs computed:  %ld (rho=%.2f)\n",
-	      loocomputed,learn_parm->rho);
-      printf("Runtime for leave-one-out in cpu-seconds: %.2f\n",
-	     (double)(get_runtime()-runtime_start_loo)/100.0);
-    }
-  }
-    
-  if(learn_parm->alphafile[0])
-    write_alphas(learn_parm->alphafile,a,label,totdoc);
-  
-  shrink_state_cleanup(&shrink_state);
-  free(label);
-  free(inconsistent);
-  free(unlabeled);
-  free(c);
-  free(a);
-  free(a_fullset);
-  free(xi_fullset);
-  free(lin);
-  free(learn_parm->svm_cost);
-}
-
-
-/* Learns an SVM regression model based on the training data in
-   docs/label. The resulting model is returned in the structure
-   model. */
-
-void svm_learn_regression(DOC **docs, double *value, long int totdoc, 
-			  long int totwords, LEARN_PARM *learn_parm, 
-			  KERNEL_PARM *kernel_parm, 
-			  KERNEL_CACHE **kernel_cache, MODEL *model)
-     /* docs:        Training vectors (x-part) */
-     /* class:       Training value (y-part) */
-     /* totdoc:      Number of examples in docs/label */
-     /* totwords:    Number of features (i.e. highest feature index) */
-     /* learn_parm:  Learning paramenters */
-     /* kernel_parm: Kernel paramenters */
-     /* kernel_cache:Initialized Cache, if using a kernel. NULL if
-                     linear. Note that it will be free'd and reassigned */
-     /* model:       Returns learning result (assumed empty before called) */
-{
-  long *inconsistent,i,j;
-  long inconsistentnum;
-  long upsupvecnum;
-  double loss,model_length,example_length;
-  double maxdiff,*lin,*a,*c;
-  long runtime_start,runtime_end;
-  long iterations,kernel_cache_size;
-  long *unlabeled;
-  double r_delta_sq=0,r_delta,r_delta_avg;
-  double *xi_fullset; /* buffer for storing xi on full sample in loo */
-  double *a_fullset;  /* buffer for storing alpha on full sample in loo */
-  TIMING timing_profile;
-  SHRINK_STATE shrink_state;
-  DOC **docs_org;
-  long *label;
-
-  /* set up regression problem in standard form */
-  docs_org=docs;
-  docs = (DOC **)my_malloc(sizeof(DOC)*2*totdoc);
-  label = (long *)my_malloc(sizeof(long)*2*totdoc);
-  c = (double *)my_malloc(sizeof(double)*2*totdoc);
-  for(i=0;i<totdoc;i++) {   
-    j=2*totdoc-1-i;
-    docs[i]=create_example(i,0,0,docs_org[i]->costfactor,docs_org[i]->fvec);
-    label[i]=+1;
-    c[i]=value[i];
-    docs[j]=create_example(j,0,0,docs_org[i]->costfactor,docs_org[i]->fvec);
-    label[j]=-1;
-    c[j]=value[i];
-  }
-  totdoc*=2;
-
-  /* need to get a bigger kernel cache */
-  if(*kernel_cache) {
-    kernel_cache_size=(*kernel_cache)->buffsize*sizeof(CFLOAT)/(1024*1024);
-    kernel_cache_cleanup(*kernel_cache);
-    (*kernel_cache)=kernel_cache_init(totdoc,kernel_cache_size);
-  }
-
-  runtime_start=get_runtime();
-  timing_profile.time_kernel=0;
-  timing_profile.time_opti=0;
-  timing_profile.time_shrink=0;
-  timing_profile.time_update=0;
-  timing_profile.time_model=0;
-  timing_profile.time_check=0;
-  timing_profile.time_select=0;
-  kernel_cache_statistic=0;
-
-  learn_parm->totwords=totwords;
-
-  /* make sure -n value is reasonable */
-  if((learn_parm->svm_newvarsinqp < 2) 
-     || (learn_parm->svm_newvarsinqp > learn_parm->svm_maxqpsize)) {
-    learn_parm->svm_newvarsinqp=learn_parm->svm_maxqpsize;
-  }
-
-  init_shrink_state(&shrink_state,totdoc,(long)MAXSHRINK);
-
-  inconsistent = (long *)my_malloc(sizeof(long)*totdoc);
-  unlabeled = (long *)my_malloc(sizeof(long)*totdoc);
-  a = (double *)my_malloc(sizeof(double)*totdoc);
-  a_fullset = (double *)my_malloc(sizeof(double)*totdoc);
-  xi_fullset = (double *)my_malloc(sizeof(double)*totdoc);
-  lin = (double *)my_malloc(sizeof(double)*totdoc);
-  learn_parm->svm_cost = (double *)my_malloc(sizeof(double)*totdoc);
-  model->supvec = (DOC **)my_malloc(sizeof(DOC *)*(totdoc+2));
-  model->alpha = (double *)my_malloc(sizeof(double)*(totdoc+2));
-  model->index = (long *)my_malloc(sizeof(long)*(totdoc+2));
-
-  model->at_upper_bound=0;
-  model->b=0;	       
-  model->supvec[0]=0;  /* element 0 reserved and empty for now */
-  model->alpha[0]=0;
-  model->lin_weights=NULL;
-  model->totwords=totwords;
-  model->totdoc=totdoc;
-  model->kernel_parm=(*kernel_parm);
-  model->sv_num=1;
-  model->loo_error=-1;
-  model->loo_recall=-1;
-  model->loo_precision=-1;
-  model->xa_error=-1;
-  model->xa_recall=-1;
-  model->xa_precision=-1;
-  inconsistentnum=0;
-
-  r_delta=estimate_r_delta(docs,totdoc,kernel_parm);
-  r_delta_sq=r_delta*r_delta;
-
-  r_delta_avg=estimate_r_delta_average(docs,totdoc,kernel_parm);
-  if(learn_parm->svm_c == 0.0) {  /* default value for C */
-    learn_parm->svm_c=1.0/(r_delta_avg*r_delta_avg);
-    if(verbosity>=1) 
-      printf("Setting default regularization parameter C=%.4f\n",
-	     learn_parm->svm_c);
-  }
-
-  for(i=0;i<totdoc;i++) {    /* various inits */
-    inconsistent[i]=0;
-    a[i]=0;
-    lin[i]=0;
-    unlabeled[i]=0;
-    if(label[i] > 0) {
-      learn_parm->svm_cost[i]=learn_parm->svm_c*learn_parm->svm_costratio*
-	docs[i]->costfactor;
-    }
-    else if(label[i] < 0) {
-      learn_parm->svm_cost[i]=learn_parm->svm_c*docs[i]->costfactor;
-    }
-  }
-
-  /* caching makes no sense for linear kernel */
-  if((kernel_parm->kernel_type == LINEAR) && (*kernel_cache)) {
-    printf("WARNING: Using a kernel cache for linear case will slow optimization down!\n");
-  } 
-
-  if(verbosity==1) {
-    printf("Optimizing"); fflush(stdout);
-  }
-
-  /* train the svm */
-  iterations=optimize_to_convergence(docs,label,totdoc,totwords,learn_parm,
-				     kernel_parm,*kernel_cache,&shrink_state,
-				     model,inconsistent,unlabeled,a,lin,c,
-				     &timing_profile,&maxdiff,(long)-1,
-				     (long)1);
-  
-  if(verbosity>=1) {
-    if(verbosity==1) printf("done. (%ld iterations)\n",iterations);
-
-    printf("Optimization finished (maxdiff=%.5f).\n",maxdiff); 
-
-    runtime_end=get_runtime();
-    if(verbosity>=2) {
-      printf("Runtime in cpu-seconds: %.2f (%.2f%% for kernel/%.2f%% for optimizer/%.2f%% for final/%.2f%% for update/%.2f%% for model/%.2f%% for check/%.2f%% for select)\n",
-        ((float)runtime_end-(float)runtime_start)/100.0,
-        (100.0*timing_profile.time_kernel)/(float)(runtime_end-runtime_start),
-	(100.0*timing_profile.time_opti)/(float)(runtime_end-runtime_start),
-	(100.0*timing_profile.time_shrink)/(float)(runtime_end-runtime_start),
-        (100.0*timing_profile.time_update)/(float)(runtime_end-runtime_start),
-        (100.0*timing_profile.time_model)/(float)(runtime_end-runtime_start),
-        (100.0*timing_profile.time_check)/(float)(runtime_end-runtime_start),
-        (100.0*timing_profile.time_select)/(float)(runtime_end-runtime_start));
-    }
-    else {
-      printf("Runtime in cpu-seconds: %.2f\n",
-	     (runtime_end-runtime_start)/100.0);
-    }
-
-    if(learn_parm->remove_inconsistent) {	  
-      inconsistentnum=0;
-      for(i=0;i<totdoc;i++) 
-	if(inconsistent[i]) 
-	  inconsistentnum++;
-      printf("Number of SV: %ld (plus %ld inconsistent examples)\n",
-	     model->sv_num-1,inconsistentnum);
-    }
-    else {
-      upsupvecnum=0;
-      for(i=1;i<model->sv_num;i++) {
-	if(fabs(model->alpha[i]) >= 
-	   (learn_parm->svm_cost[(model->supvec[i])->docnum]-
-	    learn_parm->epsilon_a)) 
-	  upsupvecnum++;
-      }
-      printf("Number of SV: %ld (including %ld at upper bound)\n",
-	     model->sv_num-1,upsupvecnum);
-    }
-    
-    if((verbosity>=1) && (!learn_parm->skip_final_opt_check)) {
-      loss=0;
-      model_length=0; 
-      for(i=0;i<totdoc;i++) {
-	if((lin[i]-model->b)*(double)label[i] < (-learn_parm->eps+(double)label[i]*c[i])-learn_parm->epsilon_crit)
-	  loss+=-learn_parm->eps+(double)label[i]*c[i]-(lin[i]-model->b)*(double)label[i];
-	model_length+=a[i]*label[i]*lin[i];
-      }
-      model_length=sqrt(model_length);
-      fprintf(stdout,"L1 loss: loss=%.5f\n",loss);
-      fprintf(stdout,"Norm of weight vector: |w|=%.5f\n",model_length);
-      example_length=estimate_sphere(model,kernel_parm); 
-      fprintf(stdout,"Norm of longest example vector: |x|=%.5f\n",
-	      length_of_longest_document_vector(docs,totdoc,kernel_parm));
-    }
-    if(verbosity>=1) {
-      printf("Number of kernel evaluations: %ld\n",kernel_cache_statistic);
-    }
-  }
-    
-  if(learn_parm->alphafile[0])
-    write_alphas(learn_parm->alphafile,a,label,totdoc);
-
-  /* this makes sure the model we return does not contain pointers to the 
-     temporary documents */
-  for(i=1;i<model->sv_num;i++) { 
-    j=model->supvec[i]->docnum;
-    if(j >= (totdoc/2)) {
-      j=totdoc-j-1;
-    }
-    model->supvec[i]=docs_org[j];
-  }
-  
-  shrink_state_cleanup(&shrink_state);
-  for(i=0;i<totdoc;i++)
-    free_example(docs[i],0);
-  free(docs);
-  free(label);
-  free(inconsistent);
-  free(unlabeled);
-  free(c);
-  free(a);
-  free(a_fullset);
-  free(xi_fullset);
-  free(lin);
-  free(learn_parm->svm_cost);
-}
-
-void svm_learn_ranking(DOC **docs, double *rankvalue, long int totdoc, 
-		       long int totwords, LEARN_PARM *learn_parm, 
-		       KERNEL_PARM *kernel_parm, KERNEL_CACHE **kernel_cache, 
-		       MODEL *model)
-     /* docs:        Training vectors (x-part) */
-     /* rankvalue:   Training target values that determine the ranking */
-     /* totdoc:      Number of examples in docs/label */
-     /* totwords:    Number of features (i.e. highest feature index) */
-     /* learn_parm:  Learning paramenters */
-     /* kernel_parm: Kernel paramenters */
-     /* kernel_cache:Initialized pointer to Cache of size 1*totdoc, if 
-	             using a kernel. NULL if linear. NOTE: Cache is 
-                     getting reinitialized in this function */
-     /* model:       Returns learning result (assumed empty before called) */
-{
-  DOC **docdiff;
-  long i,j,k,totpair,kernel_cache_size;
-  double *target,*alpha,cost;
-  long *greater,*lesser;
-  MODEL *pairmodel;
-  SVECTOR *flow,*fhigh;
-
-  totpair=0;
-  for(i=0;i<totdoc;i++) {
-    for(j=i+1;j<totdoc;j++) {
-      if((docs[i]->queryid==docs[j]->queryid) && (rankvalue[i] != rankvalue[j])) {
-	totpair++;
-      }
-    }
-  }
-
-  printf("Constructing %ld rank constraints...",totpair); fflush(stdout);
-  docdiff=(DOC **)my_malloc(sizeof(DOC)*totpair);
-  target=(double *)my_malloc(sizeof(double)*totpair); 
-  greater=(long *)my_malloc(sizeof(long)*totpair); 
-  lesser=(long *)my_malloc(sizeof(long)*totpair); 
-
-  k=0;
-  for(i=0;i<totdoc;i++) {
-    for(j=i+1;j<totdoc;j++) {
-      if(docs[i]->queryid == docs[j]->queryid) {
-	cost=(docs[i]->costfactor+docs[j]->costfactor)/2.0;
-	if(rankvalue[i] > rankvalue[j]) {
-	  if(kernel_parm->kernel_type == LINEAR)
-	    docdiff[k]=create_example(k,0,0,cost,
-				      sub_ss(docs[i]->fvec,docs[j]->fvec));
-	  else {
-	    flow=copy_svector(docs[j]->fvec);
-	    flow->factor=-1.0;
-	    flow->next=NULL;
-	    fhigh=copy_svector(docs[i]->fvec);
-	    fhigh->factor=1.0;
-	    fhigh->next=flow;
-	    docdiff[k]=create_example(k,0,0,cost,fhigh);
-	  }
-	  target[k]=1;
-	  greater[k]=i;
-	  lesser[k]=j;
-	  k++;
-	}
-	else if(rankvalue[i] < rankvalue[j]) {
-	  if(kernel_parm->kernel_type == LINEAR)
-	    docdiff[k]=create_example(k,0,0,cost,
-				      sub_ss(docs[i]->fvec,docs[j]->fvec));
-	  else {
-	    flow=copy_svector(docs[j]->fvec);
-	    flow->factor=-1.0;
-	    flow->next=NULL;
-	    fhigh=copy_svector(docs[i]->fvec);
-	    fhigh->factor=1.0;
-	    fhigh->next=flow;
-	    docdiff[k]=create_example(k,0,0,cost,fhigh);
-	  }
-	  target[k]=-1;
-	  greater[k]=i;
-	  lesser[k]=j;
-	  k++;
-	}
-      }
-    }
-  }
-  printf("done.\n"); fflush(stdout);
-
-  /* need to get a bigger kernel cache */
-  if(*kernel_cache) {
-    kernel_cache_size=(*kernel_cache)->buffsize*sizeof(CFLOAT)/(1024*1024);
-    kernel_cache_cleanup(*kernel_cache);
-    (*kernel_cache)=kernel_cache_init(totpair,kernel_cache_size);
-  }
-
-  /* must use unbiased hyperplane on difference vectors */
-  learn_parm->biased_hyperplane=0;
-  pairmodel=(MODEL *)my_malloc(sizeof(MODEL));
-  svm_learn_classification(docdiff,target,totpair,totwords,learn_parm,
-			   kernel_parm,(*kernel_cache),pairmodel,NULL);
-
-  /* Transfer the result into a more compact model. If you would like
-     to output the original model on pairs of documents, see below. */
-  alpha=(double *)my_malloc(sizeof(double)*totdoc); 
-  for(i=0;i<totdoc;i++) {
-    alpha[i]=0;
-  }
-  for(i=1;i<pairmodel->sv_num;i++) {
-    alpha[lesser[(pairmodel->supvec[i])->docnum]]-=pairmodel->alpha[i];
-    alpha[greater[(pairmodel->supvec[i])->docnum]]+=pairmodel->alpha[i];
-  }
-  model->supvec = (DOC **)my_malloc(sizeof(DOC *)*(totdoc+2));
-  model->alpha = (double *)my_malloc(sizeof(double)*(totdoc+2));
-  model->index = (long *)my_malloc(sizeof(long)*(totdoc+2));
-  model->supvec[0]=0;  /* element 0 reserved and empty for now */
-  model->alpha[0]=0;
-  model->sv_num=1;
-  for(i=0;i<totdoc;i++) {
-    if(alpha[i]) {
-      model->supvec[model->sv_num]=docs[i];
-      model->alpha[model->sv_num]=alpha[i];
-      model->index[i]=model->sv_num;
-      model->sv_num++;
-    }
-    else {
-      model->index[i]=-1;
-    }
-  }
-  model->at_upper_bound=0;
-  model->b=0;	       
-  model->lin_weights=NULL;
-  model->totwords=totwords;
-  model->totdoc=totdoc;
-  model->kernel_parm=(*kernel_parm);
-  model->loo_error=-1;
-  model->loo_recall=-1;
-  model->loo_precision=-1;
-  model->xa_error=-1;
-  model->xa_recall=-1;
-  model->xa_precision=-1;
-
-  free(alpha);
-  free(greater);
-  free(lesser);
-  free(target);
-
-  /* If you would like to output the original model on pairs of
-     document, replace the following lines with '(*model)=(*pairmodel);' */
-  for(i=0;i<totpair;i++)
-    free_example(docdiff[i],1);
-  free(docdiff);
-  free_model(pairmodel,0);
-}
-
-
-/* The following solves a freely defined and given set of
-   inequalities. The optimization problem is of the following form:
-
-   min 0.5 w*w + C sum_i C_i \xi_i
-   s.t. x_i * w > rhs_i - \xi_i
-
-   This corresponds to the -z o option. */
-
-void svm_learn_optimization(DOC **docs, double *rhs, long int
-			    totdoc, long int totwords, 
-			    LEARN_PARM *learn_parm, 
-			    KERNEL_PARM *kernel_parm, 
-			    KERNEL_CACHE *kernel_cache, MODEL *model,
-			    double *alpha)
-     /* docs:        Left-hand side of inequalities (x-part) */
-     /* rhs:         Right-hand side of inequalities */
-     /* totdoc:      Number of examples in docs/label */
-     /* totwords:    Number of features (i.e. highest feature index) */
-     /* learn_parm:  Learning paramenters */
-     /* kernel_parm: Kernel paramenters */
-     /* kernel_cache:Initialized Cache of size 1*totdoc, if using a kernel. 
-                     NULL if linear.*/
-     /* model:       Returns solution as SV expansion (assumed empty before called) */
-     /* alpha:       Start values for the alpha variables or NULL
-	             pointer. The new alpha values are returned after 
-		     optimization if not NULL. Array must be of size totdoc. */
-{
-  long i,*label;
-  long misclassified,upsupvecnum;
-  double loss,model_length,example_length;
-  double maxdiff,*lin,*a,*c;
-  long runtime_start,runtime_end;
-  long iterations,maxslackid,svsetnum;
-  long *unlabeled,*inconsistent;
-  double r_delta_sq=0,r_delta,r_delta_avg;
-  long *index,*index2dnum;
-  double *weights,*slack,*alphaslack;
-  CFLOAT *aicache;  /* buffer to keep one row of hessian */
-
-  TIMING timing_profile;
-  SHRINK_STATE shrink_state;
-
-  runtime_start=get_runtime();
-  timing_profile.time_kernel=0;
-  timing_profile.time_opti=0;
-  timing_profile.time_shrink=0;
-  timing_profile.time_update=0;
-  timing_profile.time_model=0;
-  timing_profile.time_check=0;
-  timing_profile.time_select=0;
-  kernel_cache_statistic=0;
-
-  learn_parm->totwords=totwords;
-
-  /* make sure -n value is reasonable */
-  if((learn_parm->svm_newvarsinqp < 2) 
-     || (learn_parm->svm_newvarsinqp > learn_parm->svm_maxqpsize)) {
-    learn_parm->svm_newvarsinqp=learn_parm->svm_maxqpsize;
-  }
-
-  init_shrink_state(&shrink_state,totdoc,(long)MAXSHRINK);
-
-  label = (long *)my_malloc(sizeof(long)*totdoc);
-  unlabeled = (long *)my_malloc(sizeof(long)*totdoc);
-  inconsistent = (long *)my_malloc(sizeof(long)*totdoc);
-  c = (double *)my_malloc(sizeof(double)*totdoc);
-  a = (double *)my_malloc(sizeof(double)*totdoc);
-  lin = (double *)my_malloc(sizeof(double)*totdoc);
-  learn_parm->svm_cost = (double *)my_malloc(sizeof(double)*totdoc);
-  model->supvec = (DOC **)my_malloc(sizeof(DOC *)*(totdoc+2));
-  model->alpha = (double *)my_malloc(sizeof(double)*(totdoc+2));
-  model->index = (long *)my_malloc(sizeof(long)*(totdoc+2));
-
-  model->at_upper_bound=0;
-  model->b=0;	       
-  model->supvec[0]=0;  /* element 0 reserved and empty for now */
-  model->alpha[0]=0;
-  model->lin_weights=NULL;
-  model->totwords=totwords;
-  model->totdoc=totdoc;
-  model->kernel_parm=(*kernel_parm);
-  model->sv_num=1;
-  model->loo_error=-1;
-  model->loo_recall=-1;
-  model->loo_precision=-1;
-  model->xa_error=-1;
-  model->xa_recall=-1;
-  model->xa_precision=-1;
-
-  r_delta=estimate_r_delta(docs,totdoc,kernel_parm);
-  r_delta_sq=r_delta*r_delta;
-
-  r_delta_avg=estimate_r_delta_average(docs,totdoc,kernel_parm);
-  if(learn_parm->svm_c == 0.0) {  /* default value for C */
-    learn_parm->svm_c=1.0/(r_delta_avg*r_delta_avg);
-    if(verbosity>=1) 
-      printf("Setting default regularization parameter C=%.4f\n",
-	     learn_parm->svm_c);
-  }
-
-  learn_parm->biased_hyperplane=0; /* learn an unbiased hyperplane */
-
-  learn_parm->eps=0.0;      /* No margin, unless explicitly handcoded
-                               in the right-hand side in the training
-                               set.  */
-
-  for(i=0;i<totdoc;i++) {    /* various inits */
-    docs[i]->docnum=i;
-    a[i]=0;
-    lin[i]=0;
-    c[i]=rhs[i];       /* set right-hand side */
-    unlabeled[i]=0;
-    inconsistent[i]=0;
-    learn_parm->svm_cost[i]=learn_parm->svm_c*learn_parm->svm_costratio*
-      docs[i]->costfactor;
-    label[i]=1;
-  }
-  if(learn_parm->sharedslack) /* if shared slacks are used, they must */
-    for(i=0;i<totdoc;i++)     /*  be used on every constraint */
-      if(!docs[i]->slackid) {
-	perror("Error: Missing shared slacks definitions in some of the examples.");
-	exit(0);
-      }
-      
-  /* compute starting state for initial alpha values */
-  if(alpha) {
-    if(verbosity>=1) {
-      printf("Computing starting state..."); fflush(stdout);
-    }
-    index = (long *)my_malloc(sizeof(long)*totdoc);
-    index2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));
-    weights=(double *)my_malloc(sizeof(double)*(totwords+1));
-    aicache = (CFLOAT *)my_malloc(sizeof(CFLOAT)*totdoc);
-    for(i=0;i<totdoc;i++) {    /* create full index and clip alphas */
-      index[i]=1;
-      alpha[i]=fabs(alpha[i]);
-      if(alpha[i]<0) alpha[i]=0;
-      if(alpha[i]>learn_parm->svm_cost[i]) alpha[i]=learn_parm->svm_cost[i];
-    }
-    if(kernel_parm->kernel_type != LINEAR) {
-      for(i=0;i<totdoc;i++)     /* fill kernel cache with unbounded SV */
-	if((alpha[i]>0) && (alpha[i]<learn_parm->svm_cost[i]) 
-	   && (kernel_cache_space_available(kernel_cache))) 
-	  cache_kernel_row(kernel_cache,docs,i,kernel_parm);
-      for(i=0;i<totdoc;i++)     /* fill rest of kernel cache with bounded SV */
-	if((alpha[i]==learn_parm->svm_cost[i]) 
-	   && (kernel_cache_space_available(kernel_cache))) 
-	  cache_kernel_row(kernel_cache,docs,i,kernel_parm);
-    }
-    (void)compute_index(index,totdoc,index2dnum);
-    update_linear_component(docs,label,index2dnum,alpha,a,index2dnum,totdoc,
-			    totwords,kernel_parm,kernel_cache,lin,aicache,
-			    weights);
-    (void)calculate_svm_model(docs,label,unlabeled,lin,alpha,a,c,
-			      learn_parm,index2dnum,index2dnum,model);
-    for(i=0;i<totdoc;i++) {    /* copy initial alphas */
-      a[i]=alpha[i];
-    }
-    free(index);
-    free(index2dnum);
-    free(weights);
-    free(aicache);
-    if(verbosity>=1) {
-      printf("done.\n");  fflush(stdout);
-    }   
-  } 
-
-  /* removing inconsistent does not work for general optimization problem */
-  if(learn_parm->remove_inconsistent) {	  
-    learn_parm->remove_inconsistent = 0;
-    printf("'remove inconsistent' not available in this mode. Switching option off!"); fflush(stdout);
-  }
-
-  /* caching makes no sense for linear kernel */
-  if(kernel_parm->kernel_type == LINEAR) {
-    kernel_cache = NULL;   
-  } 
-
-  if(verbosity==1) {
-    printf("Optimizing"); fflush(stdout);
-  }
-
-  /* train the svm */
-  if(learn_parm->sharedslack)
-    iterations=optimize_to_convergence_sharedslack(docs,label,totdoc,
-				     totwords,learn_parm,kernel_parm,
-				     kernel_cache,&shrink_state,model,
-				     a,lin,c,&timing_profile,
-				     &maxdiff);
-  else
-    iterations=optimize_to_convergence(docs,label,totdoc,
-				     totwords,learn_parm,kernel_parm,
-				     kernel_cache,&shrink_state,model,
-				     inconsistent,unlabeled,
-				     a,lin,c,&timing_profile,
-				     &maxdiff,(long)-1,(long)1);
-  
-  if(verbosity>=1) {
-    if(verbosity==1) printf("done. (%ld iterations)\n",iterations);
-
-    misclassified=0;
-    for(i=0;(i<totdoc);i++) { /* get final statistic */
-      if((lin[i]-model->b)*(double)label[i] <= 0.0) 
-	misclassified++;
-    }
-
-    printf("Optimization finished (maxdiff=%.5f).\n",maxdiff); 
-
-    runtime_end=get_runtime();
-    if(verbosity>=2) {
-      printf("Runtime in cpu-seconds: %.2f (%.2f%% for kernel/%.2f%% for optimizer/%.2f%% for final/%.2f%% for update/%.2f%% for model/%.2f%% for check/%.2f%% for select)\n",
-        ((float)runtime_end-(float)runtime_start)/100.0,
-        (100.0*timing_profile.time_kernel)/(float)(runtime_end-runtime_start),
-	(100.0*timing_profile.time_opti)/(float)(runtime_end-runtime_start),
-	(100.0*timing_profile.time_shrink)/(float)(runtime_end-runtime_start),
-        (100.0*timing_profile.time_update)/(float)(runtime_end-runtime_start),
-        (100.0*timing_profile.time_model)/(float)(runtime_end-runtime_start),
-        (100.0*timing_profile.time_check)/(float)(runtime_end-runtime_start),
-        (100.0*timing_profile.time_select)/(float)(runtime_end-runtime_start));
-    }
-    else {
-      printf("Runtime in cpu-seconds: %.2f\n",
-	     (runtime_end-runtime_start)/100.0);
-    }
-  }
-  if((verbosity>=1) && (!learn_parm->skip_final_opt_check)) {
-    loss=0;
-    model_length=0; 
-    for(i=0;i<totdoc;i++) {
-      if((lin[i]-model->b)*(double)label[i] < c[i]-learn_parm->epsilon_crit)
-	loss+=c[i]-(lin[i]-model->b)*(double)label[i];
-      model_length+=a[i]*label[i]*lin[i];
-    }
-    model_length=sqrt(model_length);
-    fprintf(stdout,"Norm of weight vector: |w|=%.5f\n",model_length);
-  }
-  
-  if(learn_parm->sharedslack) {
-    index = (long *)my_malloc(sizeof(long)*totdoc);
-    index2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));
-    maxslackid=0;
-    for(i=0;i<totdoc;i++) {    /* create full index */
-      index[i]=1;
-      if(maxslackid<docs[i]->slackid)
-	maxslackid=docs[i]->slackid;
-    }
-    (void)compute_index(index,totdoc,index2dnum);
-    slack=(double *)my_malloc(sizeof(double)*(maxslackid+1));
-    alphaslack=(double *)my_malloc(sizeof(double)*(maxslackid+1));
-    for(i=0;i<=maxslackid;i++) {    /* init shared slacks */
-      slack[i]=0;
-      alphaslack[i]=0;
-    }
-    compute_shared_slacks(docs,label,a,lin,c,index2dnum,learn_parm,
-			  slack,alphaslack);
-    loss=0;
-    model->at_upper_bound=0;
-    svsetnum=0;
-    for(i=0;i<=maxslackid;i++) {    /* create full index */
-      loss+=slack[i];
-      if(alphaslack[i] > (learn_parm->svm_c - learn_parm->epsilon_a)) 
-	model->at_upper_bound++;
-      if(alphaslack[i] > learn_parm->epsilon_a)
-	svsetnum++;
-    }
-    free(index);
-    free(index2dnum);
-    free(slack);
-    free(alphaslack);
-  }
-  
-  if((verbosity>=1) && (!learn_parm->skip_final_opt_check)) {
-    if(learn_parm->sharedslack) {
-      printf("Number of SV: %ld\n",
-	     model->sv_num-1);
-      printf("Number of non-zero slack variables: %ld (out of %ld)\n",
-	     model->at_upper_bound,svsetnum);
-      fprintf(stdout,"L1 loss: loss=%.5f\n",loss);
-    }
-    else {
-      upsupvecnum=0;
-      for(i=1;i<model->sv_num;i++) {
-	if(fabs(model->alpha[i]) >= 
-	   (learn_parm->svm_cost[(model->supvec[i])->docnum]-
-	    learn_parm->epsilon_a)) 
-	  upsupvecnum++;
-      }
-      printf("Number of SV: %ld (including %ld at upper bound)\n",
-	     model->sv_num-1,upsupvecnum);
-      fprintf(stdout,"L1 loss: loss=%.5f\n",loss);
-    }
-    example_length=estimate_sphere(model,kernel_parm); 
-    fprintf(stdout,"Norm of longest example vector: |x|=%.5f\n",
-	    length_of_longest_document_vector(docs,totdoc,kernel_parm));
-  }
-  if(verbosity>=1) {
-    printf("Number of kernel evaluations: %ld\n",kernel_cache_statistic);
-  }
-    
-  if(alpha) {
-    for(i=0;i<totdoc;i++) {    /* copy final alphas */
-      alpha[i]=a[i];
-    }
-  }
- 
-  if(learn_parm->alphafile[0])
-    write_alphas(learn_parm->alphafile,a,label,totdoc);
-  
-  shrink_state_cleanup(&shrink_state);
-  free(label);
-  free(unlabeled);
-  free(inconsistent);
-  free(c);
-  free(a);
-  free(lin);
-  free(learn_parm->svm_cost);
-}
-
-
-long optimize_to_convergence(DOC **docs, long int *label, long int totdoc, 
-			     long int totwords, LEARN_PARM *learn_parm, 
-			     KERNEL_PARM *kernel_parm, 
-			     KERNEL_CACHE *kernel_cache, 
-			     SHRINK_STATE *shrink_state, MODEL *model, 
-			     long int *inconsistent, long int *unlabeled, 
-			     double *a, double *lin, double *c, 
-			     TIMING *timing_profile, double *maxdiff, 
-			     long int heldout, long int retrain)
-     /* docs: Training vectors (x-part) */
-     /* label: Training labels/value (y-part, zero if test example for
-			      transduction) */
-     /* totdoc: Number of examples in docs/label */
-     /* totwords: Number of features (i.e. highest feature index) */
-     /* laern_parm: Learning paramenters */
-     /* kernel_parm: Kernel paramenters */
-     /* kernel_cache: Initialized/partly filled Cache, if using a kernel. 
-                      NULL if linear. */
-     /* shrink_state: State of active variables */
-     /* model: Returns learning result */
-     /* inconsistent: examples thrown out as inconstistent */
-     /* unlabeled: test examples for transduction */
-     /* a: alphas */
-     /* lin: linear component of gradient */
-     /* c: right hand side of inequalities (margin) */
-     /* maxdiff: returns maximum violation of KT-conditions */
-     /* heldout: marks held-out example for leave-one-out (or -1) */
-     /* retrain: selects training mode (1=regular / 2=holdout) */
-{
-  long *chosen,*key,i,j,jj,*last_suboptimal_at,noshrink;
-  long inconsistentnum,choosenum,already_chosen=0,iteration;
-  long misclassified,supvecnum=0,*active2dnum,inactivenum;
-  long *working2dnum,*selexam;
-  long activenum;
-  double criterion,eq;
-  double *a_old;
-  long t0=0,t1=0,t2=0,t3=0,t4=0,t5=0,t6=0; /* timing */
-  long transductcycle;
-  long transduction;
-  double epsilon_crit_org; 
-  double bestmaxdiff;
-  long   bestmaxdiffiter,terminate;
-
-  double *selcrit;  /* buffer for sorting */        
-  CFLOAT *aicache;  /* buffer to keep one row of hessian */
-  double *weights;  /* buffer for weight vector in linear case */
-  QP qp;            /* buffer for one quadratic program */
-
-  epsilon_crit_org=learn_parm->epsilon_crit; /* save org */
-  if(kernel_parm->kernel_type == LINEAR) {
-    learn_parm->epsilon_crit=2.0;
-    kernel_cache=NULL;   /* caching makes no sense for linear kernel */
-  } 
-  learn_parm->epsilon_shrink=2;
-  (*maxdiff)=1;
-
-  learn_parm->totwords=totwords;
-
-  chosen = (long *)my_malloc(sizeof(long)*totdoc);
-  last_suboptimal_at = (long *)my_malloc(sizeof(long)*totdoc);
-  key = (long *)my_malloc(sizeof(long)*(totdoc+11)); 
-  selcrit = (double *)my_malloc(sizeof(double)*totdoc);
-  selexam = (long *)my_malloc(sizeof(long)*totdoc);
-  a_old = (double *)my_malloc(sizeof(double)*totdoc);
-  aicache = (CFLOAT *)my_malloc(sizeof(CFLOAT)*totdoc);
-  working2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));
-  active2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));
-  qp.opt_ce = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);
-  qp.opt_ce0 = (double *)my_malloc(sizeof(double));
-  qp.opt_g = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize
-				 *learn_parm->svm_maxqpsize);
-  qp.opt_g0 = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);
-  qp.opt_xinit = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);
-  qp.opt_low=(double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);
-  qp.opt_up=(double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);
-  weights=(double *)my_malloc(sizeof(double)*(totwords+1));
-
-  choosenum=0;
-  inconsistentnum=0;
-  transductcycle=0;
-  transduction=0;
-  if(!retrain) retrain=1;
-  iteration=1;
-  bestmaxdiffiter=1;
-  bestmaxdiff=999999999;
-  terminate=0;
-
-  if(kernel_cache) {
-    kernel_cache->time=iteration;  /* for lru cache */
-    kernel_cache_reset_lru(kernel_cache);
-  }
-
-  for(i=0;i<totdoc;i++) {    /* various inits */
-    chosen[i]=0;
-    a_old[i]=a[i];
-    last_suboptimal_at[i]=1;
-    if(inconsistent[i]) 
-      inconsistentnum++;
-    if(unlabeled[i]) {
-      transduction=1;
-    }
-  }
-  activenum=compute_index(shrink_state->active,totdoc,active2dnum);
-  inactivenum=totdoc-activenum;
-  clear_index(working2dnum);
-
-                            /* repeat this loop until we have convergence */
-  for(;retrain && (!terminate);iteration++) {
-
-    if(kernel_cache)
-      kernel_cache->time=iteration;  /* for lru cache */
-    if(verbosity>=2) {
-      printf(
-	"Iteration %ld: ",iteration); fflush(stdout);
-    }
-    else if(verbosity==1) {
-      printf("."); fflush(stdout);
-    }
-
-    if(verbosity>=2) t0=get_runtime();
-    if(verbosity>=3) {
-      printf("\nSelecting working set... "); fflush(stdout); 
-    }
-
-    if(learn_parm->svm_newvarsinqp>learn_parm->svm_maxqpsize) 
-      learn_parm->svm_newvarsinqp=learn_parm->svm_maxqpsize;
-
-    i=0;
-    for(jj=0;(j=working2dnum[jj])>=0;jj++) { /* clear working set */
-      if((chosen[j]>=(learn_parm->svm_maxqpsize/
-		      minl(learn_parm->svm_maxqpsize,
-			   learn_parm->svm_newvarsinqp))) 
-	 || (inconsistent[j])
-	 || (j == heldout)) {
-	chosen[j]=0; 
-	choosenum--; 
-      }
-      else {
-	chosen[j]++;
-	working2dnum[i++]=j;
-      }
-    }
-    working2dnum[i]=-1;
-
-    if(retrain == 2) {
-      choosenum=0;
-      for(jj=0;(j=working2dnum[jj])>=0;jj++) { /* fully clear working set */
-	chosen[j]=0; 
-      }
-      clear_index(working2dnum);
-      for(i=0;i<totdoc;i++) { /* set inconsistent examples to zero (-i 1) */
-	if((inconsistent[i] || (heldout==i)) && (a[i] != 0.0)) {
-	  chosen[i]=99999;
-	  choosenum++;
-	  a[i]=0;
-	}
-      }
-      if(learn_parm->biased_hyperplane) {
-	eq=0;
-	for(i=0;i<totdoc;i++) { /* make sure we fulfill equality constraint */
-	  eq+=a[i]*label[i];
-	}
-	for(i=0;(i<totdoc) && (fabs(eq) > learn_parm->epsilon_a);i++) {
-	  if((eq*label[i] > 0) && (a[i] > 0)) {
-	    chosen[i]=88888;
-	    choosenum++;
-	    if((eq*label[i]) > a[i]) {
-	      eq-=(a[i]*label[i]);
-	      a[i]=0;
-	    }
-	    else {
-	      a[i]-=(eq*label[i]);
-	      eq=0;
-	    }
-	  }
-	}
-      }
-      compute_index(chosen,totdoc,working2dnum);
-    }
-    else {      /* select working set according to steepest gradient */
-      if(iteration % 101) {
-        already_chosen=0;
-	if((minl(learn_parm->svm_newvarsinqp,
-		 learn_parm->svm_maxqpsize-choosenum)>=4) 
-	   && (kernel_parm->kernel_type != LINEAR)) {
-	  /* select part of the working set from cache */
-	  already_chosen=select_next_qp_subproblem_grad(
-			      label,unlabeled,a,lin,c,totdoc,
-			      (long)(minl(learn_parm->svm_maxqpsize-choosenum,
-					  learn_parm->svm_newvarsinqp)
-				     /2),
-			      learn_parm,inconsistent,active2dnum,
-			      working2dnum,selcrit,selexam,kernel_cache,1,
-			      key,chosen);
-	  choosenum+=already_chosen;
-	}
-	choosenum+=select_next_qp_subproblem_grad(
-                              label,unlabeled,a,lin,c,totdoc,
-                              minl(learn_parm->svm_maxqpsize-choosenum,
-				   learn_parm->svm_newvarsinqp-already_chosen),
-                              learn_parm,inconsistent,active2dnum,
-			      working2dnum,selcrit,selexam,kernel_cache,0,key,
-			      chosen);
-      }
-      else { /* once in a while, select a somewhat random working set
-		to get unlocked of infinite loops due to numerical
-		inaccuracies in the core qp-solver */
-	choosenum+=select_next_qp_subproblem_rand(
-                              label,unlabeled,a,lin,c,totdoc,
-                              minl(learn_parm->svm_maxqpsize-choosenum,
-				   learn_parm->svm_newvarsinqp),
-                              learn_parm,inconsistent,active2dnum,
-			      working2dnum,selcrit,selexam,kernel_cache,key,
-			      chosen,iteration);
-      }
-    }
-
-    if(verbosity>=2) {
-      printf(" %ld vectors chosen\n",choosenum); fflush(stdout); 
-    }
-
-    if(verbosity>=2) t1=get_runtime();
-
-    if(kernel_cache) 
-      cache_multiple_kernel_rows(kernel_cache,docs,working2dnum,
-				 choosenum,kernel_parm); 
-    
-    if(verbosity>=2) t2=get_runtime();
-    if(retrain != 2) {
-      optimize_svm(docs,label,unlabeled,inconsistent,0.0,chosen,active2dnum,
-		   model,totdoc,working2dnum,choosenum,a,lin,c,learn_parm,
-		   aicache,kernel_parm,&qp,&epsilon_crit_org);
-    }
-
-    if(verbosity>=2) t3=get_runtime();
-    update_linear_component(docs,label,active2dnum,a,a_old,working2dnum,totdoc,
-			    totwords,kernel_parm,kernel_cache,lin,aicache,
-			    weights);
-
-    if(verbosity>=2) t4=get_runtime();
-    supvecnum=calculate_svm_model(docs,label,unlabeled,lin,a,a_old,c,
-		                  learn_parm,working2dnum,active2dnum,model);
-
-    if(verbosity>=2) t5=get_runtime();
-
-    /* The following computation of the objective function works only */
-    /* relative to the active variables */
-    if(verbosity>=3) {
-      criterion=compute_objective_function(a,lin,c,learn_parm->eps,label,
-		                           active2dnum);
-      printf("Objective function (over active variables): %.16f\n",criterion);
-      fflush(stdout); 
-    }
-
-    for(jj=0;(i=working2dnum[jj])>=0;jj++) {
-      a_old[i]=a[i];
-    }
-
-    if(retrain == 2) {  /* reset inconsistent unlabeled examples */
-      for(i=0;(i<totdoc);i++) {
-	if(inconsistent[i] && unlabeled[i]) {
-	  inconsistent[i]=0;
-	  label[i]=0;
-	}
-      }
-    }
-
-    retrain=check_optimality(model,label,unlabeled,a,lin,c,totdoc,learn_parm,
-			     maxdiff,epsilon_crit_org,&misclassified,
-			     inconsistent,active2dnum,last_suboptimal_at,
-			     iteration,kernel_parm);
-
-    if(verbosity>=2) {
-      t6=get_runtime();
-      timing_profile->time_select+=t1-t0;
-      timing_profile->time_kernel+=t2-t1;
-      timing_profile->time_opti+=t3-t2;
-      timing_profile->time_update+=t4-t3;
-      timing_profile->time_model+=t5-t4;
-      timing_profile->time_check+=t6-t5;
-    }
-
-    /* checking whether optimizer got stuck */
-    if((*maxdiff) < bestmaxdiff) {
-      bestmaxdiff=(*maxdiff);
-      bestmaxdiffiter=iteration;
-    }
-    if(iteration > (bestmaxdiffiter+learn_parm->maxiter)) { 
-      /* long time no progress? */
-      terminate=1;
-      retrain=0;
-      if(verbosity>=1) 
-	printf("\nWARNING: Relaxing KT-Conditions due to slow progress! Terminating!\n");
-    }
-
-    noshrink=0;
-    if((!retrain) && (inactivenum>0) 
-       && ((!learn_parm->skip_final_opt_check) 
-	   || (kernel_parm->kernel_type == LINEAR))) { 
-      if(((verbosity>=1) && (kernel_parm->kernel_type != LINEAR)) 
-	 || (verbosity>=2)) {
-	if(verbosity==1) {
-	  printf("\n");
-	}
-	printf(" Checking optimality of inactive variables..."); 
-	fflush(stdout);
-      }
-      t1=get_runtime();
-      reactivate_inactive_examples(label,unlabeled,a,shrink_state,lin,c,totdoc,
-				   totwords,iteration,learn_parm,inconsistent,
-				   docs,kernel_parm,kernel_cache,model,aicache,
-				   weights,maxdiff);
-      /* Update to new active variables. */
-      activenum=compute_index(shrink_state->active,totdoc,active2dnum);
-      inactivenum=totdoc-activenum;
-      /* reset watchdog */
-      bestmaxdiff=(*maxdiff);
-      bestmaxdiffiter=iteration;
-      /* termination criterion */
-      noshrink=1;
-      retrain=0;
-      if((*maxdiff) > learn_parm->epsilon_crit) 
-	retrain=1;
-      timing_profile->time_shrink+=get_runtime()-t1;
-      if(((verbosity>=1) && (kernel_parm->kernel_type != LINEAR)) 
-	 || (verbosity>=2)) {
-	printf("done.\n");  fflush(stdout);
-        printf(" Number of inactive variables = %ld\n",inactivenum);
-      }		  
-    }
-
-    if((!retrain) && (learn_parm->epsilon_crit>(*maxdiff))) 
-      learn_parm->epsilon_crit=(*maxdiff);
-    if((!retrain) && (learn_parm->epsilon_crit>epsilon_crit_org)) {
-      learn_parm->epsilon_crit/=2.0;
-      retrain=1;
-      noshrink=1;
-    }
-    if(learn_parm->epsilon_crit<epsilon_crit_org) 
-      learn_parm->epsilon_crit=epsilon_crit_org;
-    
-    if(verbosity>=2) {
-      printf(" => (%ld SV (incl. %ld SV at u-bound), max violation=%.5f)\n",
-	     supvecnum,model->at_upper_bound,(*maxdiff)); 
-      fflush(stdout);
-    }
-    if(verbosity>=3) {
-      printf("\n");
-    }
-
-    if((!retrain) && (transduction)) {
-      for(i=0;(i<totdoc);i++) {
-	shrink_state->active[i]=1;
-      }
-      activenum=compute_index(shrink_state->active,totdoc,active2dnum);
-      inactivenum=0;
-      if(verbosity==1) printf("done\n");
-      retrain=incorporate_unlabeled_examples(model,label,inconsistent,
-					     unlabeled,a,lin,totdoc,
-					     selcrit,selexam,key,
-					     transductcycle,kernel_parm,
-					     learn_parm);
-      epsilon_crit_org=learn_parm->epsilon_crit;
-      if(kernel_parm->kernel_type == LINEAR)
-	learn_parm->epsilon_crit=1; 
-      transductcycle++;
-      /* reset watchdog */
-      bestmaxdiff=(*maxdiff);
-      bestmaxdiffiter=iteration;
-    } 
-    else if(((iteration % 10) == 0) && (!noshrink)) {
-      activenum=shrink_problem(docs,learn_parm,shrink_state,kernel_parm,
-			       active2dnum,last_suboptimal_at,iteration,totdoc,
-			       maxl((long)(activenum/10),
-				    maxl((long)(totdoc/500),100)),
-			       a,inconsistent);
-      inactivenum=totdoc-activenum;
-      if((kernel_cache)
-	 && (supvecnum>kernel_cache->max_elems)
-	 && ((kernel_cache->activenum-activenum)>maxl((long)(activenum/10),500))) {
-	kernel_cache_shrink(kernel_cache,totdoc,
-			    minl((kernel_cache->activenum-activenum),
-				 (kernel_cache->activenum-supvecnum)),
-			    shrink_state->active); 
-      }
-    }
-
-    if((!retrain) && learn_parm->remove_inconsistent) {
-      if(verbosity>=1) {
-	printf(" Moving training errors to inconsistent examples...");
-	fflush(stdout);
-      }
-      if(learn_parm->remove_inconsistent == 1) {
-	retrain=identify_inconsistent(a,label,unlabeled,totdoc,learn_parm,
-				      &inconsistentnum,inconsistent); 
-      }
-      else if(learn_parm->remove_inconsistent == 2) {
-	retrain=identify_misclassified(lin,label,unlabeled,totdoc,
-				       model,&inconsistentnum,inconsistent); 
-      }
-      else if(learn_parm->remove_inconsistent == 3) {
-	retrain=identify_one_misclassified(lin,label,unlabeled,totdoc,
-				   model,&inconsistentnum,inconsistent);
-      }
-      if(retrain) {
-	if(kernel_parm->kernel_type == LINEAR) { /* reinit shrinking */
-	  learn_parm->epsilon_crit=2.0;
-	} 
-      }
-      if(verbosity>=1) {
-	printf("done.\n");
-	if(retrain) {
-	  printf(" Now %ld inconsistent examples.\n",inconsistentnum);
-	}
-      }
-    }
-  } /* end of loop */
-
-  free(chosen);
-  free(last_suboptimal_at);
-  free(key);
-  free(selcrit);
-  free(selexam);
-  free(a_old);
-  free(aicache);
-  free(working2dnum);
-  free(active2dnum);
-  free(qp.opt_ce);
-  free(qp.opt_ce0);
-  free(qp.opt_g);
-  free(qp.opt_g0);
-  free(qp.opt_xinit);
-  free(qp.opt_low);
-  free(qp.opt_up);
-  free(weights);
-
-  learn_parm->epsilon_crit=epsilon_crit_org; /* restore org */
-  model->maxdiff=(*maxdiff);
-
-  return(iteration);
-}
-
-long optimize_to_convergence_sharedslack(DOC **docs, long int *label, 
-			     long int totdoc, 
-			     long int totwords, LEARN_PARM *learn_parm, 
-			     KERNEL_PARM *kernel_parm, 
-			     KERNEL_CACHE *kernel_cache, 
-			     SHRINK_STATE *shrink_state, MODEL *model, 
-			     double *a, double *lin, double *c, 
-			     TIMING *timing_profile, double *maxdiff)
-     /* docs: Training vectors (x-part) */
-     /* label: Training labels/value (y-part, zero if test example for
-			      transduction) */
-     /* totdoc: Number of examples in docs/label */
-     /* totwords: Number of features (i.e. highest feature index) */
-     /* learn_parm: Learning paramenters */
-     /* kernel_parm: Kernel paramenters */
-     /* kernel_cache: Initialized/partly filled Cache, if using a kernel. 
-                      NULL if linear. */
-     /* shrink_state: State of active variables */
-     /* model: Returns learning result */
-     /* a: alphas */
-     /* lin: linear component of gradient */
-     /* c: right hand side of inequalities (margin) */
-     /* maxdiff: returns maximum violation of KT-conditions */
-{
-  long *chosen,*key,i,j,jj,*last_suboptimal_at,noshrink,*unlabeled;
-  long *inconsistent,choosenum,already_chosen=0,iteration;
-  long misclassified,supvecnum=0,*active2dnum,inactivenum;
-  long *working2dnum,*selexam,*ignore;
-  long activenum,retrain,maxslackid,slackset,jointstep;
-  double criterion,eq_target;
-  double *a_old,*alphaslack;
-  long t0=0,t1=0,t2=0,t3=0,t4=0,t5=0,t6=0; /* timing */
-  double epsilon_crit_org,maxsharedviol; 
-  double bestmaxdiff;
-  long   bestmaxdiffiter,terminate;
-
-  double *selcrit;  /* buffer for sorting */        
-  CFLOAT *aicache;  /* buffer to keep one row of hessian */
-  double *weights;  /* buffer for weight vector in linear case */
-  QP qp;            /* buffer for one quadratic program */
-  double *slack;    /* vector of slack variables for optimization with
-		       shared slacks */
-
-  epsilon_crit_org=learn_parm->epsilon_crit; /* save org */
-  if(kernel_parm->kernel_type == LINEAR) {
-    learn_parm->epsilon_crit=2.0;
-    kernel_cache=NULL;   /* caching makes no sense for linear kernel */
-  } 
-  learn_parm->epsilon_shrink=2;
-  (*maxdiff)=1;
-
-  learn_parm->totwords=totwords;
-
-  chosen = (long *)my_malloc(sizeof(long)*totdoc);
-  unlabeled = (long *)my_malloc(sizeof(long)*totdoc);
-  inconsistent = (long *)my_malloc(sizeof(long)*totdoc);
-  ignore = (long *)my_malloc(sizeof(long)*totdoc);
-  key = (long *)my_malloc(sizeof(long)*(totdoc+11)); 
-  selcrit = (double *)my_malloc(sizeof(double)*totdoc);
-  selexam = (long *)my_malloc(sizeof(long)*totdoc);
-  a_old = (double *)my_malloc(sizeof(double)*totdoc);
-  aicache = (CFLOAT *)my_malloc(sizeof(CFLOAT)*totdoc);
-  working2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));
-  active2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));
-  qp.opt_ce = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);
-  qp.opt_ce0 = (double *)my_malloc(sizeof(double));
-  qp.opt_g = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize
-				 *learn_parm->svm_maxqpsize);
-  qp.opt_g0 = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);
-  qp.opt_xinit = (double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);
-  qp.opt_low=(double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);
-  qp.opt_up=(double *)my_malloc(sizeof(double)*learn_parm->svm_maxqpsize);
-  weights=(double *)my_malloc(sizeof(double)*(totwords+1));
-  maxslackid=0;
-  for(i=0;i<totdoc;i++) {    /* determine size of slack array */
-    if(maxslackid<docs[i]->slackid)
-      maxslackid=docs[i]->slackid;
-  }
-  slack=(double *)my_malloc(sizeof(double)*(maxslackid+1));
-  alphaslack=(double *)my_malloc(sizeof(double)*(maxslackid+1));
-  last_suboptimal_at = (long *)my_malloc(sizeof(long)*(maxslackid+1));
-  for(i=0;i<=maxslackid;i++) {    /* init shared slacks */
-    slack[i]=0;
-    alphaslack[i]=0;
-    last_suboptimal_at[i]=1;
-  }
-
-  choosenum=0;
-  retrain=1;
-  iteration=1;
-  bestmaxdiffiter=1;
-  bestmaxdiff=999999999;
-  terminate=0;
-
-  if(kernel_cache) {
-    kernel_cache->time=iteration;  /* for lru cache */
-    kernel_cache_reset_lru(kernel_cache);
-  }
-
-  for(i=0;i<totdoc;i++) {    /* various inits */
-    chosen[i]=0;
-    unlabeled[i]=0;
-    inconsistent[i]=0;
-    ignore[i]=0;
-    a_old[i]=a[i];
-  }
-  activenum=compute_index(shrink_state->active,totdoc,active2dnum);
-  inactivenum=totdoc-activenum;
-  clear_index(working2dnum);
-
-  /* call to init slack and alphaslack */
-  compute_shared_slacks(docs,label,a,lin,c,active2dnum,learn_parm,
-			slack,alphaslack);
-
-                            /* repeat this loop until we have convergence */
-  for(;retrain && (!terminate);iteration++) {
-
-    if(kernel_cache)
-      kernel_cache->time=iteration;  /* for lru cache */
-    if(verbosity>=2) {
-      printf(
-	"Iteration %ld: ",iteration); fflush(stdout);
-    }
-    else if(verbosity==1) {
-      printf("."); fflush(stdout);
-    }
-
-    if(verbosity>=2) t0=get_runtime();
-    if(verbosity>=3) {
-      printf("\nSelecting working set... "); fflush(stdout); 
-    }
-
-    if(learn_parm->svm_newvarsinqp>learn_parm->svm_maxqpsize) 
-      learn_parm->svm_newvarsinqp=learn_parm->svm_maxqpsize;
-
-    /* select working set according to steepest gradient */
-    jointstep=0;
-    eq_target=0;
-    if(iteration % 101) {
-      slackset=select_next_qp_slackset(docs,label,a,lin,slack,alphaslack,c,
-				       learn_parm,active2dnum,&maxsharedviol);
-      if((iteration % 2) 
-	 || (!slackset) || (maxsharedviol<learn_parm->epsilon_crit)){
-	/* do a step with examples from different slack sets */
-	if(verbosity >= 2) {
-	  printf("(i-step)"); fflush(stdout);
-	}
-	i=0;
-	for(jj=0;(j=working2dnum[jj])>=0;jj++) { /* clear old part of working set */
-	  if((chosen[j]>=(learn_parm->svm_maxqpsize/
-			  minl(learn_parm->svm_maxqpsize,
-			       learn_parm->svm_newvarsinqp)))) {
-	    chosen[j]=0; 
-	    choosenum--; 
-	  }
-	  else {
-	    chosen[j]++;
-	    working2dnum[i++]=j;
-	  }
-	}
-	working2dnum[i]=-1;
-	
-	already_chosen=0;
-	if((minl(learn_parm->svm_newvarsinqp,
-		 learn_parm->svm_maxqpsize-choosenum)>=4) 
-	   && (kernel_parm->kernel_type != LINEAR)) {
-	  /* select part of the working set from cache */
-	  already_chosen=select_next_qp_subproblem_grad(
-			      label,unlabeled,a,lin,c,totdoc,
-			      (long)(minl(learn_parm->svm_maxqpsize-choosenum,
-					  learn_parm->svm_newvarsinqp)
-				     /2),
-			      learn_parm,inconsistent,active2dnum,
-			      working2dnum,selcrit,selexam,kernel_cache,
-			      (long)1,key,chosen);
-	  choosenum+=already_chosen;
-	}
-	choosenum+=select_next_qp_subproblem_grad(
-                              label,unlabeled,a,lin,c,totdoc,
-                              minl(learn_parm->svm_maxqpsize-choosenum,
-				   learn_parm->svm_newvarsinqp-already_chosen),
-                              learn_parm,inconsistent,active2dnum,
-			      working2dnum,selcrit,selexam,kernel_cache,
-			      (long)0,key,chosen);
-      }
-      else { /* do a step with all examples from same slack set */
-	if(verbosity >= 2) {
-	  printf("(j-step on %ld)",slackset); fflush(stdout);
-	}
-	jointstep=1;
-	for(jj=0;(j=working2dnum[jj])>=0;jj++) { /* clear working set */
-	    chosen[j]=0; 
-	}
-	working2dnum[0]=-1;
-	eq_target=alphaslack[slackset];
-	for(j=0;j<totdoc;j++) {                  /* mask all but slackset */
-	  /* for(jj=0;(j=active2dnum[jj])>=0;jj++) { */
-	  if(docs[j]->slackid != slackset)
-	    ignore[j]=1; 
-	  else {
-	    ignore[j]=0; 
-	    learn_parm->svm_cost[j]=learn_parm->svm_c;
-	    /* printf("Inslackset(%ld,%ld)",j,shrink_state->active[j]); */
-	  }
-	}
-	learn_parm->biased_hyperplane=1;
-	choosenum=select_next_qp_subproblem_grad(
-                              label,unlabeled,a,lin,c,totdoc,
-                              learn_parm->svm_maxqpsize,
-                              learn_parm,ignore,active2dnum,
-			      working2dnum,selcrit,selexam,kernel_cache,
-			      (long)0,key,chosen);
-	learn_parm->biased_hyperplane=0;
-      }
-    }
-    else { /* once in a while, select a somewhat random working set
-	      to get unlocked of infinite loops due to numerical
-	      inaccuracies in the core qp-solver */
-      choosenum+=select_next_qp_subproblem_rand(
-                              label,unlabeled,a,lin,c,totdoc,
-                              minl(learn_parm->svm_maxqpsize-choosenum,
-				   learn_parm->svm_newvarsinqp),
-                              learn_parm,inconsistent,active2dnum,
-			      working2dnum,selcrit,selexam,kernel_cache,key,
-			      chosen,iteration);
-    }
-
-    if(verbosity>=2) {
-      printf(" %ld vectors chosen\n",choosenum); fflush(stdout); 
-    }
-
-    if(verbosity>=2) t1=get_runtime();
-
-    if(kernel_cache) 
-      cache_multiple_kernel_rows(kernel_cache,docs,working2dnum,
-				 choosenum,kernel_parm); 
-
-    if(verbosity>=2) t2=get_runtime();
-    if(jointstep) learn_parm->biased_hyperplane=1;
-    optimize_svm(docs,label,unlabeled,ignore,eq_target,chosen,active2dnum,
-		 model,totdoc,working2dnum,choosenum,a,lin,c,learn_parm,
-		 aicache,kernel_parm,&qp,&epsilon_crit_org);
-    learn_parm->biased_hyperplane=0;
-
-    for(jj=0;(i=working2dnum[jj])>=0;jj++)   /* recompute sums of alphas */
-      alphaslack[docs[i]->slackid]+=(a[i]-a_old[i]);
-    for(jj=0;(i=working2dnum[jj])>=0;jj++) { /* reduce alpha to fulfill
-						constraints */
-      if(alphaslack[docs[i]->slackid] > learn_parm->svm_c) {
-	if(a[i] < (alphaslack[docs[i]->slackid]-learn_parm->svm_c)) {
-	  alphaslack[docs[i]->slackid]-=a[i];
-	  a[i]=0;
-	}
-	else {
-	  a[i]-=(alphaslack[docs[i]->slackid]-learn_parm->svm_c);
-	  alphaslack[docs[i]->slackid]=learn_parm->svm_c;
-	}
-      }
-    }
-    for(jj=0;(i=active2dnum[jj])>=0;jj++) 
-      learn_parm->svm_cost[i]=a[i]+(learn_parm->svm_c
-				    -alphaslack[docs[i]->slackid]);
-
-    if(verbosity>=2) t3=get_runtime();
-    update_linear_component(docs,label,active2dnum,a,a_old,working2dnum,totdoc,
-			    totwords,kernel_parm,kernel_cache,lin,aicache,
-			    weights);
-    compute_shared_slacks(docs,label,a,lin,c,active2dnum,learn_parm,
-			  slack,alphaslack);
-
-    if(verbosity>=2) t4=get_runtime();
-    supvecnum=calculate_svm_model(docs,label,unlabeled,lin,a,a_old,c,
-		                  learn_parm,working2dnum,active2dnum,model);
-
-    if(verbosity>=2) t5=get_runtime();
-
-    /* The following computation of the objective function works only */
-    /* relative to the active variables */
-    if(verbosity>=3) {
-      criterion=compute_objective_function(a,lin,c,learn_parm->eps,label,
-		                           active2dnum);
-      printf("Objective function (over active variables): %.16f\n",criterion);
-      fflush(stdout); 
-    }
-
-    for(jj=0;(i=working2dnum[jj])>=0;jj++) {
-      a_old[i]=a[i];
-    }
-
-    retrain=check_optimality_sharedslack(docs,model,label,a,lin,c,
-                             slack,alphaslack,totdoc,learn_parm,
-			     maxdiff,epsilon_crit_org,&misclassified,
-			     active2dnum,last_suboptimal_at,
-			     iteration,kernel_parm);
-
-    if(verbosity>=2) {
-      t6=get_runtime();
-      timing_profile->time_select+=t1-t0;
-      timing_profile->time_kernel+=t2-t1;
-      timing_profile->time_opti+=t3-t2;
-      timing_profile->time_update+=t4-t3;
-      timing_profile->time_model+=t5-t4;
-      timing_profile->time_check+=t6-t5;
-    }
-
-    /* checking whether optimizer got stuck */
-    if((*maxdiff) < bestmaxdiff) {
-      bestmaxdiff=(*maxdiff);
-      bestmaxdiffiter=iteration;
-    }
-    if(iteration > (bestmaxdiffiter+learn_parm->maxiter)) { 
-      /* long time no progress? */
-      terminate=1;
-      retrain=0;
-      if(verbosity>=1) 
-	printf("\nWARNING: Relaxing KT-Conditions due to slow progress! Terminating!\n");
-    }
-
-    noshrink=0; 
-
-    if((!retrain) && (inactivenum>0) 
-       && ((!learn_parm->skip_final_opt_check) 
-	   || (kernel_parm->kernel_type == LINEAR))) { 
-      if(((verbosity>=1) && (kernel_parm->kernel_type != LINEAR)) 
-	 || (verbosity>=2)) {
-	if(verbosity==1) {
-	  printf("\n");
-	}
-	printf(" Checking optimality of inactive variables..."); 
-	fflush(stdout);
-      }
-      t1=get_runtime();
-      reactivate_inactive_examples(label,unlabeled,a,shrink_state,lin,c,totdoc,
-				   totwords,iteration,learn_parm,inconsistent,
-				   docs,kernel_parm,kernel_cache,model,aicache,
-				   weights,maxdiff);
-      /* Update to new active variables. */
-      activenum=compute_index(shrink_state->active,totdoc,active2dnum);
-      inactivenum=totdoc-activenum;
-      /* check optimality, since check in reactivate does not work for
-	 sharedslacks */
-      retrain=check_optimality_sharedslack(docs,model,label,a,lin,c,
-			     slack,alphaslack,totdoc,learn_parm,
-			     maxdiff,epsilon_crit_org,&misclassified,
-			     active2dnum,last_suboptimal_at,
-			     iteration,kernel_parm);
-
-      /* reset watchdog */
-      bestmaxdiff=(*maxdiff);
-      bestmaxdiffiter=iteration;
-      /* termination criterion */
-      noshrink=1;
-      retrain=0;
-      if((*maxdiff) > learn_parm->epsilon_crit) 
-	retrain=1;
-      timing_profile->time_shrink+=get_runtime()-t1;
-      if(((verbosity>=1) && (kernel_parm->kernel_type != LINEAR)) 
-	 || (verbosity>=2)) {
-	printf("done.\n");  fflush(stdout);
-        printf(" Number of inactive variables = %ld\n",inactivenum);
-      }		  
-    }
-
-    if((!retrain) && (learn_parm->epsilon_crit>(*maxdiff))) 
-      learn_parm->epsilon_crit=(*maxdiff);
-    if((!retrain) && (learn_parm->epsilon_crit>epsilon_crit_org)) {
-      learn_parm->epsilon_crit/=2.0;
-      retrain=1;
-      noshrink=1;
-    }
-    if(learn_parm->epsilon_crit<epsilon_crit_org) 
-      learn_parm->epsilon_crit=epsilon_crit_org;
-    
-    if(verbosity>=2) {
-      printf(" => (%ld SV (incl. %ld SV at u-bound), max violation=%.5f)\n",
-	     supvecnum,model->at_upper_bound,(*maxdiff)); 
-      fflush(stdout);
-    }
-    if(verbosity>=3) {
-      printf("\n");
-    }
-
-    if(((iteration % 10) == 0) && (!noshrink)) {
-      activenum=shrink_problem(docs,learn_parm,shrink_state,
-			       kernel_parm,active2dnum,
-			       last_suboptimal_at,iteration,totdoc,
-			       maxl((long)(activenum/10),
-				    maxl((long)(totdoc/500),100)),
-			       a,inconsistent);
-      inactivenum=totdoc-activenum;
-      if((kernel_cache)
-	 && (supvecnum>kernel_cache->max_elems)
-	 && ((kernel_cache->activenum-activenum)>maxl((long)(activenum/10),500))) {
-	kernel_cache_shrink(kernel_cache,totdoc,
-			    minl((kernel_cache->activenum-activenum),
-				 (kernel_cache->activenum-supvecnum)),
-			    shrink_state->active); 
-      }
-    }
-
-  } /* end of loop */
-
-
-  free(alphaslack);
-  free(slack);
-  free(chosen);
-  free(unlabeled);
-  free(inconsistent);
-  free(ignore);
-  free(last_suboptimal_at);
-  free(key);
-  free(selcrit);
-  free(selexam);
-  free(a_old);
-  free(aicache);
-  free(working2dnum);
-  free(active2dnum);
-  free(qp.opt_ce);
-  free(qp.opt_ce0);
-  free(qp.opt_g);
-  free(qp.opt_g0);
-  free(qp.opt_xinit);
-  free(qp.opt_low);
-  free(qp.opt_up);
-  free(weights);
-
-  learn_parm->epsilon_crit=epsilon_crit_org; /* restore org */
-  model->maxdiff=(*maxdiff);
-
-  return(iteration);
-}
-
-
-double compute_objective_function(double *a, double *lin, double *c, 
-				  double eps, long int *label, 
-				  long int *active2dnum)
-     /* Return value of objective function. */
-     /* Works only relative to the active variables! */
-{
-  long i,ii;
-  double criterion;
-  /* calculate value of objective function */
-  criterion=0;
-  for(ii=0;active2dnum[ii]>=0;ii++) {
-    i=active2dnum[ii];
-    criterion=criterion+(eps-(double)label[i]*c[i])*a[i]+0.5*a[i]*label[i]*lin[i];
-  } 
-  return(criterion);
-}
-
-void clear_index(long int *index)
-              /* initializes and empties index */
-{
-  index[0]=-1;
-} 
-
-void add_to_index(long int *index, long int elem)
-     /* initializes and empties index */
-{
-  register long i;
-  for(i=0;index[i] != -1;i++);
-  index[i]=elem;
-  index[i+1]=-1;
-}
-
-long compute_index(long int *binfeature, long int range, long int *index)
-     /* create an inverted index of binfeature */
-{               
-  register long i,ii;
-
-  ii=0;
-  for(i=0;i<range;i++) {
-    if(binfeature[i]) {
-      index[ii]=i;
-      ii++;
-    }
-  }
-  for(i=0;i<4;i++) {
-    index[ii+i]=-1;
-  }
-  return(ii);
-}
-
-
-void optimize_svm(DOC **docs, long int *label, long int *unlabeled, 
-		  long int *exclude_from_eq_const, double eq_target,
-		  long int *chosen, long int *active2dnum, MODEL *model, 
-		  long int totdoc, long int *working2dnum, long int varnum, 
-		  double *a, double *lin, double *c, LEARN_PARM *learn_parm, 
-		  CFLOAT *aicache, KERNEL_PARM *kernel_parm, QP *qp, 
-		  double *epsilon_crit_target)
-     /* Do optimization on the working set. */
-{
-    long i;
-    double *a_v;
-
-    compute_matrices_for_optimization(docs,label,unlabeled,
-				      exclude_from_eq_const,eq_target,chosen,
-				      active2dnum,working2dnum,model,a,lin,c,
-				      varnum,totdoc,learn_parm,aicache,
-				      kernel_parm,qp);
-
-    if(verbosity>=3) {
-      printf("Running optimizer..."); fflush(stdout);
-    }
-    /* call the qp-subsolver */
-    a_v=optimize_qp(qp,epsilon_crit_target,
-		    learn_parm->svm_maxqpsize,
-		    &(model->b),   /* in case the optimizer gives us */
-                                   /* the threshold for free. otherwise */
-                                   /* b is calculated in calculate_model. */
-		    learn_parm);
-    if(verbosity>=3) {         
-      printf("done\n");
-    }
-
-    for(i=0;i<varnum;i++) {
-      a[working2dnum[i]]=a_v[i];
-      /*
-      if(a_v[i]<=(0+learn_parm->epsilon_a)) {
-	a[working2dnum[i]]=0;
-      }
-      else if(a_v[i]>=(learn_parm->svm_cost[working2dnum[i]]-learn_parm->epsilon_a)) {
-	a[working2dnum[i]]=learn_parm->svm_cost[working2dnum[i]];
-      }
-      */
-    }
-}
-
-void compute_matrices_for_optimization(DOC **docs, long int *label, 
-          long int *unlabeled, long *exclude_from_eq_const, double eq_target,
-	  long int *chosen, long int *active2dnum, 
-          long int *key, MODEL *model, double *a, double *lin, double *c, 
-	  long int varnum, long int totdoc, LEARN_PARM *learn_parm, 
-          CFLOAT *aicache, KERNEL_PARM *kernel_parm, QP *qp)
-{
-  register long ki,kj,i,j;
-  register double kernel_temp;
-
-  if(verbosity>=3) {
-    fprintf(stdout,"Computing qp-matrices (type %ld kernel [degree %ld, rbf_gamma %f, coef_lin %f, coef_const %f])...",kernel_parm->kernel_type,kernel_parm->poly_degree,kernel_parm->rbf_gamma,kernel_parm->coef_lin,kernel_parm->coef_const); 
-    fflush(stdout);
-  }
-
-  qp->opt_n=varnum;
-  qp->opt_ce0[0]=-eq_target; /* compute the constant for equality constraint */
-  for(j=1;j<model->sv_num;j++) { /* start at 1 */
-    if((!chosen[(model->supvec[j])->docnum])
-       && (!exclude_from_eq_const[(model->supvec[j])->docnum])) {
-      qp->opt_ce0[0]+=model->alpha[j];
-    }
-  } 
-  if(learn_parm->biased_hyperplane) 
-    qp->opt_m=1;
-  else 
-    qp->opt_m=0;  /* eq-constraint will be ignored */
-
-  /* init linear part of objective function */
-  for(i=0;i<varnum;i++) {
-    qp->opt_g0[i]=lin[key[i]];
-  }
-
-  for(i=0;i<varnum;i++) {
-    ki=key[i];
-
-    /* Compute the matrix for equality constraints */
-    qp->opt_ce[i]=label[ki];
-    qp->opt_low[i]=0;
-    qp->opt_up[i]=learn_parm->svm_cost[ki];
-
-    kernel_temp=(double)kernel(kernel_parm,docs[ki],docs[ki]); 
-    /* compute linear part of objective function */
-    qp->opt_g0[i]-=(kernel_temp*a[ki]*(double)label[ki]); 
-    /* compute quadratic part of objective function */
-    qp->opt_g[varnum*i+i]=kernel_temp;
-    for(j=i+1;j<varnum;j++) {
-      kj=key[j];
-      kernel_temp=(double)kernel(kernel_parm,docs[ki],docs[kj]);
-      /* compute linear part of objective function */
-      qp->opt_g0[i]-=(kernel_temp*a[kj]*(double)label[kj]);
-      qp->opt_g0[j]-=(kernel_temp*a[ki]*(double)label[ki]); 
-      /* compute quadratic part of objective function */
-      qp->opt_g[varnum*i+j]=(double)label[ki]*(double)label[kj]*kernel_temp;
-      qp->opt_g[varnum*j+i]=(double)label[ki]*(double)label[kj]*kernel_temp;
-    }
-
-    if(verbosity>=3) {
-      if(i % 20 == 0) {
-	fprintf(stdout,"%ld..",i); fflush(stdout);
-      }
-    }
-  }
-
-  for(i=0;i<varnum;i++) {
-    /* assure starting at feasible point */
-    qp->opt_xinit[i]=a[key[i]];
-    /* set linear part of objective function */
-    qp->opt_g0[i]=(learn_parm->eps-(double)label[key[i]]*c[key[i]])+qp->opt_g0[i]*(double)label[key[i]];    
-  }
-
-  if(verbosity>=3) {
-    fprintf(stdout,"done\n");
-  }
-}
-
-long calculate_svm_model(DOC **docs, long int *label, long int *unlabeled, 
-			 double *lin, double *a, double *a_old, double *c, 
-			 LEARN_PARM *learn_parm, long int *working2dnum, 
-			 long int *active2dnum, MODEL *model)
-     /* Compute decision function based on current values */
-     /* of alpha. */
-{
-  long i,ii,pos,b_calculated=0,first_low,first_high;
-  double ex_c,b_temp,b_low,b_high;
-
-  if(verbosity>=3) {
-    printf("Calculating model..."); fflush(stdout);
-  }
-
-  if(!learn_parm->biased_hyperplane) {
-    model->b=0;
-    b_calculated=1;
-  }
-
-  for(ii=0;(i=working2dnum[ii])>=0;ii++) {
-    if((a_old[i]>0) && (a[i]==0)) { /* remove from model */
-      pos=model->index[i]; 
-      model->index[i]=-1;
-      (model->sv_num)--;
-      model->supvec[pos]=model->supvec[model->sv_num];
-      model->alpha[pos]=model->alpha[model->sv_num];
-      model->index[(model->supvec[pos])->docnum]=pos;
-    }
-    else if((a_old[i]==0) && (a[i]>0)) { /* add to model */
-      model->supvec[model->sv_num]=docs[i];
-      model->alpha[model->sv_num]=a[i]*(double)label[i];
-      model->index[i]=model->sv_num;
-      (model->sv_num)++;
-    }
-    else if(a_old[i]==a[i]) { /* nothing to do */
-    }
-    else {  /* just update alpha */
-      model->alpha[model->index[i]]=a[i]*(double)label[i];
-    }
-      
-    ex_c=learn_parm->svm_cost[i]-learn_parm->epsilon_a;
-    if((a_old[i]>=ex_c) && (a[i]<ex_c)) { 
-      (model->at_upper_bound)--;
-    }
-    else if((a_old[i]<ex_c) && (a[i]>=ex_c)) { 
-      (model->at_upper_bound)++;
-    }
-
-    if((!b_calculated) 
-       && (a[i]>learn_parm->epsilon_a) && (a[i]<ex_c)) {   /* calculate b */
-     	model->b=((double)label[i]*learn_parm->eps-c[i]+lin[i]); 
-	/* model->b=(-(double)label[i]+lin[i]); */
-	b_calculated=1;
-    }
-  }      
-
-  /* No alpha in the working set not at bounds, so b was not
-     calculated in the usual way. The following handles this special
-     case. */
-  if(learn_parm->biased_hyperplane 
-     && (!b_calculated)
-     && (model->sv_num-1 == model->at_upper_bound)) { 
-    first_low=1;
-    first_high=1;
-    b_low=0;
-    b_high=0;
-    for(ii=0;(i=active2dnum[ii])>=0;ii++) {
-      ex_c=learn_parm->svm_cost[i]-learn_parm->epsilon_a;
-      if(a[i]<ex_c) { 
-	if(label[i]>0)  {
-	  b_temp=-(learn_parm->eps-c[i]+lin[i]);
-	  if((b_temp>b_low) || (first_low)) {
-	    b_low=b_temp;
-	    first_low=0;
-	  }
-	}
-	else {
-	  b_temp=-(-learn_parm->eps-c[i]+lin[i]);
-	  if((b_temp<b_high) || (first_high)) {
-	    b_high=b_temp;
-	    first_high=0;
-	  }
-	}
-      }
-      else {
-	if(label[i]<0)  {
-	  b_temp=-(-learn_parm->eps-c[i]+lin[i]);
-	  if((b_temp>b_low) || (first_low)) {
-	    b_low=b_temp;
-	    first_low=0;
-	  }
-	}
-	else {
-	  b_temp=-(learn_parm->eps-c[i]+lin[i]);
-	  if((b_temp<b_high) || (first_high)) {
-	    b_high=b_temp;
-	    first_high=0;
-	  }
-	}
-      }
-    }
-    if(first_high) {
-      model->b=-b_low;
-    }
-    else if(first_low) {
-      model->b=-b_high;
-    }
-    else {
-      model->b=-(b_high+b_low)/2.0;  /* select b as the middle of range */
-      /* printf("\nb_low=%f, b_high=%f,b=%f\n",b_low,b_high,model->b); */
-    }
-  }
-
-  if(verbosity>=3) {
-    printf("done\n"); fflush(stdout);
-  }
-
-  return(model->sv_num-1); /* have to substract one, since element 0 is empty*/
-}
-
-long check_optimality(MODEL *model, long int *label, long int *unlabeled, 
-		      double *a, double *lin, double *c, long int totdoc, 
-		      LEARN_PARM *learn_parm, double *maxdiff, 
-		      double epsilon_crit_org, long int *misclassified, 
-		      long int *inconsistent, long int *active2dnum,
-		      long int *last_suboptimal_at, 
-		      long int iteration, KERNEL_PARM *kernel_parm)
-     /* Check KT-conditions */
-{
-  long i,ii,retrain;
-  double dist,ex_c,target;
-
-  if(kernel_parm->kernel_type == LINEAR) {  /* be optimistic */
-    learn_parm->epsilon_shrink=-learn_parm->epsilon_crit+epsilon_crit_org;  
-  }
-  else {  /* be conservative */
-    learn_parm->epsilon_shrink=learn_parm->epsilon_shrink*0.7+(*maxdiff)*0.3; 
-  }
-  retrain=0;
-  (*maxdiff)=0;
-  (*misclassified)=0;
-  for(ii=0;(i=active2dnum[ii])>=0;ii++) {
-    if((!inconsistent[i]) && label[i]) {
-      dist=(lin[i]-model->b)*(double)label[i];/* 'distance' from
-						 hyperplane*/
-      target=-(learn_parm->eps-(double)label[i]*c[i]);
-      ex_c=learn_parm->svm_cost[i]-learn_parm->epsilon_a;
-      if(dist <= 0) {       
-	(*misclassified)++;  /* does not work due to deactivation of var */
-      }
-      if((a[i]>learn_parm->epsilon_a) && (dist > target)) {
-	if((dist-target)>(*maxdiff))  /* largest violation */
-	  (*maxdiff)=dist-target;
-      }
-      else if((a[i]<ex_c) && (dist < target)) {
-	if((target-dist)>(*maxdiff))  /* largest violation */
-	  (*maxdiff)=target-dist;
-      }
-      /* Count how long a variable was at lower/upper bound (and optimal).*/
-      /* Variables, which were at the bound and optimal for a long */
-      /* time are unlikely to become support vectors. In case our */
-      /* cache is filled up, those variables are excluded to save */
-      /* kernel evaluations. (See chapter 'Shrinking').*/ 
-      if((a[i]>(learn_parm->epsilon_a)) 
-	 && (a[i]<ex_c)) { 
-	last_suboptimal_at[i]=iteration;         /* not at bound */
-      }
-      else if((a[i]<=(learn_parm->epsilon_a)) 
-	      && (dist < (target+learn_parm->epsilon_shrink))) {
-	last_suboptimal_at[i]=iteration;         /* not likely optimal */
-      }
-      else if((a[i]>=ex_c)
-	      && (dist > (target-learn_parm->epsilon_shrink)))  { 
-	last_suboptimal_at[i]=iteration;         /* not likely optimal */
-      }
-    }   
-  }
-  /* termination criterion */
-  if((!retrain) && ((*maxdiff) > learn_parm->epsilon_crit)) {  
-    retrain=1;
-  }
-  return(retrain);
-}
-
-long check_optimality_sharedslack(DOC **docs, MODEL *model, long int *label,
-		      double *a, double *lin, double *c, double *slack,
-		      double *alphaslack,
-		      long int totdoc, 
-		      LEARN_PARM *learn_parm, double *maxdiff, 
-		      double epsilon_crit_org, long int *misclassified, 
-		      long int *active2dnum,
-		      long int *last_suboptimal_at, 
-		      long int iteration, KERNEL_PARM *kernel_parm)
-     /* Check KT-conditions */
-{
-  long i,ii,retrain;
-  double dist,ex_c=0,target;
-
-  if(kernel_parm->kernel_type == LINEAR) {  /* be optimistic */
-    learn_parm->epsilon_shrink=-learn_parm->epsilon_crit+epsilon_crit_org;  
-  }
-  else {  /* be conservative */
-    learn_parm->epsilon_shrink=learn_parm->epsilon_shrink*0.7+(*maxdiff)*0.3; 
-  }
-
-  retrain=0;
-  (*maxdiff)=0;
-  (*misclassified)=0;
-  for(ii=0;(i=active2dnum[ii])>=0;ii++) {
-    /* 'distance' from hyperplane*/
-    dist=(lin[i]-model->b)*(double)label[i]+slack[docs[i]->slackid];
-    target=-(learn_parm->eps-(double)label[i]*c[i]);
-    ex_c=learn_parm->svm_c-learn_parm->epsilon_a;
-    if((a[i]>learn_parm->epsilon_a) && (dist > target)) {
-      if((dist-target)>(*maxdiff)) {  /* largest violation */
-	(*maxdiff)=dist-target;
-	if(verbosity>=5) printf("sid %ld: dist=%.2f, target=%.2f, slack=%.2f, a=%f, alphaslack=%f\n",docs[i]->slackid,dist,target,slack[docs[i]->slackid],a[i],alphaslack[docs[i]->slackid]);
-	if(verbosity>=5) printf(" (single %f)\n",(*maxdiff));
-      }
-    }
-    if((alphaslack[docs[i]->slackid]<ex_c) && (slack[docs[i]->slackid]>0)) {
-      if((slack[docs[i]->slackid])>(*maxdiff)) { /* largest violation */
-	(*maxdiff)=slack[docs[i]->slackid];
-	if(verbosity>=5) printf("sid %ld: dist=%.2f, target=%.2f, slack=%.2f, a=%f, alphaslack=%f\n",docs[i]->slackid,dist,target,slack[docs[i]->slackid],a[i],alphaslack[docs[i]->slackid]);
-	if(verbosity>=5) printf(" (joint %f)\n",(*maxdiff));
-      }
-    }
-    /* Count how long a variable was at lower/upper bound (and optimal).*/
-    /* Variables, which were at the bound and optimal for a long */
-    /* time are unlikely to become support vectors. In case our */
-    /* cache is filled up, those variables are excluded to save */
-    /* kernel evaluations. (See chapter 'Shrinking').*/ 
-    if((a[i]>(learn_parm->epsilon_a)) 
-       && (a[i]<ex_c)) { 
-      last_suboptimal_at[docs[i]->slackid]=iteration;  /* not at bound */
-    }
-    else if((a[i]<=(learn_parm->epsilon_a)) 
-	    && (dist < (target+learn_parm->epsilon_shrink))) {
-      last_suboptimal_at[docs[i]->slackid]=iteration;  /* not likely optimal */
-    }
-    else if((a[i]>=ex_c)
-	    && (slack[docs[i]->slackid] < learn_parm->epsilon_shrink))  { 
-      last_suboptimal_at[docs[i]->slackid]=iteration;  /* not likely optimal */
-    }
-  }   
-  /* termination criterion */
-  if((!retrain) && ((*maxdiff) > learn_parm->epsilon_crit)) {  
-    retrain=1;
-  }
-  return(retrain);
-}
-
-void compute_shared_slacks(DOC **docs, long int *label, 
-			   double *a, double *lin, 
-			   double *c, long int *active2dnum,
-			   LEARN_PARM *learn_parm, 
-			   double *slack, double *alphaslack)
-     /* compute the value of shared slacks and the joint alphas */
-{
-  long jj,i;
-  double dist,target;
-
-  for(jj=0;(i=active2dnum[jj])>=0;jj++) { /* clear slack variables */
-    slack[docs[i]->slackid]=0.0;
-    alphaslack[docs[i]->slackid]=0.0;
-  }
-  for(jj=0;(i=active2dnum[jj])>=0;jj++) { /* recompute slack variables */
-    dist=(lin[i])*(double)label[i];
-    target=-(learn_parm->eps-(double)label[i]*c[i]);
-    if((target-dist) > slack[docs[i]->slackid])
-      slack[docs[i]->slackid]=target-dist;
-    alphaslack[docs[i]->slackid]+=a[i];
-  }
-}
-
-
-long identify_inconsistent(double *a, long int *label, 
-			   long int *unlabeled, long int totdoc, 
-			   LEARN_PARM *learn_parm, 
-			   long int *inconsistentnum, long int *inconsistent)
-{
-  long i,retrain;
-
-  /* Throw out examples with multipliers at upper bound. This */
-  /* corresponds to the -i 1 option. */
-  /* ATTENTION: this is just a heuristic for finding a close */
-  /*            to minimum number of examples to exclude to */
-  /*            make the problem separable with desired margin */
-  retrain=0;
-  for(i=0;i<totdoc;i++) {
-    if((!inconsistent[i]) && (!unlabeled[i]) 
-       && (a[i]>=(learn_parm->svm_cost[i]-learn_parm->epsilon_a))) { 
-	(*inconsistentnum)++;
-	inconsistent[i]=1;  /* never choose again */
-	retrain=2;          /* start over */
-	if(verbosity>=3) {
-	  printf("inconsistent(%ld)..",i); fflush(stdout);
-	}
-    }
-  }
-  return(retrain);
-}
-
-long identify_misclassified(double *lin, long int *label, 
-			    long int *unlabeled, long int totdoc, 
-			    MODEL *model, long int *inconsistentnum, 
-			    long int *inconsistent)
-{
-  long i,retrain;
-  double dist;
-
-  /* Throw out misclassified examples. This */
-  /* corresponds to the -i 2 option. */
-  /* ATTENTION: this is just a heuristic for finding a close */
-  /*            to minimum number of examples to exclude to */
-  /*            make the problem separable with desired margin */
-  retrain=0;
-  for(i=0;i<totdoc;i++) {
-    dist=(lin[i]-model->b)*(double)label[i]; /* 'distance' from hyperplane*/  
-    if((!inconsistent[i]) && (!unlabeled[i]) && (dist <= 0)) { 
-	(*inconsistentnum)++;
-	inconsistent[i]=1;  /* never choose again */
-	retrain=2;          /* start over */
-	if(verbosity>=3) {
-	  printf("inconsistent(%ld)..",i); fflush(stdout);
-	}
-    }
-  }
-  return(retrain);
-}
-
-long identify_one_misclassified(double *lin, long int *label, 
-				long int *unlabeled, 
-				long int totdoc, MODEL *model, 
-				long int *inconsistentnum, 
-				long int *inconsistent)
-{
-  long i,retrain,maxex=-1;
-  double dist,maxdist=0;
-
-  /* Throw out the 'most misclassified' example. This */
-  /* corresponds to the -i 3 option. */
-  /* ATTENTION: this is just a heuristic for finding a close */
-  /*            to minimum number of examples to exclude to */
-  /*            make the problem separable with desired margin */
-  retrain=0;
-  for(i=0;i<totdoc;i++) {
-    if((!inconsistent[i]) && (!unlabeled[i])) {
-      dist=(lin[i]-model->b)*(double)label[i];/* 'distance' from hyperplane*/  
-      if(dist<maxdist) {
-	maxdist=dist;
-	maxex=i;
-      }
-    }
-  }
-  if(maxex>=0) {
-    (*inconsistentnum)++;
-    inconsistent[maxex]=1;  /* never choose again */
-    retrain=2;          /* start over */
-    if(verbosity>=3) {
-      printf("inconsistent(%ld)..",i); fflush(stdout);
-    }
-  }
-  return(retrain);
-}
-
-void update_linear_component(DOC **docs, long int *label, 
-			     long int *active2dnum, double *a, 
-			     double *a_old, long int *working2dnum, 
-			     long int totdoc, long int totwords, 
-			     KERNEL_PARM *kernel_parm, 
-			     KERNEL_CACHE *kernel_cache, 
-			     double *lin, CFLOAT *aicache, double *weights)
-     /* keep track of the linear component */
-     /* lin of the gradient etc. by updating */
-     /* based on the change of the variables */
-     /* in the current working set */
-{
-  register long i,ii,j,jj;
-  register double tec;
-  SVECTOR *f;
-
-  if(kernel_parm->kernel_type==0) { /* special linear case */
-    clear_vector_n(weights,totwords);
-    for(ii=0;(i=working2dnum[ii])>=0;ii++) {
-      if(a[i] != a_old[i]) {
-	for(f=docs[i]->fvec;f;f=f->next)  
-	  add_vector_ns(weights,f,
-			f->factor*((a[i]-a_old[i])*(double)label[i]));
-      }
-    }
-    for(jj=0;(j=active2dnum[jj])>=0;jj++) {
-      for(f=docs[j]->fvec;f;f=f->next)  
-	lin[j]+=f->factor*sprod_ns(weights,f);
-    }
-  }
-  else {                            /* general case */
-    for(jj=0;(i=working2dnum[jj])>=0;jj++) {
-      if(a[i] != a_old[i]) {
-	get_kernel_row(kernel_cache,docs,i,totdoc,active2dnum,aicache,
-		       kernel_parm);
-	for(ii=0;(j=active2dnum[ii])>=0;ii++) {
-	  tec=aicache[j];
-	  lin[j]+=(((a[i]*tec)-(a_old[i]*tec))*(double)label[i]);
-	}
-      }
-    }
-  }
-}
-
-
-long incorporate_unlabeled_examples(MODEL *model, long int *label, 
-				    long int *inconsistent, 
-				    long int *unlabeled, 
-				    double *a, double *lin, 
-				    long int totdoc, double *selcrit, 
-				    long int *select, long int *key, 
-				    long int transductcycle, 
-				    KERNEL_PARM *kernel_parm, 
-				    LEARN_PARM *learn_parm)
-{
-  long i,j,k,j1,j2,j3,j4,unsupaddnum1=0,unsupaddnum2=0;
-  long pos,neg,upos,uneg,orgpos,orgneg,nolabel,newpos,newneg,allunlab;
-  double dist,model_length,posratio,negratio;
-  long check_every=2;
-  double loss;
-  static double switchsens=0.0,switchsensorg=0.0;
-  double umin,umax,sumalpha;
-  long imin=0,imax=0;
-  static long switchnum=0;
-
-  switchsens/=1.2;
-
-  /* assumes that lin[] is up to date -> no inactive vars */
-
-  orgpos=0;
-  orgneg=0;
-  newpos=0;
-  newneg=0;
-  nolabel=0;
-  allunlab=0;
-  for(i=0;i<totdoc;i++) {
-    if(!unlabeled[i]) {
-      if(label[i] > 0) {
-	orgpos++;
-      }
-      else {
-	orgneg++;
-      }
-    }
-    else {
-      allunlab++;
-      if(unlabeled[i]) {
-	if(label[i] > 0) {
-	  newpos++;
-	}
-	else if(label[i] < 0) {
-	  newneg++;
-	}
-      }
-    }
-    if(label[i]==0) {
-      nolabel++;
-    }
-  }
-
-  if(learn_parm->transduction_posratio >= 0) {
-    posratio=learn_parm->transduction_posratio;
-  }
-  else {
-    posratio=(double)orgpos/(double)(orgpos+orgneg); /* use ratio of pos/neg */
-  }                                                  /* in training data */
-  negratio=1.0-posratio;
-
-  learn_parm->svm_costratio=1.0;                     /* global */
-  if(posratio>0) {
-    learn_parm->svm_costratio_unlab=negratio/posratio;
-  }
-  else {
-    learn_parm->svm_costratio_unlab=1.0;
-  }
-  
-  pos=0;
-  neg=0;
-  upos=0;
-  uneg=0;
-  for(i=0;i<totdoc;i++) {
-    dist=(lin[i]-model->b);  /* 'distance' from hyperplane*/
-    if(dist>0) {
-      pos++;
-    }
-    else {
-      neg++;
-    }
-    if(unlabeled[i]) {
-      if(dist>0) {
-	upos++;
-      }
-      else {
-	uneg++;
-      }
-    }
-    if((!unlabeled[i]) && (a[i]>(learn_parm->svm_cost[i]-learn_parm->epsilon_a))) {
-      /*      printf("Ubounded %ld (class %ld, unlabeled %ld)\n",i,label[i],unlabeled[i]); */
-    }
-  }
-  if(verbosity>=2) {
-    printf("POS=%ld, ORGPOS=%ld, ORGNEG=%ld\n",pos,orgpos,orgneg);
-    printf("POS=%ld, NEWPOS=%ld, NEWNEG=%ld\n",pos,newpos,newneg);
-    printf("pos ratio = %f (%f).\n",(double)(upos)/(double)(allunlab),posratio);
-    fflush(stdout);
-  }
-
-  if(transductcycle == 0) {
-    j1=0; 
-    j2=0;
-    j4=0;
-    for(i=0;i<totdoc;i++) {
-      dist=(lin[i]-model->b);  /* 'distance' from hyperplane*/
-      if((label[i]==0) && (unlabeled[i])) {
-	selcrit[j4]=dist;
-	key[j4]=i;
-	j4++;
-      }
-    }
-    unsupaddnum1=0;	
-    unsupaddnum2=0;	
-    select_top_n(selcrit,j4,select,(long)(allunlab*posratio+0.5));
-    for(k=0;(k<(long)(allunlab*posratio+0.5));k++) {
-      i=key[select[k]];
-      label[i]=1;
-      unsupaddnum1++;	
-      j1++;
-    }
-    for(i=0;i<totdoc;i++) {
-      if((label[i]==0) && (unlabeled[i])) {
-	label[i]=-1;
-	j2++;
-	unsupaddnum2++;
-      }
-    }
-    for(i=0;i<totdoc;i++) {  /* set upper bounds on vars */
-      if(unlabeled[i]) {
-	if(label[i] == 1) {
-	  learn_parm->svm_cost[i]=learn_parm->svm_c*
-	    learn_parm->svm_costratio_unlab*learn_parm->svm_unlabbound;
-	}
-	else if(label[i] == -1) {
-	  learn_parm->svm_cost[i]=learn_parm->svm_c*
-	    learn_parm->svm_unlabbound;
-	}
-      }
-    }
-    if(verbosity>=1) {
-      /* printf("costratio %f, costratio_unlab %f, unlabbound %f\n",
-	 learn_parm->svm_costratio,learn_parm->svm_costratio_unlab,
-	 learn_parm->svm_unlabbound); */
-      printf("Classifying unlabeled data as %ld POS / %ld NEG.\n",
-	     unsupaddnum1,unsupaddnum2); 
-      fflush(stdout);
-    }
-    if(verbosity >= 1) 
-      printf("Retraining.");
-    if(verbosity >= 2) printf("\n");
-    return((long)3);
-  }
-  if((transductcycle % check_every) == 0) {
-    if(verbosity >= 1) 
-      printf("Retraining.");
-    if(verbosity >= 2) printf("\n");
-    j1=0;
-    j2=0;
-    unsupaddnum1=0;
-    unsupaddnum2=0;
-    for(i=0;i<totdoc;i++) {
-      if((unlabeled[i] == 2)) {
-	unlabeled[i]=1;
-	label[i]=1;
-	j1++;
-	unsupaddnum1++;
-      }
-      else if((unlabeled[i] == 3)) {
-	unlabeled[i]=1;
-	label[i]=-1;
-	j2++;
-	unsupaddnum2++;
-      }
-    }
-    for(i=0;i<totdoc;i++) {  /* set upper bounds on vars */
-      if(unlabeled[i]) {
-	if(label[i] == 1) {
-	  learn_parm->svm_cost[i]=learn_parm->svm_c*
-	    learn_parm->svm_costratio_unlab*learn_parm->svm_unlabbound;
-	}
-	else if(label[i] == -1) {
-	  learn_parm->svm_cost[i]=learn_parm->svm_c*
-	    learn_parm->svm_unlabbound;
-	}
-      }
-    }
-
-    if(verbosity>=2) {
-      /* printf("costratio %f, costratio_unlab %f, unlabbound %f\n",
-	     learn_parm->svm_costratio,learn_parm->svm_costratio_unlab,
-	     learn_parm->svm_unlabbound); */
-      printf("%ld positive -> Added %ld POS / %ld NEG unlabeled examples.\n",
-	     upos,unsupaddnum1,unsupaddnum2); 
-      fflush(stdout);
-    }
-
-    if(learn_parm->svm_unlabbound == 1) {
-      learn_parm->epsilon_crit=0.001; /* do the last run right */
-    }
-    else {
-      learn_parm->epsilon_crit=0.01; /* otherwise, no need to be so picky */
-    }
-
-    return((long)3);
-  }
-  else if(((transductcycle % check_every) < check_every)) { 
-    model_length=0;
-    sumalpha=0;
-    loss=0;
-    for(i=0;i<totdoc;i++) {
-      model_length+=a[i]*label[i]*lin[i];
-      sumalpha+=a[i];
-      dist=(lin[i]-model->b);  /* 'distance' from hyperplane*/
-      if((label[i]*dist)<(1.0-learn_parm->epsilon_crit)) {
-	loss+=(1.0-(label[i]*dist))*learn_parm->svm_cost[i]; 
-      }
-    }
-    model_length=sqrt(model_length); 
-    if(verbosity>=2) {
-      printf("Model-length = %f (%f), loss = %f, objective = %f\n",
-	     model_length,sumalpha,loss,loss+0.5*model_length*model_length);
-      fflush(stdout);
-    }
-    j1=0;
-    j2=0;
-    j3=0;
-    j4=0;
-    unsupaddnum1=0;	
-    unsupaddnum2=0;	
-    umin=99999;
-    umax=-99999;
-    j4=1;
-    while(j4) {
-      umin=99999;
-      umax=-99999;
-      for(i=0;(i<totdoc);i++) { 
-	dist=(lin[i]-model->b);  
-	if((label[i]>0) && (unlabeled[i]) && (!inconsistent[i]) 
-	   && (dist<umin)) {
-	  umin=dist;
-	  imin=i;
-	}
-	if((label[i]<0) && (unlabeled[i])  && (!inconsistent[i]) 
-	   && (dist>umax)) {
-	  umax=dist;
-	  imax=i;
-	}
-      }
-      if((umin < (umax+switchsens-1E-4))) {
-	j1++;
-	j2++;
-	unsupaddnum1++;	
-	unlabeled[imin]=3;
-	inconsistent[imin]=1;
-	unsupaddnum2++;	
-	unlabeled[imax]=2;
-	inconsistent[imax]=1;
-      }
-      else
-	j4=0;
-      j4=0;
-    }
-    for(j=0;(j<totdoc);j++) {
-      if(unlabeled[j] && (!inconsistent[j])) {
-	if(label[j]>0) {
-	  unlabeled[j]=2;
-	}
-	else if(label[j]<0) {
-	  unlabeled[j]=3;
-	}
-	/* inconsistent[j]=1; */
-	j3++;
-      }
-    }
-    switchnum+=unsupaddnum1+unsupaddnum2;
-
-    /* stop and print out current margin
-       printf("switchnum %ld %ld\n",switchnum,kernel_parm->poly_degree);
-       if(switchnum == 2*kernel_parm->poly_degree) {
-       learn_parm->svm_unlabbound=1;
-       }
-       */
-
-    if((!unsupaddnum1) && (!unsupaddnum2)) {
-      if((learn_parm->svm_unlabbound>=1) && ((newpos+newneg) == allunlab)) {
-	for(j=0;(j<totdoc);j++) {
-	  inconsistent[j]=0;
-	  if(unlabeled[j]) unlabeled[j]=1;
-	}
-	write_prediction(learn_parm->predfile,model,lin,a,unlabeled,label,
-			 totdoc,learn_parm);  
-	if(verbosity>=1)
-	  printf("Number of switches: %ld\n",switchnum);
-	return((long)0);
-      }
-      switchsens=switchsensorg;
-      learn_parm->svm_unlabbound*=1.5;
-      if(learn_parm->svm_unlabbound>1) {
-	learn_parm->svm_unlabbound=1;
-      }
-      model->at_upper_bound=0; /* since upper bound increased */
-      if(verbosity>=1) 
-	printf("Increasing influence of unlabeled examples to %f%% .",
-	       learn_parm->svm_unlabbound*100.0);
-    }
-    else if(verbosity>=1) {
-      printf("%ld positive -> Switching labels of %ld POS / %ld NEG unlabeled examples.",
-	     upos,unsupaddnum1,unsupaddnum2); 
-      fflush(stdout);
-    }
-
-    if(verbosity >= 2) printf("\n");
-    
-    learn_parm->epsilon_crit=0.5; /* don't need to be so picky */
-
-    for(i=0;i<totdoc;i++) {  /* set upper bounds on vars */
-      if(unlabeled[i]) {
-	if(label[i] == 1) {
-	  learn_parm->svm_cost[i]=learn_parm->svm_c*
-	    learn_parm->svm_costratio_unlab*learn_parm->svm_unlabbound;
-	}
-	else if(label[i] == -1) {
-	  learn_parm->svm_cost[i]=learn_parm->svm_c*
-	    learn_parm->svm_unlabbound;
-	}
-      }
-    }
-
-    return((long)2);
-  }
-
-  return((long)0); 
-}
-
-/*************************** Working set selection ***************************/
-
-long select_next_qp_subproblem_grad(long int *label, 
-				    long int *unlabeled, 
-				    double *a, double *lin, 
-				    double *c, long int totdoc, 
-				    long int qp_size, 
-				    LEARN_PARM *learn_parm, 
-				    long int *inconsistent, 
-				    long int *active2dnum, 
-				    long int *working2dnum, 
-				    double *selcrit, 
-				    long int *select, 
-				    KERNEL_CACHE *kernel_cache, 
-				    long int cache_only,
-				    long int *key, long int *chosen)
-     /* Use the feasible direction approach to select the next
-      qp-subproblem (see chapter 'Selecting a good working set'). If
-      'cache_only' is true, then the variables are selected only among
-      those for which the kernel evaluations are cached. */
-{
-  long choosenum,i,j,k,activedoc,inum,valid;
-  double s;
-
-  for(inum=0;working2dnum[inum]>=0;inum++); /* find end of index */
-  choosenum=0;
-  activedoc=0;
-  for(i=0;(j=active2dnum[i])>=0;i++) {
-    s=-label[j];
-    if(kernel_cache && cache_only) 
-      valid=(kernel_cache->index[j]>=0);
-    else
-      valid=1;
-    if(valid
-       && (!((a[j]<=(0+learn_parm->epsilon_a)) && (s<0)))
-       && (!((a[j]>=(learn_parm->svm_cost[j]-learn_parm->epsilon_a)) 
-	     && (s>0)))
-       && (!chosen[j]) 
-       && (label[j])
-       && (!inconsistent[j]))
-      {
-      selcrit[activedoc]=(double)label[j]*(learn_parm->eps-(double)label[j]*c[j]+(double)label[j]*lin[j]);
-      /*      selcrit[activedoc]=(double)label[j]*(-1.0+(double)label[j]*lin[j]); */
-      key[activedoc]=j;
-      activedoc++;
-    }
-  }
-  select_top_n(selcrit,activedoc,select,(long)(qp_size/2));
-  for(k=0;(choosenum<(qp_size/2)) && (k<(qp_size/2)) && (k<activedoc);k++) {
-    /* if(learn_parm->biased_hyperplane || (selcrit[select[k]] > 0)) { */
-      i=key[select[k]];
-      chosen[i]=1;
-      working2dnum[inum+choosenum]=i;
-      choosenum+=1;
-      if(kernel_cache)
-	kernel_cache_touch(kernel_cache,i); /* make sure it does not get
-					       kicked out of cache */
-      /* } */
-  }
-
-  activedoc=0;
-  for(i=0;(j=active2dnum[i])>=0;i++) {
-    s=label[j];
-    if(kernel_cache && cache_only) 
-      valid=(kernel_cache->index[j]>=0);
-    else
-      valid=1;
-    if(valid
-       && (!((a[j]<=(0+learn_parm->epsilon_a)) && (s<0)))
-       && (!((a[j]>=(learn_parm->svm_cost[j]-learn_parm->epsilon_a)) 
-	     && (s>0))) 
-       && (!chosen[j]) 
-       && (label[j])
-       && (!inconsistent[j])) 
-      {
-      selcrit[activedoc]=-(double)label[j]*(learn_parm->eps-(double)label[j]*c[j]+(double)label[j]*lin[j]);
-      /*  selcrit[activedoc]=-(double)(label[j]*(-1.0+(double)label[j]*lin[j])); */
-      key[activedoc]=j;
-      activedoc++;
-    }
-  }
-  select_top_n(selcrit,activedoc,select,(long)(qp_size/2));
-  for(k=0;(choosenum<qp_size) && (k<(qp_size/2)) && (k<activedoc);k++) {
-    /* if(learn_parm->biased_hyperplane || (selcrit[select[k]] > 0)) { */
-      i=key[select[k]];
-      chosen[i]=1;
-      working2dnum[inum+choosenum]=i;
-      choosenum+=1;
-      if(kernel_cache)
-	kernel_cache_touch(kernel_cache,i); /* make sure it does not get
-					       kicked out of cache */
-      /* } */
-  } 
-  working2dnum[inum+choosenum]=-1; /* complete index */
-  return(choosenum);
-}
-
-long select_next_qp_subproblem_rand(long int *label, 
-				    long int *unlabeled, 
-				    double *a, double *lin, 
-				    double *c, long int totdoc, 
-				    long int qp_size, 
-				    LEARN_PARM *learn_parm, 
-				    long int *inconsistent, 
-				    long int *active2dnum, 
-				    long int *working2dnum, 
-				    double *selcrit, 
-				    long int *select, 
-				    KERNEL_CACHE *kernel_cache, 
-				    long int *key, 
-				    long int *chosen, 
-				    long int iteration)
-/* Use the feasible direction approach to select the next
-   qp-subproblem (see section 'Selecting a good working set'). Chooses
-   a feasible direction at (pseudo) random to help jump over numerical
-   problem. */
-{
-  long choosenum,i,j,k,activedoc,inum;
-  double s;
-
-  for(inum=0;working2dnum[inum]>=0;inum++); /* find end of index */
-  choosenum=0;
-  activedoc=0;
-  for(i=0;(j=active2dnum[i])>=0;i++) {
-    s=-label[j];
-    if((!((a[j]<=(0+learn_parm->epsilon_a)) && (s<0)))
-       && (!((a[j]>=(learn_parm->svm_cost[j]-learn_parm->epsilon_a)) 
-	     && (s>0)))
-       && (!inconsistent[j]) 
-       && (label[j])
-       && (!chosen[j])) {
-      selcrit[activedoc]=(j+iteration) % totdoc;
-      key[activedoc]=j;
-      activedoc++;
-    }
-  }
-  select_top_n(selcrit,activedoc,select,(long)(qp_size/2));
-  for(k=0;(choosenum<(qp_size/2)) && (k<(qp_size/2)) && (k<activedoc);k++) {
-    i=key[select[k]];
-    chosen[i]=1;
-    working2dnum[inum+choosenum]=i;
-    choosenum+=1;
-    kernel_cache_touch(kernel_cache,i); /* make sure it does not get kicked */
-                                        /* out of cache */
-  }
-
-  activedoc=0;
-  for(i=0;(j=active2dnum[i])>=0;i++) {
-    s=label[j];
-    if((!((a[j]<=(0+learn_parm->epsilon_a)) && (s<0)))
-       && (!((a[j]>=(learn_parm->svm_cost[j]-learn_parm->epsilon_a)) 
-	     && (s>0))) 
-       && (!inconsistent[j]) 
-       && (label[j])
-       && (!chosen[j])) {
-      selcrit[activedoc]=(j+iteration) % totdoc;
-      key[activedoc]=j;
-      activedoc++;
-    }
-  }
-  select_top_n(selcrit,activedoc,select,(long)(qp_size/2));
-  for(k=0;(choosenum<qp_size) && (k<(qp_size/2)) && (k<activedoc);k++) {
-    i=key[select[k]];
-    chosen[i]=1;
-    working2dnum[inum+choosenum]=i;
-    choosenum+=1;
-    kernel_cache_touch(kernel_cache,i); /* make sure it does not get kicked */
-                                        /* out of cache */
-  } 
-  working2dnum[inum+choosenum]=-1; /* complete index */
-  return(choosenum);
-}
-
-long select_next_qp_slackset(DOC **docs, long int *label, 
-			     double *a, double *lin, 
-			     double *slack, double *alphaslack, 
-			     double *c,
-			     LEARN_PARM *learn_parm, 
-			     long int *active2dnum, double *maxviol)
-     /* returns the slackset with the largest internal violation */
-{
-  long i,ii,maxdiffid;
-  double dist,target,maxdiff,ex_c;
-
-  maxdiff=0;
-  maxdiffid=0;
-  for(ii=0;(i=active2dnum[ii])>=0;ii++) {
-    ex_c=learn_parm->svm_c-learn_parm->epsilon_a;
-    if(alphaslack[docs[i]->slackid] >= ex_c) {
-      dist=(lin[i])*(double)label[i]+slack[docs[i]->slackid]; /* distance */
-      target=-(learn_parm->eps-(double)label[i]*c[i]); /* rhs of constraint */
-      if((a[i]>learn_parm->epsilon_a) && (dist > target)) {
-	if((dist-target)>maxdiff) { /* largest violation */
-	  maxdiff=dist-target;
-	  maxdiffid=docs[i]->slackid;
-	}
-      }
-    }
-  }
-  (*maxviol)=maxdiff;
-  return(maxdiffid);
-}
-
-
-void select_top_n(double *selcrit, long int range, long int *select, 
-		  long int n)
-{
-  register long i,j;
-
-  for(i=0;(i<n) && (i<range);i++) { /* Initialize with the first n elements */
-    for(j=i;j>=0;j--) {
-      if((j>0) && (selcrit[select[j-1]]<selcrit[i])){
-	select[j]=select[j-1];
-      }
-      else {
-	select[j]=i;
-	j=-1;
-      }
-    }
-  }
-  if(n>0) {
-    for(i=n;i<range;i++) {  
-      if(selcrit[i]>selcrit[select[n-1]]) {
-	for(j=n-1;j>=0;j--) {
-	  if((j>0) && (selcrit[select[j-1]]<selcrit[i])) {
-	    select[j]=select[j-1];
-	  }
-	  else {
-	    select[j]=i;
-	    j=-1;
-	  }
-	}
-      }
-    }
-  }
-}      
-      
-
-/******************************** Shrinking  *********************************/
-
-void init_shrink_state(SHRINK_STATE *shrink_state, long int totdoc, 
-		       long int maxhistory)
-{
-  long i;
-
-  shrink_state->deactnum=0;
-  shrink_state->active = (long *)my_malloc(sizeof(long)*totdoc);
-  shrink_state->inactive_since = (long *)my_malloc(sizeof(long)*totdoc);
-  shrink_state->a_history = (double **)my_malloc(sizeof(double *)*maxhistory);
-  shrink_state->maxhistory=maxhistory;
-  shrink_state->last_lin = (double *)my_malloc(sizeof(double)*totdoc);
-  shrink_state->last_a = (double *)my_malloc(sizeof(double)*totdoc);
-
-  for(i=0;i<totdoc;i++) { 
-    shrink_state->active[i]=1;
-    shrink_state->inactive_since[i]=0;
-    shrink_state->last_a[i]=0;
-    shrink_state->last_lin[i]=0;
-  }
-}
-
-void shrink_state_cleanup(SHRINK_STATE *shrink_state)
-{
-  free(shrink_state->active);
-  free(shrink_state->inactive_since);
-  if(shrink_state->deactnum > 0) 
-    free(shrink_state->a_history[shrink_state->deactnum-1]);
-  free(shrink_state->a_history);
-  free(shrink_state->last_a);
-  free(shrink_state->last_lin);
-}
-
-long shrink_problem(DOC **docs,
-		    LEARN_PARM *learn_parm, 
-		    SHRINK_STATE *shrink_state, 
-		    KERNEL_PARM *kernel_parm,
-		    long int *active2dnum, 
-		    long int *last_suboptimal_at, 
-		    long int iteration, 
-		    long int totdoc, 
-		    long int minshrink, 
-		    double *a, 
-		    long int *inconsistent)
-     /* Shrink some variables away.  Do the shrinking only if at least
-        minshrink variables can be removed. */
-{
-  long i,ii,change,activenum,lastiter;
-  double *a_old;
-  
-  activenum=0;
-  change=0;
-  for(ii=0;active2dnum[ii]>=0;ii++) {
-    i=active2dnum[ii];
-    activenum++;
-    if(learn_parm->sharedslack)
-      lastiter=last_suboptimal_at[docs[i]->slackid];
-    else
-      lastiter=last_suboptimal_at[i];
-    if(((iteration-lastiter) > learn_parm->svm_iter_to_shrink) 
-       || (inconsistent[i])) {
-      change++;
-    }
-  }
-  if((change>=minshrink) /* shrink only if sufficiently many candidates */
-     && (shrink_state->deactnum<shrink_state->maxhistory)) { /* and enough memory */
-    /* Shrink problem by removing those variables which are */
-    /* optimal at a bound for a minimum number of iterations */
-    if(verbosity>=2) {
-      printf(" Shrinking..."); fflush(stdout);
-    }
-    if(kernel_parm->kernel_type != LINEAR) { /*  non-linear case save alphas */
-      a_old=(double *)my_malloc(sizeof(double)*totdoc);
-      shrink_state->a_history[shrink_state->deactnum]=a_old;
-      for(i=0;i<totdoc;i++) {
-	a_old[i]=a[i];
-      }
-    }
-    for(ii=0;active2dnum[ii]>=0;ii++) {
-      i=active2dnum[ii];
-      if(learn_parm->sharedslack)
-	lastiter=last_suboptimal_at[docs[i]->slackid];
-      else
-	lastiter=last_suboptimal_at[i];
-      if(((iteration-lastiter) > learn_parm->svm_iter_to_shrink) 
-	 || (inconsistent[i])) {
-	shrink_state->active[i]=0;
-	shrink_state->inactive_since[i]=shrink_state->deactnum;
-      }
-    }
-    activenum=compute_index(shrink_state->active,totdoc,active2dnum);
-    shrink_state->deactnum++;
-    if(kernel_parm->kernel_type == LINEAR) { 
-      shrink_state->deactnum=0;
-    }
-    if(verbosity>=2) {
-      printf("done.\n"); fflush(stdout);
-      printf(" Number of inactive variables = %ld\n",totdoc-activenum);
-    }
-  }
-  return(activenum);
-} 
-
-
-void reactivate_inactive_examples(long int *label, 
-				  long int *unlabeled, 
-				  double *a, 
-				  SHRINK_STATE *shrink_state, 
-				  double *lin, 
-				  double *c, 
-				  long int totdoc, 
-				  long int totwords, 
-				  long int iteration, 
-				  LEARN_PARM *learn_parm, 
-				  long int *inconsistent, 
-				  DOC **docs, 
-				  KERNEL_PARM *kernel_parm, 
-				  KERNEL_CACHE *kernel_cache, 
-				  MODEL *model, 
-				  CFLOAT *aicache, 
-				  double *weights, 
-				  double *maxdiff)
-     /* Make all variables active again which had been removed by
-        shrinking. */
-     /* Computes lin for those variables from scratch. */
-{
-  register long i,j,ii,jj,t,*changed2dnum,*inactive2dnum;
-  long *changed,*inactive;
-  register double kernel_val,*a_old,dist;
-  double ex_c,target;
-  SVECTOR *f;
-
-  if(kernel_parm->kernel_type == LINEAR) { /* special linear case */
-    a_old=shrink_state->last_a;    
-    clear_vector_n(weights,totwords);
-    for(i=0;i<totdoc;i++) {
-      if(a[i] != a_old[i]) {
-	for(f=docs[i]->fvec;f;f=f->next)  
-	  add_vector_ns(weights,f,
-			f->factor*((a[i]-a_old[i])*(double)label[i]));
-	a_old[i]=a[i];
-      }
-    }
-    for(i=0;i<totdoc;i++) {
-      if(!shrink_state->active[i]) {
-	for(f=docs[i]->fvec;f;f=f->next)  
-	  lin[i]=shrink_state->last_lin[i]+f->factor*sprod_ns(weights,f);
-      }
-      shrink_state->last_lin[i]=lin[i];
-    }
-  }
-  else {
-    changed=(long *)my_malloc(sizeof(long)*totdoc);
-    changed2dnum=(long *)my_malloc(sizeof(long)*(totdoc+11));
-    inactive=(long *)my_malloc(sizeof(long)*totdoc);
-    inactive2dnum=(long *)my_malloc(sizeof(long)*(totdoc+11));
-    for(t=shrink_state->deactnum-1;(t>=0) && shrink_state->a_history[t];t--) {
-      if(verbosity>=2) {
-	printf("%ld..",t); fflush(stdout);
-      }
-      a_old=shrink_state->a_history[t];    
-      for(i=0;i<totdoc;i++) {
-	inactive[i]=((!shrink_state->active[i]) 
-		     && (shrink_state->inactive_since[i] == t));
-	changed[i]= (a[i] != a_old[i]);
-      }
-      compute_index(inactive,totdoc,inactive2dnum);
-      compute_index(changed,totdoc,changed2dnum);
-      
-      for(ii=0;(i=changed2dnum[ii])>=0;ii++) {
-	get_kernel_row(kernel_cache,docs,i,totdoc,inactive2dnum,aicache,
-		       kernel_parm);
-	for(jj=0;(j=inactive2dnum[jj])>=0;jj++) {
-	  kernel_val=aicache[j];
-	  lin[j]+=(((a[i]*kernel_val)-(a_old[i]*kernel_val))*(double)label[i]);
-	}
-      }
-    }
-    free(changed);
-    free(changed2dnum);
-    free(inactive);
-    free(inactive2dnum);
-  }
-  (*maxdiff)=0;
-  for(i=0;i<totdoc;i++) {
-    shrink_state->inactive_since[i]=shrink_state->deactnum-1;
-    if(!inconsistent[i]) {
-      dist=(lin[i]-model->b)*(double)label[i];
-      target=-(learn_parm->eps-(double)label[i]*c[i]);
-      ex_c=learn_parm->svm_cost[i]-learn_parm->epsilon_a;
-      if((a[i]>learn_parm->epsilon_a) && (dist > target)) {
-	if((dist-target)>(*maxdiff))  /* largest violation */
-	  (*maxdiff)=dist-target;
-      }
-      else if((a[i]<ex_c) && (dist < target)) {
-	if((target-dist)>(*maxdiff))  /* largest violation */
-	  (*maxdiff)=target-dist;
-      }
-      if((a[i]>(0+learn_parm->epsilon_a)) 
-	 && (a[i]<ex_c)) { 
-	shrink_state->active[i]=1;                         /* not at bound */
-      }
-      else if((a[i]<=(0+learn_parm->epsilon_a)) && (dist < (target+learn_parm->epsilon_shrink))) {
-	shrink_state->active[i]=1;
-      }
-      else if((a[i]>=ex_c)
-	      && (dist > (target-learn_parm->epsilon_shrink))) {
-	shrink_state->active[i]=1;
-      }
-      else if(learn_parm->sharedslack) { /* make all active when sharedslack */
-	shrink_state->active[i]=1;
-      }
-    }
-  }
-  if(kernel_parm->kernel_type != LINEAR) { /* update history for non-linear */
-    for(i=0;i<totdoc;i++) {
-      (shrink_state->a_history[shrink_state->deactnum-1])[i]=a[i];
-    }
-    for(t=shrink_state->deactnum-2;(t>=0) && shrink_state->a_history[t];t--) {
-      free(shrink_state->a_history[t]);
-      shrink_state->a_history[t]=0;
-    }
-  }
-}
-
-/****************************** Cache handling *******************************/
-
-void get_kernel_row(KERNEL_CACHE *kernel_cache, DOC **docs, 
-		    long int docnum, long int totdoc, 
-		    long int *active2dnum, CFLOAT *buffer, 
-		    KERNEL_PARM *kernel_parm)
-     /* Get's a row of the matrix of kernel values This matrix has the
-      same form as the Hessian, just that the elements are not
-      multiplied by */
-     /* y_i * y_j * a_i * a_j */
-     /* Takes the values from the cache if available. */
-{
-  register long i,j,start;
-  DOC *ex;
-
-  ex=docs[docnum];
-
-  if(kernel_cache->index[docnum] != -1) { /* row is cached? */
-    kernel_cache->lru[kernel_cache->index[docnum]]=kernel_cache->time; /* lru */
-    start=kernel_cache->activenum*kernel_cache->index[docnum];
-    for(i=0;(j=active2dnum[i])>=0;i++) {
-      if(kernel_cache->totdoc2active[j] >= 0) { /* column is cached? */
-	buffer[j]=kernel_cache->buffer[start+kernel_cache->totdoc2active[j]];
-      }
-      else {
-	buffer[j]=(CFLOAT)kernel(kernel_parm,ex,docs[j]);
-      }
-    }
-  }
-  else {
-    for(i=0;(j=active2dnum[i])>=0;i++) {
-      buffer[j]=(CFLOAT)kernel(kernel_parm,ex,docs[j]);
-    }
-  }
-}
-
-
-void cache_kernel_row(KERNEL_CACHE *kernel_cache, DOC **docs, 
-		      long int m, KERNEL_PARM *kernel_parm)
-     /* Fills cache for the row m */
-{
-  register DOC *ex;
-  register long j,k,l;
-  register CFLOAT *cache;
-
-  if(!kernel_cache_check(kernel_cache,m)) {  /* not cached yet*/
-    cache = kernel_cache_clean_and_malloc(kernel_cache,m);
-    if(cache) {
-      l=kernel_cache->totdoc2active[m];
-      ex=docs[m];
-      for(j=0;j<kernel_cache->activenum;j++) {  /* fill cache */
-	k=kernel_cache->active2totdoc[j];
-	if((kernel_cache->index[k] != -1) && (l != -1) && (k != m)) {
-	  cache[j]=kernel_cache->buffer[kernel_cache->activenum
-				       *kernel_cache->index[k]+l];
-	}
-	else {
-	  cache[j]=kernel(kernel_parm,ex,docs[k]);
-	} 
-      }
-    }
-    else {
-      perror("Error: Kernel cache full! => increase cache size");
-    }
-  }
-}
-
- 
-void cache_multiple_kernel_rows(KERNEL_CACHE *kernel_cache, DOC **docs, 
-				long int *key, long int varnum, 
-				KERNEL_PARM *kernel_parm)
-     /* Fills cache for the rows in key */
-{
-  register long i;
-
-  for(i=0;i<varnum;i++) {  /* fill up kernel cache */
-    cache_kernel_row(kernel_cache,docs,key[i],kernel_parm);
-  }
-}
-
- 
-void kernel_cache_shrink(KERNEL_CACHE *kernel_cache, long int totdoc, 
-			 long int numshrink, long int *after)
-     /* Remove numshrink columns in the cache which correspond to
-        examples marked 0 in after. */
-{
-  register long i,j,jj,from=0,to=0,scount;  
-  long *keep;
-
-  if(verbosity>=2) {
-    printf(" Reorganizing cache..."); fflush(stdout);
-  }
-
-  keep=(long *)my_malloc(sizeof(long)*totdoc);
-  for(j=0;j<totdoc;j++) {
-    keep[j]=1;
-  }
-  scount=0;
-  for(jj=0;(jj<kernel_cache->activenum) && (scount<numshrink);jj++) {
-    j=kernel_cache->active2totdoc[jj];
-    if(!after[j]) {
-      scount++;
-      keep[j]=0;
-    }
-  }
-
-  for(i=0;i<kernel_cache->max_elems;i++) {
-    for(jj=0;jj<kernel_cache->activenum;jj++) {
-      j=kernel_cache->active2totdoc[jj];
-      if(!keep[j]) {
-	from++;
-      }
-      else {
-	kernel_cache->buffer[to]=kernel_cache->buffer[from];
-	to++;
-	from++;
-      }
-    }
-  }
-
-  kernel_cache->activenum=0;
-  for(j=0;j<totdoc;j++) {
-    if((keep[j]) && (kernel_cache->totdoc2active[j] != -1)) {
-      kernel_cache->active2totdoc[kernel_cache->activenum]=j;
-      kernel_cache->totdoc2active[j]=kernel_cache->activenum;
-      kernel_cache->activenum++;
-    }
-    else {
-      kernel_cache->totdoc2active[j]=-1;
-    }
-  }
-
-  kernel_cache->max_elems=(long)(kernel_cache->buffsize/kernel_cache->activenum);
-  if(kernel_cache->max_elems>totdoc) {
-    kernel_cache->max_elems=totdoc;
-  }
-
-  free(keep);
-
-  if(verbosity>=2) {
-    printf("done.\n"); fflush(stdout);
-    printf(" Cache-size in rows = %ld\n",kernel_cache->max_elems);
-  }
-}
-
-KERNEL_CACHE *kernel_cache_init(long int totdoc, long int buffsize)
-{
-  long i;
-  KERNEL_CACHE *kernel_cache;
-
-  kernel_cache=(KERNEL_CACHE *)my_malloc(sizeof(KERNEL_CACHE));
-  kernel_cache->index = (long *)my_malloc(sizeof(long)*totdoc);
-  kernel_cache->occu = (long *)my_malloc(sizeof(long)*totdoc);
-  kernel_cache->lru = (long *)my_malloc(sizeof(long)*totdoc);
-  kernel_cache->invindex = (long *)my_malloc(sizeof(long)*totdoc);
-  kernel_cache->active2totdoc = (long *)my_malloc(sizeof(long)*totdoc);
-  kernel_cache->totdoc2active = (long *)my_malloc(sizeof(long)*totdoc);
-  kernel_cache->buffer = (CFLOAT *)my_malloc((size_t)(buffsize)*1024*1024);
-
-  kernel_cache->buffsize=(long)(buffsize/sizeof(CFLOAT)*1024*1024);
-
-  kernel_cache->max_elems=(long)(kernel_cache->buffsize/totdoc);
-  if(kernel_cache->max_elems>totdoc) {
-    kernel_cache->max_elems=totdoc;
-  }
-
-  if(verbosity>=2) {
-    printf(" Cache-size in rows = %ld\n",kernel_cache->max_elems);
-    printf(" Kernel evals so far: %ld\n",kernel_cache_statistic);    
-  }
-
-  kernel_cache->elems=0;   /* initialize cache */
-  for(i=0;i<totdoc;i++) {
-    kernel_cache->index[i]=-1;
-    kernel_cache->lru[i]=0;
-  }
-  for(i=0;i<totdoc;i++) {
-    kernel_cache->occu[i]=0;
-    kernel_cache->invindex[i]=-1;
-  }
-
-  kernel_cache->activenum=totdoc;;
-  for(i=0;i<totdoc;i++) {
-      kernel_cache->active2totdoc[i]=i;
-      kernel_cache->totdoc2active[i]=i;
-  }
-
-  kernel_cache->time=0;  
-
-  return(kernel_cache);
-} 
-
-void kernel_cache_reset_lru(KERNEL_CACHE *kernel_cache)
-{
-  long maxlru=0,k;
-  
-  for(k=0;k<kernel_cache->max_elems;k++) {
-    if(maxlru < kernel_cache->lru[k]) 
-      maxlru=kernel_cache->lru[k];
-  }
-  for(k=0;k<kernel_cache->max_elems;k++) {
-      kernel_cache->lru[k]-=maxlru;
-  }
-}
-
-void kernel_cache_cleanup(KERNEL_CACHE *kernel_cache)
-{
-  free(kernel_cache->index);
-  free(kernel_cache->occu);
-  free(kernel_cache->lru);
-  free(kernel_cache->invindex);
-  free(kernel_cache->active2totdoc);
-  free(kernel_cache->totdoc2active);
-  free(kernel_cache->buffer);
-  free(kernel_cache);
-}
-
-long kernel_cache_malloc(KERNEL_CACHE *kernel_cache)
-{
-  long i;
-
-  if(kernel_cache_space_available(kernel_cache)) {
-    for(i=0;i<kernel_cache->max_elems;i++) {
-      if(!kernel_cache->occu[i]) {
-	kernel_cache->occu[i]=1;
-	kernel_cache->elems++;
-	return(i);
-      }
-    }
-  }
-  return(-1);
-}
-
-void kernel_cache_free(KERNEL_CACHE *kernel_cache, long int i)
-{
-  kernel_cache->occu[i]=0;
-  kernel_cache->elems--;
-}
-
-long kernel_cache_free_lru(KERNEL_CACHE *kernel_cache) 
-     /* remove least recently used cache element */
-{                                     
-  register long k,least_elem=-1,least_time;
-
-  least_time=kernel_cache->time+1;
-  for(k=0;k<kernel_cache->max_elems;k++) {
-    if(kernel_cache->invindex[k] != -1) {
-      if(kernel_cache->lru[k]<least_time) {
-	least_time=kernel_cache->lru[k];
-	least_elem=k;
-      }
-    }
-  }
-  if(least_elem != -1) {
-    kernel_cache_free(kernel_cache,least_elem);
-    kernel_cache->index[kernel_cache->invindex[least_elem]]=-1;
-    kernel_cache->invindex[least_elem]=-1;
-    return(1);
-  }
-  return(0);
-}
-
-
-CFLOAT *kernel_cache_clean_and_malloc(KERNEL_CACHE *kernel_cache, 
-				      long int docnum)
-     /* Get a free cache entry. In case cache is full, the lru element
-        is removed. */
-{
-  long result;
-  if((result = kernel_cache_malloc(kernel_cache)) == -1) {
-    if(kernel_cache_free_lru(kernel_cache)) {
-      result = kernel_cache_malloc(kernel_cache);
-    }
-  }
-  kernel_cache->index[docnum]=result;
-  if(result == -1) {
-    return(0);
-  }
-  kernel_cache->invindex[result]=docnum;
-  kernel_cache->lru[kernel_cache->index[docnum]]=kernel_cache->time; /* lru */
-  return((CFLOAT *)((long)kernel_cache->buffer
-		    +(kernel_cache->activenum*sizeof(CFLOAT)*
-		      kernel_cache->index[docnum])));
-}
-
-long kernel_cache_touch(KERNEL_CACHE *kernel_cache, long int docnum)
-     /* Update lru time to avoid removal from cache. */
-{
-  if(kernel_cache && kernel_cache->index[docnum] != -1) {
-    kernel_cache->lru[kernel_cache->index[docnum]]=kernel_cache->time; /* lru */
-    return(1);
-  }
-  return(0);
-}
-  
-long kernel_cache_check(KERNEL_CACHE *kernel_cache, long int docnum)
-     /* Is that row cached? */
-{
-  return(kernel_cache->index[docnum] != -1);
-}
-  
-long kernel_cache_space_available(KERNEL_CACHE *kernel_cache)
-     /* Is there room for one more row? */
-{
-  return(kernel_cache->elems < kernel_cache->max_elems);
-}
-  
-/************************** Compute estimates ******************************/
-
-void compute_xa_estimates(MODEL *model, long int *label, 
-			  long int *unlabeled, long int totdoc, 
-			  DOC **docs, double *lin, double *a, 
-			  KERNEL_PARM *kernel_parm, 
-			  LEARN_PARM *learn_parm, double *error, 
-			  double *recall, double *precision) 
-     /* Computes xa-estimate of error rate, recall, and precision. See
-        T. Joachims, Estimating the Generalization Performance of an SVM
-        Efficiently, IMCL, 2000. */
-{
-  long i,looerror,looposerror,loonegerror;
-  long totex,totposex;
-  double xi,r_delta,r_delta_sq,sim=0;
-  long *sv2dnum=NULL,*sv=NULL,svnum;
-
-  r_delta=estimate_r_delta(docs,totdoc,kernel_parm); 
-  r_delta_sq=r_delta*r_delta;
-
-  looerror=0;
-  looposerror=0;
-  loonegerror=0;
-  totex=0;
-  totposex=0;
-  svnum=0;
-
-  if(learn_parm->xa_depth > 0) {
-    sv = (long *)my_malloc(sizeof(long)*(totdoc+11));
-    for(i=0;i<totdoc;i++) 
-      sv[i]=0;
-    for(i=1;i<model->sv_num;i++) 
-      if(a[model->supvec[i]->docnum] 
-	 < (learn_parm->svm_cost[model->supvec[i]->docnum]
-	    -learn_parm->epsilon_a)) {
-	sv[model->supvec[i]->docnum]=1;
-	svnum++;
-      }
-    sv2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));
-    clear_index(sv2dnum);
-    compute_index(sv,totdoc,sv2dnum);
-  }
-
-  for(i=0;i<totdoc;i++) {
-    if(unlabeled[i]) {
-      /* ignore it */
-    }
-    else {
-      xi=1.0-((lin[i]-model->b)*(double)label[i]);
-      if(xi<0) xi=0;
-      if(label[i]>0) {
-	totposex++;
-      }
-      if((learn_parm->rho*a[i]*r_delta_sq+xi) >= 1.0) {
-	if(learn_parm->xa_depth > 0) {  /* makes assumptions */
-	  sim=distribute_alpha_t_greedily(sv2dnum,svnum,docs,a,i,label,
-					  kernel_parm,learn_parm,
-		            (double)((1.0-xi-a[i]*r_delta_sq)/(2.0*a[i])));
-	}
-	if((learn_parm->xa_depth == 0) || 
-	   ((a[i]*kernel(kernel_parm,docs[i],docs[i])+a[i]*2.0*sim+xi) >= 1.0)) { 
-	  looerror++;
-	  if(label[i]>0) {
-	    looposerror++;
-	  }
-	  else {
-	    loonegerror++;
-	  }
-	}
-      }
-      totex++;
-    }
-  }
-
-  (*error)=((double)looerror/(double)totex)*100.0;
-  (*recall)=(1.0-(double)looposerror/(double)totposex)*100.0;
-  (*precision)=(((double)totposex-(double)looposerror)
-    /((double)totposex-(double)looposerror+(double)loonegerror))*100.0;
-
-  free(sv);
-  free(sv2dnum);
-}
-
-
-double distribute_alpha_t_greedily(long int *sv2dnum, long int svnum, 
-				   DOC **docs, double *a, 
-				   long int docnum, 
-				   long int *label, 
-				   KERNEL_PARM *kernel_parm, 
-				   LEARN_PARM *learn_parm, double thresh)
-     /* Experimental Code improving plain XiAlpha Estimates by
-	computing a better bound using a greedy optimzation strategy. */
-{
-  long best_depth=0;
-  long i,j,k,d,skip,allskip;
-  double best,best_val[101],val,init_val_sq,init_val_lin;
-  long best_ex[101];
-  CFLOAT *cache,*trow;
-
-  cache=(CFLOAT *)my_malloc(sizeof(CFLOAT)*learn_parm->xa_depth*svnum);
-  trow = (CFLOAT *)my_malloc(sizeof(CFLOAT)*svnum);
-
-  for(k=0;k<svnum;k++) {
-    trow[k]=kernel(kernel_parm,docs[docnum],docs[sv2dnum[k]]);
-  }
-
-  init_val_sq=0;
-  init_val_lin=0;
-  best=0;
-
-  for(d=0;d<learn_parm->xa_depth;d++) {
-    allskip=1;
-    if(d>=1) {
-      init_val_sq+=cache[best_ex[d-1]+svnum*(d-1)]; 
-      for(k=0;k<d-1;k++) {
-        init_val_sq+=2.0*cache[best_ex[k]+svnum*(d-1)]; 
-      }
-      init_val_lin+=trow[best_ex[d-1]]; 
-    }
-    for(i=0;i<svnum;i++) {
-      skip=0;
-      if(sv2dnum[i] == docnum) skip=1;
-      for(j=0;j<d;j++) {
-	if(i == best_ex[j]) skip=1;
-      }
-
-      if(!skip) {
-	val=init_val_sq;
-	if(kernel_parm->kernel_type == LINEAR) 
-	  val+=docs[sv2dnum[i]]->fvec->twonorm_sq;
-	else
-	  val+=kernel(kernel_parm,docs[sv2dnum[i]],docs[sv2dnum[i]]);
-	for(j=0;j<d;j++) {
-	  val+=2.0*cache[i+j*svnum];
-	}
-	val*=(1.0/(2.0*(d+1.0)*(d+1.0)));
-	val-=((init_val_lin+trow[i])/(d+1.0));
-
-	if(allskip || (val < best_val[d])) {
-	  best_val[d]=val;
-	  best_ex[d]=i;
-	}
-	allskip=0;
-	if(val < thresh) {
-	  i=svnum;
-	  /*	  printf("EARLY"); */
-	}
-      }
-    }
-    if(!allskip) {
-      for(k=0;k<svnum;k++) {
-	  cache[d*svnum+k]=kernel(kernel_parm,
-				  docs[sv2dnum[best_ex[d]]],
-				  docs[sv2dnum[k]]);
-      }
-    }
-    if((!allskip) && ((best_val[d] < best) || (d == 0))) {
-      best=best_val[d];
-      best_depth=d;
-    }
-    if(allskip || (best < thresh)) {
-      d=learn_parm->xa_depth;
-    }
-  }    
-
-  free(cache);
-  free(trow);
-
-  /*  printf("Distribute[%ld](%ld)=%f, ",docnum,best_depth,best); */
-  return(best);
-}
-
-
-void estimate_transduction_quality(MODEL *model, long int *label, 
-				   long int *unlabeled, 
-				   long int totdoc, DOC **docs, double *lin) 
-     /* Loo-bound based on observation that loo-errors must have an
-	equal distribution in both training and test examples, given
-	that the test examples are classified correctly. Compare
-	chapter "Constraints on the Transductive Hyperplane" in my
-	Dissertation. */
-{
-  long i,j,l=0,ulab=0,lab=0,labpos=0,labneg=0,ulabpos=0,ulabneg=0,totulab=0;
-  double totlab=0,totlabpos=0,totlabneg=0,labsum=0,ulabsum=0;
-  double r_delta,r_delta_sq,xi,xisum=0,asum=0;
-
-  r_delta=estimate_r_delta(docs,totdoc,&(model->kernel_parm)); 
-  r_delta_sq=r_delta*r_delta;
-
-  for(j=0;j<totdoc;j++) {
-    if(unlabeled[j]) {
-      totulab++;
-    }
-    else {
-      totlab++;
-      if(label[j] > 0) 
-	totlabpos++;
-      else 
-	totlabneg++;
-    }
-  }
-  for(j=1;j<model->sv_num;j++) {
-    i=model->supvec[j]->docnum;
-    xi=1.0-((lin[i]-model->b)*(double)label[i]);
-    if(xi<0) xi=0;
-
-    xisum+=xi;
-    asum+=fabs(model->alpha[j]);
-    if(unlabeled[i]) {
-      ulabsum+=(fabs(model->alpha[j])*r_delta_sq+xi);
-    }
-    else {
-      labsum+=(fabs(model->alpha[j])*r_delta_sq+xi);
-    }
-    if((fabs(model->alpha[j])*r_delta_sq+xi) >= 1) { 
-      l++;
-      if(unlabeled[model->supvec[j]->docnum]) {
-	ulab++;
-	if(model->alpha[j] > 0) 
-	  ulabpos++;
-	else 
-	  ulabneg++;
-      }
-      else {
-	lab++;
-	if(model->alpha[j] > 0) 
-	  labpos++;
-	else 
-	  labneg++;
-      }
-    }
-  }
-  printf("xacrit>=1: labeledpos=%.5f labeledneg=%.5f default=%.5f\n",(double)labpos/(double)totlab*100.0,(double)labneg/(double)totlab*100.0,(double)totlabpos/(double)(totlab)*100.0);
-  printf("xacrit>=1: unlabelpos=%.5f unlabelneg=%.5f\n",(double)ulabpos/(double)totulab*100.0,(double)ulabneg/(double)totulab*100.0);
-  printf("xacrit>=1: labeled=%.5f unlabled=%.5f all=%.5f\n",(double)lab/(double)totlab*100.0,(double)ulab/(double)totulab*100.0,(double)l/(double)(totdoc)*100.0);
-  printf("xacritsum: labeled=%.5f unlabled=%.5f all=%.5f\n",(double)labsum/(double)totlab*100.0,(double)ulabsum/(double)totulab*100.0,(double)(labsum+ulabsum)/(double)(totdoc)*100.0);
-  printf("r_delta_sq=%.5f xisum=%.5f asum=%.5f\n",r_delta_sq,xisum,asum);
-}
-
-double estimate_margin_vcdim(MODEL *model, double w, double R, 
-			     KERNEL_PARM *kernel_parm) 
-     /* optional: length of model vector in feature space */
-     /* optional: radius of ball containing the data */
-{
-  double h;
-
-  /* follows chapter 5.6.4 in [Vapnik/95] */
-
-  if(w<0) {
-    w=model_length_s(model,kernel_parm);
-  }
-  if(R<0) {
-    R=estimate_sphere(model,kernel_parm); 
-  }
-  h = w*w * R*R +1; 
-  return(h);
-}
-
-double estimate_sphere(MODEL *model, KERNEL_PARM *kernel_parm) 
-                          /* Approximates the radius of the ball containing */
-                          /* the support vectors by bounding it with the */
-{                         /* length of the longest support vector. This is */
-  register long j;        /* pretty good for text categorization, since all */
-  double xlen,maxxlen=0;  /* documents have feature vectors of length 1. It */
-  DOC *nulldoc;           /* assumes that the center of the ball is at the */
-  WORD nullword;          /* origin of the space. */
-
-  nullword.wnum=0;
-  nulldoc=create_example(-2,0,0,0.0,create_svector(&nullword,"",1.0)); 
-
-  for(j=1;j<model->sv_num;j++) {
-    xlen=sqrt(kernel(kernel_parm,model->supvec[j],model->supvec[j])
-	      -2*kernel(kernel_parm,model->supvec[j],nulldoc)
-	      +kernel(kernel_parm,nulldoc,nulldoc));
-    if(xlen>maxxlen) {
-      maxxlen=xlen;
-    }
-  }
-
-  free_example(nulldoc,1);
-  return(maxxlen);
-}
-
-double estimate_r_delta(DOC **docs, long int totdoc, KERNEL_PARM *kernel_parm)
-{
-  long i;
-  double maxxlen,xlen;
-  DOC *nulldoc;           /* assumes that the center of the ball is at the */
-  WORD nullword;          /* origin of the space. */
-
-  nullword.wnum=0;
-  nulldoc=create_example(-2,0,0,0.0,create_svector(&nullword,"",1.0)); 
-
-  maxxlen=0;
-  for(i=0;i<totdoc;i++) {
-    xlen=sqrt(kernel(kernel_parm,docs[i],docs[i])
-	      -2*kernel(kernel_parm,docs[i],nulldoc)
-	      +kernel(kernel_parm,nulldoc,nulldoc));
-    if(xlen>maxxlen) {
-      maxxlen=xlen;
-    }
-  }
-
-  free_example(nulldoc,1);
-  return(maxxlen);
-}
-
-double estimate_r_delta_average(DOC **docs, long int totdoc, 
-				KERNEL_PARM *kernel_parm)
-{
-  long i;
-  double avgxlen;
-  DOC *nulldoc;           /* assumes that the center of the ball is at the */
-  WORD nullword;          /* origin of the space. */
-
-  nullword.wnum=0;
-  nulldoc=create_example(-2,0,0,0.0,create_svector(&nullword,"",1.0)); 
-
-  avgxlen=0;
-  for(i=0;i<totdoc;i++) {
-    avgxlen+=sqrt(kernel(kernel_parm,docs[i],docs[i])
-		  -2*kernel(kernel_parm,docs[i],nulldoc)
-		  +kernel(kernel_parm,nulldoc,nulldoc));
-  }
-
-  free_example(nulldoc,1);
-  return(avgxlen/totdoc);
-}
-
-double length_of_longest_document_vector(DOC **docs, long int totdoc, 
-					 KERNEL_PARM *kernel_parm)
-{
-  long i;
-  double maxxlen,xlen;
-
-  maxxlen=0;
-  for(i=0;i<totdoc;i++) {
-    xlen=sqrt(kernel(kernel_parm,docs[i],docs[i]));
-    if(xlen>maxxlen) {
-      maxxlen=xlen;
-    }
-  }
-
-  return(maxxlen);
-}
-
-/****************************** IO-handling **********************************/
-
-void write_prediction(char *predfile, MODEL *model, double *lin, 
-		      double *a, long int *unlabeled, 
-		      long int *label, long int totdoc, 
-		      LEARN_PARM *learn_parm)
-{
-  FILE *predfl;
-  long i;
-  double dist,a_max;
-
-  if(verbosity>=1) {
-    printf("Writing prediction file..."); fflush(stdout);
-  }
-  if ((predfl = fopen (predfile, "w")) == NULL)
-  { perror (predfile); exit (1); }
-  a_max=learn_parm->epsilon_a;
-  for(i=0;i<totdoc;i++) {
-    if((unlabeled[i]) && (a[i]>a_max)) {
-      a_max=a[i];
-    }
-  }
-  for(i=0;i<totdoc;i++) {
-    if(unlabeled[i]) {
-      if((a[i]>(learn_parm->epsilon_a))) {
-	dist=(double)label[i]*(1.0-learn_parm->epsilon_crit-a[i]/(a_max*2.0));
-      }
-      else {
-	dist=(lin[i]-model->b);
-      }
-      if(dist>0) {
-	fprintf(predfl,"%.8g:+1 %.8g:-1\n",dist,-dist);
-      }
-      else {
-	fprintf(predfl,"%.8g:-1 %.8g:+1\n",-dist,dist);
-      }
-    }
-  }
-  fclose(predfl);
-  if(verbosity>=1) {
-    printf("done\n");
-  }
-}
-
-void write_alphas(char *alphafile, double *a, 
-		  long int *label, long int totdoc)
-{
-  FILE *alphafl;
-  long i;
-
-  if(verbosity>=1) {
-    printf("Writing alpha file..."); fflush(stdout);
-  }
-  if ((alphafl = fopen (alphafile, "w")) == NULL)
-  { perror (alphafile); exit (1); }
-  for(i=0;i<totdoc;i++) {
-    fprintf(alphafl,"%.18g\n",a[i]*(double)label[i]);
-  }
-  fclose(alphafl);
-  if(verbosity>=1) {
-    printf("done\n");
-  }
-}
-
diff --git a/trunk/svm_light/build/svm_light-tar/svm_learn.h b/trunk/svm_light/build/svm_light-tar/svm_learn.h
deleted file mode 100755
index 8a1edf7b..00000000
--- a/trunk/svm_light/build/svm_light-tar/svm_learn.h
+++ /dev/null
@@ -1,173 +0,0 @@
-/***********************************************************************/
-/*                                                                     */
-/*   svm_learn.h                                                       */
-/*                                                                     */
-/*   Declarations for learning module of Support Vector Machine.       */
-/*                                                                     */
-/*   Author: Thorsten Joachims                                         */
-/*   Date: 02.07.02                                                    */
-/*                                                                     */
-/*   Copyright (c) 2002  Thorsten Joachims - All rights reserved       */
-/*                                                                     */
-/*   This software is available for non-commercial use only. It must   */
-/*   not be modified and distributed without prior permission of the   */
-/*   author. The author is not responsible for implications from the   */
-/*   use of this software.                                             */
-/*                                                                     */
-/***********************************************************************/
-
-#ifndef SVM_LEARN
-#define SVM_LEARN
-
-void   svm_learn_classification_extend(DOC **, double *, long, long, LEARN_PARM *,
-                                KERNEL_PARM *, KERNEL_CACHE *, MODEL *,
-                                double *, int *, double *);
-void   svm_learn_classification(DOC **, double *, long, long, LEARN_PARM *, 
-				KERNEL_PARM *, KERNEL_CACHE *, MODEL *,
-				double *);
-void   svm_learn_regression(DOC **, double *, long, long, LEARN_PARM *, 
-			    KERNEL_PARM *, KERNEL_CACHE **, MODEL *);
-void   svm_learn_ranking(DOC **, double *, long, long, LEARN_PARM *, 
-			 KERNEL_PARM *, KERNEL_CACHE **, MODEL *);
-void   svm_learn_optimization(DOC **, double *, long, long, LEARN_PARM *, 
-			      KERNEL_PARM *, KERNEL_CACHE *, MODEL *,
-			      double *);
-long   optimize_to_convergence(DOC **, long *, long, long, LEARN_PARM *,
-			       KERNEL_PARM *, KERNEL_CACHE *, SHRINK_STATE *,
-			       MODEL *, long *, long *, double *,
-			       double *, double *,
-			       TIMING *, double *, long, long);
-long   optimize_to_convergence_sharedslack(DOC **, long *, long, long, 
-			       LEARN_PARM *,
-			       KERNEL_PARM *, KERNEL_CACHE *, SHRINK_STATE *,
-			       MODEL *, double *, double *, double *,
-			       TIMING *, double *);
-double compute_objective_function(double *, double *, double *, double,
-				  long *, long *);
-void   clear_index(long *);
-void   add_to_index(long *, long);
-long   compute_index(long *,long, long *);
-void   optimize_svm(DOC **, long *, long *, long *, double, long *, long *, 
-		    MODEL *, 
-		    long, long *, long, double *, double *, double *, 
-		    LEARN_PARM *, CFLOAT *, KERNEL_PARM *, QP *, double *);
-void   compute_matrices_for_optimization(DOC **, long *, long *, long *, double,
-					 long *,
-					 long *, long *, MODEL *, double *, 
-					 double *, double *, long, long, LEARN_PARM *, 
-					 CFLOAT *, KERNEL_PARM *, QP *);
-long   calculate_svm_model(DOC **, long *, long *, double *, double *, 
-			   double *, double *, LEARN_PARM *, long *,
-			   long *, MODEL *);
-long   check_optimality(MODEL *, long *, long *, double *, double *,
-			double *, long, 
-			LEARN_PARM *,double *, double, long *, long *, long *,
-			long *, long, KERNEL_PARM *);
-long   check_optimality_sharedslack(DOC **docs, MODEL *model, long int *label,
-		      double *a, double *lin, double *c, double *slack,
-		      double *alphaslack, long int totdoc, 
-		      LEARN_PARM *learn_parm, double *maxdiff, 
-		      double epsilon_crit_org, long int *misclassified, 
-		      long int *active2dnum,
-		      long int *last_suboptimal_at, 
-		      long int iteration, KERNEL_PARM *kernel_parm);
-void   compute_shared_slacks(DOC **docs, long int *label, double *a, 
-			     double *lin, double *c, long int *active2dnum, 
-			     LEARN_PARM *learn_parm,
-			     double *slack, double *alphaslack);
-long   identify_inconsistent(double *, long *, long *, long, LEARN_PARM *, 
-			     long *, long *);
-long   identify_misclassified(double *, long *, long *, long,
-			      MODEL *, long *, long *);
-long   identify_one_misclassified(double *, long *, long *, long,
-				  MODEL *, long *, long *);
-long   incorporate_unlabeled_examples(MODEL *, long *,long *, long *,
-				      double *, double *, long, double *,
-				      long *, long *, long, KERNEL_PARM *,
-				      LEARN_PARM *);
-void   update_linear_component(DOC **, long *, long *, double *, double *, 
-			       long *, long, long, KERNEL_PARM *, 
-			       KERNEL_CACHE *, double *,
-			       CFLOAT *, double *);
-long   select_next_qp_subproblem_grad(long *, long *, double *, 
-				      double *, double *, long,
-				      long, LEARN_PARM *, long *, long *, 
-				      long *, double *, long *, KERNEL_CACHE *,
-				      long, long *, long *);
-long   select_next_qp_subproblem_rand(long *, long *, double *, 
-				      double *, double *, long,
-				      long, LEARN_PARM *, long *, long *, 
-				      long *, double *, long *, KERNEL_CACHE *,
-				      long *, long *, long);
-long   select_next_qp_slackset(DOC **docs, long int *label, double *a, 
-			       double *lin, double *slack, double *alphaslack, 
-			       double *c, LEARN_PARM *learn_parm, 
-			       long int *active2dnum, double *maxviol);
-void   select_top_n(double *, long, long *, long);
-void   init_shrink_state(SHRINK_STATE *, long, long);
-void   shrink_state_cleanup(SHRINK_STATE *);
-long   shrink_problem(DOC **, LEARN_PARM *, SHRINK_STATE *, KERNEL_PARM *, 
-		      long *, long *, long, long, long, double *, long *);
-void   reactivate_inactive_examples(long *, long *, double *, SHRINK_STATE *,
-				    double *, double*, long, long, long, LEARN_PARM *, 
-				    long *, DOC **, KERNEL_PARM *,
-				    KERNEL_CACHE *, MODEL *, CFLOAT *, 
-				    double *, double *);
-
-/* cache kernel evalutations to improve speed */
-KERNEL_CACHE *kernel_cache_init(long, long);
-void   kernel_cache_cleanup(KERNEL_CACHE *);
-void   get_kernel_row(KERNEL_CACHE *,DOC **, long, long, long *, CFLOAT *, 
-		      KERNEL_PARM *);
-void   cache_kernel_row(KERNEL_CACHE *,DOC **, long, KERNEL_PARM *);
-void   cache_multiple_kernel_rows(KERNEL_CACHE *,DOC **, long *, long, 
-				  KERNEL_PARM *);
-void   kernel_cache_shrink(KERNEL_CACHE *,long, long, long *);
-void   kernel_cache_reset_lru(KERNEL_CACHE *);
-long   kernel_cache_malloc(KERNEL_CACHE *);
-void   kernel_cache_free(KERNEL_CACHE *,long);
-long   kernel_cache_free_lru(KERNEL_CACHE *);
-CFLOAT *kernel_cache_clean_and_malloc(KERNEL_CACHE *,long);
-long   kernel_cache_touch(KERNEL_CACHE *,long);
-long   kernel_cache_check(KERNEL_CACHE *,long);
-long   kernel_cache_space_available(KERNEL_CACHE *);
-
-void compute_xa_estimates(MODEL *, long *, long *, long, DOC **, 
-			  double *, double *, KERNEL_PARM *, 
-			  LEARN_PARM *, double *, double *, double *);
-double xa_estimate_error(MODEL *, long *, long *, long, DOC **, 
-			 double *, double *, KERNEL_PARM *, 
-			 LEARN_PARM *);
-double xa_estimate_recall(MODEL *, long *, long *, long, DOC **, 
-			  double *, double *, KERNEL_PARM *, 
-			  LEARN_PARM *);
-double xa_estimate_precision(MODEL *, long *, long *, long, DOC **, 
-			     double *, double *, KERNEL_PARM *, 
-			     LEARN_PARM *);
-void avg_similarity_of_sv_of_one_class(MODEL *, DOC **, double *, long *, KERNEL_PARM *, double *, double *);
-double most_similar_sv_of_same_class(MODEL *, DOC **, double *, long, long *, KERNEL_PARM *, LEARN_PARM *);
-double distribute_alpha_t_greedily(long *, long, DOC **, double *, long, long *, KERNEL_PARM *, LEARN_PARM *, double);
-double distribute_alpha_t_greedily_noindex(MODEL *, DOC **, double *, long, long *, KERNEL_PARM *, LEARN_PARM *, double); 
-void estimate_transduction_quality(MODEL *, long *, long *, long, DOC **, double *);
-double estimate_margin_vcdim(MODEL *, double, double, KERNEL_PARM *);
-double estimate_sphere(MODEL *, KERNEL_PARM *);
-double estimate_r_delta_average(DOC **, long, KERNEL_PARM *); 
-double estimate_r_delta(DOC **, long, KERNEL_PARM *); 
-double length_of_longest_document_vector(DOC **, long, KERNEL_PARM *); 
-
-
-void   write_model(char *, MODEL *);
-void   write_prediction(char *, MODEL *, double *, double *, long *, long *,
-			long, LEARN_PARM *);
-void   write_alphas(char *, double *, long *, long);
-
-typedef struct cache_parm_s {
-  KERNEL_CACHE *kernel_cache;
-  CFLOAT *cache;
-  DOC **docs; 
-  long m;
-  KERNEL_PARM *kernel_parm;
-  long offset,stepsize;
-} cache_parm_t;
-
-#endif
diff --git a/trunk/svm_light/build/svm_light-tar/svm_learn_main.c b/trunk/svm_light/build/svm_light-tar/svm_learn_main.c
deleted file mode 100755
index e2a157da..00000000
--- a/trunk/svm_light/build/svm_light-tar/svm_learn_main.c
+++ /dev/null
@@ -1,397 +0,0 @@
-/***********************************************************************/
-/*                                                                     */
-/*   svm_learn_main.c                                                  */
-/*                                                                     */
-/*   Command line interface to the learning module of the              */
-/*   Support Vector Machine.                                           */
-/*                                                                     */
-/*   Author: Thorsten Joachims                                         */
-/*   Date: 02.07.02                                                    */
-/*                                                                     */
-/*   Copyright (c) 2000  Thorsten Joachims - All rights reserved       */
-/*                                                                     */
-/*   This software is available for non-commercial use only. It must   */
-/*   not be modified and distributed without prior permission of the   */
-/*   author. The author is not responsible for implications from the   */
-/*   use of this software.                                             */
-/*                                                                     */
-/***********************************************************************/
-
-
-/* if svm-learn is used out of C++, define it as extern "C" */
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-# include "svm_common.h"
-# include "svm_learn.h"
-
-#ifdef __cplusplus
-}
-#endif
-
-char docfile[200];           /* file with training examples */
-char modelfile[200];         /* file for resulting classifier */
-char restartfile[200];       /* file with initial alphas */
-
-void   read_input_parameters(int, char **, char *, char *, char *, long *, 
-			     LEARN_PARM *, KERNEL_PARM *);
-void   wait_any_key();
-void   print_help();
-
-
-
-int main (int argc, char* argv[])
-{  
-  DOC **docs;  /* training examples */
-  long totwords,totdoc,i;
-  double *target;
-  double *alpha_in=NULL;
-  KERNEL_CACHE *kernel_cache;
-  LEARN_PARM learn_parm;
-  KERNEL_PARM kernel_parm;
-  MODEL *model=(MODEL *)my_malloc(sizeof(MODEL));
-
-  read_input_parameters(argc,argv,docfile,modelfile,restartfile,&verbosity,
-			&learn_parm,&kernel_parm);
-  read_documents(docfile,&docs,&target,&totwords,&totdoc);
-  if(restartfile[0]) alpha_in=read_alphas(restartfile,totdoc);
-
-  if(kernel_parm.kernel_type == LINEAR) { /* don't need the cache */
-    kernel_cache=NULL;
-  }
-  else {
-    /* Always get a new kernel cache. It is not possible to use the
-       same cache for two different training runs */
-    kernel_cache=kernel_cache_init(totdoc,learn_parm.kernel_cache_size);
-  }
-
-  if(learn_parm.type == CLASSIFICATION) {
-    svm_learn_classification(docs,target,totdoc,totwords,&learn_parm,
-			     &kernel_parm,kernel_cache,model,alpha_in);
-  }
-  else if(learn_parm.type == REGRESSION) {
-    svm_learn_regression(docs,target,totdoc,totwords,&learn_parm,
-			 &kernel_parm,&kernel_cache,model);
-  }
-  else if(learn_parm.type == RANKING) {
-    svm_learn_ranking(docs,target,totdoc,totwords,&learn_parm,
-		      &kernel_parm,&kernel_cache,model);
-  }
-  else if(learn_parm.type == OPTIMIZATION) {
-    svm_learn_optimization(docs,target,totdoc,totwords,&learn_parm,
-			   &kernel_parm,kernel_cache,model,alpha_in);
-  }
-
-  if(kernel_cache) {
-    /* Free the memory used for the cache. */
-    kernel_cache_cleanup(kernel_cache);
-  }
-
-  /* Warning: The model contains references to the original data 'docs'.
-     If you want to free the original data, and only keep the model, you 
-     have to make a deep copy of 'model'. */
-  /* deep_copy_of_model=copy_model(model); */
-  write_model(modelfile,model);
-
-  free(alpha_in);
-  free_model(model,0);
-  for(i=0;i<totdoc;i++) 
-    free_example(docs[i],1);
-  free(docs);
-  free(target);
-
-  return(0);
-}
-
-/*---------------------------------------------------------------------------*/
-
-void read_input_parameters(int argc,char *argv[],char *docfile,char *modelfile,
-			   char *restartfile,long *verbosity,
-			   LEARN_PARM *learn_parm,KERNEL_PARM *kernel_parm)
-{
-  long i;
-  char type[100];
-  
-  /* set default */
-  strcpy (modelfile, "svm_model");
-  strcpy (learn_parm->predfile, "trans_predictions");
-  strcpy (learn_parm->alphafile, "");
-  strcpy (restartfile, "");
-  (*verbosity)=1;
-  learn_parm->biased_hyperplane=1;
-  learn_parm->sharedslack=0;
-  learn_parm->remove_inconsistent=0;
-  learn_parm->skip_final_opt_check=0;
-  learn_parm->svm_maxqpsize=10;
-  learn_parm->svm_newvarsinqp=0;
-  learn_parm->svm_iter_to_shrink=-9999;
-  learn_parm->maxiter=100000;
-  learn_parm->kernel_cache_size=40;
-  learn_parm->svm_c=0.0;
-  learn_parm->eps=0.1;
-  learn_parm->transduction_posratio=-1.0;
-  learn_parm->svm_costratio=1.0;
-  learn_parm->svm_costratio_unlab=1.0;
-  learn_parm->svm_unlabbound=1E-5;
-  learn_parm->epsilon_crit=0.001;
-  learn_parm->epsilon_a=1E-15;
-  learn_parm->compute_loo=0;
-  learn_parm->rho=1.0;
-  learn_parm->xa_depth=0;
-  kernel_parm->kernel_type=0;
-  kernel_parm->poly_degree=3;
-  kernel_parm->rbf_gamma=1.0;
-  kernel_parm->coef_lin=1;
-  kernel_parm->coef_const=1;
-  strcpy(kernel_parm->custom,"empty");
-  strcpy(type,"c");
-
-  for(i=1;(i<argc) && ((argv[i])[0] == '-');i++) {
-    switch ((argv[i])[1]) 
-      { 
-      case '?': print_help(); exit(0);
-      case 'z': i++; strcpy(type,argv[i]); break;
-      case 'v': i++; (*verbosity)=atol(argv[i]); break;
-      case 'b': i++; learn_parm->biased_hyperplane=atol(argv[i]); break;
-      case 'i': i++; learn_parm->remove_inconsistent=atol(argv[i]); break;
-      case 'f': i++; learn_parm->skip_final_opt_check=!atol(argv[i]); break;
-      case 'q': i++; learn_parm->svm_maxqpsize=atol(argv[i]); break;
-      case 'n': i++; learn_parm->svm_newvarsinqp=atol(argv[i]); break;
-      case '#': i++; learn_parm->maxiter=atol(argv[i]); break;
-      case 'h': i++; learn_parm->svm_iter_to_shrink=atol(argv[i]); break;
-      case 'm': i++; learn_parm->kernel_cache_size=atol(argv[i]); break;
-      case 'c': i++; learn_parm->svm_c=atof(argv[i]); break;
-      case 'w': i++; learn_parm->eps=atof(argv[i]); break;
-      case 'p': i++; learn_parm->transduction_posratio=atof(argv[i]); break;
-      case 'j': i++; learn_parm->svm_costratio=atof(argv[i]); break;
-      case 'e': i++; learn_parm->epsilon_crit=atof(argv[i]); break;
-      case 'o': i++; learn_parm->rho=atof(argv[i]); break;
-      case 'k': i++; learn_parm->xa_depth=atol(argv[i]); break;
-      case 'x': i++; learn_parm->compute_loo=atol(argv[i]); break;
-      case 't': i++; kernel_parm->kernel_type=atol(argv[i]); break;
-      case 'd': i++; kernel_parm->poly_degree=atol(argv[i]); break;
-      case 'g': i++; kernel_parm->rbf_gamma=atof(argv[i]); break;
-      case 's': i++; kernel_parm->coef_lin=atof(argv[i]); break;
-      case 'r': i++; kernel_parm->coef_const=atof(argv[i]); break;
-      case 'u': i++; strcpy(kernel_parm->custom,argv[i]); break;
-      case 'l': i++; strcpy(learn_parm->predfile,argv[i]); break;
-      case 'a': i++; strcpy(learn_parm->alphafile,argv[i]); break;
-      case 'y': i++; strcpy(restartfile,argv[i]); break;
-      default: printf("\nUnrecognized option %s!\n\n",argv[i]);
-	       print_help();
-	       exit(0);
-      }
-  }
-  if(i>=argc) {
-    printf("\nNot enough input parameters!\n\n");
-    wait_any_key();
-    print_help();
-    exit(0);
-  }
-  strcpy (docfile, argv[i]);
-  if((i+1)<argc) {
-    strcpy (modelfile, argv[i+1]);
-  }
-  if(learn_parm->svm_iter_to_shrink == -9999) {
-    if(kernel_parm->kernel_type == LINEAR) 
-      learn_parm->svm_iter_to_shrink=2;
-    else
-      learn_parm->svm_iter_to_shrink=100;
-  }
-  if(strcmp(type,"c")==0) {
-    learn_parm->type=CLASSIFICATION;
-  }
-  else if(strcmp(type,"r")==0) {
-    learn_parm->type=REGRESSION;
-  }
-  else if(strcmp(type,"p")==0) {
-    learn_parm->type=RANKING;
-  }
-  else if(strcmp(type,"o")==0) {
-    learn_parm->type=OPTIMIZATION;
-  }
-  else if(strcmp(type,"s")==0) {
-    learn_parm->type=OPTIMIZATION;
-    learn_parm->sharedslack=1;
-  }
-  else {
-    printf("\nUnknown type '%s': Valid types are 'c' (classification), 'r' regession, and 'p' preference ranking.\n",type);
-    wait_any_key();
-    print_help();
-    exit(0);
-  }    
-  if((learn_parm->skip_final_opt_check) 
-     && (kernel_parm->kernel_type == LINEAR)) {
-    printf("\nIt does not make sense to skip the final optimality check for linear kernels.\n\n");
-    learn_parm->skip_final_opt_check=0;
-  }    
-  if((learn_parm->skip_final_opt_check) 
-     && (learn_parm->remove_inconsistent)) {
-    printf("\nIt is necessary to do the final optimality check when removing inconsistent \nexamples.\n");
-    wait_any_key();
-    print_help();
-    exit(0);
-  }    
-  if((learn_parm->svm_maxqpsize<2)) {
-    printf("\nMaximum size of QP-subproblems not in valid range: %ld [2..]\n",learn_parm->svm_maxqpsize); 
-    wait_any_key();
-    print_help();
-    exit(0);
-  }
-  if((learn_parm->svm_maxqpsize<learn_parm->svm_newvarsinqp)) {
-    printf("\nMaximum size of QP-subproblems [%ld] must be larger than the number of\n",learn_parm->svm_maxqpsize); 
-    printf("new variables [%ld] entering the working set in each iteration.\n",learn_parm->svm_newvarsinqp); 
-    wait_any_key();
-    print_help();
-    exit(0);
-  }
-  if(learn_parm->svm_iter_to_shrink<1) {
-    printf("\nMaximum number of iterations for shrinking not in valid range: %ld [1,..]\n",learn_parm->svm_iter_to_shrink);
-    wait_any_key();
-    print_help();
-    exit(0);
-  }
-  if(learn_parm->svm_c<0) {
-    printf("\nThe C parameter must be greater than zero!\n\n");
-    wait_any_key();
-    print_help();
-    exit(0);
-  }
-  if(learn_parm->transduction_posratio>1) {
-    printf("\nThe fraction of unlabeled examples to classify as positives must\n");
-    printf("be less than 1.0 !!!\n\n");
-    wait_any_key();
-    print_help();
-    exit(0);
-  }
-  if(learn_parm->svm_costratio<=0) {
-    printf("\nThe COSTRATIO parameter must be greater than zero!\n\n");
-    wait_any_key();
-    print_help();
-    exit(0);
-  }
-  if(learn_parm->epsilon_crit<=0) {
-    printf("\nThe epsilon parameter must be greater than zero!\n\n");
-    wait_any_key();
-    print_help();
-    exit(0);
-  }
-  if(learn_parm->rho<0) {
-    printf("\nThe parameter rho for xi/alpha-estimates and leave-one-out pruning must\n");
-    printf("be greater than zero (typically 1.0 or 2.0, see T. Joachims, Estimating the\n");
-    printf("Generalization Performance of an SVM Efficiently, ICML, 2000.)!\n\n");
-    wait_any_key();
-    print_help();
-    exit(0);
-  }
-  if((learn_parm->xa_depth<0) || (learn_parm->xa_depth>100)) {
-    printf("\nThe parameter depth for ext. xi/alpha-estimates must be in [0..100] (zero\n");
-    printf("for switching to the conventional xa/estimates described in T. Joachims,\n");
-    printf("Estimating the Generalization Performance of an SVM Efficiently, ICML, 2000.)\n");
-    wait_any_key();
-    print_help();
-    exit(0);
-  }
-}
-
-void wait_any_key()
-{
-  printf("\n(more)\n");
-  (void)getc(stdin);
-}
-
-void print_help()
-{
-  printf("\nSVM-light %s: Support Vector Machine, learning module     %s\n",VERSION,VERSION_DATE);
-  copyright_notice();
-  printf("   usage: svm_learn [options] example_file model_file\n\n");
-  printf("Arguments:\n");
-  printf("         example_file-> file with training data\n");
-  printf("         model_file  -> file to store learned decision rule in\n");
-
-  printf("General options:\n");
-  printf("         -?          -> this help\n");
-  printf("         -v [0..3]   -> verbosity level (default 1)\n");
-  printf("Learning options:\n");
-  printf("         -z {c,r,p}  -> select between classification (c), regression (r),\n");
-  printf("                        and preference ranking (p) (default classification)\n");
-  printf("         -c float    -> C: trade-off between training error\n");
-  printf("                        and margin (default [avg. x*x]^-1)\n");
-  printf("         -w [0..]    -> epsilon width of tube for regression\n");
-  printf("                        (default 0.1)\n");
-  printf("         -j float    -> Cost: cost-factor, by which training errors on\n");
-  printf("                        positive examples outweight errors on negative\n");
-  printf("                        examples (default 1) (see [4])\n");
-  printf("         -b [0,1]    -> use biased hyperplane (i.e. x*w+b>0) instead\n");
-  printf("                        of unbiased hyperplane (i.e. x*w>0) (default 1)\n");
-  printf("         -i [0,1]    -> remove inconsistent training examples\n");
-  printf("                        and retrain (default 0)\n");
-  printf("Performance estimation options:\n");
-  printf("         -x [0,1]    -> compute leave-one-out estimates (default 0)\n");
-  printf("                        (see [5])\n");
-  printf("         -o ]0..2]   -> value of rho for XiAlpha-estimator and for pruning\n");
-  printf("                        leave-one-out computation (default 1.0) (see [2])\n");
-  printf("         -k [0..100] -> search depth for extended XiAlpha-estimator \n");
-  printf("                        (default 0)\n");
-  printf("Transduction options (see [3]):\n");
-  printf("         -p [0..1]   -> fraction of unlabeled examples to be classified\n");
-  printf("                        into the positive class (default is the ratio of\n");
-  printf("                        positive and negative examples in the training data)\n");
-  printf("Kernel options:\n");
-  printf("         -t int      -> type of kernel function:\n");
-  printf("                        0: linear (default)\n");
-  printf("                        1: polynomial (s a*b+c)^d\n");
-  printf("                        2: radial basis function exp(-gamma ||a-b||^2)\n");
-  printf("                        3: sigmoid tanh(s a*b + c)\n");
-  printf("                        4: user defined kernel from kernel.h\n");
-  printf("         -d int      -> parameter d in polynomial kernel\n");
-  printf("         -g float    -> parameter gamma in rbf kernel\n");
-  printf("         -s float    -> parameter s in sigmoid/poly kernel\n");
-  printf("         -r float    -> parameter c in sigmoid/poly kernel\n");
-  printf("         -u string   -> parameter of user defined kernel\n");
-  printf("Optimization options (see [1]):\n");
-  printf("         -q [2..]    -> maximum size of QP-subproblems (default 10)\n");
-  printf("         -n [2..q]   -> number of new variables entering the working set\n");
-  printf("                        in each iteration (default n = q). Set n<q to prevent\n");
-  printf("                        zig-zagging.\n");
-  printf("         -m [5..]    -> size of cache for kernel evaluations in MB (default 40)\n");
-  printf("                        The larger the faster...\n");
-  printf("         -e float    -> eps: Allow that error for termination criterion\n");
-  printf("                        [y [w*x+b] - 1] >= eps (default 0.001)\n");
-  printf("         -y [0,1]    -> restart the optimization from alpha values in file\n");
-  printf("                        specified by -a option. (default 0)\n");
-  printf("         -h [5..]    -> number of iterations a variable needs to be\n"); 
-  printf("                        optimal before considered for shrinking (default 100)\n");
-  printf("         -f [0,1]    -> do final optimality check for variables removed\n");
-  printf("                        by shrinking. Although this test is usually \n");
-  printf("                        positive, there is no guarantee that the optimum\n");
-  printf("                        was found if the test is omitted. (default 1)\n");
-  printf("         -y string   -> if option is given, reads alphas from file with given\n");
-  printf("                        and uses them as starting point. (default 'disabled')\n");
-  printf("         -# int      -> terminate optimization, if no progress after this\n");
-  printf("                        number of iterations. (default 100000)\n");
-  printf("Output options:\n");
-  printf("         -l string   -> file to write predicted labels of unlabeled\n");
-  printf("                        examples into after transductive learning\n");
-  printf("         -a string   -> write all alphas to this file after learning\n");
-  printf("                        (in the same order as in the training set)\n");
-  wait_any_key();
-  printf("\nMore details in:\n");
-  printf("[1] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in\n");
-  printf("    Kernel Methods - Support Vector Learning, B. Schölkopf and C. Burges and\n");
-  printf("    A. Smola (ed.), MIT Press, 1999.\n");
-  printf("[2] T. Joachims, Estimating the Generalization performance of an SVM\n");
-  printf("    Efficiently. International Conference on Machine Learning (ICML), 2000.\n");
-  printf("[3] T. Joachims, Transductive Inference for Text Classification using Support\n");
-  printf("    Vector Machines. International Conference on Machine Learning (ICML),\n");
-  printf("    1999.\n");
-  printf("[4] K. Morik, P. Brockhausen, and T. Joachims, Combining statistical learning\n");
-  printf("    with a knowledge-based approach - A case study in intensive care  \n");
-  printf("    monitoring. International Conference on Machine Learning (ICML), 1999.\n");
-  printf("[5] T. Joachims, Learning to Classify Text Using Support Vector\n");
-  printf("    Machines: Methods, Theory, and Algorithms. Dissertation, Kluwer,\n");
-  printf("    2002.\n\n");
-}
-
-
diff --git a/trunk/svm_light/build/svm_light-tar/svm_loqo.c b/trunk/svm_light/build/svm_light-tar/svm_loqo.c
deleted file mode 100755
index ff31a655..00000000
--- a/trunk/svm_light/build/svm_light-tar/svm_loqo.c
+++ /dev/null
@@ -1,211 +0,0 @@
-/***********************************************************************/
-/*                                                                     */
-/*   svm_loqo.c                                                        */
-/*                                                                     */
-/*   Interface to the PR_LOQO optimization package for SVM.            */
-/*                                                                     */
-/*   Author: Thorsten Joachims                                         */
-/*   Date: 19.07.99                                                    */
-/*                                                                     */
-/*   Copyright (c) 1999  Universitaet Dortmund - All rights reserved   */
-/*                                                                     */
-/*   This software is available for non-commercial use only. It must   */
-/*   not be modified and distributed without prior permission of the   */
-/*   author. The author is not responsible for implications from the   */
-/*   use of this software.                                             */
-/*                                                                     */
-/***********************************************************************/
-
-# include <math.h>
-# include "pr_loqo/pr_loqo.h"
-# include "svm_common.h"
-
-/* Common Block Declarations */
-
-long verbosity;
-
-/* /////////////////////////////////////////////////////////////// */
-
-# define DEF_PRECISION_LINEAR    1E-8
-# define DEF_PRECISION_NONLINEAR 1E-14
-
-double *optimize_qp();
-double *primal=0,*dual=0;
-double init_margin=0.15;
-long   init_iter=500,precision_violations=0;
-double model_b;
-double opt_precision=DEF_PRECISION_LINEAR;
-
-/* /////////////////////////////////////////////////////////////// */
-
-void *my_malloc();
-
-double *optimize_qp(qp,epsilon_crit,nx,threshold,learn_parm)
-QP *qp;
-double *epsilon_crit;
-long nx; /* Maximum number of variables in QP */
-double *threshold;
-LEARN_PARM *learn_parm;
-/* start the optimizer and return the optimal values */
-{
-  register long i,j,result;
-  double margin,obj_before,obj_after;
-  double sigdig,dist,epsilon_loqo;
-  int iter;
- 
-  if(!primal) { /* allocate memory at first call */
-    primal=(double *)my_malloc(sizeof(double)*nx*3);
-    dual=(double *)my_malloc(sizeof(double)*(nx*2+1));
-  }
-  
-  if(verbosity>=4) { /* really verbose */
-    printf("\n\n");
-    for(i=0;i<qp->opt_n;i++) {
-      printf("%f: ",qp->opt_g0[i]);
-      for(j=0;j<qp->opt_n;j++) {
-	printf("%f ",qp->opt_g[i*qp->opt_n+j]);
-      }
-      printf(": a%ld=%.10f < %f",i,qp->opt_xinit[i],qp->opt_up[i]);
-      printf(": y=%f\n",qp->opt_ce[i]);
-    }
-    for(j=0;j<qp->opt_m;j++) {
-      printf("EQ-%ld: %f*a0",j,qp->opt_ce[j]);
-      for(i=1;i<qp->opt_n;i++) {
-	printf(" + %f*a%ld",qp->opt_ce[i],i);
-      }
-      printf(" = %f\n\n",-qp->opt_ce0[0]);
-    }
-}
-
-  obj_before=0; /* calculate objective before optimization */
-  for(i=0;i<qp->opt_n;i++) {
-    obj_before+=(qp->opt_g0[i]*qp->opt_xinit[i]);
-    obj_before+=(0.5*qp->opt_xinit[i]*qp->opt_xinit[i]*qp->opt_g[i*qp->opt_n+i]);
-    for(j=0;j<i;j++) {
-      obj_before+=(qp->opt_xinit[j]*qp->opt_xinit[i]*qp->opt_g[j*qp->opt_n+i]);
-    }
-  }
-
-  result=STILL_RUNNING;
-  qp->opt_ce0[0]*=(-1.0);
-  /* Run pr_loqo. If a run fails, try again with parameters which lead */
-  /* to a slower, but more robust setting. */
-  for(margin=init_margin,iter=init_iter;
-      (margin<=0.9999999) && (result!=OPTIMAL_SOLUTION);) {
-    sigdig=-log10(opt_precision);
-
-    result=pr_loqo((int)qp->opt_n,(int)qp->opt_m,
-		   (double *)qp->opt_g0,(double *)qp->opt_g,
-		   (double *)qp->opt_ce,(double *)qp->opt_ce0,
-		   (double *)qp->opt_low,(double *)qp->opt_up,
-		   (double *)primal,(double *)dual, 
-		   (int)(verbosity-2),
-		   (double)sigdig,(int)iter, 
-		   (double)margin,(double)(qp->opt_up[0])/4.0,(int)0);
-
-    if(isnan(dual[0])) {     /* check for choldc problem */
-      if(verbosity>=2) {
-	printf("NOTICE: Restarting PR_LOQO with more conservative parameters.\n");
-      }
-      if(init_margin<0.80) { /* become more conservative in general */
-	init_margin=(4.0*margin+1.0)/5.0;
-      }
-      margin=(margin+1.0)/2.0;
-      (opt_precision)*=10.0;   /* reduce precision */
-      if(verbosity>=2) {
-	printf("NOTICE: Reducing precision of PR_LOQO.\n");
-      }
-    }
-    else if(result!=OPTIMAL_SOLUTION) {
-      iter+=2000; 
-      init_iter+=10;
-      (opt_precision)*=10.0;   /* reduce precision */
-      if(verbosity>=2) {
-	printf("NOTICE: Reducing precision of PR_LOQO due to (%ld).\n",result);
-      }      
-    }
-  }
-
-  if(qp->opt_m)         /* Thanks to Alex Smola for this hint */
-    model_b=dual[0];
-  else
-    model_b=0;
-
-  /* Check the precision of the alphas. If results of current optimization */
-  /* violate KT-Conditions, relax the epsilon on the bounds on alphas. */
-  epsilon_loqo=1E-10;
-  for(i=0;i<qp->opt_n;i++) {
-    dist=-model_b*qp->opt_ce[i]; 
-    dist+=(qp->opt_g0[i]+1.0);
-    for(j=0;j<i;j++) {
-      dist+=(primal[j]*qp->opt_g[j*qp->opt_n+i]);
-    }
-    for(j=i;j<qp->opt_n;j++) {
-      dist+=(primal[j]*qp->opt_g[i*qp->opt_n+j]);
-    }
-    /*  printf("LOQO: a[%d]=%f, dist=%f, b=%f\n",i,primal[i],dist,dual[0]); */
-    if((primal[i]<(qp->opt_up[i]-epsilon_loqo)) && (dist < (1.0-(*epsilon_crit)))) {
-      epsilon_loqo=(qp->opt_up[i]-primal[i])*2.0;
-    }
-    else if((primal[i]>(0+epsilon_loqo)) && (dist > (1.0+(*epsilon_crit)))) {
-      epsilon_loqo=primal[i]*2.0;
-    }
-  }
-
-  for(i=0;i<qp->opt_n;i++) {  /* clip alphas to bounds */
-    if(primal[i]<=(0+epsilon_loqo)) {
-      primal[i]=0;
-    }
-    else if(primal[i]>=(qp->opt_up[i]-epsilon_loqo)) {
-      primal[i]=qp->opt_up[i];
-    }
-  }
-
-  obj_after=0;  /* calculate objective after optimization */
-  for(i=0;i<qp->opt_n;i++) {
-    obj_after+=(qp->opt_g0[i]*primal[i]);
-    obj_after+=(0.5*primal[i]*primal[i]*qp->opt_g[i*qp->opt_n+i]);
-    for(j=0;j<i;j++) {
-      obj_after+=(primal[j]*primal[i]*qp->opt_g[j*qp->opt_n+i]);
-    }
-  }
-
-  /* if optimizer returned NAN values, reset and retry with smaller */
-  /* working set. */
-  if(isnan(obj_after) || isnan(model_b)) {
-    for(i=0;i<qp->opt_n;i++) {
-      primal[i]=qp->opt_xinit[i];
-    }     
-    model_b=0;
-    if(learn_parm->svm_maxqpsize>2) {
-      learn_parm->svm_maxqpsize--;  /* decrease size of qp-subproblems */
-    }
-  }
-
-  if(obj_after >= obj_before) { /* check whether there was progress */
-    (opt_precision)/=100.0;
-    precision_violations++;
-    if(verbosity>=2) {
-      printf("NOTICE: Increasing Precision of PR_LOQO.\n");
-    }
-  }
-
-  if(precision_violations > 500) { 
-    (*epsilon_crit)*=10.0;
-    precision_violations=0;
-    if(verbosity>=1) {
-      printf("\nWARNING: Relaxing epsilon on KT-Conditions.\n");
-    }
-  }	  
-
-  (*threshold)=model_b;
-
-  if(result!=OPTIMAL_SOLUTION) {
-    printf("\nERROR: PR_LOQO did not converge. \n");
-    return(qp->opt_xinit);
-  }
-  else {
-    return(primal);
-  }
-}
-
diff --git a/trunk/svm_light/build/svm_light-tar/unpacked b/trunk/svm_light/build/svm_light-tar/unpacked
deleted file mode 100644
index e69de29b..00000000
diff --git a/trunk/svm_light/build/svm_light.tar.gz b/trunk/svm_light/build/svm_light.tar.gz
deleted file mode 100644
index 8c57097c83079c08b5b70bee20fb4a74ae09d608..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 51026
zcmV)2K+L}%iwFRKaBoEb1MEEObJ|Gq`D#_||1f7?wt#>PPO`o@A$1tbF~4AN0LPcw
z-J*mTj5b12^zh>@`)~g~Uw6-pG~(enkIjC#RkjS8M^C?}yJy&Lr)~9ymYLin5B{j9
z4$uCRI(|0xpFXBf_>bD*d9t_n_yIILZ8Y|uG#XDHK=1z3{Rgc6hhd~WX`I**V-J$w
z?jF|*eEvP~`OeSq?P;y+Ud|JvrXIs+UD>W@Pdv`-gw2yAJlNfhuNEGTGk*(gXYMXy
zGl(vCVQiYrgXn;b;BTC8pZ%ZgH?|Vl^iO??VQjU7$mgEN&VBcaN3omS8e2y^w4-Ff
z{e%TG)(#e7n(&AX9hdtKH@2QMo<3&hVI27E#P&R6tCP%a$F8#8JJxvekEf4~t@B~a
zFuJ7Ao!%=pvIeI^W*DQn8?!J9E+c!v;46Ik37@iA#5u0z%<brsvsn<ah{xQHoH?`o
zDdW@Bu@g7&jWCVEAm*{jPJ(L=D6`ujWed<87EBV`^_k5)*WrE)V4`5bk~wgW_`;Ha
zrO@mq1}@+Piv^Dy*Y;Qj)G&z1#GSbgVvu?X;S0+HmTBzzmjo~lX34c3aqPQtr_dMA
zkrTG_-Vd%lJ_RCh94-fBWr8)?na6Etble2ciW%^PiDzVH(yFpk`#mn@AvbD6#|G&G
z4AupX_|T!|oJF>ixX^8~*7V8-;lvC$@S3Ac*(nFAr!lLsVH$=(l(4tlNrFhtR?w>K
z&;;Sm|KEEbgfrrI+hm6+tR2%^3%VD9XR{KYn&qmRf7%(<&VWgPZ{yjsXC_k}QcJI|
zuWPnzI<cAhZfyz(EK+}JPWkRp|MmH))f-v6N*l+|p4nzNof*by5b*%zN*vY2r!$gG
zK#o3$aRI!yCqbIvNYIW62%j{?L~YX~MJnP4G;<M5LBco_sGGWR61kHU_3+w-l>k;4
zxxlB8M+-NO0T`~GV*;QLZ>2Wm7@;28m#D~~XE<1>A*l=iLgg}geRk0r3|hU>JCOXL
z)oz^+EjBu_*x8`}YS21mogouuV;!;Mfn~A&F>9Z+2Cu9tjvH7wLIYzQ_Xj!v7}ckD
z>t7?_FgpXw>x@PK?eHCIot**j)?wFT-PVN(W7^i)$hbJMdaRGoFFJtEaMZ%_ogTXw
zbVg*p0I%IYdpGF3IvKH(e)q^43|Xspv<r*VMB}VA7<H^6qVcwKRHSLUH3Y1;*+pk`
z(mx;NECAYC;4@x#dPh~m>L4J%>1<#Pk$iyNIR%8RqbeZN?w%h3E}*Ocq1PV)n}9GF
zHtG{+3^`UoM`Qs0sWkxh^+v73PPYR~0@CcbGwQ(-3|ZG=gn9eC+X5oa2WNfQfCU2q
z2C#e38NOyffMn~N^Hv52cncs-TfH`k36apmh}5!o{d1GCA&}iYD)0pPWU(Xb*lLeD
zZ$Y>)5|$Z)T^NGh!x8bP+hskg4d}K8@7T~9yzR7!4Fl_})fpg@+Wo-*q4ay8Vjwlp
z4(lz-{=C;kG6&Y1bD(662H@=0E6_6Jq9$<Tq65pKXqKg3r76%sQYYTMV;3iVcG`N!
zPWwll<9AXo3|O%<91S`kFRQ4bhp>2uaDY{jZWP2(>$LUC8fv1(b&OY5&l<G4RW>}c
z+8z7?{h(kV(XJpKOy$iv3JV$}5Y_^zAq3R6{xLBW4GlG_r!)c9UN*i`zV@n?8QuPn
zRO+ZTYB9nXJ`XJ%J+OMf95R|#yL~<Y1HutF1F#vMgGqIIBmo2IC6nz8j+n9<QpDp{
zr+Yq7s+1uGc=kcl5G1J-az%1qj2M=yByiR_hNapkQdCUYrj*hNDDj~M!&*mg!OV{g
zwGJTJkv!>32$GMc@n?rb|5Fd_`h4bke`sh+@qc||{J-DWhxi|2{>OXupBjy)82|qS
z-G9aZ-{ILYcGyDd0L8!%=Z`7SX9o7Ig!NUnSFi6upRscui->a;cwTT#K}UcgZiuiT
z?1F#_qOco=f$!}l3^3Yl)?}BCW5CWNz5o=TqGCT;g5|kBg*AvBYrlJS0egiEiy6qw
zpVn*-WWp|7e;QoJjNfo4O)zVTjh*3fxAkh+WVMAK)a2quTQ;)4mqdS=)%uUwx@QL>
zaS=7QYi&VM#Acp-85`X%fda(5&min5L^KHDC97Rv@L3D_6cQB31tf?mpQM+U$dMIP
zcDic;ZNMc5RKTX&IUF`?U6a+k#rmll3`j1fFnto)kqdk_0OJFpG8ov8=a82K^zL{z
zM6t75!${oe?Ey2kq6MqXSj7yo?_o6df)Bwiv>Ap25d4EJ9Ig5@xOzhdShfK&S!x;s
zoH_Tx1Hcs{b;H2F2gcSvxib&s2iqo%LS4r|TIhQ5S)=rjZTw?<8PI5M`|o2^(t+*G
z*a?p&kqhY~!bW9weK)~ekFs1y4-^2FL4cg~m31I={O62b_EF<0vZ&A?nEa7t(6$T6
zYYfST>TMF<hS@rcVH9fQM@F)NPZZ9tt3;@I0{8rxq^<|KAmt@8@53}G1@BM_BR&JJ
zuoH-@`sMBQuq6JUfF+V50>pwaaTo5td9(>4QGY*(XM=IK|K?7Z8K+h$rmmSx3?<+q
zfK@?d03Z*Iz|expZ;(Apd%Fd&cETKx#6&ujDQH*{Y>=e(1b`40AEpInZN^41={sQ~
z8C{%-npc|gnVot`xyasJ*B%w5Py`^9w)jMR0eODRzzJa*o?xvbVYv6j#mT7Y%Xn*(
z3o~F3W9^9B3D@@^4NF|A=o6PTTz8=h+x5*LZ;;<{j||icO(IA7_fq$$4DP=x-T#-t
zscGX780-jTpsHv!pNk~Ufv@;s?0hAn5|-L9<mX1rb!HzFSicN>JqI_9t`+yTe8F4;
zlywxhr7DX9VKDqA;gJt}0_i`R4{D(8I6RJJ5eI-}4hdC9E~i|{EcG4y5@Ue~){r~c
z<d&>ZR14i$A!4p5+t?34O}|*>j1{-_wc1;g{^h=^y1e5r>FJlzr)#URv+NAN5L%}9
z_aaeFTCe3RL^Bx+Qos#yu%E<2)RI#N8rvLXb-N9CIH0p_P19w+((GKyJ2^%NId+a9
zX)P!@pjPC7p_6%_6Yc0PbM~GJ$mV<_s@b&KvJD#=TQx~7t*{ZW8eA(1RW}?V^A#;{
zv<dUiSWL~<S5$gc^j;ay)ca?1EuXmLy-ZScQtlOvgPxVP)nU$hWmp-8E3aAN&rW^+
zdf?Fv;165l&hy_VjmG1~{)0vxKKJ+b>vgREH1_s?`m6r)J)Yglw|RDdFm@}OBL2^M
zGElm2{z_2a5G!?psd7a;AuJqqvQw-X_}u)SSZzFo|9ntK5XK&``kq<eH|u*}h1J(T
z8K`y;-bNJYmYgz`AlH;>SdFzHZKQEAo#sbZ5Ow`=Skc{r?6?=c+u6+ttO5CfU(=5K
z>15vbZcWxn#M!V0>a&iC+3GQ|21=e7vr&GI4XEJ)z!HcRV^<;QE<$y79p_gUG*I#~
zL88;SQL*pl)wg2%H}hBcZ-=?Q<E4;_ZR>H>_DYWo^0vh^AjtJ0k(=2L)u`W`)#AXz
z8w3b=8l=eJiYgq9KZK<>XRK0Xs;3Hx23~^5-@8_8&>Nq%2B)l2elFIieY;1{3uu%3
z!YdYZxnn7{1m)u%o7h<7g;&&tB!aLM-QCnqY#{mvyl^oMoOl=193oFrGI47~Iz@os
zqVXjugr-;%61P{9D0QHT695`!GJ(}q;A)xCxQJ8fsNZIl3a*&5i-rguq8xrOwzjr}
ziX=e-L-Q_dxDKKzjMhf!%odA=cC;uAd2J1PR#%P@QTE0`?N<B5%0@Zhi+Ew!Y5&OT
zvI-Gh)!G#~winLr@(<!F3&;qGJy1$NQUbW5-6dwFn;Kq~DiinA6ynIi@)Qyg%($f)
zRrYTl1<VC=<}p?xY_NXv13#!+G{pyG@5j@Wstv{E1e@i0y>v0*bX7)zqzgg0jx5h4
zc^njH&bW=r0l2y*IG8zjaKuqI1H37}DWZ_e?Lga<;oZiwBrGlKqcsU0sJlv^7)x?I
z=!g<NSn-s#v4yHG@S3R_@KcmAZIz9&4gBn#ce^+oPqysH)Yl~4Q1Tm)?ZkN%NZ1!E
zfs9kUe8d-Fatpf!hz@H=p2w#}=8#4ya6<@i6Lw{LDezYvP0$Evj9gKzgl0q!w6lP6
z7?7V6X72OrY#sr_O)oQadxjVGP`zoUbbi9I0MWSp;0h*dMUj0g_P@z8JB3g94^l!V
zTmdJH8y0T!N!6`ZNTZ%-{d%{bF7gi89hD>D(`p*VX$S_ShDgiv0&pY5dhk8|Wiqcy
z4VJI^*oA!qJM#=MaQ$k<u2!6Uu_*O{SU$#7BB`o3?oTyDfjMHI&D$!ePviiCx~b&@
z=G=qTlf1zT0@$MfezRW9zK_EoF1-8v65h#ki!S;~tp!kyxMewo5d{h$Ll0KkZfrSQ
z@<ZY_c5vhvSeV%3_(T4ZHQHB~&vki%C0E7A-gHSGm1|C+8@08MyZzP(yrWB&_?#4b
zlFnwFZdJbLJY;zO8wJ;>MBp!C7q&IAr{o}S-0>{+yqG7?H2`$d4ek`J>&9hNR)xqh
z7A_Io7qCEDROY2~I2!;7+qetXsB?-}chEBY%W)V5c#uHU4o?Q1-s>^lgJba=;Jru2
zC;Yh}ryz{xB~Qk(rBtT*MUW<q74AriZQTI0(L1^Y8g~pxLx>9a9RtX=?&t@(I(ID)
zgK;>C9H9GU;tiO+>rf}@SGFP4UaDQDslLcD=xOn&HO5V)<_kY2!WBCXd<xu!q}*Al
zq(j8`1pFU3Oz`y|LiU2~m6f0W_>tW?_9a{H1!wXhM7LKiv;PPvcK~Q^oKAfCUC@Sy
z&0}42N<ZpvRk>f4&<@L|t$zuPD=Y5NPTgcBVW#E9Ev({sfm6bDf|;0B5kQ2>>Av^#
zW@dix^QJjCT$$tQ1kqERVt>IDW#^wiHTN~2KNq%@FPOBX7)}s>!O~=<0D!hgoGxPS
z)ydReu9U>&M|<VMeBu7?wfY7Kv@3jCCyKLm3=(ijkQ$FCun$h9+mL+|cvZ2@3ei8;
ze}!)H51^KG8L6Jv59rqb6mp5A{#yD7oo)d^YXy0Z<#yJ@xJU0>=brRVAg(Ds^bReC
zZI<+$q$tI!G3=_%MgbQH4R{m<QM0zv9&rpH*K~x?<6?zjsqe;K3k#apf`axHNJ~+h
z+5of|DD&zvifBSM;4Z+8jb%fLGD7LoR(PQWB=T!Teip%EaIyj#8X;D@<aaLt8^ntB
zv1XIi%{usWk;jSK3v!o1-Dzi0`pVp9!>sR?G`uR>cd;Zb3b;)I{LReEW+U5yuqxyy
zv(omECzOY)r6YcsdJyExI9#MW7^k<J56vgDU;OQ=3i($sD(kz8-pj)nBx$0-$b5r;
zNL`>3?FLrF-)G=zFwXTb9Ks9}vfizwa)S!hpudE1i2Fh+z5D19@sMC+juNCX?QeOa
zhO+tD{k8TIzMu-ZibI-eLBCWj@ap;t*rxvK(2J>Fv)xG_1Dq%9p^c=R?b}P^8_!iU
zHR>RiG+d4ReRYAC1^DZnJi=XRudEwMSw{u<pK%OZXEqiSR&j0UxKjG?=ur_*?%~gw
zG-O|VA+q<vr?!L;Br$6d`sDg`ebVpJfHhm%%V<!h^w66^`U}186|XXUgT-y}hC2eb
z<bjMTeVAxcig#J!CA~;Zb<|Wx`8k`-yfmJd;sn#Fg3V!Fht3i%DQd+ME{nyl%)pn3
zDuRrP^QcvGRN0o1+=d*rw%h4htwBbq9#F%sOS_cZ9e-yz3L;BnlzAX76i$lrvAo|{
zC<<hlh_aSiY{hkDB2x?(Kl+m^XiJ%<xxJoGx$)dDaL|JuIf-)6`-dEjMp;c)oBKV(
z9opv~<<n(ai%Y9acNKu>Sw{SBf9Z&eNR)#LzKBaiZYboW6}v=#(e6bw15Gn~5|`9l
zIqO$~g~k_P_}TFKx)Coon4>mt!-y5<xKXeFwxZXYI3yVa>7}R4M#uoqR=}1iY6M#z
zz9klIVGfv40<`}4Bg<*uNSWAAacnVR4Q+>yv-6=sXSpn=iJ`J93a$&IsuYj7tD(sK
zD2}k88qC&Eeiz-%O#=FJ2$lL!!ZU-i^h{&Y;*zK=$#5;VZ8cNWD#pTVj<ZWsBFG~z
zu1%^E`BhtQl903deRi^-pAHnrz)GPs^L(0g8wxE+iS0QMrvZMH-ecsfBbL_*38ci$
z(a#dJV+;*v?JEJjrw0kb+oEsReFkZTQjelo@F&$m4%tFkOF<aayu=A=lkD0U@2+eb
zQ;;I=xv)WO*ddm7GyqvV*Vs^h!Gi5L2~-j6nS9nD#$GmAqr8mRFa8n7UrJxuw37`9
z429+?9U0m_#j1-C`X{c3aL5?tp_@eTinCvQLXAi2D9uTu2qSIvtAbyAqF*ls6=_5p
z)yY$K16kf$^0j_F{{1AuZQI8xzX})t<Q1=hd}?@Zt+Fh61ff$X=_?SzNNj5oEpZEb
zTqr($1NuIjit9P|#g%Y(=^R3j1@A$Sh7CE>k_r+rVgr@O>Y@r4MbrAC;a5;aiibB7
zsGzP620`8Ml>+^>q%23#P0d2p%6)MR1U%Xh!{xCq5h)IfuNEqd%#KZ(*=c%$=Nvw)
zdWrvQ2;EOg7oB-#%_)imloWQOzb@8Gwd2|?87yf>QMpUD$ti2&oa&FoTDIQ#qdG?t
zfn}|scZ#-#V9aWc(pVcz6W0swkd-hu$yry%oJ4z-H4s)jB+HaWZ4M>1JCxP-074SK
zm%t0`Sp{B?C$VZy$#qSY-5~mvVX#W-*b7-D0m=&)=$YMGEs_`DVQY%#5U&uK#e+U|
zOxJv9KAn}#yuMK!CP#rrs+F`uyEUgPo3q6n$AOrEX5)luE#{ytc+UOM+?xTa@b}?E
z@_j<*cD0u57e;y`aanH=5scnKJk}fNJVkF12PkF12PU6VY32oXQr2j$Ej3XFR^DyY
zK~VZkYN%{JY%1?cKqVb`5h_aL4nW9^ZvaNv@;w3FgFeCiZwF7rW8VxMN&ee`lX`Ox
zcuSFau^Mw9+t6!}cdR3HvApadJ{=u^scx~XP`bYKth>EpOf1r&rK+M#VwPZK?klG|
zzu+=_dq5SVQV2UBeOntclyz<tD*CWfEUkAZ=d~LTD>OEM#sX~V-vzCd_ZN;fkYEV;
z1X`<AZ_Ecv#p4v1p(?Y#)+9Mg6=bXok8PC?YUpZg{QVyM6u0y+2E$i7VRQl{a@sq&
zsV%w0$xO4BHeZa+{#GFWy&I0nPovk8HmDavgE-c>uirGm<EFbcPm1F{`zdRf_1ZfA
zI+2@{i2;bpBRpfMeH!3%+?X|7A2m@2Dyq980IW)>KwtbJN=kZ*R;!TW6k%X>yW1f2
z4g|k&=SI2V%jP+~AX=avh$K>8jyqr<uRmr0)-PVX;gcW!#NnJrTwq+RJg`sUfKi)%
zqb@_{CPyZ_SS8jS2eYx9HU^2Oc;q-1^EMtkZDxigiI}pt?Ws#RWx)>ML5(j~QORgu
z*wLly|F^w=?QSDC5`f|Tsy!$Fq3s-xNvbK6vYkmRQ~Nj`PvR#Ydty72-N(`Lw8)m!
z5=GK%(vmXkzx{rGQ5OJ(OE+5=&m|EvvB++qPyh;rLZL3hPa{>1N1(<kN=U46^nhyb
ztmVqMnw+CJ(R^Tb<cnh)F{yYXrbqto;u$cot~s?;sggGo4R7cJ6kKrX3OpLV8ir?w
zjvk<r5vmw@ybuSFuUg*yX<O8hFX<Mw?Nl%~sO=^L0EYlRtzpOfT^IzzU})Cv&5HFq
zGtu=YN^H>^>OY@I{T8+1Iu6DY`U6CYvTJK`G{f)dIG?L!s(8C*<{REPrVgbY&79w=
z5CTA?nqovV@Pz*kb}xk!Rl0ek3<*53UoVN8sn-}gkHPD^zx9h72-2_@xyXkfR~aa~
znk}pV2YVl|MlWb31=e@xa6Lr_V3ZtSc;Xgijx_LDD>}&JSSU@vh}v9MmBK8fTEAoP
zRKQ9F%Y=J`Io3wo+I|oW?!l4>@A{mU^?5rq+KioCE2Rq>Fl)1f_dp;Ztd|fRUhhDF
zJ0TaOm47n%IMg0r=7!K2kh@X&O^xv)pXb?<{o!Y`IgTX+@Vr3tRnqA3rmY7RhKp@m
zK?lNLjV6SDJ45K7L5^nDSo8x|*y~uElua=}`ZaJ_l;c3pqJDs?WtCy5QnjrwXJ|jI
z!yje7RucH2xw{GUabj!OjBI}iZ4(u1J%Vep%ZSGCY=EP&R7O!BP$s$(@D=pLF>qEz
z2_?tO*#M~PbN6z6{*f@$#?jP-wRVmke>CQ3VhoE`9714F(D8!$URNF0%7$a4%CD?a
zmK?eG4q$RYUQtk|JW?zFB+1UQi>>4tdJ2>ja{^2YRlU_5PysE*9jYYNom+TUky}*y
zJ4q6V8rytavwG!MILU9+B)?&v2n<YP%Y2rBHj!Og|Mfvt+7opurVd1mn@|Z$am{&B
ztrM<L1XFEN2UqEUjry0n$7<kh(#gU!8uOE_?H<Zs$c^>1RPtn9K#dQXRpHt3l68${
z_Q!+|jdr0XH6Kvk!|5qG%Su@IvsqUxcVdv&TH*1{VMFc>-FC$?$MuaAW0rRVaGUGF
zsb0gTe+G^*#QWfi9b9riUYjk7L)4R_<DB9N4VJ&*GCQ<;5j4q5tg2lLL}-4e-oQE3
zVYs;AX+Oti`|CfZZ*#hZ(L#u#UPULT@v#tS+`vi%Fu`IJ53jZ!QSPW)l29PLlyPoi
zVz-}x<)yudmO_XTMaVk}f?Bz=q_-I}vw_JjDQV53c%av=Fc6Lz^tMox)9YL=Gz)<*
z8rvOgBLrm+8s<{6>wsz-a?~&@3T`@!+HEj0xYm%zR~1EXV`E22K1n(!SbuD5R8qC=
zcn8G#miRn>#ipXizWN5OvY@ifXQQP$hPk9z8d`jkkZM&QD%-9C%gRRnInp*5Q#rVV
zzxFCX6I7kj0nSvx#ej1T@MLpTXv5<F(A#4RhO<SXPG@B15-$r^yn=<<>siT*h8S;d
zHFv#ks4SYcAPDi>IWXJDhJT4?Bk?_x-?eBio>_TawylrS^eeIn!Ryb)x!v^=7be}m
z2oG_KPt-dc?ND78aCFpVb{}yKU*iwH))(CM1NR)krT6!jaPlVa0`~E~b<<`y?WkWi
zJ7C)zQ0K#L*~#nKGN*%60j4o(%ihm%;oK)zAn+9|i^Hkdv~SRb8@Ilw@AL7Fc~$B5
z{7Z6l_S9?IUD0!WmQ6SEBmNh1>`fBOzlO7g^pn<p?yPzwor2`VESUou7!5mHi~;9U
z(>Ve;fG<1x$r|Urc4ymlFKp%%x_uQdO}A3DK`Je<<AE;U?RT}W4||Xd$l`s-B;6{~
zp8B620MEt5eSV;pik2LV&&j4XhDX03WUp3NiESPSZ605z&12!`GJ;=Dn<&gs-#deC
zOA`9fiSa{|{o?R2U%1BIMjh?!NKy9>T%H53V0RbR0=((C{s<3R{oeMY4*a8g;sDd4
zkPD7WdQS&VO|Uv{xp$uyKgVG3)*=4ZA^uA`#Q)^p?YFM#x3229uIj%AS9RQeZvE1K
z5q{}c@g2X4k9d_+xG}=}iG8*`Z){-;c+=k4pT%fj$s@UuOEOr4xq@NfO7iz-Z(plJ
z)|2FK&as|_U4g&|GVb8Py_`UBDCs;fo}Eqa2v?SW2``pT%@v8LQhQsXFG-}Yig#b~
zi}GDr;~EnBf!z9h-1>an`h48_eBAnc-1>a{EBJi0e2<S!zfgxJrHNxmGg!C2Bfoav
zk)OkUS}(6JbQQ1VZZPttLkTJ~K?0|{<})3nSPB0*n@`TBOAymJys^%_rDtoIpU!8P
z#!HW{K0MYlQ*&A2b4JY=tzdZ!+?BOM54I%(Ic9xI_qgkY2=k#1%)P>~xGI4EH#SU&
zaUp69E<DZk2A>Yop0FZ-XTLu42H%t*!=M~dI|6uDXG@T1hJPu00<KkUQ&4M6ARyeF
zU4iN76Iq3mBXU$Pybm9Pislsa@`6nVjoq!qfo3DXMcf$i{f>wdZyl-VQ(>K8?GWC)
zfANF?D&A&gc;|D-nzcn<2#in#p(^QQfnUs0!7Lm&TMH|I^f)~MCOyxJMTH@NUS~vT
zDWyS3VYP~T@I$<3U8HIqm1RykDW-e?ja{L8_8(q6fB)uf(ov_Ev$S&nl)}3Mqrp;H
ztv?LBJRTIA{hed|`q=mNXc=AE$5p<#D8_>U-wK;2BsZFM1p?chfn8^+C_6hcYN7lq
zwQkn^WlBa;TJi;eu$PsnbXuZ&qaO6Qo{A@GP;UibK;Y=%^fU=`XIqAPJadEfS74$N
z&GKdHK&_LTnp%HmK|>kN?T_dzTH=@lTGLHa-aczT*hXttknJ6!*mY^b8mBi<nKC=!
z8U1h)*d&~wO#)yc^>j))+8>ssMIG!BQiC*FC!nK-aEHO+Q_E@qk->(gkTq?c9Z^m_
z!hTbfSm(twKVRxgCVC7DH3GN@07F3oSpudP2pJmLxy;C5Wp3j${!8=@wfgj!2^pRg
z^n|Ds9vsty6LM29P6qxwKfRsjU+_G4uQJh5ZXJzF7qDSIvHVLL@Wl6h|FQ&=z(9_%
z)pWl=qv9h){EPV{n?kCz1m;zptf!;gNU$^}QpTs6LtB$~10x>{S}ZYy`w70_({W`A
zDkiX$1r^=9I!_iU(R<^S8oW|iAA%s>gP$~}H!&8|m{MI)$0-V55G`=D)V9$t50Z=7
zDmk02lqfJMPI7&Eoh6FU=HQMe{gCJ|jF+v&0$q;H;WkamJXa!~T2xy+z$lD0-1PAv
zo~+$~y-=~A-Se~=l|Vsh>+*7J$+DsHaj!cN1-wX=^i!|&b&xhIAtCm^Zfle;Z&>0O
zc+}E{h#4#-G8aDwC@DXrD$&8jE9((~J8nRdF6H^{<J0=M<32!FcO$9g3YI@Vmx0bN
z%NWP%g)p$VRrv5~c2q#XD8vI|-GbK!%(F4u<Qdn@GleJv6U+mNRtRd<oneFmb&4-3
zvgZ93YiZO_8-CK>x$o!{d11i&8Z8_OI>lbvcNKATv8|tQ0Aah&^jz<r_YR_%xDwoU
zq3YxUOmvDVulU2_Q$9uGbMCi#LjgRByd=*a$GXB8rI*@&&9(!^=}-6y@3fdEy{*T|
zS?4U-Or9%Q^>kPy&(;6`ab64yEK_bRw~}-9sFR$*LFuSe-@Cd17QytZquGMenvRVc
zxBJgzhKS9k6)r>)>$vjoD3)NdNqWh($t4@4maI!G8P6u!D3|1`{9xHVf{87QF>0yg
zd{!t2k8J(qE%2Zk2)C-h8vWlF$`Yy8?+O=RRzd{#{CuvYNcjD4m@YC*5c$i^0|^F6
zrP?@7ig8+gQasji<Py0d9X~LM%1x(TOgo4VYhv*`7Q1F9#@nQaw>}=fOdpRcBt5*M
zbH~-aNq(B7hqo>rw=Nz39xffYuiQFs{34t;)@gB#3=fegVk%-SV))q!donrU>sdkp
zZd2giN;m--c~XoD2%iRLnUSKEafLK)KWx>%@Qy%*8wF!67$xX!C0``<;o203>L>>~
zu*8fE9PIu6=vLwmFBP6MH{<R?cvX9%cv%WR$5zadI%JGdbZtWq)k%ULCHRcaAgdBG
zMW|WhV}%U;SeZi$4j(HHdqN>3?ZvyB0ppJ80gLx^-#16T)w=tFf)ssMlz1L=(L?1+
zf#(DC?4O<5;6^&D3<dVh&x>Wt*hULWN*4KU)Arq_?Ym9ecbm5F7tzt%w0*Z}`<zYV
z(rNoJ9%d}rnz89tvwDKt+hIOcqV^<yGZ78Zy~cxRUHUmCpEK6Fd-tiBgXw+5(kw7z
zq6ss+mAq3+njCBC-a;+;gF9=TO@Hq6z+c*LwpzGjLR;%tI~0{7PPW2eDrU|R1_w_3
zky)2Du09?x7WvA!rb4gaUb$)SewH59hCjY+pDRMH`owjc{O;Dn`PRev*2DQ<-ox3d
zHLmA~>bRlColw^#25IVtivDeNKBnYh+T4GXns4kx`Z?0aN(a&#aRvP>cBo3_lisX;
z1{H_BSPr(ern-k(U4!bjZQ^O5?Sh@nV&K2N_K6VTG*aJKETjU*+-+YSh8@j;eeVt_
zoWnfbo*h$s;N`|KXvyb1N_u<<-jLu)*-r~x;@}t>CDY};ZO8<n3|K|QT^5)~lbu3@
zt|~{Oj<|?5=xzt9DE%VYjf5abx^>|NqWutVR*@#+&=f4)Yu^I&a_44e%&i@xcr5wK
z^|*fn##9qvp(cWY)m(+Or?Y7n6Ww4#)>w#xHbBsKRZ65LlMT2NWej4j<M@9YBjcuG
zWL#(TuNpGp1_CBrH(Y|2#G<Fr8w-@+Mo4gPUm7U<=sX&#`?Mn1SNFj`5!vMzlo%lv
zBA_CgKvm>`OXWL2`Kn66B5i|>)h|h+)hPy&t7I8S8d(O{ng-iaj%8iP(dW1Z#4(iJ
z!1Lm{RrZK##`4%2PlGUGemKLzwt(L0%of&Kp%_{^WtM%ipln5fxpT9y2iO-;7=M=!
zoO}u?rEV(@D7BepI%-`CCBBoyHfjTXMf2xt**<5vv3>q>rq7A6eSQD~Ho3rStJ*XS
z_N?xH`~V2DRY}56z($!;<WSZ+VVE2-m#&I%Ad5<he_|(Td9;|FO~Ee&tgETelC}P_
zx>*=c96Dk9X+a*Y+4YlvZ^OhD(<dg9rM~Ziz8)^JapAYDhzl(^k{YvqvVL*NgBRKp
zHpqt1Ip@WxI&gj}W|NF>Ad<hl?}AQ)4H9I1UW`w`v__q6f^?c;!k?CUq6A3Sxque%
z6V~XJHkk~}UDE0g*w!d{kZcc*W|R`p&yz7anw9w!qF`P?nvC@L7|g)cc3-ack*_Nu
zIa{XF84=Nrsp$n*OBEo1gcphG)H1#p66itCYLIPh*R))Sm1&2_QeWoLFW0;qZmU#3
zsYnO9uLjP(cdIaW1cgezfc(ArNBO*y4b{ll%FCX@VcCa&w&9<L@XsUo=P~^AJGQJM
z9;_W|v7)Bb(Zy&YvUNxbmJLfy59Y5(#LIoP5SYp=q(nZ3-lP;!#@c-AKB*xAuwhP)
z8QGY09%!}!wXR{J9+<%gO*+aU%=;nY%o2#dexH1tJ2?_v5YV<-kz=5t5nM*9#e8b4
z!2EF>RH@T;Oy*!!>PnY-RgeeUCLfz*@B@A8clpc4&m7PrY>!Rsx3RsJ-t*f7ZJyc0
zsGSz(<rHfnPq<ut#a}L|k0W82DEac1(aaStnMMG3!4+)AuWHvM8QB%Im4Z`Vq4vl5
z7HU88W*x5fNN}O`8i8{v9bOXyz8Y<a;$brk8$vrrW#tV5gb*S(25dFI0a(|t`eSZG
zf&uG{;t^%t?bCk<7U*32pmj$dU9<?q>UAS#@NaLo44)4Epg+`_-c5~%klh}tgNG<K
zTb$+tE8~#)88G(6%85ndIV6FTf|~Bd%56iMc3j26nV7p1njg5Dr_Ko3xxA)`NARV+
zxhjaSsw2&wg|5_@#n83ih-(A)Dnp)Hy1P_L>zf4U(>_8L42OVp#XwM`EEuw6yVj<m
z>Vu;8Tpbq4<Oov(!#yMh$2<agLg+k%Tlx-DC+VLJakY00sj!07jGsdX8mX(&+FJ7j
z#WnA~)Q~{g_9PL;9&4<Rb)=@K1(Q|q)mkxE;Hf0=_2w22qZydr;YkSOES_TY7}(lM
zYI86f_%$ANfmN^Nk!EFF)gh1DckYFbkHL=Scpypj!}0N6dsjU_J~mc0NY=8qo=pvN
zgX6v3LC`&e!vh-`Q_<+8x}dSXtm&$@cLg6uhlw2Twe|C35UzESdX5RF5v4o!4YO->
zyEYK8(cPP<Tc#StmU4zmF-wX)<y7WBZpl6C--P3)m##unt{i_WyX<ViJ>EsdocSZ*
z^|+3ISwv!+1^cQ*!>7af4wZDRZjrEl0d1i@_K&m16E+wWZ8i+&*o<I>q2sdI?MH8{
z8)DpaMtWmDA4CHS7GmJrL@nhXseVnbt>f+)UZJ8%IO}!-4-^RH_R+JIVEi^hyEg1T
zUTWnZ+m+X!_6m#^WB$>Arj$2k5aE|DDaY{l@Y%7C-BApn0xBj95U=R`V|UPUx@Drp
z$$8)@*l<>tEu>(`c6J1Kzy9awth#$UYn^yEkI}Pp0ZAZ`kb%KFYbP6xl)#BWch#wS
znX9e3Tt@VLDAd^PF6sB=h6R^CuGVUYS3;B{3Vw$?vD#m|Yi3O`gGUh$f;#UGJ&(5M
zpeEK%O>z_t7PC_!0Bi*Pq54Az066?O2hoqMx`!}SEooNo+23pX2;Uh%r>%*PP-Fnu
zgmt5S`w(`n54PKt_Wt6MMJfzMaYswYdW4kK0<P0SUseM}D2-X$XI=w$Of`ED1=fyo
zQu|pu^!3#*IT1<iM0DNGw%4})#ipm1!kmbzc6#WyCl<hRnSm^>Ht;MtJHkscUOySS
z1)f1bZgnadt3@ML5j4RuCDk0vMknC02p0nASD2&dUnb)f#=BBz=Zj*LO`sMWKSrxX
zHY(_L3YO;xBF3n3#28Tvv&XL|6+rA)MJhidZA2+Uo?=4jui^3NF4}(ROHcv~<_MOb
zH#t&xN1J|dw22@7jQmHcg45MxS%4*o^&TrD?qkld@x<Agj2Vhl;kjLP1k-}?9ak_m
z766Je;$B?Nw1WvbPnAyriB7c^kqzV>6O+4Vsh1dKtmCZlmD;Ai@-GS+oJ1c+hoOO6
zo$OVXq5{V4$<2G#RrTRfv=8>i?Q(v2+?SCa?do;zbXSgt@ye^h_;JM|38L?jOldA$
zG4$a6aZcCTCVD?0QmPF>oxHR#h$<bpsr{7euy>W0;njKvbERk$SElu$ZoL%}DxMH{
zbmOCFK7pD`@~1apS6egKY5cCV!K%LhJGAaHIE!;*JrlF%+oJY-tHH&zji0NJ);t-(
z3Dw35GG|pQ%2zrX{U(-u45aNqHMtQF$gm+IB}C7srYl<ajMk$=)}tyKVY9q7`*S4h
zabm)w`J5{K%DpbPH7YmL$Q8b*rME}l-FV&Bxcps|nfRf&NKMHeBb$R|zq{<!7bQGY
z(e3WCUtbh@qzXRlF1PCo5}Q^<A9a@x>x<%)sgjSo%SZJkakf>--*uOdec}dn9K1&T
z<58}-ityt~4rfbsJY9`WBxkV~xXDv_Ga<%Y-dEV-JCWCT$>G{s$Y=ug@VlF|ylR`0
zJ%Kd~goL$8naH*Vtr@^)XF8)>_`EFtORP$Je`2RluM#Izf*&zw!)kC%p4zvHKcB-$
z{^fo5xizC<;Tv<)Y8>t)@401F-sYzjGo!6nWb$EgjRdE0ae=Vgv+@_dYhXRj=Xy|+
zH83b}h8A#%Sgbcv4`_v|vtA7!43zU5Qdv%+P(F*{Po8V?wd{-zK>n7(@ku~87E|tv
zBUwb`)s%riGt>zYd>yQ}Y=zv@F~bZM5-|8ihO+#v>fB-KprlhNa}g_dq%NqWLp}zJ
zQLU1{A=kkJB82et$4y!p-^9HaZ31iVz8E#yWzVwZ=x96>si&^XV#x4PFG0m$jF2JP
zFiUU^Zx9?Yu2x0QIG{ZD^0$&>Q?r{c70O-a3$4G#(Hh`mR-m<74HsQ9&?fO>#>JA`
zFhLijyyfw^sv+IA1K*BcX*m{80hwH)rQje|k#t>_dmwDAk|dn^fV}L!R|WEEfXDi7
z2S$6f$LLU{FxVv*`*%N(lgU=Xzre?&Oa3J($br_Blzh~s(}_8|rE&isF_R*PW?d+$
z23M=$rW($;W6K>0O%xN?W8BX5m^53-7h#xj!6XQcAO^saA8aWLNOq}EF?*HW#N<IB
zvis0v`X>ZuQ{(v#6kr$5d)IU(5~acqCun=p+;~!qQnS2Em20SPiPFVfIB9*s-Rg59
zZkCYuySGAZj2X#ZgPN^KYPPh)gvWYY)|yy}!x346SxF?c%0rtKWy0$h;1iP;U&0uy
z9;hyeU?H*$XH0$EQziQ9pSFuh8afL3tEE!BfPwVPS2l164YS&H4OtXkLkQSfnvyNI
zfN8_F*50k|F?5P|Ue{p^C&5*g`a_Az@CME6VXZ7`o&Utp#@JIkxZ$s6tLuX;RUWOR
z9FlxT0icYR0ESdV3xKF;0EzewB>eU9pkPHYHimVM)$`)u!YS9v0<}qnx`b)=E8hvh
zrQiy?k!A>QS0L=DV!&Ch3TKHZ>$JZlz7H$#Rh!opaBhTej1&yz@)@*|c|GxacKe6b
zqJ1ki)*9V!d=5vgb{$xGoDg&nmXi4F4284!;vgy98616__LntmIS`$CIwlv~+1y63
zML$e&o5?<%{x%?9s?A^gV$r~T0!T{VPEg3o-!k4DMWqYuFQ}j|JK<Af=pB333m+av
z9z}|w9d-D4GCK<&uI3VX_X?!B=*~jM60T{jM+l45Q2_(qlgn4jxncag&J)%Nq*m({
z8+U^J_4~(u2}jpk*VQ#?dv0A<*SW6#8ofwS+`E$VW@??#cPtR+X!>(|ai*Q(aH=@6
zEoZ8xyi+^5e=wR)zD$oHd6MeF94khAK8KXWPQE7B&md#ZmEAxq96J$T<o__Sw{D*H
z)6~sV^cZJ}>vCg|)yfT;BO@r%LV}pj;;uc6Ed`C-dXoMmo}@o{79ip%x9+O9?y9%$
zs<-Z{^+_s%@Q?K_nB$!G=A05Mnyo0qyo<unqdw*%?MmwcKcX(-TG1D;AHVS`VE|%q
zt``L|i1iqc09ohc`Z?~LeCtu%#H099`Hg7%t#?TN1vvtvh&7pzUK}Wp7PLCrSt8@1
zX&hSAx#aOw*|Er?RVQU5Hs3lV-#R3JX@}%%x!alZxLNe(2riBAsvYw5$v*It;pgEp
z^A}R;UBQTjC)eXw&hcDadmgwq!`s%{=Z;3AjXxa#Ppgi0?KWI6pso_UkkrsnCL$Z|
z3|#nN6Ui4alEi3KBc<`mHRJ}7Q@8yai&oJEsO>0)qn%%2U1l%mUk=9%?RgmZEnn8r
ze50|K`5GE-w?m&<<3G;Nq!0Oq_E2^FTRjhQcog>{x2~<8n>jm=Z>axnok;&}ok)W&
z_0wBd(qEb@X)sAWZ<6R;#G%yV+8`mioV(0UbIY`w^6X>e*$K%z?Yl;yUCG1k#@fFc
zFOTr=kb4G9uBVxt-Nwb4OJlufP=c2A5#!h#G29Q{fs`jWmiw!v+4417BuSd?iOCOo
zXE!1|IUn1TGcZCksN7pVksR-lEt<b0*w=O|i3TV?j-+zbdx%0_Px8yD5n9wFr!>*W
zY1Hyj^=n7>M(;MY(J+V%>@oJ|WgB&Sdh;cZ<Np&Z_BA8h^Z9`rlj0g)<^=UhuI5y=
zp}#p5zI8hPd7RE~ea(%pc@>V8e&%MIYp+RkuI<Ddc%TzoF&kK=2l{pV&oAwLzMch9
zxrT1ItQ|55tXHQc+Dk-J9MI<N>zemADPB-ltLZeVO+A4Lh4D)9M#_?{SQv+2V&Q$m
z248YgGdp=@0=ztjAlz<^onb}^wQ2!$!|GZftF5N>lz!l<4IwsgkfcjCzq7XSxP%ck
zGjwODT3o7959!47(3Q<F@q;~6b?XqW^X&gM#Zy3zcoPcVc=D*KA-WCMa2u}S7Za|b
zD#k&W7+Cr`=`ma*p9T8bn+=U{8x7$$8p3Tfgf-C+l1i_m+kgnS0TKSy10o=$im6SL
zvH*<^JujwWO4PWZwIyAKvLiquwn2H0x$d@U9DjcuJLGL}iQC{3x4|WDgG=0WaEYJB
zF<%-R$bGLuOB^vOymiw5H*?aj@aKhB(cIL23hTJr?<G>Vk}CVwW%yU_GW?tW)Q)P^
z3aO@!vm4U?tje)?Lnf+~bH#M7x<_7<33<aR`VKX8u7l>^t-5ZVj_!`<zF4G1fs^99
z>)}JP!zEp39Xi?;*J$^I-98w+Nj-Q`?12ibD1-{k)sz=T2`1Eq`rBqpjcr%k$Llzu
z9ZXH$L9Kaj>v6})wE&Z4jGPle4UT3Hso~SC7(3R<GN&;3`TF`awvi_{+!9Tc^V9i~
zu7p(uJKXrw*l>JKOmo?I46f?Y_5=~Z9w2C>VXKS$5IEO@;n-<`DL{-UeTYH|CS=EA
zTI>y=N%>^6udz4I_U<XsV!vNZ*+E*SJI<zu^0zytKy2!;rzkC(s@F<jS>|KzkD@vY
zk$UIOLlWsMkv8IA417-##AU}J!h@D=!_A(>{Z~U$*p0j}v65^aEerpV3!4FKYC}aX
zuh~)|_z@C?bCudGhqs^ITJo9vd^A~&6-!&pPKWu&A>REN24=5g{d#;o8|PTDNCT0W
z3AV0tzhR#%=7bNZegkG(7ib~yu}y2DF8uZTr1Np^x9n^=G%$ijznQsit+T0b!?|Ub
zUn19?bb9_|PVRaIoo35LG0MxKqM@N|A%3+atSgiF>;{+YvWlEWXIfahB=sO%g{LXh
ze*~&1Pm2FIuhQhlP9kqt)2Y$+fu5SxdUfX;<1cbV);Ftt&j3da_`ocwk8>rFq>))R
zcT4qV(NN;67E2ua>Nv*?nH;V0O3mun)hL(AN@}KRKcHwi0w7AnfppR6#{mM<Rx$(i
z{aI1wmw>gO6s6t5$AqN5yu=<5vHIPv_OCF|{dw~u^f{Md#1e^s9KHy5_MRd4-at*3
zy$6GCh_e&Ddpc<KHe(`V#wVKy)WDL=`l}Goh|xUW#`}=Emu$EZ&=5I2$)6q3WG%B;
z6WPX6M|9sHC&EkY7MIv8;*EnHm$#2J6StFa0|~aC>W#vpa_Q}&9TlxkiuB|d0)Xr|
z?-*yTUQ|+=7D*}?;Q_BF;&bWU=Q!iQ5EWz7)1I_YQ3<Lg4m9v#oF6JK0guvTv41c;
z%uY|U<laH5XeK`Z!w&lc=TrUMYXfghs}!N`i}`GFF{D=97p67$v2Hf<6x%l^`v_xa
z=AnAL3kS#PfLVups7|dYP1~>{xDBw;6&YiyW->(%z(cEY&hc&ipucnclv#TDX$Xy3
zLn;Mju>=iX-?=Hh!xr0mD<Gu?m=AY%75OO`d-lA58nfuas;w_LrQ7k%fz}OzqC-`3
zWYL64Y)ukBs-gj(vThaGqW`K#ZiV^Bt{A{G$mX}7v$givMDfs`!yF7l`?^#f9BcOo
zjl*FN&LnV_Q#`})%)qBM0^y_>P!(wx^IT90uB-DZI<cF#odQG!&zC1=tI}^Lvoq;w
zs~@lCSShv}oCwqetI!VOZF(keEYJWH>X|QQJ&9G&bo{+R?haZ43w4-Q;5+V-yP`o6
zJLVE?exNz);PJ?1m0E&09;nl&TB1C=uKmo(G0yL?-9@i9h{wjv@`|Ilb{vm`ag=R}
z%Ey<TgsV?ObRv%T20>dP>YZ@1BG8UuTCWDJ!n9hR8^DePTtj<&H33qXzlo|{5jMJ_
z>KNgLifq7AAZ}TSc};P1z#wZF6Rs>^zn{+v;fSk81eK*^=OtNKqSM1(ak&os8!%5j
z#%*;*`dfR`sqfDOqXzAW;b<zbIOl-Rj;<(THhDGG#ztH)6apjJT!x_yt0clIB?Z-L
zp#BgV0==`0^HEX4teNTChaDI+2BXyi9gI<@>IS~kmf~9xO>H`#mFfP_9_R+W^q^Rj
zxaaUUh)*ary7~EVr0T$;Qh%V_zAjTYt@>E^oZG^1S9oBoJdRsJxwA&@;5PIT+H93h
z*ZRT!UPMePi-Jrl3s05T(ngiLBFFDwfGK|I3IQVclG`BSA^4#hWi4H4U8rTV-V3eH
zgHOv5Alu#Uj#r5#JOzJm;68F{?)mjd#*@|PNqsFsu@$y$<;#Kk>8espNOohCIuHZ6
zYsN1dkKvBNAG*3;>4-Y<-g#xSkTHcd%_O*zd&PXX`dWGX*FELD&CtK;Y<a{H7REDq
z7&kR3ZQAil9i_;ylRYhh!EpMgQLgWy(E@OLY7NIF$D%?Vu@hMc0{~;^@+tn5Mt^#|
zTyq0U$5kZq)CJ59HGnK<M4YQ68}O_i5q?|&6X}?DgSBtxX2bBFR&bZ(@1}6Kv`KeJ
zWL~J_n_~6gF3J`~&02(~nNu21F&~*;&zORWK&6aUZ%V+xVN+XWIa8fE%g`E*d*o{Q
zp#G{<M;TS>V#{*^fFP-ucpgI6lykLBfm<U(DRX_fxbFO@X9kb9&YX!C&JyhQK}d_!
zf+ZKTqnY8dJDYigTbbB6@TLAKcMI=kG2AS!vAjqnX;%RB0Bl?}DZt*tCa$yt54wS@
z=1`aRpl(s|UF;=AI5DFl0&dVC>}!d6!yP@&rKnw)g`<=~#_wG%Hcx4kB|7+9;)Bx=
zL&(gJ#fV1G^YeEH@M&ZKFNO0LAHiSD09sQo0ol^HVOU-4a-5^v5sFtdvZc2ZhGkn+
zc$0?z0oeA*=qLN?^hBDMVysvZ2)%eAD>hHzy#J3WO%o_Ed4$y0ef1Am%}JqF8_ex9
z_qDvXnY3#TFE#Ql-`RSMt&QqOjQj=O0IPja9;u!xfZC)PuG2y2@4=-E+}B?KisF3a
zXEAlv;+MJkg--)DdNjU0)vh`ydGX&P4F<-~0#VltTGW*`0m3A{;^Y;p7qJP9!MApT
zm5P3OltU}@y7=FCEMs$3dF&b&a0LrzFB9~d39wl<4!ph7H;E;vax^{H#1W2eRxl5n
zp&6Av+dI<iK55PK#V4{NYS3o&t4?q0>rHEkrG7r#v8}qs;Uf02c_3+}?VA)e+1XK;
z^g<$1Iv?I%1e=5T8nlRUcMTT_<#RPi_n~a2R`h*5K5BpJ#7aiO1Bv3ag!@F?g2~7g
z*Aqzq!Q?5a!{{L_1%F7D^v#JIq+131GmW*|1$&Bq%49eTndW7!Ope&>@=#buAbj5C
zr_wr|GeoH8s-6wR&k<P!r3e7km%CCvGuS*0v7rZDczrc&1b`45R12*X|2dkSaZG(<
zl!t=667JPDmM<QlOiY5lI?hbT+Bc@X<?M|=Xp6oS;+~9-5>+=(Fdk*jwMAvT+Q|5N
zSAs$BxlGkmTS#$|PcC5Y_aSxx1TL7*XA2!rzT8S)vWdfNwQ!+OyfU?`asG+bJXLti
zO6l7Gjqv>!Y7Q`Vy90%<GILOh;UKFfTkmr41<K}dnR@@7PE2$kMk5J`FzO1Bu^UJ1
z+`ADEPb*_-CI&xw28*o)m*N7gtb+`G1UWMKMU5J?l|9kwWijSy)r7DPZ$7+-IPPj3
zqwL4xc(rj|hvnx)Y*=f&kwQ<EW<E#AEU7uy|3sSVX}CLel3Qi2p?Zn#QnH(qjv-dn
zx~xUSpkI){_iGjGAP32<XcvlhKap@33Stoftf5r5SrJEt_wlO<ad8oDy}I`D(v;l=
zD@Cdw>%^E!k!r&|FF&^Vc*|l;(V=mK?`>@>#=yfwKPbXIeb4aZE&|`v!QCJ36qgp;
zmQ~D13d57Gi+xj#chZ7{SZW#HBbPhrN>`~+sf{QkM9Yd2bZH`|sS0&(${NjBHR=8<
z&K|}jYd(25DR$q8(0vmk_e}`gR~NUN2-}I39pg7m5%DmLy5&W*kBZ;Hl~g0q`znI>
z^$@R+Z)51Y5_k<?QP|gEo!r29*P*RN@?VlP?ifkC5yKj#{H&6@{r96f&E!UnH0=W-
z0X-tLORp$lsc4+=+@vhPb>KCzM-gez%CpDEX%Wb=jsV*%a-9fc?5BKlQ^SM=)-xXd
zwbAx;vCo%8N`wGMK)AnLtUyePgAv`{b)-FCg``NkYKzm0va0`~BB?%7q|D&LK4e6k
z(fr<m#4DFUwQoQy8SXk-kL&hbi+$%++dYTbLm0E0_eYo?ab<HsQ$TPIn_58HREW1=
zw{*AxFEkzCl3FbCa<0yPrS_EV7D*o&o%OC&1)sft|Kj!gmv3G_q1$rxA6k55$x*&q
z(CH0bbc*SiGOdm#GvlJ80EiEm%M?>gFFFmA(yF(-Tf^5_eaJS5sB%n&q|DVolPCk-
zALnHOJb@COG6?r1R*`yWjk>&bM<yGJS!7hW&Q$5Db*w2R$NCApDFcL`$EeR+QVvdC
z6ahBL4m0khi4?OfQd=6k{h4+I+lbx%iRe?#GJy!;l{TXrQp#Mb9jZuM?`$xYOYxFx
zu~NenEWJnrjn<&EfyCCN(@UGJz0nHX{`X#iO)sI=DL+KOnr1873dC?}^l!O1XVd)h
z3v{E}M0q1vqmjJq8|xNmMS=M0gxGKSxwc4^avloY<<i8mb`~rU^!-!Cuid44U$2a2
zOZVZw_tI^;)NbU;Il9=*&F@p5ZCXNl>X}_{5RKS42El5fOqu!l?x1IotzZS%sO&RV
zT*nchRx_r+om%5D-kdcwVhebNtcr)-=oDFXyCIL4wyfu}Q16N001qN8m|&BlbhSHc
zQ0Dow=YM`-3b8wEh$!;Iz-`vcPA<-`nAIGtp-yzjX`Pr{53Az<0j{cC&ZM-<m!qv@
z|AMB)W_za!#;XFIK9A6ji~)p4Kz7x~qU?m>XXE*ih{KO1k{+kWaqr$`KEmhket7Zx
z{hPN*=V1Mn5SrDKcPSa*MzXc*M46-w98Pu6q*Twd%nH!lJHlA4Lf{vZV1OK_6rcl}
z`Sw7yymPQ~FgWP$LcWrALK-v(S)-9E4OR!F{ZM5OGI-Z%c{vOM)>f&vZJ2XNR~Bd=
zSE3D!_E;U4Eq<li3&u_lLMEYa(5gRb3J>#XzED%>%-v<9fLBfm1h%w^Kq7fSiby0@
zCn^VH>O~ISuw-*wf8VwNp_E4h21$;V;DFB~+M<c>s50%Y@e077kvSJ4TCn>#>I=oz
z7xUQy_^{bRZ8Y9B#*sD{NtJ0~tVAHhISe|c6m$V-j%?I>oWdsB7}>%~+%XtJ4D2GC
zmgCiEIl354a#>^zcgHeu{fs9<9;YYiaX&rYPLCg^$B)w0v|P>AI#=}2AN1tUZ5D^H
zA~>W?^TTunUsmvKwm5|E>JR*y&S*ZS`56^GgQwYKf+HQusW6+vNj^PX9)YtP>Z73n
z{9>CWg9{KZE(Y5Yijp76p$Vc0D)EvZmrBMP9hLdC1npvKe=0PMzLCqWl$@Ealq8du
z>R-^j*>)lRtQw6%z2#BhcJM8MopK^;d}|tdFz9b>Tj?8|M^DiOBSXK>4|^aTujXia
z2fixZT?lF}W5kxmy`F}c5ukzQA2iJNhj>F1!N2qbG?Z+;)1qWqdRZsC+WD5SGxA}~
z!k=&si$smeHLjw#YB#`WBZ`b35<0mWBYs)-sZ&<tRbyYTYYv2fYz8<83dVAP)PtGj
ztd2`VP34fA(8AMC2W#tDRk<8CQ(v=Rnw1CoXNzZvW`c~@SE@RpqNFD%tlsc$_PK5Y
zjDJ|p0?`_TD@D}WHBK*QwIX_5(G6T>5jCPIyi?WC;bgXNuBX&sYoNP!Kq~>$-ZIcg
zJ*Xeobzu7P?gIWVm!n>bEBkO|pI$*TwA0WGh7X3jl3wK+jjlVnLM`!Ea{|%A#%di0
zSk<k6JWGcPs_@pinW9-Yq7?%A-1s-V8pzQUB59%GgW~6yrZFKX#^X-)qE8*XLNAl*
zDABsv@87%|U^8#t{z-m+{o+pp4*$&?sNF}kTpGZ5{o?QPy9dMBb$uA>4KMdWa_=B%
z-8*P+p;d)u5ip5u%P}+`ZkvtS96#!O!Cl$K25Eqb$9>9wf#0=Up}szHJ^88@#dVhj
zQJTZffzCpG%?8VHAC4dG8AS?)9C<_`Avca6RZ_DnN$qR|Pq*z;&JDSo&DCj73y(?~
zV^L8Dbmp1p=!t-sr)_x{guEiHlc#ISpSb4_45C6UeK-*z$;<#*Pj}fT)$tAe{J8J4
zj5QP3bOKBn%7A;kO`EhF#mWh&K*5CF5ch--Mc2w&2E}?|Ly@$}WKxySEqLDfO?6UR
zv7vPQ_xKcXtrTbm5YF|+5DFTs;Mi`01<7<Z!!cdsNMue&@tJKaAtN)usd9wUHDed8
zZJQ9xTZFqH_4fscEOr|};U&Y}AyMo$d4S&(v)z(m`{kl=4op{w(ht&L-`=#E;F!4<
zsJ8A3%L6~bbtI}kD?5oJJTy$24HsM<eNUdR+AhofqDbO?5Nrn?1C8>}#>_@8W$2mC
z<{_U`K4*vRZ7^rs@Hk&w!ihEXaD79!yzQ69+hW{p`$oB2?Km~!aP=LFayj5$bLbAJ
z7P`C1v#}O~9quMLpt;6(7#=BouFm!Bk-8FpOMywyQzubCZ>!hq?~p$uT{2|lGFhyq
z$pVzS@enRepb}6MeK!TY%rqyP+Wj0tam<U+$%SlS4a+q=Vh!Vc>io3!vr<cDc%N2Q
znFpW>YswiVL^3FgM$eb+Y|3nvH!F#E@b>a)3-kkZ_MyN#RVOzGSkkNB4%iE`hge3D
zU{uSGi)BkbG1R<13D9@gd#Yy7Rw+&h{!T?`w}HnC91W-*>lCWuKbYM>mg%@iHjy*p
zyX^79*!k-+hZj(s4*mciT^ZD*UHL>o)`y6*qhgY`jvt8u3;@JHSXyprVs7hQPYq%v
z9n!|;gk}lO8gySD+~U*RXd9WQfToGrfjH|UVL}SxLT_KP!Kcv%8@0F#qaa#TLn2$u
z&P|IBU9-TWFakSwsJ3bK(cS)w?j!9}s)d_~=)uQ3DYhtpdjrT{>RAHe^L|8h@#|;j
zd#JVd>u2ZkjOmC}c*GVlyu}ZBWr%lKhAM*lHH*aYUS#Bt_u8HWbiB7~l*6(zp&v>p
z$2iTA@(*=+REs)og0%!%Kpj7<6!Xl@!sfu48#&NBBDih2oXycF9C;F2`RLnjGH}t&
zSeGE(0&f1SLoyF5LqUricWMwU5Rj}pm6hzI)JQIZ6f7;6I}oEKw4-6nZG;Tss~Rd>
zGid=^d||*!Gw6xYeA!F#3QF5Zg4yMeJs$P7UGnH_@;C$UiQ#;aj|<8@Br%4^koZui
zti<f%BHOreBHl=XEDe?gItO*f#?Iy@q>0SSCjlkk^{pe>^dbpX#eJJ|*JgD}l@rk!
z^tT@Gh)JuNGd>A4q9KD@H2fIoAz|HMpdRT9rXDPEG%#^wmCA&{FR6TiH@9jN&H<nr
z(NL5I`SISty?e=)-Ti9^rr%T2sJEAE_EVvKsS^0#;iLePh*b#~HWL58gz(=$F~AaS
zwUqvtCI9LDWu<U_dt&~{PRtI2*p7wIGQ1;UtB(hr>JMf((<WM^p+*O@>dymXM#3s}
zumc)?oP!e_TYwJ1x~$d6aO8?+A?qS-dCdTJkYi@8>Bd#9TfB4}VS$Lnq0^B@<}876
zO0`*`3xV=bLK?d?1|N-M>`%_!$P@@kt~vRR3Bo-t7ECDFT+O+Hj&86NfeuOnO=t?H
zv_aZ9xK%oSutafap?o--jitrl{q|P!@<2nmZ~Jf`3_6yJRSurH`P4H<1m|4B1Wgww
z7fE)ix~AcfFE7|elb<nE4*hiz3br`*qeYX^EleYs_R!P=<rVNy!6?SKDz$;kj)=2N
z7A&qIAq3?`n=lYUH_2cC?6!3dPMdcwv5jkM6WzFX)9ss`vDKN7+RH&#3)WVVEC~rj
zHaq547mXbpc=<;u_U<wC!vtx-vxThFw+-O~BYC2536^fh_4$X;WA`Z}S&db#a+Nx+
z&MTyMTm-xu0_HR%$G&Hl9yzagaOBaijntrTJI%cL;rk(tLA`h6F?dHF?`;N8$!5^W
zv(UWFZhxy+4N~mVaFZz@9h>IN!$|VJ=;f<jIPM)RGwTQ2eD7**T@CR+m1QX7c<hmB
zz`c)!bK<)AyAVcHkDI->MdK%sXoS#Gb+yZ+<J|2A>weR8N#;K^4>t!+s&zlPv6EzY
zIa`g6TnpBMcnSJvU_ymrX(Q4d=1bZNj0vlf=73|aFhc^d04IppXKk@W{Omfc=a%z?
zoF}<i){`{hJt1qkN#;}6V5=eP`Q`B*E^^CvesaEpBwgE=Zr`LTo8-&f5uJ2qVqMyG
zR;)hDEVAkCStj}AoMkFa`AwF@$UB>z9FD`+InYE-GbLADdzyKUv{xdWEZX=oY0b-g
zHJ-I0YWH|{3TPbVlX-HyI-QgIo*MOhQH(gT0Aq5wQ_8RPeDX`#tLyjPMjN)>-`n-a
zgX2w0yvaT03_HK5E%937c*RZ@?qiL1vB(~F-R(;6Pz`ef>uoEtp?wj_`IoXLlG{ab
zGjig;(}MUZMLLY<l{a=YUl*{fL8P%*;ZbUztqbq8*4zCwJBRR<LRCvcLK#4Gk0}fT
z8E#R`O9fF)csB8ZUs~}2y|Ou$oU6{1u_$%mVu-58QUpI@&SoH7B@FG=qP*4x^nzP3
zPA8-(w?1xJW%OFS5@XXVu?{X9;0$N%2=54k<jI=7-$)Js6Be*8^r@XaFIKIbNPjFU
zF01&TmLbsrgV+%Z*FZH3mt#aYyf`>km_>n!ZPJRvg;+e(cw%u%DemmR#Z!)?SUg4G
z#{Nl-+RJINEV7B>;dVh`TAyU96VTY}OwO#kbBylj-L7XXajcD`yu<!+x4*adR6hhC
z4VX^-a&I7t#jSY~w>){!$V`f{pd?e_zD7ea-QfW+cenz3i{7q>{uI!crX1>lI|Lh-
z?Y~LjR5b`2l(b27-z{D2@FO0EjhZA+;3rQ{_1ks#r*w&G!nr1OH>cwM6sa6?)^beI
zAvindt#^NZ`||Z)hVR}#d#{ed@>Oj{A^T3Ps3S$;v&Dt$gwAv>A$E5$5s5vkxi2$q
zL`k}jPW$v?c$!Tnvr!AgnArhILLF_V6GG4))<ZJ=xCW$b$ejWpnjJ*o=vVEI7>5Wv
z`*vWzM#^DqR|uLSnyqTJ4u6D`T^5RDOuk749|s~cCI!U0`S>96sK>Bf^PYChfpN*T
z@qJ|BAw*f3uI4p_t?Be&k>{;ghgiT4U%UOGV!)lEG){i&%;F+VX$t!gudY~4B_5`3
zWeFP5`qvXbd>WTw{f?Ac^}??cAK`r+H_>G(qg?0$HF`n!bzL%vP!AV*=kqno)QTw~
zZ{K<0o?J}4aBf;OCMKPf5Di?I3t$${<QwvAC=DY=%Yotm!<gr)YxbyP&=F8Z*%XYT
zDD`n*GJw)Fg-_xWC5#~q7>tLMt|?R%KCzkt%c2Q}FHC!qbeOEmm$i9W8|XITm}e7c
zbFG+zy2g6YB=B|QLawfUA=Mf!Ln~cf$B$|a2LgDm1VtU2+o~DhD#f?{7E%}uWke4E
zZPUx$ftl(y+OW~AYsx5BN^~7T5H0olG@D)k6^sjrF(S;`P{@h$l&4jjl1T)OI@a0h
z@F+P|gtf4aFqWFNB6|OVhz}Dhd*SNI&;=}7M1382JcFQtWROWg^}|?zW+H62*1Kw0
znW#Fgx%AJhOz?6?CU}8s#VJsPi0FmU_eEfC!UGr5;F8;RWK&(UG3*WOinZc%#2aYC
z<id8Gdm=uEO_p@^qF%FzH?FdNjiW%L#e2==yHUMzH>w04v;<!#?ZhXrVkRu-)iLi;
z@f4L%A~C`=ImO$Q{I*$Qqd0MT0(^zfcx-h-HrB1mbga%gwx;VcWD>KMfwp3&A?TW6
ztBeWhl=z&8L;phOMTD{D$ulv@DlcGbuV4MBkQ?iTB3aG3s1?_=LEHXyZB^LFjcQQ{
z-mSaGU3ZHsHJkd``Y>iq?q6d8c9Sqtr9W0W`d{!u>!Yl6_8n-O6@!+d8BrUBH>FMN
zC>tv|E1zmfOYM7BFf+p2mfZ(1O${#K62o7@9_R0m=s8)A)NG87gy<G1i!f5<ak@-9
zBp-}P7Vc<j#h*Jy>eHocfgJ}dj|C6-r)-jPpi+~bKxct-a@}4o7^cfc*2Ki5Ju`N8
z!T3;op>T=7nY94}emQY6oA1rF9lBGoJzc6}e6X%Oa&I;XvMK$AD$nkY_pu+AljoW!
zcyI~Ljj4pIVO`A@Ro(3OO^_YEST5J7vj(rwD$LHZLPY5HcUsF`4xv*e9xnHGmcE)d
z*n~HP*ARqKURLkFW&&f2(rMN%%{uW@4-m|JtA<pKRxv!d1R@nMmnE$ro^*hogeyDj
zl`B<g$Xb$eX4BSoD{1!1btKu@D$c<0&66w{iOAYKD6E5K)3C5Q_^wkqj9j~sh@D|=
zd{|plhKUtVFB2`6l~g=TW`&4n&LHCp-J9q`QQY1N$*h&Ny!C2weOK80hF;*&`@gzK
z@w)ualXd(y5qN_{;5L0;wH?fFs<KsAtJ0II&lU1k*Bj_uI$`xX{eKlE*Um(J#m1}D
z5+s?P>JtFV{b%6YC5jO}G;Y?>=rz_ZQFekv-#5W=LFk+0?QV@Mc!kRaPxurvXQfoK
zeHE#s_U>c3w_Xjl+;g=JpBp%t!WHRrH2YE8$9RHS2AW=ydb@GmVbwqW0*>a$tR7FD
zyl9oz4emvUKI87M4i56g`im2Br2SLAysu8N31)+#tO=*ta#5VaFZMaatb-+`f#H{+
z$5ds_L}aJvuXvi!^W@KYSr*werHn5a<{BOw69iE7D#oPio78P^SauG^7sDcfe~;C_
z8Gg^;yD0HqEy>bmN93b2W_X}9sRv2+DJv#$j;=j9WA+gw8=R#4oKLR#Ih}}TcJ_kv
ztmEXvg<#F1-!)p#sIe_dcGdhZgS=aPvRHkn0k}7CUqTvLG|f@<Z01GifmhJzvN|=;
zz4P#TBhN_xiB`9n+a2%eh}L8oH(8xd{Xy6udIbXr7Zg9o?rhe#QfFdf!MA9Iv<a5v
zv}t~xa^{G5Hj3c9d6_}FA_flA(rHc667m{cMqXB?O<2RX#bm-0#ww{CN%=Igi0q2-
zR~8udPu%C4T_I?@obEU_pBVehJ=mO@Oy(fd5G5rS`O>6IK~x8>?I_;v4;4$-r)&?T
zmB7h&NJNG6mz+a-r{dy)8H9MGgTx#^tyqm5GbSNNg~>#ioNk;%m+&^V&&MkelVS_{
z#IPPTVU|Bm;K!-4R?>&H_}Z&L+q$i&Pn4sa>}^i=_}I1~%$>aEqATEp4}29N+T5Uh
z^L(*TqkQ)T{CSf6h4v~Y*VSZlCmHOT_$~Y#G%R<ct1NMr8Sh7Oy_J_*a58h78@b?<
z5-+Vw($$w?3Gww6=*k^!$G6U*mSw;bB)rvJ@AIx-TflHaB?H)i7ke@~lsP~<gX%0u
z6547<Gk#|wY$aEx+So!!L<ewvXUFX=YTs>H-h@h%{|S3bDtnvLPBm$j^(I!&X|@1k
z@*dR1c4`HQ<Kq-$kU=k9&eT8U2y)Qxke-K>evlK(GQQe)@v0xQ#bGur{s|%}B3*r1
z&CVMD{xYgb%dPmRAVa4CFdd{yyCGnYgkFU8MU~u+?I^L@Q!^uNHwV&jJ=>H1BzJHU
z&}GB$1A;DMsA<Igqky|A+&0xIeh5Np>1^bti`6~!(>XQmjNbVWRaU|)+NsT+5M|iQ
zSp_EtaLACCGYan)hyU53pJ*TDgjZ1u?MvJn+;!@OMB1Okz|{>~1zys7roOo<*|?&5
zXnYjiiPp4fw0zY=Y{+iFzB}PeqF+wc^4f`>NDNfQNi6Aj<HAKruM;?m!+f?Iva5BM
z_J*zDS-T6p0;Y-^nz^X2z|Y-WsyC1!7%jJgO~gFV!x@+#*WEMkg!4A=HnEV^%J+PY
z6OoxNXLjrYn2koO>(qzi<29-m(@)p#g0sf21ISr<*8xPF6CmiLihzMYhRb%#kWr`K
z+kS-qv?Ekvm#<#jW;ruDd^B7KrYVz<{rVC-VXee+<)tlP{Kba5Dj|;FLAH1jgMrFF
z%q845myA&sOTED)QW%8Q_{m7Aw^nBwJM9#Ly@&c7X?%Vu;IOKtaeI8xiPqO_+}z;$
zd#w8Xw~&!I>UKR-Fp3xGu5c!tkbq7Ej~#7y6`miIpq?*>YItjo5DsToM5anBLHq<!
z(qjOwuqTz`--#>J5RBw$Olc?lhPkO&A(sxCHy+g!?sW&$l(Qp-W2Idi){hi#^Z|tn
zhk%eoD_<(iD&J}9tt{ZsTxBVT;3`WIC$D(z`Z72J$GpBFh3T`l$8Cq@JR9XhqkVQ8
zZ~F?xW@nL5Rc6>lJ90YEoCLkfA{>#91iS=`8WkuPQNsF8CAr}UH#*oCdi?76UIg84
zw|dT?^>utfuT=CxM*RRfPN*LvvXNgwtY6v^__Bgd`bm>ds17(u5kAhN;??{MmG>s&
zAwP&H_&57ISK?L`+lAE)R%`Kzy*#yOnHbA)G!1jx5FI_KCL_9G<$@kMAuT!7W9w-$
zjp`rceYchOD!1%dVOy3LKwsF1@S~n^4b}o<y$-rrIHBNX(7m^V@H~rL3owdO7Z+Q}
z%PE;l(!-)eRcK0%^=boSnzkw~RieTnNbR$$$x=&^E&Aze*CRUhc3T7;j?kE0r*U?e
zB+Z-J@yRPj5q!rra66<MaZr^LS^<$sgsSfi2zdNpb<O)c9V*$JK{#r1Y=_gAJe$$I
z6mI{#vxdDDszI{duGu0fC`Ti1A5ib#$btd-3LS?4QW@LVD_YDZbcajIPD_@N5R5g*
z*D#lxxous~5MW0L2X2HnTUQ&nmz*;i?%}X7U#0$7AxOu^qz*e@W~mi{9JKNUTui8W
zgIkK(G*3=v_~dLIinxabvbA$IWOQo`IJ60Ul9%A_gZ^y|%{R2k=6N<Wl^Z3Pukh@s
zxV~^Mi5&M0-vwl?M?|$7h6aU~W2Urzs>GZOwgdfpt{xO61}L(VX?zjRv#uTwum(Yp
zkTX_Ms0KtyMi|Ie@-ENq*7ANU`F|lwU2&@V`+@+G>tC+6uW7!3^EX-1eV;GDdL-j)
z3E4Dx_rrG<(hKXvm?kg3d;Tg-wtKx^=)yXg&8Xw*%Y0Uv@6-Gczwel`YHIRxu#tsg
zbZ^ara$cm1p_=q%rvDDhk7-$G^*1S%%1>m){rYdOUZv_6eJMZDW`Lwll?QqVhy0+0
z1i+->T%9GNnrd^vUpxF)ON`t{gO2H`eWLrzPq4H0J9b$IRQNO%3F|%kH?<(f`Fwd~
z5~{;wl%LkC)+&tGL$!mR<MNYKcTm~BD$CZc<)@*!x)h>o_Cdd2%|GQM^jXlH4lbRa
zCh?eIm9^N~uri_;h{6ih%KCK7!Z8hRSeRt4G<xLF!tQ;a9Mfjc_wSP?EvHy;?G@4e
zRHyd_h1ubBMp3qEGwGcdnAW|u-dfonHC4Ok1td;7FGPwbk;FnLVbY`<yBzb=`z(%T
z9ke>P>uK}6Xk*UOt)9)>QBCcMw)ZTPtSncjbL(BKhy?fnn4>O=eHeUn?Hw+Mkl$!r
zOfK{!5l5ig@=WIu=lllNdLCJ~;NrqMA3r7_F=o0uFS=gO+7DXWTRrSAiEK9gSge1P
z(e?lSj|1d6=J}3Y20H@jzwJ#d2u-Q(%i&}LWy_pMtq`3>I@cJcrAtQQ;|NA3OZol)
z%-;exdHB<!jj%mv8Tw-kO=fef+@|z8J5+~uw>Bphv=ueZvMy4jTix!e;QQbejlp9{
z>OrHzo8p-sp0-86Xu8TzGMI;D27FKzq0*{oSj4PiYPO;c(X~CS#$+4e(Hh#ghHrwf
z#p~Td*NH*PBXv$Y5`yZB^Lf4~;0UY^8P64SN{Z9@f<h9^C*Z^R-^DW+2Q9Fu)er8Q
z8^mQPZ0>%(T$&6~tCC~s!l+$P$O4vXFnLdYc;U+_`${CBr6@%Tih(;$%adZBD)NKB
zQZ9j7DOObnq!0aGe-H9_q!^${eE}iGd{^9e$8AoX0iX&#b?oob&Qgi!OgMb48M*cH
zj*l_E(m|Raq63%}_h%j?Q_0nIkt8McS^)CHNz{H!n&;9FCRhkf>1=>vw0P|0nDHYR
zFe4HHN)Q@w{500*ow2}>Crw83AG-;;MDv>i9PAHzcE;WQ-X`{1ZI$YbCK8p}QBg0v
z%K;B2@Mah8Nfp%30a9uNHU~J&5-C$9@G+%1a+T9K0M0J1r-EGZ_(YpH10`)r#x|Rt
zs$4)FjSZNTc=bN(lvC{7s@_sva7Ys)vqRtn(NuaM<36KmZ4MktD)!hRw!6DLn<-)F
zl)-Y?39eH`odQhoz`EV}BfvoItQMQcv|@~jr7F<Djf!M|)_4;(Wc`<<0ad1}wjyVu
zah}zl{y>*Rdf&k4lt{)H;sSIrPZPs+#x~fUcs5XfcI-o-n?0KaRj-O3&jEpC&aA`j
z4fM%r1K9M2y$DuQ^6G!?a)yN}S3tA~qh_QVNd+@8#;9W&%FQ@avEcy3Y}pQ~d5o4Y
z94CsVz!S4gic#coM!~E#CLv8~MUg9s@;mYcZznp&i)~O&CKR+oFC7dAQQjuSDflLY
z3!#3+-#|^8i9`GwJ$>I8@#4e1$#}1&{%H>&1@hgL1p$jael@u?SW`sLTvK>+qBi-n
z)owfdxXLEQ@}iOA#+5r_IS~RKPKEMDDo$R_W?d2r_AzCo5&>rWN@)8;;s7e{l+e~i
zk*!Ql!8PUx0|QNgk3a{kJO(wCII=&3D4q~=6~zoNP=#64mZ@oS2>M+(9BCgL=RM^J
zo2Ua!aRA;mXy`gxPLxanY995L{Gu__+1=+RzANTF1ZeNg5Gy?YY?6T71>8<SFj6zD
zy12wHh6<VEbTa6rD>c6AkNH=Lvh+pCul$-Gt;{nu>{LsNK<XjEpf6O1zEdsrr37^b
z0xFHgB3F;7b<PX*A63app$KWDy!ood$6KkzX{yFqXGQ6zi#1D?$EDsNk%mMZlSPJN
z9b|CBjG-upV9Yx;rjgiVgm_;e?kZ;-{0FXz<k+Z47~JLc1iqF)!zm$Z__;Pq$?)fa
zntVMsc&ZV;HPu=UrkTw_D_Y;vB-D-nH2}dL(WDlhyk*p-i96l4k5x0l<^qPAU~l#s
zHMBy5qiJPBlL<YRWD+x1Zq`5?eie92j(Vp#&mbJH61Sfu+;d<L_qHA%=-<F1@b@@B
z$X1gj{s4P2L2{~&JlsRlRXkYBG73(88MCrXu@*gQ%Ot)L#Cg&T;{019E^%Fj$gV<6
zRw25!R3#cbUIGX6ONkS)VXGgHl~*Ey=)@T+u=}aTQ7x^j;HavtN7E}5!L-GTn@hJF
zAue_UM3MF!!d8C+be)~4gm@jLP}=BFOL|YDT<*h9qj7QSi9KBO%zS$*BlcH%9SLD(
zhWgHIqJ}!39x5SZc0jqa6AEbr0>D9@Eg|;;-WfVhxwiHq8y72#9={KM^P|~x$-)eX
z7vpT1S)qY(J+gx2!E7=C`%x{TJl^`<)+1>8!w=bfTAV!i!{a@Z-C6OMv#0i=;*2(-
zA>lt{mKya|!n$uo-M4n<FXwQx8LOO_+DFMCIqRGyo#bujZL-;C8GuCCqsj?n(C*Z&
zot)@Ljny;A3U$s(EA$dGLl3|F;jhn(q2OVx+0}eLTP%6bK^I19FHCSQk~Y-aNWsOq
zAtE$IQPLrZsV?{}axpJTa|Cc4Np}Rexf<K$1tqXTr?~taJVKZG;cUT|iYcdahi(%*
zeZi-2fwU0t7tK&Hb@*sSp6Mu%Yr@vuR%mkv`di6MeFuU^g6V290rAc4F5VdArS*IV
z^D>H1Xy!uolV1|JzrT6=O#<K`M%j)7PIXGHbX^;l+m<1FU1jUc`sgrL1Mq%anh=Gp
z?snRP|0#aPZ%XQ7>njZ<y?Zw$eLx}w)p~gkhqC;*ShgYuX<q;d9@ros-R;;lL;!$$
zXX|Z7YH=Y`SPGH~-Cd>tApmNcfPW%)323*ZM^Zy)>kpeO0%2Ayczue9rgzaN%^IIj
zakP>L8*Vl=i2r*~rd`9DPAl&=YYEi9=2}CJy7;f13Wti*EwaPBo*LKsDOb>B_UZ87
zj2yYgO~{dpZeE5YH!eYs8<!!*=7hy)3lAenUo2<M4u-tF5B09fQ81ej+Q#+S-<M<!
z*IvFAOLSdiqL**FO~Vp7rfp~Hyp#`>v@|YIOA5j97HIc1J}4%6nnaHcHmET5NnGew
zYE7wRpl+?n2ot}%)zkd#%U3TL(aBDH-Z9Nrrj9{6QjhDIW-s3KG3@VZH1MX^j0c23
zsQ0G_s7b3uh$u1tU^dUENz0Dl-Lt!7@(dPWc-8zP$EL8Q6!iRD$;)6YN<b0qLDbG@
zJ;{QS$W>zLcyYT3SL*huAwO)_dWW=XJ(-PRS79baiY1C#=tmqxlZse9IN76J%Yzo8
z3}z<n;3h?=mEutm!wPT<tBPv#lLICOn$Yy_y{+FLKH2Oi__y1KQ#jHUMF6a6KMJVJ
zfHn~j!bqcl#4L;^vodEe#%r^dj={+qeXJSCXK%ezq5)p(_=89_$Vjqoxw?yyAbG3t
zGV2ZjG+uJtoLzIGCv}U?6bn~fEye2z<#u64`@cVgc|^0PxMEsPAy>S{9RA1c=W-v~
ztGAB6WE(y8`T9{0{`S9q{1E@D|M0o`Jp8)<^?#@bkNf?vANBi>{zJWe{Pm;%NP1rq
zDg9YNkhCQEkL7WFxz~!^ehPek;?LT&cTGPJFz5P>d<-m2oHqgMCh_`P36cHtgJPO%
z2hQYRH676v?zcJo1jn-FESXPMupcBBvz0oNovGJf5U=O6`NaaF#6L;iAI%mJ3E6lM
zTo%?h>df{e>Hlu4zrFQ`udj#K4SWdJ&Cx1iCQnN0jI3u=O&3|ZpPs7uJW^u`IY9Ht
zIJrMk>|%C$pS=FSG9f4RDR)&#WZ7x1j^9RUyb4KWEBT+<3X_RtlX8}1qfuU#Xqm9$
zG!3jf4x!D!Nr=IeTgm^sLeJaz1a1#dEv%aHwcOeZPT#VaBe!~o>Ss-w20eY;M{`d+
z&OV_rz`F#DqNP1t5Y5@-Vmdp8d=nZ1B`qjRUqSBFE2dM`87R3LEx{)A403)f&t{-@
zSd>P2yp>oRHP@xDJ-1QSNEjZ?@&mBW>SzpFS$CI`v+VPiwujVa2msUcnhPuEJ#=<B
z&cRq!kD?)`mj^JGXfaa2sKLpdY+IQ}ppK@X6x+taB}05zVg3L^u)>@Ic}<tBhzGEz
zu&|S}3}s7-qYU&yltD0%M(+a2F~y;k31<@7O8$7EZ*IY#6<k}f!dYSOHHaz{nz@p_
z!2TBSht}1!sVO=t6qRPlZ<De(oa#7mtnwhSG<i2mmFR|WGNMP#{frR~6a+h-6Uf$b
zlJo2;$-n>PVe<IN?~>nU`y++vA-`EdjA&>{=S1O-;&k41@TV}gbic;X(8mhlxFZu(
z<KEuo#_#Hdz(PMQeU9hXsy3}QiCZ%9eP7-TiajAY$Ue>B$e~H3^Prjsx-Nj>g8qC3
z`4<=+o+iJb2v{%wZTEiHdj#^|*N?yc`eFa;Z6*KpANC*K%6~t_=ce}5o7?IQC_$Rn
z1$Bd1eUpzSna-35TR)-*jN?>oWD{h_@Ay{s2Vz9ufdn?qzkujxKs{S6k06NaRmHwQ
z@at`F^}gQfZC?wk>wiMgHffF8;Jm6Z3p?9Qo++k|<%EFt<*>r*_HuTxJi|@Dw1Lu1
zQUQ=6^95$(!tHtrrlT*HWV|Xsp-ccS-(xZ~1$of=7L8F<o2gBBz9<yrdA>L;N^p_V
zqM-nlAu(*B%tqg}&_OX;%R(avVoEX6#H_=<3s6SF5dGY$8JU`~x~XBmF@E)%|NL!n
zFjZSU_(~5^nXVp@d>|jOW>7Gsp*9Gnq2p^As~#jZp#E2?>7&<ysTVcTTq>}Eyh(4m
z6G3GGvM5r*<<Wpat;NKm5^p=hOng^p_&TkkhZx(aT&>S*dhLxr)sT~by4xgSL?Ds}
z92u0ve3(y1xxtB?lxr{&;MZZ~X0&u_YGj@E5;-Qav>mAE>-R6ed-?iLNyUh+@BC2Y
za;Y5%+31%Xlt_P@_8fYvg@5)DpY0##l$lEFds?*(@HgY>;!cquZ|R>Nyo5Z6YMABQ
zU_M+gb}nQG+<|B2PA#hFB!yHIKG*k<W~B84*{GiF`a#k)-Q}uXA5)(U{`$Q?OL`D_
z3^2#aC@+U<kBhU5HJ#O0>HOIHY5qotOc#xHbKRz}QQu`b+1X^Ynvhk+=@9SkD!W!S
z;2Uvf;9(|5AW8h5OOzle&yZ6^3pb)h2qAcXpzxuCO|Y!0<`Jv96zB|S4c-w3M)nr<
zZc)*@{%DMvk^PE|#H!-;Bfh-+{l5jz8Py_&2=dN&I9nXb{wTT9`a8u<6J+kBxaoqQ
zI6MkRBuB2aSqT?6&Cd{rr;J;~=*!qJEKrhEPD;FcqGH8xhmd*Z!r2sLSByb9cyKY4
zSqoe467c_4%QNA&;y2^W>biEswpg)>V@=Ga`4yVkXw-%pq=h<C1IIH)6*h0U4<N=3
zyd@U$WtSOAS`DVbWzMp^oFGBFlyGiH3FhEpL7l>2zOTZweYE08ImLasDJuWiy(c2-
zmTJI9%OT`29)6s|+MX|Fs?h21aFLB$)%Z6Wdw;|$HX%p!@MkEbHLurUBbDS<-CK3y
z`E~Zz2VB!zWUTq}3aqt)xmNPSc->K2xw8dpAmrC#^MfR#@&rl!T+ZghY0F>z{@8FG
z^!S%q5?kJx!#f=5rbG=BL)xt=CxA*bjTxrkQib1cWVzR|EcvfbJOc4Wj)R%uL4tGe
z8a7)^_pyW6Mr;v8@rlX8vL|{#s@QJT>0Pk2YK*A+sH38wn0yfff%8{OR*fxZ9Oed0
zqVt^6z&6RB5l}{h=;ESuZC=b&?jAlJyIps-fnawcWSX{952ZokuQaX}&{I?e-wm=E
z%Yl`K15s7KDh9q-mFvTqR{@Vi@lHLS+a&Hb6u(L|<l44kL1$|##DcBXR;Z7EN{el6
z)X*vcSd-3g+_0RI7scfum&eqpBZSsRU^b*=d6z=3F?PPx7-^m&s{JIxQ-OgA%63U4
zDny}5aWyJJXP*v-WpS!VY5`~T*}<^<1pmUB0}mV)sklZs(q!$_pU&V2OD%F+kfXO*
zW0g%-4D;F;a>3YMp*>xxS-ZpOj5LWi(N)`Ya+wG;>j*3|ZMCl5R&AvJ278SU#&s}m
zP$BLbR<U;`>l_@{)@$lAR1L^%VPyGEx<oR3k6pu5_`^hXp_Rvfqn-;_gwu>;hF=Ab
zb`%Ig23L8Cpuw7qwjww*3`;T`uT4yr1Sxf8K*k-Lc#^`eRB5ZMVgKylKnWOWxdcty
zKLOxpiPI8s{%t-TgQ?WdY5!rb)lRcwx;6R|ZJ_;6ugd=C(e~r*hyT&<_r89(-T&R=
zhhYD+{ZPHWwg34EKEDS0A12LffVx4fp3hEC!8U_U8<+Xw0IhFlWPlqQ1Cd2V3{<_D
z(9hMue?L>A-mNLottrv9SRX5piUVL;<edrQgt@R_q*cG4Z*HdS2mpa!vNFlf74w)T
zcc0%ybbebLfB-Wbj^>k93IG4ie~KbMT6sZzgBy{_YMdu`rKiH(;0@bP-eqg2pn=a4
zD#}?(-~s#W4{BZPd7%c-Zkr<3Xj5(zCJ}mo^-+L~K+yGpRw(xmIuhv1qJ@Q^-l{Em
z8NhHb;QW*15m_d}V;hy2<6$wKua-mWLeWyZI!#EF?C3AyUq|VV&AJDfD(%!+RxF3v
z^kR6DU$n$?^i~`m<&$}f1XcJSXsuySO8}`vom57IKnK2m`T)@iexzh*QV7M6LeYV@
zDLKg1fv<`kU+<0@)5Cn}JfcHiF~!^)I}M~{F&0)WABe=hL@aO42l^}(2DHW(Z5;$P
zK8ZM1Fi0uWX=>;#6?Bt+Wn4$;u<@0+MffTRV1;d&2u3Xp`YXKq_=*Nj{nf+!m6sq^
z5^Qg;otR-oxO|9_*xC9FL14615mos|in27lzf7i}fyPiDBJ--3S=r1e`q#?niV)~(
za+Y0`pj}Qf1?^1hyg6UgOXH+6pOwVnm3RaETYH+o2h<^q0S1sdn<ZdvppMI6tf1+1
zv6_}~3`2!EldYYqEmyG!se)y|4JZA?mL9O@ub#bo_ww79&!4@2`R29Ax>8}hNdZY|
zju`_x)6si=NkC36T_VO*&wtySfH=NyU;OFq3x#nMS7F_GIXoR4zY39Th}*N*e|h=(
zPcg*U^z$-UCE@5@8M8OvgT3DWS2f3u(br{X_|o(1u3}D<X_wo#=nJaW$!UH%TX2d@
zTr+wNZ$+1gxgQEs_I)-UdVi+_2YKjGd_i_<0<jgB<0von`GmszK$v8R8+ac^=KdBh
zX?9=J9%cs`Yo`untOC(9fvon_Ei#FM$_xr)z-ceFOo=_J<VcC#APC*Z;`eozfvc(4
zLwF5(EZQaT7wMvyD7d)PQd!n-2uH`^X}NQRH!Px3%HbvJaw<9Dd~_I_z6jY3&twE|
zBrv;ud6_LAbh<b95#mmzutRbMhp<4gf`91kjegld)Z|ak<$gs%k+-ELl@?K#2tb5w
z!J7Wi2T2beF;SFib7F5ro_ckF87UGH(@ruj{^mFkx{M5vA|lP8wpnN|%bIF3ScX?j
zj*WTQvIErS1Pc<}egO`j!y^*`JW@uO9_qv<G9weF8FdWCBBdZ${qO+RD=<O2zKa!u
zfy>T6qIz=Bj~7s)!KZ9d7SoUO3J_qz2d2q%A3Ny&L4AUPsvRh&T7ggSI@sg~kK&Du
z20BHM7ym{*4+qn^Sx|xuni>we{Rjx1*Nlp+EkPz|mF4g)2KgNHUvwYG5H`k_(4$_6
zyNLw^5c(kqeRVpS&0>Ud6z_!2OW<aQ4sv<KUJJM9!Nc(NV*g-xn4O+xrroGlHj{jX
z!!^I9MdrD6qwj5cH$R;(FPz2L0*uqUqq~OtbLzWR@e~*!r-?uYSnRcxd=ApX{qFs?
z6S}5Uhsx2BEZ7%W>1~j3ObvYhzwSSA4|W(PM`yjY<^HM4saAFzTy+aO$-d&<Ctj6L
zx{AY2vgK^js;{`OE7mie29Syvq!{yQ0P7$IE6SqoG=TOo3eDkU4WLY`ph$Mt0M2h?
za5S%LQ2(e3509xf0CgGz74p>vkVaKVjiC0yn%ZZv+Q6V2)Sbub#+i5nXvdZPFnqoN
zl)R!pmVY+@GK;RKqecjv#OfM8-e5k@V*up#(E!F$!>HUb8UPtbfyjNO0g%He5WD*{
z7|}8c!t78DAS|jO&_31x#>(3nV!K^Egoy_sD)H8X$Z9}X>9-!ng$F~5##J?0tbbxc
zx&34Mx9K7u%?_uEON}}9eR8k7^N%S;kJE5WpkQCEsvrB?uniIjsnB)@BoXkQZ(Dyo
zTPFE*wmJm8GDJGDCn-WfLkzUM5nOycKFgDXK6@piPZSWc*zC8TI`~D-J5+14FJtF<
zNm#=T1Oy%w%w=fGW{KQr6xZxe+q%=3$E{J7J|6>g2cWB`b1TaY1~!v`vmF4laTR=_
zw#WgtSOd&z-_`({uLDG?vNcd<YoJKA)*4XdWkFS+HT!W*v0R=fQ-~0S6mtI_@X#N!
zNioI;lp{+?4oS;Zt+rEOmXL*jRG6eYQX4(Qk7dnN!ivN#Sm*%lT1yQc=moV-;xzOP
z2ZRR8A;LFaLN?Z%ROP7ZD)VWHiZ4tVx5T(%pgFVdh2(EYfkV(6$VBsU7)`?y{nb0X
zMz*i$EnExa5Uwm+TtGL+v${^6LEI(;j@d2*_~ai`eSx)gUG`cz1oB+)bUW6g@0759
zx;jmu1gIwe`hC~>`p~o%Q^+6*dbVtOm_JGGO~%QG?X9gnpx4UgbbPg|Zy5ExsX4h^
zp`VypkgN#y^JD^gOwdhd6c%f`I^D;3^38gzTZL;Sg;N0*47v%7Os_N7oXr-n@KMpH
zMmbl<6zdVX6>CiP@+Jnjev^6{hMct{X$HljOwoX-F7&ICdirSv`MB+0Tjq%La3nJH
z*iOOC!E-C~7)m(A!2L`L|I8P&8xn>*#G+@s-Pq`35W+=9fyZYiy_XUh&2_k9O1ueO
zfQ`i*6ez`~oRUQf<TX$rcnH6Uee7@bk~??4OfQ|Y=hH#uJiK}L{w?g;Ki_=F^KCVv
zT<YgTQ=OnIso5f>O5wUZFCO5LrfXbHP#94FKjq!oRQ(?fqE=+QS4k^D-x83<3h>Ri
zK=M&dZEy8b#ntlU{gyE&OLaPQ=6(_Af6AwdlT7&1GWkAVD7;TIkdYLrXAsBnyX3`z
z60QoxM<*9)^78q2uTnH%+iKt37`I}o1{i6`fE#<atEBnZuH#Mw7R9N^&zD=V`Ox$O
z$;o<KTW}$iv|x-QgN3XXb+$O5B!*xZnknT?OU|<g7W6nT6*ccuY*#rg5zy{LCD)sl
z>(7Y@P458UyEHr8>YTX9ZG$bS(>~0XBZv-P*i0D+OST(8Qa$QU&_MED`J}>1H4RK%
z;d8HqeeH)AZ{a|t{|>)-_WlJSHPWV+L$x~=qntafn@+$=FoTWK+~g-8NE=Y@X&ygB
zBQVNL2VVu@YdFsqhh)n0BzTqRkA&9UjoG%rb$4}ri$Id-`XKnLF=8`dMQvktnMxKg
zLWRau0%ZDPrAHmc-TzAL_gyligc+=<@d;Pb!#%2DE)*1gpYlo4()X+Vb^zm*p4|p`
z{WJM-lrGZwXKaPstW7*$_ecmPw`pRnT9VeHomPYPKEScVqhr#Vw{2g%BWMlUqvT*R
z%a%Nx&!51|kJUzSaA1QG8*@AG{<{>O<bY)H`jCA(RBW$vzW2Y~$aq_{&T!857%jcc
zo)u%x{<qrKMwEIG8{=h=>21}baO{qZl3Jc5AiH!AGT;FzWHCHDDn>`%07260#>i;V
z%*t+R3qH${?-*$6xOtdCsm5RpG(p`-3%27AkM`<1y|2bS?dx#|Yd5+*OYH4g(kixc
zn8dTqeMpB=Ox0;N8#l%cMb;Xq0JCmUT4W0cSvtVGC+xsd^itHj$g#elm=GJe74lY#
za`}3OaqeKxw-KH!W;gFT9IE<26aKh%!e_~zT4>vvIbz^#HA7lr{O{tK6j0O?7#MiN
zVq#-t+>TLqnH!qP-s)*8-L6IY#L7m<YqNz~g^p~MPsfV9LhP@=B|=2ri?f=ZX~z5E
zUb}A2=Y%+q_WDzt;&L{UP-EQH+ZhL?XYPVPY@Z69*;TbpI*m(mD<A^Rlq|v=LfnxZ
z!qNK+nb|g2Axn&GLf>~u?W#t~OEpmg!29%`Xl<h&h~`VF|3pUkZ>e)rXMc0l{@>=4
zvQ0^hRqg$(gs}6BzZ$-ItBW^x>Tr>D_y6zz{&%}MVh^7{82VEXXP4RZh%iewlTmXJ
zkDkO5G?4p>PCimIOJir2#90UEAxMi*1L)A%a4jGj8wG5!f3O}(SpfyflZWa7ptT;<
zq5{<D@}O2au)YThR(?440iZX+lGo!n{d$h`krcJuhtql;sO7|UyG(bAFh4REvsyq`
z+gYXOyaXHb^r05NX);JYwzraZx%&R}Bj%V{<Z$k74E>+QVfUZe;UQnURQ2^#ZJ>7i
z^tf4ze;Fu;HJ}Rb@BV0UeRPQ(8?*&R^{g7mAaV89Rvm)5L!?SlegZywvop%GLCMT0
zxAo$*n9?|cQcKOvCFIl(7s-dS&iUrP+Hn)Lf9(#SDJe_$dbP6Jg(s`w1vyz(OWH=J
zLkZqc7QxY^18zf1%egvkqQ{?-&$}6~maS$2RQJf4?x=!0Gc=AqD7;T2%%qY0OE*NS
z&H<c~QCc0V!`#?Yor}d-i}Hapvg29ZZJS-4BrP}JzSLkE)V36bf%D|y5uLx6kc1sQ
z{Z^;~ytF(4nOJgi_?*s?!<Ax>ih1NVoiBD~b=ny4Sq2voD<!2A<jtv3R9n$<nUA*`
zo-i&Pwyj{XRfd9esPLYqXn9_02Rx)+t3<&fmpXB%y#PhCQ&8LE62U~HGgVWde1BY&
zFpJ~+b-4f5m7aL{yXy_I)WDFd9RSbKNp?Vr-J<zPDYi(q9O~`G2>8uv2}ULj#K4I&
z30lX5J`g$wt6DrLK9`Otefi@uO3pk6M#%qUJ=$xq%p5EUJ4idtq=6DSW*buIQw!^X
zdY_ig(F0CrvxQ<BKqkJ_t+rS@+7W%LxW@zjGtQS;F##~)94O(!)!%=YA!~XCTU7Vm
zD4Sr8fW+v@zQ+@ddahW+_)~^XH${92@G;=KTyc^yc$#}ERt+;v{;2l((b4~Jax$AA
z;3|2(mHcs~Fu>c3DDY>h%IR#9B`vkq+Y0ZO?-g!}z|*Avhd=xw+)vekv+kzCSAfrB
z3h*c<LMgtLyabVm_F%=KpU<XRiKjraO4*KO3smTB)}e<8KlBiOFX{EAfec*#y*dyl
z&s`Pds)ROp%%hmQs_yb?*he8(Ou?hQ<S$!^BFf?<O}<xiyqJwnjxxm)*=WY;@AKK|
zJ`+6X5lSSx`Za}2IZMEbM{x&5!IXY1n=AGQf@U{)Mh1Q5ay7nyg{A7|YI}wgG?@3q
zcec~nv`{038{?H`xMDmWdoyh6DPHniU+?1F{!LCMPh1pLJ(*ARx=TUioGmVBfS*kc
zArIHlshaI?ic%d+bndmkOjc+4B0imvhsGN2d?xSipF5<>r9OBq%_I6{qW`Rm|I>f`
z^&=hsr?;&>5dWvwyUqXllYD;R@qa97UJKL>V&!cnO_P3oVXXfBg7)0z|GEv@b4`X-
z7e^-+4JRJqhMx+jV)<^Jm-ZDx(s+@Lg((M`eC#xjF$3ZZMwkKD_k;q>fVMzqbS1y*
zzrT6=P13<|2`B(jAjIr^h;bF*3%(m-?2gIUmLZ?|K`;Hd$`=>KI7MsoLX;TI77N8L
zRT0eaz~85{VKy4A)Pd?kd$&SiMZCjIy@tR0{CC8E$LjAH#D9lr7~%nCX=@(iSB`qK
z?5B&>R2^}&qpJvp3Q=W-6yYB3yXm@{ELU(c;1VV6;F6v$N$2(L%U3Uw4tm^7QuM8#
zU<DcUW+%C7OdF4?IGBy~#Q#e4S6h}$XOrP%Vx!oYsrt&DtFP2#wRh0h9+FXO1uuEP
z;9;HS->J39?jEWxeZ?Oj+Yb^B)EP$hf#>ZGHisv300!lWvcmH4yxnQJ4flH{HW0;#
zz|r&~LFf|20X;Lu{ISqFJ&vm57~-2q91swmZ>HHQf%6LM0+5x9-f*l{u-)YpA5Q2B
zV_nCXnd#ddYzKC8`gnt<9kCe8tu0Wq9vn<o<q?>4sm;KECcsGxCw-!Z_Fy*8r^4L`
z{9xM9XNU`g8L)qZJp?r5x)6IYC#}Bv_Srxr%C;bVicIdFRfF~l`%NG*9H|$r)|~^G
zctpRAKHCR}`Lb-`f&&iLR@9T~*F0ok5USp5pYGq@Z)50_V!FyHS{Bl!iH5?<)`laR
zLzZz9_ler#s4$ife5IM!SIoWAuPkdwzd92+ki6x^?P<F{;)a`>I|liN6q;1iD7m{I
zD@NABhCdwdwYLDJ<c_MmbBrGDSpPXH!qtp&qH)$;mb|TQfZ?YLVwcg=p>o;)2E-f?
zB&3so+GF(YtVY3uqEPd8aRmh-ZzXTZY(-<FkV{0*J~tH$6hPyY63QkPpc;Ke#v`=g
zHGy5a{j>-F+v=tKrsTlML<u~JDJ9v~pqBjsq-NlKq-9^gCNcnfK!m^0hZfxkGX)Mk
zV<LyahaqeZS`NJKvTw`yfoM|m?lb)%pRKiHq=eBbD*D-m=8KJqqGxDu*IJ0<GqGKg
z^Bj!KY%&HGzo1}^xcgxVBIyI>%)G_ly|?xI!zY{l1pjvXVDO5fLl^$F7=9M58g2sU
zu$%)vv*gz|wNI+*py*?2pa5h_J4EmWy4vNgZemxvBqpuz>eFj<b>wt)?041gTwiyN
zdIU!pW6fnOaE;N4;GL1~>gf#033s8ES`Gb8i*d(%Q`?f_xqTTlM9Q&!wc#208iQ}~
zk!-)1f-{{qfzsGji3#|Iwvyx?+%V~FLQS6*A?{7aN?0&a24gaV=o<M*lW=k{n#{_a
z2ZT!UBiefD2}HXBP9lEN4q<*fv9|g`D618H#<Quu?B+A$>zR_i_Ain@!4Um%rrt-n
z8>uX||ByUWpe7vBmp=0NIZNIbr|60ZS2Hv<%bd>1z+)B(Tvx#iCuOe01~|5rv&o8X
z(Y=%GAM+9D=Y9KTxDrV~C#}S1mKT@VNnQ#sqr?ZLTP#z$&O%h+9(Oez=Zk~M><ks`
z@sAN^co5$bzf}7$D-2$~0YlYfG+%Y8SLGA6ptsSTk38pFXhzX)F{^!`s7kPOBfY{J
zxFcwqLhFbb?T20<&$ujH0wC#^`I4HycQ0vyI~;R_6n*0igP@;^g0l(S=%pG(e%<aM
zjt@ARpRQ!9%LtvqVpXRwc|hq@Vpu((KeAEezPd^JwTV2qy|&1x?a1gsRJbM~+_Z)O
zkBEsI!!2=xwuw*y^dOMd9VG%ZA;P+ehw@k%Ms0)tUpquwc#wdSZfrJe$%%wSr_Yvy
zAo{N(>-h;{KOHrU{dDC(P6xK4)5+SZKT}8zj9PL1uo_J~)9NE=tdEsJ*lt(E*a(P`
zYj1mzHd^ka;4zEIEO-%NhyR$qailKLyI?F$*dwgqqBbFLB<x>yl%oD!s1&@SkJl)A
z*#Vy$_4G0xyK9}jSjMYz{L&^hV9lmKmv)t^^OUMHPZs8A3PkS-3fr!ft)zn=)N!ei
z*^7eFf6`E<6;|EuUG&=fXmqrjeVl!%yI=U={qLii``_(H|DhhJSKE(%*H`8G{k|%8
zd;j|re175gzeJkX26cm2z4TMQeE)X%>djx@xW>HmY;>a78(y+0R=X7ib%R*l`2BDH
z4{-nchd*2ktLuL%?tj5-C`tY{Efk|xY&uhd=r?NrIt8=WsypD@``_F9Ux#1G>))qp
zcRt!W+I6mk=L_UN5BP5^zlw8X3~F}#o&0e!8=WNI<Vvv7w)4~?9-@qNp%onuuJ=iF
zZ#ccoH!r>&e*gBx^Oq=-QTQqtzy6Ev?<<SFe)F13LdfAq08pn1Va}EhKa%9BpDR*4
z%_f6h+8M9luYHASv&jP*VlzVkV@?%|Z!kjY<6bW{IYoz%tD8nj!Xd$L-#&m~R;JP*
z*3p|CQxv8<_JWdhQ?Y^hI8SBZlyrKYE|1iDJ5o}hi1ec*@xOkbbUx0-ILdl@q^9S1
zGaJSmvVIK3GyzZ#EFjaMf)bC-zJp^Ec%bA9?e)7_OzjKBv-ms$t^7zDj6-lRUa&eK
zJx(c^kGx5ziBD(y$3yb;z^`ceEsK@K;kY;?<+&aLSZ8!xn=a9)9)9rI>kiQyD|>N1
zz^I>-Dr9hHt@geI6+1#J1|(|Iy@z+roSC#UJ?}i!$0{V}26bAh(zZGQ*Iw~HVuaOs
z9Xv$nO&;j&oTHx2OYm{t-36kbIw}iW?cTwY<Zh}<9rnzLSc8Gf!D9jDn88?W@qq;J
zq3D>ho5y?JxnH*YB+2eg#)ErX{oX<HG`V+hH!TdDb6Dq)FhM_9%^l1vkc+`RR7L87
zqg)jHY=^_`$EoRu3-85Wy9%i%3Y$*WyQ`>EfIap`1~f&n0X8F(Y$6;5&_gdRYQ`lQ
zB+w(gEU~qEkQvDKiuHkZiNHN6rl6mURulA9*+0(7qMf~^9Ql%{XC0YX@SB5{Ln9r3
zqBL$!mEP9lpkVa_mv$^jJ9~vUYf=0N?s08H$I*tgYKr(2aHYY!_b*?)8ovG8>(@Fq
zr#mH`K?^bh5Ck>;Z&ylo=j|R6qGWIznH+$dNSZ8x%^ZSF6`IpqZ59W^P;6FT;J{7K
z3~mA@GcX=clnj?Ze4b=6+h38wd5KDWJCVFyimfxnebVfhhUB>DQ?<4Jfj*>yqCVfD
z$e+(%4d1<a^*79qvt#vL$a4qX$?UM-YdO2AzNIl^$Kya3UuL{h=cloKu-wwpSsHm*
zU4E2D%BxwbuA#;@Qe`y{YtS|z3Im5HWq5+lMa#Bj+1>572cgYd6&8f4uvNJLPniDM
z5^PVc`v;G<dQ`b*M;Rg#m(y(80$iX}oA2;}4H&n@5p3t9g#DDo<z?(L&2X;QZ{ELr
z{^CjUHaDJh`k0EOd#c?p)!~RD8CYVL0Xf~fT|t^pdt1NPcgp*@l7jOHOtnxBIl2+q
zm<Xw`rG}(K-#1|aK6uQDBb-KcVOeln6!a*#Gw4Hx5E{cpK3<K`O^&r?mmWJ+AAJxF
z1SNj)Fh&PS-o#T{xcG7uce!f7HwSQExnr&w%zEF{X<2^Oo+@DoRUL3y*T%4%)GyI{
z`V;bC)wtmk?L>bR!tal==?OXpKAYs{?5{=%u|QFaH&EOKJ^>7Pkzk`X(6oNr+cEjD
z$j}KxfXLp!1M){izD|8WpUKf`fhp@E`>O&+=aM}6%lq#0*>qgs5e0l-C)qgy)d8Aj
zBsXK;7mQq_TO&|Xz{R94G_~t?a5S3fayL7U5TYptiul|6rrFc#wqLGE%u(*RwHvI4
zSVYCjwUFcTB|`>9fr&t-h)>CwAMTC!l!%zpP{5acmKcka;VXfRtWubf?ilKU8yi#T
zspQJVURO>D*&L$DkdkFvYWTV>=Umoqw?+S)+4R7g_SzlGsyx<Uk=kwbHmeZXMMO3m
zBVvI14S$x`qcLKmO=nWfh0iWivKUG`l7kRyDT-66K}F|n-~FLm57H?g>7qGkqTOMI
zKutc#SCpr*av)CIN#6;Jf*5V*#(uk=;H;tBMHYj+UQ(vK#a0nON`QQvyngnYkN+v^
zQI{q%*ab-uC7g=$g=Ll^)QRSMM#?cLV<1s_#(d3Ab)$2yM+*9Qpt~kEBe^{=4Oa%R
z-jz01m8H7f9Zp#YCXwJT%U1IW8yQYUuNrSVG=l(9MC|E@1t}9X9YR8ITnI1&G9d~y
zR8JUqFhIK#b4?uT)TGsMg;|*|6ug{b56QK?UI6ks8ACwvvd29X7`X>7Ph)YWx&v|w
z9gCx|1OJ%*{n=YM?tx&Vc4>@(XE$kQBM*DAk+82u%WBiw1FMJRKCYGREH*FRzJ2rd
zi4~`cF{<J*Snc94-%11yY#-#1wooof8&59EIx)ur;4=4rLW%vwZh-6ke}C71{J78l
zzv}hx9>V?aqpxr8e}9tCP5RT_&^3?e0nEgCU064X*Eev1QgBQp2nxw|7$v3lRp;LQ
z8SIZHh%pp$+?l@&Ue~_`u5bf>bUnOo;8X1g{OGcdz+VQh>t6-m<X!MhUIyRfZSWTu
z`<vrm&h739e6ZGB`HD9>TBJ1P0wpjEmGMB!DB@wcnyZnv;U>k^a3U^;-Ohq8!naE6
zbsx2{HrI7CKI+&o^2##szmaaLDLDh@=f?UKPlX(W6_gse;~E^h5ZrN|3D;UHJ2mio
z(;3L%D9oiN#gx4*%XZrlf$H6@RByC7E7U?Qg4Dgh9S}EBei}|!r{+j3)hmQw>#Gp;
zR99ZjKjkCPMW_}#{18vm`fT!<h6Zs4s9i3!Z|wCdCP{bbGIOQpDM&PBm4mjPTKTiZ
zGMg@+*nIB9l_-%rgk~fdt|u(}$6Buy0H#R%Ndw>5uVh|#trL$R<NGUe%rD(PnePQL
zmZ*pivs6F1k<*_$5&nWSt}m?7oe>_q`{Bj&_ix@Nor4{#S~(cx=iS`{1#9PE=U{Nq
z-JRy=%eEe9ReKX2lILirRHwS}a9T#_J3VOc2wG7ULsBus!jxH+bDilV<G=e3xftCD
z422h5xKZ!3v~!?OMKE<!vSH_B93=*3TT*^FRUOr>dOn$iGT5HyutQH3Au(<lu*wOj
zz#y&)wRXSc^bALN0hE{P=wb;Cs3wdO{c#bDF{<XS>8So-ATZC01stdoGke(})3cYU
z{{{z{o<MzQ#bWz|eO+u{{Wmz+H^qd~9V+uIsPmrUXi&^NQ2c9y$RRWI00lH@p!?8}
zXI4(88t{XC|JW@F#b+fhsA?iHQ<{nImmn6CFyU;*Gb?OH;@cAIB*^=sG6A0%RwS(6
z6X6TZlV?AA7;t5kWh+bf+a^&M*6(9|5t-TElsF*fvokLxE9ZypIKVe6GQgU9z^Yug
z9$MRoRy;;_1%?<pJDvr%(^6EWCSp2UoDR#6-E9x)efhR+{Jap8hlq&|t3AzEaCtY)
zmsMzB;O%RSls6EMuzAXV%e}MG5{JVzfw?PCqS~?5<IqFkG4ldK7CcFGs!NZ;DabAQ
zTl8IR%WwYEEEvyCS_Do>$sG&CKaO{u@(QIjuN^cDC}1$~fF--+0OAZ3dbgPxUQFQ=
z$mbp&@1fVdRj8^TywE=Dn*3X}05LdBi=mklzhVke<-5C0Lw7(sT+ixs4}^53r_MqJ
zov!|35ytnHTnC1#)QeR8zg;yXVyJ0g8jeYKSJYe|)Z~&ql~}3%x<9>Mo9%-8g%4q?
z89<~B`-muLAcEEKO5ox7?9!+@KN|{_<Q9-1q+85KwlP$_TGuIl?a{oQ&(!a5DzMc|
zhk$Um9MsHXq5tH5Q6=sgKw&#g^gOQXn%4vLT($^noT!w8dRtGTts>v<Sa?<V+o~@2
z(EGF|>joP!2c>~+xR_3J2t74}=%;uzSNm^?aZSQ)I6RkGkxsm$m7Nu7XaAVrWd+Da
zHUd<V>>q;|B%k1_OIlf>9zy^Ub#&W5rthw3WJ>J11vd7NMOXl10>Zb30`gO@URG4r
z`%w#8R2#)>bz)9h2!Vd?SP)SZK0Aj^V-X}|EuJT}Z?5()KZoPuKu1c=y8AVgs4Ih0
z{1XEh#N^V%WjUBZ0DQI9(Bh0-3o$|OqFk!}=}HA_Dg|u>J5N9oAX&pdMFWaqJNMBf
zpB^rc@L_XOGW85`UZ1!O%<745LTetFHKZ3WT}Nfy(Mac9SoBN)`WzjoHT4DhpS_{S
z7v|tPShL@oYMR*rnGDoFKPdxgA$7I~Ek%d8tl_6#=V<9^o?ed%Y(rV$fm}lo(V7~?
z?!dC89g4{$Uz4*js<MLiu0~V-fYH<FsM%Lnq(8ssQGg*qGBR4aGgRu!9l)IK-c6<5
z6YRIlrX3a@5sNygu(~wsR?w4d^Ok2Pw><k7#<SsC1SrN%3;cPPe_Vl}(aPGJ^w>Pv
zZ~s@KZ$Wt7{fe3XFOt1){&Lv+zb+34*6K3y2=gxGmBt9ODVXR@@J8}!z9InK^u|7O
zW>Pq-!kDDXH1)tgL6?vwWSn+pld)#RDP9?HP+cIM)A{n^!?w0wgMWeA+dtZ6Se~vX
zs!y#f&HUptT|2O%+P!r!lSW7wC<p0*4<$(mL9uqJW!@A4ZGz$j;L{UF)hk}QH7!XP
z#YLYjzXB5{8k^qUmLVODm`6BR&>@{FwK(btviUrpj&*G$nFbp_)hf-~eH{QmJr(y9
zNwyW;q7TFjn~B>w&{Jn7j_eB$3I&t_lUpO-mmo=M$%5+)_Wc-}4$2f%%qZqr`T!W-
z>6Ix&4uz|v6r+K&>PkFG2BF$`aontwa(M}5tvvF}JsQOjt>0NXR{3|CUFC`_I&-yp
zAyaC?w86&%t^(DwVg9jd`B{2{Fl}W_%Eqj>A6Jy_EvD=G+4Nap>LBz?VkTr5xGPI3
z0A6afD!{LiSRzm)(y-(!AU05z_5JHevZJN-pg4_d&`@<d89RLu2;h!kZ0;Y4_j`Wo
zJI+(708P<K!?Rq$+j6q$Ft;v^>_rIJAZ7pp%M1Yye47!mogb?fj=dIK<9}3WQZufd
z$?+c9xpX3TU)-{1t#TZA1lV2k<6?=c*xfrvV9=;-I;O^<5^iH`_`qqq#yH5{k__0m
zpT+<gkJzM@?4g?}Wjn)Z>TD^)QfyNv;w~+|i>SH5N^-SVZ4KDk2mN?&bI_s|I%35b
zmSV4zLdE{N9t0={3i|7JhV<ZGm)7*8Muu8z;3F4zJ6yr;x-F(g9EW>gFnClgfP_WH
zNM>CNLJEv<LQ9%PK^(j|=O&(mN9qwf9X~?)&U!W>#lM!%2HG{|Ly5N{VrD~DwD%3r
z{3~l@Z(h7_9NO`01UJnz&N}ox{nGL8wePbgQV|Yc%!#;mV@ow`1@X|vTWYVtcj4ry
z$2<#Mw!2H14d{>iit!xqU-u=WJ&?&q%u9>=z)SdHia<{W2U>PD<`?+ZT@y}Fa@lDf
zz;T|>#Z{z+A<`LO2}inc(17jTIa|4JU6BsOFoCBRArjMc@=^_g$9iiQ5u!vVREScX
zP;Qm9NSVT&Mfqtb7WCOV>}a!#zbibzMTgcoG{04s>4LLTFd8;3g^V~`laN9r3h}dD
z=xE>!I=yQ{Wc~nA#xQ)U2ztq@-LD04i+`)FN5F!~#96L4du;;FCQt8<lRCK4)TjdP
z*6$CafDdZ{8zZC3f-P&oYNMgcLS3wfN@hkCaLX9b6#|XHL(8Jti8@mB0s*B>PK)U{
zKbP>ly&?|9Mtd@;ZFQEC(gUWWTmv*(h8PXG`8M<^5Jq_u`n2<D@JVk%M)pJ?j`hsC
zE|eTwRv*~rYFQ_J>;^%rpLFAem+YscZ=?GX7!=I!0<IQ{?IbM|>VlG;!p_&ZXp7<6
zH^xFYIyQz~N4oHE`!F%>>&>|HDb&EhF&3SDlh!9~5T$dd>?9^=Q*5-K;7H*z*uYJ^
z9fF{jIy#B_+L8Xm88K+<x5WQGMU7wJlIzX;7f-ay!wO~$Vu6i0G>A3Wg@o#>(^F0`
ztec}5yN^b~#aNZYthSnJI0(`i?-rOSob+#|KJFcX=dH<Lz}+Bx*X>Fo6@e6+cwZEm
zr@XCm&1P9dQ=tWNl&t_Mh00Gh$yz#@q-XOPN&2yzWboWi*oNgk(H=J3UxB&FhklQP
zX*hYxnr+!{Rrk%7UAtSuA5KSRH|VdpQ#KtLq#}!CBC{fapNY(7A+t%yE}d0OXB2Cm
zzl=%~TB<k?U05Dpm~3V11(urRT$KU~QZ@`%1Bu0*d$R%{`1$F)<-RrIjh%Kz<*o**
zr>2WjGoIz-Pj;F?82wMSko0)GbJtkj+HTk->UBhMwR@cp|ND>W9-yB@+-_XaiL;kn
z9!e-E1uzcQ!SH3G%R}(QpDO~8l8z7J!~gzvPXeixZZ0vFo;cIEl1a|du!<uoG#ekY
z+dF%>IdjGjooY3AB2CH-93ZUMDpUhOk<ePzMwAx(uCb&NWXemOy^e!tRwuh_$?k!&
zAd>V>pZV3t&3~shBe6Z1q<7K44BsmpFdPFi6jD?z<Yq$5zL<hMrzqjhKc@Feoux)~
zBehwFG$U#GiNAb_Et=O1v!HN)Ajg^Wd&~XZF!x!dsIewpQq^Xwr7zl1)h6-gFI!3L
z-Z+q_VE`#d4u-LF=%nk!CS~0PJKnKS!<!h|UPl#oKME;fnxAPwLAxes?YMq5XtFJW
zDS@s4cUlG|3+H+Z)<U`7nzeA~Bu9Jn4mrEQ1NNm>!&ewTNWTl1cqTC`-ouUFHgQQM
z!tkpXdli=r0UD~Lw-mzT4eS5p0tl9rQMh?4CsI(b3a6xF>K{L3Ny@d!GNl`EI3nV0
zvnj7s{>pobpbX82W<$~D#k9CjgXL(}L8wa%*JFzJD^ihY6yokU(O}l-7T1y5hNI2&
zrzjOhq3+cm@;4WW*gPVwww==SXvZywtIRD&k9KP4LY9^<ECY5&T;}02ik6m_X^WUp
z2Qw+_BU`6KNn(vk+-A_y)RMZ-K=9$2YkGVm-7#Lx<Jm7AtAEt@@iae#KdY%iBFwU#
z>b%eHY0@UBRi`I;{H#oUO=nr1*}BOA@tqRTP-|s#7uTwEFOjkO8VRfQHw|6?ZmbKa
zIpnsGF4|2tD{j5L!&(#9AzGUaw}`UZ4R<aJ6l^8H$$cq9w_omvYYwe9m`(ahCv=(j
zySZ9I6CJF%8Ha~oLx5vzVAe7#x9#{7Hpx(Z(+R5A$n8y&R7=_2mDk-w)eU5JzNZz!
zISgGBxm*+U2dJ<&Ft}Uwp<Qoy(T8!|F&p{-L)2qKHr=Wd<kLJ(b|D`dFh~*dE)nma
z;(Nt8E8bH!RpO~KYF-NlZnw|5-bi~2kGk7BUA7>cwiON}ImN1p7Hmn?i|?NO_qQ*e
zy?_0;@1nD!^Fp}MG1SP9@?5R4NpV^%6Ya#RCe4Do<3uht!B$_se({90MU5sCxed)_
zc*4S|^0%XyDA+i!v>*@2E4Vo27_cn|6BZmD|Mnf5B6Unx7y3rMI+P&H1{9_YyY1=}
zyJI{kG)u6{2l~sV)4k;Ra5A?1&zuaCu{qFuHard_k-?Zq(3s?T+(w8fQY^9Z53wI+
zFeqbmT%&=Gu^P}-LdIkTB!!JHG`YNrYj8$X&A6i0M#$;3s+^wa^~R_eQ+!G{qTa%Y
zS(Q02E(jF@`tsghdc2yR(AOQk?{jzCX8Yg{+XuG8Hd84|aOOSr!s>)*$HA>b72Hd7
zWOxdW0FJ%~(al0s(fbXst2?$0$>U97V<PKd^Ob>Sa%jqQ*ltt*nBM0grVyoUjwZ*?
z--@UaVPg!+vTA)okm$w{Vsr#kcus|$B=_%?_mMGJ7&^pIf+WH1>u{@(ayeVlriK@Y
zI?Rlap&%FMKl8<m9JJuL4@J0Vngaus*qFB^=_qmK+=XpY&=T^K7jM38J7$%VCRpN-
z^oJvTM~(ConpFQ?TMQ(`pYf{>xGFL+t<Zl3y~e0Xlo1GfPWzyG-@9{%Hj6|szSu^w
z5z**V!W*_dmt$EmM3Vyrk0stlqf^eaQ9cA)sFgZ8kN{@LLym?P-_}%6V`_hf)mzLR
z1_JF(;4s1Lq75x}K!F6yZLUe82|oi$eCn_^yD|k?(>P1$R_wXtFkE{e<fI9V(z_pv
z@e@$nt8w@W@0x*2wg=9R3i`4oD9eBzkYy%?2pcB(C|zL-*~kkY9z&tLEDFe^T@(~(
zHskK0)wAH_0ZPJv+AOAbP`ax?;)2@GlS3447Kt`chx_XO71xw6PSg(v>^M*0S_H=f
zce%AAqD{%hIrxmgH9bI)?i_Z9u=|-lfr_oP5r$~Cpb>-#^U&Omp_#!Bzna*cIh?(x
z0}e86=jB^3fSjHl4h46^vm*`*z3{NmXQ>~;f1`131+o@PCA$|k61ResFKz-!ffS=O
zaLC(xk8?9<efz_+S9+=q%rnU%<kZ_^i|*a?Yzn(4IdJeCKA>#@$U=0CD{}8(Q-_g|
zy_Dn>o>*kJttCjL*IEeEl4pB>{UIBwDmMl)0HIU~EF<F&)Q+I2X*7MBf}uufvyf=J
zXAHBNk@6}l(YyuX*pj26?oh(Unw*;<jL=6Kx&ud@M;N&ZM5)`6iXDr5t!l><iz#<5
zanB;}f14_GIGajiHIAdSF&Z1@M09BkRP+_ynT#nw6lUH4F2WevG%TLc8>k#$8LORM
z%(NXTJftp@d^%el9%)5f!8u`Yw(s2a2hp4j4}=o#`kG0mVWV8PR}8FmCHke=7bmgV
zME*Q;e@-USDd$gW8G@Z2c9uwaItCLkI#jV8AS_aKusiiLT3RYc!K8#iOz6l7V4zX3
zsDvk56(o<zB1iV%CPJrib|3aRO7&0GpQ^>MejUW^huxN#3`Ki})u_R<Y-cuUv%zKy
z2HDd&7NdcZoJT~!TC8Lu7!62iTWF_B7Xe3V3njjhJP8UceNL`wkHiVjN&$em@c)8x
zPW!vqQSH14eRkjbS`r6@LS&c5Lj%CEac9q~9vy$LckbacTy&pJAm-CzI%ye#&jj)B
z3lskAsrFIS%Z!~COol3czVAWL&YM8ry&7~yGQ)*he8p+rf|YJAoFFUlkPmwZiH>~(
zdedslO^+=}O}r~8*}*&`5A?I=uiiZW%e&$CFWwH{y?AaN#V|1T!8kuihTpw=KK$Xu
zTdiK=gm<(<WL9s3Ee`2zW&!;cT%gqg)zw`(h9~-l6IStPFz7ksmB?LOwT;zVt<|(F
z4nZ%9%V*>=#g4mc!Dy*J8dEAVUoQ0C1us$NgfD6#<Asjm5zk)!H+ni{%VNJUuBnQ1
zFBgLrL1~L-%wBj$6|g}A&35tzl|Foz;Rs2QqqmM>x?Fg!dpdIdPzhnh$fXUdT{Qvr
zBY6ZsTSAZipJRTsHCr5t+_f6cb;IE+6a$#o35m~P@FRF$EiAqWg&)8)q4CYQe7;;#
zmY?t=BietdHtO@gJnVhF{k6{j^62sJwkiM1<J<f%KgH+QlK<uCy0C5%uYbGzFWc9{
z>jpm6`Cqng^S|8Yf4LF<r3B96U<z{UyC1$AK7aGwcW+*+XLOD3Jd>$ko~lE4G21%Y
zbslp182906wmkBm!K_XX!>8j(vF|?xiC#TRoQDUKS+>NI@R*ThCk`H{yFdI+t>L@j
z`{6gw-oH@q`;WGIzgPd=b$~qo_SKtb@6{0rT3}F^(<Vp9R*X%Aua+|;4a`>!3lQ#o
zz2NM@M*(8j%N+D0M0Q)r-%!s<V9V@NUN(ZX0(yiT)F>d+J>A7@m4KNTU`8hnCB4pO
z2+wr!+t+{l4q)go>wXuJpF_XO<!phNX~#}ZjcOtN@az@Tt{SXLNWx6Z0JG*A31@i!
z0{}aXTYa>wvKTEZl4L^x1%t+HdWh46-9$9BN(By^ciM?gd&KQh-kl`rxx?!wkU=;O
zy5GNf^*>Ow?^dHc3&8FwYrg&Cw^(}Ht-07gsIK$w<)6NL^YWYIp<72ME%56}f`0Yv
z-Mg3HzI^@+ay1gVFh}5IYm(;>2NZE9EV3{D^!CL&v#z$C>Wdt6bXHY;_WCa`U;jy?
z`_QeLO;4-~gi{amOTPU72;U@m<kXwl{OXXM6>?dNq$^(E6-mAO^V^rN|AGiS2FaU&
z1sb`eJW>>jC@pLf;NScw3@LC&)dYka2Yor6zV#}?D};^2{ZL-mu?A1eS+5p-nGmhP
zAwn=x8JeH$M6h7nAwon))nn_~0PK64P^f%h)v~Zi8O;8LHck@PE?lKcUD!(amPVJ<
zH%n+qfVpl?iuoM&ZCgf7Nxqn?qd7b-A+Hhurn?WYEzpjutQ$$J1=CK@gYx4_K^`ah
zYNS?qp?I7PhvZxvRDY<qz;1JlvQo}-^<_nd8?Y!j$p&MET2&ZV;rMItQds>D^I9;(
z&Bl~mRZ(RzRSfSG*OMLxNNT%9!V*;2N5*)t0>kzLWZ81e;6f5?IAEyMJ4Kr|F$WB`
zE@)g3AptR2F*vtNr7mbv4Y8Ed!suZfjU>~hXiMgX+FQvVFLbsLW4We;dG@qCD<GSY
z>NlqA#k*y!u1iw7UwHmoU{O<&tk97ijZQ!TP9-UzzqV!8L$7xxlMO;rwHo?wJ@aAg
zy^bkwM#$8@PjQE53nd92;v}^S)fSQs74<fk@yt4RwrS?f{FHWAqp&_OZ17E;mHoC$
znTkyEsk5VEbYw<LHJo8wWne@3CuD9xZ=BdcN@&n}<H-f!8jw#uZtKzXm_`SKFN)E8
zl`qu@0UZKIRqG*=hsq38O@F8(hFYjU5MQytq--w#F#UK1O~HLUNc7VTc!lLha1r5i
z3AWM?_}sS{Gc(2pC3e@)TudV4#W{93u=N)6UG8>_^^RvFV!N6~IW|v#&NpmNn7sUk
z*S^j%Pb+2)H(Y#vX~MlQZGwi$D4R$bn5cZQ$S(X9q@x4**x@|FF&#HN+KbCHNMNQ1
zjJDh*)4h$$p|g`IvGvrJ#zvvr?!*Zf3kR2X5LUC~1ZqTg>TIXg1{C?gE<iH|cwY=t
zoDo}xT_RVDhLeJbDzxJiCELBBDsv7uZu_v)gGgcSs3n~vbj>K?^oK!R{dRSY_a;a#
z=YGo>MVrn~7rl?RDo+(!yZ3{s9B0eSpG6%w!JoyK=#Iw+U^4Idlr0K4fa|tKvjv@b
z@kSY=N7#X})4hed17}I|)SC4SGt7u6VJXv$-#oUXO&EwB597P<+w*|fQAk-doXyoa
zulOf!QM&g|TrEG^Yp@IGVc-cvdhpphmjsm5Os%pBp=D-Wvpvr}MF~F^XA|Cv!YP-$
z8&cB9vzaMIY`DZd9_a;qVL(NqOQ>C0=RlG30Cc3b5|>XB;Q|eUBP`1=3UgSw7^Ruy
z3<$)tNCiTfh}*nrU4Rkw*_m1a1OT&~mPZ)BgzA}*Gu69&%^g)oVw{mC65Q$?1_`CY
zP`z+=QA0FZmL`p!I83Mmn;}v6gyL`%)Gh|F;b<&Y_j6d^Y(?VK&gZ_c%(Vp~s!XB!
zk+jqoh}kTOcP(Z!m{avm?zKFg;G;tu(1k(}m<??QpK@!-?f_JfrX?gif}j<uECB|9
zi)^H~5p>|lfkzo2L?&z132r7;l-4yurOS)<i%gN<@JP+-Vm`^HxpwJNWImlu$z&MR
z54J>d);ZtYAM_0Wn<@HRoE0U$QO}(QkhP4Fqqy6IY@py(x8lT`RH?}}>T*duexeGY
zLCp$g^%As-A6LZ!MDF!q%oe11DXi*zNiltu?03-!h~6z^YGONt3R88!{WynfR!M#6
zJ@^qL$f`qw794`QkZTM*pgzubOkMTR3>(rF2$>}0OJMfwNAiBL%olQjM6)()G&PDd
zqY1$R0PHkB%=Ryq{<`1=IvgzuaiRuo!EB-$#v*v1jB<<O*4Y%yZEzzJsFuswe2#)V
z7@aMG^{ksACBcqu=4f`NRx-%GR-#;JRtj6o{_K<8_<?vyA7+#d!Qeyt5LeVTg|?tP
zib{&)(-n){Q$qr3SJUml&XAwZK9RIi(HN*e6rfOYwK@^etZY<B1-ul15VZWRw>&r+
zo@GYXn9d+)8*)~h&+HtII4(+r^st!1h6rvg(<S)~=I5mNHGIv6J4@7ZdX6eSd*CHi
zkvp^}#eAsF@Yw{G?-2bU&~ky#diWsu%lqzg5S6&kOA+hd>oL)^I7*jt$c=!bhkh&h
z`?I&NU%vj+6OxKf@h~?*Z-JRDzS{31e9&&qCM!haj@uEAB|DtVX4U-B<a|&qe9F6O
zd+*Lx=8%||&_uA77Du!AhG^pis!=^J9^kllEfl;Cv>W4mu|nSDw9R_i5B;sJ?LD_g
z=h<+a&zDDmc)PA$+~y6<!*0)E(gX>=`+*J?bXYb=Zh$mIiAvrvsp(rt?T-@C#-Nw@
zunpc%4sK}jha0ylQ;e8m6iI}eu;4Rt8<!0kD^sr}-4JN2mJkb0QwIw)h1!2$4>S~n
zSs}DCM^OZqV}`_cY=)FqOVGS%Pa)M9C;`+e-B*nBLa&UoY>KxX%h`(7z6eGb=fxn+
z%5BHz#UNOH>{_8W4kp|2$RPrTyQdcFzE#>9NU+e=^o$CS<s?GpA!=M^lTRQu!|ny!
z+Ll_Z{k*%~w;Kd$>A;^yA*~7@qSOuprKJ2)4xl?csC9y~4_-CGemUiP(17iahKk)e
z5-IVfQb~&06sA<YML3Wq1MT9O6rM*!&!K<L#@H>W+s#!4_Xta32ewcn#SW3Mcf8m5
z5XauJ!`3zZDFoC%6=QHc5HdO^GyrkoQ?_u&M*9Z`%)u^kt=#70$*UKN(_%#Z*eOLs
z|8n&>BDNZDy1fBuy3(XSfNPyJ*&ZzR57Ok}fbU(><k5gah<OKg5n@e_OJc&NIZt&c
zwD2J<C8>?3<~}@TF2SlCP*K~Y(JVXBaEJ^8vGJh$7iT0mD9VO>mMw=kVZ&gq6QT(?
z-NL8C2?U%XzFj_)!-ytAlA_Q;s3<0t8Z1VmBrD_%lZE0^M>SPAH57Q!Zf)FIsw<N;
z2>RI(_qmlUfG=Eh-aGB=p!z0)cj$3ad-@Q0TMFM4lgcI&{3^H@TunL~YsGF3+bY3Q
zUl^47=JG=YOz*3ea5^HIOf2UP!_gs#q=p!{&8jpP1B#cbff)xIhZY8_pa*O_#ao-1
zRP>q_h)h7yGE$qq>JP62j3^Xa0UuY{7&zQ$i1KOX@&(vKral|9G-FRh4w*r%)9PA0
zJ|=~We}!ooDaxvO%71%1;%2&G?L+VG<Ooz78SZ?u{o{OuN{2|bp1T!sqjRvGUQ_iP
z?8Kavt=2GvwM8{7(1$;2vbI_`)ZNt_d%Hh74|@1H`Rn&J%$*L6auyA@0W}A{Mbims
zjG?c`2qQKF=}>%7iZC;S+m!{J=ji6pnQ_&^Cu&4K%y5jhnd!(k^k|z3IBzD4mGgV1
z=vY1g&0;AZfJ<%g5X@%eZ)!-pyJ=;P>Kz`w#YXY`+4DcY*ddd4Z+PM0Gd+Z5g1qZT
zuel)&r;i1yOM-`dy!9Wi=3}*FgU5aVK6*-rxBxQh6|qZTNAUVj(HnGZUddd*Abt#|
zY{#8idN@?9Y~;KeE1_lSMOf%`vZ3NgO0c@vF&nf!gX75+EaO}Q6aQ$gAxOZJtXvwg
zI1V@l)Ts_)#$~F1PRN2{`0o9)_e2*ubTePjm<T8wvyG#MfeCm;NzR#4U4e7?ILVQ?
zlqsCpbTbP5iKafklDR|>Uu9*Ir!HIB{PKdiP`r?oV|D2GAJ8*fLq-7<P}yO@OC;zN
z(A#Cg8FpmKM+ZZZ;4a9|UeT3K5~KsJFBv4A#4_9mU^vYa4!ZdI8TsTW!eNm<u{>%O
zQ;f_bNWkUg-Vzf~k?x5cmPEODwkC&aEap|Ik-T{mpc`cxf;udE$5Pu6&iY?%5m-re
zP97KAUur870$#ohgQ@z^otGHYQIv?rAv6I9Meso#V@LlLWDyPIql5TZ5I%&eH+mV%
zwHNV%PCc@4Tuj5ZEY_OYYp**y;C36RcoTTL*+B^W#RO`BqnBK>aaXCGm}6VQ?x(`D
zjS8ac8tf7IIVd~yer6ncLuIphrA{@U)SlDobsv$5rVGNoFaTjq9al!UAN`hFZS4O6
z+KHoLoX@sKU(Ck@{eK=+`Tu;~|N7Cx|LFJn{onN;{qFHY^#9qu_5b;4J~w4Qe{*L2
zj`t6f=5;~cAXZ?L@aJMOUgU7=G94%1+<#HdXRJDf;}AG_D2_t*LGOO}uH32sb%R)4
z-}C1N9e=(=2e0q;^JR$Px=ueg=<{=fE<ZQu@pI$Deq;P<oomir>3)cwF{&SEL<&ot
zBU!P&EMa{aCN<*Akl#>NF7*hng;fU*dr2obPd1bOgYD$}zWVVecz`fhs6_(J$|&zZ
zp!reW^UNP6$<u+VuKrmu?DsN_y}3ftrd_!;I73UOZvVk%AM9C_M7St&P!!TQsD3@i
zekOl}Kmf@%xjLpUgc68_Ei1b?t_9z}efiz9S3~qwAhZ4?>5KQ@{LO!xB-^fQ!prwB
z-VR^<_wyGozIlNb{13(Z*Uw%L-@SSDxA)egDS0HFBwoMzpW&O=FNQxnd;9X)A78yt
z?;pE<EzjQm>BZYOe|!Cn9nGF}DN&fc^4|A(WFB1a<NINJ^Wxj#_itZ3e<}R4ptTp>
z$6hHlEJGL<bpCipqt@$rg<idU{mqN-hwomze)sbI%O768{~rMLdr|7e_wQc5dh>et
z=a=8Sc;hs<-HQ}^@mGiD2rn!1Ya@r@$9e0o--ibV`P<$;IcN5cVqr@19`w=<+<sw9
z4wh_<R(trVm`#WP@qO$TbKnf6b5sChjX^ku7SIIrlk;JjPtmeVk@O%wngVUsf0}kW
zioNs2<BnM(>ddYV73emD0dPd`@F6L_Im!BsQI{XOf&vHuFEI0U#4^ip40`|_rSKm<
z3A=yn>#&TPT6QzD`n0skmnOCNXc)ZEr#j@lL!g_=E{I1}XfSbK3i~V8*QZsUBt>|N
zi!RkfDHeS0DOBX*(FzKCMyC20WFlVO76P3~Z40(2=_=~6v878ThK!Dei`iLORmnZ1
z%W8|0W_7GWGMkK66Hw%QoDa=4ODjH9@>`pg_Hn-Tah^(BxpaD-nk<v4HQjCh=0AbM
zeVhv(;Mmyl!k(Vvoyd2A8=bw{DW(a4dSC&W20`l}8KrH12N?u~=mBBF+LwWB$Wd*~
z3w^0nYKaRED#-I~MdK(n%}04zD*V78V+FR~R;Xd|#l$Fh2bz8`Gu5V@;Gv_YaRmN0
z##VPsF%fcosYXWO+Hy<7Do`xP%4E2mY54^iGDn_N!Vp-XfKz71R;@%hP@f^8SX1Vw
zMOU{hqJxo#YkEv!b*3ozt|m))gOGnrwGG}5M@qB&83S8kT?om8+ZBg5M*a#HCFE)h
z<~9d~I)wnO>PrTU1Oq!<gIIXea~-%4_rfMAYg*Iu&3?PHZGxlQeTX8J#%kl*>Zq!w
z7HwyjYO$lgZ1NQ|^TFx4>c^&dy$!$n^v5r{iT`y3CM~-f+9pDmO~0eom&|{pM;9{e
z_~E>G%0$q-M?7zf96cQ9O)e*j!ybvS`1!}d$9Z>`@0maJ_5zgj>#2uX{&CY(#j9V)
z_G)3-+)TFRdk0UFyQwa7*fYu6b&HS`_E@xNa=}^%62OPTG&tQn7O+11Ek8-J!M&}1
z?;v@a+&i!!G~(vLYVIIq>tApbey4|FsBr!IG?L2T#b2MO#yjUd2TIQy14>jBj=C8G
zb*2I+_a<Wxo3yAI0d>lP4nP;W?u@r1ghf1LP$f|r><j`Xjg}*}rY&a|Y3o9k@ppHP
z-CxSWtS+P|nU=D9=1P&Eu>`&DrRIwUA4t6VjUgRDg<=rJ*PdSm3=}Mtq_i+yLef=$
zy``2@rJQZ_E6s#s;XogXP-r}59Ng^QxDByDQ<@Ve;3dSS7elGdq7;$K$BtisZ3e76
zC@!!t<S)s=V&9y#?M{_VFV3<H!%iw&7|{Ji1h16lY1{7u^$a6WisP?YLE&_E2HQJq
zbfv^IFlY_YHTKz<k$IgfjDm&Ej<Z!cv3>N$*Xic2jN4pUs@o+*$2nVJYDWh}IBM&6
zY)QqsjU5hcP*!bmmYtx_813e0o&$n{8f)w5qQnlcUtLYh<!W@o%|O^@9`ic`Po>dL
z{_p=Fje?L6l6%R+ew$txTmGkzCj>`;F!s)ZMyj|DFG-qllca*55Vd(+C5bZ?dT4bc
z0(K=cNv^_9lB+P3q#;YGVJbdb8J3H2l(iTNlS?x~CWiK%Qh|P|O`*Fh$=QXVSb(n~
zLjXL9n}dF@7q1p@j*XjQ8-9?F8lJI%(ifmaM-L25lY%j~4$P@0)jhpz)Ja+!QULU2
z7BvnVpS}Iw?%}-7V<VsJCXag}z;cBi3SN3EuA|0(tEb~}Rwos*qNZ_wd7Dqv9D?f_
z`&O#|T(_Iny@NIctu#spuW?sS*+>%8Nh@{fK=hU%UAn*&F?@fmR@8_7UKjr=DX86!
zNa$W6#K4B64TSk$f=q4*<`*uEKkO+v+#nkhxtZM!P|~%$?-~NSF73FX5H3(P|ESBG
zFswTFmY8Y3OrQpZ#8h`v?`bShIiI$7Of2DgJ?1n$P3>mrsC7ai`f!#_tQOKDlScNl
z!&GfsYP*7M3U(#68=0ECE#Yp2n-G|V8+NJpA+rtfys+B%5*F09(iIJ;KlIZ6o(0B7
z{lM;>bUzt7;gw4r83FfK;UDCKas5qERW+NV!=vXqI9DTa4r-<YB}V7tN<f*$$MH$3
z@M}t>g{W}eWIRmV9dIxNry=3L=>q_=aNL7V@_eqI0%r!pq6wCWbwE2U8A@Vz8GY01
z$eks6SS=N7h-a_Jca$4{FFP0^DdO1b9RhuK^Cf6P!L2adsRMwWOIW?jT9-3=7d62~
zAMNwqnl(21qB5GiujZz5%;epvKx@%XKK+g@C0#?B<OeqSI7tj6s0j-~*2D!;y=XfQ
zTiEe{nd>C4JFJt`P2`hhrURqcK{q)-IATQoK~9xA0LcyX#<VU1O=)_P!u@}`oTbwt
zl3+SI0ykC1!KqxGru(PGbkI|OvU3)R%<!b0aWCx@hjg(w1a*36nV-(n4uza&Y-F9o
z9=O=2okRLF%JpA<uIPcjtmg1nwwH~^sm<OOYIxOX4XNWPe8rBFn1-F+@2C6Qvb;h?
zJ%fL@f$I<VS$H872Vb>l#!x%Nvoo4x#VO_;M32`4R;p@ab6aQ1yY9Fro^7_Ko2R5!
z#lKvJ#-OI$reD6-u)?NBqd06-dh=AH&C}Vi*5<UMTjKe<L`AQ6H1AiaZ#s*#cO?J@
z#Nm~35I|rhTp5NLQh>DIA9N|V!Tz@XCiLYj04IDJTM8D1o(*OXI)M0wK>Ge>q}KTW
zrC+-TSaF+VV3vI~<54v>2Y3iO-s^ze3-a!cg{J=Bkuo=&P+F=V3Vl+dr~*%cwTRrg
zoV>EdXS=6xyK$zzY#M=q()zRz@Y5dTi)~j_-W{|O)MIy}m3O_$;{1U8t`xbk6xKzc
z<5r#7b~>{=01kQO-uMVzsyF^nIK5G9+v&}=+Z&y|QD44cEFFq;BjVVkd{daK^YN;L
zD?{9w=m<+x1VT%=<)cZGj`gtLhxBXv+iHITX-0=tq5)Me2ZKb9s47IiOkdPApi&k2
zxVhBY4j%IHB3vI#oWLDGm0&dpQlF@Y0Ry`0@FF_aA{hOVbORv*j1Xq}Zw~s;N;Tv;
zM+j9@v<Gm1?Do_CXD+QaGo3Pswq5?kBcTrMsy{fxr;x<YrU8yDdyJHDPN9XowDL@?
z#bB`CM<o(&dc4-X0^6p*wo`zK9=FIr#bMkcBY?JwJJ>Ar0={l@cAtQ$kd{Z)I5v0!
z2*h=Bpl3|78C!hYDZX7%T=iiCJJ21pOabR~?B`nq{0~3u_Z5i!ZOo^tfAu+YSnzh6
ze#uNr4{UDFeDyJ#P%0N^ZWI;@B!GZ#syd|zRBy2Vpk&6L>3q8oTd$8HxJ9Hd*3pUP
zkcu}4Pi>1Eme%?-gv)_qDys1=t_AhQj4Ux8g-sWj7Gm`@S?ZaBntlPQ`WgSF5mxX9
z8t~?FN50wKv-OvHesumw>h^Bf>+Qz9-d*48ZQbkbpx1rwRKKd%wm^NayOq7()V+2{
z&*spywAbGQeIBqxOJTb`Oze!egG@emEctXEB&3CP2jz|!ljWe*qT&yzep?CVh%x+8
z=+QFo2rN2I`K~2?4Wa!&!_-9?w~j8*vCuYcXS&-Rv6S3q+HGf&oQZ@{@+Q)muIMy>
z=87@$?ux42u!OAcEgP@h;C0xtOJcE>MG0NKYFSl~R~1+5*0Z(nbv<9hXub8kO%Ugg
zJPgF!d5J$wdM<Z^gKOjE-o0~GCRay3m3-pzERGjD4vOG&?ilP2st1AMRjwI?H9RlQ
zxxN6auV#AP8)kZgfn|Bb@w_n^+_Jnc$@1LVmt}gQa*Q_P46oaO;cdiDHwVdCuH(YS
zPd8JHWDk+6==h>Te;wskz}Ko&V^>Mj<Cs2fCGTb?W-VlFbtB~&Sa>wYsEFetqtNW&
zr*V-c7;1rSIY*R2Sv51BU^}Ps%!GG++;Pl3eUR;!Ey>ZJMik5>F~jQ8#WjbI7muc@
ze-10G=kk0tfSUt#7X8D+?XMrv!HRfZ<<Ux>se%)g;S1c&jl`F`)yC3;XSNIYsBOx6
z<MBY$?IvPDi!m^l-SM%IrbEtHP~rH1eEoYfAm*gWo`W<dKq3)ZprCpIy-EszB$(LM
z{r>I%tWoq_skaTO!J0<|^Sj^oclAphKsTJTC!grN)92?p$P9wck;E=4PLGlE<GK^%
z=jd*vPasc`j4TTx{<h;6+Z}l2EDv+JkT+Y~m9tg97;9&1`$lGKTg=w>)n;qE>1=I#
zvsHC~Uo%_V&TMV(@kZ#+*0wua+dNy_{%r9QH8<dWxX(`2V5mQE70&7=6Z*{YsyIxi
z>DZVzlKuwgTyX<Z^GRinKR9-DPt=<e_2xtm+xWw=8jq8`&4GdhQo}LI4ky9vSfWD~
z`lDe+z>6dsQus~LhA)YHfJdPp2O96-j%F3hz_$1ECEP8Y7U$xQH1z#Y!=c8D%~RXL
zaE5ezb_ZKiw{Mf+8tap)I@?|yy#npcEi`RS-8}u;cAz#y8#sHp2MWY~pcKY^>PH=4
zC?aOei_wX9M{L)s+d$7+yZf*Do*}%RW}Y+*iWpPjV(WNK4N{3QkF3GKv)@SWCEL|F
zwS4nOMfSEroF=QZw2|QsQ+fNoRchjk!<cP{1Iw(;TFRf!&Y1d>{mdARx@7xfB@Gsb
zal%#g2mZM2Se<Dwr0xT`{RD6PI|@0<l^FWV<k}c+S7NvwV7O+~1gjYMglRAeD7I?E
zs>Vwn5IjG-bZWNI;3c40$NTZ}u+5es;Qa(w@%T`CH5u^@cZBwpHUk8Bi46h1)JOw?
z2=3n_(5*NuL=*@%sYN_8+j~CEW|0x{JvGcqS6mxh2MMr6_xOT0PJyfe9$jvo<2@~f
zaG#F%q|ia#ls5;?P{#UKd8uG|6&PC#dWI+<TKc-~E@#a1*g%7SRk6&lqt4)PUl|t6
zBG0Fx6|zIHC1_gh(x;n!`<|{dO?A4sx3BTO(!6CONAp&Xmnpz+j79Y4b*lnot4N3O
z;xw3WQ4g#kJ}hU70UUmSS+OYay+6LBZ~Fblawbf*tqiPQy9h^p(jE#sV{Lw(O~A($
z93fgtrX&k=9)h-AO3Z&)37~BvNp(=Qk;Aw!q^DZ)G&aF^Sf3=$u|!YPZhxoP1+waP
zqpo-Iy3`B-+i+s2t<dV-lQeDPsC!@>cl!btc9RfJ-`Y5-((2RLdZO77n-_uQrX=cA
z+ZSo`A|h7pZ!k{BJrEsiHMH_HMonnb1U7+UYUKXPXuIA4?kpY;xF=!_N5_24GCuBh
z{WYZ~hrb<r)8onjwzye*i3zC;VM2<)1qV7V;7cx#y|N}(g9_j6DH+xR_0ZrM)2uZ$
ztX(kJm>b*Lfo-yDt-PA7IjYn`LuXiTSkwNbIUJVOA%xDQF{?7;E0PEbmutcLl6<x%
z&627c&~s>y%+zYVF*My)Q7g|p_;f?tlxL12(3d)0#A&`fnxW%VB+Av6Jsd#H7#m#%
zwUNeg%c?R-(}|wqvuW<sj@g5587V6HS?r~Mv6j+}Or5i3wW+f;2KFEPO6`2@+_#Y2
zTr1vo#CX@WPW5e6MUZYb;`Bxzt;9pC*+TOhVIq45s}?+mQv3(N_wnED6#Z<LdFfcH
zQdHLc6ykmD82FsK2Vfm!CrS|H1wYiz{=GC?QWAm`^D%1b5Ri>|*r5NS+kb3W3&z!R
z3Vz%XzC))^`MT{Cw_|3U7(%~w_uZRUKfJ)8PEXXRBh4zrASQxcWYU?WymMC@F2a=@
z{IxDV?BG)+#JY|-jzdnhB<T3!Xr*C=*Grw>P3T7>gn5Lcxs^qq%{iS;pre$~SZKnt
z&puZjgsRLg*|-z=j=qFK9aGgZN>ppw)>MrK2)mArCKPBDo71)|)Qy!AU^b@}Wjshw
z&M)R`$#i8f7VSCQJKod$V?{@!r#>`KZPAIi@JT{Q@UnZ`9fh_umGoY2_EqoQ_v&5I
zb^)v_0Z@V>V(^OCYaNY)3xsV50N7%*jD*6aWFdD(YKJ$fkzk|X7HS|mX6#8tp|693
z@pqAr%t25fJ`YasDrUkj<IcrrDa}=xS0i1T5PY2Znp5WHmCNzW33C$XVrOdT45@-`
z0uXHCES@p&LpoS*p6vl$2BP`cXSgouINm+;PF<{%W<ZhER@<qHRd-2Um81*R#gkYU
zeM=?PFPufv9BtZZq8CU6^v=vPcbfO&!5{ELXM-ijU^5x=SbJ~wTK+Bf)dBx~@EBj6
z9Tk%tVg_J+K37vy$!@~uYbc*QO<EF8$21~t($SM!s}7h*r~wPp2$+|I?LoIA;;!oW
z1_qNg81tQ<FxA!Nj=kmX?lVTn`e5yDRk5y9tPsVh8NFk|R6cNv?vM_TOMsjrx7Q8z
zA9f8dPx(z(KyPz>D74Gtz*mlXRNx<tgx;nZQn+C}=mb*7xNSh)+wL9MX=5P*k8@f;
zv~y|+-#K(wY?Cp8X+s~+WxtUdY@*=Op#cGpl&=1!)=hgedZqhWT&`WY-8f{+G~#zX
zGQgA1n?Osz>2s{7UhMiTx=|U(n^qt}@&ChdWOA+B_@LY0a)K<FSH_Q{tu@!9Nijz*
znJ+$NaCFjv5Nx+RRcT=PW=ig&@o2#cO98>vrn+i<OD<-?(*a{3X5CPLh9WOfb$RW-
zpCrz~Vc^6R-Km;RZ{jekXw0=&2&w7-H0W~c9Z%s5FV(g|*9~eqVxIYhooX&_RAC(w
zJt7wV8bIOFN(4Zq+z5vzOA;;DHwVXz{c`{)Fl~i@*Nx;rjk@E^fb7Ynvn|LlG?=t>
z<2x5w91w+FKwz^00tO<>6HyHKkFb#V$J8Ma5l+CtXGiFJ*3u6wE2bFm9rB#P<BKxr
z|Bu&Ohryg)W>soYLyw<#oY(dP`cNN)!fUCaY0En@y`+!_x~imq^);0>Tu)NG+wk=#
zS6WF<%ezVCLb_zjZf~Q`ffQ@1iXt=Ju%@5b4HZRV*Q*rQChUGslI+91$#{>}X-YJ6
zZ|isJD@6N9Elsk)Q(?6wsI^M93QHG+`)=>@Adq45kLDscaX<0xB9<t(f^z^P`$%UD
zwR=Y*syO2=VqZT^P;$&awn-`k`ECQ|`%bF`8o<H8kNITP?`YGd2WkMGtYmzDC3<j}
zDGU`(4O}v-2~qRWb><`gn9@jAO@NsKb6yeB7LW0RLEn*asK;R3;`f=)I&{)dWA+#l
zxwPBbjM#a_RB4`tWa-_M-f;(~#?|pxEiXDt`^!m=4##Y^TiMCb%IZo}gV>tI#1c@`
znrUb_o8ir&qn4oJs4thYDw|1wVU4}AvU8}lE%`^&A}ZSlR>U<J3grbxABL-|LY<>A
zs;|7e;VW5aA1-CLy^C;t=%l~hZBMPqv9Sh-hfw>1i4=BkCm0!gylE@gv7y*prl>vG
z%PU4Frk7PJyL1t(DG9+_<RJ{Li2!T2tzHy{O!ZKCIc|#waqV;!z9x-@Os7BTIG-<%
zQhZhB>y7+u<ZY_I!@;`|%#M9q4N%wcqPmz|-XqKx40K2tGVuxxgMzS?mm;p;U<9dR
z3aRGdR+X~OM}o27I519}zuebD66TT-(&ip9l#J-<sJ3T8Lw#3l4&TBJKyS;lEcMHP
z-RoBL5+lSfVy$JpPH2z>-1gJByM@Mfo&9a7w@}ikTFidmH)wnZjKHx$;6Z?r)_|QT
zvG#<)2z9py;RNi!2zbW>W%b`ebsoUeV;uwN&qIYq{j)bQSojKNCOk&{=$P0Mj&>wO
zwKFg@?QLTLcr&YJ3KjOpfc-IJUpap}D0O%bNlW<C4Ekrw!W@H9$-&k#CWkTXtXpFB
z3*4wEA8&2L-KdW6?k_$tkaHJPaAAwjy{DqTA_0ZNuR&LxEt+y;Dt*I)5cG9(VA`pe
zJ!#SFbccSR&q}lHg)6vS!iL>WwTL)6{MYFo!vL12`(mUifpjEQhlBf~pDxy6PK6@a
zave0BSido0<Riv)(f3(L_`;Okt}1I^3>b%a_pLFx+xHXIuaot?r(!qT|C7oAIEjqF
zN#zinRE$A$RP+*14ST@lo3QkDW$Eq6bkyf^p(xiBFPdXTqmHl56G35Cojfk8WQU7(
zu&kaR8~1G|;1}v49uE0Lh?ofDCYF%w$c2$)RpHG+%fyAHriD&{-uJd1n>Y504hBns
zU}H8cg~z1`8UZ*CARPyg>_*S>wF1CA`R7hCdi%Nk+<tC9x1Zb3?dSG$`?>wxer`Xv
npWDyv=k{~^x&7RJZa=r5+t2Oi_H+CB2|xdTJUw-$01yNKh~jRH

diff --git a/trunk/svm_light/installed b/trunk/svm_light/installed
deleted file mode 100644
index e69de29b..00000000
diff --git a/trunk/svm_light/mainpage.dox b/trunk/svm_light/mainpage.dox
deleted file mode 100644
index c09c7e54..00000000
--- a/trunk/svm_light/mainpage.dox
+++ /dev/null
@@ -1,26 +0,0 @@
-/**
-\mainpage
-\htmlinclude manifest.html
-
-\b svm_light is ... 
-
-<!-- 
-Provide an overview of your package.
--->
-
-
-\section codeapi Code API
-
-<!--
-Provide links to specific auto-generated API documentation within your
-package that is of particular interest to a reader. Doxygen will
-document pretty much every part of your code, so do your best here to
-point the reader to the actual API.
-
-If your codebase is fairly large or has different sets of APIs, you
-should use the doxygen 'group' tag to keep these APIs together. For
-example, the roscpp documentation has 'libros' group.
--->
-
-
-*/
diff --git a/trunk/svm_light/manifest.xml b/trunk/svm_light/manifest.xml
deleted file mode 100644
index 00e23c6a..00000000
--- a/trunk/svm_light/manifest.xml
+++ /dev/null
@@ -1,15 +0,0 @@
-<package>
-  <description brief="svm_light">
-    This package is a wrapper on the svm_light library available from <a href="http://svmlight.joachims.org/">here</a>. This package does not modify the contents of the original library in any manner and only wraps it for easy distribution with the ROS packaging system. svm_light is not under BSD license and is optional for FCL. Users can choose to use it by setting flag USE_SVM_LIGHT=1 in FCL.
-  </description>
-  <author>Maintained by Jia Pan and Sachin Chitta</author>
-  <license>BSD</license>
-  <review status="unreviewed" notes=""/>
-  <url>http://ros.org/wiki/svm_light</url>
-  <export>
-    <cpp cflags="-I${prefix}/svm_light/include" lflags="-L${prefix}/svm_light/lib -Wl,-rpath,${prefix}/svm_light/lib -lsvmlight"/>
-  </export>
-
-</package>
-
-
diff --git a/trunk/svm_light/svm_light.diff b/trunk/svm_light/svm_light.diff
deleted file mode 100644
index 86410f3f..00000000
--- a/trunk/svm_light/svm_light.diff
+++ /dev/null
@@ -1,543 +0,0 @@
---- Makefile	2011-09-06 22:14:22.363126903 -0400
-+++ Makefile	2011-09-06 22:14:53.859177783 -0400
-@@ -11,7 +11,7 @@ LD = gcc
- #Uncomment the following line to make CYGWIN produce stand-alone Windows executables
- #SFLAGS= -mno-cygwin
- 
--CFLAGS=  $(SFLAGS) -O3                     # release C-Compiler flags
-+CFLAGS=  $(SFLAGS) -fPIC -O3                     # release C-Compiler flags
- LFLAGS=  $(SFLAGS) -O3                     # release linker flags
- #CFLAGS= $(SFLAGS) -pg -Wall -pedantic      # debugging C-Compiler flags
- #LFLAGS= $(SFLAGS) -pg                      # debugging linker flags
---- svm_learn.c	2011-09-06 22:14:22.363126903 -0400
-+++ svm_learn.c	2011-09-06 22:49:10.011383409 -0400
-@@ -26,6 +26,509 @@ double *optimize_qp(QP *, double *, long
- 
- /*---------------------------------------------------------------------------*/
- 
-+void svm_learn_classification_extend(DOC **docs, double *class, long int
-+                              totdoc, long int totwords,
-+                              LEARN_PARM *learn_parm,
-+                              KERNEL_PARM *kernel_parm,
-+                              KERNEL_CACHE *kernel_cache,
-+                              MODEL *model,
-+                              double *alpha,
-+                              int* nerrors,
-+                              double* maxerror)
-+{
-+	long *inconsistent, i, *label;
-+	long inconsistentnum;
-+	long misclassified, upsupvecnum;
-+	double loss, model_length, example_length;
-+	double maxdiff, *lin, *a, *c;
-+	long runtime_start, runtime_end;
-+	long iterations;
-+	long *unlabeled, transduction;
-+	long heldout;
-+	long loo_count = 0, loo_count_pos = 0, loo_count_neg = 0, trainpos = 0, trainneg = 0;
-+	long loocomputed = 0, runtime_start_loo = 0, runtime_start_xa = 0;
-+	double heldout_c = 0, r_delta_sq = 0, r_delta, r_delta_avg;
-+	long *index, *index2dnum;
-+	double *weights;
-+	CFLOAT *aicache;  /* buffer to keep one row of hessian */
-+	
-+	double *xi_fullset; /* buffer for storing xi on full sample in loo */
-+	double *a_fullset;  /* buffer for storing alpha on full sample in loo */
-+	TIMING timing_profile;
-+	SHRINK_STATE shrink_state;
-+	
-+	runtime_start = get_runtime();
-+	timing_profile.time_kernel = 0;
-+	timing_profile.time_opti = 0;
-+	timing_profile.time_shrink = 0;
-+	timing_profile.time_update = 0;
-+	timing_profile.time_model = 0;
-+	timing_profile.time_check = 0;
-+	timing_profile.time_select = 0;
-+	kernel_cache_statistic = 0;
-+	
-+	learn_parm->totwords = totwords;
-+	
-+	/* make sure -n value is reasonable */
-+	if ((learn_parm->svm_newvarsinqp < 2)
-+	        || (learn_parm->svm_newvarsinqp > learn_parm->svm_maxqpsize))
-+	{
-+		learn_parm->svm_newvarsinqp = learn_parm->svm_maxqpsize;
-+	}
-+	
-+	init_shrink_state(&shrink_state, totdoc, (long)MAXSHRINK);
-+	
-+	label = (long *)my_malloc(sizeof(long) * totdoc);
-+	inconsistent = (long *)my_malloc(sizeof(long) * totdoc);
-+	unlabeled = (long *)my_malloc(sizeof(long) * totdoc);
-+	c = (double *)my_malloc(sizeof(double) * totdoc);
-+	a = (double *)my_malloc(sizeof(double) * totdoc);
-+	a_fullset = (double *)my_malloc(sizeof(double) * totdoc);
-+	xi_fullset = (double *)my_malloc(sizeof(double) * totdoc);
-+	lin = (double *)my_malloc(sizeof(double) * totdoc);
-+	learn_parm->svm_cost = (double *)my_malloc(sizeof(double) * totdoc);
-+	model->supvec = (DOC **)my_malloc(sizeof(DOC *) * (totdoc + 2));
-+	model->alpha = (double *)my_malloc(sizeof(double) * (totdoc + 2));
-+	model->index = (long *)my_malloc(sizeof(long) * (totdoc + 2));
-+	
-+	model->at_upper_bound = 0;
-+	model->b = 0;
-+	model->supvec[0] = 0;  /* element 0 reserved and empty for now */
-+	model->alpha[0] = 0;
-+	model->lin_weights = NULL;
-+	model->totwords = totwords;
-+	model->totdoc = totdoc;
-+	model->kernel_parm = (*kernel_parm);
-+	model->sv_num = 1;
-+	model->loo_error = -1;
-+	model->loo_recall = -1;
-+	model->loo_precision = -1;
-+	model->xa_error = -1;
-+	model->xa_recall = -1;
-+	model->xa_precision = -1;
-+	inconsistentnum = 0;
-+	transduction = 0;
-+	
-+	r_delta = estimate_r_delta(docs, totdoc, kernel_parm);
-+	r_delta_sq = r_delta * r_delta;
-+	
-+	r_delta_avg = estimate_r_delta_average(docs, totdoc, kernel_parm);
-+	if (learn_parm->svm_c == 0.0)   /* default value for C */
-+	{
-+		learn_parm->svm_c = 1.0 / (r_delta_avg * r_delta_avg);
-+		if (verbosity >= 1)
-+			printf("Setting default regularization parameter C=%.4f\n",
-+			       learn_parm->svm_c);
-+	}
-+	
-+	learn_parm->eps = -1.0;      /* equivalent regression epsilon for
-+				classification */
-+
-+	for (i = 0; i < totdoc; i++)      /* various inits */
-+	{
-+		docs[i]->docnum = i;
-+		inconsistent[i] = 0;
-+		a[i] = 0;
-+		lin[i] = 0;
-+		c[i] = 0.0;
-+		unlabeled[i] = 0;
-+		if (class[i] == 0)
-+		{
-+			unlabeled[i] = 1;
-+			label[i] = 0;
-+			transduction = 1;
-+		}
-+		if (class[i] > 0)
-+		{
-+			learn_parm->svm_cost[i] = learn_parm->svm_c * learn_parm->svm_costratio *
-+			                          docs[i]->costfactor;
-+			label[i] = 1;
-+			trainpos++;
-+		}
-+		else if (class[i] < 0)
-+		{
-+			learn_parm->svm_cost[i] = learn_parm->svm_c * docs[i]->costfactor;
-+			label[i] = -1;
-+			trainneg++;
-+		}
-+		else
-+		{
-+			learn_parm->svm_cost[i] = 0;
-+		}
-+	}
-+	if (verbosity >= 2)
-+	{
-+		printf("%ld positive, %ld negative, and %ld unlabeled examples.\n", trainpos, trainneg, totdoc - trainpos - trainneg);
-+		fflush(stdout);
-+	}
-+	
-+	/* caching makes no sense for linear kernel */
-+	if (kernel_parm->kernel_type == LINEAR)
-+	{
-+		kernel_cache = NULL;
-+	}
-+	
-+	/* compute starting state for initial alpha values */
-+	if (alpha)
-+	{
-+		if (verbosity >= 1)
-+		{
-+			printf("Computing starting state...");
-+			fflush(stdout);
-+		}
-+		index = (long *)my_malloc(sizeof(long) * totdoc);
-+		index2dnum = (long *)my_malloc(sizeof(long) * (totdoc + 11));
-+		weights = (double *)my_malloc(sizeof(double) * (totwords + 1));
-+		aicache = (CFLOAT *)my_malloc(sizeof(CFLOAT) * totdoc);
-+		for (i = 0; i < totdoc; i++)      /* create full index and clip alphas */
-+		{
-+			index[i] = 1;
-+			alpha[i] = fabs(alpha[i]);
-+			if (alpha[i] < 0) alpha[i] = 0;
-+			if (alpha[i] > learn_parm->svm_cost[i]) alpha[i] = learn_parm->svm_cost[i];
-+		}
-+		if (kernel_parm->kernel_type != LINEAR)
-+		{
-+			for (i = 0; i < totdoc; i++)     /* fill kernel cache with unbounded SV */
-+				if ((alpha[i] > 0) && (alpha[i] < learn_parm->svm_cost[i])
-+				        && (kernel_cache_space_available(kernel_cache)))
-+					cache_kernel_row(kernel_cache, docs, i, kernel_parm);
-+			for (i = 0; i < totdoc; i++)     /* fill rest of kernel cache with bounded SV */
-+				if ((alpha[i] == learn_parm->svm_cost[i])
-+				        && (kernel_cache_space_available(kernel_cache)))
-+					cache_kernel_row(kernel_cache, docs, i, kernel_parm);
-+		}
-+		(void)compute_index(index, totdoc, index2dnum);
-+		update_linear_component(docs, label, index2dnum, alpha, a, index2dnum, totdoc,
-+		                        totwords, kernel_parm, kernel_cache, lin, aicache,
-+		                        weights);
-+		(void)calculate_svm_model(docs, label, unlabeled, lin, alpha, a, c,
-+		                          learn_parm, index2dnum, index2dnum, model);
-+		for (i = 0; i < totdoc; i++)      /* copy initial alphas */
-+		{
-+			a[i] = alpha[i];
-+		}
-+		free(index);
-+		free(index2dnum);
-+		free(weights);
-+		free(aicache);
-+		if (verbosity >= 1)
-+		{
-+			printf("done.\n");
-+			fflush(stdout);
-+		}
-+	}
-+	
-+	if (transduction)
-+	{
-+		learn_parm->svm_iter_to_shrink = 99999999;
-+		if (verbosity >= 1)
-+			printf("\nDeactivating Shrinking due to an incompatibility with the transductive \nlearner in the current version.\n\n");
-+	}
-+
-+	
-+	if (transduction && learn_parm->compute_loo)
-+	{
-+		learn_parm->compute_loo = 0;
-+		if (verbosity >= 1)
-+			printf("\nCannot compute leave-one-out estimates for transductive learner.\n\n");
-+	}
-+	
-+	if (learn_parm->remove_inconsistent && learn_parm->compute_loo)
-+	{
-+		learn_parm->compute_loo = 0;
-+		printf("\nCannot compute leave-one-out estimates when removing inconsistent examples.\n\n");
-+	}
-+	
-+	if (learn_parm->compute_loo && ((trainpos == 1) || (trainneg == 1)))
-+	{
-+		learn_parm->compute_loo = 0;
-+		printf("\nCannot compute leave-one-out with only one example in one class.\n\n");
-+	}
-+	
-+	
-+	if (verbosity == 1)
-+	{
-+		printf("Optimizing");
-+		fflush(stdout);
-+	}
-+	
-+	/* train the svm */
-+	iterations = optimize_to_convergence(docs, label, totdoc, totwords, learn_parm,
-+	                                     kernel_parm, kernel_cache, &shrink_state, model,
-+	                                     inconsistent, unlabeled, a, lin,
-+	                                     c, &timing_profile,
-+	                                     &maxdiff, (long) - 1,
-+	                                     (long)1);
-+
-+	misclassified = 0;
-+	double maxerror_ = 0;
-+	for (i = 0; (i < totdoc); i++)   /* get final statistic */
-+	{
-+		if ((lin[i] - model->b)*(double)label[i] <= 0.0)
-+		{
-+			misclassified++;
-+			if(maxerror_ < -(lin[i] - model->b)*(double)label[i])
-+				maxerror_ = -(lin[i] - model->b)*(double)label[i];
-+		}
-+	}
-+
-+	*nerrors = misclassified;
-+	*maxerror = maxerror_;
-+	                                     
-+	if (verbosity >= 1)
-+	{
-+		if (verbosity == 1) printf("done. (%ld iterations)\n", iterations);
-+		
-+		misclassified = 0;
-+		for (i = 0; (i < totdoc); i++)   /* get final statistic */
-+		{
-+			if ((lin[i] - model->b)*(double)label[i] <= 0.0)
-+				misclassified++;
-+		}
-+		
-+		printf("Optimization finished (%ld misclassified, maxdiff=%.5f).\n",
-+		       misclassified, maxdiff);
-+		       
-+		runtime_end = get_runtime();
-+		if (verbosity >= 2)
-+		{
-+			printf("Runtime in cpu-seconds: %.2f (%.2f%% for kernel/%.2f%% for optimizer/%.2f%% for final/%.2f%% for update/%.2f%% for model/%.2f%% for check/%.2f%% for select)\n",
-+			       ((float)runtime_end - (float)runtime_start) / 100.0,
-+			       (100.0*timing_profile.time_kernel) / (float)(runtime_end - runtime_start),
-+			       (100.0*timing_profile.time_opti) / (float)(runtime_end - runtime_start),
-+			       (100.0*timing_profile.time_shrink) / (float)(runtime_end - runtime_start),
-+			       (100.0*timing_profile.time_update) / (float)(runtime_end - runtime_start),
-+			       (100.0*timing_profile.time_model) / (float)(runtime_end - runtime_start),
-+			       (100.0*timing_profile.time_check) / (float)(runtime_end - runtime_start),
-+			       (100.0*timing_profile.time_select) / (float)(runtime_end - runtime_start));
-+		}
-+		else
-+		{
-+			printf("Runtime in cpu-seconds: %.2f\n",
-+			       (runtime_end - runtime_start) / 100.0);
-+		}
-+		
-+		if (learn_parm->remove_inconsistent)
-+		{
-+			inconsistentnum = 0;
-+			for (i = 0; i < totdoc; i++)
-+				if (inconsistent[i])
-+					inconsistentnum++;
-+			printf("Number of SV: %ld (plus %ld inconsistent examples)\n",
-+			       model->sv_num - 1, inconsistentnum);
-+		}
-+		else
-+		{
-+			upsupvecnum = 0;
-+			for (i = 1; i < model->sv_num; i++)
-+			{
-+				if (fabs(model->alpha[i]) >=
-+				        (learn_parm->svm_cost[(model->supvec[i])->docnum] -
-+				         learn_parm->epsilon_a))
-+					upsupvecnum++;
-+			}
-+			printf("Number of SV: %ld (including %ld at upper bound)\n",
-+			       model->sv_num - 1, upsupvecnum);
-+		}
-+		
-+		if ((verbosity >= 1) && (!learn_parm->skip_final_opt_check))
-+		{
-+			loss = 0;
-+			model_length = 0;
-+			for (i = 0; i < totdoc; i++)
-+			{
-+				if ((lin[i] - model->b)*(double)label[i] < 1.0 - learn_parm->epsilon_crit)
-+					loss += 1.0 - (lin[i] - model->b) * (double)label[i];
-+				model_length += a[i] * label[i] * lin[i];
-+			}
-+			model_length = sqrt(model_length);
-+			fprintf(stdout, "L1 loss: loss=%.5f\n", loss);
-+			fprintf(stdout, "Norm of weight vector: |w|=%.5f\n", model_length);
-+			example_length = estimate_sphere(model, kernel_parm);
-+			fprintf(stdout, "Norm of longest example vector: |x|=%.5f\n",
-+			        length_of_longest_document_vector(docs, totdoc, kernel_parm));
-+			fprintf(stdout, "Estimated VCdim of classifier: VCdim<=%.5f\n",
-+			        estimate_margin_vcdim(model, model_length, example_length,
-+			                              kernel_parm));
-+			if ((!learn_parm->remove_inconsistent) && (!transduction))
-+			{
-+				runtime_start_xa = get_runtime();
-+				if (verbosity >= 1)
-+				{
-+					printf("Computing XiAlpha-estimates...");
-+					fflush(stdout);
-+				}
-+				compute_xa_estimates(model, label, unlabeled, totdoc, docs, lin, a,
-+				                     kernel_parm, learn_parm, &(model->xa_error),
-+				                     &(model->xa_recall), &(model->xa_precision));
-+				if (verbosity >= 1)
-+				{
-+					printf("done\n");
-+				}
-+				printf("Runtime for XiAlpha-estimates in cpu-seconds: %.2f\n",
-+				       (get_runtime() - runtime_start_xa) / 100.0);
-+				       
-+				fprintf(stdout, "XiAlpha-estimate of the error: error<=%.2f%% (rho=%.2f,depth=%ld)\n",
-+				        model->xa_error, learn_parm->rho, learn_parm->xa_depth);
-+				fprintf(stdout, "XiAlpha-estimate of the recall: recall=>%.2f%% (rho=%.2f,depth=%ld)\n",
-+				        model->xa_recall, learn_parm->rho, learn_parm->xa_depth);
-+				fprintf(stdout, "XiAlpha-estimate of the precision: precision=>%.2f%% (rho=%.2f,depth=%ld)\n",
-+				        model->xa_precision, learn_parm->rho, learn_parm->xa_depth);
-+			}
-+			else if (!learn_parm->remove_inconsistent)
-+			{
-+				estimate_transduction_quality(model, label, unlabeled, totdoc, docs, lin);
-+			}
-+		}
-+		if (verbosity >= 1)
-+		{
-+			printf("Number of kernel evaluations: %ld\n", kernel_cache_statistic);
-+		}
-+	}
-+	
-+	
-+	/* leave-one-out testing starts now */
-+	if (learn_parm->compute_loo)
-+	{
-+		/* save results of training on full dataset for leave-one-out */
-+		runtime_start_loo = get_runtime();
-+		for (i = 0; i < totdoc; i++)
-+		{
-+			xi_fullset[i] = 1.0 - ((lin[i] - model->b) * (double)label[i]);
-+			if (xi_fullset[i] < 0) xi_fullset[i] = 0;
-+			a_fullset[i] = a[i];
-+		}
-+		if (verbosity >= 1)
-+		{
-+			printf("Computing leave-one-out");
-+		}
-+		
-+		/* repeat this loop for every held-out example */
-+		for (heldout = 0; (heldout < totdoc); heldout++)
-+		{
-+			if (learn_parm->rho*a_fullset[heldout]*r_delta_sq + xi_fullset[heldout]
-+			        < 1.0)
-+			{
-+				/* guaranteed to not produce a leave-one-out error */
-+				if (verbosity == 1)
-+				{
-+					printf("+");
-+					fflush(stdout);
-+				}
-+			}
-+			else if (xi_fullset[heldout] > 1.0)
-+			{
-+				/* guaranteed to produce a leave-one-out error */
-+				loo_count++;
-+				if (label[heldout] > 0)  loo_count_pos++;
-+				else loo_count_neg++;
-+				if (verbosity == 1)
-+				{
-+					printf("-");
-+					fflush(stdout);
-+				}
-+			}
-+			else
-+			{
-+				loocomputed++;
-+				heldout_c = learn_parm->svm_cost[heldout]; /* set upper bound to zero */
-+				learn_parm->svm_cost[heldout] = 0;
-+				/* make sure heldout example is not currently  */
-+				/* shrunk away. Assumes that lin is up to date! */
-+				shrink_state.active[heldout] = 1;
-+				if (verbosity >= 2)
-+					printf("\nLeave-One-Out test on example %ld\n", heldout);
-+				if (verbosity >= 1)
-+				{
-+					printf("(?[%ld]", heldout);
-+					fflush(stdout);
-+				}
-+				
-+				optimize_to_convergence(docs, label, totdoc, totwords, learn_parm,
-+				                        kernel_parm,
-+				                        kernel_cache, &shrink_state, model, inconsistent, unlabeled,
-+				                        a, lin, c, &timing_profile,
-+				                        &maxdiff, heldout, (long)2);
-+				                        
-+				/* printf("%.20f\n",(lin[heldout]-model->b)*(double)label[heldout]); */
-+				
-+				if (((lin[heldout] - model->b)*(double)label[heldout]) <= 0.0)
-+				{
-+					loo_count++;                            /* there was a loo-error */
-+					if (label[heldout] > 0)  loo_count_pos++;
-+					else loo_count_neg++;
-+					if (verbosity >= 1)
-+					{
-+						printf("-)");
-+						fflush(stdout);
-+					}
-+				}
-+				else
-+				{
-+					if (verbosity >= 1)
-+					{
-+						printf("+)");
-+						fflush(stdout);
-+					}
-+				}
-+				/* now we need to restore the original data set*/
-+				learn_parm->svm_cost[heldout] = heldout_c; /* restore upper bound */
-+			}
-+		} /* end of leave-one-out loop */
-+		
-+		
-+		if (verbosity >= 1)
-+		{
-+			printf("\nRetrain on full problem");
-+			fflush(stdout);
-+		}
-+		optimize_to_convergence(docs, label, totdoc, totwords, learn_parm,
-+		                        kernel_parm,
-+		                        kernel_cache, &shrink_state, model, inconsistent, unlabeled,
-+		                        a, lin, c, &timing_profile,
-+		                        &maxdiff, (long) - 1, (long)1);
-+		if (verbosity >= 1)
-+			printf("done.\n");
-+			
-+			
-+		/* after all leave-one-out computed */
-+		model->loo_error = 100.0 * loo_count / (double)totdoc;
-+
-+		model->loo_recall = (1.0 - (double)loo_count_pos / (double)trainpos) * 100.0;
-+		model->loo_precision = (trainpos - loo_count_pos) /
-+		                       (double)(trainpos - loo_count_pos + loo_count_neg) * 100.0;
-+		if (verbosity >= 1)
-+		{
-+			fprintf(stdout, "Leave-one-out estimate of the error: error=%.2f%%\n",
-+			        model->loo_error);
-+			fprintf(stdout, "Leave-one-out estimate of the recall: recall=%.2f%%\n",
-+			        model->loo_recall);
-+			fprintf(stdout, "Leave-one-out estimate of the precision: precision=%.2f%%\n",
-+			        model->loo_precision);
-+			fprintf(stdout, "Actual leave-one-outs computed:  %ld (rho=%.2f)\n",
-+			        loocomputed, learn_parm->rho);
-+			printf("Runtime for leave-one-out in cpu-seconds: %.2f\n",
-+			       (double)(get_runtime() - runtime_start_loo) / 100.0);
-+		}
-+	}
-+	
-+	if (learn_parm->alphafile[0])
-+		write_alphas(learn_parm->alphafile, a, label, totdoc);
-+		
-+	shrink_state_cleanup(&shrink_state);
-+	free(label);
-+	free(inconsistent);
-+	free(unlabeled);
-+	free(c);
-+	free(a);
-+	free(a_fullset);
-+	free(xi_fullset);
-+	free(lin);
-+	free(learn_parm->svm_cost);	
-+}
-+
-+
- /* Learns an SVM classification model based on the training data in
-    docs/label. The resulting model is returned in the structure
-    model. */
---- svm_learn.h	2011-09-06 22:14:22.363126903 -0400
-+++ svm_learn.h	2011-09-06 22:49:59.247171372 -0400
-@@ -19,6 +19,9 @@
- #ifndef SVM_LEARN
- #define SVM_LEARN
- 
-+void   svm_learn_classification_extend(DOC **, double *, long, long, LEARN_PARM *,
-+                                KERNEL_PARM *, KERNEL_CACHE *, MODEL *,
-+                                double *, int *, double *);
- void   svm_learn_classification(DOC **, double *, long, long, LEARN_PARM *, 
- 				KERNEL_PARM *, KERNEL_CACHE *, MODEL *,
- 				double *);
-@@ -152,6 +155,7 @@ double estimate_r_delta_average(DOC **, 
- double estimate_r_delta(DOC **, long, KERNEL_PARM *); 
- double length_of_longest_document_vector(DOC **, long, KERNEL_PARM *); 
- 
-+
- void   write_model(char *, MODEL *);
- void   write_prediction(char *, MODEL *, double *, double *, long *, long *,
- 			long, LEARN_PARM *);
diff --git a/trunk/svm_light/svm_light/include/svm_light/kernel.h b/trunk/svm_light/svm_light/include/svm_light/kernel.h
deleted file mode 100755
index 0133b006..00000000
--- a/trunk/svm_light/svm_light/include/svm_light/kernel.h
+++ /dev/null
@@ -1,40 +0,0 @@
-/************************************************************************/
-/*                                                                      */
-/*   kernel.h                                                           */
-/*                                                                      */
-/*   User defined kernel function. Feel free to plug in your own.       */
-/*                                                                      */
-/*   Copyright: Thorsten Joachims                                       */
-/*   Date: 16.12.97                                                     */
-/*                                                                      */
-/************************************************************************/
-
-/* KERNEL_PARM is defined in svm_common.h The field 'custom' is reserved for */
-/* parameters of the user defined kernel. You can also access and use */
-/* the parameters of the other kernels. Just replace the line 
-             return((double)(1.0)); 
-   with your own kernel. */
-
-  /* Example: The following computes the polynomial kernel. sprod_ss
-              computes the inner product between two sparse vectors. 
-
-      return((CFLOAT)pow(kernel_parm->coef_lin*sprod_ss(a->words,b->words)
-             +kernel_parm->coef_const,(double)kernel_parm->poly_degree)); 
-  */
-
-/* If you are implementing a kernel that is not based on a
-   feature/value representation, you might want to make use of the
-   field "userdefined" in SVECTOR. By default, this field will contain
-   whatever string you put behind a # sign in the example file. So, if
-   a line in your training file looks like
-
-   -1 1:3 5:6 #abcdefg
-
-   then the SVECTOR field "words" will contain the vector 1:3 5:6, and
-   "userdefined" will contain the string "abcdefg". */
-
-double custom_kernel(KERNEL_PARM *kernel_parm, SVECTOR *a, SVECTOR *b) 
-     /* plug in you favorite kernel */                          
-{
-  return((double)(1.0)); 
-}
diff --git a/trunk/svm_light/svm_light/include/svm_light/svm_common.h b/trunk/svm_light/svm_light/include/svm_light/svm_common.h
deleted file mode 100755
index 6487fa1d..00000000
--- a/trunk/svm_light/svm_light/include/svm_light/svm_common.h
+++ /dev/null
@@ -1,301 +0,0 @@
-/************************************************************************/
-/*                                                                      */
-/*   svm_common.h                                                       */
-/*                                                                      */
-/*   Definitions and functions used in both svm_learn and svm_classify. */
-/*                                                                      */
-/*   Author: Thorsten Joachims                                          */
-/*   Date: 02.07.02                                                     */
-/*                                                                      */
-/*   Copyright (c) 2002  Thorsten Joachims - All rights reserved        */
-/*                                                                      */
-/*   This software is available for non-commercial use only. It must    */
-/*   not be modified and distributed without prior permission of the    */
-/*   author. The author is not responsible for implications from the    */
-/*   use of this software.                                              */
-/*                                                                      */
-/************************************************************************/
-
-#ifndef SVM_COMMON
-#define SVM_COMMON
-
-# include <stdio.h>
-# include <ctype.h>
-# include <math.h>
-# include <string.h>
-# include <stdlib.h>
-# include <time.h> 
-# include <float.h>
-
-# define VERSION       "V6.02"
-# define VERSION_DATE  "14.08.08"
-
-# define CFLOAT  float       /* the type of float to use for caching */
-                             /* kernel evaluations. Using float saves */
-                             /* us some memory, but you can use double, too */
-# define FNUM    long        /* the type used for storing feature ids */
-# define FVAL    float       /* the type used for storing feature values */
-# define MAXFEATNUM 99999999 /* maximum feature number (must be in
-			  	valid range of FNUM type and long int!) */
-
-# define LINEAR  0           /* linear kernel type */
-# define POLY    1           /* polynoial kernel type */
-# define RBF     2           /* rbf kernel type */
-# define SIGMOID 3           /* sigmoid kernel type */
-
-# define CLASSIFICATION 1    /* train classification model */
-# define REGRESSION     2    /* train regression model */
-# define RANKING        3    /* train ranking model */
-# define OPTIMIZATION   4    /* train on general set of constraints */
-
-# define MAXSHRINK     50000    /* maximum number of shrinking rounds */
-
-typedef struct word {
-  FNUM    wnum;	               /* word number */
-  FVAL    weight;              /* word weight */
-} WORD;
-
-typedef struct svector {
-  WORD    *words;              /* The features/values in the vector by
-				  increasing feature-number. Feature
-				  numbers that are skipped are
-				  interpreted as having value zero. */
-  double  twonorm_sq;          /* The squared euclidian length of the
-                                  vector. Used to speed up the RBF kernel. */
-  char    *userdefined;        /* You can put additional information
-				  here. This can be useful, if you are
-				  implementing your own kernel that
-				  does not work with feature/values
-				  representations (for example a
-				  string kernel). By default,
-				  svm-light will put here the string
-				  after the # sign from each line of
-				  the input file. */
-  long    kernel_id;           /* Feature vectors with different
-				  kernel_id's are orthogonal (ie. the
-				  feature number do not match). This
-				  is used for computing component
-				  kernels for linear constraints which
-				  are a sum of several different
-				  weight vectors. (currently not
-				  implemented). */
-  struct svector *next;        /* Let's you set up a list of SVECTOR's
-				  for linear constraints which are a
-				  sum of multiple feature
-				  vectors. List is terminated by
-				  NULL. */
-  double  factor;              /* Factor by which this feature vector
-				  is multiplied in the sum. */
-} SVECTOR;
-
-typedef struct doc {
-  long    docnum;              /* Document ID. This has to be the position of 
-                                  the document in the training set array. */
-  long    queryid;             /* for learning rankings, constraints are 
-				  generated for documents with the same 
-				  queryID. */
-  double  costfactor;          /* Scales the cost of misclassifying this
-				  document by this factor. The effect of this
-				  value is, that the upper bound on the alpha
-				  for this example is scaled by this factor.
-				  The factors are set by the feature 
-				  'cost:<val>' in the training data. */
-  long    slackid;             /* Index of the slack variable
-				  corresponding to this
-				  constraint. All constraints with the
-				  same slackid share the same slack
-				  variable. This can only be used for
-				  svm_learn_optimization. */
-  SVECTOR *fvec;               /* Feature vector of the example. The
-				  feature vector can actually be a
-				  list of feature vectors. For
-				  example, the list will have two
-				  elements, if this DOC is a
-				  preference constraint. The one
-				  vector that is supposed to be ranked
-				  higher, will have a factor of +1,
-				  the lower ranked one should have a
-				  factor of -1. */
-} DOC;
-
-typedef struct learn_parm {
-  long   type;                 /* selects between regression and
-				  classification */
-  double svm_c;                /* upper bound C on alphas */
-  double eps;                  /* regression epsilon (eps=1.0 for
-				  classification */
-  double svm_costratio;        /* factor to multiply C for positive examples */
-  double transduction_posratio;/* fraction of unlabeled examples to be */
-                               /* classified as positives */
-  long   biased_hyperplane;    /* if nonzero, use hyperplane w*x+b=0 
-				  otherwise w*x=0 */
-  long   sharedslack;          /* if nonzero, it will use the shared
-                                  slack variable mode in
-                                  svm_learn_optimization. It requires
-                                  that the slackid is set for every
-                                  training example */
-  long   svm_maxqpsize;        /* size q of working set */
-  long   svm_newvarsinqp;      /* new variables to enter the working set 
-				  in each iteration */
-  long   kernel_cache_size;    /* size of kernel cache in megabytes */
-  double epsilon_crit;         /* tolerable error for distances used 
-				  in stopping criterion */
-  double epsilon_shrink;       /* how much a multiplier should be above 
-				  zero for shrinking */
-  long   svm_iter_to_shrink;   /* iterations h after which an example can
-				  be removed by shrinking */
-  long   maxiter;              /* number of iterations after which the
-				  optimizer terminates, if there was
-				  no progress in maxdiff */
-  long   remove_inconsistent;  /* exclude examples with alpha at C and 
-				  retrain */
-  long   skip_final_opt_check; /* do not check KT-Conditions at the end of
-				  optimization for examples removed by 
-				  shrinking. WARNING: This might lead to 
-				  sub-optimal solutions! */
-  long   compute_loo;          /* if nonzero, computes leave-one-out
-				  estimates */
-  double rho;                  /* parameter in xi/alpha-estimates and for
-				  pruning leave-one-out range [1..2] */
-  long   xa_depth;             /* parameter in xi/alpha-estimates upper
-				  bounding the number of SV the current
-				  alpha_t is distributed over */
-  char predfile[200];          /* file for predicitions on unlabeled examples
-				  in transduction */
-  char alphafile[200];         /* file to store optimal alphas in. use  
-				  empty string if alphas should not be 
-				  output */
-
-  /* you probably do not want to touch the following */
-  double epsilon_const;        /* tolerable error on eq-constraint */
-  double epsilon_a;            /* tolerable error on alphas at bounds */
-  double opt_precision;        /* precision of solver, set to e.g. 1e-21 
-				  if you get convergence problems */
-
-  /* the following are only for internal use */
-  long   svm_c_steps;          /* do so many steps for finding optimal C */
-  double svm_c_factor;         /* increase C by this factor every step */
-  double svm_costratio_unlab;
-  double svm_unlabbound;
-  double *svm_cost;            /* individual upper bounds for each var */
-  long   totwords;             /* number of features */
-} LEARN_PARM;
-
-typedef struct kernel_parm {
-  long    kernel_type;   /* 0=linear, 1=poly, 2=rbf, 3=sigmoid, 4=custom */
-  long    poly_degree;
-  double  rbf_gamma;
-  double  coef_lin;
-  double  coef_const;
-  char    custom[50];    /* for user supplied kernel */
-} KERNEL_PARM;
-
-typedef struct model {
-  long    sv_num;	
-  long    at_upper_bound;
-  double  b;
-  DOC     **supvec;
-  double  *alpha;
-  long    *index;       /* index from docnum to position in model */
-  long    totwords;     /* number of features */
-  long    totdoc;       /* number of training documents */
-  KERNEL_PARM kernel_parm; /* kernel */
-
-  /* the following values are not written to file */
-  double  loo_error,loo_recall,loo_precision; /* leave-one-out estimates */
-  double  xa_error,xa_recall,xa_precision;    /* xi/alpha estimates */
-  double  *lin_weights;                       /* weights for linear case using
-						 folding */
-  double  maxdiff;                            /* precision, up to which this 
-						 model is accurate */
-} MODEL;
-
-typedef struct quadratic_program {
-  long   opt_n;            /* number of variables */
-  long   opt_m;            /* number of linear equality constraints */
-  double *opt_ce,*opt_ce0; /* linear equality constraints */
-  double *opt_g;           /* hessian of objective */
-  double *opt_g0;          /* linear part of objective */
-  double *opt_xinit;       /* initial value for variables */
-  double *opt_low,*opt_up; /* box constraints */
-} QP;
-
-typedef struct kernel_cache {
-  long   *index;  /* cache some kernel evalutations */
-  CFLOAT *buffer; /* to improve speed */
-  long   *invindex;
-  long   *active2totdoc;
-  long   *totdoc2active;
-  long   *lru;
-  long   *occu;
-  long   elems;
-  long   max_elems;
-  long   time;
-  long   activenum;
-  long   buffsize;
-} KERNEL_CACHE;
-
-
-typedef struct timing_profile {
-  long   time_kernel;
-  long   time_opti;
-  long   time_shrink;
-  long   time_update;
-  long   time_model;
-  long   time_check;
-  long   time_select;
-} TIMING;
-
-typedef struct shrink_state {
-  long   *active;
-  long   *inactive_since;
-  long   deactnum;
-  double **a_history;  /* for shrinking with non-linear kernel */
-  long   maxhistory;
-  double *last_a;      /* for shrinking with linear kernel */
-  double *last_lin;    /* for shrinking with linear kernel */
-} SHRINK_STATE;
-
-double classify_example(MODEL *, DOC *);
-double classify_example_linear(MODEL *, DOC *);
-double kernel(KERNEL_PARM *, DOC *, DOC *); 
-double single_kernel(KERNEL_PARM *, SVECTOR *, SVECTOR *); 
-double custom_kernel(KERNEL_PARM *, SVECTOR *, SVECTOR *); 
-SVECTOR *create_svector(WORD *, char *, double);
-SVECTOR *copy_svector(SVECTOR *);
-void   free_svector(SVECTOR *);
-double    sprod_ss(SVECTOR *, SVECTOR *);
-SVECTOR*  sub_ss(SVECTOR *, SVECTOR *); 
-SVECTOR*  add_ss(SVECTOR *, SVECTOR *); 
-SVECTOR*  add_list_ss(SVECTOR *); 
-void      append_svector_list(SVECTOR *a, SVECTOR *b);
-SVECTOR*  smult_s(SVECTOR *, double);
-int       featvec_eq(SVECTOR *, SVECTOR *); 
-double model_length_s(MODEL *, KERNEL_PARM *);
-void   clear_vector_n(double *, long);
-void   add_vector_ns(double *, SVECTOR *, double);
-double sprod_ns(double *, SVECTOR *);
-void   add_weight_vector_to_linear_model(MODEL *);
-DOC    *create_example(long, long, long, double, SVECTOR *);
-void   free_example(DOC *, long);
-MODEL  *read_model(char *);
-MODEL  *copy_model(MODEL *);
-void   free_model(MODEL *, int);
-void   read_documents(char *, DOC ***, double **, long *, long *);
-int    parse_document(char *, WORD *, double *, long *, long *, double *, long *, long, char **);
-double *read_alphas(char *,long);
-void   nol_ll(char *, long *, long *, long *);
-long   minl(long, long);
-long   maxl(long, long);
-long   get_runtime(void);
-int    space_or_null(int);
-void   *my_malloc(size_t); 
-void   copyright_notice(void);
-# ifdef _MSC_VER
-   int isnan(double);
-# endif
-
-extern long   verbosity;              /* verbosity level (0-4) */
-extern long   kernel_cache_statistic;
-
-#endif
diff --git a/trunk/svm_light/svm_light/include/svm_light/svm_learn.h b/trunk/svm_light/svm_light/include/svm_light/svm_learn.h
deleted file mode 100755
index 8a1edf7b..00000000
--- a/trunk/svm_light/svm_light/include/svm_light/svm_learn.h
+++ /dev/null
@@ -1,173 +0,0 @@
-/***********************************************************************/
-/*                                                                     */
-/*   svm_learn.h                                                       */
-/*                                                                     */
-/*   Declarations for learning module of Support Vector Machine.       */
-/*                                                                     */
-/*   Author: Thorsten Joachims                                         */
-/*   Date: 02.07.02                                                    */
-/*                                                                     */
-/*   Copyright (c) 2002  Thorsten Joachims - All rights reserved       */
-/*                                                                     */
-/*   This software is available for non-commercial use only. It must   */
-/*   not be modified and distributed without prior permission of the   */
-/*   author. The author is not responsible for implications from the   */
-/*   use of this software.                                             */
-/*                                                                     */
-/***********************************************************************/
-
-#ifndef SVM_LEARN
-#define SVM_LEARN
-
-void   svm_learn_classification_extend(DOC **, double *, long, long, LEARN_PARM *,
-                                KERNEL_PARM *, KERNEL_CACHE *, MODEL *,
-                                double *, int *, double *);
-void   svm_learn_classification(DOC **, double *, long, long, LEARN_PARM *, 
-				KERNEL_PARM *, KERNEL_CACHE *, MODEL *,
-				double *);
-void   svm_learn_regression(DOC **, double *, long, long, LEARN_PARM *, 
-			    KERNEL_PARM *, KERNEL_CACHE **, MODEL *);
-void   svm_learn_ranking(DOC **, double *, long, long, LEARN_PARM *, 
-			 KERNEL_PARM *, KERNEL_CACHE **, MODEL *);
-void   svm_learn_optimization(DOC **, double *, long, long, LEARN_PARM *, 
-			      KERNEL_PARM *, KERNEL_CACHE *, MODEL *,
-			      double *);
-long   optimize_to_convergence(DOC **, long *, long, long, LEARN_PARM *,
-			       KERNEL_PARM *, KERNEL_CACHE *, SHRINK_STATE *,
-			       MODEL *, long *, long *, double *,
-			       double *, double *,
-			       TIMING *, double *, long, long);
-long   optimize_to_convergence_sharedslack(DOC **, long *, long, long, 
-			       LEARN_PARM *,
-			       KERNEL_PARM *, KERNEL_CACHE *, SHRINK_STATE *,
-			       MODEL *, double *, double *, double *,
-			       TIMING *, double *);
-double compute_objective_function(double *, double *, double *, double,
-				  long *, long *);
-void   clear_index(long *);
-void   add_to_index(long *, long);
-long   compute_index(long *,long, long *);
-void   optimize_svm(DOC **, long *, long *, long *, double, long *, long *, 
-		    MODEL *, 
-		    long, long *, long, double *, double *, double *, 
-		    LEARN_PARM *, CFLOAT *, KERNEL_PARM *, QP *, double *);
-void   compute_matrices_for_optimization(DOC **, long *, long *, long *, double,
-					 long *,
-					 long *, long *, MODEL *, double *, 
-					 double *, double *, long, long, LEARN_PARM *, 
-					 CFLOAT *, KERNEL_PARM *, QP *);
-long   calculate_svm_model(DOC **, long *, long *, double *, double *, 
-			   double *, double *, LEARN_PARM *, long *,
-			   long *, MODEL *);
-long   check_optimality(MODEL *, long *, long *, double *, double *,
-			double *, long, 
-			LEARN_PARM *,double *, double, long *, long *, long *,
-			long *, long, KERNEL_PARM *);
-long   check_optimality_sharedslack(DOC **docs, MODEL *model, long int *label,
-		      double *a, double *lin, double *c, double *slack,
-		      double *alphaslack, long int totdoc, 
-		      LEARN_PARM *learn_parm, double *maxdiff, 
-		      double epsilon_crit_org, long int *misclassified, 
-		      long int *active2dnum,
-		      long int *last_suboptimal_at, 
-		      long int iteration, KERNEL_PARM *kernel_parm);
-void   compute_shared_slacks(DOC **docs, long int *label, double *a, 
-			     double *lin, double *c, long int *active2dnum, 
-			     LEARN_PARM *learn_parm,
-			     double *slack, double *alphaslack);
-long   identify_inconsistent(double *, long *, long *, long, LEARN_PARM *, 
-			     long *, long *);
-long   identify_misclassified(double *, long *, long *, long,
-			      MODEL *, long *, long *);
-long   identify_one_misclassified(double *, long *, long *, long,
-				  MODEL *, long *, long *);
-long   incorporate_unlabeled_examples(MODEL *, long *,long *, long *,
-				      double *, double *, long, double *,
-				      long *, long *, long, KERNEL_PARM *,
-				      LEARN_PARM *);
-void   update_linear_component(DOC **, long *, long *, double *, double *, 
-			       long *, long, long, KERNEL_PARM *, 
-			       KERNEL_CACHE *, double *,
-			       CFLOAT *, double *);
-long   select_next_qp_subproblem_grad(long *, long *, double *, 
-				      double *, double *, long,
-				      long, LEARN_PARM *, long *, long *, 
-				      long *, double *, long *, KERNEL_CACHE *,
-				      long, long *, long *);
-long   select_next_qp_subproblem_rand(long *, long *, double *, 
-				      double *, double *, long,
-				      long, LEARN_PARM *, long *, long *, 
-				      long *, double *, long *, KERNEL_CACHE *,
-				      long *, long *, long);
-long   select_next_qp_slackset(DOC **docs, long int *label, double *a, 
-			       double *lin, double *slack, double *alphaslack, 
-			       double *c, LEARN_PARM *learn_parm, 
-			       long int *active2dnum, double *maxviol);
-void   select_top_n(double *, long, long *, long);
-void   init_shrink_state(SHRINK_STATE *, long, long);
-void   shrink_state_cleanup(SHRINK_STATE *);
-long   shrink_problem(DOC **, LEARN_PARM *, SHRINK_STATE *, KERNEL_PARM *, 
-		      long *, long *, long, long, long, double *, long *);
-void   reactivate_inactive_examples(long *, long *, double *, SHRINK_STATE *,
-				    double *, double*, long, long, long, LEARN_PARM *, 
-				    long *, DOC **, KERNEL_PARM *,
-				    KERNEL_CACHE *, MODEL *, CFLOAT *, 
-				    double *, double *);
-
-/* cache kernel evalutations to improve speed */
-KERNEL_CACHE *kernel_cache_init(long, long);
-void   kernel_cache_cleanup(KERNEL_CACHE *);
-void   get_kernel_row(KERNEL_CACHE *,DOC **, long, long, long *, CFLOAT *, 
-		      KERNEL_PARM *);
-void   cache_kernel_row(KERNEL_CACHE *,DOC **, long, KERNEL_PARM *);
-void   cache_multiple_kernel_rows(KERNEL_CACHE *,DOC **, long *, long, 
-				  KERNEL_PARM *);
-void   kernel_cache_shrink(KERNEL_CACHE *,long, long, long *);
-void   kernel_cache_reset_lru(KERNEL_CACHE *);
-long   kernel_cache_malloc(KERNEL_CACHE *);
-void   kernel_cache_free(KERNEL_CACHE *,long);
-long   kernel_cache_free_lru(KERNEL_CACHE *);
-CFLOAT *kernel_cache_clean_and_malloc(KERNEL_CACHE *,long);
-long   kernel_cache_touch(KERNEL_CACHE *,long);
-long   kernel_cache_check(KERNEL_CACHE *,long);
-long   kernel_cache_space_available(KERNEL_CACHE *);
-
-void compute_xa_estimates(MODEL *, long *, long *, long, DOC **, 
-			  double *, double *, KERNEL_PARM *, 
-			  LEARN_PARM *, double *, double *, double *);
-double xa_estimate_error(MODEL *, long *, long *, long, DOC **, 
-			 double *, double *, KERNEL_PARM *, 
-			 LEARN_PARM *);
-double xa_estimate_recall(MODEL *, long *, long *, long, DOC **, 
-			  double *, double *, KERNEL_PARM *, 
-			  LEARN_PARM *);
-double xa_estimate_precision(MODEL *, long *, long *, long, DOC **, 
-			     double *, double *, KERNEL_PARM *, 
-			     LEARN_PARM *);
-void avg_similarity_of_sv_of_one_class(MODEL *, DOC **, double *, long *, KERNEL_PARM *, double *, double *);
-double most_similar_sv_of_same_class(MODEL *, DOC **, double *, long, long *, KERNEL_PARM *, LEARN_PARM *);
-double distribute_alpha_t_greedily(long *, long, DOC **, double *, long, long *, KERNEL_PARM *, LEARN_PARM *, double);
-double distribute_alpha_t_greedily_noindex(MODEL *, DOC **, double *, long, long *, KERNEL_PARM *, LEARN_PARM *, double); 
-void estimate_transduction_quality(MODEL *, long *, long *, long, DOC **, double *);
-double estimate_margin_vcdim(MODEL *, double, double, KERNEL_PARM *);
-double estimate_sphere(MODEL *, KERNEL_PARM *);
-double estimate_r_delta_average(DOC **, long, KERNEL_PARM *); 
-double estimate_r_delta(DOC **, long, KERNEL_PARM *); 
-double length_of_longest_document_vector(DOC **, long, KERNEL_PARM *); 
-
-
-void   write_model(char *, MODEL *);
-void   write_prediction(char *, MODEL *, double *, double *, long *, long *,
-			long, LEARN_PARM *);
-void   write_alphas(char *, double *, long *, long);
-
-typedef struct cache_parm_s {
-  KERNEL_CACHE *kernel_cache;
-  CFLOAT *cache;
-  DOC **docs; 
-  long m;
-  KERNEL_PARM *kernel_parm;
-  long offset,stepsize;
-} cache_parm_t;
-
-#endif
diff --git a/trunk/svm_light/wiped b/trunk/svm_light/wiped
deleted file mode 100644
index e69de29b..00000000
-- 
GitLab