import glob import numpy as np from matplotlib import pyplot as plt import pinocchio as pin import tsid as tsid from IPython import embed import plot_utils """import matplotlib as matplotlib matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42""" # Transform between the base frame and the IMU frame _1Mi = pin.SE3(pin.Quaternion(np.array([[0.0, 0.0, 0.0, 1.0]]).transpose()), np.array([0.1163, 0.0, 0.02])) def EulerToQuaternion(roll_pitch_yaw): roll, pitch, yaw = roll_pitch_yaw sr = np.sin(roll/2.) cr = np.cos(roll/2.) sp = np.sin(pitch/2.) cp = np.cos(pitch/2.) sy = np.sin(yaw/2.) cy = np.cos(yaw/2.) qx = sr * cp * cy - cr * sp * sy qy = cr * sp * cy + sr * cp * sy qz = cr * cp * sy - sr * sp * cy qw = cr * cp * cy + sr * sp * sy return [qx, qy, qz, qw] def quaternionToRPY(quat): qx = quat[0] qy = quat[1] qz = quat[2] qw = quat[3] rotateXa0 = 2.0*(qy*qz + qw*qx) rotateXa1 = qw*qw - qx*qx - qy*qy + qz*qz rotateX = 0.0 if (rotateXa0 != 0.0) and (rotateXa1 != 0.0): rotateX = np.arctan2(rotateXa0, rotateXa1) rotateYa0 = -2.0*(qx*qz - qw*qy) rotateY = 0.0 if (rotateYa0 >= 1.0): rotateY = np.pi/2.0 elif (rotateYa0 <= -1.0): rotateY = -np.pi/2.0 else: rotateY = np.arcsin(rotateYa0) rotateZa0 = 2.0*(qx*qy + qw*qz) rotateZa1 = qw*qw + qx*qx - qy*qy - qz*qz rotateZ = 0.0 if (rotateZa0 != 0.0) and (rotateZa1 != 0.0): rotateZ = np.arctan2(rotateZa0, rotateZa1) return np.array([[rotateX], [rotateY], [rotateZ]]) def linearly_interpolate_nans(y): # Fit a linear regression to the non-nan y values # Create X matrix for linreg with an intercept and an index X = np.vstack((np.ones(len(y)), np.arange(len(y)))) # Get the non-NaN values of X and y X_fit = X[:, ~np.isnan(y)] y_fit = y[~np.isnan(y)].reshape(-1, 1) # Estimate the coefficients of the linear regression beta = np.linalg.lstsq(X_fit.T, y_fit)[0] # Fill in all the nan values using the predicted coefficients y.flat[np.isnan(y)] = np.dot(X[:, np.isnan(y)].T, beta) return y def cross3(left, right): """Numpy is inefficient for this Args: left (3x0 array): left term of the cross product right (3x0 array): right term of the cross product """ return np.array([[left[1] * right[2] - left[2] * right[1]], [left[2] * right[0] - left[0] * right[2]], [left[0] * right[1] - left[1] * right[0]]]) def BaseVelocityFromKinAndIMU(contactFrameId, model, data, IMU_ang_vel): """Estimate the velocity of the base with forward kinematics using a contact point that is supposed immobile in world frame Args: contactFrameId (int): ID of the contact point frame (foot frame) """ frameVelocity = pin.getFrameVelocity( model, data, contactFrameId, pin.ReferenceFrame.LOCAL) framePlacement = pin.updateFramePlacement( model, data, contactFrameId) # Angular velocity of the base wrt the world in the base frame (Gyroscope) _1w01 = IMU_ang_vel.reshape((3, 1)) # Linear velocity of the foot wrt the base in the base frame _Fv1F = frameVelocity.linear # Level arm between the base and the foot _1F = np.array(framePlacement.translation) # Orientation of the foot wrt the base _1RF = framePlacement.rotation # Linear velocity of the base from wrt world in the base frame _1v01 = cross3(_1F.ravel(), _1w01.ravel()) - (_1RF @ _Fv1F.reshape((3, 1))) # IMU and base frames have the same orientation _iv0i = _1v01 + cross3(_1Mi.translation.ravel(), _1w01.ravel()) return _1v01, np.array(_iv0i) ######### # START # ######### on_solo8 = False """for name in np.sort(glob.glob('./*.npz')): print(name)""" last_date = np.sort(glob.glob('./*.npz'))[-1][-20:] print(last_date) last_date = "2020_11_02_13_25.npz" # last_date = "2020_11_02_13_25.npz" # Load data file data = np.load("data_" + last_date) # Store content of data in variables # From Mocap mocapPosition = data['mocapPosition'] # Position mocapOrientationQuat = data['mocapOrientationQuat'] # Orientation as quat mocapOrientationMat9 = data['mocapOrientationMat9'] # as 3 by 3 matrix mocapVelocity = data['mocapVelocity'] # Linear velocity mocapAngularVelocity = data['mocapAngularVelocity'] # Angular velocity cheatLinearVelocity = data["baseLinearVelocity"] cheatForce = data["appliedForce"] cheatPos = data["dummyPos"] # Fill NaN mocap values with linear interpolation for i in range(3): mocapPosition[:, i] = linearly_interpolate_nans(mocapPosition[:, i]) mocapVelocity[:, i] = linearly_interpolate_nans(mocapVelocity[:, i]) mocapAngularVelocity[:, i] = linearly_interpolate_nans( mocapAngularVelocity[:, i]) # From IMU baseOrientation = data['baseOrientation'] # Orientation as quat baseLinearAcceleration = data['baseLinearAcceleration'] # Linear acceleration baseAngularVelocity = data['baseAngularVelocity'] # Angular Vel # Acceleration with gravity vector baseAccelerometer = data['baseAccelerometer'] print(baseAngularVelocity) # From actuators torquesFromCurrentMeasurment = data['torquesFromCurrentMeasurment'] # Torques q_mes = data['q_mes'] # Angular positions v_mes = data['v_mes'] # Angular velocities data_control = np.load("data_control_" + last_date) log_tau_ff = data_control['log_tau_ff'] # Position log_qdes = data_control['log_qdes'] # Orientation as quat log_vdes = data_control['log_vdes'] # as 3 by 3 matrix log_q = data_control['log_q'] log_dq = data_control['log_dq'] # From estimator if data['estimatorVelocity'] is not None: estimatorHeight = data['estimatorHeight'] estimatorVelocity = data['estimatorVelocity'] contactStatus = data['contactStatus'] referenceVelocity = np.round(data['referenceVelocity'], 3) log_xfmpc = data['logXFMPC'] # Creating time vector Nlist = np.where(mocapPosition[:, 0] == 0.0)[0] if len(Nlist) > 0: N = Nlist[0] else: N = mocapPosition.shape[0] if N == 0: N = baseOrientation.shape[0] N = baseOrientation.shape[0] Tend = N * 0.002 t = np.linspace(0, Tend, N+1, endpoint=True) t = t[:-1] # Parameters dt = 0.0020 lwdth = 2 ####### ####### imuRPY = np.zeros((N, 3)) vx_ref = np.zeros((N, 1)) vy_ref = np.zeros((N, 1)) vx_est = np.zeros((N, 1)) vy_est = np.zeros((N, 1)) for i in range(N): imuRPY[i, :] = pin.rpy.matrixToRpy(pin.Quaternion( baseOrientation[i:(i+1), :].transpose()).toRotationMatrix()) c = np.cos(imuRPY[i, 2]) s = np.sin(imuRPY[i, 2]) R = np.array([[c, -s, 0.0], [s, c, 0.0], [0.0, 0.0, 1.0]]) v = R.transpose() @ log_xfmpc[i:(i+1), 6:9].transpose() # v = pin.Quaternion(baseOrientation[i:(i+1), :].transpose()).toRotationMatrix().transpose() @ log_xfmpc[i:(i+1), 6:9].transpose() vx_ref[i] = v[0] vy_ref[i] = v[1] v_est = log_dq[0:3, i:(i+1)] vx_est[i] = v_est[0] vy_est[i] = v_est[1] plot_forces = True c = ["royalblue", "forestgreen"] lwdth = 1 velID = 4 # embed() # HEIGHT / ROLL / PITCH FIGURE fig1 = plt.figure(figsize=(7, 4)) offset_h = cheatPos[0, 2] - log_xfmpc[0, 2] # Height subplot ax0 = plt.subplot(3, 1, 1) plt.plot(t[:-1], cheatPos[:-1, 2] - offset_h, color=c[0], linewidth=lwdth) plt.plot(t[:-1], log_q[2, :-1], color="darkgreen", linewidth=lwdth) plt.plot(t[:-1], log_xfmpc[:-1, 2], "darkorange", linewidth=lwdth, linestyle="--") plt.ylabel("Height [m]", fontsize=14) plt.legend(["Ground truth", "Estimated", "Command"], prop={'size': 10}, loc=2) # Roll subplot ax1 = plt.subplot(3, 1, 2, sharex=ax0) plt.plot(t[:-1], imuRPY[:-1, 0], color=c[0], linewidth=lwdth) plt.plot(t[:-1], log_q[3, :-1], color="darkgreen", linewidth=lwdth) plt.plot(t[:-1], log_xfmpc[:-1, 3], "darkorange", linewidth=lwdth, linestyle="--") plt.ylabel("Roll [rad]", fontsize=14) if plot_forces: ax1bis = ax1.twinx() ax1bis.set_ylabel("$F_y$ [N]", color='k', fontsize=14) ax1bis.plot(t[:-1], cheatForce[:-1, 1], color="darkviolet", linewidth=lwdth, linestyle="--") ax1bis.tick_params(axis='y', labelcolor='k') ax1bis.legend(["Force"], prop={'size': 10}, loc=1) # Pitch subplot ax2 = plt.subplot(3, 1, 3, sharex=ax0) plt.plot(t[:-1], imuRPY[:-1, 1], color=c[0], linewidth=lwdth) plt.plot(t[:-1], log_q[4, :-1], color="darkgreen", linewidth=lwdth) plt.plot(t[:-1], log_xfmpc[:-1, 4], "darkorange", linewidth=lwdth, linestyle="--") plt.xlabel("Time [s]", fontsize=16) plt.ylabel("Pitch [rad]", fontsize=14) if plot_forces: ax2bis = ax2.twinx() ax2bis.set_ylabel("$F_x$ [N]", color='k', fontsize=14) ax2bis.plot(t[:-1], cheatForce[:-1, 0], color="darkviolet", linewidth=lwdth, linestyle="--") ax2bis.tick_params(axis='y', labelcolor='k') ax2bis.legend(["Force"], prop={'size': 10}, loc=1) for ax in [ax0, ax1, ax2]: ax.tick_params(axis='both', which='major', labelsize=10) ax.tick_params(axis='both', which='minor', labelsize=10) plt.savefig("/home/palex/Documents/Travail/Article_10_2020/solopython_02_11_2020ter/Figures/H_R_P_vele" + str(velID)+ last_date[:-4] +".eps", dpi="figure", bbox_inches="tight") plt.savefig("/home/palex/Documents/Travail/Article_10_2020/solopython_02_11_2020ter/Figures/H_R_P_vele" + str(velID)+ last_date[:-4] +".png", dpi=800, bbox_inches="tight") # VX / VY / WYAW FIGURE fig2 = plt.figure(figsize=(7, 4)) # Forward velocity subplot ax0 = plt.subplot(3, 1, 1) plt.plot(t[:-1], cheatLinearVelocity[:-1, 0], color=c[0], linewidth=lwdth) plt.plot(t[:-1], vx_est[:-1], color="darkgreen", linewidth=lwdth) plt.plot(t[:-1], vx_ref[:-1], "darkorange", linewidth=lwdth, linestyle="--") plt.ylabel("$\dot x$ [m/s]", fontsize=14) ax0.legend(["Ground truth", "Estimated", "Command"], prop={'size': 10}, loc=2) if plot_forces: ax0bis = ax0.twinx() ax0bis.set_ylabel("$F_x$ [N]", color='k', fontsize=14) ax0bis.plot(t[:-1], cheatForce[:-1, 0], color="darkviolet", linewidth=lwdth, linestyle="--") ax0bis.tick_params(axis='y', labelcolor='k') ax0bis.legend(["Force"], prop={'size': 10}, loc=1) # Lateral velocity subplot ax1 = plt.subplot(3, 1, 2, sharex=ax0) plt.plot(t[:-1], cheatLinearVelocity[:-1, 1], color=c[0], linewidth=lwdth) plt.plot(t[:-1], vy_est[:-1], color="darkgreen", linewidth=lwdth) plt.plot(t[:-1], vy_ref[:-1], "darkorange", linewidth=lwdth, linestyle="--") plt.ylabel("$\dot y$ [m/s]", fontsize=14) #ax1.legend(["Ground truth", "Estimated", "Command"], prop={'size': 10}, loc=2) if plot_forces: ax1bis = ax1.twinx() ax1bis.set_ylabel("$F_y$ [N]", color='k', fontsize=14) ax1bis.plot(t[:-1], cheatForce[:-1, 1], color="darkviolet", linewidth=lwdth, linestyle="--") ax1bis.tick_params(axis='y', labelcolor='k') ax1bis.legend(["Force"], prop={'size': 10}, loc=1) # Angular velocity yaw subplot ax2 = plt.subplot(3, 1, 3, sharex=ax0) plt.plot(t[:-1], baseAngularVelocity[:-1, 2], color=c[0], linewidth=lwdth) plt.plot(t[:-1], log_dq[5, :-1], color="darkgreen", linewidth=lwdth) plt.plot(t[:-1], log_xfmpc[:-1, 11], "darkorange", linewidth=lwdth, linestyle="--") plt.ylabel("$\dot \omega_z$ [rad/s]", fontsize=16) plt.xlabel("Time [s]", fontsize=14) #ax2.legend(["Ground truth", "Estimated", "Command"], prop={'size': 10}, loc=2) for ax in [ax0, ax1, ax2]: ax.tick_params(axis='both', which='major', labelsize=10) ax.tick_params(axis='both', which='minor', labelsize=10) plt.savefig("/home/palex/Documents/Travail/Article_10_2020/solopython_02_11_2020ter/Figures/Vx_Vy_Wyaw_vele" + str(velID)+ last_date[:-4] + ".eps", dpi="figure", bbox_inches="tight") plt.savefig("/home/palex/Documents/Travail/Article_10_2020/solopython_02_11_2020ter/Figures/Vx_Vy_Wyaw_vele" + str(velID)+ last_date[:-4] + ".png", dpi=800, bbox_inches="tight") plt.show(block=True) ######## ######## # embed() # X_F_MPC index = [1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12] lgd1 = ["Ctct force X", "Ctct force Y", "Ctct force Z"] lgd2 = ["FL", "FR", "HL", "HR"] plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, index[i]) else: plt.subplot(3, 4, index[i], sharex=ax0) plt.plot(log_xfmpc[:, i], "b", linewidth=2) # plt.ylabel(lgd[i]) plt.suptitle("b_xfmpc") plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, index[i]) else: plt.subplot(3, 4, index[i], sharex=ax0) h1, = plt.plot(log_xfmpc[:, 12+i], "b", linewidth=5) plt.xlabel("Time [s]") plt.ylabel(lgd1[i % 3]+" "+lgd2[int(i/3)]) if (i % 3) == 2: plt.ylim([-1.0, 15.0]) else: plt.ylim([-1.5, 1.5]) plt.suptitle("b_xfmpc forces") # plt.show(block=True) ############### # ORIENTATION # ############### mocapRPY = np.zeros((N, 3)) imuRPY = np.zeros((N, 3)) for i in range(N): mocapRPY[i, :] = pin.rpy.matrixToRpy(mocapOrientationMat9[i, :, :]) imuRPY[i, :] = pin.rpy.matrixToRpy(pin.Quaternion( baseOrientation[i:(i+1), :].transpose()).toRotationMatrix()) fig = plt.figure() # Roll orientation ax0 = plt.subplot(2, 1, 1) plt.plot(t, mocapRPY[:N, 0], "darkorange", linewidth=lwdth) plt.plot(t, imuRPY[:N, 0], "royalblue", linewidth=lwdth) plt.ylabel("Roll") plt.legend(["Mocap", "IMU"], prop={'size': 8}) # Pitch orientation ax1 = plt.subplot(2, 1, 2, sharex=ax0) plt.plot(t, mocapRPY[:N, 1], "darkorange", linewidth=lwdth) plt.plot(t, imuRPY[:N, 1], "royalblue", linewidth=lwdth) plt.ylabel("Pitch") plt.xlabel("Time [s]") # embed() ################### # LINEAR VELOCITY # ################### mocapBaseLinearVelocity = np.zeros((N, 3)) imuBaseLinearVelocity = np.zeros((N, 3)) for i in range(N): mocapBaseLinearVelocity[i, :] = ((mocapOrientationMat9[i, :, :]) @ (mocapVelocity[i:(i+1), :]).transpose()).ravel() if i == 0: imuBaseLinearVelocity[i, :] = mocapBaseLinearVelocity[0, :] else: imuBaseLinearVelocity[i, :] = imuBaseLinearVelocity[i - 1, :] + dt * baseLinearAcceleration[i-1, :] fig = plt.figure() # X linear velocity ax0 = plt.subplot(3, 1, 1) plt.plot(t, mocapBaseLinearVelocity[:N, 0], "darkorange", linewidth=lwdth) plt.plot(t, imuBaseLinearVelocity[:N, 0], "royalblue", linewidth=lwdth) if data['estimatorVelocity'] is not None: plt.plot(t, estimatorVelocity[:N, 0], "darkgreen", linewidth=lwdth) plt.plot(t, referenceVelocity[:N, 0], color="darkviolet", linewidth=lwdth) plt.ylabel("$\dot x$ [m/s]") plt.legend(["Mocap", "IMU", "Estimator", "Reference"], prop={'size': 8}) # Y linear velocity ax1 = plt.subplot(3, 1, 2, sharex=ax0) plt.plot(t, mocapBaseLinearVelocity[:N, 1], "darkorange", linewidth=lwdth) plt.plot(t, imuBaseLinearVelocity[:N, 1], "royalblue", linewidth=lwdth) if data['estimatorVelocity'] is not None: plt.plot(t, estimatorVelocity[:N, 1], "darkgreen", linewidth=lwdth) plt.plot(t, referenceVelocity[:N, 1], color="darkviolet", linewidth=lwdth) plt.ylabel("$\dot y$ [m/s]") # Z linear velocity ax1 = plt.subplot(3, 1, 3, sharex=ax0) plt.plot(t, mocapBaseLinearVelocity[:N, 2], "darkorange", linewidth=lwdth) plt.plot(t, imuBaseLinearVelocity[:N, 2], "royalblue", linewidth=lwdth) if data['estimatorVelocity'] is not None: plt.plot(t, estimatorVelocity[:N, 2], "darkgreen", linewidth=lwdth) plt.plot(t, referenceVelocity[:N, 2], color="darkviolet", linewidth=lwdth) plt.ylabel("$\dot z$ [m/s]") plt.xlabel("Time [s]") ###################### # ANGULAR VELOCITIES # ###################### mocapBaseAngularVelocity = np.zeros(mocapAngularVelocity.shape) for i in range(N): #mocapBaseAngularVelocity[i, :] = ((mocapOrientationMat9[i, :, :]) @ (mocapAngularVelocity[i:(i+1), :]).transpose()).ravel() mocapBaseAngularVelocity[i, :] = ( mocapAngularVelocity[i:(i+1), :]).transpose().ravel() fig = plt.figure() # Angular velocity X subplot ax0 = plt.subplot(3, 1, 1) plt.plot(t, mocapBaseAngularVelocity[:N, 0], "darkorange", linewidth=lwdth) plt.plot(t, baseAngularVelocity[:N, 0], "royalblue", linewidth=lwdth*2) plt.plot(t, referenceVelocity[:N, 3], color="darkviolet", linewidth=lwdth) plt.ylabel("$\dot \phi$ [rad/s]") plt.legend(["Mocap", "IMU", "Reference"], prop={'size': 8}) # Angular velocity Y subplot ax1 = plt.subplot(3, 1, 2, sharex=ax0) plt.plot(t, mocapBaseAngularVelocity[:N, 1], "darkorange", linewidth=lwdth) plt.plot(t, baseAngularVelocity[:N, 1], "royalblue", linewidth=lwdth) plt.plot(t, referenceVelocity[:N, 4], color="darkviolet", linewidth=lwdth) plt.ylabel("$\dot \\theta$ [rad/s]") # Angular velocity Z subplot ax2 = plt.subplot(3, 1, 3, sharex=ax0) plt.plot(t, mocapBaseAngularVelocity[:N, 2], "darkorange", linewidth=lwdth) plt.plot(t, baseAngularVelocity[:N, 2], "royalblue", linewidth=lwdth) plt.plot(t, referenceVelocity[:N, 5], color="darkviolet", linewidth=lwdth) plt.ylabel("$\dot \psi$ [rad/s]") plt.xlabel("Time [s]") ####################### # LINEAR ACCELERATION # ####################### fig = plt.figure() # X linear acc ax0 = plt.subplot(3, 1, 1) plt.plot(t, baseLinearAcceleration[:N, 0], "royalblue", linewidth=lwdth) plt.ylabel("$\ddot x$ [m/s^2]") plt.legend(["IMU"], prop={'size': 8}) # Y linear acc ax1 = plt.subplot(3, 1, 2, sharex=ax0) plt.plot(t, baseLinearAcceleration[:N, 1], "royalblue", linewidth=lwdth) plt.ylabel("$\ddot y$ [m/s^2]") # Z linear acc ax1 = plt.subplot(3, 1, 3, sharex=ax0) plt.plot(t, baseLinearAcceleration[:N, 2], "royalblue", linewidth=lwdth) plt.ylabel("$\ddot z$ [m/s^2]") plt.xlabel("Time [s]") #################### # JOYSTICK CONTROL # #################### fig = plt.figure() # X linear velocity ax0 = plt.subplot(3, 1, 1) plt.plot(t, mocapBaseLinearVelocity[:N, 0], "darkorange", linewidth=lwdth) if data['estimatorVelocity'] is not None: plt.plot(t, estimatorVelocity[:N, 0], "darkgreen", linewidth=lwdth) plt.plot(t, referenceVelocity[:N, 0], color="darkviolet", linewidth=lwdth) plt.ylabel("$\dot x$ [m/s]") plt.legend(["Mocap", "Estimator", "Reference"], prop={'size': 8}) # Y linear velocity ax1 = plt.subplot(3, 1, 2, sharex=ax0) plt.plot(t, mocapBaseLinearVelocity[:N, 1], "darkorange", linewidth=lwdth) if data['estimatorVelocity'] is not None: plt.plot(t, estimatorVelocity[:N, 1], "darkgreen", linewidth=lwdth) plt.plot(t, referenceVelocity[:N, 1], color="darkviolet", linewidth=lwdth) plt.ylabel("$\dot y$ [m/s]") # Z linear velocity ax1 = plt.subplot(3, 1, 3, sharex=ax0) plt.plot(t, mocapBaseAngularVelocity[:N, 2], "darkorange", linewidth=lwdth) plt.plot(t, baseAngularVelocity[:N, 2], "royalblue", linewidth=lwdth) plt.plot(t, referenceVelocity[:N, 5], color="darkviolet", linewidth=lwdth) plt.ylabel("$\dot \psi$ [rad/s]") plt.xlabel("Time [s]") plt.suptitle("Tracking of the velocity command sent to the robot") ############# # ACTUATORS # ############# index = [1, 5, 2, 6, 3, 7, 4, 8] plt.figure() for i in range(8): if i == 0: ax0 = plt.subplot(2, 4, index[i]) else: plt.subplot(2, 4, index[i], sharex=ax0) plt.plot( t, torquesFromCurrentMeasurment[:N, i], "forestgreen", linewidth=lwdth) if (i % 2 == 1): plt.xlabel("Time [s]") if i <= 1: plt.ylabel("Torques [N.m]") contact_state = np.zeros((N, 4)) margin = 25 treshold = 0.4 for i in range(4): state = 0 front_up = 0 front_down = 0 for j in range(N): if (state == 0) and (np.abs(torquesFromCurrentMeasurment[j, 2*i+1]) >= treshold): state = 1 front_up = j if (state == 1) and (np.abs(torquesFromCurrentMeasurment[j, 2*i+1]) < treshold): state = 0 front_down = j l = np.min((front_up+margin, N)) u = np.max((front_down-margin, 0)) contact_state[l:u, i] = 1 plt.figure() for i in range(4): if i == 0: ax0 = plt.subplot(1, 4, i+1) else: plt.subplot(1, 4, i+1, sharex=ax0) plt.plot(t, torquesFromCurrentMeasurment[:N, 2*i+1]) plt.plot(t, contact_state[:N, i]) plt.legend(["Torque", "Estimated contact state"], prop={'size': 8}) """fig = plt.figure() # Angular velocity X subplot ax0 = plt.subplot(3, 1, 1) plt.plot(t, torquesFromCurrentMeasurment[:N, 0], "forestgreen", linewidth=lwdth) plt.ylabel("Torques [N.m]") # Angular velocity Y subplot ax1 = plt.subplot(3, 1, 2, sharex=ax0) plt.plot(t, q_mes[:N, 0], "forestgreen", linewidth=lwdth) plt.ylabel("Angular position [rad]") # Angular velocity Z subplot ax2 = plt.subplot(3, 1, 3, sharex=ax0) plt.plot(t, v_mes[:N, 2], "forestgreen", linewidth=lwdth) plt.ylabel("Angular velocity [rad/s]") plt.xlabel("Time [s]")""" # Set the paths where the urdf and srdf file of the robot are registered modelPath = "/opt/openrobots/share/example-robot-data/robots" if on_solo8: urdf = modelPath + "/solo_description/robots/solo.urdf" else: urdf = modelPath + "/solo_description/robots/solo12.urdf" srdf = modelPath + "/solo_description/srdf/solo.srdf" vector = pin.StdVec_StdString() vector.extend(item for item in modelPath) # Create the robot wrapper from the urdf model (which has no free flyer) and add a free flyer robot = tsid.RobotWrapper( urdf, vector, pin.JointModelFreeFlyer(), False) model = robot.model() # Creation of the Invverse Dynamics HQP problem using the robot # accelerations (base + joints) and the contact forces invdyn = tsid.InverseDynamicsFormulationAccForce( "tsid", robot, False) # Compute the problem data with a solver based on EiQuadProg t0 = 0.0 if on_solo8: q_FK = np.zeros((15, 1)) else: q_FK = np.zeros((19, 1)) q_FK[:7, 0] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]) RPY = quaternionToRPY(baseOrientation.ravel()) IMU_ang_pos = np.zeros(4) IMU_ang_pos[:] = EulerToQuaternion([RPY[0], RPY[1], 0.0]) q_FK[3:7, 0] = IMU_ang_pos v_FK = np.zeros((q_FK.shape[0] - 1, 1)) invdyn.computeProblemData(t0, q_FK, v_FK) data = invdyn.data() # Feet indexes if on_solo8: indexes = [8, 14, 20, 26] # solo8 else: indexes = [10, 18, 26, 34] # solo12 alpha = 0.98 filteredLinearVelocity = np.zeros((N, 3)) """for a in range(len(model.frames)): print(a) print(model.frames[a])""" FK_lin_vel_log = np.nan * np.zeros((N, 3)) iFK_lin_vel_log = np.nan * np.zeros((N, 3)) rms_x = [] rms_y = [] rms_z = [] irms_x = [] irms_y = [] irms_z = [] alphas = [0.97] # [0.01*i for i in range(100)] i_not_nan = np.where(np.logical_not(np.isnan(mocapBaseLinearVelocity[:, 0]))) i_not_nan = (i_not_nan[0])[(i_not_nan[0] < 9600)] for alpha in alphas: print(alpha) filteredLinearVelocity = np.zeros((N, 3)) ifilteredLinearVelocity = np.zeros((N, 3)) for i in range(N): # Update estimator FK model q_FK[7:, 0] = q_mes[i, :] # Position of actuators v_FK[6:, 0] = v_mes[i, :] # Velocity of actuators pin.forwardKinematics(model, data, q_FK, v_FK) # Get estimated velocity from updated model cpt = 0 vel_est = np.zeros((3, )) ivel_est = np.zeros((3, )) for j in (np.where(contactStatus[i, :] == 1))[0]: vel_estimated_baseframe, _iv0i = BaseVelocityFromKinAndIMU( indexes[j], model, data, baseAngularVelocity[i, :]) cpt += 1 vel_est += vel_estimated_baseframe[:, 0] ivel_est = ivel_est + _iv0i.ravel() if cpt > 0: FK_lin_vel = vel_est / cpt # average of all feet in contact iFK_lin_vel = ivel_est / cpt filteredLinearVelocity[i, :] = alpha * (filteredLinearVelocity[i-1, :] + baseLinearAcceleration[i, :] * dt) + (1 - alpha) * FK_lin_vel FK_lin_vel_log[i, :] = FK_lin_vel # Get previous base vel wrt world in base frame into IMU frame i_filt_lin_vel = ifilteredLinearVelocity[i-1, :] + \ cross3(_1Mi.translation.ravel(), baseAngularVelocity[i, :]).ravel() # Merge IMU base vel wrt world in IMU frame with FK base vel wrt world in IMU frame i_merged_lin_vel = alpha * \ (i_filt_lin_vel + baseLinearAcceleration[i, :] * dt) + (1 - alpha) * iFK_lin_vel.ravel() """print("##") print(filteredLinearVelocity[i, :]) print(i_merged_lin_vel)""" # Get merged base vel wrt world in IMU frame into base frame ifilteredLinearVelocity[i, :] = np.array( i_merged_lin_vel + cross3(-_1Mi.translation.ravel(), baseAngularVelocity[i, :]).ravel()) #print(ifilteredLinearVelocity[i, :]) """if np.array_equal(filteredLinearVelocity[i, :], ifilteredLinearVelocity[i, :]): print("Same values") else: print("Different") print(filteredLinearVelocity[i, :]) print(ifilteredLinearVelocity[i, :])""" else: filteredLinearVelocity[i, :] = filteredLinearVelocity[i - 1, :] + baseLinearAcceleration[i, :] * dt # Get previous base vel wrt world in base frame into IMU frame i_filt_lin_vel = ifilteredLinearVelocity[i-1, :] + \ cross3(_1Mi.translation.ravel(), baseAngularVelocity[i, :]).ravel() # Merge IMU base vel wrt world in IMU frame with FK base vel wrt world in IMU frame i_merged_lin_vel = i_filt_lin_vel + \ baseLinearAcceleration[i, :] * dt # Get merged base vel wrt world in IMU frame into base frame ifilteredLinearVelocity[i, :] = i_merged_lin_vel + \ cross3(-_1Mi.translation.ravel(), baseAngularVelocity[i, :]).ravel() rms_x.append( np.sqrt(np.mean(np.square(filteredLinearVelocity[i_not_nan, 0] - mocapBaseLinearVelocity[i_not_nan, 0])))) rms_y.append( np.sqrt(np.mean(np.square(filteredLinearVelocity[i_not_nan, 1] - mocapBaseLinearVelocity[i_not_nan, 1])))) rms_z.append( np.sqrt(np.mean(np.square(filteredLinearVelocity[i_not_nan, 2] - mocapBaseLinearVelocity[i_not_nan, 2])))) irms_x.append( np.sqrt(np.mean(np.square(ifilteredLinearVelocity[i_not_nan, 0] - mocapBaseLinearVelocity[i_not_nan, 0])))) irms_y.append( np.sqrt(np.mean(np.square(ifilteredLinearVelocity[i_not_nan, 1] - mocapBaseLinearVelocity[i_not_nan, 1])))) irms_z.append( np.sqrt(np.mean(np.square(ifilteredLinearVelocity[i_not_nan, 2] - mocapBaseLinearVelocity[i_not_nan, 2])))) plt.figure() plt.plot(alphas, rms_x) plt.plot(alphas, rms_y) plt.plot(alphas, rms_z) plt.plot(alphas, irms_x) plt.plot(alphas, irms_y) plt.plot(alphas, irms_z) plt.legend(["RMS X", "RMS Y", "RMS Z", "New RMS X", "New RMS Y", "New RMS Z"], prop={'size': 8}) plt.xlabel("Alpha") plt.ylabel("RMS erreur en vitesse") fc = 10 y = 1 - np.cos(2*np.pi*fc*dt) alpha_v = -y+np.sqrt(y*y+2*y) lowpass_ifilteredLinearVelocity = np.zeros(ifilteredLinearVelocity.shape) lowpass_ifilteredLinearVelocity[0, :] = ifilteredLinearVelocity[0, :] for k in range(1, N): lowpass_ifilteredLinearVelocity[k, :] = ( 1 - alpha_v) * lowpass_ifilteredLinearVelocity[k-1, :] + alpha_v * ifilteredLinearVelocity[k, :] plt.figure() plt.plot(t, filteredLinearVelocity[:N, 0], linewidth=3) plt.plot(t, ifilteredLinearVelocity[:N, 0], linewidth=3, linestyle="--") plt.plot(t, mocapBaseLinearVelocity[:N, 0], linewidth=3) plt.plot( t, lowpass_ifilteredLinearVelocity[:N, 0], color="darkviolet", linewidth=3) # plt.plot(t, FK_lin_vel_log[:N, 0], color="darkviolet", linestyle="--") """plt.plot(t, baseLinearAcceleration[:N, 0], linestyle="--")""" plt.legend(["Filtered", "New Filtered", "Mocap"], prop={'size': 8}) # plt.show() data_control = np.load("data_control_" + last_date) log_tau_ff = data_control['log_tau_ff'] # Position log_qdes = data_control['log_qdes'] # Orientation as quat log_vdes = data_control['log_vdes'] # as 3 by 3 matrix log_q = data_control['log_q'] index12 = [1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12] plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, index12[i]) else: plt.subplot(3, 4, index12[i], sharex=ax0) plt.plot(t, log_qdes[i, :], color='r', linewidth=lwdth) plt.plot(t, q_mes[:, i], color='b', linewidth=lwdth) plt.legend(["Qdes", "Qmes"], prop={'size': 8}) plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, index12[i]) else: plt.subplot(3, 4, index12[i], sharex=ax0) plt.plot(t, log_vdes[i, :], color='r', linewidth=lwdth) plt.plot(t, v_mes[:, i], color='b', linewidth=lwdth) plt.legend(["Vdes", "Vmes"], prop={'size': 8}) # Z linear velocity plt.figure() for i in range(12): if i == 0: ax0 = plt.subplot(3, 4, index12[i]) else: plt.subplot(3, 4, index12[i], sharex=ax0) plt.plot(t, log_tau_ff[i, :], color='r', linewidth=lwdth) plt.plot(t, torquesFromCurrentMeasurment[:, i], color='b', linewidth=lwdth) plt.legend(["Tau_FF", "TAU"], prop={'size': 8}) plt.show(block=True)