From fd793e95a2de7e460a67ffddc84fad2328662a1e Mon Sep 17 00:00:00 2001
From: odri <odri@furano.laas.fr>
Date: Tue, 16 Aug 2022 12:15:10 +0200
Subject: [PATCH] more cost on not movig feet more amping

---
 config/walk_parameters.yaml                            | 10 +++++-----
 .../quadruped_reactive_walking/WB_MPC/ProblemData.py   |  4 ++--
 2 files changed, 7 insertions(+), 7 deletions(-)

diff --git a/config/walk_parameters.yaml b/config/walk_parameters.yaml
index 393ca060..c4dbffaf 100644
--- a/config/walk_parameters.yaml
+++ b/config/walk_parameters.yaml
@@ -6,12 +6,12 @@ robot:
     LOGGING: true  # Enable/disable logging during the experiment
     PLOTTING: true  # Enable/disable automatic plotting at the end of the experiment
     DEMONSTRATION: false  # Enable/disable demonstration functionalities
-    SIMULATION: true  # Enable/disable PyBullet simulation or running on real robot
+    SIMULATION: false  # Enable/disable PyBullet simulation or running on real robot
     enable_pyb_GUI: true  # Enable/disable PyBullet GUI
     envID: 0  # Identifier of the environment to choose in which one the simulation will happen
     use_flat_plane: true  # If True the ground is flat, otherwise it has bumps
     predefined_vel: true  # If we are using a predefined reference velocity (True) or a joystick (False)
-    N_SIMULATION: 10000  # Number of simulated wbc time steps
+    N_SIMULATION: 15000  # Number of simulated wbc time steps
     enable_corba_viewer: false  # Enable/disable Corba Viewer
     enable_multiprocessing: true  # Enable/disable running the MPC in another process in parallel of the main loop
     perfect_estimator: true  # Enable/disable perfect estimator by using data directly from PyBullet
@@ -24,7 +24,7 @@ robot:
     dt_wbc: 0.001  # Time step of the whole body control
     dt_mpc: 0.015  # Time step of the model predictive control
     type_MPC: 3  # Which MPC solver you want to use: 0 for OSQP MPC, 1, 2, 3 for Crocoddyl MPCs
-    save_guess: true # true to interpolate the impedance quantities between nodes of the MPC
+    save_guess: false # true to interpolate the impedance quantities between nodes of the MPC
     movement: "step" # name of the movement to perform
     interpolate_mpc: true # true to interpolate the impedance quantities between nodes of the MPC
     interpolation_type: 3 # 0,1,2,3 decide which kind of interpolation is used
@@ -32,12 +32,12 @@ robot:
     # Kd_main: [0., 0., 0.]  # Derivative gains for the PD+
 #     Kff_main: 0.0  # Feedforward torques multiplier for the PD+
     Kp_main: [3, 3, 3]  # Proportional gains for the PD+
-    Kd_main: [0.3, 0.3, 0.3]  # Derivative gains for the PD+
+    Kd_main: [0.5, 0.5, 0.5]  # Derivative gains for the PD+
     Kff_main: 1.0  # Feedforward torques multiplier for the PD+
 
     # Parameters of Gait
     N_periods: 1
-    gait: [100, 0, 0, 0, 0]  # Initial gait matrix
+    gait: [80, 0, 0, 0, 0]  # Initial gait matrix
 
     # Parameters of Joystick
     gp_alpha_vel: 0.003  # Coefficient of the low pass filter applied to gamepad velocity
diff --git a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py
index dfcd025a..c10c293f 100644
--- a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py
+++ b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py
@@ -175,8 +175,8 @@ class ProblemDataFull(problemDataAbstract):
         self.control_bound_w = 1e3
         self.control_reg_w = 1e2
         self.state_reg_w = np.array(
-            [1e1] * 3 + [1e-2] * 3 + [1e1] * 6 +
-            [1e1] * 3 + [1e0] * 3 + [1e1] * 6
+            [1e2] * 3 + [1e-2] * 3 + [1e2] * 6 +
+            [1e1] * 3 + [1e-0] * 3 + [1e1] * 6
         )
         self.terminal_velocity_w = np.array([0] * 12 + [1e3] * 12)
 
-- 
GitLab