From fd793e95a2de7e460a67ffddc84fad2328662a1e Mon Sep 17 00:00:00 2001 From: odri <odri@furano.laas.fr> Date: Tue, 16 Aug 2022 12:15:10 +0200 Subject: [PATCH] more cost on not movig feet more amping --- config/walk_parameters.yaml | 10 +++++----- .../quadruped_reactive_walking/WB_MPC/ProblemData.py | 4 ++-- 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/config/walk_parameters.yaml b/config/walk_parameters.yaml index 393ca060..c4dbffaf 100644 --- a/config/walk_parameters.yaml +++ b/config/walk_parameters.yaml @@ -6,12 +6,12 @@ robot: LOGGING: true # Enable/disable logging during the experiment PLOTTING: true # Enable/disable automatic plotting at the end of the experiment DEMONSTRATION: false # Enable/disable demonstration functionalities - SIMULATION: true # Enable/disable PyBullet simulation or running on real robot + SIMULATION: false # Enable/disable PyBullet simulation or running on real robot enable_pyb_GUI: true # Enable/disable PyBullet GUI envID: 0 # Identifier of the environment to choose in which one the simulation will happen use_flat_plane: true # If True the ground is flat, otherwise it has bumps predefined_vel: true # If we are using a predefined reference velocity (True) or a joystick (False) - N_SIMULATION: 10000 # Number of simulated wbc time steps + N_SIMULATION: 15000 # Number of simulated wbc time steps enable_corba_viewer: false # Enable/disable Corba Viewer enable_multiprocessing: true # Enable/disable running the MPC in another process in parallel of the main loop perfect_estimator: true # Enable/disable perfect estimator by using data directly from PyBullet @@ -24,7 +24,7 @@ robot: dt_wbc: 0.001 # Time step of the whole body control dt_mpc: 0.015 # Time step of the model predictive control type_MPC: 3 # Which MPC solver you want to use: 0 for OSQP MPC, 1, 2, 3 for Crocoddyl MPCs - save_guess: true # true to interpolate the impedance quantities between nodes of the MPC + save_guess: false # true to interpolate the impedance quantities between nodes of the MPC movement: "step" # name of the movement to perform interpolate_mpc: true # true to interpolate the impedance quantities between nodes of the MPC interpolation_type: 3 # 0,1,2,3 decide which kind of interpolation is used @@ -32,12 +32,12 @@ robot: # Kd_main: [0., 0., 0.] # Derivative gains for the PD+ # Kff_main: 0.0 # Feedforward torques multiplier for the PD+ Kp_main: [3, 3, 3] # Proportional gains for the PD+ - Kd_main: [0.3, 0.3, 0.3] # Derivative gains for the PD+ + Kd_main: [0.5, 0.5, 0.5] # Derivative gains for the PD+ Kff_main: 1.0 # Feedforward torques multiplier for the PD+ # Parameters of Gait N_periods: 1 - gait: [100, 0, 0, 0, 0] # Initial gait matrix + gait: [80, 0, 0, 0, 0] # Initial gait matrix # Parameters of Joystick gp_alpha_vel: 0.003 #Â Coefficient of the low pass filter applied to gamepad velocity diff --git a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py index dfcd025a..c10c293f 100644 --- a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py +++ b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py @@ -175,8 +175,8 @@ class ProblemDataFull(problemDataAbstract): self.control_bound_w = 1e3 self.control_reg_w = 1e2 self.state_reg_w = np.array( - [1e1] * 3 + [1e-2] * 3 + [1e1] * 6 + - [1e1] * 3 + [1e0] * 3 + [1e1] * 6 + [1e2] * 3 + [1e-2] * 3 + [1e2] * 6 + + [1e1] * 3 + [1e-0] * 3 + [1e1] * 6 ) self.terminal_velocity_w = np.array([0] * 12 + [1e3] * 12) -- GitLab