diff --git a/config/walk_parameters.yaml b/config/walk_parameters.yaml index 5e1e0364e8fef4bd4dff38fc663dd045056f2360..b949f2f902820dba4f0fff8918d0c09646362dd6 100644 --- a/config/walk_parameters.yaml +++ b/config/walk_parameters.yaml @@ -6,8 +6,8 @@ robot: LOGGING: true # Enable/disable logging during the experiment PLOTTING: true # Enable/disable automatic plotting at the end of the experiment DEMONSTRATION: false # Enable/disable demonstration functionalities - SIMULATION: false # Enable/disable PyBullet simulation or running on real robot - enable_pyb_GUI: false # Enable/disable PyBullet GUI + SIMULATION: true # Enable/disable PyBullet simulation or running on real robot + enable_pyb_GUI: true # Enable/disable PyBullet GUI envID: 0 # Identifier of the environment to choose in which one the simulation will happen use_flat_plane: true # If True the ground is flat, otherwise it has bumps predefined_vel: true # If we are using a predefined reference velocity (True) or a joystick (False) @@ -25,7 +25,7 @@ robot: dt_mpc: 0.0014 # Time step of the model predictive control type_MPC: 3 # Which MPC solver you want to use: 0 for OSQP MPC, 1, 2, 3 for Crocoddyl MPCs # Kp_main: [0.0, 0.0, 0.0] # Proportional gains for the PD+ - Kp_main: [4, 4, 4] # Proportional gains for the PD+ + Kp_main: [3, 3, 3] # Proportional gains for the PD+ # Kd_main: [0., 0., 0.] # Derivative gains for the PD+ Kd_main: [0.3, 0.3, 0.3] # Derivative gains for the PD+ # Kff_main: 0.0 # Feedforward torques multiplier for the PD+ diff --git a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py index 8064e8058fd6e1b95b6c883009c5d9a731d1881f..48b0e2c4044aa9b4b9330dea8b726d83d746717b 100644 --- a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py +++ b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py @@ -116,7 +116,7 @@ class ProblemDataFull(problemDataAbstract): #self.friction_cone_w = 1e3 * 0 self.control_bound_w = 1e3 self.control_reg_w = 1e0 - self.state_reg_w = np.array([1e-5] * 3 + [ 3* 1e-1]*3) + self.state_reg_w = np.array([1e-3] * 3 + [ 3* 1e-1]*3) self.terminal_velocity_w = np.array([0] * 3 + [1e3] * 3 ) self.q0_reduced = self.q0[10:13]