diff --git a/config/walk_parameters.yaml b/config/walk_parameters.yaml index 9f0b7b3c0300f2f2474024bba4610e4f25a70abb..b11e42aa25137672a54648c34cfe76288fe62007 100644 --- a/config/walk_parameters.yaml +++ b/config/walk_parameters.yaml @@ -13,7 +13,7 @@ robot: predefined_vel: true # If we are using a predefined reference velocity (True) or a joystick (False) N_SIMULATION: 10000 # Number of simulated wbc time steps enable_corba_viewer: false # Enable/disable Corba Viewer - enable_multiprocessing: false # Enable/disable running the MPC in another process in parallel of the main loop + enable_multiprocessing: true # Enable/disable running the MPC in another process in parallel of the main loop perfect_estimator: true # Enable/disable perfect estimator by using data directly from PyBullet # General control parameters @@ -25,7 +25,7 @@ robot: dt_mpc: 0.015 # Time step of the model predictive control type_MPC: 3 # Which MPC solver you want to use: 0 for OSQP MPC, 1, 2, 3 for Crocoddyl MPCs save_guess: false # true to interpolate the impedance quantities between nodes of the MPC - movement: "circle" # name of the movement to perform + movement: "step" # name of the movement to perform interpolate_mpc: true # true to interpolate the impedance quantities between nodes of the MPC interpolation_type: 3 # 0,1,2,3 decide which kind of interpolation is used # Kp_main: [0.0, 0.0, 0.0] # Proportional gains for the PD+ diff --git a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py index c8ecf039ee9fb3b959578b3d028bad7a96508d66..56541ea094ebffdb58c35c936d283b4b43b5baa5 100644 --- a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py +++ b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py @@ -175,12 +175,12 @@ class ProblemDataFull(problemDataAbstract): self.foot_tracking_w = 1e4 # self.friction_cone_w = 1e3 * 0 self.control_bound_w = 1e3 - self.control_reg_w = 1e0 + self.control_reg_w = 1e-1 self.state_reg_w = np.array([1e1] * 3 - + [1e-1] * 3 + + [1e-2] * 3 + [1e1] * 6 + [1e1] * 3 - + [1e0] * 3 + + [3*1e-1] * 3 + [1e1] * 6 ) self.terminal_velocity_w = np.array([0] * 12 + [1e3] * 12)