From e8ab9ae5c18290ecc2fd217f2817050a3d0d467f Mon Sep 17 00:00:00 2001 From: Fanny Risbourg <frisbourg@laas.fr> Date: Mon, 29 Aug 2022 16:01:27 +0200 Subject: [PATCH] Whole body changes --- config/walk_parameters.yaml | 9 +- .../quadruped_reactive_walking/Controller.py | 121 +++++++++------- .../WB_MPC/CrocoddylOCP.py | 58 ++++---- .../WB_MPC/ProblemData.py | 129 ++++-------------- .../WB_MPC/Target.py | 11 +- .../WB_MPC_Wrapper.py | 74 +++++----- .../main_solo12_control.py | 7 +- .../tools/LoggerControl.py | 103 +++++++------- .../tools/PyBulletSimulator.py | 44 +++++- .../quadruped_reactive_walking/tools/Utils.py | 3 + 10 files changed, 263 insertions(+), 296 deletions(-) diff --git a/config/walk_parameters.yaml b/config/walk_parameters.yaml index bf5719a0..2ebaf357 100644 --- a/config/walk_parameters.yaml +++ b/config/walk_parameters.yaml @@ -25,8 +25,8 @@ robot: dt_mpc: 0.015 # Time step of the model predictive control type_MPC: 3 # Which MPC solver you want to use: 0 for OSQP MPC, 1, 2, 3 for Crocoddyl MPCs save_guess: false # true to interpolate the impedance quantities between nodes of the MPC - movement: "step" # name of the movement to perform - interpolate_mpc: false # true to interpolate the impedance quantities between nodes of the MPC + movement: "circle" # name of the movement to perform + interpolate_mpc: true # true to interpolate the impedance quantities between nodes of the MPC interpolation_type: 3 # 0,1,2,3 decide which kind of interpolation is used # Kp_main: [0.0, 0.0, 0.0] # Proportional gains for the PD+ # Kd_main: [0., 0., 0.] # Derivative gains for the PD+ @@ -37,7 +37,8 @@ robot: # Parameters of Gait N_periods: 1 - gait: [100, 0, 0, 0, 0] # Initial gait matrix + gait: [10, 1, 1, 1, 1, + 20, 1, 0, 1, 1] # Initial gait matrix # Parameters of Joystick gp_alpha_vel: 0.003 #Â Coefficient of the low pass filter applied to gamepad velocity @@ -59,7 +60,7 @@ robot: # Parameters of FootTrajectoryGenerator max_height: 0.05 # Apex height of the swinging trajectory [m] lock_time: 0.04 # Target lock before the touchdown [s] - vert_time: 0.03 # Duration during which feet move only along Z when taking off and landing + vert_time: 0.0 # Duration during which feet move only along Z when taking off and landing # Parameters of MPC with OSQP # [0.0, 0.0, 20.0, 0.25, 0.25, 10.0, 0.05, 0.05, 0.2, 0.0, 0.0, 0.3] diff --git a/python/quadruped_reactive_walking/Controller.py b/python/quadruped_reactive_walking/Controller.py index 0898af1b..ce5d1a5d 100644 --- a/python/quadruped_reactive_walking/Controller.py +++ b/python/quadruped_reactive_walking/Controller.py @@ -8,6 +8,7 @@ import quadruped_reactive_walking as qrw from . import WB_MPC_Wrapper from .WB_MPC.Target import Target from .tools.Utils import init_robot, quaternionToRPY +from .WB_MPC.ProblemData import ProblemData, ProblemDataFull COLORS = ["#1f77b4", "#ff7f0e", "#2ca02c"] @@ -39,10 +40,10 @@ class Interpolator: self.update(x0, x0) def update(self, x0, x1, x2=None): - self.q0 = x0[:12] - self.q1 = x1[:12] - self.v0 = x0[12:] - self.v1 = x1[12:] + self.q0 = x0[7:19] + self.q1 = x1[7:19] + self.v0 = x0[19 + 6 :] + self.v1 = x1[19 + 6 :] if self.type == 0: # Linear self.alpha = 0.0 self.beta = self.v1 @@ -71,8 +72,8 @@ class Interpolator: from scipy.interpolate import KroghInterpolator if x2 is not None: - self.q2 = x2[:12] - self.v2 = x2[12:] + self.q2 = x2[7:19] + self.v2 = x2[19 + 6 :] self.y = [self.q0, self.v0, self.q1, self.v1, self.q2, self.v2] self.krog = KroghInterpolator(self.ts, np.array(self.y)) else: @@ -118,14 +119,14 @@ class Interpolator: class DummyDevice: - def __init__(self): + def __init__(self, h): self.imu = self.IMU() self.joints = self.Joints() self.base_position = np.zeros(3) self.base_position[2] = 0.1944 self.b_base_velocity = np.zeros(3) - self.baseState = tuple() - self.baseVel = tuple() + self.baseState = ((0.0, 0.0, h), (0.0, 0.0, 0.0, 1.0)) + self.baseVel = ((0.0, 0.0, 0.0), (0.0, 0.0, 0.0)) class IMU: def __init__(self): @@ -141,7 +142,7 @@ class DummyDevice: class Controller: - def __init__(self, pd, params, q_init, t): + def __init__(self, params, q_init, t): """ Function that computes the reference control (tau, q_des, v_des and gains) @@ -152,11 +153,10 @@ class Controller: """ self.q_security = np.array([1.2, 2.1, 3.14] * 4) - self.pd = pd self.params = params - self.gait = np.repeat(np.array([0, 0, 0, 0]).reshape((1, 4)), self.pd.T, axis=0) - self.q_init = pd.q0 + self.gait = params.gait init_robot(q_init, params) + self.pd = ProblemData(params) self.k = 0 self.error = False @@ -172,19 +172,19 @@ class Controller: self.target = Target(params) self.footsteps = [] - for k in range(self.pd.T * self.pd.mpc_wbc_ratio): + for k in range(self.params.T * self.params.mpc_wbc_ratio): self.target_footstep = self.target.compute(k).copy() - if k % self.pd.mpc_wbc_ratio == 0: + if k % self.params.mpc_wbc_ratio == 0: self.footsteps.append(self.target_footstep.copy()) - self.mpc = WB_MPC_Wrapper.MPC_Wrapper(pd, params, self.footsteps, self.gait) + self.mpc = WB_MPC_Wrapper.MPC_Wrapper( + self.pd, params, self.footsteps, self.gait + ) self.mpc_solved = False self.k_result = 0 self.k_solve = 0 if self.params.interpolate_mpc: - self.interpolator = Interpolator( - params, np.concatenate([self.result.q_des, self.result.v_des]) - ) + self.interpolator = Interpolator(params, self.pd.x0) try: file = np.load("/tmp/init_guess.npy", allow_pickle=True).item() self.xs_init = list(file["xs"]) @@ -195,9 +195,8 @@ class Controller: self.us_init = None print("No initial guess\n") - device = DummyDevice() + device = DummyDevice(params.h_ref) device.joints.positions = q_init - self.axs = None self.compute(device) def compute(self, device, qc=None): @@ -217,10 +216,10 @@ class Controller: self.t_measures = t_measures - t_start self.target_footstep = self.target.compute( - self.k + self.pd.T * self.pd.mpc_wbc_ratio + self.k + self.params.T * self.params.mpc_wbc_ratio ) - if self.k % self.pd.mpc_wbc_ratio == 0: + if self.k % self.params.mpc_wbc_ratio == 0: if self.mpc_solved: self.k_solve = self.k self.mpc_solved = False @@ -255,6 +254,7 @@ class Controller: except ValueError: self.error = True print("MPC Problem") + self.gait = np.vstack((self.gait[1:, :], self.gait[-1, :])) t_mpc = time.time() self.t_mpc = t_mpc - t_measures @@ -266,7 +266,7 @@ class Controller: self.mpc_solved = True self.k_new = self.k # print(f"MPC solved in {self.k - self.k_solve} iterations") - # self.axs = self.plot_mpc() + # self.plot_mpc() if not self.initialized and self.params.save_guess: self.save_guess() @@ -278,8 +278,8 @@ class Controller: if self.mpc_result.new_result: if self.params.interpolation_type == 3: self.interpolator.update(xs[0], xs[1], xs[2]) - # self.interpolator.plot(self.pd.mpc_wbc_ratio, self.pd.dt_wbc) - t = (self.k - self.k_solve + 1) * self.pd.dt_wbc + # self.interpolator.plot(self.params.mpc_wbc_ratio, self.params.dt_wbc) + t = (self.k - self.k_solve + 1) * self.params.dt_wbc q, v = self.interpolator.interpolate(t) else: q, v = self.integrate_x(m) @@ -287,16 +287,6 @@ class Controller: self.result.q_des = q[:] self.result.v_des = v[:] - if self.axs is not None: - [ - self.axs[2].scatter( - y=self.result.tau_ff[3 + i], - x=(self.k - self.k_solve + 1) * self.pd.dt_wbc, - marker="+", - color=COLORS[i], - ) - for i in range(3) - ] self.xs_init = self.mpc_result.xs[1:] + [self.mpc_result.xs[-1]] self.us_init = self.mpc_result.us[1:] + [self.mpc_result.us[-1]] @@ -372,12 +362,12 @@ class Controller: if self.clamp(self.result.q_des[3 * i + 1], -hip_max, hip_max): print("Clamping hip n " + str(i)) self.error = set_error - if self.q_init[7 + 3 * i + 2] >= 0.0 and self.clamp( + if self.pd.q0[7 + 3 * i + 2] >= 0.0 and self.clamp( self.result.q_des[3 * i + 2], knee_min ): print("Clamping knee n " + str(i)) self.error = set_error - elif self.q_init[7 + 3 * i + 2] <= 0.0 and self.clamp( + elif self.pd.q0[7 + 3 * i + 2] <= 0.0 and self.clamp( self.result.q_des[3 * i + 2], max_value=-knee_min ): print("Clamping knee n " + str(i)) @@ -470,7 +460,9 @@ class Controller: def read_state(self, device): qj_m = device.joints.positions vj_m = device.joints.velocities - x_m = np.concatenate([qj_m, vj_m]) + bp_m = np.array([e for tup in device.baseState for e in tup]) + bv_m = np.array([e for tup in device.baseVel for e in tup]) + x_m = np.concatenate([bp_m, qj_m, bv_m, vj_m]) return {"qj_m": qj_m, "vj_m": vj_m, "x_m": x_m} def compute_torque(self, m): @@ -495,31 +487,56 @@ class Controller: Integrate the position and velocity using the acceleration computed from the feedforward torque """ - q0 = m["qj_m"].copy() - v0 = m["vj_m"].copy() - tau = self.result.tau_ff.copy() + q0 = m["x_m"].copy()[:19] + v0 = m["x_m"].copy()[19:] + tau = np.concatenate([np.zeros(6), self.result.tau_ff.copy()]) a = pin.aba(self.pd.model, self.pd.rdata, q0, v0, tau) v = v0 + a * self.params.dt_wbc - q = q0 + v * self.params.dt_wbc + q = pin.integrate(self.pd.model, q0, v * self.params.dt_wbc) - return q, v + return q[7:], v[6:] def plot_mpc(self): import matplotlib.pyplot as plt + legend = ["X", "Y", "Z"] + _, axs = plt.subplots(2) + [axs[0].plot(np.array(self.mpc_result.xs)[:, axis]) for axis in range(3)] + axs[0].legend(legend) + axs[0].set_title("Base position") + + [axs[1].plot(np.array(self.mpc_result.xs)[:, 19 + axis]) for axis in range(3)] + axs[1].legend(legend) + axs[1].set_title("Base velocity") + plt.show() legend = ["Hip", "Shoulder", "Knee"] - fig, axs = plt.subplots(3) - [axs[0].plot(np.array(self.mpc_result.xs)[:, joint]) for joint in range(3)] - axs[0].legend(legend) + _, axs = plt.subplots(3, 4, sharex=True) + for foot in range(4): + [ + axs[0, foot].plot(np.array(self.mpc_result.xs)[:, 7 + 3 * foot + joint]) + for joint in range(3) + ] + axs[0, foot].legend(legend) + axs[0, foot].set_title("Joint positions for " + self.pd.feet_names[foot]) - [axs[1].plot(np.array(self.mpc_result.xs)[:, 3 + joint]) for joint in range(3)] - axs[1].legend(legend) + [ + axs[1, foot].plot( + np.array(self.mpc_result.xs)[:, 19 + 6 + 3 * foot + joint] + ) + for joint in range(3) + ] + axs[1, foot].legend(legend) + axs[1, foot].set_title("Joint velocity for " + self.pd.feet_names[foot]) - [axs[2].plot(np.array(self.mpc_result.us)[:, joint]) for joint in range(3)] - axs[2].legend(legend) + [ + axs[2, foot].plot(np.array(self.mpc_result.us)[:, 3 * foot + joint]) + for joint in range(3) + ] + axs[2, foot].legend(legend) + axs[2, foot].set_title("Joint torques for foot " + self.pd.feet_names[foot]) - return axs + plt.show() diff --git a/python/quadruped_reactive_walking/WB_MPC/CrocoddylOCP.py b/python/quadruped_reactive_walking/WB_MPC/CrocoddylOCP.py index c3df055d..72f2fffd 100644 --- a/python/quadruped_reactive_walking/WB_MPC/CrocoddylOCP.py +++ b/python/quadruped_reactive_walking/WB_MPC/CrocoddylOCP.py @@ -10,8 +10,9 @@ from time import time class OCP: - def __init__(self, pd: ProblemData, footsteps, gait): + def __init__(self, pd: ProblemData, params, footsteps, gait): self.pd = pd + self.params = params self.max_iter = 1 self.state = crocoddyl.StateMultibody(self.pd.model) @@ -22,20 +23,19 @@ class OCP: rm, tm = self.initialize_models(gait, footsteps) - self.x0 = self.pd.x0_reduced + self.x0 = self.pd.x0 - self.problem = crocoddyl.ShootingProblem( - self.x0, rm, tm) + self.problem = crocoddyl.ShootingProblem(self.x0, rm, tm) self.ddp = crocoddyl.SolverFDDP(self.problem) def initialize_models(self, gait, footsteps): models = [] - for t, step in enumerate(gait): + for t, step in enumerate(gait[:-1]): tasks = self.make_task(footsteps[t]) - support_feet = [self.pd.allContactIds[i] for i in np.nonzero(step == 1)[0]] + support_feet = [self.pd.feet_ids[i] for i in np.nonzero(step == 1)[0]] models.append(self.create_model(support_feet, tasks)) - support_feet = [self.pd.allContactIds[i] for i in np.nonzero(gait[-1] == 1)[0]] + support_feet = [self.pd.feet_ids[i] for i in np.nonzero(gait[-1] == 1)[0]] terminal_model = self.create_model(support_feet, is_terminal=True) return models, terminal_model @@ -77,9 +77,7 @@ class OCP: if self.initialized: tasks = self.make_task(footstep) - support_feet = [ - self.pd.allContactIds[i] for i in np.nonzero(gait[-1] == 1)[0] - ] + support_feet = [self.pd.feet_ids[i] for i in np.nonzero(gait[-1] == 1)[0]] self.update_model(self.problem.runningModels[0], tasks, support_feet) self.problem.circularAppend( @@ -95,7 +93,7 @@ class OCP: task = [[], []] for foot in range(4): if footstep[:, foot].any(): - task[0].append(self.pd.allContactIds[foot]) + task[0].append(self.pd.feet_ids[foot]) task[1].append(footstep[:, foot]) return task @@ -140,12 +138,11 @@ class OCP: return acc def update_model(self, model, tasks, support_feet): - for i in self.pd.allContactIds: + for i in self.pd.feet_ids: name = self.pd.model.frames[i].name + "_contact" model.differential.contacts.changeContactStatus(name, i in support_feet) - self.update_tracking_costs(model.differential.costs, tasks) - + self.update_tracking_costs(model.differential.costs, tasks, support_feet) def create_model(self, support_feet=[], tasks=[], is_terminal=False): """ @@ -173,19 +170,16 @@ class OCP: :param support_feet: list of support feet ids :return action model for a swing foot phase """ - if self.pd.useFixedBase == 0: - actuation = crocoddyl.ActuationModelFloatingBase(self.state) - else: - actuation = crocoddyl.ActuationModelFull(self.state) + actuation = crocoddyl.ActuationModelFloatingBase(self.state) nu = actuation.nu control = crocoddyl.ControlParametrizationModelPolyZero(nu) contacts = crocoddyl.ContactModelMultiple(self.state, nu) - for i in self.pd.allContactIds: + for i in self.pd.feet_ids: name = self.pd.model.frames[i].name + "_contact" contact = crocoddyl.ContactModel3D( - self.state, i, np.zeros(3), nu, np.zeros(2) + self.state, i, np.zeros(3), nu, self.pd.baumgarte_gains ) contacts.addContact(name, contact) if i not in support_feet: @@ -200,7 +194,9 @@ class OCP: differential = crocoddyl.DifferentialActionModelContactFwdDynamics( self.state, actuation, contacts, costs, 0.0, True ) - model = crocoddyl.IntegratedActionModelEuler(differential, control, self.pd.dt) + model = crocoddyl.IntegratedActionModelEuler( + differential, control, self.params.dt_mpc + ) return model @@ -222,8 +218,8 @@ class OCP: """ nu = model.differential.actuation.nu costs = model.differential.costs - for i in self.pd.allContactIds: - cone = crocoddyl.FrictionCone(self.pd.Rsurf, self.pd.mu, 4, False) + for i in self.pd.feet_ids: + cone = crocoddyl.FrictionCone(self.pd.Rsurf, self.pd.mu, 4, False, 3) residual = crocoddyl.ResidualModelContactFrictionCone( self.state, i, cone, nu ) @@ -259,15 +255,15 @@ class OCP: ) costs.addCost("control_bound", control_bound, self.pd.control_bound_w) - self.update_tracking_costs(costs, tasks) - - def update_tracking_costs(self, costs, tasks): - for i in self.pd.allContactIds: + self.update_tracking_costs(costs, tasks, support_feet) + + def update_tracking_costs(self, costs, tasks, support_feet): + index = 0 + for i in self.pd.feet_ids: name = self.pd.model.frames[i].name + "_foot_tracking" - index = 0 if i in tasks[0]: - costs.changeCostStatus(name, True) costs.costs[name].cost.residual.reference = tasks[1][index] index += 1 - else: - costs.changeCostStatus(name, False) + costs.changeCostStatus(name, i not in support_feet) + + # print(f"{name} reference: {costs.costs[name].cost.residual.reference} status:{i in tasks[0]}") diff --git a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py index fd8c7749..50818995 100644 --- a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py +++ b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py @@ -1,20 +1,15 @@ import numpy as np -import example_robot_data as erd +from example_robot_data import load import pinocchio as pin class problemDataAbstract: - def __init__(self, param, frozen_names=[]): - self.dt = param.dt_mpc # OCP dt - self.dt_wbc = param.dt_wbc - self.mpc_wbc_ratio = int(self.dt / self.dt_wbc) - self.init_steps = 0 - self.target_steps = param.gait.shape[0] - self.T = param.gait.shape[0] - 1 - - self.robot = erd.load("solo12") + def __init__(self, params, frozen_names=[]): + + self.robot = load("solo12") self.q0 = self.robot.q0 - self.q0[7:] = param.q_init + self.q0[:7] = np.array([0.0, 0.0, params.h_ref, 0, 0, 0, 1]) + self.q0[7:] = params.q_init self.model = self.robot.model self.rdata = self.model.createData() @@ -22,19 +17,16 @@ class problemDataAbstract: self.visual_model = self.robot.visual_model self.frozen_names = frozen_names - if frozen_names: - self.frozen_idxs = [self.model.getJointId( - id) for id in frozen_names] + if frozen_names != []: + self.frozen_idxs = [self.model.getJointId(id) for id in frozen_names] self.freeze() self.nq = self.model.nq self.nv = self.model.nv self.nx = self.nq + self.nv self.ndx = 2 * self.nv - self.nu = ( - 12 - len(frozen_names) + 1 if len(frozen_names) != 0 else 12 - ) # -1 to take into account the freeflyer - self.ntau = self.nv + # -1 to take into account the freeflyer + self.nu = 12 - (len(frozen_names) - 1) if len(frozen_names) != 0 else 12 self.effort_limit = np.ones(self.nu) * 2.5 @@ -42,21 +34,10 @@ class problemDataAbstract: self.x0 = np.concatenate([self.q0, self.v0]) self.u0 = np.zeros(self.nu) - self.xref = self.x0 - self.uref = self.u0 + self.baumgarte_gains = np.array([0, 100]) - self.lfFoot, self.rfFoot, self.lhFoot, self.rhFoot = ( - "FL_FOOT", - "FR_FOOT", - "HL_FOOT", - "HR_FOOT", - ) - self.cnames = [self.lfFoot, self.rfFoot, self.lhFoot, self.rhFoot] - self.allContactIds = [self.model.getFrameId(f) for f in self.cnames] - self.lfFootId = self.model.getFrameId(self.lfFoot) - self.rfFootId = self.model.getFrameId(self.rfFoot) - self.lhFootId = self.model.getFrameId(self.lhFoot) - self.rhFootId = self.model.getFrameId(self.rhFoot) + self.feet_names = ["FL_FOOT", "FR_FOOT", "HL_FOOT", "HR_FOOT"] + self.feet_ids = [self.model.getFrameId(f) for f in self.feet_names] self.Rsurf = np.eye(3) @@ -74,97 +55,40 @@ class problemDataAbstract: class ProblemData(problemDataAbstract): - def __init__(self, param): - super().__init__(param) + def __init__(self, params): + super().__init__(params) self.useFixedBase = 0 + # Cost function weights self.mu = 0.7 - self.foot_tracking_w = 1e2 - self.friction_cone_w = 1e3 + self.foot_tracking_w = 1e1 + self.friction_cone_w = 1e4 self.control_bound_w = 1e3 self.control_reg_w = 1e0 self.state_reg_w = np.array( [0] * 3 + [1e1] * 3 - + [1e0] * 3 + + [1e1] * 3 + [1e-3] * 3 - + [1e0] * 6 + + [1e1] * 6 + [0] * 6 + [1e1] * 3 - + [3 * 1e-1] * 3 + + [1e-1] * 3 + [1e1] * 6 ) - self.terminal_velocity_w = np.array([0] * 18 + [1e3] * 18) - self.control_bound_w = 1e3 + self.terminal_velocity_w = np.array([0] * self.nv + [1e4] * self.nv) + self.force_reg_w = 1e0 - self.x0 = np.array( - [ - 0.0, - 0.0, - 0.2607495, - 0, - 0, - 0, - 1, - 0, - 0.7, - -1.4, - 0.0, - 0.7, - -1.4, - 0.0, - -0.7, - 1.4, - 0.0, - -0.7, - 1.4, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - ] - ) # x0 got from PyBullet - - self.u0 = np.array( - [ - -0.02615051, - -0.25848605, - 0.51696646, - 0.0285894, - -0.25720605, - 0.51441775, - -0.02614404, - 0.25848271, - -0.51697107, - 0.02859587, - 0.25720939, - -0.51441314, - ] - ) # quasi static control self.xref = self.x0 self.uref = self.u0 class ProblemDataFull(problemDataAbstract): - def __init__(self, param): + def __init__(self, params): frozen_names = ["root_joint"] - super().__init__(param, frozen_names) + super().__init__(params, frozen_names) self.useFixedBase = 1 @@ -175,8 +99,7 @@ class ProblemDataFull(problemDataAbstract): self.control_bound_w = 1e3 self.control_reg_w = 1e0 self.state_reg_w = np.array( - [1e2] * 3 + [1e-2] * 3 + [1e2] * 6 + - [1e1] * 3 + [1e0] * 3 + [1e1] * 6 + [1e2] * 3 + [1e-2] * 3 + [1e2] * 6 + [1e1] * 3 + [1e0] * 3 + [1e1] * 6 ) self.terminal_velocity_w = np.array([0] * 12 + [1e3] * 12) diff --git a/python/quadruped_reactive_walking/WB_MPC/Target.py b/python/quadruped_reactive_walking/WB_MPC/Target.py index fbbf86a4..2821cd0d 100644 --- a/python/quadruped_reactive_walking/WB_MPC/Target.py +++ b/python/quadruped_reactive_walking/WB_MPC/Target.py @@ -15,10 +15,10 @@ class Target: ) if params.movement == "circle": - self.A = np.array([0, 0.03, 0.03]) - self.offset = np.array([0.05, -0.02, 0.06]) + self.A = np.array([0, 0.03, 0.04]) + self.offset = np.array([0, 0, 0.05]) self.freq = np.array([0, 0.5, 0.5]) - self.phase = np.array([0, np.pi / 2, 0]) + self.phase = np.array([0, 0, -np.pi/2]) elif params.movement == "step": self.initial = self.position[:, 1].copy() self.target = self.position[:, 1].copy() + np.array([0.1, 0.0, 0.0]) @@ -30,7 +30,9 @@ class Target: self.update_time = -1 else: - self.target_footstep = self.position + np.array([0.0, 0.0, 0.10]) + self.target_footstep = self.position + self.ramp_length = 100 + self.target_ramp = np.linspace(0., 0.1, self.ramp_length) def compute(self, k): footstep = np.zeros((3, 4)) @@ -40,6 +42,7 @@ class Target: footstep[:, 1] = self.evaluate_step(1, k) else: footstep = self.target_footstep.copy() + footstep[2, 1] = self.target_ramp[k] if k < self.ramp_length else self.target_ramp[-1] return footstep diff --git a/python/quadruped_reactive_walking/WB_MPC_Wrapper.py b/python/quadruped_reactive_walking/WB_MPC_Wrapper.py index 25b65a51..c0b8cd21 100644 --- a/python/quadruped_reactive_walking/WB_MPC_Wrapper.py +++ b/python/quadruped_reactive_walking/WB_MPC_Wrapper.py @@ -12,10 +12,10 @@ import quadruped_reactive_walking as qrw class Result: - def __init__(self, pd): - self.xs = list(np.zeros((pd.T + 1, pd.nx))) - self.us = list(np.zeros((pd.T, pd.nu))) - self.K = list(np.zeros([pd.T, pd.nu, pd.nx])) + def __init__(self, pd, params): + self.xs = list(np.zeros((params.T + 1, pd.nx))) + self.us = list(np.zeros((params.T, pd.nu))) + self.K = list(np.zeros([params.T, pd.nu, pd.ndx])) self.solving_duration = 0.0 self.new_result = False @@ -29,6 +29,10 @@ class MPC_Wrapper: def __init__(self, pd, params, footsteps, gait): self.params = params self.pd = pd + self.T = params.T + self.nu = pd.nu + self.nx = pd.nx + self.ndx = pd.ndx self.footsteps_plan = footsteps self.initial_gait = gait @@ -39,20 +43,20 @@ class MPC_Wrapper: self.new_data = Value("b", False) self.running = Value("b", True) self.in_k = Value("i", 0) - self.in_x0 = Array("d", [0] * pd.nx) + self.in_x0 = Array("d", [0] * self.nx) self.in_warm_start = Value("b", False) - self.in_xs = Array("d", [0] * ((pd.T + 1) * pd.nx)) - self.in_us = Array("d", [0] * (pd.T * pd.nu)) + self.in_xs = Array("d", [0] * ((self.T + 1) * self.nx)) + self.in_us = Array("d", [0] * (self.T * self.nu)) self.in_footstep = Array("d", [0] * 12) - self.in_gait = Array("d", [0] * (pd.T * 4)) - self.out_xs = Array("d", [0] * ((pd.T + 1) * pd.nx)) - self.out_us = Array("d", [0] * (pd.T * pd.nu)) - self.out_k = Array("d", [0] * (pd.T * pd.nu * pd.nx)) + self.in_gait = Array("d", [0] * ((self.T + 1) * 4)) + self.out_xs = Array("d", [0] * ((self.T + 1) * self.nx)) + self.out_us = Array("d", [0] * (self.T * self.nu)) + self.out_k = Array("d", [0] * (self.T * self.nu * self.ndx)) self.out_solving_time = Value("d", 0.0) else: - self.ocp = OCP(pd, footsteps, gait) + self.ocp = OCP(pd, params, footsteps, gait) - self.last_available_result = Result(pd) + self.last_available_result = Result(pd, params) self.new_result = Value("b", False) def solve(self, k, x0, footstep, gait, xs=None, us=None): @@ -109,7 +113,7 @@ class MPC_Wrapper: Run the MPC (asynchronous version) """ if k == 0: - self.last_available_result.xs = [x0 for _ in range(self.pd.T + 1)] + self.last_available_result.xs = [x0 for _ in range(self.T + 1)] p = Process(target=self.MPC_asynchronous) p.start() @@ -128,7 +132,9 @@ class MPC_Wrapper: k, x0, footstep, gait, xs, us = self.decompress_dataIn() if k == 0: - loop_ocp = OCP(self.pd, self.footsteps_plan, self.initial_gait) + loop_ocp = OCP( + self.pd, self.params, self.footsteps_plan, self.initial_gait + ) loop_ocp.solve(x0, footstep, gait, xs, us) xs, us, K, solving_time = loop_ocp.get_results() @@ -154,22 +160,22 @@ class MPC_Wrapper: with self.in_k.get_lock(): self.in_k.value = k with self.in_x0.get_lock(): - np.frombuffer(self.in_x0.get_obj()).reshape(self.pd.nx)[:] = x0 + np.frombuffer(self.in_x0.get_obj()).reshape(self.nx)[:] = x0 with self.in_footstep.get_lock(): np.frombuffer(self.in_footstep.get_obj()).reshape((3, 4))[:, :] = footstep with self.in_gait.get_lock(): - np.frombuffer(self.in_gait.get_obj()).reshape((self.pd.T, 4))[:, :] = gait + np.frombuffer(self.in_gait.get_obj()).reshape((self.T + 1, 4))[:, :] = gait if xs is None or us is None: self.in_warm_start.value = False return with self.in_xs.get_lock(): - np.frombuffer(self.in_xs.get_obj()).reshape((self.pd.T + 1, self.pd.nx))[ + np.frombuffer(self.in_xs.get_obj()).reshape((self.T + 1, self.nx))[ :, : ] = np.array(xs) with self.in_us.get_lock(): - np.frombuffer(self.in_us.get_obj()).reshape((self.pd.T, self.pd.nu))[ + np.frombuffer(self.in_us.get_obj()).reshape((self.T, self.nu))[ :, : ] = np.array(us) @@ -181,23 +187,21 @@ class MPC_Wrapper: with self.in_k.get_lock(): k = self.in_k.value with self.in_x0.get_lock(): - x0 = np.frombuffer(self.in_x0.get_obj()).reshape(self.pd.nx) + x0 = np.frombuffer(self.in_x0.get_obj()).reshape(self.nx) with self.in_footstep.get_lock(): footstep = np.frombuffer(self.in_footstep.get_obj()).reshape((3, 4)) with self.in_gait.get_lock(): - gait = np.frombuffer(self.in_gait.get_obj()).reshape((self.pd.T, 4)) + gait = np.frombuffer(self.in_gait.get_obj()).reshape((self.T + 1, 4)) if not self.in_warm_start.value: return k, x0, footstep, gait, None, None with self.in_xs.get_lock(): xs = list( - np.frombuffer(self.in_xs.get_obj()).reshape((self.pd.T + 1, self.pd.nx)) + np.frombuffer(self.in_xs.get_obj()).reshape((self.T + 1, self.nx)) ) with self.in_us.get_lock(): - us = list( - np.frombuffer(self.in_us.get_obj()).reshape((self.pd.T, self.pd.nu)) - ) + us = list(np.frombuffer(self.in_us.get_obj()).reshape((self.T, self.nu))) return k, x0, footstep, gait, xs, us @@ -207,17 +211,17 @@ class MPC_Wrapper: retrieve data in the main control loop from the asynchronous MPC """ with self.out_xs.get_lock(): - np.frombuffer(self.out_xs.get_obj()).reshape((self.pd.T + 1, self.pd.nx))[ + np.frombuffer(self.out_xs.get_obj()).reshape((self.T + 1, self.nx))[ :, : ] = np.array(xs) with self.out_us.get_lock(): - np.frombuffer(self.out_us.get_obj()).reshape((self.pd.T, self.pd.nu))[ + np.frombuffer(self.out_us.get_obj()).reshape((self.T, self.nu))[ :, : ] = np.array(us) with self.out_k.get_lock(): - np.frombuffer(self.out_k.get_obj()).reshape( - [self.pd.T, self.pd.nu, self.pd.nx] - )[:, :, :] = np.array(K) + np.frombuffer(self.out_k.get_obj()).reshape([self.T, self.nu, self.ndx])[ + :, :, : + ] = np.array(K) self.out_solving_time.value = solving_time def decompress_dataOut(self): @@ -225,14 +229,10 @@ class MPC_Wrapper: Return the result of the asynchronous MPC (desired contact forces) that is stored in the shared memory """ - xs = list( - np.frombuffer(self.out_xs.get_obj()).reshape((self.pd.T + 1, self.pd.nx)) - ) - us = list(np.frombuffer(self.out_us.get_obj()).reshape((self.pd.T, self.pd.nu))) + xs = list(np.frombuffer(self.out_xs.get_obj()).reshape((self.T + 1, self.nx))) + us = list(np.frombuffer(self.out_us.get_obj()).reshape((self.T, self.nu))) K = list( - np.frombuffer(self.out_k.get_obj()).reshape( - [self.pd.T, self.pd.nu, self.pd.nx] - ) + np.frombuffer(self.out_k.get_obj()).reshape([self.T, self.nu, self.ndx]) ) solving_time = self.out_solving_time.value diff --git a/python/quadruped_reactive_walking/main_solo12_control.py b/python/quadruped_reactive_walking/main_solo12_control.py index 41e02818..2fcfb89b 100644 --- a/python/quadruped_reactive_walking/main_solo12_control.py +++ b/python/quadruped_reactive_walking/main_solo12_control.py @@ -8,11 +8,8 @@ from datetime import datetime import quadruped_reactive_walking as qrw from .Controller import Controller from .tools.LoggerControl import LoggerControl -from .WB_MPC.ProblemData import ProblemData, ProblemDataFull - params = qrw.Params() # Object that holds all controller parameters -pd = ProblemDataFull(params) repo = git.Repo(search_parent_directories=True) sha = repo.head.object.hexsha @@ -134,7 +131,7 @@ def control_loop(): # Default position after calibration q_init = np.array(params.q_init.tolist()) - controller = Controller(pd, params, q_init, 0.0) + controller = Controller(params, q_init, 0.0) if params.SIMULATION: device = PyBulletSimulator() @@ -144,7 +141,7 @@ def control_loop(): qc = QualisysClient(ip="140.93.16.160", body_id=0) if params.LOGGING or params.PLOTTING: - loggerControl = LoggerControl(pd, params, log_size=params.N_SIMULATION) + loggerControl = LoggerControl(controller.pd, params, log_size=params.N_SIMULATION) if params.SIMULATION: device.Init( diff --git a/python/quadruped_reactive_walking/tools/LoggerControl.py b/python/quadruped_reactive_walking/tools/LoggerControl.py index 1fb199be..dd514f28 100644 --- a/python/quadruped_reactive_walking/tools/LoggerControl.py +++ b/python/quadruped_reactive_walking/tools/LoggerControl.py @@ -55,8 +55,8 @@ class LoggerControl: self.t_ocp_solve = np.zeros(size) # MPC - self.ocp_xs = np.zeros([size, pd.T + 1, pd.nx]) - self.ocp_us = np.zeros([size, pd.T, pd.nu]) + self.ocp_xs = np.zeros([size, params.T + 1, pd.nx]) + self.ocp_us = np.zeros([size, params.T, pd.nu]) self.ocp_K = np.zeros([size, self.pd.nu, self.pd.ndx]) self.MPC_equivalent_Kp = np.zeros([size, self.pd.nu]) self.MPC_equivalent_Kd = np.zeros([size, self.pd.nu]) @@ -120,10 +120,14 @@ class LoggerControl: self.t_ocp_ddp[self.i] = controller.mpc_result.solving_duration if self.i == 0: - for i in range(self.pd.T * self.pd.mpc_wbc_ratio): - self.target[i] = controller.footsteps[i // self.pd.mpc_wbc_ratio][:, 1] - if self.i + self.pd.T * self.pd.mpc_wbc_ratio < self.log_size: - self.target[self.i + self.pd.T * self.pd.mpc_wbc_ratio] = controller.target_footstep[:, 1] + for i in range(self.params.T * self.params.mpc_wbc_ratio): + self.target[i] = controller.footsteps[i // self.params.mpc_wbc_ratio][ + :, 1 + ] + if self.i + self.params.T * self.params.mpc_wbc_ratio < self.log_size: + self.target[ + self.i + self.params.T * self.params.mpc_wbc_ratio + ] = controller.target_footstep[:, 1] if not self.params.enable_multiprocessing: self.t_ocp_update[self.i] = controller.mpc.ocp.t_update @@ -215,41 +219,41 @@ class LoggerControl: def plot_target(self, save=False, fileName="/tmp"): import matplotlib.pyplot as plt - x_mes = np.concatenate([self.q_mes, self.v_mes], axis=1) - - horizon = int(self.ocp_xs.shape[0] / self.pd.mpc_wbc_ratio) - t_scale = np.linspace( - 0, (horizon) * self.pd.dt, (horizon) * self.pd.mpc_wbc_ratio - ) - - x_mpc = [self.ocp_xs[0][0, :]] - [x_mpc.append(x[1, :]) for x in self.ocp_xs[:-1]] - x_mpc = np.array(x_mpc) - - # Feet positions calcuilated by every ocp - all_ocp_feet_p_log = { - idx: [ - get_translation_array( - self.pd, self.ocp_xs[i * self.pd.mpc_wbc_ratio], idx - )[0] - for i in range(horizon) - ] - for idx in self.pd.allContactIds - } - for foot in all_ocp_feet_p_log: - all_ocp_feet_p_log[foot] = np.array(all_ocp_feet_p_log[foot]) - - # Measured feet positions - m_feet_p_log = { - idx: get_translation_array(self.pd, x_mes, idx)[0] - for idx in self.pd.allContactIds - } - - # Predicted feet positions - feet_p_log = { - idx: get_translation_array(self.pd, x_mpc, idx)[0] - for idx in self.pd.allContactIds - } + # x_mes = np.concatenate([self.q_mes, self.v_mes], axis=1) + + # horizon = int(self.ocp_xs.shape[0] / self.params.mpc_wbc_ratio) + # t_scale = np.linspace( + # 0, (horizon) * self.params.dt_mpc, (horizon) * self.params.mpc_wbc_ratio + # ) + + # x_mpc = [self.ocp_xs[0][0, :]] + # [x_mpc.append(x[1, :]) for x in self.ocp_xs[:-1]] + # x_mpc = np.array(x_mpc) + + # # Feet positions calcuilated by every ocp + # all_ocp_feet_p_log = { + # idx: [ + # get_translation_array( + # self.pd, self.ocp_xs[i * self.params.mpc_wbc_ratio], idx + # )[0] + # for i in range(horizon) + # ] + # for idx in self.pd.feet_ids + # } + # for foot in all_ocp_feet_p_log: + # all_ocp_feet_p_log[foot] = np.array(all_ocp_feet_p_log[foot]) + + # # Measured feet positions + # m_feet_p_log = { + # idx: get_translation_array(self.pd, x_mes, idx)[0] + # for idx in self.pd.feet_ids + # } + + # # Predicted feet positions + # feet_p_log = { + # idx: get_translation_array(self.pd, x_mpc, idx)[0] + # for idx in self.pd.feet_ids + # } # Target plot legend = ["x", "y", "z"] @@ -258,26 +262,13 @@ class LoggerControl: for p in range(3): axs[p].set_title("Free foot on " + legend[p]) axs[p].plot(self.target[:, p], label="Target") - axs[p].plot(m_feet_p_log[self.pd.rfFootId][:, p], label="Measured") - axs[p].plot(feet_p_log[self.pd.rfFootId][:, p], label="Predicted") + # axs[p].plot(m_feet_p_log[self.pd.rfFootId][:, p], label="Measured") + # axs[p].plot(feet_p_log[self.pd.rfFootId][:, p], label="Predicted") axs[p].legend() if save: plt.savefig(fileName + "/target") - # legend = ['x', 'y', 'z'] - # plt.figure(figsize=(12, 18), dpi = 90) - # for p in range(3): - # plt.subplot(3,1, p+1) - # plt.title('Free foot on ' + legend[p]) - # plt.plot(t_scale, self.target[:, p], color="tomato") - # plt.plot(t_scale, m_feet_p_log[self.pd.rfFootId][:, p], color="lightgreen") - # for i in range(horizon-1): - # t = np.linspace(i*self.pd.dt, (self.pd.T+ i)*self.pd.dt, self.pd.T+1) - # y = all_ocp_feet_p_log[self.pd.rfFootId][i][:,p] - # for j in range(len(y) - 1): - # plt.plot(t[j:j+2], y[j:j+2], color='royalblue', linewidth = 3, marker='o' ,alpha=max([1 - j/len(y), 0])) - def plot_riccati_gains(self, n, save=False, fileName="/tmp"): import matplotlib.pyplot as plt diff --git a/python/quadruped_reactive_walking/tools/PyBulletSimulator.py b/python/quadruped_reactive_walking/tools/PyBulletSimulator.py index 07f59c9c..54ec3898 100644 --- a/python/quadruped_reactive_walking/tools/PyBulletSimulator.py +++ b/python/quadruped_reactive_walking/tools/PyBulletSimulator.py @@ -42,7 +42,7 @@ class pybullet_simulator: # Either use a flat ground or a rough terrain if use_flat_plane: - """ self.planeId = pyb.loadURDF("plane.urdf") # Flat plane + self.planeId = pyb.loadURDF("plane.urdf") # Flat plane self.planeIdbis = pyb.loadURDF("plane.urdf") # Flat plane # Tune position and orientation of plane @@ -55,7 +55,7 @@ class pybullet_simulator: self.planeIdbis, [200.0, 0, -100.0 * np.sin(p_pitch)], pin.Quaternion(pin.rpy.rpyToMatrix(p_roll, p_pitch, 0.0)).coeffs(), - ) """ + ) else: import random @@ -269,12 +269,12 @@ class pybullet_simulator: pyb.setGravity(0, 0, -9.81) # Load Quadruped robot - robotStartPos = [0, 0, 0.2607495] + robotStartPos = [0, 0, 0] robotStartOrientation = pyb.getQuaternionFromEuler([0.0, 0.0, 0.0]) pyb.setAdditionalSearchPath( EXAMPLE_ROBOT_DATA_MODEL_DIR + "/solo_description/robots" ) - self.robotId = pyb.loadURDF("solo12.urdf", robotStartPos, robotStartOrientation, useFixedBase = 1) + self.robotId = pyb.loadURDF("solo12.urdf", robotStartPos, robotStartOrientation) # Disable default motor control for revolute joints self.revoluteJointIndices = [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14] @@ -301,6 +301,42 @@ class pybullet_simulator: forces=jointTorques, ) + # Get position of feet in world frame with base at (0, 0, 0) + feetLinksID = [3, 7, 11, 15] + linkStates = pyb.getLinkStates(self.robotId, feetLinksID) + + # Get minimum height of feet (they are in the ground since base is at 0, 0, 0) + z_min = linkStates[0][4][2] + i_min = 0 + i = 1 + for link in linkStates[1:]: + if link[4][2] < z_min: + z_min = link[4][2] + i_min = i + i += 1 + + # Set base at (0, 0, -z_min) so that the lowest foot is at z = 0 + pyb.resetBasePositionAndOrientation( + self.robotId, + [0.0, 0.0, -z_min], + pin.Quaternion(pin.rpy.rpyToMatrix(p_roll, p_pitch, 0.0)).coeffs(), + ) + + # Progressively raise the base to achieve proper contact (take into account radius of the foot) + while ( + pyb.getClosestPoints( + self.robotId, + self.planeId, + distance=0.005, + linkIndexA=feetLinksID[i_min], + ) + )[0][8] < -0.001: + z_min -= 0.001 + pyb.resetBasePositionAndOrientation( + self.robotId, + [0.0, 0.0, -z_min], + pin.Quaternion(pin.rpy.rpyToMatrix(p_roll, p_pitch, 0.0)).coeffs(), + ) # Fix the base in the world frame # pyb.createConstraint(self.robotId, -1, -1, -1, pyb.JOINT_FIXED, [0, 0, 0], [0, 0, 0], [0, 0, robotStartPos[2]]) diff --git a/python/quadruped_reactive_walking/tools/Utils.py b/python/quadruped_reactive_walking/tools/Utils.py index c58f23a0..7ef8304a 100644 --- a/python/quadruped_reactive_walking/tools/Utils.py +++ b/python/quadruped_reactive_walking/tools/Utils.py @@ -62,6 +62,9 @@ def init_robot(q_init, params): params.CoM_offset = (solo.data.com[0][:3] - q[0:3, 0]).tolist() params.CoM_offset[1] = 0.0 + params.mpc_wbc_ratio = int(params.dt_mpc / params.dt_wbc) + params.T = params.gait.shape[0] - 1 + # Â Use initial feet pos as reference for i in range(4): for j in range(3): -- GitLab