diff --git a/config/walk_parameters.yaml b/config/walk_parameters.yaml index c4dbffaf5b99414253e70825dcc28be3db5c184c..ea783e70b36e7d2891c1da660ab8bea68566dc9e 100644 --- a/config/walk_parameters.yaml +++ b/config/walk_parameters.yaml @@ -25,19 +25,19 @@ robot: dt_mpc: 0.015 # Time step of the model predictive control type_MPC: 3 # Which MPC solver you want to use: 0 for OSQP MPC, 1, 2, 3 for Crocoddyl MPCs save_guess: false # true to interpolate the impedance quantities between nodes of the MPC - movement: "step" # name of the movement to perform + movement: "circle" # name of the movement to perform interpolate_mpc: true # true to interpolate the impedance quantities between nodes of the MPC interpolation_type: 3 # 0,1,2,3 decide which kind of interpolation is used # Kp_main: [0.0, 0.0, 0.0] # Proportional gains for the PD+ # Kd_main: [0., 0., 0.] # Derivative gains for the PD+ # Kff_main: 0.0 # Feedforward torques multiplier for the PD+ Kp_main: [3, 3, 3] # Proportional gains for the PD+ - Kd_main: [0.5, 0.5, 0.5] # Derivative gains for the PD+ + Kd_main: [0.3, 0.3, 0.3] # Derivative gains for the PD+ Kff_main: 1.0 # Feedforward torques multiplier for the PD+ # Parameters of Gait N_periods: 1 - gait: [80, 0, 0, 0, 0] # Initial gait matrix + gait: [100, 0, 0, 0, 0] # Initial gait matrix # Parameters of Joystick gp_alpha_vel: 0.003 #Â Coefficient of the low pass filter applied to gamepad velocity diff --git a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py index c10c293fb9945c03f5dbd9bfcdecccb38f29898b..fd8c7749d844380550e602139c6cbbe30d8afb12 100644 --- a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py +++ b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py @@ -170,13 +170,13 @@ class ProblemDataFull(problemDataAbstract): # Cost function weights self.mu = 0.7 - self.foot_tracking_w = 1e5 + self.foot_tracking_w = 1e4 self.friction_cone_w = 1e3 self.control_bound_w = 1e3 - self.control_reg_w = 1e2 + self.control_reg_w = 1e0 self.state_reg_w = np.array( [1e2] * 3 + [1e-2] * 3 + [1e2] * 6 + - [1e1] * 3 + [1e-0] * 3 + [1e1] * 6 + [1e1] * 3 + [1e0] * 3 + [1e1] * 6 ) self.terminal_velocity_w = np.array([0] * 12 + [1e3] * 12)