From bac3ffd94d1881ac80e582629a25a051c471ccbf Mon Sep 17 00:00:00 2001 From: Ale <alessandroassirell98@gmail.com> Date: Thu, 18 Aug 2022 10:21:32 +0200 Subject: [PATCH] Fix integration and plot --- config/walk_parameters.yaml | 10 +++++----- python/quadruped_reactive_walking/Controller.py | 12 ++++++------ .../tools/LoggerControl.py | 16 +++++++++------- 3 files changed, 20 insertions(+), 18 deletions(-) diff --git a/config/walk_parameters.yaml b/config/walk_parameters.yaml index ea783e70..bf5719a0 100644 --- a/config/walk_parameters.yaml +++ b/config/walk_parameters.yaml @@ -6,12 +6,12 @@ robot: LOGGING: true # Enable/disable logging during the experiment PLOTTING: true # Enable/disable automatic plotting at the end of the experiment DEMONSTRATION: false # Enable/disable demonstration functionalities - SIMULATION: false # Enable/disable PyBullet simulation or running on real robot - enable_pyb_GUI: true # Enable/disable PyBullet GUI + SIMULATION: true # Enable/disable PyBullet simulation or running on real robot + enable_pyb_GUI: false # Enable/disable PyBullet GUI envID: 0 # Identifier of the environment to choose in which one the simulation will happen use_flat_plane: true # If True the ground is flat, otherwise it has bumps predefined_vel: true # If we are using a predefined reference velocity (True) or a joystick (False) - N_SIMULATION: 15000 # Number of simulated wbc time steps + N_SIMULATION: 10000 # Number of simulated wbc time steps enable_corba_viewer: false # Enable/disable Corba Viewer enable_multiprocessing: true # Enable/disable running the MPC in another process in parallel of the main loop perfect_estimator: true # Enable/disable perfect estimator by using data directly from PyBullet @@ -25,8 +25,8 @@ robot: dt_mpc: 0.015 # Time step of the model predictive control type_MPC: 3 # Which MPC solver you want to use: 0 for OSQP MPC, 1, 2, 3 for Crocoddyl MPCs save_guess: false # true to interpolate the impedance quantities between nodes of the MPC - movement: "circle" # name of the movement to perform - interpolate_mpc: true # true to interpolate the impedance quantities between nodes of the MPC + movement: "step" # name of the movement to perform + interpolate_mpc: false # true to interpolate the impedance quantities between nodes of the MPC interpolation_type: 3 # 0,1,2,3 decide which kind of interpolation is used # Kp_main: [0.0, 0.0, 0.0] # Proportional gains for the PD+ # Kd_main: [0., 0., 0.] # Derivative gains for the PD+ diff --git a/python/quadruped_reactive_walking/Controller.py b/python/quadruped_reactive_walking/Controller.py index 6a78a1fc..0898af1b 100644 --- a/python/quadruped_reactive_walking/Controller.py +++ b/python/quadruped_reactive_walking/Controller.py @@ -169,7 +169,6 @@ class Controller: self.result = Result(params) self.result.q_des = self.pd.q0[7:].copy() self.result.v_des = self.pd.v0[6:].copy() - self.result.FF = self.params.Kff_main * np.ones(12) self.target = Target(params) self.footsteps = [] @@ -272,17 +271,19 @@ class Controller: if not self.initialized and self.params.save_guess: self.save_guess() + self.result.FF = self.params.Kff_main * np.ones(12) + self.result.tau_ff = self.compute_torque(m)[:] + if self.params.interpolate_mpc: if self.mpc_result.new_result: if self.params.interpolation_type == 3: self.interpolator.update(xs[0], xs[1], xs[2]) - #self.interpolator.plot(self.pd.mpc_wbc_ratio, self.pd.dt_wbc) + # self.interpolator.plot(self.pd.mpc_wbc_ratio, self.pd.dt_wbc) t = (self.k - self.k_solve + 1) * self.pd.dt_wbc q, v = self.interpolator.interpolate(t) else: q, v = self.integrate_x(m) - self.result.tau_ff = self.compute_torque(m)[:] self.result.q_des = q[:] self.result.v_des = v[:] @@ -483,11 +484,10 @@ class Controller: m["x_m"][: self.pd.nq], self.mpc_result.xs[0][: self.pd.nq], ), - m["x_m"][self.pd.nq :] - self.mpc_result.xs[0][self.pd.nq :], + self.mpc_result.xs[0][self.pd.nq :] - m["x_m"][self.pd.nq :], ] ) - # x_diff = self.mpc_result.xs[0] - m["x_m"] - tau = self.mpc_result.us[0] - np.dot(self.mpc_result.K[0], x_diff) + tau = self.mpc_result.us[0] + np.dot(self.mpc_result.K[0], x_diff) return tau def integrate_x(self, m): diff --git a/python/quadruped_reactive_walking/tools/LoggerControl.py b/python/quadruped_reactive_walking/tools/LoggerControl.py index 468c4d41..1fb199be 100644 --- a/python/quadruped_reactive_walking/tools/LoggerControl.py +++ b/python/quadruped_reactive_walking/tools/LoggerControl.py @@ -253,14 +253,15 @@ class LoggerControl: # Target plot legend = ["x", "y", "z"] - plt.figure(figsize=(12, 18), dpi=90) + + fig, axs = plt.subplots(3, sharex=True) for p in range(3): - plt.subplot(3, 1, p + 1) - plt.title("Free foot on " + legend[p]) - plt.plot(self.target[:, p]) - plt.plot(m_feet_p_log[self.pd.rfFootId][:, p]) - plt.plot(feet_p_log[self.pd.rfFootId][:, p]) - plt.legend(["Target", "Measured", "Predicted"]) + axs[p].set_title("Free foot on " + legend[p]) + axs[p].plot(self.target[:, p], label="Target") + axs[p].plot(m_feet_p_log[self.pd.rfFootId][:, p], label="Measured") + axs[p].plot(feet_p_log[self.pd.rfFootId][:, p], label="Predicted") + axs[p].legend() + if save: plt.savefig(fileName + "/target") @@ -291,6 +292,7 @@ class LoggerControl: plt.legend(["Stiffness", "Damping"]) plt.ylabel("Gains") plt.xlabel("t") + if save: plt.savefig(fileName + "/diagonal_Riccati_gains") -- GitLab