From bac3ffd94d1881ac80e582629a25a051c471ccbf Mon Sep 17 00:00:00 2001
From: Ale <alessandroassirell98@gmail.com>
Date: Thu, 18 Aug 2022 10:21:32 +0200
Subject: [PATCH] Fix integration and plot

---
 config/walk_parameters.yaml                      | 10 +++++-----
 python/quadruped_reactive_walking/Controller.py  | 12 ++++++------
 .../tools/LoggerControl.py                       | 16 +++++++++-------
 3 files changed, 20 insertions(+), 18 deletions(-)

diff --git a/config/walk_parameters.yaml b/config/walk_parameters.yaml
index ea783e70..bf5719a0 100644
--- a/config/walk_parameters.yaml
+++ b/config/walk_parameters.yaml
@@ -6,12 +6,12 @@ robot:
     LOGGING: true  # Enable/disable logging during the experiment
     PLOTTING: true  # Enable/disable automatic plotting at the end of the experiment
     DEMONSTRATION: false  # Enable/disable demonstration functionalities
-    SIMULATION: false  # Enable/disable PyBullet simulation or running on real robot
-    enable_pyb_GUI: true  # Enable/disable PyBullet GUI
+    SIMULATION: true  # Enable/disable PyBullet simulation or running on real robot
+    enable_pyb_GUI: false  # Enable/disable PyBullet GUI
     envID: 0  # Identifier of the environment to choose in which one the simulation will happen
     use_flat_plane: true  # If True the ground is flat, otherwise it has bumps
     predefined_vel: true  # If we are using a predefined reference velocity (True) or a joystick (False)
-    N_SIMULATION: 15000  # Number of simulated wbc time steps
+    N_SIMULATION: 10000  # Number of simulated wbc time steps
     enable_corba_viewer: false  # Enable/disable Corba Viewer
     enable_multiprocessing: true  # Enable/disable running the MPC in another process in parallel of the main loop
     perfect_estimator: true  # Enable/disable perfect estimator by using data directly from PyBullet
@@ -25,8 +25,8 @@ robot:
     dt_mpc: 0.015  # Time step of the model predictive control
     type_MPC: 3  # Which MPC solver you want to use: 0 for OSQP MPC, 1, 2, 3 for Crocoddyl MPCs
     save_guess: false # true to interpolate the impedance quantities between nodes of the MPC
-    movement: "circle" # name of the movement to perform
-    interpolate_mpc: true # true to interpolate the impedance quantities between nodes of the MPC
+    movement: "step" # name of the movement to perform
+    interpolate_mpc: false # true to interpolate the impedance quantities between nodes of the MPC
     interpolation_type: 3 # 0,1,2,3 decide which kind of interpolation is used
     # Kp_main: [0.0, 0.0, 0.0]  # Proportional gains for the PD+
     # Kd_main: [0., 0., 0.]  # Derivative gains for the PD+
diff --git a/python/quadruped_reactive_walking/Controller.py b/python/quadruped_reactive_walking/Controller.py
index 6a78a1fc..0898af1b 100644
--- a/python/quadruped_reactive_walking/Controller.py
+++ b/python/quadruped_reactive_walking/Controller.py
@@ -169,7 +169,6 @@ class Controller:
         self.result = Result(params)
         self.result.q_des = self.pd.q0[7:].copy()
         self.result.v_des = self.pd.v0[6:].copy()
-        self.result.FF = self.params.Kff_main * np.ones(12)
 
         self.target = Target(params)
         self.footsteps = []
@@ -272,17 +271,19 @@ class Controller:
             if not self.initialized and self.params.save_guess:
                 self.save_guess()
 
+            self.result.FF = self.params.Kff_main * np.ones(12)
+            self.result.tau_ff = self.compute_torque(m)[:]
+
             if self.params.interpolate_mpc:
                 if self.mpc_result.new_result:
                     if self.params.interpolation_type == 3:
                         self.interpolator.update(xs[0], xs[1], xs[2])
-                    #self.interpolator.plot(self.pd.mpc_wbc_ratio, self.pd.dt_wbc)
+                    # self.interpolator.plot(self.pd.mpc_wbc_ratio, self.pd.dt_wbc)
                 t = (self.k - self.k_solve + 1) * self.pd.dt_wbc
                 q, v = self.interpolator.interpolate(t)
             else:
                 q, v = self.integrate_x(m)
 
-            self.result.tau_ff = self.compute_torque(m)[:]
             self.result.q_des = q[:]
             self.result.v_des = v[:]
 
@@ -483,11 +484,10 @@ class Controller:
                     m["x_m"][: self.pd.nq],
                     self.mpc_result.xs[0][: self.pd.nq],
                 ),
-                m["x_m"][self.pd.nq :] - self.mpc_result.xs[0][self.pd.nq :],
+                self.mpc_result.xs[0][self.pd.nq :] - m["x_m"][self.pd.nq :],
             ]
         )
-        # x_diff = self.mpc_result.xs[0] - m["x_m"]
-        tau = self.mpc_result.us[0] - np.dot(self.mpc_result.K[0], x_diff)
+        tau = self.mpc_result.us[0] + np.dot(self.mpc_result.K[0], x_diff)
         return tau
 
     def integrate_x(self, m):
diff --git a/python/quadruped_reactive_walking/tools/LoggerControl.py b/python/quadruped_reactive_walking/tools/LoggerControl.py
index 468c4d41..1fb199be 100644
--- a/python/quadruped_reactive_walking/tools/LoggerControl.py
+++ b/python/quadruped_reactive_walking/tools/LoggerControl.py
@@ -253,14 +253,15 @@ class LoggerControl:
 
         # Target plot
         legend = ["x", "y", "z"]
-        plt.figure(figsize=(12, 18), dpi=90)
+
+        fig, axs = plt.subplots(3, sharex=True)
         for p in range(3):
-            plt.subplot(3, 1, p + 1)
-            plt.title("Free foot on " + legend[p])
-            plt.plot(self.target[:, p])
-            plt.plot(m_feet_p_log[self.pd.rfFootId][:, p])
-            plt.plot(feet_p_log[self.pd.rfFootId][:, p])
-            plt.legend(["Target", "Measured", "Predicted"])
+            axs[p].set_title("Free foot on " + legend[p])
+            axs[p].plot(self.target[:, p], label="Target")
+            axs[p].plot(m_feet_p_log[self.pd.rfFootId][:, p], label="Measured")
+            axs[p].plot(feet_p_log[self.pd.rfFootId][:, p], label="Predicted")
+            axs[p].legend()
+
         if save:
             plt.savefig(fileName + "/target")
 
@@ -291,6 +292,7 @@ class LoggerControl:
             plt.legend(["Stiffness", "Damping"])
             plt.ylabel("Gains")
             plt.xlabel("t")
+
         if save:
             plt.savefig(fileName + "/diagonal_Riccati_gains")
 
-- 
GitLab