diff --git a/config/walk_parameters.yaml b/config/walk_parameters.yaml index db4ac965ab687a06ea23df83ca825aa17657dd99..393ca06024e7dc75423d6c02923114f22fd69e73 100644 --- a/config/walk_parameters.yaml +++ b/config/walk_parameters.yaml @@ -25,7 +25,7 @@ robot: dt_mpc: 0.015 # Time step of the model predictive control type_MPC: 3 # Which MPC solver you want to use: 0 for OSQP MPC, 1, 2, 3 for Crocoddyl MPCs save_guess: true # true to interpolate the impedance quantities between nodes of the MPC - movement: "circle" # name of the movement to perform + movement: "step" # name of the movement to perform interpolate_mpc: true # true to interpolate the impedance quantities between nodes of the MPC interpolation_type: 3 # 0,1,2,3 decide which kind of interpolation is used # Kp_main: [0.0, 0.0, 0.0] # Proportional gains for the PD+ diff --git a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py index 7127207212afd325c11024b38c93f9da1a638ef3..dfcd025a31938f2ab84a0b532456f8e82d52ac7a 100644 --- a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py +++ b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py @@ -170,7 +170,7 @@ class ProblemDataFull(problemDataAbstract): # Cost function weights self.mu = 0.7 - self.foot_tracking_w = 1e4 + self.foot_tracking_w = 1e5 self.friction_cone_w = 1e3 self.control_bound_w = 1e3 self.control_reg_w = 1e2