diff --git a/include/quadruped-reactive-walking/QPWBC.hpp b/include/quadruped-reactive-walking/QPWBC.hpp index 1cd25493f0f0535b7e4b4884b19a5bb9e03ea95c..553dfbb1f1de4c2413cfebd2d3d4ac6319223155 100644 --- a/include/quadruped-reactive-walking/QPWBC.hpp +++ b/include/quadruped-reactive-walking/QPWBC.hpp @@ -17,7 +17,8 @@ #include "osqp_folder/include/osqp_configure.h" #include "other/st_to_cc.hpp" -#include "eiquadprog/eiquadprog-rt.hpp" +// #include "eiquadprog/eiquadprog-rt.hpp" +#include "eiquadprog/eiquadprog-fast.hpp" using namespace eiquadprog::solvers; @@ -38,7 +39,8 @@ class QPWBC { const double mu = 0.9; // Generatrix of the linearized friction cone - Eigen::Matrix<double, 12, 16> G = 1.0 * Eigen::Matrix<double, 12, 16>::Zero(); + Eigen::Matrix<double, 12, 16> G = 0.0 * Eigen::Matrix<double, 12, 16>::Zero(); + Eigen::Matrix<double, 3, 4> Gk = Eigen::Matrix<double, 3, 4>::Zero(); // Transformation matrices Eigen::Matrix<double, 6, 6> Y = Eigen::Matrix<double, 6, 6>::Zero(); @@ -67,7 +69,7 @@ class QPWBC { double v_warmxf[size_nz_NK] = {}; // matrix NK (lower bound) // Matrix P - const static int size_nz_P = 256; + const static int size_nz_P = 8*17; // 16*17/2; csc *P; // Compressed Sparse Column matrix // Matrix Q @@ -80,14 +82,32 @@ class QPWBC { OSQPSettings *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings)); //using namespace eiquadprog::solvers; - RtEiquadprog<16, 0, 16> qp; + /*RtEiquadprog<16, 0, 16> qp; RtMatrixX<16, 16>::d Q_qp; RtVectorX<16>::d C_qp; RtMatrixX<0, 16>::d Aeq; RtVectorX<0>::d Beq; RtMatrixX<16, 16>::d Aineq; RtVectorX<16>::d Bineq; - RtVectorX<16>::d x_qp; + RtVectorX<16>::d x_qp;*/ + + EiquadprogFast qp; + Eigen::MatrixXd Q_qp = Eigen::MatrixXd::Zero(16,16); + Eigen::VectorXd C_qp = Eigen::VectorXd::Zero(16); + Eigen::MatrixXd Aeq = Eigen::MatrixXd::Zero(0, 16); + Eigen::VectorXd Beq = Eigen::VectorXd::Zero(0); + Eigen::MatrixXd Aineq = Eigen::MatrixXd::Zero(16, 16); + Eigen::VectorXd Bineq = Eigen::VectorXd::Zero(16); + Eigen::VectorXd x_qp = Eigen::VectorXd::Zero(16); + + /*RtEiquadprog<12, 0, 20> qp; + RtMatrixX<12, 12>::d Q_qp; + RtVectorX<12>::d C_qp; + RtMatrixX<0, 12>::d Aeq; + RtVectorX<0>::d Beq; + RtMatrixX<20, 12>::d Aineq; + RtVectorX<20>::d Bineq; + RtVectorX<12>::d x_qp;*/ public: @@ -109,6 +129,7 @@ class QPWBC { // Getters Eigen::MatrixXd get_f_res(); Eigen::MatrixXd get_ddq_res(); + Eigen::MatrixXd get_P(); // Utils void my_print_csc_matrix(csc *M, const char *name); diff --git a/python/gepadd.cpp b/python/gepadd.cpp index 493140fa53bd79c9da6e50467244a3a939d593a4..8100be2c875b0d16eeb8f82ef94c2853e41857ae 100644 --- a/python/gepadd.cpp +++ b/python/gepadd.cpp @@ -100,6 +100,7 @@ struct QPWBCPythonVisitor : public bp::def_visitor<QPWBCPythonVisitor<QPWBC> > { .def("get_f_res", &QPWBC::get_f_res, "Get velocity goals matrix.\n") .def("get_ddq_res", &QPWBC::get_ddq_res, "Get acceleration goals matrix.\n") + .def("get_P", &QPWBC::get_P, "Get P weight matrix.\n") // Run QPWBC from Python .def("run", &QPWBC::run, bp::args("M", "Jc", "f_cmd", "RNEA"), "Run QPWBC from Python.\n"); diff --git a/scripts/QP_WBC.py b/scripts/QP_WBC.py index 769879baf3c704664f189b84e03d2488997047a4..e2072fbaddf62aa59d04bcd72ffbf3aefbdb5bba 100644 --- a/scripts/QP_WBC.py +++ b/scripts/QP_WBC.py @@ -100,9 +100,9 @@ class controller(): q.copy(), dq.copy(), ddq_cmd, np.array([f_cmd]).T, contacts) # Compute the joint space inertia matrix M by using the Composite Rigid Body Algorithm - Mfull = pin.crba(self.invKin.rmodel, self.invKin.rdata, q) - M = np.zeros(Mfull.shape) - M[:6, :6] = Mfull[:6, :6] + M = pin.crba(self.invKin.rmodel, self.invKin.rdata, q) + # M = np.zeros(Mfull.shape) + # M[:6, :6] = Mfull[:6, :6] # Contact Jacobian # Indexes of feet frames in this order: [FL, FR, HL, HR] @@ -120,7 +120,7 @@ class controller(): deltaddq = self.box_qp.get_ddq_res() f_with_delta = self.box_qp.get_f_res().reshape((-1, 1)) - ddq_with_delta = ddq_cmd_tmp.copy() + ddq_with_delta = ddq_cmd.copy() ddq_with_delta[:6, 0] += deltaddq RNEA_delta = pin.rnea(self.invKin.rmodel, self.invKin.rdata, q, dq, ddq_with_delta)[6:] Ja = Jc[:, 6:].transpose() diff --git a/src/QPWBC.cpp b/src/QPWBC.cpp index 471465f21b538c13df43316b9318a056d1c0f285..2f07dd7f3c6e97b5a4645cf700580cdd85096782 100644 --- a/src/QPWBC.cpp +++ b/src/QPWBC.cpp @@ -3,8 +3,19 @@ QPWBC::QPWBC() { + // Slipping constraints + /*Eigen::Matrix<double, 5, 3> SC; + int a[9] = {0, 1, 2, 3, 0, 1, 2, 3, 4}; + int b[9] = {0, 0, 1, 1, 2, 2, 2, 2, 2}; + double c[9] = {1.0, -1.0, 1.0, -1.0, -mu, -mu, -mu, -mu, -1}; + for (int i = 0; i < 8; i++) { + SC(a[i], b[i]) = -c[i]; + }*/ + + qp.reset(16, 0, 16); + // Initialization of the generatrix G - Eigen::Matrix<double, 3, 4> Gk; + Gk.row(0) << mu, mu, -mu, -mu; Gk.row(1) << mu, -mu, mu, -mu; Gk.row(2) << 1.0, 1.0, 1.0, 1.0; @@ -27,7 +38,14 @@ QPWBC::QPWBC() { for (int i = 0; i < 16; i++) { Aineq(i, i) = 1.; Bineq(i) = 0.0; + x_qp(i) = 3.0; } + /*for (int i = 0; i < 4; i++) { + Aineq.block(5*i, 3*i, 5, 3) = SC; + }*/ + + + } /* @@ -140,7 +158,7 @@ int QPWBC::create_weight_matrices() { // Fill P with 1.0 so that the sparse creation process considers that all coeffs // can have a non zero value for (int i = 0; i < 16; i++) { - for (int j = 0; j < 16; j++) { + for (int j = i; j < 16; j++) { add_to_P(i, j, 1.0, r_P, c_P, v_P); } } @@ -236,18 +254,18 @@ int QPWBC::call_solver() { // settings->rho = 0.1f; // settings->sigma = 1e-6f; // settings->max_iter = 4000; - /*settings->eps_abs = (float)1e-5;*/ - //settings->eps_rel = (float)1e-5; + settings->eps_abs = (float)1e-5; + settings->eps_rel = (float)1e-5; /*settings->eps_prim_inf = 1e-4f; settings->eps_dual_inf = 1e-4f; settings->alpha = 1.6f; settings->delta = 1e-6f; settings->polish = 0; settings->polish_refine_iter = 3;*/ - /*settings->adaptive_rho = (c_int)1; + settings->adaptive_rho = (c_int)1; settings->adaptive_rho_interval = (c_int)200; settings->adaptive_rho_tolerance = (float)5.0; - settings->adaptive_rho_fraction = (float)0.7;*/ + settings->adaptive_rho_fraction = (float)0.7; settings->verbose = true; int exitflag = 0; exitflag = osqp_setup(&workspce, data, settings); @@ -302,7 +320,7 @@ Extract relevant information from the output of the QP solver int QPWBC::retrieve_result(const Eigen::MatrixXd &f_cmd) { // Retrieve the "contact forces" part of the solution of the QP problem for (int k = 0; k < 16; k++) { - lambdas(k, 0) = x_qp(k); // (workspce->solution->x)[k]; + lambdas(k, 0) = x_qp(k, 0); // (workspce->solution->x)[k]; } f_res = G * lambdas; @@ -334,6 +352,10 @@ Return the next predicted state of the base */ Eigen::MatrixXd QPWBC::get_f_res() { return f_res; } Eigen::MatrixXd QPWBC::get_ddq_res() { return ddq_res; } +Eigen::MatrixXd QPWBC::get_P() { + Eigen::MatrixXd Pxd = Eigen::MatrixXd::Zero(16, 16); + Pxd = Pw; + return Pxd; } /* Run one iteration of the whole MPC by calling all the necessary functions (data retrieval, @@ -343,9 +365,9 @@ int QPWBC::run(const Eigen::MatrixXd &M, const Eigen::MatrixXd &Jc, const Eigen: // Create the constraint and weight matrices used by the QP solver // Minimize x^T.P.x + x^T.Q with constraints M.X == N and L.X <= K - // if (not initialized) { - // create_matrices(); - // } + if (not initialized) { + create_matrices(); + } std::cout << "Creation done" << std::endl; @@ -354,13 +376,35 @@ int QPWBC::run(const Eigen::MatrixXd &M, const Eigen::MatrixXd &Jc, const Eigen: std::cout << "compute_matrices done" << std::endl; update_PQ(); + // Bineq = Aineq * f_cmd; std::cout << "update_PQ done" << std::endl; // Create an initial guess and call the solver to solve the QP problem //call_solver(); + + for (int i = 0; i < 4; i++) { + double testou = f_cmd(3*i+2, 0) * 0.25; + for (int j = 0; j < 4; j++) { + x_qp(4*i+j) = testou; + } + } qp.solve_quadprog(Q_qp, C_qp, Aeq, Beq, Aineq, Bineq, x_qp); + Eigen::MatrixXd dx = Eigen::MatrixXd::Zero(16, 1); + dx(0, 0) = 0.01; + dx(1, 0) = 0.01; + dx(2, 0) = 0.01; + dx(3, 0) = 0.01; + dx(12, 0) = 0.01; + dx(13, 0) = 0.01; + dx(14, 0) = 0.01; + dx(15, 0) = 0.01; + std::cout << 0.5 * x_qp.transpose() * Q_qp * x_qp + x_qp.transpose() * C_qp << std::endl; + std::cout << 0.5 * (x_qp-dx).transpose() * Q_qp * (x_qp-dx) + (x_qp-dx).transpose() * C_qp << std::endl; + std::cout << 0.5 * (x_qp+dx).transpose() * Q_qp * (x_qp+dx) + (x_qp+dx).transpose() * C_qp << std::endl; + + std::cout << "A:" << std::endl << A << std::endl << "--" << std::endl; std::cout << "Xf:" << std::endl << (X * f_cmd) << std::endl << "--" << std::endl; std::cout << "RNEA:" << std::endl << RNEA << std::endl << "--" << std::endl; @@ -368,6 +412,7 @@ int QPWBC::run(const Eigen::MatrixXd &M, const Eigen::MatrixXd &Jc, const Eigen: std::cout << "AT Q1:" << std::endl << A.transpose() * Q1 << std::endl << "--" << std::endl; std::cout << "g:" << std::endl << g << std::endl << "--" << std::endl; std::cout << "H:" << std::endl << H << std::endl << "--" << std::endl; + std::cout << "Qw:" << std::endl << Qw << std::endl << "--" << std::endl; std::cout << Q_qp << std::endl; std::cout << C_qp << std::endl; std::cout << Aeq << std::endl; @@ -378,10 +423,35 @@ int QPWBC::run(const Eigen::MatrixXd &M, const Eigen::MatrixXd &Jc, const Eigen: std::cout << "call_solver done" << std::endl; std::cout << "Raw result: " << std::endl << x_qp << std::endl; - + // std::cout << "F result : " << std::endl << f_cmd + x_qp << std::endl; // Extract relevant information from the output of the QP solver retrieve_result(f_cmd); + Eigen::MatrixXd df = Eigen::MatrixXd::Zero(12, 1); + df = f_res - f_cmd; + std::cout << "Cost df H df + df g" << std::endl; + std::cout << df.transpose() * H * df + 2 * df.transpose() * g << std::endl; + std::cout << "Cost lambda Q lambda + 2 * lambda * C" << std::endl; + std::cout << 0.5 * x_qp.transpose() * Q_qp * x_qp + x_qp.transpose() * C_qp << std::endl; + std::cout << "Cost dev :" << std::endl; + std::cout << (x_qp.transpose() * G.transpose() - f_cmd.transpose()) * H * (G * x_qp - f_cmd) + 2 * (x_qp.transpose() * G.transpose() - f_cmd.transpose()) * g << std::endl; + std::cout << "Cost dev 2 :" << std::endl; + std::cout << x_qp.transpose() * G.transpose() * H * G * x_qp + 2 * (G.transpose() * g - G.transpose() * H * f_cmd).transpose() * x_qp << std::endl; + std::cout << "Removed:" << f_cmd.transpose() * H * f_cmd - 2 * f_cmd.transpose() * g << std::endl; + + for (int i = 0; i < 4; i++) { + double testou = f_cmd(3*i+2, 0) * 0.25; + for (int j = 0; j < 4; j++) { + x_qp(4*i+j) = testou; + } + } + std::cout << f_cmd << std::endl; + std::cout << G * x_qp << std::endl; + std::cout << "-#-" << std::endl; + std::cout << G << std::endl; + std::cout << x_qp << std::endl; + std::cout << "Cost: " << 0.5 * x_qp.transpose() * Q_qp * x_qp + x_qp.transpose() * C_qp << std::endl; + std::cout << "retrieve done" << std::endl; //char t_char[1] = {'P'}; @@ -464,6 +534,17 @@ void QPWBC::compute_matrices(const Eigen::MatrixXd &M, const Eigen::MatrixXd &Jc gamma = Yinv * ((X * f_cmd) - RNEA); H = A.transpose() * Q1 * A + Q2; g = A.transpose() * Q1 * gamma; + + for (int i = 0; i < 4; i++) { + if (f_cmd(3*i+2, 0) > 1e-4) { + G.block(3*i, 4*i, 3, 4) = Gk; + } + else + { + G.block(3*i, 4*i, 3, 4) = Eigen::Matrix<double, 3, 4>::Zero(); + } + } + Pw = G.transpose() * H * G; Qw = (G.transpose() * g) - (G.transpose() * H * f_cmd); @@ -472,15 +553,22 @@ void QPWBC::compute_matrices(const Eigen::MatrixXd &M, const Eigen::MatrixXd &Jc void QPWBC::update_PQ() { // Update P and Q weight matrices - /*for (int i = 0; i < 16; i++) { - for (int j = 0; j < 16; j++) { - P->x[i * 16 + j] = Pw(j, i); + int cpt = 0; + for (int i = 0; i < 16; i++) { + for (int j = i; j < 16; j++) { + P->x[cpt] = Pw(i, j); + cpt++; } } + std::cout << "Eigenvalues" << Pw.eigenvalues() << std::endl; + + //char t_char[1] = {'P'}; + //my_print_csc_matrix(P, t_char); + for (int i = 0; i < 16; i++) { Q[i] = Qw(i, 0); - }*/ + } // Update P and Q weight matrices Q_qp = Pw;