From 7124575dc431bb78ffce772763f090c95fc3be05 Mon Sep 17 00:00:00 2001 From: paleziart <paleziart@laas.fr> Date: Mon, 6 Sep 2021 14:07:37 +0200 Subject: [PATCH] Formatting Controller.py --- scripts/Controller.py | 40 ++++++++++++++++++++++------------------ 1 file changed, 22 insertions(+), 18 deletions(-) diff --git a/scripts/Controller.py b/scripts/Controller.py index ce733396..19c80ee2 100644 --- a/scripts/Controller.py +++ b/scripts/Controller.py @@ -13,6 +13,7 @@ from solopython.utils.viewerClient import viewerClient, NonBlockingViewerFromRob import libquadruped_reactive_walking as lqrw from example_robot_data.robots_loader import Solo12Loader + class Result: """Object to store the result of the control loop It contains what is sent to the robot (gains, desired positions and velocities, @@ -137,8 +138,8 @@ class Controller: # Wrapper that makes the link with the solver that you want to use for the MPC self.mpc_wrapper = MPC_Wrapper.MPC_Wrapper(params, self.q) - self.o_targetFootstep = np.zeros((3,4)) # Store result for MPC_planner - + self.o_targetFootstep = np.zeros((3, 4)) # Store result for MPC_planner + # ForceMonitor to display contact forces in PyBullet with red lines # import ForceMonitor # myForceMonitor = ForceMonitor.ForceMonitor(pyb_sim.robotId, pyb_sim.planeId) @@ -235,7 +236,7 @@ class Controller: self.q[:, 0] = self.estimator.getQUpdated() self.v[:, 0] = self.estimator.getVUpdated() self.yaw_estim = self.estimator.getYawEstim() - # TODO: Understand why using Python or C++ h_v leads to a slightly different result since the + # TODO: Understand why using Python or C++ h_v leads to a slightly different result since the # difference between them at each time step is 1e-16 at max (butterfly effect?) t_filter = time.time() @@ -275,12 +276,12 @@ class Controller: # Solve MPC problem once every k_mpc iterations of the main loop if (self.k % self.k_mpc) == 0: try: - if self.type_MPC == 3 : + if self.type_MPC == 3: # Compute the target foostep in local frame, to stop the optimisation around it when t_lock overpass l_targetFootstep = oRh.transpose() @ (self.o_targetFootstep - oTh) self.mpc_wrapper.solve(self.k, xref, fsteps, cgait, l_targetFootstep, oRh, oTh) - else : - self.mpc_wrapper.solve(self.k, xref, fsteps, cgait, np.zeros((3,4))) + else: + self.mpc_wrapper.solve(self.k, xref, fsteps, cgait, np.zeros((3, 4))) except ValueError: print("MPC Problem") @@ -294,14 +295,14 @@ class Controller: t_mpc = time.time() # If the MPC optimizes footsteps positions then we use them - if self.k > 100 and self.type_MPC == 3 : - for foot in range(4): - if cgait[0,foot] == 0 : + if self.k > 100 and self.type_MPC == 3: + for foot in range(4): + if cgait[0, foot] == 0: id = 0 - while cgait[id,foot] == 0 : + while cgait[id, foot] == 0: id += 1 - self.o_targetFootstep[:2,foot] = self.x_f_mpc[24 + 2*foot:24+2*foot+2, id+1] - + self.o_targetFootstep[:2, foot] = self.x_f_mpc[24 + 2*foot:24+2*foot+2, id+1] + # Update pos, vel and acc references for feet self.footTrajectoryGenerator.update(self.k, self.o_targetFootstep) @@ -310,23 +311,25 @@ class Controller: if (not self.error) and (not self.joystick.stop): # Update configuration vector for wbc - self.q_wbc[2, 0] = self.q_filt_mpc[2, 0] #Â Height + self.q_wbc[2, 0] = self.q_filt_mpc[2, 0] # Height self.q_wbc[3, 0] = self.q_filt_mpc[3, 0] # Roll self.q_wbc[4, 0] = self.q_filt_mpc[4, 0] # Pitch self.q_wbc[6:, 0] = self.wbcWrapper.qdes[:] # with reference angular positions of previous loop # Update velocity vector for wbc - self.dq_wbc[:6, 0] = self.estimator.getVFilt()[:6] #Â Velocities in base frame (not horizontal frame!) + self.dq_wbc[:6, 0] = self.estimator.getVFilt()[:6] # Â Velocities in base frame (not horizontal frame!) self.dq_wbc[6:, 0] = self.wbcWrapper.vdes[:] # with reference angular velocities of previous loop # Feet command position, velocity and acceleration in base frame - self.feet_a_cmd = self.footTrajectoryGenerator.getFootAccelerationBaseFrame(oRh.transpose(), np.zeros((3, 1)), np.zeros((3, 1))) - self.feet_v_cmd = self.footTrajectoryGenerator.getFootVelocityBaseFrame(oRh.transpose(), np.zeros((3, 1)), np.zeros((3, 1))) + self.feet_a_cmd = self.footTrajectoryGenerator.getFootAccelerationBaseFrame( + oRh.transpose(), np.zeros((3, 1)), np.zeros((3, 1))) + self.feet_v_cmd = self.footTrajectoryGenerator.getFootVelocityBaseFrame( + oRh.transpose(), np.zeros((3, 1)), np.zeros((3, 1))) self.feet_p_cmd = self.footTrajectoryGenerator.getFootPositionBaseFrame(oRh.transpose(), oTh) #Â Desired position, orientation and velocities of the base if not self.gait.getIsStatic(): - self.xgoals[2:5, 0] = [self.h_ref, 0.0, 0.0] #Â Height (in horizontal frame!) + self.xgoals[2:5, 0] = [self.h_ref, 0.0, 0.0] # Â Height (in horizontal frame!) else: self.xgoals[2:5, 0] += self.vref_filt_mpc[2:5, 0] * self.dt_wbc @@ -361,7 +364,8 @@ class Controller: self.security_check() # Update PyBullet camera - self.pyb_camera(device, 0.0) # to have yaw update in simu: utils_mpc.quaternionToRPY(self.estimator.q_filt[3:7, 0])[2, 0] + # to have yaw update in simu: utils_mpc.quaternionToRPY(self.estimator.q_filt[3:7, 0])[2, 0] + self.pyb_camera(device, 0.0) # Logs self.log_misc(t_start, t_filter, t_planner, t_mpc, t_wbc) -- GitLab