diff --git a/Controller.py b/Controller.py index 06647184d5caac426ccefb917881d8d135078655..27f156b9441d6d0c7402741091ba215607e6721b 100644 --- a/Controller.py +++ b/Controller.py @@ -4,17 +4,17 @@ import numpy as np import utils_mpc import time -# from TSID_Debug_controller_four_legs_fb_vel import controller from QP_WBC import controller -import processing as proc import MPC_Wrapper import pybullet as pyb from Planner import Planner import pinocchio as pin -from Planner import EulerToQuaternion class Result: + """Object to store the result of the control loop + It contains what is sent to the robot (gains, desired positions and velocities, + feedforward torques)""" def __init__(self): @@ -26,6 +26,7 @@ class Result: class dummyHardware: + """Fake hardware for initialisation purpose""" def __init__(self): @@ -37,6 +38,7 @@ class dummyHardware: class dummyDevice: + """Fake device for initialisation purpose""" def __init__(self): @@ -93,9 +95,8 @@ class Controller: self.enable_gepetto_viewer = False # Create Joystick, FootstepPlanner, Logger and Interface objects - self.joystick, self.fstep_planner, self.logger, self.interface, self.estimator = utils_mpc.init_objects( - dt_tsid, dt_mpc, N_SIMULATION, k_mpc, n_periods, T_gait, type_MPC, on_solo8, - predefined_vel) + self.joystick, self.logger, self.estimator = utils_mpc.init_objects( + dt_tsid, dt_mpc, N_SIMULATION, k_mpc, n_periods, T_gait, type_MPC, predefined_vel) # Enable/Disable hybrid control self.enable_hybrid_control = True @@ -113,33 +114,17 @@ class Controller: # Wrapper that makes the link with the solver that you want to use for the MPC # First argument to True to have PA's MPC, to False to have Thomas's MPC self.enable_multiprocessing = True - self.mpc_wrapper = MPC_Wrapper.MPC_Wrapper(type_MPC, dt_mpc, self.fstep_planner.n_steps, - k_mpc, self.fstep_planner.T_gait, self.q, self.enable_multiprocessing) - - ######################################################################## - # Gepetto viewer # - ######################################################################## + self.mpc_wrapper = MPC_Wrapper.MPC_Wrapper(type_MPC, dt_mpc, np.int(n_periods*T_gait/dt_mpc), + k_mpc, T_gait, self.q, self.enable_multiprocessing) # Initialisation of the Gepetto viewer self.solo = utils_mpc.init_viewer(self.enable_gepetto_viewer) - ######################################################################## - # PyBullet # - ######################################################################## - - # Initialisation of the PyBullet simulator - # self.pyb_sim = utils_mpc.pybullet_simulator(envID, use_flat_plane, enable_pyb_GUI, dt=dt_tsid) - - # Force monitor to display contact forces in PyBullet with red lines + # ForceMonitor to display contact forces in PyBullet with red lines # import ForceMonitor # myForceMonitor = ForceMonitor.ForceMonitor(pyb_sim.robotId, pyb_sim.planeId) - ######################################################################## - # Simulator # - ######################################################################## - # Define the default controller - # self.myController = controller(q_init, int(N_SIMULATION), dt_tsid, k_mpc, n_periods, T_gait, on_solo8) self.myController = controller(dt_tsid, int(N_SIMULATION)) self.envID = envID @@ -184,6 +169,11 @@ class Controller: self.compute(dDevice) def compute(self, device): + """Run one iteration of the main control loop + + Args: + device (object): Interface with the masterboard or the simulation + """ tic = time.time() @@ -191,7 +181,8 @@ class Controller: self.joystick.update_v_ref(self.k, self.velID) # Process state estimator - self.estimator.run_filter(self.k, self.planner.gait[0, 1:], device, self.planner.goals, self.planner.gait[0, 0]) + self.estimator.run_filter(self.k, self.planner.gait[0, 1:], + device, self.planner.goals, self.planner.gait[0, 0]) t_filter = time.time() self.t_list_filter[self.k] = t_filter - tic @@ -202,18 +193,18 @@ class Controller: oMb = pin.SE3(pin.Quaternion(self.q[3:7, 0:1]), self.q[0:3, 0:1]) self.v[0:3, 0:1] = oMb.rotation @ self.estimator.v_filt[0:3, 0:1] self.v[3:6, 0:1] = oMb.rotation @ self.estimator.v_filt[3:6, 0:1] - self.v[6:, 0] = self.estimator.v_filt[6:, 0] + self.v[6:, 0] = self.estimator.v_filt[6:, 0] # Update estimated position of the robot self.v_estim[0:3, 0:1] = oMb.rotation.transpose() @ self.joystick.v_ref[0:3, 0:1] self.v_estim[3:6, 0:1] = oMb.rotation.transpose() @ self.joystick.v_ref[3:6, 0:1] if not self.planner.is_static: self.q_estim[:, 0] = pin.integrate(self.solo.model, - self.q, self.v_estim * self.myController.dt) + self.q, self.v_estim * self.myController.dt) self.yaw_estim = (utils_mpc.quaternionToRPY(self.q_estim[3:7, 0]))[2, 0] else: self.planner.q_static[:, 0] = pin.integrate(self.solo.model, - self.planner.q_static, self.v_estim * self.myController.dt) + self.planner.q_static, self.v_estim * self.myController.dt) self.planner.RPY_static[:, 0:1] = utils_mpc.quaternionToRPY(self.planner.q_static[3:7, 0]) else: self.yaw_estim = 0.0 @@ -228,7 +219,7 @@ class Controller: pyb.resetDebugVisualizerCamera(cameraDistance=0.6, cameraYaw=45, cameraPitch=-39.9, cameraTargetPosition=[device.dummyHeight[0], device.dummyHeight[1], 0.0]) - #Â Update reference height + # Update reference height """if self.k < 1000: self.planner.h_ref += 0.00005""" @@ -258,7 +249,7 @@ class Controller: t_mpc = time.time() self.t_list_mpc[self.k] = t_mpc - t_planner - # Target state for the inverse kinematics + # Target state for the whole body control if not self.planner.is_static: self.x_f_mpc[0] = self.q_estim[0, 0] self.x_f_mpc[1] = self.q_estim[1, 0] @@ -338,99 +329,3 @@ class Controller: self.k += 1 return 0.0 - - #################### - # END OF MAIN LOOP # - #################### - - def launch_simu(self, device): - """# Default position after calibration - q_init = np.array([0.0, 0.8, -1.6, 0, 0.8, -1.6, 0, -0.8, 1.6, 0, -0.8, 1.6]) - - class dummyDevice: - - def __init__(self): - - pass - - dDevice = dummyDevice() - dDevice.q_mes = q_init - dDevice.v_mes = np.zeros(12) - dDevice.baseLinearAcceleration = np.zeros(3) - dDevice.baseAngularVelocity = np.zeros(3) - dDevice.baseOrientation = np.array([0.0, 0.0, 0.0, 1.0]) - tau = self.compute(dDevice)""" - - tic = time.time() - - for k in range(1, int(self.N_SIMULATION)): - - device.UpdateMeasurment() - - tau = self.compute(device) - - # device.SetDesiredJointTorque(tau) - device.SetKp(self.result.P) - device.SetKd(self.result.D) - device.SetQdes(self.result.q_des) - device.SetVdes(self.result.v_des) - # device.SetTauFF(self.result.tau_ff) - - device.SendCommand(WaitEndOfCycle=True) - - print("###") - print("TSID: ", self.myController.qtsid.ravel()) - print("TAU: ", tau.ravel()) - - if self.enable_pyb_GUI: - # Update the PyBullet camera on the robot position to do as if it was attached to the robot - pyb.resetDebugVisualizerCamera(cameraDistance=0.6, cameraYaw=45, cameraPitch=-39.9, - cameraTargetPosition=[self.estimator.q_filt[0, 0], - self.estimator.q_filt[1, 0], 0.0]) - - # Process PyBullet - # proc.process_pybullet(self.pyb_sim, self.k, self.envID, self.velID, tau) - - # Call logger object to log various parameters - # logger.call_log_functions(k, pyb_sim, joystick, fstep_planner, interface, mpc_wrapper, myController, - # False, pyb_sim.robotId, pyb_sim.planeId, solo) - # logger.log_state(k, pyb_sim, joystick, interface, mpc_wrapper, solo) - # logger.log_forces(k, interface, myController, pyb_sim.robotId, pyb_sim.planeId) - # logger.log_footsteps(k, interface, myController) - # logger.log_fstep_planner(k, fstep_planner) - # logger.log_tracking_foot(k, myController, solo) - - tac = time.time() - print("Average computation time of one iteration: ", - (tac-tic)/self.N_SIMULATION) - print("Computation duration: ", tac-tic) - print("Simulated duration: ", self.N_SIMULATION*self.dt_tsid) - print("Max loop time: ", np.max(self.t_list_loop[10:])) - - # Close the parallel process if it is running - if self.enable_multiprocessing: - print("Stopping parallel process") - self.mpc_wrapper.stop_parallel_loop() - - print("END") - - # Plot processing duration of each step of the control loop - """ - import matplotlib.pylab as plt - plt.figure() - plt.plot(t_list_filter[1:], '+', color="orange") - plt.plot(t_list_states[1:], 'r+') - plt.plot(t_list_fsteps[1:], 'g+') - plt.plot(t_list_mpc[1:], 'b+') - plt.plot(t_list_tsid[1:], '+', color="violet") - plt.plot(t_list_loop[1:], 'k+') - plt.title("Time for state update + footstep planner + MPC communication + Inv Dyn + PD+") - plt.show(block=True)""" - - # Disconnect the PyBullet server (also close the GUI) - pyb.disconnect() - - # Plot graphs of the state estimator - # estimator.plot_graphs() - - return self.logger diff --git a/MPC_Wrapper.py b/MPC_Wrapper.py index 41acab59b787c2e302ff602b367b9258025425e7..bf6137678877a89c4d70eccc4b46b468dedcd943 100644 --- a/MPC_Wrapper.py +++ b/MPC_Wrapper.py @@ -8,11 +8,12 @@ from utils_mpc import quaternionToRPY class Dummy: + """Dummy class to store variables""" def __init__(self): - self.xref = None - self.fsteps = None + self.xref = None # Desired trajectory + self.fsteps = None # Desired location of footsteps pass @@ -27,6 +28,7 @@ class MPC_Wrapper: n_steps (int): Number of time steps in one gait cycle k_mpc (int): Number of inv dyn time step for one iteration of the MPC T_gait (float): Duration of one period of gait + q_init (array): the default position of the robot multiprocessing (bool): Enable/Disable running the MPC with another process """ @@ -44,7 +46,7 @@ class MPC_Wrapper: self.mpc_type = mpc_type self.multiprocessing = multiprocessing - if multiprocessing: + if multiprocessing: # Setup variables in the shared memory self.newData = Value('b', False) self.newResult = Value('b', False) self.dataIn = Array('d', [0.0] * (1 + (np.int(self.n_steps)+1) * 12 + 13*20)) @@ -59,6 +61,7 @@ class MPC_Wrapper: self.mpc = MPC_crocoddyl.MPC_crocoddyl( dt=dt, T_mpc=T_gait, mu=0.9, inner=False, linearModel=True, n_period=int((dt * n_steps)/T_gait)) + # Setup initial result for the first iteration of the main control loop x_init = np.zeros(12) x_init[0:3] = q_init[0:3, 0] x_init[3:6] = quaternionToRPY(q_init[3:7, 0]).ravel() @@ -73,9 +76,9 @@ class MPC_Wrapper: fstep_planner (object): FootstepPlanner object of the control loop """ - if self.multiprocessing: + if self.multiprocessing: # Run in parallel process self.run_MPC_asynchronous(k, fstep_planner) - else: + else: # Run in the same process than main loop self.run_MPC_synchronous(k, fstep_planner) return 0 @@ -94,7 +97,6 @@ class MPC_Wrapper: return self.last_available_result else: return self.last_available_result - # raise ValueError("Error: something went wrong with the MPC, result not available.") else: # Directly retrieve desired contact force of the synchronous MPC object return self.f_applied @@ -114,32 +116,15 @@ class MPC_Wrapper: # Run the MPC to get the reference forces and the next predicted state # Result is stored in mpc.f_applied, mpc.q_next, mpc.v_next - """print(dt, n_steps, k, T_gait) - print(np.round(interface.lC.ravel(), decimals=2)) - print(np.round(interface.abg.ravel(), decimals=2)) - print(np.round(interface.lV.ravel(), decimals=2)) - print(np.round(interface.lW.ravel(), decimals=2)) - print(interface.l_feet.ravel()) - print(joystick.v_ref.ravel()) - print(fstep_planner.fsteps)""" - if self.mpc_type: # OSQP MPC - # Replace NaN values by 0.0 + # Replace NaN values by 0.0 (shared memory cannot handle np.nan) fstep_planner.fsteps_mpc[np.isnan(fstep_planner.fsteps_mpc)] = 0.0 self.mpc.run(np.int(k), fstep_planner.xref.copy(), fstep_planner.fsteps_mpc.copy()) else: # Crocoddyl MPC self.mpc.solve(k, fstep_planner) - """tmp_lC = interface.lC.copy() - tmp_lC[2, 0] += dt * interface.lV[2, 0] - tmp_abg = interface.abg + dt * interface.lW - tmp_abg[2, 0] = 0.0 - tmp_lfeet = interface.l_feet - dt * interface.lV - tmp_xref = fstep_planner.xref.copy() - tmp_xref """ - # Output of the MPC self.f_applied = self.mpc.get_latest_result() @@ -157,18 +142,8 @@ class MPC_Wrapper: self.newData, self.newResult, self.dataIn, self.dataOut, self.running)) p.start() - # print("Setting Data") + # Stacking data to send them to the parallel process self.compress_dataIn(k, fstep_planner) - """print("Sending") - print(dt, n_steps, k, T_gait) - print(interface.lC.ravel()) - print(interface.abg.ravel()) - print(interface.lV.ravel()) - print(interface.lW.ravel()) - print(interface.l_feet.ravel()) - print(joystick.v_ref.ravel()) - print(fstep_planner.fsteps)""" - self.newData.value = True return 0 @@ -196,34 +171,11 @@ class MPC_Wrapper: # Retrieve data thanks to the decompression function and reshape it kf, xref_1dim, fsteps_1dim = self.decompress_dataIn(dataIn) - # print("Receiving") - """dt = dt[0] - nsteps = np.int(nsteps[0]) - k = k[0] - T_gait = T_gait[0] - lC = np.reshape(lC, (3, 1)) - abg = np.reshape(abg, (3, 1)) - lV = np.reshape(lV, (3, 1)) - lW = np.reshape(lW, (3, 1)) - l_feet = np.reshape(l_feet, (3, 4)) - xref = np.reshape(xref, (12, nsteps+1)) - x0 = np.reshape(x0, (12, 1)) - v_ref = np.reshape(v_ref, (6, 1)) - fsteps = np.reshape(fsteps, (20, 13))""" - + # Reshaping 1-dimensional data k = int(kf[0]) xref = np.reshape(xref_1dim, (12, self.n_steps+1)) fsteps = np.reshape(fsteps_1dim, (20, 13)) - """print(dt, nsteps, k, T_gait) - print(lC.ravel()) - print(abg.ravel()) - print(lV.ravel()) - print(lW.ravel()) - print(l_feet.ravel()) - print(v_ref.ravel()) - print(fsteps)""" - # Create the MPC object of the parallel process during the first iteration if k == 0: # loop_mpc = MPC.MPC(self.dt, self.n_steps, self.T_gait) @@ -242,8 +194,7 @@ class MPC_Wrapper: dummy_fstep_planner.fsteps = fsteps loop_mpc.solve(k, dummy_fstep_planner) - # Store the result (predicted trajectory + desired forces) in the shared memory - # print("X_F: ", loop_mpc.get_latest_result().tolist()) + # Store the result (predicted state + desired forces) in the shared memory self.dataOut[:] = loop_mpc.get_latest_result().tolist() # Set shared variable to true to signal that a new result is available @@ -260,8 +211,6 @@ class MPC_Wrapper: fstep_planner (object): FootstepPlanner object of the control loop """ - # print("Compressing dataIn") - # Replace NaN values by 0.0 to be stored in C-type arrays fstep_planner.fsteps[np.isnan(fstep_planner.fsteps)] = 0.0 @@ -279,8 +228,6 @@ class MPC_Wrapper: dataIn (Array): shared array that contains the data the asynchronous MPC will use as inputs """ - # print("Decompressing dataIn") - # Sizes of the different variables that are stored in the C-type array sizes = [0, 1, (np.int(self.n_steps)+1) * 12, 13*20] csizes = np.cumsum(sizes) diff --git a/Planner.py b/Planner.py index 1cd7c650e649b9c2587eeb5b26d0eac5e9675d99..538bf0776e1c45d1dcda1a7adbe375af1a765c64 100644 --- a/Planner.py +++ b/Planner.py @@ -765,20 +765,6 @@ class Planner: [left[0] * right[1] - left[1] * right[0]]]) -def EulerToQuaternion(roll_pitch_yaw): - roll, pitch, yaw = roll_pitch_yaw - sr = math.sin(roll/2.) - cr = math.cos(roll/2.) - sp = math.sin(pitch/2.) - cp = math.cos(pitch/2.) - sy = math.sin(yaw/2.) - cy = math.cos(yaw/2.) - qx = sr * cp * cy - cr * sp * sy - qy = cr * sp * cy + sr * cp * sy - qz = cr * cp * sy - sr * sp * cy - qw = cr * cp * cy + sr * sp * sy - return [qx, qy, qz, qw] - def test_planner(): @@ -885,7 +871,7 @@ def test_planner(): # Following the mpc reference trajectory perfectly q[0:3, 0] = planner.xref[0:3, 1].copy() # np.array(pin.integrate(model, q, b_v * dt)) - q[3:7, 0] = EulerToQuaternion(planner.xref[3:6, 1]) + q[3:7, 0] = utils_mpc.EulerToQuaternion(planner.xref[3:6, 1]) v[0:3, 0] = planner.xref[6:9, 1].copy() v[3:6, 0] = planner.xref[9:12, 1].copy() k += 1 @@ -1010,7 +996,7 @@ def test_planner_mpc(): # Run planner """if k == 100: - q[3:7, 0] = EulerToQuaternion([0.2, 0.0, 0.0])""" + q[3:7, 0] = utils_mpc.EulerToQuaternion([0.2, 0.0, 0.0])""" planner.run_planner(k, k_mpc, q[0:7, 0:1], v[0:6, 0:1], joystick.v_ref) # Logging output of foot trajectory generator @@ -1042,12 +1028,12 @@ def test_planner_mpc(): # Following the mpc reference trajectory perfectly """q[0:3, 0] = planner.xref[0:3, 1].copy() # np.array(pin.integrate(model, q, b_v * dt)) - q[3:7, 0] = EulerToQuaternion(planner.xref[3:6, 1]) + q[3:7, 0] = utils_mpc.EulerToQuaternion(planner.xref[3:6, 1]) v[0:3, 0] = planner.xref[6:9, 1].copy() v[3:6, 0] = planner.xref[9:12, 1].copy()""" q[0:3, 0] = x_f_mpc[0:3] - q[3:7, 0] = EulerToQuaternion(x_f_mpc[3:6]) + q[3:7, 0] = utils_mpc.EulerToQuaternion(x_f_mpc[3:6]) v[0:3, 0] = x_f_mpc[6:9] v[3:6, 0] = x_f_mpc[9:12] k += 1 @@ -1229,7 +1215,7 @@ def test_planner_mpc_tsid(): for i in range(planner.xref.shape[1]): planner.xref[0:3, i] = oMl.inverse() * planner.xref[0:3, i:(i+1)] - planner.xref[3:6, i] = pin.rpy.matrixToRpy(oMl.rotation.transpose() @ pin.Quaternion(np.array([EulerToQuaternion(planner.xref[3:6, i])]).T).toRotationMatrix()) + planner.xref[3:6, i] = pin.rpy.matrixToRpy(oMl.rotation.transpose() @ pin.Quaternion(np.array([utils_mpc.EulerToQuaternion(planner.xref[3:6, i])]).T).toRotationMatrix()) planner.xref[6:9, i:(i+1)] = oMl.rotation.transpose() @ planner.xref[6:9, i:(i+1)] planner.xref[9:12, i:(i+1)] = oMl.rotation.transpose() @ planner.xref[9:12, i:(i+1)] @@ -1252,7 +1238,7 @@ def test_planner_mpc_tsid(): x_f_mpc = mpc_wrapper.get_latest_result() """b_x_f_mpc = x_f_mpc.copy() b_x_f_mpc[0:3] = (oMl * np.array([x_f_mpc[0:3]]).transpose()).ravel() - b_x_f_mpc[3:6] = pin.rpy.matrixToRpy(oMl.rotation @ pin.Quaternion(np.array([EulerToQuaternion(x_f_mpc[3:6])]).T).toRotationMatrix()) + b_x_f_mpc[3:6] = pin.rpy.matrixToRpy(oMl.rotation @ pin.Quaternion(np.array([utils_mpc.EulerToQuaternion(x_f_mpc[3:6])]).T).toRotationMatrix()) b_x_f_mpc[6:9] = (oMl.rotation @ np.array([x_f_mpc[6:9]]).transpose()).ravel() b_x_f_mpc[9:12] = (oMl.rotation @ np.array([x_f_mpc[9:12]]).transpose()).ravel() for i in range(4): @@ -1281,7 +1267,7 @@ def test_planner_mpc_tsid(): plt.show(block=True)""" """q[0:3, 0] = x_f_mpc[0:3] - q[3:7, 0] = EulerToQuaternion(x_f_mpc[3:6]) + q[3:7, 0] = utils_mpc.EulerToQuaternion(x_f_mpc[3:6]) v[0:3, 0] = x_f_mpc[6:9] v[3:6, 0] = x_f_mpc[9:12]""" @@ -1368,11 +1354,11 @@ def test_planner_mpc_tsid(): # Following the mpc reference trajectory perfectly """q[0:3, 0] = planner.xref[0:3, 1].copy() # np.array(pin.integrate(model, q, b_v * dt)) - q[3:7, 0] = EulerToQuaternion(planner.xref[3:6, 1]) + q[3:7, 0] = utils_mpc.EulerToQuaternion(planner.xref[3:6, 1]) v[0:3, 0] = planner.xref[6:9, 1].copy() v[3:6, 0] = planner.xref[9:12, 1].copy()""" """q[0:3, 0] = x_f_mpc[0:3] - q[3:7, 0] = EulerToQuaternion(x_f_mpc[3:6]) + q[3:7, 0] = utils_mpc.EulerToQuaternion(x_f_mpc[3:6]) v[0:3, 0] = x_f_mpc[6:9] v[3:6, 0] = x_f_mpc[9:12]""" @@ -1401,7 +1387,7 @@ def test_planner_mpc_tsid(): # if k == 1000: # oMb = pin.SE3(pin.utils.rotate('z', 3.1415/2), np.array([0.0, 0.0, 0.0])) - # q[3:7, 0] = np.array([0, 0, 0.7009093, 0.7132504]) #pin.Quaternion(EulerToQuaternion(pin.rpy.matrixToRpy(oMb.rotation @ pin.Quaternion(q[3:7, 0:1]).toRotationMatrix()))) + # q[3:7, 0] = np.array([0, 0, 0.7009093, 0.7132504]) #pin.Quaternion(utils_mpc.EulerToQuaternion(pin.rpy.matrixToRpy(oMb.rotation @ pin.Quaternion(q[3:7, 0:1]).toRotationMatrix()))) while (time.time() - t_start) < 0.002: pass diff --git a/PyBulletSimulator.py b/PyBulletSimulator.py index e46b1767ab8d62ffce1a56aa4af1d8f357e8f072..74688139d72964262c14f50a349e24d981c1e143 100644 --- a/PyBulletSimulator.py +++ b/PyBulletSimulator.py @@ -1,8 +1,18 @@ +import numpy as np +import pybullet as pyb # Pybullet server +import pybullet_data +import time as time +import sys +import pinocchio as pin +from utils_mpc import quaternionToRPY + + class pybullet_simulator: """Wrapper for the PyBullet simulator to initialize the simulation, interact with it and use various utility functions Args: + q_init (array): the default position of the robot envID (int): identifier of the current environment to be able to handle different scenarios use_flat_plane (bool): to use either a flat ground or a rough ground enable_pyb_GUI (bool): to display PyBullet GUI or not @@ -462,6 +472,7 @@ class pybullet_simulator: class Hardware(): + """Dummy class that simulates the Hardware class used to communicate with the real masterboard""" def __init__(self): @@ -489,6 +500,9 @@ class Hardware(): class PyBulletSimulator(): + """Class that wraps a PyBullet simulation environment to seamlessly switch between the real robot or + simulation by having the same interface in both cases (calling the same functions/variables) + """ def __init__(self): @@ -516,6 +530,16 @@ class PyBulletSimulator(): self.tau_ff = np.zeros(12) def Init(self, calibrateEncoders=False, q_init=None, envID=0, use_flat_plane=True, enable_pyb_GUI=False, dt=0.002): + """Initialize the PyBullet simultor with a given environment and a given state of the robot + + Args: + calibrateEncoders (bool): dummy variable, not used for simulation but used for real robot + q_init (12 x 0 array): initial angular positions of the joints of the robot + envID (int): which environment should be loaded in the simulation + use_flat_plane (bool): to use either a flat ground or a rough ground + enable_pyb_GUI (bool): to display PyBullet GUI or not + dt (float): time step of the simulation + """ # Initialisation of the PyBullet simulator self.pyb_sim = pybullet_simulator(q_init, envID, use_flat_plane, enable_pyb_GUI, dt) @@ -526,6 +550,8 @@ class PyBulletSimulator(): return def UpdateMeasurment(self): + """Retrieve data about the robot from the simulation to mimic what the masterboard does + """ # Position and velocity of actuators jointStates = pyb.getJointStates(self.pyb_sim.robotId, self.revoluteJointIndices) # State of all joints @@ -567,23 +593,48 @@ class PyBulletSimulator(): return def SetDesiredJointTorque(self, torques): + """Set desired joint torques + Args: + torques (12 x 0): desired articular feedforward torques + """ # Save desired torques in a storage array self.tau_ff = torques.copy() return def SetDesiredJointPDgains(self, P, D): + """Set desired PD gains for articular low level control + + Args: + P (12 x 0 array): desired position gains + D (12 x 0 array): desired velocity gains + """ self.P = P self.D = D def SetDesiredJointPosition(self, q_des): + """Set desired joint positions + + Args: + q_des (12 x 0 array): desired articular positions + """ self.q_des = q_des def SetDesiredJointVelocity(self, v_des): + """Set desired joint velocities + + Args: + v_des (12 x 0 array): desired articular velocities + """ self.v_des = v_des def SendCommand(self, WaitEndOfCycle=True): + """Send control commands to the robot + + Args: + WaitEndOfCycle (bool): wait to have simulation time = real time + """ # Compute PD torques tau_pd = self.P * (self.q_des - self.q_mes) + self.D * (self.v_des - self.v_mes) @@ -591,12 +642,11 @@ class PyBulletSimulator(): # Save desired torques in a storage array self.jointTorques = tau_pd + self.tau_ff - # print("FF+PD: ", self.jointTorques.ravel()) - # Set control torque for all joints pyb.setJointMotorControlArray(self.pyb_sim.robotId, self.pyb_sim.revoluteJointIndices, controlMode=pyb.TORQUE_CONTROL, forces=self.jointTorques) + # Apply arbitrary external forces to the robot base in the simulation # self.pyb_sim.apply_external_force(self.cpt, 1000, 1000, np.array([0.0, +8.0, 0.0]), np.zeros((3,))) # self.pyb_sim.apply_external_force(self.cpt, 4250, 500, np.array([+5.0, 0.0, 0.0]), np.zeros((3,))) # self.pyb_sim.apply_external_force(self.cpt, 5250, 500, np.array([0.0, +5.0, 0.0]), np.zeros((3,))) @@ -615,6 +665,8 @@ class PyBulletSimulator(): return def Print(self): + """Print simulation parameters in the console""" + np.set_printoptions(precision=2) # print(chr(27) + "[2J") print("#######") @@ -627,6 +679,7 @@ class PyBulletSimulator(): sys.stdout.flush() def Stop(self): + """Stop the simulation environment""" # Disconnect the PyBullet server (also close the GUI) pyb.disconnect() diff --git a/QP_WBC.py b/QP_WBC.py index d6431fc879bb31a9ac9fb4f7d1b73948aece796d..4b11432373878615da5452ef13cf7edfdf03d20e 100644 --- a/QP_WBC.py +++ b/QP_WBC.py @@ -30,6 +30,7 @@ class controller(): # Logging self.k_log = 0 self.log_feet_pos = np.zeros((3, 4, N_SIMULATION)) + self.log_feet_err = np.zeros((3, 4, N_SIMULATION)) self.log_feet_vel = np.zeros((3, 4, N_SIMULATION)) self.log_feet_pos_target = np.zeros((3, 4, N_SIMULATION)) self.log_feet_vel_target = np.zeros((3, 4, N_SIMULATION)) @@ -74,8 +75,9 @@ class controller(): # Log position, velocity and acceleration references for the feet indexes = [10, 18, 26, 34] for i in range(4): - self.log_feet_pos[:, i, self.k_log] = self.invKin.robot.data.oMf[indexes[i]].translation - self.log_feet_vel[:, i, self.k_log] = pin.getFrameVelocity(self.invKin.robot.model, self.invKin.robot.data, + self.log_feet_pos[:, i, self.k_log] = self.invKin.rdata.oMf[indexes[i]].translation + self.log_feet_err[:, i, self.k_log] = self.invKin.pfeet_err[i] + self.log_feet_vel[:, i, self.k_log] = pin.getFrameVelocity(self.invKin.rmodel, self.invKin.rdata, indexes[i], pin.LOCAL_WORLD_ALIGNED).linear self.log_feet_pos_target[:, :, self.k_log] = planner.goals[:, :] # + np.array([[0.0, 0.0, q[2, 0] - planner.h_ref]]).T self.log_feet_vel_target[:, :, self.k_log] = planner.vgoals[:, :] @@ -163,9 +165,10 @@ class controller(): plt.subplot(3, 4, index12[i], sharex=ax0) plt.plot(t_range, self.log_feet_pos[i % 3, np.int(i/3), :], color='b', linewidth=3, marker='') + plt.plot(t_range, self.log_feet_err[i % 3, np.int(i/3), :], color='g', linewidth=3, marker='') plt.plot(t_range, self.log_feet_pos_target[i % 3, np.int(i/3), :], color='r', linewidth=3, marker='') plt.plot(t_range, self.log_contacts[np.int(i/3), :] * np.max(self.log_feet_pos[i % 3, np.int(i/3), :]), color='k', linewidth=3, marker='') - plt.legend([lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)]+"", lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)]+" Ref", "Contact state"]) + plt.legend([lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)]+"", "error", lgd_Y[i % 3] + " " + lgd_X[np.int(i/3)]+" Ref", "Contact state"]) plt.suptitle("Reference positions of feet (world frame)") lgd_X = ["FL", "FR", "HL", "HR"] diff --git a/libexample_adder.so b/libexample_adder.so index 9ed140fc1a10e24c9bb2e73649c5cef8507c1b04..62a554a96cfb0b74bcbd36c63d0052d80711cbc7 100755 Binary files a/libexample_adder.so and b/libexample_adder.so differ diff --git a/solo12InvKin.py b/solo12InvKin.py index 89f6eeea33e7c83990677b2fe2b7852d6836d7a7..1cb2fcf71b47b69be39167f25a9d0cd53a213485 100644 --- a/solo12InvKin.py +++ b/solo12InvKin.py @@ -99,7 +99,7 @@ class Solo12InvKin: # FEET Jfeet = [] afeet = [] - pfeet_err = [] + self.pfeet_err = [] vfeet_ref = [] pin.forwardKinematics(self.rmodel, self.rdata, q, dq, np.zeros(self.rmodel.nv)) pin.updateFramePlacements(self.rmodel, self.rdata) @@ -125,7 +125,7 @@ class Solo12InvKin: Jfeet.append(J1) afeet.append(acc1) - pfeet_err.append(e1) + self.pfeet_err.append(e1) vfeet_ref.append(vref) # BASE POSITION @@ -170,7 +170,7 @@ class Solo12InvKin: J = np.vstack([Jbasis, Jwbasis]+Jfeet) acc = np.concatenate([accbasis, accwbasis]+afeet) - x_err = np.concatenate([e_basispos, e_basisrot]+pfeet_err) + x_err = np.concatenate([e_basispos, e_basisrot]+self.pfeet_err) dx_ref = np.concatenate([self.base_linearvelocity_ref, self.base_angularvelocity_ref]+vfeet_ref) diff --git a/utils_mpc.py b/utils_mpc.py index 91d7aba1269f4c9f00e8938065916c358a652bad..b4bc00ed65d6a5088ca3cc99bda566178536b8dc 100644 --- a/utils_mpc.py +++ b/utils_mpc.py @@ -1,66 +1,22 @@ import math import numpy as np -import robots_loader # Gepetto viewer +from example_robot_data import load import Joystick -import FootstepPlanner import Logger -import Interface import Estimator - -import pybullet as pyb # Pybullet server -import pybullet_data import pinocchio as pin -import time as time -import sys - -########################## -# ROTATION MATRIX TO RPY # -########################## - -# Taken from https://www.learnopencv.com/rotation-matrix-to-euler-angles/ - -# Checks if a matrix is a valid rotation matrix. - - -def isRotationMatrix(R): - Rt = np.transpose(R) - shouldBeIdentity = np.dot(Rt, R) - Id = np.identity(3, dtype=R.dtype) - n = np.linalg.norm(Id - shouldBeIdentity) - return n < 1e-6 - - -# Calculates rotation matrix to euler angles -# The result is the same as MATLAB except the order -# of the euler angles ( x and z are swapped ). -def rotationMatrixToEulerAngles(R): - - assert(isRotationMatrix(R)) - - sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0]) - - singular = sy < 1e-6 - if not singular: - x = math.atan2(R[2, 1], R[2, 2]) - y = math.atan2(-R[2, 0], sy) - z = math.atan2(R[1, 0], R[0, 0]) - else: - x = math.atan2(-R[1, 2], R[1, 1]) - y = math.atan2(-R[2, 0], sy) - z = 0 - - return np.array([x, y, z]) - -########################################################### -# Roll Pitch Yaw (3 x 1) to Quaternion function (4 x 1) Â # -########################################################### +###################################### +# RPY / Quaternion / Rotation matrix # +###################################### def getQuaternion(rpy): + """Roll Pitch Yaw (3 x 1) to Quaternion (4 x 1)""" + c = np.cos(rpy*0.5) s = np.sin(rpy*0.5) cy = c[2, 0] @@ -77,12 +33,10 @@ def getQuaternion(rpy): return np.array([[x, y, z, w]]).transpose() -################################# -# Quarternion to Roll Pitch Yaw # -################################# - def quaternionToRPY(quat): + """Quaternion (4 x 0) to Roll Pitch Yaw (3 x 1)""" + qx = quat[0] qy = quat[1] qz = quat[2] @@ -113,6 +67,22 @@ def quaternionToRPY(quat): return np.array([[rotateX], [rotateY], [rotateZ]]) +def EulerToQuaternion(roll_pitch_yaw): + """Roll Pitch Yaw to Quaternion""" + + roll, pitch, yaw = roll_pitch_yaw + sr = math.sin(roll/2.) + cr = math.cos(roll/2.) + sp = math.sin(pitch/2.) + cp = math.cos(pitch/2.) + sy = math.sin(yaw/2.) + cy = math.cos(yaw/2.) + qx = sr * cp * cy - cr * sp * sy + qy = cr * sp * cy + sr * cp * sy + qz = cr * cp * sy - sr * sp * cy + qw = cr * cp * cy + sr * sp * sy + return [qx, qy, qz, qw] + ################## # Initialisation # ################## @@ -125,30 +95,26 @@ def init_viewer(enable_viewer): enable_viewer (bool): if the Gepetto viewer is enabled or not """ - # loadSolo(False) to load solo12 - # loadSolo(True) to load solo8 - solo = robots_loader.loadSolo(False) + # Load robot model and data + solo = load('solo12') + # Initialisation of the Gepetto viewer if enable_viewer: solo.initDisplay(loadModel=True) if ('viewer' in solo.viz.__dict__): solo.viewer.gui.addFloor('world/floor') solo.viewer.gui.setRefreshIsSynchronous(False) - """offset = np.zeros((19, 1)) - offset[5, 0] = 0.7071067811865475 - offset[6, 0] = 0.7071067811865475 - 1.0 - temp = solo.q0 + offset""" solo.display(solo.q0) - pin.centerOfMass(solo.model, solo.data, solo.q0, np.zeros((18, 1))) - pin.updateFramePlacements(solo.model, solo.data) - pin.crba(solo.model, solo.data, solo.q0) + # Initialisation of model quantities + pin.centerOfMass(solo.model, solo.data, solo.q0, np.zeros((18, 1))) + pin.updateFramePlacements(solo.model, solo.data) + pin.crba(solo.model, solo.data, solo.q0) return solo -def init_objects(dt_tsid, dt_mpc, k_max_loop, k_mpc, n_periods, T_gait, type_MPC, on_solo8, - predefined): +def init_objects(dt_tsid, dt_mpc, k_max_loop, k_mpc, n_periods, T_gait, type_MPC, predefined): """Create several objects that are used in the control loop Args: @@ -159,26 +125,19 @@ def init_objects(dt_tsid, dt_mpc, k_max_loop, k_mpc, n_periods, T_gait, type_MPC n_periods (int): number of gait periods in the prediction horizon T_gait (float): duration of one gait period type_MPC (bool): which MPC you want to use (PA's or Thomas') - on_solo8 (bool): whether we are working on solo8 or not predefined (bool): if we are using a predefined reference velocity (True) or a joystick (False) """ # Create Joystick object joystick = Joystick.Joystick(predefined) - # Create footstep planner object - fstep_planner = FootstepPlanner.FootstepPlanner(dt_mpc, n_periods, T_gait, on_solo8) - # Create logger object logger = Logger.Logger(k_max_loop, dt_tsid, dt_mpc, k_mpc, n_periods, T_gait, type_MPC) - # Create Interface object - interface = Interface.Interface() - # Create Estimator object estimator = Estimator.Estimator(dt_tsid, k_max_loop) - return joystick, fstep_planner, logger, interface, estimator + return joystick, logger, estimator def display_all(solo, k, sequencer, fstep_planner, ftraj_gen, mpc): @@ -217,641 +176,3 @@ def getSkew(a): a -- the column vector """ return np.array([[0, -a[2], a[1]], [a[2], 0, -a[0]], [-a[1], a[0], 0]], dtype=a.dtype) - -######################################################################## -# PyBullet # -######################################################################## - - -class pybullet_simulator: - """Wrapper for the PyBullet simulator to initialize the simulation, interact with it - and use various utility functions - - Args: - envID (int): identifier of the current environment to be able to handle different scenarios - use_flat_plane (bool): to use either a flat ground or a rough ground - enable_pyb_GUI (bool): to display PyBullet GUI or not - dt (float): time step of the inverse dynamics - """ - - def __init__(self, q_init, envID, use_flat_plane, enable_pyb_GUI, dt=0.001): - - self.applied_force = np.zeros(3) - - # Start the client for PyBullet - if enable_pyb_GUI: - pyb.connect(pyb.GUI) - else: - pyb.connect(pyb.DIRECT) - # p.GUI for graphical version - # p.DIRECT for non-graphical version - - # Load horizontal plane - pyb.setAdditionalSearchPath(pybullet_data.getDataPath()) - - # Either use a flat ground or a rough terrain - if use_flat_plane: - self.planeId = pyb.loadURDF("plane.urdf") # Flat plane - self.planeIdbis = pyb.loadURDF("plane.urdf") # Flat plane - pyb.resetBasePositionAndOrientation(self.planeIdbis, [20.0, 0, 0], [0, 0, 0, 1]) - else: - import random - random.seed(41) - # p.configureDebugVisualizer(p.COV_ENABLE_RENDERING,0) - heightPerturbationRange = 0.05 - - numHeightfieldRows = 256*2 - numHeightfieldColumns = 256*2 - heightfieldData = [0]*numHeightfieldRows*numHeightfieldColumns - height_prev = 0.0 - for j in range(int(numHeightfieldColumns/2)): - for i in range(int(numHeightfieldRows/2)): - # uniform distribution - height = random.uniform(0, heightPerturbationRange) - # height = 0.25*np.sin(2*np.pi*(i-128)/46) # sinus pattern - heightfieldData[2*i+2*j * numHeightfieldRows] = (height + height_prev) * 0.5 - heightfieldData[2*i+1+2*j*numHeightfieldRows] = height - heightfieldData[2*i+(2*j+1) * numHeightfieldRows] = (height + height_prev) * 0.5 - heightfieldData[2*i+1+(2*j+1)*numHeightfieldRows] = height - height_prev = height - - # Create the collision shape based on the height field - terrainShape = pyb.createCollisionShape(shapeType=pyb.GEOM_HEIGHTFIELD, meshScale=[.05, .05, 1], - heightfieldTextureScaling=(numHeightfieldRows-1)/2, - heightfieldData=heightfieldData, - numHeightfieldRows=numHeightfieldRows, - numHeightfieldColumns=numHeightfieldColumns) - self.planeId = pyb.createMultiBody(0, terrainShape) - pyb.resetBasePositionAndOrientation(self.planeId, [0, 0, 0], [0, 0, 0, 1]) - pyb.changeVisualShape(self.planeId, -1, rgbaColor=[1, 1, 1, 1]) - - if envID == 1: - - # Add stairs with platform and bridge - self.stairsId = pyb.loadURDF("../../../../../git/paleziart/solopython/mpctsid/bauzil_stairs.urdf") # , - """basePosition=[-1.25, 3.5, -0.1], - baseOrientation=pyb.getQuaternionFromEuler([0.0, 0.0, 3.1415]))""" - pyb.changeDynamics(self.stairsId, -1, lateralFriction=1.0) - - # Create the red steps to act as small perturbations - mesh_scale = [1.0, 0.1, 0.02] - visualShapeId = pyb.createVisualShape(shapeType=pyb.GEOM_MESH, - fileName="cube.obj", - halfExtents=[0.5, 0.5, 0.1], - rgbaColor=[1.0, 0.0, 0.0, 1.0], - specularColor=[0.4, .4, 0], - visualFramePosition=[0.0, 0.0, 0.0], - meshScale=mesh_scale) - - collisionShapeId = pyb.createCollisionShape(shapeType=pyb.GEOM_MESH, - fileName="cube.obj", - collisionFramePosition=[0.0, 0.0, 0.0], - meshScale=mesh_scale) - for i in range(4): - tmpId = pyb.createMultiBody(baseMass=0.0, - baseInertialFramePosition=[0, 0, 0], - baseCollisionShapeIndex=collisionShapeId, - baseVisualShapeIndex=visualShapeId, - basePosition=[0.0, 0.5+0.2*i, 0.01], - useMaximalCoordinates=True) - pyb.changeDynamics(tmpId, -1, lateralFriction=1.0) - - tmpId = pyb.createMultiBody(baseMass=0.0, - baseInertialFramePosition=[0, 0, 0], - baseCollisionShapeIndex=collisionShapeId, - baseVisualShapeIndex=visualShapeId, - basePosition=[0.5, 0.5+0.2*4, 0.01], - useMaximalCoordinates=True) - pyb.changeDynamics(tmpId, -1, lateralFriction=1.0) - - tmpId = pyb.createMultiBody(baseMass=0.0, - baseInertialFramePosition=[0, 0, 0], - baseCollisionShapeIndex=collisionShapeId, - baseVisualShapeIndex=visualShapeId, - basePosition=[0.5, 0.5+0.2*5, 0.01], - useMaximalCoordinates=True) - pyb.changeDynamics(tmpId, -1, lateralFriction=1.0) - - # Create the green steps to act as bigger perturbations - mesh_scale = [0.2, 0.1, 0.01] - visualShapeId = pyb.createVisualShape(shapeType=pyb.GEOM_MESH, - fileName="cube.obj", - halfExtents=[0.5, 0.5, 0.1], - rgbaColor=[0.0, 1.0, 0.0, 1.0], - specularColor=[0.4, .4, 0], - visualFramePosition=[0.0, 0.0, 0.0], - meshScale=mesh_scale) - - collisionShapeId = pyb.createCollisionShape(shapeType=pyb.GEOM_MESH, - fileName="cube.obj", - collisionFramePosition=[0.0, 0.0, 0.0], - meshScale=mesh_scale) - - for i in range(3): - tmpId = pyb.createMultiBody(baseMass=0.0, - baseInertialFramePosition=[0, 0, 0], - baseCollisionShapeIndex=collisionShapeId, - baseVisualShapeIndex=visualShapeId, - basePosition=[0.15 * (-1)**i, 0.9+0.2*i, 0.025], - useMaximalCoordinates=True) - pyb.changeDynamics(tmpId, -1, lateralFriction=1.0) - - # Create sphere obstacles that will be thrown toward the quadruped - mesh_scale = [0.1, 0.1, 0.1] - visualShapeId = pyb.createVisualShape(shapeType=pyb.GEOM_MESH, - fileName="sphere_smooth.obj", - halfExtents=[0.5, 0.5, 0.1], - rgbaColor=[1.0, 0.0, 0.0, 1.0], - specularColor=[0.4, .4, 0], - visualFramePosition=[0.0, 0.0, 0.0], - meshScale=mesh_scale) - - collisionShapeId = pyb.createCollisionShape(shapeType=pyb.GEOM_MESH, - fileName="sphere_smooth.obj", - collisionFramePosition=[0.0, 0.0, 0.0], - meshScale=mesh_scale) - - self.sphereId1 = pyb.createMultiBody(baseMass=0.4, - baseInertialFramePosition=[0, 0, 0], - baseCollisionShapeIndex=collisionShapeId, - baseVisualShapeIndex=visualShapeId, - basePosition=[-0.6, 0.9, 0.1], - useMaximalCoordinates=True) - - self.sphereId2 = pyb.createMultiBody(baseMass=0.4, - baseInertialFramePosition=[0, 0, 0], - baseCollisionShapeIndex=collisionShapeId, - baseVisualShapeIndex=visualShapeId, - basePosition=[0.6, 1.1, 0.1], - useMaximalCoordinates=True) - - # Flag to launch the two spheres in the environment toward the robot - self.flag_sphere1 = True - self.flag_sphere2 = True - - # Create blue spheres without collision box for debug purpose - mesh_scale = [0.015, 0.015, 0.015] - visualShapeId = pyb.createVisualShape(shapeType=pyb.GEOM_MESH, - fileName="sphere_smooth.obj", - halfExtents=[0.5, 0.5, 0.1], - rgbaColor=[0.0, 0.0, 1.0, 1.0], - specularColor=[0.4, .4, 0], - visualFramePosition=[0.0, 0.0, 0.0], - meshScale=mesh_scale) - - self.ftps_Ids = np.zeros((4, 5), dtype=np.int) - for i in range(4): - for j in range(5): - self.ftps_Ids[i, j] = pyb.createMultiBody(baseMass=0.0, - baseInertialFramePosition=[0, 0, 0], - baseVisualShapeIndex=visualShapeId, - basePosition=[0.0, 0.0, -0.1], - useMaximalCoordinates=True) - - # Create green spheres without collision box for debug purpose - visualShapeId = pyb.createVisualShape(shapeType=pyb.GEOM_MESH, - fileName="sphere_smooth.obj", - halfExtents=[0.5, 0.5, 0.1], - rgbaColor=[0.0, 1.0, 0.0, 1.0], - specularColor=[0.4, .4, 0], - visualFramePosition=[0.0, 0.0, 0.0], - meshScale=mesh_scale) - self.ftps_Ids_deb = [0] * 4 - for i in range(4): - self.ftps_Ids_deb[i] = pyb.createMultiBody(baseMass=0.0, - baseInertialFramePosition=[0, 0, 0], - baseVisualShapeIndex=visualShapeId, - basePosition=[0.0, 0.0, -0.1], - useMaximalCoordinates=True) - - """cubeStartPos = [0.0, 0.45, 0.0] - cubeStartOrientation = pyb.getQuaternionFromEuler([0, 0, 0]) - self.cubeId = pyb.loadURDF("cube_small.urdf", - cubeStartPos, cubeStartOrientation) - pyb.changeDynamics(self.cubeId, -1, mass=0.5) - print("Mass of cube:", pyb.getDynamicsInfo(self.cubeId, -1)[0])""" - - # Set the gravity - pyb.setGravity(0, 0, -9.81) - - # Load Quadruped robot - robotStartPos = [0, 0, 0.235+0.0045] # +0.2] - robotStartOrientation = pyb.getQuaternionFromEuler([0.0, 0.0, 0.0]) # -np.pi/2 - pyb.setAdditionalSearchPath("/opt/openrobots/share/example-robot-data/robots/solo_description/robots") - self.robotId = pyb.loadURDF("solo12.urdf", robotStartPos, robotStartOrientation) - - # Disable default motor control for revolute joints - self.revoluteJointIndices = [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14] - pyb.setJointMotorControlArray(self.robotId, jointIndices=self.revoluteJointIndices, - controlMode=pyb.VELOCITY_CONTROL, - targetVelocities=[0.0 for m in self.revoluteJointIndices], - forces=[0.0 for m in self.revoluteJointIndices]) - - # Initialize the robot in a specific configuration - self.q_init = np.array([q_init]).transpose() - pyb.resetJointStatesMultiDof(self.robotId, self.revoluteJointIndices, self.q_init) # q0[7:]) - - # Enable torque control for revolute joints - jointTorques = [0.0 for m in self.revoluteJointIndices] - pyb.setJointMotorControlArray(self.robotId, self.revoluteJointIndices, - controlMode=pyb.TORQUE_CONTROL, forces=jointTorques) - - # Fix the base in the world frame - # pyb.createConstraint(self.robotId, -1, -1, -1, pyb.JOINT_FIXED, [0, 0, 0], [0, 0, 0], [0, 0, robotStartPos[2]]) - - # Set time step for the simulation - pyb.setTimeStep(dt) - - # Change camera position - pyb.resetDebugVisualizerCamera(cameraDistance=0.6, cameraYaw=45, cameraPitch=-39.9, - cameraTargetPosition=[0.0, 0.0, robotStartPos[2]-0.2]) - - def check_pyb_env(self, k, envID, velID, qmes12): - """Check the state of the robot to trigger events and update camera - - Args: - k (int): Number of inv dynamics iterations since the start of the simulation - envID (int): Identifier of the current environment to be able to handle different scenarios - velID (int): Identifier of the current velocity profile to be able to handle different scenarios - qmes12 (19x1 array): the position/orientation of the trunk and angular position of actuators - - """ - - # If spheres are loaded - if envID == 1: - # Check if the robot is in front of the first sphere to trigger it - if self.flag_sphere1 and (qmes12[1, 0] >= 0.9): - pyb.resetBaseVelocity(self.sphereId1, linearVelocity=[2.5, 0.0, 2.0]) - self.flag_sphere1 = False - - # Check if the robot is in front of the second sphere to trigger it - if self.flag_sphere2 and (qmes12[1, 0] >= 1.1): - pyb.resetBaseVelocity(self.sphereId2, linearVelocity=[-2.5, 0.0, 2.0]) - self.flag_sphere2 = False - - # Create the red steps to act as small perturbations - """if k == 10: - pyb.setAdditionalSearchPath(pybullet_data.getDataPath()) - - mesh_scale = [2.0, 2.0, 0.3] - visualShapeId = pyb.createVisualShape(shapeType=pyb.GEOM_MESH, - fileName="cube.obj", - halfExtents=[0.5, 0.5, 0.1], - rgbaColor=[0.0, 0.0, 1.0, 1.0], - specularColor=[0.4, .4, 0], - visualFramePosition=[0.0, 0.0, 0.0], - meshScale=mesh_scale) - - collisionShapeId = pyb.createCollisionShape(shapeType=pyb.GEOM_MESH, - fileName="cube.obj", - collisionFramePosition=[0.0, 0.0, 0.0], - meshScale=mesh_scale) - - tmpId = pyb.createMultiBody(baseMass=0.0, - baseInertialFramePosition=[0, 0, 0], - baseCollisionShapeIndex=collisionShapeId, - baseVisualShapeIndex=visualShapeId, - basePosition=[0.0, 0.0, 0.15], - useMaximalCoordinates=True) - pyb.changeDynamics(tmpId, -1, lateralFriction=1.0) - - pyb.resetBasePositionAndOrientation(self.robotId, [0, 0, 0.5], [0, 0, 0, 1])""" - if k == 10: - pyb.setAdditionalSearchPath(pybullet_data.getDataPath()) - - mesh_scale = [0.1, 0.1, 0.04] - visualShapeId = pyb.createVisualShape(shapeType=pyb.GEOM_MESH, - fileName="cube.obj", - halfExtents=[0.5, 0.5, 0.1], - rgbaColor=[0.0, 0.0, 1.0, 1.0], - specularColor=[0.4, .4, 0], - visualFramePosition=[0.0, 0.0, 0.0], - meshScale=mesh_scale) - - collisionShapeId = pyb.createCollisionShape(shapeType=pyb.GEOM_MESH, - fileName="cube.obj", - collisionFramePosition=[0.0, 0.0, 0.0], - meshScale=mesh_scale) - - tmpId = pyb.createMultiBody(baseMass=0.0, - baseInertialFramePosition=[0, 0, 0], - baseCollisionShapeIndex=collisionShapeId, - baseVisualShapeIndex=visualShapeId, - basePosition=[0.19, 0.15005, 0.02], - useMaximalCoordinates=True) - pyb.changeDynamics(tmpId, -1, lateralFriction=1.0) - pyb.resetBasePositionAndOrientation(self.robotId, [0, 0, 0.25], [0, 0, 0, 1]) - - # Apply perturbations by directly applying external forces on the robot trunk - if velID == 4: - self.apply_external_force(k, 4250, 500, np.array([0.0, 0.0, -3.0]), np.zeros((3,))) - self.apply_external_force(k, 5250, 500, np.array([0.0, +3.0, 0.0]), np.zeros((3,))) - """if velID == 0: - self.apply_external_force(k, 1000, 1000, np.array([0.0, 0.0, -6.0]), np.zeros((3,))) - self.apply_external_force(k, 2000, 1000, np.array([0.0, +12.0, 0.0]), np.zeros((3,)))""" - - # Update the PyBullet camera on the robot position to do as if it was attached to the robot - """pyb.resetDebugVisualizerCamera(cameraDistance=0.75, cameraYaw=+50, cameraPitch=-35, - cameraTargetPosition=[qmes12[0, 0], qmes12[1, 0] + 0.0, 0.0])""" - - # Get the orientation of the robot to change the orientation of the camera with the rotation of the robot - oMb_tmp = pin.SE3(pin.Quaternion(qmes12[3:7]), np.array([0.0, 0.0, 0.0])) - RPY = pin.rpy.matrixToRpy(oMb_tmp.rotation) - - # Update the PyBullet camera on the robot position to do as if it was attached to the robot - pyb.resetDebugVisualizerCamera(cameraDistance=0.6, cameraYaw=(0.0*RPY[2]*(180/3.1415)+45), cameraPitch=-39.9, - cameraTargetPosition=[qmes12[0, 0], qmes12[1, 0] + 0.0, 0.0]) # qmes12[2, 0]-0.15]) - - return 0 - - def retrieve_pyb_data(self): - """Retrieve the position and orientation of the base in world frame as well as its linear and angular velocities - """ - - # Retrieve data from the simulation - self.jointStates = pyb.getJointStates(self.robotId, self.revoluteJointIndices) # State of all joints - self.baseState = pyb.getBasePositionAndOrientation(self.robotId) # Position and orientation of the trunk - self.baseVel = pyb.getBaseVelocity(self.robotId) # Velocity of the trunk - - # Joints configuration and velocity vector for free-flyer + 12 actuators - self.qmes12 = np.vstack((np.array([self.baseState[0]]).T, np.array([self.baseState[1]]).T, - np.array([[state[0] for state in self.jointStates]]).T)) - self.vmes12 = np.vstack((np.array([self.baseVel[0]]).T, np.array([self.baseVel[1]]).T, - np.array([[state[1] for state in self.jointStates]]).T)) - - """robotVirtualOrientation = pyb.getQuaternionFromEuler([0, 0, np.pi / 4]) - self.qmes12[3:7, 0] = robotVirtualOrientation""" - - # Add uncertainty to feedback from PyBullet to mimic imperfect measurements - """tmp = np.array([pyb.getQuaternionFromEuler(pin.rpy.matrixToRpy( - pin.Quaternion(self.qmes12[3:7, 0:1]).toRotationMatrix()) - + np.random.normal(0, 0.03, (3,)))]) - self.qmes12[3:7, 0] = tmp[0, :] - self.vmes12[0:6, 0] += np.random.normal(0, 0.01, (6,))""" - - return 0 - - def apply_external_force(self, k, start, duration, F, M): - """Apply an external force/momentum to the robot - 4-th order polynomial: zero force and force velocity at start and end - (bell-like force trajectory) - - Args: - k (int): numero of the current iteration of the simulation - start (int): numero of the iteration for which the force should start to be applied - duration (int): number of iterations the force should last - F (3x array): components of the force in PyBullet world frame - M (3x array): components of the force momentum in PyBullet world frame - """ - - if ((k < start) or (k > (start+duration))): - return 0.0 - """if k == start: - print("Applying [", F[0], ", ", F[1], ", ", F[2], "]")""" - - ev = k - start - t1 = duration - A4 = 16 / (t1**4) - A3 = - 2 * t1 * A4 - A2 = t1**2 * A4 - alpha = A2*ev**2 + A3*ev**3 + A4*ev**4 - - self.applied_force[:] = alpha * F - - pyb.applyExternalForce(self.robotId, -1, alpha * F, alpha*M, pyb.LINK_FRAME) - - return 0.0 - - def get_to_default_position(self, qtarget): - """Controler that tries to get the robot back to a default angular positions - of its 12 actuators using polynomials to generate trajectories and a PD controller - to make the actuators follow them - - Args: - qtarget (12x1 array): the target position for the 12 actuators - """ - - qmes = np.zeros((12, 1)) - vmes = np.zeros((12, 1)) - - # Retrieve angular position and velocity of actuators - jointStates = pyb.getJointStates(self.robotId, self.revoluteJointIndices) - qmes[:, 0] = [state[0] for state in jointStates] - vmes[:, 0] = [state[1] for state in jointStates] - - # Create trajectory - dt_traj = 0.0020 - t1 = 4.0 # seconds - cpt = 0 - - # PD settings - P = 1.0 * 3.0 - D = 0.05 * np.array([[1.0, 0.3, 0.3, 1.0, 0.3, 0.3, - 1.0, 0.3, 0.3, 1.0, 0.3, 0.3]]).transpose() - - while True or np.max(np.abs(qtarget - qmes)) > 0.1: - - time_loop = time.time() - - # Retrieve angular position and velocity of actuators - jointStates = pyb.getJointStates(self.robotId, self.revoluteJointIndices) - qmes[:, 0] = [state[0] for state in jointStates] - vmes[:, 0] = [state[1] for state in jointStates] - - # Torque PD controller - if (cpt * dt_traj < t1): - ev = dt_traj * cpt - A3 = 2 * (qmes - qtarget) / t1**3 - A2 = (-3/2) * t1 * A3 - qdes = qmes + A2*(ev**2) + A3*(ev**3) - vdes = 2*A2*ev + 3*A3*(ev**2) - jointTorques = P * (qdes - qmes) + D * (vdes - vmes) - - # Saturation to limit the maximal torque - t_max = 2.5 - jointTorques[jointTorques > t_max] = t_max - jointTorques[jointTorques < -t_max] = -t_max - - # Set control torque for all joints - pyb.setJointMotorControlArray(self.robotId, self.revoluteJointIndices, - controlMode=pyb.TORQUE_CONTROL, forces=jointTorques) - - # Compute one step of simulation - pyb.stepSimulation() - - # Increment loop counter - cpt += 1 - - while (time.time() - time_loop) < dt_traj: - pass - - -class Hardware(): - - def __init__(self): - - self.is_timeout = False - - self.roll = 0.0 - self.pitch = 0.0 - self.yaw = 0.0 - - def IsTimeout(self): - - return self.is_timeout - - def Stop(self): - - return 0 - - def imu_data_attitude(self, i): - if i == 0: - return self.roll - elif i == 1: - return self.pitch - elif i == 2: - return self.yaw - - -class PyBulletSimulator(): - - def __init__(self): - - self.cpt = 0 - self.nb_motors = 12 - self.jointTorques = np.zeros(self.nb_motors) - self.revoluteJointIndices = [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14] - self.hardware = Hardware() - - # Measured data - self.q_mes = np.zeros(12) - self.v_mes = np.zeros(12) - self.torquesFromCurrentMeasurment = np.zeros(12) - self.baseAngularVelocity = np.zeros(3) - self.baseOrientation = np.zeros(4) - self.baseLinearAcceleration = np.zeros(3) - self.baseAccelerometer = np.zeros(3) - self.prev_b_baseVel = np.zeros(3) - - # PD+ quantities - self.P = 0.0 - self.D = 0.0 - self.q_des = np.zeros(12) - self.v_des = np.zeros(12) - self.tau_ff = np.zeros(12) - - def Init(self, calibrateEncoders=False, q_init=None, envID=0, use_flat_plane=True, enable_pyb_GUI=False, dt=0.002): - - # Initialisation of the PyBullet simulator - self.pyb_sim = pybullet_simulator(q_init, envID, use_flat_plane, enable_pyb_GUI, dt) - self.q_init = q_init - self.dt = dt - self.time_loop = time.time() - - return - - def UpdateMeasurment(self): - - # Position and velocity of actuators - jointStates = pyb.getJointStates(self.pyb_sim.robotId, self.revoluteJointIndices) # State of all joints - self.q_mes[:] = np.array([state[0] for state in jointStates]) - self.v_mes[:] = np.array([state[1] for state in jointStates]) - - # Measured torques - self.torquesFromCurrentMeasurment[:] = self.jointTorques[:].ravel() - - # Position and orientation of the trunk (PyBullet world frame) - self.baseState = pyb.getBasePositionAndOrientation(self.pyb_sim.robotId) - self.dummyHeight = np.array(self.baseState[0]) - self.dummyHeight[2] = 0.20 - self.dummyPos = np.array(self.baseState[0]) - - # Linear and angular velocity of the trunk (PyBullet world frame) - self.baseVel = pyb.getBaseVelocity(self.pyb_sim.robotId) - # print("baseVel: ", np.array([self.baseVel[0]])) - - # Orientation of the base (quaternion) - self.baseOrientation[:] = np.array(self.baseState[1]) - RPY = quaternionToRPY(self.baseOrientation) - self.hardware.roll = RPY[0] - self.hardware.pitch = RPY[1] - self.hardware.yaw = RPY[2] - self.rot_oMb = pin.Quaternion(np.array([self.baseState[1]]).transpose()).toRotationMatrix() - self.oMb = pin.SE3(self.rot_oMb, np.array([self.dummyHeight]).transpose()) - - # Angular velocities of the base - self.baseAngularVelocity[:] = (self.oMb.rotation.transpose() @ np.array([self.baseVel[1]]).transpose()).ravel() - - # Linear Acceleration of the base - self.b_baseVel = (self.oMb.rotation.transpose() @ np.array([self.baseVel[0]]).transpose()).ravel() - self.baseLinearAcceleration[:] = (self.b_baseVel.ravel() - self.prev_b_baseVel) / self.dt - self.prev_b_baseVel[:] = self.b_baseVel.ravel() - self.baseAccelerometer[:] = self.baseLinearAcceleration[:] + \ - (self.oMb.rotation.transpose() @ np.array([[0.0], [0.0], [-9.81]])).ravel() - - return - - def SetDesiredJointTorque(self, torques): - - # Save desired torques in a storage array - self.tau_ff = torques.copy() - - return - - def SetDesiredJointPDgains(self, P, D): - self.P = P - self.D = D - - def SetDesiredJointPosition(self, q_des): - self.q_des = q_des - - def SetDesiredJointVelocity(self, v_des): - self.v_des = v_des - - def SendCommand(self, WaitEndOfCycle=True): - - # Compute PD torques - tau_pd = self.P * (self.q_des - self.q_mes) + self.D * (self.v_des - self.v_mes) - - # Save desired torques in a storage array - self.jointTorques = tau_pd + self.tau_ff - - # print("FF+PD: ", self.jointTorques.ravel()) - - # Set control torque for all joints - pyb.setJointMotorControlArray(self.pyb_sim.robotId, self.pyb_sim.revoluteJointIndices, - controlMode=pyb.TORQUE_CONTROL, forces=self.jointTorques) - - # self.pyb_sim.apply_external_force(self.cpt, 1000, 1000, np.array([0.0, +8.0, 0.0]), np.zeros((3,))) - # self.pyb_sim.apply_external_force(self.cpt, 4250, 500, np.array([+5.0, 0.0, 0.0]), np.zeros((3,))) - # self.pyb_sim.apply_external_force(self.cpt, 5250, 500, np.array([0.0, +5.0, 0.0]), np.zeros((3,))) - - # Compute one step of simulation - pyb.stepSimulation() - - # Wait to have simulation time = real time - if WaitEndOfCycle: - while (time.time() - self.time_loop) < self.dt: - pass - self.cpt += 1 - - self.time_loop = time.time() - - return - - def Print(self): - np.set_printoptions(precision=2) - # print(chr(27) + "[2J") - print("#######") - print("q_mes = ", self.q_mes) - print("v_mes = ", self.v_mes) - print("torques = ", self.torquesFromCurrentMeasurment) - print("orientation = ", self.baseOrientation) - print("lin acc = ", self.baseLinearAcceleration) - print("ang vel = ", self.baseAngularVelocity) - sys.stdout.flush() - - def Stop(self): - - # Disconnect the PyBullet server (also close the GUI) - pyb.disconnect()