diff --git a/config/walk_parameters.yaml b/config/walk_parameters.yaml
index ebe0cb2d486478ec6689b7faf4bd8533b596792b..75ea685ee49e552c67f26caf06ad4cf2c5bc9f40 100644
--- a/config/walk_parameters.yaml
+++ b/config/walk_parameters.yaml
@@ -13,7 +13,7 @@ robot:
     predefined_vel: true  # If we are using a predefined reference velocity (True) or a joystick (False)
     N_SIMULATION: 10000  # Number of simulated wbc time steps
     enable_corba_viewer: false  # Enable/disable Corba Viewer
-    enable_multiprocessing: true  # Enable/disable running the MPC in another process in parallel of the main loop
+    enable_multiprocessing: false  # Enable/disable running the MPC in another process in parallel of the main loop
     perfect_estimator: true  # Enable/disable perfect estimator by using data directly from PyBullet
 
     # General control parameters
@@ -37,8 +37,9 @@ robot:
 
     # Parameters of Gait
     N_periods: 1
-    gait: [10, 1, 1, 1, 1,
-           20, 1, 0, 1, 1]  # Initial gait matrix
+    gait: [20, 1, 0, 0, 1,
+           20, 0, 1, 1, 0,
+           1, 1, 1, 1, 1]  # Initial gait matrix
 
     # Parameters of Joystick
     gp_alpha_vel: 0.003  # Coefficient of the low pass filter applied to gamepad velocity
diff --git a/python/quadruped_reactive_walking/Controller.py b/python/quadruped_reactive_walking/Controller.py
index 9aeaff2027f6273857be1bb52f59581a0f68f321..2d06dd9f8839f1955ef9092a6a02770ec84f847e 100644
--- a/python/quadruped_reactive_walking/Controller.py
+++ b/python/quadruped_reactive_walking/Controller.py
@@ -171,13 +171,9 @@ class Controller:
         self.result.FF = self.params.Kff_main * np.ones(12)
 
         self.target = Target(params)
-        self.footsteps = []
-        for k in range(self.pd.T * self.pd.mpc_wbc_ratio):
-            self.target_footstep = self.target.compute(k).copy()
-            if k % self.pd.mpc_wbc_ratio == 0:
-                self.footsteps.append(self.target_footstep.copy())
+        self.velocity_task =  self.target.velocity_task
 
-        self.mpc = WB_MPC_Wrapper.MPC_Wrapper(pd, params, self.footsteps, self.gait)
+        self.mpc = WB_MPC_Wrapper.MPC_Wrapper(pd, params, self.velocity_task, self.gait)
         self.mpc_solved = False
         self.k_result = 0
         self.k_solve = 0
@@ -216,10 +212,6 @@ class Controller:
         t_measures = time.time()
         self.t_measures = t_measures - t_start
 
-        self.target_footstep = self.target.compute(
-            self.k + self.pd.T * self.pd.mpc_wbc_ratio
-        )
-
         if self.k % self.pd.mpc_wbc_ratio == 0:
             if self.mpc_solved:
                 self.k_solve = self.k
@@ -229,7 +221,7 @@ class Controller:
                 self.mpc.solve(
                     self.k,
                     m["x_m"],
-                    self.target_footstep.copy(),
+                    self.velocity_task.copy(),
                     self.gait,
                     self.xs_init,
                     self.us_init,
@@ -252,6 +244,7 @@ class Controller:
                 #         self.xs_init,
                 #         self.us_init,
                 #     )
+                self.gait = np.roll(self.gait, -1, axis=0)
             except ValueError:
                 self.error = True
                 print("MPC Problem")
diff --git a/python/quadruped_reactive_walking/WB_MPC/CrocoddylOCP.py b/python/quadruped_reactive_walking/WB_MPC/CrocoddylOCP.py
index 82e3a683a8854ea1dd52c220a3457f55ec13483f..ec8a94cd68d5fc9f670eeaf1f8d21972440953e2 100644
--- a/python/quadruped_reactive_walking/WB_MPC/CrocoddylOCP.py
+++ b/python/quadruped_reactive_walking/WB_MPC/CrocoddylOCP.py
@@ -10,9 +10,10 @@ from time import time
 
 
 class OCP:
-    def __init__(self, pd: ProblemData, footsteps, gait):
+    def __init__(self, pd: ProblemData, tasks, gait):
         self.pd = pd
-        self.max_iter = 3
+        self.max_iter = 100
+
 
         self.state = crocoddyl.StateMultibody(self.pd.model)
         self.initialized = False
@@ -20,7 +21,7 @@ class OCP:
         self.t_update_last_model = 0.0
         self.t_shift = 0.0
 
-        rm, tm = self.initialize_models(gait, footsteps)
+        rm, tm = self.initialize_models(gait, tasks)
 
         self.x0 = self.pd.x0
 
@@ -28,22 +29,25 @@ class OCP:
             self.x0, rm, tm)
         self.ddp = crocoddyl.SolverFDDP(self.problem)
 
-    def initialize_models(self, gait, footsteps):
+    def initialize_models(self, gait, tasks):
         models = []
         for t, step in enumerate(gait[:-1]):
-            tasks = self.make_task(footsteps[t])
             support_feet = [self.pd.allContactIds[i] for i in np.nonzero(step == 1)[0]]
-            models.append(self.create_model(support_feet, tasks))
+            prev_support_feet = [self.pd.allContactIds[i] for i in np.nonzero(gait[t-1] == 1)[0]]
+            switching =  True if t==0 or support_feet != prev_support_feet else False
+            models.append(self.create_model(support_feet, tasks, switching))
 
         support_feet = [self.pd.allContactIds[i] for i in np.nonzero(gait[-1] == 1)[0]]
-        terminal_model = self.create_model(support_feet, is_terminal=True)
+        prev_support_feet = [self.pd.allContactIds[i] for i in np.nonzero(gait[self.pd.T] == 1)[0]]
+        switching =  True if support_feet != prev_support_feet else False
+        terminal_model = self.create_model(support_feet, switching=switching, is_terminal=True)
 
         return models, terminal_model
 
-    def solve(self, x0, footstep, gait, xs_init=None, us_init=None):
+    def solve(self, x0, tasks, gait, xs_init=None, us_init=None):
         t_start = time()
         self.x0 = x0
-        self.make_ocp(footstep, gait)
+        self.make_ocp(tasks, gait)
 
         t_update = time()
         self.t_update = t_update - t_start
@@ -66,7 +70,7 @@ class OCP:
 
         self.t_solve = time() - t_start
 
-    def make_ocp(self, footstep, gait):
+    def make_ocp(self, tasks, gait):
         """
         Create a shooting problem for a simple walking gait.
 
@@ -77,11 +81,7 @@ class OCP:
         pin.updateFramePlacements(self.pd.model, self.pd.rdata)
 
         if self.initialized:
-            tasks = self.make_task(footstep)
-            support_feet = [
-                self.pd.allContactIds[i] for i in np.nonzero(gait[-1] == 1)[0]
-            ]
-            self.update_model(self.problem.runningModels[0], tasks, support_feet)
+            self.update_command_costs(self.problem.runningModels[0].differential.costs, tasks)
 
             self.problem.circularAppend(
                 self.problem.runningModels[0],
@@ -92,14 +92,6 @@ class OCP:
 
         self.initialized = True
 
-    def make_task(self, footstep):
-        task = [[], []]
-        for foot in range(4):
-            if footstep[:, foot].any():
-                task[0].append(self.pd.allContactIds[foot])
-                task[1].append(footstep[:, foot])
-        return task
-
     def get_results(self):
         return (
             self.ddp.xs.tolist().copy(),
@@ -141,15 +133,7 @@ class OCP:
          for m in self.ddp.problem.runningDatas]
         return acc
 
-    def update_model(self, model, tasks, support_feet):
-        for i in self.pd.allContactIds:
-            name = self.pd.model.frames[i].name + "_contact"
-            model.differential.contacts.changeContactStatus(name, i in support_feet)
-
-        self.update_tracking_costs(model.differential.costs, tasks, support_feet)
-
-
-    def create_model(self, support_feet=[], tasks=[], is_terminal=False):
+    def create_model(self, support_feet=[], tasks=[], switching=False, is_terminal=False):
         """
         Create the action model
 
@@ -159,7 +143,7 @@ class OCP:
         :param isTterminal: true for the terminal node
         :return action model for a swing foot phase
         """
-        model = self.create_standard_model(support_feet)
+        model = self.create_standard_model(support_feet, switching)
         if is_terminal:
             self.make_terminal_model(model)
         else:
@@ -167,7 +151,7 @@ class OCP:
 
         return model
 
-    def create_standard_model(self, support_feet):
+    def create_standard_model(self, support_feet, switching):
         """
         Create a standard action model
 
@@ -178,20 +162,51 @@ class OCP:
         
         actuation = crocoddyl.ActuationModelFloatingBase(self.state)
         nu = actuation.nu
+        costs = crocoddyl.CostModelSum(self.state, nu)
 
         control = crocoddyl.ControlParametrizationModelPolyZero(nu)
 
         contacts = crocoddyl.ContactModelMultiple(self.state, nu)
-        for i in self.pd.allContactIds:
+        for i in support_feet:
+            pin.forwardKinematics(self.pd.model, self.pd.rdata, self.pd.q0)
+            pin.updateFramePlacements(self.pd.model, self.pd.rdata)
+            start_pos = self.pd.rdata.oMf[i].translation
+
+            # Basic contact
             name = self.pd.model.frames[i].name + "_contact"
             contact = crocoddyl.ContactModel3D(
-                self.state, i, np.zeros(3), nu, self.pd.baumgarte_gains
+                self.state, i, start_pos, nu, self.pd.baumgarte_gains
             )
             contacts.addContact(name, contact)
             if i not in support_feet:
                 contacts.changeContactStatus(name, False)
 
-        costs = crocoddyl.CostModelSum(self.state, nu)
+            # In case of landing feet land at right height
+            if switching:
+                impactResidual = crocoddyl.ResidualModelFrameTranslation(self.state, i, start_pos, actuation.nu)
+                impactAct = crocoddyl.ActivationModelWeightedQuad(np.array([0, 0, 1]))
+                impactCost = crocoddyl.CostModelResidual(self.state, impactAct, impactResidual)
+                costs.addCost(
+                        "%s_altitudeimpact" % self.pd.model.frames[i].name,
+                        impactCost,
+                        self.pd.impact_altitude_weight / self.pd.dt,
+                    )
+
+                impactVelResidual = crocoddyl.ResidualModelFrameVelocity(
+                        self.state,
+                        i,
+                        pin.Motion.Zero(),
+                        pin.ReferenceFrame.LOCAL,
+                        actuation.nu,
+                    )
+
+                impactVelCost = crocoddyl.CostModelResidual(self.state, impactVelResidual)
+                costs.addCost(
+                    "%s_velimpact" % self.pd.model.frames[i].name,
+                    impactVelCost,
+                    self.pd.impact_velocity_weight / self.pd.dt,
+                )        
+
         residual = crocoddyl.ResidualModelState(self.state, self.pd.xref, nu)
         activation = crocoddyl.ActivationModelWeightedQuad(self.pd.state_reg_w**2)
         state_cost = crocoddyl.CostModelResidual(self.state, activation, residual)
@@ -222,7 +237,7 @@ class OCP:
         """
         nu = model.differential.actuation.nu
         costs = model.differential.costs
-        for i in self.pd.allContactIds:
+        for i in support_feet:
             cone = crocoddyl.FrictionCone(self.pd.Rsurf, self.pd.mu, 4, False, 3)
             residual = crocoddyl.ResidualModelContactFrictionCone(
                 self.state, i, cone, nu
@@ -237,14 +252,12 @@ class OCP:
             costs.addCost(friction_name, friction_cone, self.pd.friction_cone_w)
             costs.changeCostStatus(friction_name, i in support_feet)
 
-            name = self.pd.model.frames[i].name + "_foot_tracking"
-            residual = crocoddyl.ResidualModelFrameTranslation(
-                self.state, i, np.zeros(3), nu
-            )
-            foot_tracking = crocoddyl.CostModelResidual(self.state, residual)
-            costs.addCost(name, foot_tracking, self.pd.foot_tracking_w)
-
-            costs.changeCostStatus(name, False)
+        name = "base_velocity_tracking"
+        ref = pin.Motion(tasks[0], tasks[1])
+        residual_base_velocity = crocoddyl.ResidualModelFrameVelocity(
+            self.state, self.pd.baseId, ref, pin.LOCAL, nu)
+        base_velocity = crocoddyl.CostModelResidual(self.state, residual_base_velocity)
+        costs.addCost(name, base_velocity, self.pd.base_velocity_tracking_w)
 
         control_residual = crocoddyl.ResidualModelControl(self.state, self.pd.uref)
         control_reg = crocoddyl.CostModelResidual(self.state, control_residual)
@@ -259,15 +272,11 @@ class OCP:
         )
         costs.addCost("control_bound", control_bound, self.pd.control_bound_w)
 
-        self.update_tracking_costs(costs, tasks, support_feet)
+        self.update_command_costs(costs, tasks)
     
-    def update_tracking_costs(self, costs, tasks, supportFootIds):
-        for i in self.pd.allContactIds:
-            name = self.pd.model.frames[i].name + "_foot_tracking"
-            index = 0
-            if i in tasks[0] and i not in supportFootIds:
-                costs.changeCostStatus(name, True)
-                costs.costs[name].cost.residual.reference = tasks[1][index]
-                index += 1
-            else:
-                costs.changeCostStatus(name, False)
+    def update_command_costs(self, costs, tasks):
+        name = "base_velocity_tracking"
+        costs.changeCostStatus(name, True)
+        costs.costs[name].cost.residual.reference = pin.Motion(tasks[0], tasks[1])
+
+            
diff --git a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py
index 34a871e875bb0b1e6489b097817047a1b7c7af50..1777d0ed1ac940d05fcd1ce35284152a818c2647 100644
--- a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py
+++ b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py
@@ -66,7 +66,6 @@ class problemDataAbstract:
         self.rfFootId = self.model.getFrameId(self.rfFoot)
         self.lhFootId = self.model.getFrameId(self.lhFoot)
         self.rhFootId = self.model.getFrameId(self.rhFoot)
-
         self.Rsurf = np.eye(3)
 
     def freeze(self):
@@ -88,21 +87,25 @@ class ProblemData(problemDataAbstract):
 
         self.useFixedBase = 0
 
+        self.baseId = self.model.getFrameId("base_link")
+
         # Cost function weights
         # Cost function weights
         self.mu = 0.7
-        self.foot_tracking_w = 1e2
-        self.friction_cone_w = 1e4 
+        self.base_velocity_tracking_w = 1e2
+        
+        self.friction_cone_w = 1e4
+        self.impact_altitude_weight = 1e3
+        self.impact_velocity_weight = 1e3
+
         self.control_bound_w = 1e3
         self.control_reg_w = 1e0
         self.state_reg_w = np.array([0] * 3
                                     + [1e1] * 3
-                                    + [1e1] * 3
-                                    + [1e-3] * 3
-                                    + [1e1] * 6
+                                    + [1e1] * 12
                                     + [0] * 6
                                     + [1e1] * 3
-                                    + [1e-1] * 3
+                                    + [1e1] * 3
                                     + [1e1] * 6
                                     )
         self.terminal_velocity_w = np.array(
@@ -110,6 +113,7 @@ class ProblemData(problemDataAbstract):
         self.force_reg_w = 1e0
 
 
+
         self.xref = self.x0
         self.uref =self.u0
 
diff --git a/python/quadruped_reactive_walking/WB_MPC/Target.py b/python/quadruped_reactive_walking/WB_MPC/Target.py
index b7af78d24b5aaf1cf6adb689fbcd3348bbc14ee6..713ded9218b40fb676556776df1e343289bb1298 100644
--- a/python/quadruped_reactive_walking/WB_MPC/Target.py
+++ b/python/quadruped_reactive_walking/WB_MPC/Target.py
@@ -10,229 +10,6 @@ class Target:
         self.dt_wbc = params.dt_wbc
         self.k_per_step = 160
 
-        self.position = np.array(params.footsteps_under_shoulders).reshape(
-            (3, 4), order="F"
-        )
-
-        if params.movement == "circle":
-            self.A = np.array([0, 0.03, 0.03])
-            self.offset = np.array([0, 0, 0.1])
-            self.freq = np.array([0, 0.5 *0, 0.5*0])
-            self.phase = np.array([0, np.pi / 2, 0])
-        elif params.movement == "step":
-            self.initial = self.position[:, 1].copy()
-            self.target = self.position[:, 1].copy() + np.array([0.1, 0.0, 0.0])
-
-            self.vert_time = params.vert_time
-            self.max_height = params.max_height
-            self.T = self.k_per_step * self.dt_wbc
-            self.A = np.zeros((6, 3))
-
-            self.update_time = -1
-        else:
-            self.target_footstep = self.position + np.array([0.0, 0.0, 0.10])
-
-    def compute(self, k):
-        footstep = np.zeros((3, 4))
-        if self.params.movement == "circle":
-            footstep[:, 1] = self.evaluate_circle(k)
-        elif self.params.movement == "step":
-            footstep[:, 1] = self.evaluate_step(1, k)
-        else:
-            footstep = self.target_footstep.copy()
-
-        return footstep
-
-    def evaluate_circle(self, k):
-        return (
-            self.position[:, 1]
-            + self.offset
-            + self.A * np.sin(2 * np.pi * self.freq * k * self.dt_wbc + self.phase)
-        )
-
-    def evaluate_step(self, j, k):
-        n_step = k // self.k_per_step
-        if n_step % 2 == 0:
-            return self.initial.copy() if (n_step % 4 == 0) else self.target.copy()
-
-        if n_step % 4 == 1:
-            initial = self.initial
-            target = self.target
-        else:
-            initial = self.target
-            target = self.initial
-
-        k_step = k % self.k_per_step
-        if n_step != self.update_time:
-            self.update_polynomial(initial, target)
-            self.update_time = n_step
-
-        t = k_step * self.dt_wbc
-        return self.compute_position(j, t)
-
-    def update_polynomial(self, initial, target):
-
-        x0 = initial[0]
-        y0 = initial[1]
-
-        x1 = target[0]
-        y1 = target[1]
-
-        # elapsed time
-        t = 0
-        d = self.T - 2 * self.vert_time
-
-        A = np.zeros((6, 3))
-
-        A[0, 0] = 12 * (x0 - x1) / (2 * (t - d) ** 5)
-        A[1, 0] = 30 * (x1 - x0) * (t + d) / (2 * (t - d) ** 5)
-        A[2, 0] = 20 * (x0 - x1) * (t**2 + d**2 + 4 * t * d) / (2 * (t - d) ** 5)
-        A[3, 0] = 60 * (x1 - x0) * (t * d**2 + t**2 * d) / (2 * (t - d) ** 5)
-        A[4, 0] = 60 * (x0 - x1) * (t**2 * d**2) / (2 * (t - d) ** 5)
-        A[5, 0] = (
-            2 * x1 * t**5
-            - 10 * x1 * t**4 * d
-            + 20 * x1 * t**3 * d**2
-            - 20 * x0 * t**2 * d**3
-            + 10 * x0 * t * d**4
-            - 2 * x0 * d**5
-        ) / (2 * (t - d) ** 5)
-
-        A[0, 1] = 12 * (y0 - y1) / (2 * (t - d) ** 5)
-        A[1, 1] = 30 * (y1 - y0) * (t + d) / (2 * (t - d) ** 5)
-        A[2, 1] = 20 * (y0 - y1) * (t**2 + d**2 + 4 * t * d) / (2 * (t - d) ** 5)
-        A[3, 1] = 60 * (y1 - y0) * (t * d**2 + t**2 * d) / (2 * (t - d) ** 5)
-        A[4, 1] = 60 * (y0 - y1) * (t**2 * d**2) / (2 * (t - d) ** 5)
-        A[5, 1] = (
-            2 * y1 * t**5
-            - 10 * y1 * t**4 * d
-            + 20 * y1 * t**3 * d**2
-            - 20 * y0 * t**2 * d**3
-            + 10 * y0 * t * d**4
-            - 2 * y0 * d**5
-        ) / (2 * (t - d) ** 5)
-
-        A[0, 2] = -self.max_height / ((self.T / 2) ** 6)
-        A[1, 2] = 3 * self.T * self.max_height / ((self.T / 2) ** 6)
-        A[2, 2] = -3 * self.T**2 * self.max_height / ((self.T / 2) ** 6)
-        A[3, 2] = self.T**3 * self.max_height / ((self.T / 2) ** 6)
-
-        self.A = A
-
-    def compute_position(self, j, t):
-        A = self.A.copy()
-
-        t_xy = t - self.vert_time
-        t_xy = max(0.0, t_xy)
-        t_xy = min(t_xy, self.T - 2 * self.vert_time)
-        self.position[:2, j] = (
-            A[5, :2]
-            + A[4, :2] * t_xy
-            + A[3, :2] * t_xy**2
-            + A[2, :2] * t_xy**3
-            + A[1, :2] * t_xy**4
-            + A[0, :2] * t_xy**5
-        )
-
-        self.position[2, j] = (
-            A[3, 2] * t**3 + A[2, 2] * t**4 + A[1, 2] * t**5 + A[0, 2] * t**6
-        )
-
-        return self.position[:, j]
-
-    def evaluate_circle(self, k):
-        return (
-            self.position[:, 1]
-            + self.offset
-            + self.A * np.sin(2 * np.pi * self.freq * k * self.dt_wbc + self.phase)
-        )
-
-    def evaluate_step(self, j, k):
-        n_step = k // self.k_per_step
-        if n_step % 2 == 0:
-            return self.initial.copy() if (n_step % 4 == 0) else self.target.copy()
-
-        if n_step % 4 == 1:
-            initial = self.initial
-            target = self.target
-        else:
-            initial = self.target
-            target = self.initial
-
-        k_step = k % self.k_per_step
-        if n_step != self.update_time:
-            self.update_polynomial(initial, target)
-            self.update_time = n_step
-
-        t = k_step * self.dt_wbc
-        return self.compute_position(j, t)
-
-    def update_polynomial(self, initial, target):
-
-        x0 = initial[0]
-        y0 = initial[1]
-
-        x1 = target[0]
-        y1 = target[1]
-
-        # elapsed time
-        t = 0
-        d = self.T - 2 * self.vert_time
-
-        A = np.zeros((6, 3))
-
-        A[0, 0] = 12 * (x0 - x1) / (2 * (t - d) ** 5)
-        A[1, 0] = 30 * (x1 - x0) * (t + d) / (2 * (t - d) ** 5)
-        A[2, 0] = 20 * (x0 - x1) * (t**2 + d**2 + 4 * t * d) / (2 * (t - d) ** 5)
-        A[3, 0] = 60 * (x1 - x0) * (t * d**2 + t**2 * d) / (2 * (t - d) ** 5)
-        A[4, 0] = 60 * (x0 - x1) * (t**2 * d**2) / (2 * (t - d) ** 5)
-        A[5, 0] = (
-            2 * x1 * t**5
-            - 10 * x1 * t**4 * d
-            + 20 * x1 * t**3 * d**2
-            - 20 * x0 * t**2 * d**3
-            + 10 * x0 * t * d**4
-            - 2 * x0 * d**5
-        ) / (2 * (t - d) ** 5)
-
-        A[0, 1] = 12 * (y0 - y1) / (2 * (t - d) ** 5)
-        A[1, 1] = 30 * (y1 - y0) * (t + d) / (2 * (t - d) ** 5)
-        A[2, 1] = 20 * (y0 - y1) * (t**2 + d**2 + 4 * t * d) / (2 * (t - d) ** 5)
-        A[3, 1] = 60 * (y1 - y0) * (t * d**2 + t**2 * d) / (2 * (t - d) ** 5)
-        A[4, 1] = 60 * (y0 - y1) * (t**2 * d**2) / (2 * (t - d) ** 5)
-        A[5, 1] = (
-            2 * y1 * t**5
-            - 10 * y1 * t**4 * d
-            + 20 * y1 * t**3 * d**2
-            - 20 * y0 * t**2 * d**3
-            + 10 * y0 * t * d**4
-            - 2 * y0 * d**5
-        ) / (2 * (t - d) ** 5)
-
-        A[0, 2] = -self.max_height / ((self.T / 2) ** 6)
-        A[1, 2] = 3 * self.T * self.max_height / ((self.T / 2) ** 6)
-        A[2, 2] = -3 * self.T**2 * self.max_height / ((self.T / 2) ** 6)
-        A[3, 2] = self.T**3 * self.max_height / ((self.T / 2) ** 6)
-
-        self.A = A
-
-    def compute_position(self, j, t):
-        A = self.A.copy()
-
-        t_xy = t - self.vert_time
-        t_xy = max(0.0, t_xy)
-        t_xy = min(t_xy, self.T - 2 * self.vert_time)
-        self.position[:2, j] = (
-            A[5, :2]
-            + A[4, :2] * t_xy
-            + A[3, :2] * t_xy**2
-            + A[2, :2] * t_xy**3
-            + A[1, :2] * t_xy**4
-            + A[0, :2] * t_xy**5
-        )
-
-        self.position[2, j] = (
-            A[3, 2] * t**3 + A[2, 2] * t**4 + A[1, 2] * t**5 + A[0, 2] * t**6
-        )
-
-        return self.position[:, j]
+        self.linear_velocity = np.array([10, 0, 0])
+        self.angular_velocity = np.array([0, 0, 0])
+        self.velocity_task = [self.linear_velocity, self.angular_velocity]
\ No newline at end of file
diff --git a/python/quadruped_reactive_walking/WB_MPC_Wrapper.py b/python/quadruped_reactive_walking/WB_MPC_Wrapper.py
index 2316e985e79aa6120ce1a195913e489db0a2959f..cbcb8aa74b7bdc08145265b462d4dfd0589912ad 100644
--- a/python/quadruped_reactive_walking/WB_MPC_Wrapper.py
+++ b/python/quadruped_reactive_walking/WB_MPC_Wrapper.py
@@ -55,7 +55,7 @@ class MPC_Wrapper:
         self.last_available_result = Result(pd)
         self.new_result = Value("b", False)
 
-    def solve(self, k, x0, footstep, gait, xs=None, us=None):
+    def solve(self, k, x0, tasks, gait, xs=None, us=None):
         """
         Call either the asynchronous MPC or the synchronous MPC depending on the value
         of multiprocessing during the creation of the wrapper
@@ -64,9 +64,9 @@ class MPC_Wrapper:
             k (int): Number of inv dynamics iterations since the start of the simulation
         """
         if self.multiprocessing:
-            self.run_MPC_asynchronous(k, x0, footstep, gait, xs, us)
+            self.run_MPC_asynchronous(k, x0, tasks, gait, xs, us)
         else:
-            self.run_MPC_synchronous(x0, footstep, gait, xs, us)
+            self.run_MPC_synchronous(x0, tasks, gait, xs, us)
 
     def get_latest_result(self):
         """
@@ -91,11 +91,11 @@ class MPC_Wrapper:
 
         return self.last_available_result
 
-    def run_MPC_synchronous(self, x0, footstep, gait, xs, us):
+    def run_MPC_synchronous(self, x0, tasks, gait, xs, us):
         """
         Run the MPC (synchronous version)
         """
-        self.ocp.solve(x0, footstep, gait, xs, us)
+        self.ocp.solve(x0, tasks, gait, xs, us)
         (
             self.last_available_result.xs,
             self.last_available_result.us,
@@ -104,7 +104,7 @@ class MPC_Wrapper:
         ) = self.ocp.get_results()
         self.new_result.value = True
 
-    def run_MPC_asynchronous(self, k, x0, footstep, gait, xs, us):
+    def run_MPC_asynchronous(self, k, x0, tasks, gait, xs, us):
         """
         Run the MPC (asynchronous version)
         """
@@ -113,7 +113,7 @@ class MPC_Wrapper:
             p = Process(target=self.MPC_asynchronous)
             p.start()
 
-        self.add_new_data(k, x0, footstep, gait, xs, us)
+        self.add_new_data(k, x0, tasks, gait, xs, us)
 
     def MPC_asynchronous(self):
         """
@@ -125,27 +125,27 @@ class MPC_Wrapper:
 
             self.new_data.value = False
 
-            k, x0, footstep, gait, xs, us = self.decompress_dataIn()
+            k, x0, tasks, gait, xs, us = self.decompress_dataIn()
 
             if k == 0:
                 loop_ocp = OCP(self.pd, self.footsteps_plan, self.initial_gait)
 
-            loop_ocp.solve(x0, footstep, gait, xs, us)
+            loop_ocp.solve(x0, tasks, gait, xs, us)
             xs, us, K, solving_time = loop_ocp.get_results()
             self.compress_dataOut(xs, us, K, solving_time)
             self.new_result.value = True
 
-    def add_new_data(self, k, x0, footstep, gait, xs, us):
+    def add_new_data(self, k, x0, tasks, gait, xs, us):
         """
         Compress data in a C-type structure that belongs to the shared memory to send
         data from the main control loop to the asynchronous MPC and notify the process
         that there is a new data
         """
 
-        self.compress_dataIn(k, x0, footstep, gait, xs, us)
+        self.compress_dataIn(k, x0, tasks, gait, xs, us)
         self.new_data.value = True
 
-    def compress_dataIn(self, k, x0, footstep, gait, xs, us):
+    def compress_dataIn(self, k, x0, tasks, gait, xs, us):
         """
         Decompress data from a C-type structure that belongs to the shared memory to
         retrieve data from the main control loop in the asynchronous MPC
@@ -156,7 +156,7 @@ class MPC_Wrapper:
         with self.in_x0.get_lock():
             np.frombuffer(self.in_x0.get_obj()).reshape(self.pd.nx)[:] = x0
         with self.in_footstep.get_lock():
-            np.frombuffer(self.in_footstep.get_obj()).reshape((3, 4))[:, :] = footstep
+            np.frombuffer(self.in_footstep.get_obj()).reshape((3, 4))[:, :] = tasks
         with self.in_gait.get_lock():
             np.frombuffer(self.in_gait.get_obj()).reshape((self.pd.T + 1, 4))[:, :] = gait
 
@@ -183,12 +183,12 @@ class MPC_Wrapper:
         with self.in_x0.get_lock():
             x0 = np.frombuffer(self.in_x0.get_obj()).reshape(self.pd.nx)
         with self.in_footstep.get_lock():
-            footstep = np.frombuffer(self.in_footstep.get_obj()).reshape((3, 4))
+            tasks = np.frombuffer(self.in_footstep.get_obj()).reshape((3, 4))
         with self.in_gait.get_lock():
             gait = np.frombuffer(self.in_gait.get_obj()).reshape((self.pd.T + 1, 4))
 
         if not self.in_warm_start.value:
-            return k, x0, footstep, gait, None, None
+            return k, x0, tasks, gait, None, None
 
         with self.in_xs.get_lock():
             xs = list(
@@ -199,7 +199,7 @@ class MPC_Wrapper:
                 np.frombuffer(self.in_us.get_obj()).reshape((self.pd.T, self.pd.nu))
             )
 
-        return k, x0, footstep, gait, xs, us
+        return k, x0, tasks, gait, xs, us
 
     def compress_dataOut(self, xs, us, K, solving_time):
         """
diff --git a/python/quadruped_reactive_walking/main_solo12_control.py b/python/quadruped_reactive_walking/main_solo12_control.py
index 97f58caa2d21a6e16cfdbb411a1c2d603bf3febf..c357a2e426cd11a5babae80a9997ed495b5e2f18 100644
--- a/python/quadruped_reactive_walking/main_solo12_control.py
+++ b/python/quadruped_reactive_walking/main_solo12_control.py
@@ -104,10 +104,10 @@ def damp_control(device, nb_motors):
         device.parse_sensor_data()
 
         # Set desired quantities for the actuators
-        device.joints.set_position_gains(np.zeros(nb_motors))
-        device.joints.set_velocity_gains(0.1 * np.ones(nb_motors))
-        device.joints.set_desired_positions(np.zeros(nb_motors))
-        device.joints.set_desired_velocities(np.zeros(nb_motors))
+        # device.joints.set_position_gains(np.zeros(nb_motors))
+        # device.joints.set_velocity_gains(0.1 * np.ones(nb_motors))
+        # device.joints.set_desired_positions(np.zeros(nb_motors))
+        # device.joints.set_desired_velocities(np.zeros(nb_motors))
         device.joints.set_torques(np.zeros(nb_motors))
 
         # Send command to the robot
diff --git a/python/quadruped_reactive_walking/tools/LoggerControl.py b/python/quadruped_reactive_walking/tools/LoggerControl.py
index 5a8d1ac9b4f2956466ef948e728e8764a1f2f95a..126d69d19cf91968f8ca535fe01fa1182bba91ee 100644
--- a/python/quadruped_reactive_walking/tools/LoggerControl.py
+++ b/python/quadruped_reactive_walking/tools/LoggerControl.py
@@ -121,9 +121,9 @@ class LoggerControl:
 
         if self.i == 0:
             for i in range(self.pd.T * self.pd.mpc_wbc_ratio):
-                self.target[i] = controller.footsteps[i // self.pd.mpc_wbc_ratio][:, 1]
+                self.target[i] = controller.velocity_task[0]
         if self.i + self.pd.T * self.pd.mpc_wbc_ratio < self.log_size:
-            self.target[self.i + self.pd.T * self.pd.mpc_wbc_ratio] = controller.target_footstep[:, 1]
+            self.target[self.i + self.pd.T * self.pd.mpc_wbc_ratio] = controller.velocity_task[0]
 
         if not self.params.enable_multiprocessing:
             self.t_ocp_update[self.i] = controller.mpc.ocp.t_update