diff --git a/config/walk_parameters.yaml b/config/walk_parameters.yaml index ebe0cb2d486478ec6689b7faf4bd8533b596792b..75ea685ee49e552c67f26caf06ad4cf2c5bc9f40 100644 --- a/config/walk_parameters.yaml +++ b/config/walk_parameters.yaml @@ -13,7 +13,7 @@ robot: predefined_vel: true # If we are using a predefined reference velocity (True) or a joystick (False) N_SIMULATION: 10000 # Number of simulated wbc time steps enable_corba_viewer: false # Enable/disable Corba Viewer - enable_multiprocessing: true # Enable/disable running the MPC in another process in parallel of the main loop + enable_multiprocessing: false # Enable/disable running the MPC in another process in parallel of the main loop perfect_estimator: true # Enable/disable perfect estimator by using data directly from PyBullet # General control parameters @@ -37,8 +37,9 @@ robot: # Parameters of Gait N_periods: 1 - gait: [10, 1, 1, 1, 1, - 20, 1, 0, 1, 1] # Initial gait matrix + gait: [20, 1, 0, 0, 1, + 20, 0, 1, 1, 0, + 1, 1, 1, 1, 1] # Initial gait matrix # Parameters of Joystick gp_alpha_vel: 0.003 #Â Coefficient of the low pass filter applied to gamepad velocity diff --git a/python/quadruped_reactive_walking/Controller.py b/python/quadruped_reactive_walking/Controller.py index 9aeaff2027f6273857be1bb52f59581a0f68f321..2d06dd9f8839f1955ef9092a6a02770ec84f847e 100644 --- a/python/quadruped_reactive_walking/Controller.py +++ b/python/quadruped_reactive_walking/Controller.py @@ -171,13 +171,9 @@ class Controller: self.result.FF = self.params.Kff_main * np.ones(12) self.target = Target(params) - self.footsteps = [] - for k in range(self.pd.T * self.pd.mpc_wbc_ratio): - self.target_footstep = self.target.compute(k).copy() - if k % self.pd.mpc_wbc_ratio == 0: - self.footsteps.append(self.target_footstep.copy()) + self.velocity_task = self.target.velocity_task - self.mpc = WB_MPC_Wrapper.MPC_Wrapper(pd, params, self.footsteps, self.gait) + self.mpc = WB_MPC_Wrapper.MPC_Wrapper(pd, params, self.velocity_task, self.gait) self.mpc_solved = False self.k_result = 0 self.k_solve = 0 @@ -216,10 +212,6 @@ class Controller: t_measures = time.time() self.t_measures = t_measures - t_start - self.target_footstep = self.target.compute( - self.k + self.pd.T * self.pd.mpc_wbc_ratio - ) - if self.k % self.pd.mpc_wbc_ratio == 0: if self.mpc_solved: self.k_solve = self.k @@ -229,7 +221,7 @@ class Controller: self.mpc.solve( self.k, m["x_m"], - self.target_footstep.copy(), + self.velocity_task.copy(), self.gait, self.xs_init, self.us_init, @@ -252,6 +244,7 @@ class Controller: # self.xs_init, # self.us_init, # ) + self.gait = np.roll(self.gait, -1, axis=0) except ValueError: self.error = True print("MPC Problem") diff --git a/python/quadruped_reactive_walking/WB_MPC/CrocoddylOCP.py b/python/quadruped_reactive_walking/WB_MPC/CrocoddylOCP.py index 82e3a683a8854ea1dd52c220a3457f55ec13483f..ec8a94cd68d5fc9f670eeaf1f8d21972440953e2 100644 --- a/python/quadruped_reactive_walking/WB_MPC/CrocoddylOCP.py +++ b/python/quadruped_reactive_walking/WB_MPC/CrocoddylOCP.py @@ -10,9 +10,10 @@ from time import time class OCP: - def __init__(self, pd: ProblemData, footsteps, gait): + def __init__(self, pd: ProblemData, tasks, gait): self.pd = pd - self.max_iter = 3 + self.max_iter = 100 + self.state = crocoddyl.StateMultibody(self.pd.model) self.initialized = False @@ -20,7 +21,7 @@ class OCP: self.t_update_last_model = 0.0 self.t_shift = 0.0 - rm, tm = self.initialize_models(gait, footsteps) + rm, tm = self.initialize_models(gait, tasks) self.x0 = self.pd.x0 @@ -28,22 +29,25 @@ class OCP: self.x0, rm, tm) self.ddp = crocoddyl.SolverFDDP(self.problem) - def initialize_models(self, gait, footsteps): + def initialize_models(self, gait, tasks): models = [] for t, step in enumerate(gait[:-1]): - tasks = self.make_task(footsteps[t]) support_feet = [self.pd.allContactIds[i] for i in np.nonzero(step == 1)[0]] - models.append(self.create_model(support_feet, tasks)) + prev_support_feet = [self.pd.allContactIds[i] for i in np.nonzero(gait[t-1] == 1)[0]] + switching = True if t==0 or support_feet != prev_support_feet else False + models.append(self.create_model(support_feet, tasks, switching)) support_feet = [self.pd.allContactIds[i] for i in np.nonzero(gait[-1] == 1)[0]] - terminal_model = self.create_model(support_feet, is_terminal=True) + prev_support_feet = [self.pd.allContactIds[i] for i in np.nonzero(gait[self.pd.T] == 1)[0]] + switching = True if support_feet != prev_support_feet else False + terminal_model = self.create_model(support_feet, switching=switching, is_terminal=True) return models, terminal_model - def solve(self, x0, footstep, gait, xs_init=None, us_init=None): + def solve(self, x0, tasks, gait, xs_init=None, us_init=None): t_start = time() self.x0 = x0 - self.make_ocp(footstep, gait) + self.make_ocp(tasks, gait) t_update = time() self.t_update = t_update - t_start @@ -66,7 +70,7 @@ class OCP: self.t_solve = time() - t_start - def make_ocp(self, footstep, gait): + def make_ocp(self, tasks, gait): """ Create a shooting problem for a simple walking gait. @@ -77,11 +81,7 @@ class OCP: pin.updateFramePlacements(self.pd.model, self.pd.rdata) if self.initialized: - tasks = self.make_task(footstep) - support_feet = [ - self.pd.allContactIds[i] for i in np.nonzero(gait[-1] == 1)[0] - ] - self.update_model(self.problem.runningModels[0], tasks, support_feet) + self.update_command_costs(self.problem.runningModels[0].differential.costs, tasks) self.problem.circularAppend( self.problem.runningModels[0], @@ -92,14 +92,6 @@ class OCP: self.initialized = True - def make_task(self, footstep): - task = [[], []] - for foot in range(4): - if footstep[:, foot].any(): - task[0].append(self.pd.allContactIds[foot]) - task[1].append(footstep[:, foot]) - return task - def get_results(self): return ( self.ddp.xs.tolist().copy(), @@ -141,15 +133,7 @@ class OCP: for m in self.ddp.problem.runningDatas] return acc - def update_model(self, model, tasks, support_feet): - for i in self.pd.allContactIds: - name = self.pd.model.frames[i].name + "_contact" - model.differential.contacts.changeContactStatus(name, i in support_feet) - - self.update_tracking_costs(model.differential.costs, tasks, support_feet) - - - def create_model(self, support_feet=[], tasks=[], is_terminal=False): + def create_model(self, support_feet=[], tasks=[], switching=False, is_terminal=False): """ Create the action model @@ -159,7 +143,7 @@ class OCP: :param isTterminal: true for the terminal node :return action model for a swing foot phase """ - model = self.create_standard_model(support_feet) + model = self.create_standard_model(support_feet, switching) if is_terminal: self.make_terminal_model(model) else: @@ -167,7 +151,7 @@ class OCP: return model - def create_standard_model(self, support_feet): + def create_standard_model(self, support_feet, switching): """ Create a standard action model @@ -178,20 +162,51 @@ class OCP: actuation = crocoddyl.ActuationModelFloatingBase(self.state) nu = actuation.nu + costs = crocoddyl.CostModelSum(self.state, nu) control = crocoddyl.ControlParametrizationModelPolyZero(nu) contacts = crocoddyl.ContactModelMultiple(self.state, nu) - for i in self.pd.allContactIds: + for i in support_feet: + pin.forwardKinematics(self.pd.model, self.pd.rdata, self.pd.q0) + pin.updateFramePlacements(self.pd.model, self.pd.rdata) + start_pos = self.pd.rdata.oMf[i].translation + + # Basic contact name = self.pd.model.frames[i].name + "_contact" contact = crocoddyl.ContactModel3D( - self.state, i, np.zeros(3), nu, self.pd.baumgarte_gains + self.state, i, start_pos, nu, self.pd.baumgarte_gains ) contacts.addContact(name, contact) if i not in support_feet: contacts.changeContactStatus(name, False) - costs = crocoddyl.CostModelSum(self.state, nu) + # In case of landing feet land at right height + if switching: + impactResidual = crocoddyl.ResidualModelFrameTranslation(self.state, i, start_pos, actuation.nu) + impactAct = crocoddyl.ActivationModelWeightedQuad(np.array([0, 0, 1])) + impactCost = crocoddyl.CostModelResidual(self.state, impactAct, impactResidual) + costs.addCost( + "%s_altitudeimpact" % self.pd.model.frames[i].name, + impactCost, + self.pd.impact_altitude_weight / self.pd.dt, + ) + + impactVelResidual = crocoddyl.ResidualModelFrameVelocity( + self.state, + i, + pin.Motion.Zero(), + pin.ReferenceFrame.LOCAL, + actuation.nu, + ) + + impactVelCost = crocoddyl.CostModelResidual(self.state, impactVelResidual) + costs.addCost( + "%s_velimpact" % self.pd.model.frames[i].name, + impactVelCost, + self.pd.impact_velocity_weight / self.pd.dt, + ) + residual = crocoddyl.ResidualModelState(self.state, self.pd.xref, nu) activation = crocoddyl.ActivationModelWeightedQuad(self.pd.state_reg_w**2) state_cost = crocoddyl.CostModelResidual(self.state, activation, residual) @@ -222,7 +237,7 @@ class OCP: """ nu = model.differential.actuation.nu costs = model.differential.costs - for i in self.pd.allContactIds: + for i in support_feet: cone = crocoddyl.FrictionCone(self.pd.Rsurf, self.pd.mu, 4, False, 3) residual = crocoddyl.ResidualModelContactFrictionCone( self.state, i, cone, nu @@ -237,14 +252,12 @@ class OCP: costs.addCost(friction_name, friction_cone, self.pd.friction_cone_w) costs.changeCostStatus(friction_name, i in support_feet) - name = self.pd.model.frames[i].name + "_foot_tracking" - residual = crocoddyl.ResidualModelFrameTranslation( - self.state, i, np.zeros(3), nu - ) - foot_tracking = crocoddyl.CostModelResidual(self.state, residual) - costs.addCost(name, foot_tracking, self.pd.foot_tracking_w) - - costs.changeCostStatus(name, False) + name = "base_velocity_tracking" + ref = pin.Motion(tasks[0], tasks[1]) + residual_base_velocity = crocoddyl.ResidualModelFrameVelocity( + self.state, self.pd.baseId, ref, pin.LOCAL, nu) + base_velocity = crocoddyl.CostModelResidual(self.state, residual_base_velocity) + costs.addCost(name, base_velocity, self.pd.base_velocity_tracking_w) control_residual = crocoddyl.ResidualModelControl(self.state, self.pd.uref) control_reg = crocoddyl.CostModelResidual(self.state, control_residual) @@ -259,15 +272,11 @@ class OCP: ) costs.addCost("control_bound", control_bound, self.pd.control_bound_w) - self.update_tracking_costs(costs, tasks, support_feet) + self.update_command_costs(costs, tasks) - def update_tracking_costs(self, costs, tasks, supportFootIds): - for i in self.pd.allContactIds: - name = self.pd.model.frames[i].name + "_foot_tracking" - index = 0 - if i in tasks[0] and i not in supportFootIds: - costs.changeCostStatus(name, True) - costs.costs[name].cost.residual.reference = tasks[1][index] - index += 1 - else: - costs.changeCostStatus(name, False) + def update_command_costs(self, costs, tasks): + name = "base_velocity_tracking" + costs.changeCostStatus(name, True) + costs.costs[name].cost.residual.reference = pin.Motion(tasks[0], tasks[1]) + + diff --git a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py index 34a871e875bb0b1e6489b097817047a1b7c7af50..1777d0ed1ac940d05fcd1ce35284152a818c2647 100644 --- a/python/quadruped_reactive_walking/WB_MPC/ProblemData.py +++ b/python/quadruped_reactive_walking/WB_MPC/ProblemData.py @@ -66,7 +66,6 @@ class problemDataAbstract: self.rfFootId = self.model.getFrameId(self.rfFoot) self.lhFootId = self.model.getFrameId(self.lhFoot) self.rhFootId = self.model.getFrameId(self.rhFoot) - self.Rsurf = np.eye(3) def freeze(self): @@ -88,21 +87,25 @@ class ProblemData(problemDataAbstract): self.useFixedBase = 0 + self.baseId = self.model.getFrameId("base_link") + # Cost function weights # Cost function weights self.mu = 0.7 - self.foot_tracking_w = 1e2 - self.friction_cone_w = 1e4 + self.base_velocity_tracking_w = 1e2 + + self.friction_cone_w = 1e4 + self.impact_altitude_weight = 1e3 + self.impact_velocity_weight = 1e3 + self.control_bound_w = 1e3 self.control_reg_w = 1e0 self.state_reg_w = np.array([0] * 3 + [1e1] * 3 - + [1e1] * 3 - + [1e-3] * 3 - + [1e1] * 6 + + [1e1] * 12 + [0] * 6 + [1e1] * 3 - + [1e-1] * 3 + + [1e1] * 3 + [1e1] * 6 ) self.terminal_velocity_w = np.array( @@ -110,6 +113,7 @@ class ProblemData(problemDataAbstract): self.force_reg_w = 1e0 + self.xref = self.x0 self.uref =self.u0 diff --git a/python/quadruped_reactive_walking/WB_MPC/Target.py b/python/quadruped_reactive_walking/WB_MPC/Target.py index b7af78d24b5aaf1cf6adb689fbcd3348bbc14ee6..713ded9218b40fb676556776df1e343289bb1298 100644 --- a/python/quadruped_reactive_walking/WB_MPC/Target.py +++ b/python/quadruped_reactive_walking/WB_MPC/Target.py @@ -10,229 +10,6 @@ class Target: self.dt_wbc = params.dt_wbc self.k_per_step = 160 - self.position = np.array(params.footsteps_under_shoulders).reshape( - (3, 4), order="F" - ) - - if params.movement == "circle": - self.A = np.array([0, 0.03, 0.03]) - self.offset = np.array([0, 0, 0.1]) - self.freq = np.array([0, 0.5 *0, 0.5*0]) - self.phase = np.array([0, np.pi / 2, 0]) - elif params.movement == "step": - self.initial = self.position[:, 1].copy() - self.target = self.position[:, 1].copy() + np.array([0.1, 0.0, 0.0]) - - self.vert_time = params.vert_time - self.max_height = params.max_height - self.T = self.k_per_step * self.dt_wbc - self.A = np.zeros((6, 3)) - - self.update_time = -1 - else: - self.target_footstep = self.position + np.array([0.0, 0.0, 0.10]) - - def compute(self, k): - footstep = np.zeros((3, 4)) - if self.params.movement == "circle": - footstep[:, 1] = self.evaluate_circle(k) - elif self.params.movement == "step": - footstep[:, 1] = self.evaluate_step(1, k) - else: - footstep = self.target_footstep.copy() - - return footstep - - def evaluate_circle(self, k): - return ( - self.position[:, 1] - + self.offset - + self.A * np.sin(2 * np.pi * self.freq * k * self.dt_wbc + self.phase) - ) - - def evaluate_step(self, j, k): - n_step = k // self.k_per_step - if n_step % 2 == 0: - return self.initial.copy() if (n_step % 4 == 0) else self.target.copy() - - if n_step % 4 == 1: - initial = self.initial - target = self.target - else: - initial = self.target - target = self.initial - - k_step = k % self.k_per_step - if n_step != self.update_time: - self.update_polynomial(initial, target) - self.update_time = n_step - - t = k_step * self.dt_wbc - return self.compute_position(j, t) - - def update_polynomial(self, initial, target): - - x0 = initial[0] - y0 = initial[1] - - x1 = target[0] - y1 = target[1] - - # elapsed time - t = 0 - d = self.T - 2 * self.vert_time - - A = np.zeros((6, 3)) - - A[0, 0] = 12 * (x0 - x1) / (2 * (t - d) ** 5) - A[1, 0] = 30 * (x1 - x0) * (t + d) / (2 * (t - d) ** 5) - A[2, 0] = 20 * (x0 - x1) * (t**2 + d**2 + 4 * t * d) / (2 * (t - d) ** 5) - A[3, 0] = 60 * (x1 - x0) * (t * d**2 + t**2 * d) / (2 * (t - d) ** 5) - A[4, 0] = 60 * (x0 - x1) * (t**2 * d**2) / (2 * (t - d) ** 5) - A[5, 0] = ( - 2 * x1 * t**5 - - 10 * x1 * t**4 * d - + 20 * x1 * t**3 * d**2 - - 20 * x0 * t**2 * d**3 - + 10 * x0 * t * d**4 - - 2 * x0 * d**5 - ) / (2 * (t - d) ** 5) - - A[0, 1] = 12 * (y0 - y1) / (2 * (t - d) ** 5) - A[1, 1] = 30 * (y1 - y0) * (t + d) / (2 * (t - d) ** 5) - A[2, 1] = 20 * (y0 - y1) * (t**2 + d**2 + 4 * t * d) / (2 * (t - d) ** 5) - A[3, 1] = 60 * (y1 - y0) * (t * d**2 + t**2 * d) / (2 * (t - d) ** 5) - A[4, 1] = 60 * (y0 - y1) * (t**2 * d**2) / (2 * (t - d) ** 5) - A[5, 1] = ( - 2 * y1 * t**5 - - 10 * y1 * t**4 * d - + 20 * y1 * t**3 * d**2 - - 20 * y0 * t**2 * d**3 - + 10 * y0 * t * d**4 - - 2 * y0 * d**5 - ) / (2 * (t - d) ** 5) - - A[0, 2] = -self.max_height / ((self.T / 2) ** 6) - A[1, 2] = 3 * self.T * self.max_height / ((self.T / 2) ** 6) - A[2, 2] = -3 * self.T**2 * self.max_height / ((self.T / 2) ** 6) - A[3, 2] = self.T**3 * self.max_height / ((self.T / 2) ** 6) - - self.A = A - - def compute_position(self, j, t): - A = self.A.copy() - - t_xy = t - self.vert_time - t_xy = max(0.0, t_xy) - t_xy = min(t_xy, self.T - 2 * self.vert_time) - self.position[:2, j] = ( - A[5, :2] - + A[4, :2] * t_xy - + A[3, :2] * t_xy**2 - + A[2, :2] * t_xy**3 - + A[1, :2] * t_xy**4 - + A[0, :2] * t_xy**5 - ) - - self.position[2, j] = ( - A[3, 2] * t**3 + A[2, 2] * t**4 + A[1, 2] * t**5 + A[0, 2] * t**6 - ) - - return self.position[:, j] - - def evaluate_circle(self, k): - return ( - self.position[:, 1] - + self.offset - + self.A * np.sin(2 * np.pi * self.freq * k * self.dt_wbc + self.phase) - ) - - def evaluate_step(self, j, k): - n_step = k // self.k_per_step - if n_step % 2 == 0: - return self.initial.copy() if (n_step % 4 == 0) else self.target.copy() - - if n_step % 4 == 1: - initial = self.initial - target = self.target - else: - initial = self.target - target = self.initial - - k_step = k % self.k_per_step - if n_step != self.update_time: - self.update_polynomial(initial, target) - self.update_time = n_step - - t = k_step * self.dt_wbc - return self.compute_position(j, t) - - def update_polynomial(self, initial, target): - - x0 = initial[0] - y0 = initial[1] - - x1 = target[0] - y1 = target[1] - - # elapsed time - t = 0 - d = self.T - 2 * self.vert_time - - A = np.zeros((6, 3)) - - A[0, 0] = 12 * (x0 - x1) / (2 * (t - d) ** 5) - A[1, 0] = 30 * (x1 - x0) * (t + d) / (2 * (t - d) ** 5) - A[2, 0] = 20 * (x0 - x1) * (t**2 + d**2 + 4 * t * d) / (2 * (t - d) ** 5) - A[3, 0] = 60 * (x1 - x0) * (t * d**2 + t**2 * d) / (2 * (t - d) ** 5) - A[4, 0] = 60 * (x0 - x1) * (t**2 * d**2) / (2 * (t - d) ** 5) - A[5, 0] = ( - 2 * x1 * t**5 - - 10 * x1 * t**4 * d - + 20 * x1 * t**3 * d**2 - - 20 * x0 * t**2 * d**3 - + 10 * x0 * t * d**4 - - 2 * x0 * d**5 - ) / (2 * (t - d) ** 5) - - A[0, 1] = 12 * (y0 - y1) / (2 * (t - d) ** 5) - A[1, 1] = 30 * (y1 - y0) * (t + d) / (2 * (t - d) ** 5) - A[2, 1] = 20 * (y0 - y1) * (t**2 + d**2 + 4 * t * d) / (2 * (t - d) ** 5) - A[3, 1] = 60 * (y1 - y0) * (t * d**2 + t**2 * d) / (2 * (t - d) ** 5) - A[4, 1] = 60 * (y0 - y1) * (t**2 * d**2) / (2 * (t - d) ** 5) - A[5, 1] = ( - 2 * y1 * t**5 - - 10 * y1 * t**4 * d - + 20 * y1 * t**3 * d**2 - - 20 * y0 * t**2 * d**3 - + 10 * y0 * t * d**4 - - 2 * y0 * d**5 - ) / (2 * (t - d) ** 5) - - A[0, 2] = -self.max_height / ((self.T / 2) ** 6) - A[1, 2] = 3 * self.T * self.max_height / ((self.T / 2) ** 6) - A[2, 2] = -3 * self.T**2 * self.max_height / ((self.T / 2) ** 6) - A[3, 2] = self.T**3 * self.max_height / ((self.T / 2) ** 6) - - self.A = A - - def compute_position(self, j, t): - A = self.A.copy() - - t_xy = t - self.vert_time - t_xy = max(0.0, t_xy) - t_xy = min(t_xy, self.T - 2 * self.vert_time) - self.position[:2, j] = ( - A[5, :2] - + A[4, :2] * t_xy - + A[3, :2] * t_xy**2 - + A[2, :2] * t_xy**3 - + A[1, :2] * t_xy**4 - + A[0, :2] * t_xy**5 - ) - - self.position[2, j] = ( - A[3, 2] * t**3 + A[2, 2] * t**4 + A[1, 2] * t**5 + A[0, 2] * t**6 - ) - - return self.position[:, j] + self.linear_velocity = np.array([10, 0, 0]) + self.angular_velocity = np.array([0, 0, 0]) + self.velocity_task = [self.linear_velocity, self.angular_velocity] \ No newline at end of file diff --git a/python/quadruped_reactive_walking/WB_MPC_Wrapper.py b/python/quadruped_reactive_walking/WB_MPC_Wrapper.py index 2316e985e79aa6120ce1a195913e489db0a2959f..cbcb8aa74b7bdc08145265b462d4dfd0589912ad 100644 --- a/python/quadruped_reactive_walking/WB_MPC_Wrapper.py +++ b/python/quadruped_reactive_walking/WB_MPC_Wrapper.py @@ -55,7 +55,7 @@ class MPC_Wrapper: self.last_available_result = Result(pd) self.new_result = Value("b", False) - def solve(self, k, x0, footstep, gait, xs=None, us=None): + def solve(self, k, x0, tasks, gait, xs=None, us=None): """ Call either the asynchronous MPC or the synchronous MPC depending on the value of multiprocessing during the creation of the wrapper @@ -64,9 +64,9 @@ class MPC_Wrapper: k (int): Number of inv dynamics iterations since the start of the simulation """ if self.multiprocessing: - self.run_MPC_asynchronous(k, x0, footstep, gait, xs, us) + self.run_MPC_asynchronous(k, x0, tasks, gait, xs, us) else: - self.run_MPC_synchronous(x0, footstep, gait, xs, us) + self.run_MPC_synchronous(x0, tasks, gait, xs, us) def get_latest_result(self): """ @@ -91,11 +91,11 @@ class MPC_Wrapper: return self.last_available_result - def run_MPC_synchronous(self, x0, footstep, gait, xs, us): + def run_MPC_synchronous(self, x0, tasks, gait, xs, us): """ Run the MPC (synchronous version) """ - self.ocp.solve(x0, footstep, gait, xs, us) + self.ocp.solve(x0, tasks, gait, xs, us) ( self.last_available_result.xs, self.last_available_result.us, @@ -104,7 +104,7 @@ class MPC_Wrapper: ) = self.ocp.get_results() self.new_result.value = True - def run_MPC_asynchronous(self, k, x0, footstep, gait, xs, us): + def run_MPC_asynchronous(self, k, x0, tasks, gait, xs, us): """ Run the MPC (asynchronous version) """ @@ -113,7 +113,7 @@ class MPC_Wrapper: p = Process(target=self.MPC_asynchronous) p.start() - self.add_new_data(k, x0, footstep, gait, xs, us) + self.add_new_data(k, x0, tasks, gait, xs, us) def MPC_asynchronous(self): """ @@ -125,27 +125,27 @@ class MPC_Wrapper: self.new_data.value = False - k, x0, footstep, gait, xs, us = self.decompress_dataIn() + k, x0, tasks, gait, xs, us = self.decompress_dataIn() if k == 0: loop_ocp = OCP(self.pd, self.footsteps_plan, self.initial_gait) - loop_ocp.solve(x0, footstep, gait, xs, us) + loop_ocp.solve(x0, tasks, gait, xs, us) xs, us, K, solving_time = loop_ocp.get_results() self.compress_dataOut(xs, us, K, solving_time) self.new_result.value = True - def add_new_data(self, k, x0, footstep, gait, xs, us): + def add_new_data(self, k, x0, tasks, gait, xs, us): """ Compress data in a C-type structure that belongs to the shared memory to send data from the main control loop to the asynchronous MPC and notify the process that there is a new data """ - self.compress_dataIn(k, x0, footstep, gait, xs, us) + self.compress_dataIn(k, x0, tasks, gait, xs, us) self.new_data.value = True - def compress_dataIn(self, k, x0, footstep, gait, xs, us): + def compress_dataIn(self, k, x0, tasks, gait, xs, us): """ Decompress data from a C-type structure that belongs to the shared memory to retrieve data from the main control loop in the asynchronous MPC @@ -156,7 +156,7 @@ class MPC_Wrapper: with self.in_x0.get_lock(): np.frombuffer(self.in_x0.get_obj()).reshape(self.pd.nx)[:] = x0 with self.in_footstep.get_lock(): - np.frombuffer(self.in_footstep.get_obj()).reshape((3, 4))[:, :] = footstep + np.frombuffer(self.in_footstep.get_obj()).reshape((3, 4))[:, :] = tasks with self.in_gait.get_lock(): np.frombuffer(self.in_gait.get_obj()).reshape((self.pd.T + 1, 4))[:, :] = gait @@ -183,12 +183,12 @@ class MPC_Wrapper: with self.in_x0.get_lock(): x0 = np.frombuffer(self.in_x0.get_obj()).reshape(self.pd.nx) with self.in_footstep.get_lock(): - footstep = np.frombuffer(self.in_footstep.get_obj()).reshape((3, 4)) + tasks = np.frombuffer(self.in_footstep.get_obj()).reshape((3, 4)) with self.in_gait.get_lock(): gait = np.frombuffer(self.in_gait.get_obj()).reshape((self.pd.T + 1, 4)) if not self.in_warm_start.value: - return k, x0, footstep, gait, None, None + return k, x0, tasks, gait, None, None with self.in_xs.get_lock(): xs = list( @@ -199,7 +199,7 @@ class MPC_Wrapper: np.frombuffer(self.in_us.get_obj()).reshape((self.pd.T, self.pd.nu)) ) - return k, x0, footstep, gait, xs, us + return k, x0, tasks, gait, xs, us def compress_dataOut(self, xs, us, K, solving_time): """ diff --git a/python/quadruped_reactive_walking/main_solo12_control.py b/python/quadruped_reactive_walking/main_solo12_control.py index 97f58caa2d21a6e16cfdbb411a1c2d603bf3febf..c357a2e426cd11a5babae80a9997ed495b5e2f18 100644 --- a/python/quadruped_reactive_walking/main_solo12_control.py +++ b/python/quadruped_reactive_walking/main_solo12_control.py @@ -104,10 +104,10 @@ def damp_control(device, nb_motors): device.parse_sensor_data() # Set desired quantities for the actuators - device.joints.set_position_gains(np.zeros(nb_motors)) - device.joints.set_velocity_gains(0.1 * np.ones(nb_motors)) - device.joints.set_desired_positions(np.zeros(nb_motors)) - device.joints.set_desired_velocities(np.zeros(nb_motors)) + # device.joints.set_position_gains(np.zeros(nb_motors)) + # device.joints.set_velocity_gains(0.1 * np.ones(nb_motors)) + # device.joints.set_desired_positions(np.zeros(nb_motors)) + # device.joints.set_desired_velocities(np.zeros(nb_motors)) device.joints.set_torques(np.zeros(nb_motors)) # Send command to the robot diff --git a/python/quadruped_reactive_walking/tools/LoggerControl.py b/python/quadruped_reactive_walking/tools/LoggerControl.py index 5a8d1ac9b4f2956466ef948e728e8764a1f2f95a..126d69d19cf91968f8ca535fe01fa1182bba91ee 100644 --- a/python/quadruped_reactive_walking/tools/LoggerControl.py +++ b/python/quadruped_reactive_walking/tools/LoggerControl.py @@ -121,9 +121,9 @@ class LoggerControl: if self.i == 0: for i in range(self.pd.T * self.pd.mpc_wbc_ratio): - self.target[i] = controller.footsteps[i // self.pd.mpc_wbc_ratio][:, 1] + self.target[i] = controller.velocity_task[0] if self.i + self.pd.T * self.pd.mpc_wbc_ratio < self.log_size: - self.target[self.i + self.pd.T * self.pd.mpc_wbc_ratio] = controller.target_footstep[:, 1] + self.target[self.i + self.pd.T * self.pd.mpc_wbc_ratio] = controller.velocity_task[0] if not self.params.enable_multiprocessing: self.t_ocp_update[self.i] = controller.mpc.ocp.t_update