diff --git a/scripts/Estimator.py b/scripts/Estimator.py
deleted file mode 100644
index 060f63ce9b73195a46d4b9b451e06517b04c242e..0000000000000000000000000000000000000000
--- a/scripts/Estimator.py
+++ /dev/null
@@ -1,826 +0,0 @@
-# coding: utf8
-
-import numpy as np
-import pinocchio as pin
-from example_robot_data.robots_loader import Solo12Loader
-
-
-class KFilter:
-
-    def __init__(self, dt):
-        self.dt = dt
-        self.n = 6
-
-        # State transition matrix
-        self.A = np.eye(self.n)
-        self.A[0:3, 3:6] = dt * np.eye(3)
-
-        # Control matrix
-        self.B = np.zeros((6, 3))
-        for i in range(3):
-            self.B[i, i] = 0.5 * dt**2
-            self.B[i+3, i] = dt
-
-        # Observation matrix
-        self.H = np.eye(self.n)
-        # Z: n x 1 Measurement vector
-
-        # Covariance of the process noise
-        self.Q = np.zeros((self.n, self.n))
-        # Uncontrolled forces cause a constant acc perturbation that is normally distributed
-        # sigma_acc = 0.1
-        sigma_acc = 1000
-        G = np.array([[0.5 * dt**2], [0.5 * dt**2], [0.5 * dt**2], [dt], [dt], [dt]])
-        self.Q = G @ G.T * (sigma_acc**2)
-        self.Q = 1000 * np.eye(6)
-
-        # Covariance of the observation noise
-        self.R = np.zeros((self.n, self.n))
-        sigma_xyz = 1.0
-        sigma_vxyz = 1.0
-        for i in range(3):
-            self.R[i, i] = sigma_xyz**2  # Position observation noise
-            self.R[i+3, i+3] = sigma_vxyz**2  # Velocity observation noise
-
-        # a posteriori estimate covariance
-        self.P = np.zeros((self.n, self.n))
-
-        # Optimal Kalman gain
-        self.K = np.zeros((self.n, self.n))
-
-        # Updated (a posteriori) state estimate
-        self.X = np.zeros((self.n, 1))
-
-        # Initial state and covariance
-        self.X = np.zeros((self.n, 1))
-        # self.P = np.zeros((self.n, self.n))
-        self.P = 1.0 * np.eye(self.n)
-
-    def setFixed(self, A, H, Q, R):
-        self.A = A
-        self.H = H
-        self.Q = Q
-        self.R = R
-
-    def setInitial(self, X0, P0):
-        # X : initial state of the system
-        # P : initial covariance
-
-        self.X = X0
-        self.P = P0
-
-    def predict(self, U):
-        # Make prediction based on physical system
-        # U : control vector (measured acceleration)
-
-        self.X = (self.A @ self.X) + self.B @ U
-        self.P = (self.A @ self.P @ self.A.T) + self.Q
-
-    def correct(self, Z):
-        # Correct the prediction, using measurement
-        # Z : measurement vector
-
-        self.K = self.P @ self.H.T @ np.linalg.pinv(self.H @ self.P @ self.H.T + self.R)
-        self.X = self.X + self.K @ (Z - self.H @ self.X)
-        self.P = self.P - self.K @ self.H @ self.P
-
-
-class KFilterBis:
-
-    def __init__(self, dt):
-        self.dt = dt
-        self.n = 3 + 3 + 4 * 3  # State = pos base + vel lin base + feet pos
-        self.m = 4 * 3 + 4  # Measure = relative pos of IMU
-
-        # State transition matrix
-        self.A = np.eye(self.n)
-        self.A[0:3, 3:6] = dt * np.eye(3)
-
-        # Control matrix
-        self.B = np.zeros((self.n, 3))
-        for i in range(3):
-            self.B[i, i] = 0.5 * dt**2
-            self.B[i+3, i] = dt
-
-        # Observation matrix
-        self.H = np.zeros((self.m, self.n))
-        for i in range(4):
-            for j in range(3):
-                self.H[3*i+j, j] = 1.0
-                self.H[3*i+j, j+6+3*i] = -1.0
-            self.H[12+i, 6+3*i+2] = 1.0
-        # Z: m x 1 Measurement vector
-
-        # Covariance of the process noise
-        self.Q = np.zeros((self.n, self.n))
-
-        # Covariance of the observation noise
-        self.R = np.zeros((self.m, self.m))
-
-        # a posteriori estimate covariance
-        self.P = np.eye(self.n)
-
-        # Optimal Kalman gain
-        self.K = np.zeros((self.n, self.m))
-
-        # Updated (a posteriori) state estimate
-        self.X = np.zeros((self.n, 1))
-
-        # Initial state and covariance
-        self.X = np.zeros((self.n, 1))
-
-        # Parameters to tune
-        self.sigma_kin = 0.1
-        self.sigma_h = 1.0
-        self.sigma_a = 0.1
-        self.sigma_dp = 0.1
-        self.gamma = 30
-
-    def setFixed(self, A, H, Q, R):
-        self.A = A
-        self.H = H
-        self.Q = Q
-        self.R = R
-
-    def setInitial(self, X0, P0):
-        # X : initial state of the system
-        # P : initial covariance
-
-        self.X = X0
-        self.P = P0
-
-    def predict(self, U):
-        # Make prediction based on physical system
-        # U : control vector (measured acceleration)
-
-        self.X = (self.A @ self.X) + self.B @ U
-        self.P = (self.A @ self.P @ self.A.T) + self.Q
-
-    def correct(self, Z):
-        # Correct the prediction, using measurement
-        # Z : measurement vector
-
-        self.K = self.P @ self.H.T @ np.linalg.inv(self.H @ self.P @ self.H.T + self.R)
-        self.X = self.X + self.K @ (Z - self.H @ self.X)
-        self.P = self.P - self.K @ self.H @ self.P
-
-    def updateCoeffs(self, status):
-        # Update noise/covariance matrices depending on feet status
-
-        for i in range(4):
-            # Trust is between 1 and 0 (cliped to a very low value to avoid division by 0)
-            if status[i] == 0:
-                trust = 0.01
-            else:
-                trust = 1.0
-            self.R[(3*i):(3*(i+1)), (3*i):(3*(i+1))] = self.sigma_kin**2 / trust * np.eye(3)
-            self.R[12+i, 12+i] = self.sigma_h**2 / trust
-
-            self.Q[(6+3*i):(6+3*(i+1)), (6+3*i):(6+3*(i+1))] = self.sigma_dp**2 * (1+np.exp(self.gamma*(0.5-trust))) * np.eye(3) * self.dt**2
-
-        self.Q[3:6, 3:6] = self.sigma_a**2 * np.eye(3) * self.dt**2
-
-
-class ComplementaryFilter:
-    """Simple complementary filter
-
-    Args:
-        dt (float): time step of the filter [s]
-        fc (float): cut frequency of the filter [Hz]
-    """
-
-    def __init__(self, dt, fc):
-
-        self.dt = dt
-
-        y = 1 - np.cos(2*np.pi*fc*dt)
-        self.alpha = -y+np.sqrt(y*y+2*y)
-
-        self.x = np.zeros(3)
-        self.dx = np.zeros(3)
-        self.HP_x = np.zeros(3)
-        self.LP_x = np.zeros(3)
-        self.filt_x = np.zeros(3)
-
-    def compute(self, x, dx, alpha=None):
-        """Run one step of complementary filter
-
-        Args:
-            x (N by 1 array): quantity handled by the filter
-            dx (N by 1 array): derivative of the quantity
-            alpha (float): optional, overwrites the fc of the filter
-        """
-
-        # Update alpha value if the user desires it
-        if alpha is not None:
-            self.alpha = alpha
-
-        # For logging
-        self.x = x
-        self.dx = dx
-
-        # Process high pass filter
-        self.HP_x[:] = self.alpha * (self.HP_x + dx * self.dt)
-
-        # Process low pass filter
-        self.LP_x[:] = self.alpha * self.LP_x + (1.0 - self.alpha) * x
-
-        # Add both
-        self.filt_x[:] = self.HP_x + self.LP_x
-
-        return self.filt_x
-
-
-class Estimator:
-    """State estimator with a complementary filter
-
-    Args:
-        dt (float): Time step of the estimator update
-        N_simulation (int): maximum number of iterations of the main control loop
-        h_init (float): initial height of the robot base
-        kf_enabled (bool): False for complementary filter, True for simple Kalman filter
-        perfectEstimator (bool): If we are using a perfect estimator (direct simulator data)
-    """
-
-    def __init__(self, dt, N_simulation, h_init=0.22294615, kf_enabled=False, perfectEstimator=False):
-
-        # Sample frequency
-        self.dt = dt
-
-        # If the IMU is perfect
-        self.perfectEstimator = perfectEstimator
-
-        # Filtering estimated linear velocity
-        fc = 50.0  # Cut frequency
-        y = 1 - np.cos(2*np.pi*fc*dt)
-        self.alpha_v = -y+np.sqrt(y*y+2*y)
-        # self.alpha_v = 1.0  # TOREMOVE
-
-        # Filtering velocities used for security checks
-        fc = 6.0
-        y = 1 - np.cos(2*np.pi*fc*dt)
-        self.alpha_secu = -y+np.sqrt(y*y+2*y)
-
-        self.kf_enabled = kf_enabled
-        if not self.kf_enabled:  # Complementary filters for linear velocity and position
-            self.filter_xyz_vel = ComplementaryFilter(dt, 3.0)
-            self.filter_xyz_pos = ComplementaryFilter(dt, 500.0)
-        else:  # Kalman filter for linear velocity and position
-            self.kf = KFilterBis(dt)
-            self.Z = np.zeros((self.kf.m, 1))
-
-        # IMU data
-        self.IMU_lin_acc = np.zeros((3, ))  # Linear acceleration (gravity debiased)
-        self.IMU_ang_vel = np.zeros((3, ))  # Angular velocity (gyroscopes)
-        self.IMU_ang_pos = np.zeros((4, ))  # Angular position (estimation of IMU)
-
-        # Forward Kinematics data
-        self.FK_lin_vel = np.zeros((3, ))  # Linear velocity
-        self.FK_h = h_init  # Default base height of the FK
-        self.FK_xyz = np.array([0.0, 0.0, self.FK_h])
-        self.xyz_mean_feet = np.zeros(3)
-        if not self.kf_enabled:
-            self.filter_xyz_pos.LP_x[2] = self.FK_h
-        else:
-            self.kf.X[2, 0] = h_init
-
-        # Boolean to disable FK and FG near contact switches
-        self.close_from_contact = False
-        self.feet_status = np.zeros(4)
-        self.feet_goals = np.zeros((3, 4))
-        self.k_since_contact = np.zeros(4)
-
-        # Load the URDF model to get Pinocchio data and model structures
-        Solo12Loader.free_flyer = True
-        robot = Solo12Loader().robot
-        self.data = robot.data.copy()  # for velocity estimation (forward kinematics)
-        self.model = robot.model.copy()  # for velocity estimation (forward kinematics)
-        self.data_for_xyz = robot.data.copy()  # for position estimation (forward geometry)
-        self.model_for_xyz = robot.model.copy()  # for position estimation (forward geometry)
-
-        # High pass linear velocity (filtered IMU velocity)
-        self.HP_lin_vel = np.zeros((3, ))
-        # Low pass linear velocity (filtered FK velocity)
-        self.LP_lin_vel = np.zeros((3, ))
-        self.o_filt_lin_vel = np.zeros((3, 1))  # Linear velocity (world frame)
-        self.filt_lin_vel = np.zeros((3, ))  # Linear velocity (base frame)
-        self.filt_lin_pos = np.zeros((3, ))  # Linear position
-        self.filt_ang_vel = np.zeros((3, ))  # Angular velocity
-        self.filt_ang_pos = np.zeros((4, ))  # Angular position
-        self.q_filt = np.zeros((19, 1))
-        self.v_filt = np.zeros((18, 1))
-        self.v_secu = np.zeros((12, ))
-
-        # Various matrices
-        self.q_FK = np.zeros((19, 1))
-        self.q_FK[:7, 0] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0])
-        self.v_FK = np.zeros((18, 1))
-        self.indexes = [10, 18, 26, 34]  #  Indexes of feet frames
-        self.actuators_pos = np.zeros((12, ))
-        self.actuators_vel = np.zeros((12, ))
-
-        # Transform between the base frame and the IMU frame
-        self._1Mi = pin.SE3(pin.Quaternion(np.array([[0.0, 0.0, 0.0, 1.0]]).T),
-                            np.array([0.1163, 0.0, 0.02]))
-
-        # Logging matrices
-        self.log_v_truth = np.zeros((3, N_simulation))
-        self.log_v_est = np.zeros((3, 4, N_simulation))
-        self.log_h_est = np.zeros((4, N_simulation))
-        self.log_alpha = np.zeros(N_simulation)
-        self.log_HP_lin_vel = np.zeros((3, N_simulation))
-        self.log_IMU_lin_vel = np.zeros((3, N_simulation))
-        self.log_IMU_lin_acc = np.zeros((3, N_simulation))
-        self.log_LP_lin_vel = np.zeros((3, N_simulation))
-        self.log_FK_lin_vel = np.zeros((3, N_simulation))
-        self.log_o_filt_lin_vel = np.zeros((3, N_simulation))
-        self.log_filt_lin_vel = np.zeros((3, N_simulation))
-        self.log_filt_lin_vel_bis = np.zeros((3, N_simulation))
-        self.rotated_FK = np.zeros((3, N_simulation))
-        self.k_log = 0
-
-        self.debug_o_lin_vel = np.zeros((3, 1))
-
-    def get_configurations(self):
-        return self.q_filt.reshape((19,)), self.v_filt.reshape((18,))
-
-    def get_data_IMU(self, device):
-        """Get data from the IMU (linear acceleration, angular velocity and position)
-
-        Args:
-            device (object): Interface with the masterboard or the simulation
-        """
-
-        # Linear acceleration of the trunk (base frame)
-        self.IMU_lin_acc[:] = device.imu.linear_acceleration
-
-        # Angular velocity of the trunk (base frame)
-        self.IMU_ang_vel[:] = device.imu.gyroscope
-
-        # Angular position of the trunk (local frame)
-        self.RPY = device.imu.attitude_euler
-
-        if (self.k_log <= 1):
-            self.offset_yaw_IMU = self.RPY[2].copy()
-        self.RPY[2] -= self.offset_yaw_IMU  # Remove initial offset of IMU
-
-        self.IMU_ang_pos[:] = pin.Quaternion(pin.rpy.rpyToMatrix(self.RPY[0],
-                                                                 self.RPY[1],
-                                                                 self.RPY[2])).coeffs()
-        # Above could be commented since IMU_ang_pos yaw is not used anywhere and instead
-        # replace by: self.IMU_ang_pos[:] = device.baseOrientation
-
-        return 0
-
-    def get_data_joints(self, device):
-        """Get the angular position and velocity of the 12 DoF
-
-        Args:
-            device (object): Interface with the masterboard or the simulation
-        """
-
-        self.actuators_pos[:] = device.joints.positions
-        self.actuators_vel[:] = device.joints.velocities
-
-        return 0
-
-    def get_data_FK(self, feet_status):
-        """Get data with forward kinematics and forward geometry
-        (linear velocity, angular velocity and position)
-
-        Args:
-            feet_status (4x0 numpy array): Current contact state of feet
-        """
-
-        # Update estimator FK model
-        self.q_FK[7:, 0] = self.actuators_pos  # Position of actuators
-        self.v_FK[6:, 0] = self.actuators_vel  # Velocity of actuators
-        # Position and orientation of the base remain at 0
-        # Linear and angular velocities of the base remain at 0
-
-        # Update model used for the forward kinematics
-        self.q_FK[3:7, 0] = np.array([0.0, 0.0, 0.0, 1.0])
-        pin.forwardKinematics(self.model, self.data, self.q_FK, self.v_FK)
-        # pin.updateFramePlacements(self.model, self.data)
-
-        # Update model used for the forward geometry
-        self.q_FK[3:7, 0] = self.IMU_ang_pos[:]
-        pin.forwardKinematics(self.model_for_xyz, self.data_for_xyz, self.q_FK)
-
-        # Get estimated velocity from updated model
-        cpt = 0
-        vel_est = np.zeros((3, ))
-        xyz_est = np.zeros((3, ))
-        for i in (np.where(feet_status == 1))[0]:  # Consider only feet in contact
-            if self.k_since_contact[i] >= 16:  # Security margin after the contact switch
-
-                # Estimated velocity of the base using the considered foot
-                vel_estimated_baseframe = self.BaseVelocityFromKinAndIMU(self.indexes[i])
-
-                # Estimated position of the base using the considered foot
-                framePlacement = pin.updateFramePlacement(
-                    self.model_for_xyz, self.data_for_xyz, self.indexes[i])
-                xyz_estimated = -framePlacement.translation
-
-                # Logging
-                self.log_v_est[:, i, self.k_log] = vel_estimated_baseframe[0:3, 0]
-                self.log_h_est[i, self.k_log] = xyz_estimated[2]
-
-                # Increment counter and add estimated quantities to the storage variables
-                cpt += 1
-                vel_est += vel_estimated_baseframe[:, 0]  # Linear velocity
-                xyz_est += xyz_estimated  # Position
-
-                r_foot = 0.025 # 0.0155  # 31mm of diameter on meshlab
-                if i <= 1:
-                    vel_est[0] += r_foot * (self.actuators_vel[1+3*i] - self.actuators_vel[2+3*i])
-                else:
-                    vel_est[0] += r_foot * (self.actuators_vel[1+3*i] + self.actuators_vel[2+3*i])
-
-        # If at least one foot is in contact, we do the average of feet results
-        if cpt > 0:
-            self.FK_lin_vel = vel_est / cpt
-            self.FK_xyz = xyz_est / cpt
-
-        return 0
-
-    def get_xyz_feet(self, feet_status, goals):
-        """Get average position of feet in contact with the ground
-
-        Args:
-            feet_status (4x0 array): Current contact state of feet
-            goals (3x4 array): Target locations of feet on the ground
-        """
-
-        cpt = 0
-        xyz_feet = np.zeros(3)
-        for i in (np.where(feet_status == 1))[0]:  # Consider only feet in contact
-            cpt += 1
-            xyz_feet += goals[:, i]
-        # If at least one foot is in contact, we do the average of feet results
-        if cpt > 0:
-            self.xyz_mean_feet = xyz_feet / cpt
-
-        return 0
-
-    def run_filter(self, k, gait, device, goals):
-        """Run the complementary filter to get the filtered quantities
-
-        Args:
-            k (int): Number of inv dynamics iterations since the start of the simulation
-            gait (4xN array): Contact state of feet (gait matrix)
-            device (object): Interface with the masterboard or the simulation
-            goals (3x4 array): Target locations of feet on the ground
-        """
-
-        feet_status = gait[0, :].copy()  # Current contact state of feet
-        remaining_steps = 1  # Remaining MPC steps for the current gait phase
-        while (np.array_equal(feet_status, gait[remaining_steps, :])):
-            remaining_steps += 1
-
-        # Update IMU data
-        self.get_data_IMU(device)
-
-        # Angular position of the trunk
-        self.filt_ang_pos[:] = self.IMU_ang_pos
-
-        # Angular velocity of the trunk
-        self.filt_ang_vel[:] = self.IMU_ang_vel
-
-        # Update joints data
-        self.get_data_joints(device)
-
-        # Update nb of iterations since contact
-        self.k_since_contact += feet_status  # Increment feet in stance phase
-        self.k_since_contact *= feet_status  # Reset feet in swing phase
-
-        # Update forward kinematics data
-        self.get_data_FK(feet_status)
-
-        # Update forward geometry data
-        self.get_xyz_feet(feet_status, goals)
-
-        # Tune alpha depending on the state of the gait (close to contact switch or not)
-        a = np.ceil(np.max(self.k_since_contact)/10) - 1
-        b = remaining_steps
-        n = 1  # Nb of steps of margin around contact switch
-
-        v_max = 1.00
-        v_min = 0.97  # Minimum alpha value
-        c = ((a + b) - 2 * n) * 0.5
-        if (a <= (n-1)) or (b <= n):  # If we are close from contact switch
-            self.alpha = v_max  # Only trust IMU data
-            self.close_from_contact = True  # Raise flag
-        else:
-            self.alpha = v_min + (v_max - v_min) * np.abs(c - (a - n)) / c
-            #self.alpha = 0.997
-            self.close_from_contact = False  # Lower flag
-
-        if not self.kf_enabled:  # Use cascade of complementary filters
-
-            # Rotation matrix to go from base frame to world frame
-            oRb = pin.Quaternion(np.array([self.IMU_ang_pos]).T).toRotationMatrix()
-
-            """self.debug_o_lin_vel += 0.002 * (oRb @ np.array([self.IMU_lin_acc]).T)  # TOREMOVE
-            self.filt_lin_vel[:] = (oRb.T @ self.debug_o_lin_vel).ravel()"""
-
-            # Get FK estimated velocity at IMU location (base frame)
-            cross_product = self.cross3(self._1Mi.translation.ravel(), self.IMU_ang_vel).ravel()
-            i_FK_lin_vel = self.FK_lin_vel[:] + cross_product
-
-            # Get FK estimated velocity at IMU location (world frame)
-            oi_FK_lin_vel = (oRb @ np.array([i_FK_lin_vel]).T).ravel()
-
-            # Integration of IMU acc at IMU location (world frame)
-            oi_filt_lin_vel = self.filter_xyz_vel.compute(oi_FK_lin_vel,
-                                                          (oRb @ np.array([self.IMU_lin_acc]).T).ravel(),
-                                                          alpha=self.alpha)
-
-            # Filtered estimated velocity at IMU location (base frame)
-            i_filt_lin_vel = (oRb.T @ np.array([oi_filt_lin_vel]).T).ravel()
-
-            # Filtered estimated velocity at center base (base frame)
-            b_filt_lin_vel = i_filt_lin_vel - cross_product
-
-            # Filtered estimated velocity at center base (world frame)
-            ob_filt_lin_vel = (oRb @ np.array([b_filt_lin_vel]).T).ravel()
-
-            # Position of the center of the base from FGeometry and filtered velocity (world frame)
-            self.filt_lin_pos[:] = self.filter_xyz_pos.compute(
-                self.FK_xyz[:] + self.xyz_mean_feet[:], ob_filt_lin_vel, alpha=np.array([0.995, 0.995, 0.9]))
-
-            # Velocity of the center of the base (base frame)
-            self.filt_lin_vel[:] = b_filt_lin_vel 
-
-        else:  # Use Kalman filter
-
-            # Rotation matrix to go from base frame to world frame
-            oRb = pin.Quaternion(np.array([self.IMU_ang_pos]).T).toRotationMatrix()
-
-            # Update coefficients depending on feet status
-            self.kf.updateCoeffs(feet_status)
-
-            # Prediction step of the Kalman filter with IMU acceleration
-            self.kf.predict(oRb @ self.IMU_lin_acc.reshape((3, 1)))
-
-            # Get position of IMU relative to feet in base frame
-            for i in range(4):
-                framePlacement = - pin.updateFramePlacement(self.model, self.data, self.indexes[i]).translation
-                self.Z[(3*i):(3*(i+1)), 0:1] = oRb @ (framePlacement + self._1Mi.translation.ravel()).reshape((3, 1))
-                self.Z[12+i, 0] = 0.0 # (oRb @ framePlacement.reshape((3, 1)))[2, 0] + self.filt_lin_pos[2]
-
-            # Correction step of the Kalman filter with position and velocity estimations by FK
-            # self.Z[0:3, 0] = self.FK_xyz[:] + self.xyz_mean_feet[:]
-            # self.Z[3:6, 0] = oRb.T @ self.FK_lin_vel
-            self.kf.correct(self.Z)
-
-            # Retrieve and store results
-            cross_product = self.cross3(self._1Mi.translation.ravel(), self.IMU_ang_vel).ravel()
-            self.filt_lin_pos[:] = self.kf.X[0:3, 0] - self._1Mi.translation.ravel()  # base position in world frame
-            self.filt_lin_vel[:] = oRb.transpose() @ (self.kf.X[3:6, 0] - cross_product)  # base velocity in base frame
-
-        # Logging
-        self.log_alpha[self.k_log] = self.alpha
-        self.feet_status[:] = feet_status  # Save contact status sent to the estimator for logging
-        self.feet_goals[:, :] = goals.copy()  # Save feet goals sent to the estimator for logging
-        self.log_IMU_lin_acc[:, self.k_log] = self.IMU_lin_acc[:]
-        self.log_HP_lin_vel[:, self.k_log] = self.HP_lin_vel[:]
-        self.log_LP_lin_vel[:, self.k_log] = self.LP_lin_vel[:]
-        self.log_FK_lin_vel[:, self.k_log] = self.FK_lin_vel[:]
-        self.log_filt_lin_vel[:, self.k_log] = self.filt_lin_vel[:]
-        self.log_o_filt_lin_vel[:, self.k_log] = self.o_filt_lin_vel[:, 0]
-
-        # Output filtered position vector (19 x 1)
-        self.q_filt[0:3, 0] = self.filt_lin_pos
-        if self.perfectEstimator:  # Base height directly from PyBullet
-            self.q_filt[2, 0] = device.dummyPos[2] - 0.0155  # Minus feet radius
-        self.q_filt[3:7, 0] = self.filt_ang_pos
-        self.q_filt[7:, 0] = self.actuators_pos  # Actuators pos are already directly from PyBullet
-
-        # Output filtered velocity vector (18 x 1)
-        if self.perfectEstimator:  # Linear velocities directly from PyBullet
-            self.v_filt[0:3, 0] = (1 - self.alpha_v) * self.v_filt[0:3, 0] + self.alpha_v * device.b_baseVel
-        else:
-            self.v_filt[0:3, 0] = (1 - self.alpha_v) * self.v_filt[0:3, 0] + self.alpha_v * self.filt_lin_vel
-        self.v_filt[3:6, 0] = self.filt_ang_vel  # Angular velocities are already directly from PyBullet
-        self.v_filt[6:, 0] = self.actuators_vel  # Actuators velocities are already directly from PyBullet
-
-        ###
-
-        # Update model used for the forward kinematics
-        """pin.forwardKinematics(self.model, self.data, self.q_filt, self.v_filt)
-        pin.updateFramePlacements(self.model, self.data)
-
-        z_min = 100
-        for i in (np.where(feet_status == 1))[0]:  # Consider only feet in contact
-            # Estimated position of the base using the considered foot
-            framePlacement = pin.updateFramePlacement(self.model, self.data, self.indexes[i])
-            z_min = np.min((framePlacement.translation[2], z_min))
-        self.q_filt[2, 0] -= z_min"""
-
-        ###
-
-        # Output filtered actuators velocity for security checks
-        self.v_secu[:] = (1 - self.alpha_secu) * self.actuators_vel + self.alpha_secu * self.v_secu[:]
-
-        # Increment iteration counter
-        self.k_log += 1
-
-        return 0
-
-    def cross3(self, left, right):
-        """Numpy is inefficient for this
-
-        Args:
-            left (3x0 array): left term of the cross product
-            right (3x0 array): right term of the cross product
-        """
-        return np.array([[left[1] * right[2] - left[2] * right[1]],
-                         [left[2] * right[0] - left[0] * right[2]],
-                         [left[0] * right[1] - left[1] * right[0]]])
-
-    def BaseVelocityFromKinAndIMU(self, contactFrameId):
-        """Estimate the velocity of the base with forward kinematics using a contact point
-        that is supposed immobile in world frame
-
-        Args:
-            contactFrameId (int): ID of the contact point frame (foot frame)
-        """
-
-        frameVelocity = pin.getFrameVelocity(
-            self.model, self.data, contactFrameId, pin.ReferenceFrame.LOCAL)
-        framePlacement = pin.updateFramePlacement(
-            self.model, self.data, contactFrameId)
-
-        # Angular velocity of the base wrt the world in the base frame (Gyroscope)
-        _1w01 = self.IMU_ang_vel.reshape((3, 1))
-        # Linear velocity of the foot wrt the base in the foot frame
-        _Fv1F = frameVelocity.linear
-        # Level arm between the base and the foot
-        _1F = np.array(framePlacement.translation)
-        # Orientation of the foot wrt the base
-        _1RF = framePlacement.rotation
-        # Linear velocity of the base wrt world in the base frame
-        _1v01 = self.cross3(_1F.ravel(), _1w01.ravel()) - \
-            (_1RF @ _Fv1F.reshape((3, 1)))
-
-        # IMU and base frames have the same orientation
-        # _iv0i = _1v01 + self.cross3(self._1Mi.translation.ravel(), _1w01.ravel())
-
-        return np.array(_1v01)
-
-    def EulerToQuaternion(self, roll_pitch_yaw):
-        roll, pitch, yaw = roll_pitch_yaw
-        sr = np.sin(roll/2.)
-        cr = np.cos(roll/2.)
-        sp = np.sin(pitch/2.)
-        cp = np.cos(pitch/2.)
-        sy = np.sin(yaw/2.)
-        cy = np.cos(yaw/2.)
-        qx = sr * cp * cy - cr * sp * sy
-        qy = cr * sp * cy + sr * cp * sy
-        qz = cr * cp * sy - sr * sp * cy
-        qw = cr * cp * cy + sr * sp * sy
-        return [qx, qy, qz, qw]
-
-    def quaternionToRPY(self, quat):
-        qx = quat[0]
-        qy = quat[1]
-        qz = quat[2]
-        qw = quat[3]
-
-        rotateXa0 = 2.0*(qy*qz + qw*qx)
-        rotateXa1 = qw*qw - qx*qx - qy*qy + qz*qz
-        rotateX = 0.0
-
-        if (rotateXa0 != 0.0) and (rotateXa1 != 0.0):
-            rotateX = np.arctan2(rotateXa0, rotateXa1)
-
-        rotateYa0 = -2.0*(qx*qz - qw*qy)
-        rotateY = 0.0
-        if (rotateYa0 >= 1.0):
-            rotateY = np.pi/2.0
-        elif (rotateYa0 <= -1.0):
-            rotateY = -np.pi/2.0
-        else:
-            rotateY = np.arcsin(rotateYa0)
-
-        rotateZa0 = 2.0*(qx*qy + qw*qz)
-        rotateZa1 = qw*qw + qx*qx - qy*qy - qz*qz
-        rotateZ = 0.0
-        if (rotateZa0 != 0.0) and (rotateZa1 != 0.0):
-            rotateZ = np.arctan2(rotateZa0, rotateZa1)
-
-        return np.array([[rotateX], [rotateY], [rotateZ]])
-
-    def plot_graphs(self):
-
-        from matplotlib import pyplot as plt
-
-        NN = self.log_v_est.shape[2]
-        avg = np.zeros((3, NN))
-        for m in range(NN):
-            tmp_cpt = 0
-            tmp_sum = np.zeros((3, 1))
-            for j in range(4):
-                if np.any(np.abs(self.log_v_est[:, j, m]) > 1e-2):
-                    tmp_cpt += 1
-                    tmp_sum[:, 0] = tmp_sum[:, 0] + \
-                        self.log_v_est[:, j, m].ravel()
-            if tmp_cpt > 0:
-                avg[:, m:(m+1)] = tmp_sum / tmp_cpt
-
-        plt.figure()
-        for i in range(3):
-            if i == 0:
-                ax0 = plt.subplot(3, 1, i+1)
-            else:
-                plt.subplot(3, 1, i+1, sharex=ax0)
-            for j in range(4):
-                pass
-                # plt.plot(self.log_v_est[i, j, :], linewidth=3)
-                # plt.plot(-myController.log_Fv1F[i, j, :], linewidth=3, linestyle="--")
-            # plt.plot(avg[i, :], color="rebeccapurple", linewidth=3, linestyle="--")
-            plt.plot(self.log_v_truth[i, :], "k", linewidth=3, linestyle="--")
-            plt.plot(self.log_alpha, color="k", linewidth=5)
-            plt.plot(self.log_HP_lin_vel[i, :],
-                     color="orange", linewidth=4, linestyle="--")
-            plt.plot(self.log_LP_lin_vel[i, :],
-                     color="violet", linewidth=4, linestyle="--")
-            plt.plot(
-                self.log_FK_lin_vel[i, :], color="royalblue", linewidth=3, linestyle="--")
-            plt.plot(
-                self.log_filt_lin_vel[i, :], color="darkgoldenrod", linewidth=3, linestyle="--")
-            # plt.legend(["FL", "FR", "HL", "HR", "Avg", "Truth", "Filtered", "IMU", "FK"])
-            plt.legend(["Truth", "alpha", "HP vel",
-                        "LP vel", "FK vel", "Output vel"])
-            # plt.xlim([14000, 15000])
-        plt.suptitle(
-            "Estimation of the linear velocity of the trunk (in base frame)")
-
-        """plt.figure()
-        for i in range(3):
-            plt.subplot(3, 1, i+1)
-            plt.plot(self.log_filt_lin_vel[i, :], color="red", linewidth=3)
-            plt.plot(self.log_filt_lin_vel_bis[i, :], color="forestgreen", linewidth=3)
-            plt.plot(self.rotated_FK[i, :], color="blue", linewidth=3)
-            plt.legend(["alpha = 1.0", "alpha = 450/500"])
-        plt.suptitle("Estimation of the velocity of the base")"""
-
-        """plt.figure()
-        for i in range(3):
-            plt.subplot(3, 1, i+1)
-            for j in range(4):
-                plt.plot(logger.feet_vel[i, j, :], linewidth=3)
-        plt.suptitle("Velocity of feet over time")"""
-
-        plt.show(block=False)
-
-        return 0
-
-
-if __name__ == "__main__":
-
-    print("Testing Kalman")
-
-    dt = 0.002
-    N = 1000
-    KF = KFilter(dt)
-
-    t = [dt*i for i in range(N)]
-    p = np.sin(t)
-    v = np.cos(t)
-    a = - np.sin(t)
-    KF.X[3:, :] = np.ones((3, 1))
-    res = np.zeros((6, N))
-
-    Z = np.random.normal(0, 0.1, (6, N))
-    for i in range(3):
-        Z[i, :] += p
-        Z[i+3, :] += v
-
-    for k in range(N):
-        KF.predict(a[k] * np.ones((3, 1)))
-        KF.correct(Z[:, k:(k+1)])
-        res[:, k:(k+1)] = KF.X
-
-    from matplotlib import pyplot as plt
-    plt.figure()
-    for i in range(3):
-        if i == 0:
-            ax0 = plt.subplot(3, 1, i+1)
-        else:
-            plt.subplot(3, 1, i+1, sharex=ax0)
-        plt.plot(p, linewidth=3, color='r')
-        plt.plot(res[i, :], linewidth=3, color='b')
-
-    plt.figure()
-    for i in range(3):
-        if i == 0:
-            ax0 = plt.subplot(3, 1, i+1)
-        else:
-            plt.subplot(3, 1, i+1, sharex=ax0)
-        plt.plot(v, linewidth=3, color='r')
-        plt.plot(res[i+3, :], linewidth=3, color='b')
-
-    plt.show()
diff --git a/scripts/utils_mpc.py b/scripts/utils_mpc.py
index 1d30f8d06b75121fc6fecb6f17b9447834de94d9..8ef1e1ef48e05d8190e0017638184d1424e4f7e9 100644
--- a/scripts/utils_mpc.py
+++ b/scripts/utils_mpc.py
@@ -5,7 +5,6 @@ from example_robot_data.robots_loader import Solo12Loader
 
 import Joystick
 import Logger
-import Estimator
 import pinocchio as pin