
Récapitulatif de la méthode MPC 09/04/2020

•

See https://arxiv.org/pdf/1909.06586.pdf for the original MIT article “Highly Dynamic
Quadruped Locomotion via Whole-Body Impulse Control and Model Predictive Control”

1 State Estimator

The role of the state estimator is to provide an estimation of the position, orientation, linear
velocity and angular velocity of the base of the quadruped as well as the angular position of the
actuators. In the case of a simulation with PyBullet this information is perfectly known and
can be retrieved with the API.

The position/orientation state vector of the quadruped in world frame is:

oq =
[
ox oy oz oa ob oc od θ0 . . . θ11

]T
(1)

With (oa, ob, oc, od) the quaternion associated with the orientation of the base in world frame
(usually written (x, y, z, w) but x, y and z are already used for the position). θ0 to θ11 are the
angular positions of the 12 actuators of the quadruped.

The velocity state vector of the quadruped in world frame is:

oq̇ =
[
oẋ oẏ oż oωx

oωy
oωz θ̇0 . . . θ̇11

]T
(2)

With (oωx,
oωy,

oωz) the angular velocities about the x, y and z axes of the world frame.

2 MpcInterface

The role of the MpcInterface object is to transform data coming from PyBullet (simulation) or
the state estimator of the robot (real world) into useful information for the rest of the control
loop.

Data coming from PyBullet is retrieved in the world frame o. The position of the base of the
quadruped in this frame can be noted [ox oy oz]T and its orientation [oφ oθ oψ]T with (φ, θ, ψ) the
roll, pitch and yaw angles (Tait-Bryan Euler angles). These angles corresponds to a sequence
of rotations about the z, then y and then x axis such that the transform from body to world
coordinates can be expressed as:

R = Rz(ψ)Ry(θ)Rx(φ) (3)

Position, orientation, linear velocity and angular velocity of the base of the quadruped in world
frame can be transformed either into the base frame b or into the local frame l, as defined
in Figure X. The transform between two frames 1 and 2 can be stored in an object 1M2 that

1

https://arxiv.org/pdf/1909.06586.pdf

contains the translation part 1T2 and the rotation part 1R2 of the transform. The relation
between position [2x 2y 2z]T in frame 2 and the same position in frame 1 is:1x

1y
1z

 = 1R2 ·

2x
2y
2z

+ 1T2 = 1M2 ·

2x
2y
2z

 (4)

Based on Figure X the transforms are defined as follows:

oTb =
[
ox oy oz

]T
(5)

oRb = R3(oφ) ·R3(oθ) ·R3(oψ) (6)

oTl =
[
ox oy ozmin

]T
(7)

oRl = R3(oψ) (8)

ozmin is the altitude of the lowest feet in world frame i.e. the z coordinate of its center in this
frame. Position of feet in world frame are retrieved from PyBullet.

To get the position and velocity of the center of mass (CoM) of the quadruped, Pinocchio requires
the position and orientation of the base in world frame, the angular positions of the actuators
and the linear and angular velocities of the base in base frame. All of them are directly retrieved
from PyBullet except the linear and angular velocities bVbase and bWbase in base frame:

bVbase = (oRb)
−1 · oVbase (9)

bWbase = (oRb)
−1 · oWbase (10)

The resulting position and linear velocity of the CoM in world frame are noted oC and oV .
The angular velocity in world frame oW is directly retrieved from PyBullet (assumption that
oW = oWbase), just like the orientation oRPY = [oφ oθ oψ]T .

The position, orientation, linear velocity and angular velocity of the base of the quadruped in
local frame can be retrieved using the transform oMl :

lC = (oMl)
−1 · oC (11)

lRPY = [oφ oθ 0]T (12)
lV = (oRl)

−1 · oV (13)
lW = (oRl)

−1 · oW (14)

The projections on the ground of the shoulders of the quadruped are supposed constant even if
in practice there is a dependence to roll and pitch. Order of shoulders is Front-Left, Front-Right,
Hind-Left, Hind-Right:

lshoulders =

 0.19 0.19 −0.19 −0.19
0.15005 −0.15005 0.15005 −0.15005

0.0 0.0 0.0 0.0

 (15)

oshoulders = oMl · lshoulders (16)

Positions of feet in world frame or are directly retrieved from PyBullet and transformed in local
frame for the MPC:

lr = (oMl)
−1 · or (17)

2

3 Footstep Planner

The desired gait for the quadruped is defined in a gait matrix of size 6 by 5. Each row contains
information about one phase of the gait. The first column contains the number of remaining
time steps of the MPC for each phase and the four remaining columns contains the desired
contact status for each foot and for each phase (0 if the foot is in swing phase or 1 if it is in
stance phase).

With a time step of 0.02 s for the MPC and a gait period of 0.32 s, the matrix of a walking trot
gait is defined as follows:

gait(0) =



1 1 1 1 1
7 1 0 0 1
1 1 1 1 1
7 0 1 1 0
0 0 0 0 0
0 0 0 0 0

 (18)

The first phase is a 4-feet stance phase that lasts 1 iteration of the MPC, followed by a phase
with 2 feet in stance phase and the other 2 in swing phase during 7 iterations, then again a 4-feet
stance phase and finally 2 feet in stance phase and 2 feet in swing phase. As the quadruped
moves forward in the gait, the gait matrix undergoes a rolling process. For instance after 3
iterations of the MPC this matrix becomes:

gait(1) =



7 1 0 0 1
1 1 1 1 1
7 0 1 1 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0

 gait(2) =



6 1 0 0 1
1 1 1 1 1
7 0 1 1 0
1 1 1 1 1
1 1 0 0 1
0 0 0 0 0

 gait(3) =



5 1 0 0 1
1 1 1 1 1
7 0 1 1 0
1 1 1 1 1
2 1 0 0 1
0 0 0 0 0

 (19)

Additional rows could be added to be able to handle more complex gaits.

The gait being defined, let’s describe the way the location of future footsteps is computed. The
footstep planner only works in 2 dimensions as it outputs the desired position (rx,?, ry,?) of
each foot on the ground which is assumed flat. It only considers as input an horizontal linear
reference velocity with an angular reference velocity about the vertical axis: (ẋ?, ẏ?, ω?z).

The default position of footsteps in local frame is on the ground under the shoulders:

rsh = lshoulders =

[
0.19 0.19 −0.19 −0.19

0.15005 −0.15005 0.15005 −0.15005

]
(20)

A symmetry term is added to this position to make the gait more symmetric compared to the
shoulders when moving. If the base moves forwards at speed v then if a foot lands under its
associated shoulder it will spend the whole stance phase “behind” the shoulder as the base keeps
moving forwards while the foot in contact does not move (in world frame). During the duration
of the stance phase, the displacement of the base is equal to tstancev. That is why with the
symmetry term trying to land tstance

2 v in front of the shoulder feet in contact spend half the
stance phase in front of the shoulder and the other half behind it.

rsym =
tstance

2
lv =

tstance
2

[
lẋ
lẏ

]
(21)

3

A feedback term is added to the footstep planner to make it easier for the robot to reach the
reference velocity. The only way the quadruped can interact with its environment is by pushing
on the ground with its feet (cannot pull). As per Newton’s second law, if the quadruped wants
to move in a given direction it has to apply a force in the inverse direction. So the feedback term
makes it easier to do that by shifting the desired location of footsteps in the inverse direction
of the velocity error (v? − v). For instance if the robot is not moving fast enough forwards then
the feedback term will slightly shift the footsteps backwards so that it’s easier to push on the
ground backwards and as a result to increase its forward velocity.

rfb = k (lv − lv?) = k

[
lẋ− lẋ?
lẏ − lẏ?

]
(22)

The feedback gain k is equal to 0.03 (MIT’s value).

A centrifugal term is added to the footstep planner to make it easier to compensate the centrifu-
gal effect when the robot is turning about the vertical axis by adjusting the location of footsteps
accordingly. As the formula involves the desired angular speed rather than the current one, it
could also be seen as a way to help the quadruped reach the reference angular velocity in a way
similar to what the feedback term does for the linear velocity.

rc =
1

2

√
h

g
lv × lω? =

1

2

√
h

g

[
lẏ ω?lz
−lẋ ω?lz

]
(23)

Finally, another term is added to the footstep planning to take into account a temporal aspect.
With all previous terms, there is none: whether a foot is just at the start of its swing phase or
almost at the end, the desired target location returned by the footstep planner is the same. If
the quadruped is moving forwards at the reference velocity then during the whole duration of a
swing phase the target position will be ∆x meters in front of the shoulder in local frame. Except
since the base is moving in world frame then the target position in world frame is moving as
well. At the start of each swing phase the associated foot will target a position x0 +∆x in world
frame but by the end of the swing phase this position becomes x0 + ∆x+ tswing ẋ

? due to the
movement of the base. With the assumption that current and reference velocities do not change
much over one period of gait feet could directly aim for their final target location by taking into
account the movement of the base during their swing phase.

With the assumption that the quadruped moves with constant linear and angular velocities
during the remaining duration of the swing phase then the predicted movement is, if ωlz 6= 0:

lxpred(tr) =

∫ tr

0

(
lẋ cos(ωlz t)− lẏ sin(ωlz t)

)
dt (24)

lypred(tr) =

∫ tr

0

(
lẋ sin(ωlz t) + lẏ cos(ωlz t)

)
dt (25)

lxpred(tr) =
lẋ sin(ωlz tr) + lẏ (cos(ωlz tr)− 1)

ωlz

(26)

lypred(tr) =
−lẋ (cos(ωlz tr)− 1) + lẏ sin(ωlz tr)

ωlz

(27)

If ωlz = 0:

lxpred(tr) = lẋ tr (28)
lypred(tr) = lẏ tr (29)

4

The remaining duration tr for the swing phase of a foot can be directly retrieved using informa-
tion contained in the gait matrix like the contact status (0 for a swing phase) and the remaining
number of time steps (first column).

The desired location of footsteps is the sum of all described terms. Symmetry, feedback and
centrifugal terms are the same for all feet contrary to the shoulder and prediction terms.

The desired location of footsteps for each gait phase in the prediction horizon are stored in a
6 by 13 matrix (same number of rows than the gait matrix). The first column is the same and
contains the remaining number of footsteps for each phase. The twelve other columns contains
the desired location of the footstep (if in stance phase) or Not-A-Number (if in swing phase) for
the 4 feet. For instance for the gait(1) matrix of equation 19 this matrix would be:

[7 lrx0
lry0

lrz0 NaN NaN NaN NaN NaN NaN lrx3
lry3

lrz3
1 lrx0

lry0
lrz0

lrx,?1
lry,?1 0 lrx,?2

lry,?2 0 lrx3
lry3

lrz3
7 NaN NaN NaN lrx,?1

lry,?1 0 lrx,?2
lry,?2 0 NaN NaN NaN

1 lrx,?0
lry,?0 0 lrx,?1

lry,?1 0 lrx,?2
lry,?2 0 lrx,?3

lry,?3 0
0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN]

The first row is a phase with two feet in swing phase (feet 1 and 2) and two feet in stance phase
(feet 0 and 3). Feet 1 and 2 in swing phase receive a NaN value while feet 0 and 3 in stance
phase receive their desired location. Since the first row is the current active phase the desired
position of feet in stance phase is their current position in local frame. Due to how oMl has been
defined in equation 7 and 8 and the fact that lr = (oMl)

−1 · or that means lrz0 = orz0− ozmin. For a
ground that is completely flat orz0 = orz3 = ozmin so lrz0 = lrz3 = 0. However if foot 0 is on a small
step then orz3 = ozmin and orz0 = ozmin + hstep so lrz3 = 0 and lrz0 = hstep. That way the fact that
foot 0 is not strictly on the ground but on a small step is taken into account.

For the second row (the next phase), feet 0 and 3 are still in stance phase so their desired
position is still their current position. For feet 1 and 2 that will be in stance phase (they are
currently in swing phase) their desired position is the one outputted by the footstep planner. It
only provides desired position for the x and y components so for z the assumption is made that
the ground is flat (lrz,?1 = lrz,?2 = 0) since there is no a priori knowledge about the environment.

For the third phase, feet 0 and 3 are now in swing phase so they have a NaN value while feet
1 and 2 are still in stance phase compared to the previous phase so their desired positions do
not change. For the fourth phase feet 0 and 3 are back in stance phase. Their current position
is not used since this stance phase happens in the future after a swing phase so instead their
desired position is the one outputted by the footstep planner.

4 Foot trajectory generator

x, y and z in this section replace orx, ory and orz for clarity purpose.

During swing phases feet have to be guided from their current position to their target position
on the ground outputted by the footstep planner. To generate their trajectory in the air, foot
trajectory generators are used, one for each foot. Each generator takes as input the current state
of its associated foot [xft ẋft ẍft yft ẏft ÿft], the desired position on the ground [xgoal ygoal],
the control time step dt, the time t0 elapsed since the start of the swing phase and the ex-
pected duration t1 of the swing phase. This information is processed to output a command

5

[x? ẋ? ẍ? y? ẏ? ÿ? z? ż? z̈?] for the foot. Generators work in the world frame and use data
provided by the MpcInterface.

For the x component, what the generator does is to tune a 5-th polynomial to have x(t0) = xft,
ẋ(t0) = ẋft and ẍ(t0) = ẍft while having x(t1) = xgoal, ẋ(t1) = ẍ(t1) = 0. The generator can
then output [x? ẋ? ẍ?] by computing x(t0 + dt), ẋ(t0 + dt) and ẍ(t0 + dt). The same happens
for the y component to output [y? ẏ? ÿ?].

Command for the z component is deterministic and there is no feedback like for the x and y
components for which the current position, velocity and acceleration of the foot are taken into
account. Trajectory for z is a 6-th order polynomial that does not change and defined in such
a way that z(0) = ż(0) = z̈(0) = 0 and z(t1) = ż(t1) = z̈(t1) = 0 with z(t12) = h. h is a constant
value defined when the foot trajectory generator is created to set the desired apex height of the
foot during its swing phase.

Due to these characteristics, the trajectory generated can be described as a bell-like trajectory
that goes from the initial position of the foot to its target trajectory while respecting non-slipping
constraints during take-off and landing (no horizontal speed) and trying to land softly (0 final
velocity and acceleration for z).

To keep this slipping-avoidance property, the target position on the ground [xgoal ygoal] is locked
tlock seconds before landing. Basically [xgoal ygoal] is not updated if t0 > (t1 − tlock). Changing
the desired position on the ground just before landing would create a non-negligible horizontal
speed to correct the position of the foot in order to land at the new position. It is required
because the target position is always changing since it is linked to the current velocity of the
robot through the symmetry term of the footstep planner and this velocity is never exactly the
same from one time step to another.

Since a 3D tracking task is in charge of applying the adequate torques to follow the command of
the trajectory generator depending on the current state of the foot (more details in the Inverse
Dynamics section), there is already a feedback for the position, velocity and acceleration of the
foot. To avoid having two feedback loops that try to do the same thing, the feedback of the foot
trajectory generator is not used. What that means is that at the start of the swing phase the
trajectory generator receives [xft 0 0 yft 0 0] to update the position of the foot and then the
command of the generator is supposed to be perfectly followed. Therefore at the next iteration
the generator is given the command [x? ẋ? ẍ? y? ẏ? ÿ?] as the state of the foot. That way the
feedback capabilities of the generator are not used.

As explained earlier, the trajectory for the z component is deterministic: it always starts at
z(0) = 0 m and ends at z(t1) = 0 m. That is why a small offset is added to the command z?

that is sent to the 3D tracking task to take into account the altitude of the ground the robot
is walking on. This zoffset is determined by taking the minimum altitude of all feet in contact
with the ground which uses the assumption that there is at least one feet in contact when the
other feet are in swing phase (equal to ozmin introduced in the MpcInterface section). With this
offset the command received by the tracking task will start and end at the correct altitude.

6

5 State vector

The reference velocity q̇? that is sent to the robot is expressed in its local frame. It has 6
dimensions: 3 for the linear velocity and 3 for the angular one.

lq̇? = [lẋ? lẏ? lż? ω?lx ω?ly ω?lz]
T (30)

The velocity vector of the robot is:

lq̇ = [lẋ lẏ lż ωlx ωly ωlz]
T (31)

At the start each iteration of the MPC, the current position and orientation of the robot defines
a new frame in which the solver will work. This frame is a copy of the local frame so it is at
ground level with the x axis pointing forwards (x axis of the local frame), the y axis pointing to
the left (y axis of the local frame) and the z axis point upwards. Instead of working in terms of
rotation around the x, y and z axes of the world frame, the solver will work with the pitch, roll
and yaw angles defined in this new frame. The solver is working in a copy of the local frame,
initial conditions of the solving process are as follows:

q0 = [lx ly lz lφ lθ lψ]T = [lCx
lCy

lCz
lφ lθ 0]T (32)

q̇0 = [lẋ lẏ lż ωlx ωly ωlz]
T (33)

With [lCx
lCy

lCz] the position of the center of mass in local frame.

The state vector of the robot and the reference state vector are then:

X =

[
q
q̇

]
X? =

[
q?

q̇?

]
(34)

The reference velocity is supposed constant over the prediction horizon in the local frame of the
robot so it has to be properly rotated to be consistent with its future orientation.

For time step k of the prediction horizon, the reference velocity vector is defined as follows:

∀k ∈ [1, nsteps], q̇
?
k =

[
Rz(∆t · k · ω?lz)
Rz(∆t · k · ω?lz)

]
· lq̇? (35)

with Rz(ψ) the 3 by 3 rotation matrix by an angle ψ about the vertical axis. There is no rotation
about the roll and pitch axes due to the assumption that the trunk is almost horizontal.

To get the reference position vector for all time steps of the prediction horizon an integration
similar to the one that has been done for the prediction term of the footstep planner is performed.
If ω?lz = 0:

∀k ∈ [1, nsteps], q
?
k = q0 + k ∆t lq̇? (36)

7

If ωlz? 6= 0:

x?k = lCx +
lẋ? sin(ω?lz k ∆t) + lẏ?

(
cos(ω?lz k ∆t)− 1

)
ω?lz

(37)

y?k = lCy +
−lẋ?

(
cos(ω?lz k ∆t)− 1

)
+ lẏ? sin(ω?lz k ∆t)

ω?lz
(38)

z?k = lCz + k ∆t lż? (39)

φ?k = lφ+
ω?lx sin(ω?lz k ∆t) + ω?ly

(
cos(ω?lz k ∆t)− 1

)
ω?lz

(40)

θ?k = lθ +
−ω?lx

(
cos(ω?lz k ∆t)− 1

)
+ ω?ly sin(ω?lz k ∆t)

ω?lz
(41)

ψ?k = 0 + k ∆t ω?lz (42)

(43)

Previous equations could be used in a general case for which there is a velocity control for all
linear and angular components. However, in our case, since we want the quadruped to move
around while keeping the trunk horizontal and at constant height, we want a velocity control in
x, y and ψ and a position control in z, φ and θ to keep ∀t, z(t) = h and φ(t) = θ(t) = 0 rad.
To avoid having too many feedback loop (reference velocity for z, φ and θ depending on the
position error) we set ∀k ∈ [1, nsteps]:

ż?k = 0 and z?k = h (44)

ω?lx = 0 and φ?k = 0 (45)

ω?ly = 0 and θ?k = 0 (46)

To sum things up:

∀k ∈ [1, nsteps], X
?
k =



lCx +
lẋ? sin(ω?

lz
k ∆t)+lẏ?

(
cos(ω?

lz
k ∆t)−1

)
ω?
lz

lCy +
−lẋ?

(
cos(ω?

lz
k ∆t)−1

)
+lẏ? sin(ω?

lz
k ∆t)

ω?
lz

h
0
0

k ∆t ω?lz
lẋ? cos(k ∆t ω?lz)−

lẏ? sin(k ∆t ω?lz)
lẋ? sin(k ∆t ω?lz) + lẏ? cos(k ∆t ω?lz)

0
0
0
ω?lz



(47)

The solver will work around the reference trajectory so we define the optimization state vector
as follows:

Xk = Xk −X?
k (48)

8

6 Dynamics equations and constraints

The MPC works with a simple lumped mass model (centroidal dynamics). It can be written in
world frame as follows:

m oC̈ =

nc−1∑
i=0

ofi −

 0
0
mg

 (49)

d

dt
(oIoω) =

nc−1∑
i=0

(ori − oC)× ofi (50)

With nc the number of footholds, ofi the reaction forces, ori the location of contact points, oC
the position of the center of mass, oI the rotational inertia tensor and ow the angular velocity
of the body.

The first assumption is that roll and pitch angles are small, it follows that:oφ̇oθ̇
oψ̇

 ≈ Rz(ψ)−1 · oω (51)

oI ≈ Rz(ψ) · bI ·Rz(ψ)−1 (52)

The second assumption is that states are close to the desired trajectory so in equation 50 we
can replace the position of the center of mass oC by the desired position for the center of mass.

The last assumption is that pitch and roll velocities are small so:

d

dt
(oIoω) = oIoω̇ + oω × (oIoω) ≈ oIoω̇ (53)

With these assumptions, equation 50 is simplified into:

oI oω̇ =

nc−1∑
i=0

(ori − oC?)× ofi (54)

The local frame that the solver is working in is actually the world frame rotated by ψ about the
vertical axis z so equation 51 becomes: oφ̇oθ̇

oψ̇

 ≈ lω (55)

Equations 49 and 54 can be written in local frame:

m Rz(ψ)−1lC̈ =

nc−1∑
i=0

Rz(ψ)−1lfi −Rz(ψ)−1

 0
0
mg

 (56)

Rz(ψ)−1lIRz(ψ) Rz(ψ)−1lω̇ =

nc−1∑
i=0

Rz(ψ)−1(lri − lC?)×Rz(ψ)−1lfi (57)

9

As cross product is invariant by rotation these equations result in:

m lC̈ =

nc−1∑
i=0

lfi −

 0
0
mg

 (58)

lI lω̇ =

nc−1∑
i=0

(lri − lC?)× lfi (59)

Once discretized and considering equation 55, evolution of state variables becomes ∀k ∈ [0, nsteps−
1]: lxk+1

lyk+1
lzk+1

 =

lxklyk
lzk

+ ∆t

lẋklẏk
lżk

 (60)

lφk+1
lθk+1
lψk+1

 =

lφklθk
lψk

+ ∆t

ωlx,k

ωly,k

ωlz,k

 (61)

lẋk+1
lẏk+1
lżk+1

 =

lẋklẏk
lżk

+ ∆t

nc,k−1∑
i=0

lfi,k
m
−

0
0
g

 (62)

ωlx,k+1

ωly,k+1

ωlz,k+1

 =

ωlx,k

ωly,k

ωlz,k

+ ∆t

lI−1

nc,k−1∑
i=0

[lri,k − lC?k]× · lfi,k

 (63)

In terms of constraints, friction cone conditions to avoid slipping are linearized to the first order:

∀i ∈ [0, 3],∀k ∈ [0, nsteps − 1], |fxi,k| ≤ µ fzi,k and |fyi,k| ≤ µ f
z
i,k (64)

An upper limit has to be set for contact forces to respect hardware limits (maximum torque of
actuators). This limit is only applied to the z component since it will also limit the force along
x and y due to the friction cone contraints.

∀i ∈ [0, 3],∀k ∈ [0, nsteps − 1], fzi,k ≤ fmax (65)

The quadruped cannot pull on the ground, it can only push so the normal component of the
contact forces has to be positive:

∀i ∈ [0, 3], ∀k ∈ [0, nsteps − 1], fzi,k ≥ 0 N (66)

To be sure that there is no slipping, we could impose a minimal non-zero vertical component
of the contact forces because if it is close to 0 N the friction cone is small so on the real robot
slipping could happen. In practise to due the way the MPC is currently programmed to disable
a foot when it is in swing phase we set a constraint that its contact force is equal to 0 so it is not
directly compatible with ∀i ∈ [0, 3], ∀k ∈ [0, nsteps − 1], fzi,k ≥ fmin. We would have to change
more coefficients to temporarily disable this fzi,k ≥ fmin for feet in swing phase.

This minimal non-zero vertical component of the contact forces is taken into account by the in-
verse dynamics block (TSID) so even if the output of the MPC contains a 0 N vertical component
for a foot in contact it will be equal to fmin after being processed by TSID.

10

7 MPC matrices for dynamics and constraints

Goal: create the matrices that are used by standard QP solvers. These solvers try to find
a vector X that minimizes a cost function 1

2X
T .P.X + XT .Q under constraints M.X = N and

L.X ≤ K. In this section the construction of matrices M , N , L and K is described.

The evolution of the state vector of the robot over time can be described as follows:

x(k + 1) = A(k)x(k) +B(k)f(k) + g (67)

Matrices A et B depends on k and g = [0 0 0 0 0 0 0 0 − 9.81 ·∆t 0 0 0]T

The contact forces vector f(k) = fk always include the forces applied on the four feet even if
some of them are not touching the ground. In that case we will set the problem in such a way
that forces for such feet are not considered in the solving process.

fk = [fT0,k fT1,k fT2,k fT3,k]
T (68)

∀i ∈ [0, 3], k ∈ [0, nsteps − 1], fi,k =

fxi,kfyi,k
fzi,k

 (69)

with fxi,k, f
y
i,k and fzi,k the components along the x, y and z axes of the solver frame for the i-th

foothold at time step k.

Let’s consider a case with only 3 time steps in the prediction horizon.

The goal of the MPC is to find contacts forces f that should be applied to have the state vector
X of the robot as close as possible to X?. The QP solver outputs at the end of the optimization
process the optimization vector X that minimizes the cost function locally (globally in the best
case). The QP problem can be written in a simple way by putting both f (the output of the
MPC) and Xk = Xk −X?

k (quantity that should be minimized) in the optimization vector:

X = [X T1 X T2 X T3 fT0 fT1 fT2]T (70)

Matrix M is defined as follows:

M =



−I12 012 012 B0 012 012

A1 −I12 012 012 B1 012

012 A2 −I12 012 012 B2

012 012 012 E0 012 012

012 012 012 012 E1 012

012 012 012 012 012 E2

 (71)

A, B and E have a size of 12 by 12.

Matrix N is defined as follows:

N =



−g
−g
−g

012×1

012×1

012×1

+



−A0X0

012×1

012×1

012×1

012×1

012×1

+

 I12 012 012 012 012 012

−A1 I12 012 012 012 012

012 −A2 I12 012 012 012

 ·


X?
1

X?
2

X?
3

012×1

012×1

012×1

 (72)

11

Matrix Ak for time step k is defined as follows:

Ak =


I3 03 ∆t · I3 03

03 I3 03 ∆t · I3

03 03 I3 03

03 03 03 I3

 (73)

With the assumption that roll and pitch angles are small the inertia matrix of the robot in solver
frame rotated according to the orientation of the robot at time step k is:

lIk = Rz(∆t · k · ω?lz) ·
bI (74)

Matrix Bk for time step k is defined as follows:

B = ∆t ·


03 03 03 03

03 03 03 03

I3/m I3/m I3/m I3/m
lI−1
k · [

lr0,k − lC?k]×
lI−1
k · [

lr1,k − lC?k]×
lI−1
k · [

lr2,k − lC?k]×
lI−1
k · [

lr3,k − lC?k]×


(75)

with (lri,k − lC?k) the vector in local frame going from the desired position of the center of mass
at time step k to the position of the i-th foothold. [rk,i− lC?k]× is the associated skew-symmetric
matrix.

Matrix Ek for time step k is defined as follows:

Ek =


e0,k 03 03 03

03 e1,k 03 03

03 03 e2,k 03

03 03 03 e3,k

 (76)

ei,k = 03 if the i-th foot is touching the ground during time step k, ei,k = I3 otherwise. In fact,
if ei,k = I3 then with M.X = N we are setting the constraint that fi,k = [0 0 0]T (no reaction
force since the foot is not touching the ground).

Matrix L is defined as follows:

L =

020×12 020×12 020×12 Fµ 020×12 020×12

020×12 020×12 020×12 020×12 Fµ 020×12

020×12 020×12 020×12 020×12 020×12 Fµ

 (77)

With:

Fµ =


G 05×3 05×3 05×3

05×3 G 05×3 05×3

05×3 05×3 G 05×3

05×3 05×3 05×3 G

 and G =


1 0 −µ
−1 0 −µ
0 1 −µ
0 −1 −µ
0 0 −1

 (78)

The K matrix is defined as K = 060×1.

12

8 MPC cost function

QP solvers try to find a vector X that minimizes a cost function 1
2X

T .P.X + XT .Q under con-
straints M.X = N and L.X ≤ K. Matrices P and Q define the shape of the cost function.

The goal of the MPC is to find which contact forces should be applied at contact points so that
the predicted trajectory of the center of mass is as close as possible to the reference trajectory.
With previous notation, that means we want to minimize |X −X?|. Function | · | is not directly
available with a matrix product 1

2X
T .P.X+XT .Q so we can try to minimize (X −X?)2 instead.

Since:

X =



X1
...

Xnsteps

f0
...

fnsteps−1


=



X1 −X?
1

...
Xnsteps −X?

nsteps

f0
...

fnsteps−1


(79)

then the upper left portion of P can be diagonal:

P =


cX,1 0 ∗

. . . ∗
0 cX,nsteps ∗
∗ ∗ ∗ ∗

 (80)

With ∀k ∈ [1, nsteps], cX,k being 12 by 12 diagonal matrices with coefficients ≥ 0 the deviation
from the reference trajectory is penalized by the cost function as it push the solver into mini-
mizing the error (Xk −X?

k)2. For safety reason, for energy consumption and for the actuators,
it is better to keep the contact forces low if possible. That is why a small regularization term
is added to slightly penalize the norm of contact forces. Since the

√
· function is not directly

available in the matrix product of the cost function, we regularize the square of the norm instead
(‖fk‖2).

P =



cX,1 0 ∗ ∗ ∗
. . . ∗ ∗ ∗

0 cX,nsteps ∗ ∗ ∗
∗ ∗ ∗ cf,0 0

∗ ∗ ∗ . . .

∗ ∗ ∗ 0 cf,nsteps−1


(81)

With ∀k ∈ [0, nsteps − 1], cf,k being 12 by 12 diagonal matrices with coefficients ≥ 0. There is
no cross-coupling between X and force components so the upper-right and lower-left parts of P
are zeros.

As there is no focus on any part of the prediction horizon, all cX,k are equal, same of all cf,k.
Coefficient at position [i, i] in cX,k weights the deviation of the i-th component of the state vector
from the reference trajectory. Remember that components of the state vector are in this order:
[lx ly lz lφ lθ lψ lẋ lẏ lż ωlx ωly ωlz]. Coefficient at position [i, i] in cf,k weights the i-th component
of the force vector for regularization purpose. Remember that components of the force vector
are in this order: [lfx0

lfy0
lfz0

lfx1
lfy1

lfz1
lfx2

lfy2
lfz2 vlfx3

lfy3
lfz3]. To regularize properly the norm

13

of contact forces ‖fi,k‖2 = (fxi,k)
2 + (fyi,k)

2 + (fzi,k)
2 coefficients for the x, y and z components

have to be equal:

∀k ∈ [0, nsteps − 1], ∀i ∈ [0, 3], cf,k[3i, 3i] = cf,k[3i+ 1, 3i+ 1] = cf,k[3i+ 2, 3i+ 2] (82)

If no leg is privileged (to mimic a wounded leg we would try to apply less force with it) then all
coefficients on the diagonal of cX,k are equal and ∀k ∈ [0, nsteps−1], cX,k = wfI12 with wf ∈ R+

Matrix Q in XT · Q only contains zeroes since there is no reason to push Xk − X?
k or fk into

being as negative/positive as possible. For instance if a coefficient of Q is positive then the
solver will try to have the associated variable as negative as possible to have a high negative
product between the coefficient and the variable since that minimizes the cost.

In the 3 time steps example of the previous section P has a size of 72 by 72 (12 x 3 lines/columns
for X1,2,3 and 12 x 3 lines/columns for f1,2,3) and Q has a size size 72 by 1.

The cost function during the optimization process is then:

cost(X −X?, f) =

nsteps∑
k=1

(
11∑
i=0

[
wiX(Xi

k −X
i,?
k)2

]
+ wf

3∑
i=0

[
(fxi,k)

2 + (fyi,k)
2 + (fzi,k)

2
])

(83)

9 Output of the MPC

The desired reaction forces that need to be applied (by TSID or the real robot) are stored in f0.
It contains the desired reaction forces in local frame so they will have to be brought back to the
world frame that TSID is working in.

The same applies for the next desired position of the robot that is stored in X1 and can be
retrieved by adding X?

1 to X1. As the next position/orientation is expressed in local frame we
would have to rotate them to be able to use them for the inverse dynamics.

10 Inverse dynamics

The goal of the inverse dynamics is to make the link between the high level control (MPC contact
forces and desired position of footsteps) and the low level control (desired torques sent to the
drivers of the actuators). To do that, we use Efficient Task Space Inverse Dynamics (TSID,
https://github.com/stack-of-tasks/tsid). This library allows to perform task-orientated
optimization-based inverse-dynamics control based on the rigid multi-body dynamics library
Pinocchio. Unlike the MPC it does not consider a prediction horizon but only the current state
of the robot and the current defined tasks.

Currently four kind of tasks are being used:

• Contact tasks for feet in contact with the ground to inform the solver that these feet should
not move and that they can be used to apply forces on the ground.

• Force tasks to have the contact forces close to the desired contact forces outputted by the
MPC. These tasks are associated with the contact tasks.

14

https://github.com/stack-of-tasks/tsid

• Tracking tasks for feet in swing phase to follow the 3D trajectory generated by the foot
trajectory generator to land at the position desired by the footstep planner.

• Posture task for all legs to get back to a default position if some degrees of freedom are
not used.

One instance of the first three task is initially created and assigned to each foot. Then during
the gait these tasks are enabled or disabled depending on the state of the foot. In swing phase
only the tracking task is active while in stance phase only contact and force tasks are enabled.
There exists a single posture task which is always active and affect the whole body.

A weight is assigned to each task to make it more or less important compared to the other ones.
“Contact + Force” and 3D tracking are never active at the same time so they do not compete
with each other. As the posture task is just intended to be use as a form of regularization, it
should not interfere with the other tasks. Its weight is kept at least 10−2 times less than the
others to mimic a hierarchical solver: the relative weight is so small that it does not impact the
other tasks even if in practice all tasks are considered together during the solving process.

If the i-th foot is in stance phase then the force reference of its force task is updated with the
desired contact force [fxi,0 f

y
i,0 f

z
i,0] outputted by the MPC. If the i-th foot is in swing phase

then its tracking task is updated with the desired position [x? y? z?], velocity [ẋ? ẏ? ż?] and
acceleration [ẍ? ÿ? z̈?] outputted by the foot trajectory generator associated with this foot.

The inverse dynamics solver is first updated with the current state of the quadruped (posi-
tion/orientation/velocity of the base and angular position/velocity of the joints). It then tries
to find the accelerations (base+joints) and the contact forces that minimize the cost function
(weighted sum of task errors) while respecting the constraints (contacts, dynamics equations,
torque limits). Joint torques can be retrieved at the end of the optimization thanks to the
accelerations and the contact forces.

Retrieved torques are sent to the PyBullet simulator that makes the assumption that torques
are perfectly followed by the actuators. On the real robot they would be sent to the drivers that
would have to modulate the current sent to the actuators to get the desired torques.

15

	State Estimator
	MpcInterface
	Footstep Planner
	Foot trajectory generator
	State vector
	Dynamics equations and constraints
	MPC matrices for dynamics and constraints
	MPC cost function
	Output of the MPC
	Inverse dynamics

